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ABSTRACT 

 

Detailed spatial soil information is needed to better address environmental 

challenges across regional, national, and global scales. In the U.S., point-scale soil data 

are available to provide information on chemical and physical properties of soil as well 

as polygons where soils occur on the landscape. However, the soil data suffer from 

several shortcomings in terms of internal consistency as well as an inaccurate portrayal 

of soil variability. Passive aerial gamma-ray radiometrics is a tool that has been 

successfully used to represent soil variation because it may represent changes in parent 

materials. Legacy aerial gamma radiometric data is currently available across the United 

States but as such, has not been compared with soil properties. Therefore, the overall 

objective of this study was to assess the applicability of aerial gamma-ray spectrometry 

for the application of mapping soil properties associated across the U.S. Gamma 

radiometrics were compared with legacy soil samples across the United States. The 

quality of the initial aerial gamma-ray surveys were assessed by first comparing soil 

properties against with proximal gamma-ray surveys, followed by proximal and aerial 

radiometric comparisons within different parent materials in the state of Texas. 

After determining that aerial gamma radiometric variation is best understood in 

terms of physiography, results indicated weak to moderately significant relationships 

between the two datasets for soil properties such as soil texture and cation-exchange 

capacity. Results support the conclusion that the soil sampling locations as well as the 

poor spatial resolution of the legacy gridded gamma radiometric data contribute to low 
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correlation coefficients. Proximal survey results indicate that aerial gamma-ray spatial 

patterns are related with soil properties such as texture and inorganic carbon within 

different parent materials. Results also indicate that poor geo-spatial positioning of aerial 

surveys drives the decrease in quality of correlations with soil data on the ground. Aerial 

gamma-ray spectrometry has utility for mapping soil properties, but consideration must 

first be given toward parent material and physiography type. Future studies should 

consider understanding aerial gamma radiometrics in the United States by surveying 

additional parent materials not present in this study. 
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CHAPTER I 

 INTRODUCTION AND 

LITERATURE REVIEW 

Detailed spatial soils information for soil properties such as soil texture is needed 

for users interested in solving environmental problems such as proper land management 

as well as global soil security (McBratney et al., 2014). Soils information is typically 

presented either as qualitative (i.e. color, structure) or quantitative measurements 

(percent clay content), and individual soil series are differentiated from one another 

based on differences in these soil properties (McKenzie et al., 2008). In the early 

concepts of soil science, it was proposed by Jenny (1941) that different soils could be 

explained by under the five sources or factors of soil formation: climate, organisms, 

relief, parent materials and time (also referred to as the CLORPT model). When soils in 

the United States were first valued and assessed by governmental bodies such as the 

United States Department of Agriculture (USDA) in the 19th and 20th centuries, expert 

soil scientists differentiated between different soils by spatially delineating polygons or 

map units through experience as well employing the CLORPT model and historical 

remote sensing photography (Brevik et al., in press). Each soil map unit was then 

supplemented with soil data based on laboratory measurements and has since been 

managed and organized appropriately (McKenzie et al., 2008; National Cooperative Soil 

Survey, 2015). Although there are minor amounts of areas in the United States where 
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soils have not been mapped, the USDA has estimated that more than 95 percent of the all 

counties have been completed (Soil Survey Staff, 2015). 

Although this type of legacy soil data is extensive on a national scale and contains 

mostly complete soil property information, it is not considered to be a reliable end-

product for several reasons. First, the information provided within legacy soil maps may 

suggest to a user that soils vary discretely when in fact soils are known to vary 

continuously across a given landscape (Heuvelink and Webster, 2001). Potential 

problems with these maps are furtherly compounded because uncertainty is not 

characterized alongside soil property estimations and map quality assessment, therefore, 

is limited (McBratney et al., 2000). Second, legacy soil maps lack consistency because 

soil scientists employ their own conceptual models in describing soils, and often at 

different cartographic scales (Brevik et al., in press). Finally, these maps furtherly 

assume that estimates are static in nature, but many soil properties such as water content 

can exhibit high temporal variability (Brevik et al., in press). Therefore, there is a need 

to reliably represent soil variability such a way that is inherently free of bias (Hengl et 

al., 2014). 

The need for spatially continuous soil information has since been formalized by 

McBratney et al. (2003) through the SCORPAN model, and, although the model is 

conceptually analogous with the CLORPT model, it suggests that soils can be described 

in terms of spatial location (n) according to Tobler’s first law of geography (i.e. nearer 

soils are spatially correlated than those soils further apart) (Thompson et al., 2012). 

When the SCORPAN model was introduced by McBratney et al. (2003), soil scientists 
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began to look for tools that could be used to describe soils continuously and without 

bias, and once such answer has been found using soil sensor technology (Viscarra-

Rossel et al., 2011). One example of a mobile soil sensor that has been used in the field 

of soil science is a passive gamma-ray spectrometer that measures gamma-rays passively 

emitted from the soil surface (Viscarra-Rossel et al., 2007). 

I.1. Literature Review 

I.1.1. Principles of Gamma-ray Spectrometry 

Gamma-rays refer to massless, high energy particles located along the 

electromagnetic spectrum (between 10 to 10,000 keV) that form when initial 

radioelements (parents) release energy to form a different radioelement (daughters) in a 

random event called radioactive decay, and is expressed as: 

)
693.0

(

0
2/1T

t

eNN




(1) 

where N is the number of daughter atoms; N0 is the number of parent atoms; t is the 

elapsed time; and T1/2 is the half-life of a given radioelement (Gilmore, 2008). Gamma-

ray particles contain an energy value based on the following equation: 

hvE  (2) 

where E is the energy (in Joules or J); h is Planck’s constant (6.634*10-34 J s-1); and v is 

the frequency of the wavelength (s-1). The value of v can be expressed as 



c
v 

(3) 
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where λ is the wavelength (in m), and c is the speed of light (m s-1) (Minty, 1997b; 

IAEA, 2003). Energy values, which are originally expressed in Joules, can then be 

expressed in terms of electron volts when considering that 1 Joule = 6.24 x 1012 mega 

electron volts (MeV) (Gilmore, 2008). In GRS, each gamma-ray particle is detected by 

the sensor is summed over a given time period (usually one second), a value of which 

can explained by Beer’s law 

 )(

0

xeII   (4) 

where I is the final intensity (in counts s-1); I0 is the initial radiation intensity (in counts s-

1); μ is the linear attenuation coefficient (or alternatively expressed as m * , where 

ρ is the density of the soil and μw is the mass attenuation coefficient) and is proportional 

to the total number of electrons per unit volume of material; and x is the thickness of a 

given material (m-1) (Beamish, 2014). The range in energy values that are typically given 

from gamma-ray spectra within a soil are 0.1 MeV to 3.0 MeV, with each detected 

gamma-ray energy sorted into different energy channels, a value of which depends on 

the detector in use.  

I.1.2. Gamma-ray Interactions with Detectors and Instrumentation 

Gamma-ray sensors have been developed to calculate the concentrations of natural 

radioelements from a gamma-ray spectrum based on three different interaction 

mechanisms of gamma-ray particles with matter (Darnley, 1991). First, a gamma-ray can 

transfer all of its energy into a valence electron of an atom at low energies - this is called 

the photoelectric effect. Second, an incoming gamma-ray can transfer a partial amount 

of energy towards a valence electron and undergo subsequent scattering, termed 
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Compton scattering. Compton scattering is the main form of interaction at the energies 

used in gamma-ray studies and is often seen in gamma-ray spectra at lower energies 

called the Compton continuum (Gilmore, 2008). Third, an incoming gamma-ray can be 

become fully absorbed, creating an electron-positron pair and subsequently annihilates 

into two gamma-ray photons of equal energy; this process is called pair production 

(Minty, 1997b; IAEA, 2003; Gilmore, 2008).  

Different gamma-ray spectrometer types have been created that account for these 

interactions mechanisms using either a scintillator or a semiconductor. In a scintillation 

spectrometer, an incoming gamma-ray interacts with a scintillation crystal (typically NaI 

or CsI) to produce visible photons (i.e. scintillations) that cause electrons to be ejected at 

a photocathode, or a negatively charged electrode, and a negative voltage is created that 

is proportional to the original gamma-ray energy (IAEA, 2003). Scintillation 

spectrometers have been more widely used in environmental studies because they are 

relatively cheaper to manufacture than semiconductors, which allows for larger detector 

volumes (and therefore shorter measurement times); however, sensors that use 

scintillation crystals are subjected to a higher probability of performance failure because 

the manufactured crystals themselves are often fragile (Minty, 1997b). 

Semiconductor gamma-ray spectrometers are an additional solid-state device that 

consist of a valence band, a conduction band, and an energy gap between two bands. 

When an incoming gamma-ray interacts with the semiconductor material, electrons that 

are bound to atoms become excited and move through the energy band to the conduction 

band, leaving a hole or vacancy that can become filled by other electrons within the 
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valence band; the electrons that are found in the conduction band from gamma-ray 

excitation de-excite and are moved by an applied electric field out of the detector, 

thereby allowing gamma-rays to be identified under the assumption that the number of 

electron-hole pairs created is proportional to the energy of the initial gamma-ray 

(Gilmore, 2008). Semiconductors are generally lower in volume and more expensive 

than scintillation crystals but can exhibit a higher energy resolution (Hendriks et al., 

2001). Solid-state detectors are typically used for in-situ surveys or in the lab because 

the crystal requires constant cooling through liquid nitrogen in order to reduce the noise 

or background current of the system (Gilmore, 2008). 

I.1.3. Sources of Gamma-ray Radiation within Soils 

Radioelements occurring in soil are naturally occurring and include Potassium (40K), 

Uranium (238U) and Thorium (232Th), and comprise 0.012, 0.72 and almost 100 percent 

of their respective natural occurring elements (Minty, 1997b; Gilmore, 2008). Cesium 

(137Cs) is also found in soil and is formed through anthropogenic activities such as 

radioactive fallout from nuclear tests (Ritchie and McHenry, 1990). The peaks and 

energy windows that are typically used to estimate 40K, 238U and 232Th concentrations 

are provided in Table 1.  

Gamma-rays are directly released in the decay of 40K to 40Ar, while 232Th and 238U 

are emitted from daughter products further down their respective decay chains. 232Th and 

238U are thus more susceptible to disequilibrium, a condition where the rate of product 

formation does not equal the rate of parent decay (Minty, 1997b). For example, the 

daughter products of 238U are  222Rn and 214Bi  can be lost or leached from the soil 
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system in heavy rainfall or oxidizing conditions, leading to a decrease in the signal to 

noise ratio for estimates of 238U (Minty, 1997b). Although 238U and 232Th are found in 

smaller concentrations than 40K within soils, 238U and 232Th are more likely to be 

retained on clay surfaces when weathering begins to take place, whereas 40K is more 

easily weathered out of silicate clays and subsequently leached (Wilford et al., 1997). 

 

 

 

Table 1:  Radioelements that are commonly analyzed within gamma-ray spectrometry. 

Radioelement 

Gamma-

Emitting 

Product 

Half-life  

(years) 

Peak Energy 

(MeV) 

Standardized 

Energy Window 

(MeV) 

Potassium 

(40K) 

40K (40K → 
40Ar) 

1.3x109 1.46 1.370-1.570 

Uranium 

(238U) 
214Bi 4.46x109 1.76 1.660-1.860 

Thorium 

(232Th) 
208Tl 1.39x1010 2.61 2.410-2.810 

Cesium 

(137Cs) 
137Cs 30.12 0.662 0.562-0.762 

 

 

 

I.1.4. Gamma Radiometric Collection Methods 

Regardless of whether the gamma-emitting source is natural or anthropogenic, sensor 

technology or gamma-ray spectrometers are able to register and differentiate between 

different gamma-ray energy values quite efficiently (Darnley, 1991). Gamma-rays are 

able to be registered by the sensor because they interact with the hardware to produce 

scintillations of light or electricity that are subsequently converted into digital signals 

(Gilmore, 2008).   
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The initial use of these sensors within a soil science framework was for laboratory 

purposes, but has since shifted towards the field. Gamma-ray field surveys can take 

place either in the air (aerial gamma radiometrics) or closer to the ground (proximal 

gamma radiometrics), the latter of which can be sub-characterized into portable-

traversed (either on foot or stationary) or vehicle-traversed surveys (IAEA, 2003; Kock 

and Samuelsson, 2011). Aerial gamma radiometrics provides the largest sampling 

coverage because these sensors are equipped onto helicopter or fixed-wing aircraft and 

are not bound by obstacles such as fence lines, although navigation clearance can be a 

concern, especially over urban areas (Cresswell et al., 2013; Stockmann et al., 2015).  

Portable-traversed and vehicle-traversed GRS surveys in contrast with aerial gamma 

radiometrics surveys sample less area and typically use a smaller amount of crystal 

volume in the case of scintillation spectrometers. The appropriate choice of survey 

method (ground versus aerial) can be understood only when the intended use of the 

gamma-ray data is clearly defined and resources in terms of time and money are known 

(Killeen, 1979).  In contrast with portable-traversed gamma-ray surveys, vehicle-borne 

surveys are more efficient in characterizing soil processes within multiple landscapes 

due to its relatively larger sampling coverage, and recent literature has suggested that 

vehicle-traversed surveys can be considered to be an alternative to aerial surveys if a 

‘smart’ ground survey is undertaken (Stockmann et al., 2015).  

I.1.5. Gamma-ray Data Processing and Post-processing 

Once a raw gamma-ray spectrum is obtained, it is then corrected for background 

radiation (i.e. sources of gamma radiation not emitted from the soil), and are 
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subsequently converted into mass concentration values (i.e. % 40K, ppm soil 238U and 

232Th) within the soil through the following steps: 1) live-time correction; 2) energy 

calibration; 3) vehicle and cosmic correction; 4) radon background correction; 5) 

channel interaction or stripping correction; 6) height correction and final conversion into 

concentration based on derived calibration constants (Minty, 1997b; IAEA, 2003). 

Note that some of the processing steps listed above are more relevant than others 

depending on the type of gamma-ray survey conducted (ground/proximal versus aerial 

survey). For example, aerial gamma-ray surveys require more background correction in 

the form of cosmic and radon than ground surveys because the detector encounters more 

of these types of particles (IAEA, 2003). 

Unfortunately, gamma-ray spectra that are collected in aerial surveys are usually 

subjected to environmental effects that attenuate the gamma-ray flux, such as excessive 

soil moisture from a previous rainfall, snow cover, or vegetation (IAEA, 2003). Soil 

moisture operates as an effective gamma-ray attenuating material because water contains 

hydrogen ions which act to provide additional electron content, thereby allowing for 

more possible gamma-ray and electron interactions (Løvborg, 1984). Therefore, gamma 

radiation measurements can be modified for soil moisture using the following equation: 

 

w

dw
k

NN



1

1
  (5) 

where Nw is the measured intensity of gamma radiation; Nd is the intensity of gamma 

radiation when the soil is dry; k is the ratio of electrons in water to that of soil ( k = 

1.11); and θw is gravimetric soil water content (Loijens, 1980; Carroll, 1981). 
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Additionally, post-processing methods have been applied to reduce the overall effect of 

noise, such as spectral component analysis (Hovgaard and Grasty, 1997) and spatial and 

therefore temporal averaging using neighborhoods (Rawlins et al., 2012; Viscarra-Rossel 

et al., 2014). 

I.1.6. History of Gamma-ray Spectrometry within the United States 

In the United States, the first aerial gamma radiometrics surveys began in 1973 

through the United States Geological Survey (USGS) due to an interest in characterizing 

uranium resources, under the hypothesis that rocks contain different aerial gamma 

responses in uranium (Hill et al., 2009).  For example, sedimentary rocks generally emit 

high amounts of uranium because they contain uranium rich minerals such as zircon, 

xenotime and monazite, although such concentrations are typically higher in igneous 

rocks (Killeen, 1979). The previous generalizations applied to uranium do not, however, 

indicate that a classification system can be created based on the gamma signals because 

it is quite common that different parent materials emit similar amounts of gamma-ray 

energies (Killeen, 1979).  

Legacy aerial surveys conducted by geological agencies such as the USGS initially 

collect raw counts but are then post-processed to obtain mass concentration values using 

the steps outline in section 2.5. To provide gamma-ray measurements between individual 

transect lines across the entire U.S., all of the points were interpolated onto relatively 

coarse grids (i.e. cell resolution of 2 kilometers), and broad regional trends can be 

observed in terms of the gamma variable called dose rate (Fig. 1) (IAEA, 2003; Duval, 

2005). Dose rate has been defined by IAEA (2003) as the amount of energy imparted 
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onto a unit of matter per unit time (nanoGrays hr-1), and is calculated in the following 

equation: 

 ][*72.2][*48.5][*2.13 ThUKRateDose   (6) 

where K is the concentration of 40K in percent; U is the concentration of 238eU in ppm 

and 232eTh is the concentration of 232Th in ppm under equilibrium (‘e’) conditions. In 

Fig. 1, high dose rate values can be seen in the western United States, in particular the 

state of Nevada, which contains pyroclastic rhyolitic (fine-grained acidic rock with 

enriched potassium) tuff parent materials that were ejected from volcanoes between the 

Miocene and Oligocene time periods (Best et al., 1989). Low amounts of gamma 

radiation in Fig. 1 can also be seen along the Florida coast and can be explained through 

the presence of peat deposits, which are known to store high amounts of water, thereby 

attenuating significant amounts of gamma-rays (Beamish, 2014). 

I.2. Application of Aerial Gamma-ray Spectrometry to Soil Science 

Soon after connections were made between aerial gamma radiometrics and geology, 

research scientists soon began to realize the potential benefits of aerial gamma 

radiometrics within soil science because soils inherit characteristics from its underlying 

weathered bedrock, or parent material (Wilford et al., 1997). These researchers then 

hypothesized (and confirmed) that, if lithology can be distinguished based on the aerial 

gamma radiometrics signal at regional scales, then soils could be differentiated as well 

because they inherit mineralogy from their underlying parent materials (Schwarzer and 

Adams, 1973; Darnley, 1991; IAEA, 2003). This assumption may not hold true, 
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however, for soils that form over multiple parent materials lithological discontinuities 

(Dickson and Scott, 1997). 

Once this relationship between soil science and aerial gamma radiometrics was 

established (Schwarzer et al., 1971; Schwarzer and Adams, 1973), researchers began 

investigating just how well aerial gamma-ray data can be used to predict spatially 

variable surface soil properties derived from parent materials such as soil texture (Taylor 

et al., 2002). Clay content and cation-exchange capacity (CEC) have been considered the 

primary soil attributes that can be mapped using aerial gamma radiometrics because 

these two collinear variables are generally associated with silicate clay mineralogy 

(Wilford and Minty, 2007). For example, it has been generalized within literature that 

higher amounts of gamma-ray emitting radioelements such as uranium and thorium are 

found on the surface area of soil constituents found within clay minerals (Megumi and 

Mamuro, 1977). This assumption may not always hold true, however, for soils can 

contain clay sized particles that are not significant emitters of gamma radiation, such as 

calcium carbonate, for example (CaCO3), thereby interfering with the relationship 

provided by clay content (Stockmann et al., 2015). Note that the type of clay mineral 

found within soils will affect the CEC, and thus its collinearity with clay content. 

In contrast to clay content and CEC, secondary soil properties such as sand content, 

pH and calcium carbonate (CaCO3) have been related with GRS data, but not with aerial 

gamma radiometrics data (Viscarra-Rossel et al., 2007; Priori et al., 2013). Sand content 

would be expected to have an inverse relationship with GRS because sand particles 

consist of minerals that are poor emitters of gamma-ray radiation such as quartz that are 
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highly resistant to chemical and physical weathering conditions, and such relationships 

are mirrored with that of clay content (Wilford, 1997, Mahmood et al., 2013). Although 

pH is similar to texture and CEC in that it is influenced by parent material type, these 

two properties have potential to have stronger relationships with aerial gamma 

radiometrics because such variation is less affected by management practices (Bierwirth, 

1996). Soils derived from parent materials with large concentrations of CaCO3 generally 

emit low amounts of gamma radiation, and has been negatively correlated with aerial 

gamma radiometrics due to associations with silica-rich dune fields or a dilution effect in 

40K-rich soils (Pickup and Marks, 2000; Wilford et al., 2015).  

The relationships between aerial gamma radiometrics and primary and secondary 

soil properties are not stable and can be altered based on topographic attributes, such as 

slope and relief (Wilford, 2012; Viscarra-Rossel et al., 2014). These terrain variables are 

often related with gamma-ray spectrometry because erosional forces (i.e. high slopes) 

can cause radioelements to be physically transported across a landscape (Wilford and 

Minty, 2006). In consideration of optimal parent materials and physiographic types, it 

was hypothesized by Rawlins et al. (2007) that aerial gamma radiometrics has the most 

utility within young, unconsolidated sediments located in flat areas because gamma-ray 

emitting soil materials will not be lost due to insufficient physical and chemical 

weathering rates. However, the study conducted by Rawlins et al. (2007) only 

considered landscapes that formed from eastern England, and not those from the United 

States. Hence, there is an additional need to address the effect of topography or physical 

geographic type (physiography) on the relationship between and aerial gamma 
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radiometrics and soils databases within the United States because such knowledge is 

currently lacking.  

It is important to gain an understanding of how parent material and physiographic 

types affect the relationship between aerial gamma radiometrics and soil properties, and 

such knowledge is necessary in assessing the usefulness of legacy aerial gamma datasets 

because only then can its predictive power of soil properties be known, especially when 

compared with that of environmental covariates (McBratney et al., 2003). The purpose 

of environmental covariates (such as gamma-ray imagery, Fig. 1) are to generate 

accurate predictions of spatial soil properties through pedometric techniques such as 

regression-kriging (McBratney et al., 2000; McKenzie et al., 2008). Several papers 

(McKenzie and Ryan, 1999; Levi and Rasmussen et al., 2014) underwent comparative 

analysis of several environmental covariates to predict spatial soil properties, such as 

Landsat images and solar radiation, but as of yet aerial gamma radiometrics has not been 

implemented in such studies nor compared with these covariates (Rawlins et al., 2007).  

If the primary goal is to use gamma radiometric data to understand spatial soil 

variation across national scales, there is a need to establish a more fundamental 

relationship between the two datasets rather than through correlation analysis because 

the two datasets operate at different spatial scales and thus the relationships drawn with 

soil properties questionable (Kock and Samuelsson, 2011). 

 One method of validating an aerial signal is to conduct ground surveys because the 

latter operates under more similar support volumes (Cardarelli II et al., 2011). Although 

the method is more expensive than analyzing pre-existing aerial gamma radiometric 
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datasets, proximal gamma-ray sensors (grouped by portable- or vehicle- traversed) are 

often preferred over aerial gamma-rays sensors where higher resolution soil data is 

needed in the case of relatively large line spacing distances for aerial surveys (Viscarra-

Rossel et al., 2007).  

The purpose of the proximal gamma-ray surveys is to form a baseline that suggests 

what aerial raw gamma should be responding to in terms of its relationship with soil 

properties because the former collects data at a relatively higher signal-to-noise ratio and 

thus functions as a form of ground-truthing for raw aerial gamma-ray surveys (Bollhöfer 

et al., 2013). Proximal surveys measure naturally emitted gamma-rays from a smaller 

area than aerial sensors, thereby allowing for more accurate estimates at a given point 

location than aerial sensors because proximal sensors operate on a scale more similar to 

that of soil variability. 

Ground-truthing overall involves establishing a relationship between the response 

that is expected (proximal) with the response that is provided (aerial), and is necessary to 

validate the response given from aerial gamma radiometrics (Bollhöfer et al., 2013), and 

initial analysis of ground-truthing within literature suggests that it is most successful 

when aerial gamma radiometric data is variable itself. For example, Kock and 

Samuelsson (2011) compared aerial and backpack gamma measurements (i.e. 40K, 238U 

and 232Th) for three different parent materials in southern Sweden, and found that 238U 

and 232Th contained the highest regression correlation coefficient (R2) because there was 

at least one site within each radioelement that was much more variable than the rest. In 

their study, portable-traversed proximal gamma surveys were conducted. Note that the 
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analysis conducted by Kock and Samuelsson (2011) does not consider a vehicular 

gamma-ray analysis, whereby a larger spatial coverage is offset by a potentially higher 

source of noise compared with portable-surveys primarily because the latter is able to 

control the sampling time (and thus lower uncertainty). 

I.3. Study Aims 

The overall goal of this research is to evaluate the reliability of aerial gamma-ray 

spectrometry in characterizing soil properties. Specifically, this research addresses the 

following objectives: 1) identify the usefulness of legacy USDA-NRCS soil property 

data in explaining aerial gamma radiometric data across the United States; 2) quantify 

the utility of pre-existing aerial gamma radiometric data in predicting selected soil 

properties (e.g. clay, sand, CEC, CaCO3, pH) within both parent material and 

physiographic types; 3) assess the usefulness of pre-existing aerial gamma radiometric 

data in comparison with other environmental covariates through predictions of clay 

content within a given environmental setting; 4) identify relationships between soil 

properties and gamma-ray spectra using a vehicle-borne gamma-ray spectrometer across 

different landscapes; and 5) validate aerial gamma-ray spatial patterns with proximal 

gamma-ray surveys across different landscapes. 
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CHAPTER II 

EXPLORATORY ASSESSMENT OF UNITED 

STATES AERIAL GAMMA RADIOMETRICS   

  

II.1. Introduction 

Accurate and up-to-date digital soil data is needed for solving global environmental 

challenges such as food, water and energy security decisions at regional, continental and 

global spatial scales. Digital soil maps, at appropriate spatial resolutions, can help 

address the need to quantify soil capability and locate soils with specific functionalities 

(Koch et al., 2013). In the United States, soil information is prevalent and has been made 

available online by the United States Department of Agriculture National Resources 

Conservation Service (USDA-NRCS) in the form of historical or legacy soil polygon 

maps. Delineations made by surveyors would either be confirmed or altered after 

collecting and analyzing geo-referenced soil samples for physical and chemical soil 

properties in the laboratory (Soil Survey Division Staff, 1993). Each of the geo-

referenced, lab characterized, samples were then stored and managed within an publicly 

available digital database called the National Cooperative Soil Survey Characterization 

Database (NCSS-SCD) (National Cooperative Soil Survey, 2015). Through these 

historical soil survey programs, it has been estimated that up to 95 percent of all land in 

the United States has been delineated using the soil polygon approach (Brevik et al., in 

press). 
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Although legacy soil datasets are quite extensive and are easily accessible, they are 

not considered to be the ultimate end-product for assessing soil capacity across the 

conterminous U.S. for several reasons. First, historical or legacy data suggest that soils 

vary discretely, but soils actually vary continuously, resulting in maps that contain 

fuzziness or uncertainty (Heuvelink and Webster, 2001). Second, legacy soil maps lack 

consistency because soil scientists described soils based on their own personal 

experiences and local traditions, and such mapping exercises often occurred at different 

cartographic scales (Brevik et al., in press). Therefore, there is a need to reliably 

represent soil spatial variability in such a way that is accurate, continuous, and consistent 

in such a way that removes personal bias (Hengl et al., 2014).  

Sensor technology that provides objective, and spatially continuous information has 

been proposed as an alternative solution to direct soil sampling methods. One advantage 

to using sensor measurements is that sensor data are continuous in geographical space, 

under the assumption that such data functions as a surrogate for a soil forming process or 

factor (Viscarra-Rossel et al., 2011). Another advantage gained by using sensor 

technology over pre-existing soil mapping methods is that it can have a lower amount of 

bias because measurements are physically based and are therefore limited in subjectivity 

(Hartemink and Minasny, 2014). The use of sensor technology is not new within the 

field of soil science, as electromagnetic induction, GPR, visible and near infrared 

spectroscopy, among other proximal and remote sensors have been used at the field (m) 

scale to understand spatial soil patterns of soil variability (Annan, 2002; Adamchuk et 

al., 2004; Stenberg et al., 2010; Doolittle and Brevik, 2014).  
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An example of a sensor that has recently been used to map spatial soil variation of 

physical and chemical properties is a passive gamma-ray spectrometer. This type of 

spectroscopy detects and measures very high frequency electromagnetic radiation that is 

passively emitted from soil minerals due to radioactive decay of radioelements such as 

40K, 238U and 232Th (Wilford and Minty, 2006; Gilmore, 2008). Under the assumption 

that the spatial distributions of 40K, 238U and 232Th are indicative of changes in soil 

parent materials, aerial gamma radiometrics have been used to map soils and their 

weathering intensities at high altitudes (20 to 120 m) and coarse line-spacing distances 

(0.4 to 10 km) in Australia. The association of aerial gamma radiometrics with soil and 

geology has also been used to map peat thicknesses within the United Kingdom, based 

on the attenuation of gamma-rays by peat and water in peat (Beamish, 2015). But such 

investigations are currently lacking within the U.S., although aerial gamma radiometrics 

data is currently available across the entire nation (Cook et al., 1996). Additionally, 

aerial gamma radiometrics have not been quantified in terms of relationships with 

measureable soil properties, which are relevant to addressing soil capability and quality 

(Arrouays et al., 2014).  

Initial investigations into relationships between aerial gamma radiometrics and soil 

properties have indicated that gamma radiometrics are most useful in mapping soil 

properties associated with soil mineralogy. For example, soil texture has been associated 

with gamma radiometrics because most clay-sized particles (i.e. less than 2.0 μm) are 

associated with silicate clays, and these minerals comprise of radioactive elements that 

emit gamma-rays under radioactive decay (Schwarzer and Adams, 1973; Rawlins et al., 
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2007; Gilmore, 2008). In addition to soil texture, cation-exchange capacity (CEC), and 

to a lesser extent pH and calcium carbonate equivalent (CCE) have also been linked with 

gamma radiometric data (Viscarra-Rossel et al., 2007; Priori et al., 2013; Priori et al., 

2014). These results, however, have only been understood through the use of high 

resolution proximal gamma radiometrics which, unlike aerial gamma radiometrics are 

spatially limited to single or few amounts of parent materials.  

Before soils and their properties (clay and sand contents, CEC, CCE and pH) can be 

linked with proximal gamma radiometric data, it is necessary to first identify sources 

that contribute to an aerial gamma radiometric signal, and determine if one of these 

sources can be attributed to soil mineralogy. An initial study in linking aerial gamma 

radiometrics signals with soil geochemistry has been conducted by Rawlins et al. (2007), 

whereby aerial 40K and 232Th estimates were compared with soil 40K and 232Th 

geochemical measurements through simple correlations. In their results, they found 

strong agreement across relatively small spatial scales (1:50,000) in eastern England. 

England has more youthful landscapes and less weathered soils compared to the US.  In 

addition, the methodology of Rawlins et al. (2007) did not include comparisons between 

aerial gamma radiometrics and other standardized indicators of clay mineralogy such as 

clay content and CEC.  

If soil properties such as clay content could be mapped with aerial gamma 

radiometric data, it would then become beneficial to establish where it is most useful-

geographically. For example, Bierwirth (1996) suggested that 40K and 232Th can be used 

to map textural variation within youthful alluvial deposits because these radioelements 
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are in relatively high abundances. In contrast, mountainous areas that exhibit erosional 

rates are less likely to map variations in clay content because the aerial gamma 

radiometric signal is more indicative of bedrock composition rather than clay mineralogy 

(Bierwirth, 1996). Thus, the geomorphic or physiographic setting of a given location can 

affect relationships between aerial gamma radiometrics and soil properties.  

The importance of assessing soil capability in terms of quantifiable soil properties 

using aerial gamma radiometrics has practical relevance within the Digital Soil Mapping 

community. Current soil maps that adhere to the GlobalSoilMap standards should have a 

1 km resolution which requires spatial predictive functions for soil properties that 

incorporate covariates representing soil forming factors such as climate and topography 

(Arrouays, et al., 2014; Hengl et al., 2014). Most soil predictive models are not including 

covariates that represent parent material, especially representation of parent material 

information that is independent of topography indices. Aerial gamma radiometric data 

provides a source of information that can represent parent materials. To exploit this 

potential data source it would be useful to know how well it represents parent material 

and how well aerial gamma radiometrics relates to soil properties—particularly in the 

conterminous U.S.  

The overall goal of this work is to identify the usefulness of aerial gamma 

radiometric data for soil mapping within and between different landforms and 

landscapes of the United States. The first specific objective is to evaluate the variability 

in aerial gamma radiometric data across the United States through a fixed-effect or 

regression model analysis that uses soil clay content (continuous), parent material 
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(categorical) and physical geography or physiography (categorical) types as fixed effects 

or predictor variables. The second objective is to quantify the utility of pre-existing 

aerial gamma radiometric data in predicting selected soil properties (e.g. clay and sand 

contents, CEC, pH and CCE). The third objective is to evaluate the utility of aerial 

gamma radiometric data as a covariate for parent material for spatial predictions of soil 

clay content. 

II.2. Materials and Methods 

II.2.1. Data Sources 

Legacy soil data was obtained from the NCSS Soil Characterization Database (NCSS-

SCD), and the surface horizons were selected, based on the assumption that emitted 

gamma-rays are located primarily from the surface (IAEA, 2003; National Cooperative 

Soil Survey, 2015). In total, 44,152 geo-referenced surface samples across the United 

States were selected, and the geographical coordinate system for the NCSS-SCD was set 

to North American Datum 1983 (Schoeneberger et al, 2012). Soil properties that were 

chosen in this study include 1) clay and sand content (either pipette or hydrometer 

methods), 2) cation-exchange capacity (NH4-Ac method), 3) pH (CaCl2 method) and 4) 

calcium carbonate equivalent (CCE) (3 N HCl method) (Soil Survey Staff, 2014).  

The aerial gamma radiometric datasets used for this study include dose rate, or 

radiation energy imparted onto a unit soil of mass per unit time (nGy hr-1), potassium 

(40K), uranium (238eU), and thorium (232eTh) (IAEA, 2003; Duval et al., 2005; Hill et al., 

2009) (Equation 6 and Fig. 1). The projected coordinate system for the aerial gamma 
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radiometric raster maps is Conic Albers Equal Area, USGS Version, with a cell 

resolution of 2 km.  

To account for the effect of physiography on aerial gamma radiometric data, the 

surface soil samples were separated into areas of regional similarity based on a digitized 

physiographic map created by Fenneman (1917) which divides individual areas based on 

differences in landforms and other confounding effects such as climate and vegetation. 

In total, there are eight different physiographic divisions (broadest scale delineations), 25 

provinces, and 77 sections (finest scale delineations) across the United States, and the 

division grouping was used here in order to simplify results across the conterminous 

United States (Fig 2.). The Laurentian Uplands, Atlantic and Interior Plains are 

characterized by flat topography, while the Appalachian and Interior Highlands, and 

Rocky and Pacific Mountain Systems are characterized by mountain ranges (Fig. 2). The 

coordinate system for the physiographic map is Albers Equal Conic Area, USGS 

Version.  
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Figure 1:  Interpolated aerial gamma radiometric maps of 40K, 238U, 232Th, and dose rate 

across the conterminous United States as provided by the United States Geological 

Survey (USGS). Reprinted from Duval et al. (2005). 
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In addition to physiography, a surficial parent material map (scale 1:5,000,000) was 

obtained from the USGS and used in the analysis to represent parent materials for soils 

within the NCSS-SCD database (Soller et al., 2009) (Figure 3). Due to the large amount 

of detailed parent material types represented within the database (51), the map was 

reclassified into 15 broader parent material types to simplify the analyses across the 

United States (Fig. 3). The United States is characterized by parent materials such as 

glacial (i.e. glacial till and glaciofluvial) deposits in the northern states, igneous, 

metamorphic and carbonate-rich residuum in the western states, and unconsolidated 

sediments such as alluvium and coastal deposits adjacent to the Gulf of Mexico (Fig. 3). 

Additional digital covariates such as the gridded Soil Survey Geographic (gSSURGO) 

or rasterized soil polygon map and Shuttle Radar Topography Mission Digital Elevation 

Model data for relief and slope were assembled along with aerial gamma radiometric 

data to predict clay content in three different soil landscapes based on results obtained 

from objective 2 (Jarvis et al., 2008; Soil Survey Staff, 2015a). The non-aerial gamma 

radiometric environmental covariates were selected to represent different components of 

the well-known SCORPAN model such as: 1) clay content from gSSURGO database, 2) 

elevation, and 3) slope (McBratney et al., 2003). Lithology was not selected because the 

Southern High Plains was mostly uniform and the aerial gamma radiometrics is expected 

to represent lithology, or parent material to some degree. Covariates were not considered 

for the c and o components of the scorpan model due to differences in temporal 

resolutions. 
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Figure 2: A physical geographic (physiographic) map across the conterminous United 

States. Reprinted from Fenneman (1917).The black delineations refer to the broadest 

delineations of physiography called divisions, while the selected polygons (red) within 

each of the divisions are the finest delineations termed sections that represented areas 

that were analyzed in objective 3 based on suitability classifications for clay content 

(refer to text).  
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Figure 3: A reclassified surficial parent material map across the conterminous United 

States. Reprinted from Soller et al. (2009). Soil samples from the NCSS-SCD are 

outlined by white points and separated into different physiographic divisions (black) and 

sections (red) as shown in Figure 2. 
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Soils from the NCSS-SCD were spatially joined with the physiography, parent 

material and gamma radiometric maps and subsequently imported into the R statistical 

software program (R Development Core Team, 2014).  Soil samples that were not geo-

referenced or contained negative aerial gamma radiometric measurements were removed 

(n = 40,418). Soil properties of multiple soil samples that lie within the same 2-km grid 

cell were then averaged (n = 22,536). Gamma and soil properties were subsequently 

transformed using methodology described by Sheather (2009) to achieve data normality, 

and summary statistics of soil and gamma properties are shown in Table 2. 

 

 

 

Table 2. Descriptive statistics of soil properties from the National Cooperative Soil 

Survey Characterization Database after removing multiple samples (n = 22,536). 

Soil Property† Units Range Std. Dev. Mean CV 

Clay g kg-1 0 - 91 12 19 0.63 

Sand g kg-1 0 - 100 26 36 0.72 

CEC cmol+ kg-1 0 - 206 17 20 0.85 

pH mol L-1 2.4 - 10.4 1.2 5.8 0.21 

CCE % 0 - 103 1 6 0.17 

Dose Rate nGy hr-1 2 - 185 16 42 0.38 
40K % 0 - 4.5 0.5 1.1 0.45 
238U ppm 0 - 12 0.7 1.8 0.41 
232Th ppm 0.1 - 41 2.7 6.3 0.43 

† CEC is cation-exchange capacity; CCE is calcium carbonate equivalent; Std. Dev. is Standard Deviation; 

and CV is Coefficient of Variation. 

 

 

 

II.2.1.1. Fixed-effect Modeling 

 

The first objective seeks to explain aerial gamma radiometric spatial variability in 

terms of soil sample information by comparing the mean values of dose rate, 40K, 238eU 
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and 232eTh with linear fixed-effect or regression models. The methodology draws from 

the study conducted by Rawlins et al. (2012), but in contrast with their work our focus is 

to use different fixed-effects or predictors to explain the variation in aerial gamma 

radiometric data rather than use aerial gamma radiometric data as a fixed effect model 

itself to explain ground gamma-ray activity.  Briefly, a linear fixed-effect model can be 

defined as: 

   XZ , (9) 

where Z is a matrix of dimensions n x m, where n is the number of observations and m is 

the number of fixed-effect variables (dose rate, 40K, 238eU and 232eTh); X is a matrix of 

dimensions n x p, where p is the number of fixed effects or explanatory variables; τ is a 

vector of coefficients for the fixed, respectively, of dimensions p x 4; ε is a matrix of 

unexplained residuals of dimensions n x 4 (Rawlins et al., 2012). Individual 

radioelements were chosen as well as dose rate to address the hypothesis that the 

individual radioelements will exhibit different characteristics with regard to the 

individual models.  

The following fixed-effects model combinations were used for a given radioelement 

(dose rate, 40K, 238eU and 232eTh): 

1. Mean values of gamma variable p; 

2. Mean and clay content; 

3. Mean and parent material; 

4. Mean and division; 

5. Mean and clay content plus parent material; 

6. Mean and clay content plus division type; 

7. Mean and parent material plus division; and 

8. Mean and clay content plus parent material plus division. 
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For each fixed-effect model, 80 percent of the samples were randomly selected for 

calibration or training, and the remaining 20 percent were used for a validation, whereby 

leave-one group-out method was used and repeated 50 times. The goodness-of-fit 

between the different fixed-effects models was then assessed by calculating and 

comparing their respective root-mean-squared-errors (RMSE). The aerial gamma 

radiometric variable that provided a balance in RMSE reduction between the continuous 

(clay content) and categorical (parent material and physiography) variables was chosen 

to represent aerial gamma variable for objective 2. For the fixed-effect model using 

lithology types (model 3), only the eight most common parent materials were used to 

ensure that their individual parameters could be estimated. 

II.2.1.2. National Scale Exploration of Soil Properties and Aerial Gamma Radiometrics 

Environmental correlations between a single aerial gamma radiometric variable and 

soil properties (clay and sand content, CEC, pH and CCE) were first evaluated using 

simple linear regression models (SLMs) and goodness-of-fit assessed using the adjusted 

r-squared (R2) value. Within each soil property, median and the maximum R2 for a given 

parent material were calculated and reported within each physiographic division based 

on results obtained from objective 1 (Figs. 2 and 3). The SLMs were only created for a 

given parent material if a sufficient sample size criterion was met using the ss.SLR.rho 

function from powerMediation package in R (DuPont and Plummer, 1998). Soil pH and 

CCE models, unlike that of texture and CEC, were found to be non-linear and were 

therefore modeled using generalized linear models under restricted maximum likelihood 

conditions (Sheather, 2009).  
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After SLMs were created for all soil properties for all different types of 

physiography/parent material combinations, suitability maps designating areas of further 

aerial gamma radiometric exploration for a given soil property were created across the 

United States based on the R2 value of a given model. In particular, areas were 

designated as unsuitable (R2 < 0.10), slightly suitable (0.10 ≤ R2 < 0.20), moderately 

suitable (0.20 ≤ R2 < 0.30) or strongly suitable (R2 ≥ 0.30), and these criteria were 

established based on the range in R2 values across all soil properties.    

II.2.1.3. Comparative Analysis of Environmental Covariates to Predict Clay Content 

The purpose of creating suitability maps with respect to each soil property is to 

provide indications of areas where aerial gamma radiometrics can map soils at finer 

scales. Therefore, we used the clay content suitability map to further explore three 

different areas classified as ‘moderately suitable’ or higher were selected in order to 

assess the performance of aerial dose rate in predicting clay content in comparison with 

other covariates. These regions indicate different soil forming conditions such as the 

central High Plains within the state of Texas (Interior Plains physiography), the East 

Gulf Coastal Plains (Atlantic Plains physiography), and glaciated landscapes located 

from the northern United States (Interior Plains physiography) (Fig. 2). 

The High Plains within Texas are almost entirely dominated by unconsolidated eolian 

silt and sand sized deposits that were deposited during the Pleistocene epoch (Holliday, 

1989). The area has an elevation range between 735 to 1,270 meters above sea level and 

lies within a semi-arid climate, receiving an annual precipitation between 405 to 560 

millimeters. The Coastal Plains within the southeastern United States is characterized by 
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parent materials such as alluvium and chemical (i.e. limestone) and clastic (sandstone) 

residuum and marks the old position of the Atlantic Ocean shore during the Mesozoic 

time period (NRCS, 2006). The Coastal Plains has an elevation range between 30 to 150 

meters above sea level, receiving an annual precipitation between 1,345 to 1,550 

millimeters. The Glaciated North is characterized by unconsolidated glacial till and 

glacial rivers attributed to ice sheets that advanced the landscape during the Pleistocene 

epoch. The Glaciated North has an elevation range between 305 and 625 meters above 

sea level, receiving an annual precipitation between 405 to 535 millimeters. 

Using the environmental covariates described in the previous paragraph, the following 

models to predict clay content at the soil surface were created under a random 60/40 

calibration and validation split, respectively: 

1. Gamma radiometric information using regression kriging; 

2. Soil sample data only through ordinary kriging; 

3. Pre-existing gridded or rasterized soil data from the gSSURGO database; 

4. Relief or elevation using regression-kriging; 

5. Slope using regression-kriging; 

6. Combine all environmental covariates (gSSURGO, relief, elevation, lithology 

type) under the Cubist model (www.rulequest.com); and 

7. Combine all environmental covariates with aerial gamma radiometric data. 

 

Briefly, the Cubist model is a decision-tree model that splits at various nodes and 

develops leaves of different linear regression models (Wilford et al., 2015). The 

goodness-of-fit that was used to compare the relative performance of aerial gamma 

radiometrics against other environmental covariates was RMSE. 

II.3. Results and Discussion 

Figures 2 and 3 shows that visual correlation exists regionally between aerial gamma 

radiometric measurements and physiography. For example, high aerial gamma 
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radiometric (dose rate, 40K, 238eU and 232eTh) estimates occur in the western United 

States (Rocky Mountains and Intermontane Plateaus), which can contain pyroclastic 

rhyolitic tuff or 40K-rich acidic rocks ejected from volcanoes between the Miocene and 

Oligocene time periods (Best et al., 1989). Low amounts of gamma radiation (in 

particular 40K) occur along the Florida coast (Atlantic Plains) and can be explained by 1) 

peat deposits, which are known to store high amounts of water, thereby attenuating 

significant amounts of gamma-rays and 2) parent materials that emit low amounts of 

gamma radiation such as limestone and sandstone (IAEA, 2003; Beamish, 2015). 

II.3.1 Soil Sampling Scheme 

The spatial distribution of soil sample locations in the USDA-NRCS database shows 

clustering or oversampling with respect to division and parent material types (Figs. 2 and 

3). This local oversampling is likely a result of participation by the National Cooperative 

Soil Survey in sampling pedons near Universities and University farms as well as areas 

of special interest. For example, the University of Illinois (central U.S.) was more 

involved in collecting and sending their results to the USDA-NRCS (Paul Finnell Sr., 

personal communication, 2015). Because the sampling is geographically clustered, 

resulting interpretations of data analysis are skewed or potentially biased towards data-

rich areas. 

To understand the sampling intensities of the USDA-NRCS database, indices were 

created to explain the relative proportion of soil samples after stratification into parent 

materials and physiographic divisions. In order to assess the USDA sampling strategy, 

proportions of samples were calculated within each parent material and physiography by 
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dividing the number of samples within a given category by the total number of samples. 

Additionally, the coefficient of variation (CV) (i.e. standard deviation/mean) within each 

parent material and physiography type was calculated with respect to dose rate (Kelley, 

2007; McKenzie et al., 2008; Beamish, 2014). If the USDA-NRCS sampling strategy is 

deemed was balanced in terms of areal coverage, the proportion of samples for a given 

lithology or physiography would be similar to its proportional area across the United 

States; similarly, the proportion of samples should reflect its CV (i.e. a higher proportion 

of samples collected from parent materials with a larger CV and vice versa) (Kelley, 

2007).  

With respect to specific parent materials, soils formed from limestone and dolostone, 

as well as well as shale have been over-sampled, while sandstone, unconsolidated 

deposits and basalts have been under-sampled (Table 3). While shales may be one of the 

most common lithology types across United States, its lower CV suggests that any poor 

models between aerial gamma radiometrics and soil sample data within clastic parent 

materials could be explained through an overabundance of shale soils. With respect to 

physiography, the Interior Highlands, Pacific Mountains and the Interior Plains are well 

sampled; in contrast, soils from the Intermontane Plateaus, Atlantic Plains, and 

Appalachian Highlands are sparsely sampled (Table 3).  

The implication from the NCSS-SCD unbalanced sampling scheme is that any 

statistical model that uses aerial gamma radiometric data and the NCSS-SCD across the 

conterminous U.S. will tend to reflect aerial gamma radiometrics and soil relationships 

found within the most highly sampled areas. The sampling design is also limited in 
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utility because the disproportionate amount of samples with respect to parent material 

type makes any trends between soil properties and aerial gamma radiometric trends 

difficult, as models from higher amounts of samples are based on more information (i.e. 

higher degrees of freedom), and vice-versa. 

 

 

 

Table 3. Sampling statistics in terms of areal proportion across the United States and 

coefficient of variation (CV), expressed in terms of soil parent material. 

Category 
Proportion of 

soil samples 

Areal 

Proportion 

of U.S. 

CV  

(Dose 

Rate) 

 Parent Material 

Residuum, Clastic Sedimentary 7 22 0.39 

Alluvium 25 16 0.41 

Glacial Till 20 14 0.25 

Residuum, Igneous/Metamorphic 

Undifferentiated 19 11 
0.58 

Eolian 3 7 0.30 

Colluvium 11 6 0.24 

Glaciofluvial 4 5 0.34 

Resdiuum, Chemical Sedimentary 8 4 0.32 

 Physiography 

Laurentian Upland  2 1 0.32 

Atlantic Plain  8 15 0.38 

Appalachian Highlands  9 11 0.30 

Interior Plains  48 37 0.27 

Interior Highlands  7 2 0.28 

Rocky Mountain Systems  5 8 0.32 

Intermontane Plateaus  11 20 0.44 

Pacific Mountain Systems  8 6 0.55 

 

 

 

II.3.2. Fixed Effect Model Results 

The fixed-effect models were used to identify what source information the aerial 

gamma radiometric data might be most useful in mapping soils across the U.S. and to 
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identify which spatial delineation, parent material or physiographic division, is more 

useful in classifying regions where aerial gamma radiometrics works best. In general, the 

RMSE between predicted and measured values of both 40K and dose rate were most 

reduced by the addition of the fixed effects, while 238U was least affected by the addition 

of fixed-effects (Table 4). Table 4 indicated that much of the 40K variability could be 

explained in terms of physiography, and were subsequently compared with that of parent 

materials (Fig. 4). 40K concentrations in particular were more highly variable within 

physiographic divisions than parent materials because the former are characterized by 

parent materials with more highly contrasting aerial gamma radiometric signatures, 

while the latter exhibits less separation in 40K concentrations perhaps due to similar 

mineralogy types (Fig. 4). 

Adding clay content as a fixed-effect reduced the RMSE values of dose rate and 

232Th relative to the initial model by 2.9 and 3.7%, respectively, and although its 

reduction was less than that of physiography, it was an improvement over the addition of 

parent material (Table 5). 232Th in contrast with dose rate, 40K, and 238U produced the 

relatively highest reduction in RMSE when clay content alone was added because 232Th 

is readily adsorbed onto clay minerals (Wilford, 2012).  
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Figure 4. Box and whisker plots comparing 40K soil sample variability based on 

physiographic division (left, ref. Fig. 2) and parent material (right) groupings. The 

abbreviated physiographic division codes used here represent the regions shown in 

Figure 2: AH = Appalachian Highlands, AP= Atlantic Plains, IH = Interior Highlands, 

IPlains = Interior Plains, IPlateaus = Intermontane Plateaus, LU = Laurentian Uplands, 

Pacific MS = Pacific Mountain Systems, Rocky MS = Rocky Mountain Systems. The 

abbreviated parent material codes used here represent the following parent materials 

from Figure 3: All = Alluvium, Chem = Residuum, Chemical Sedimentary, Clast = 

Residuum, Clastic Sedimentary, Coa = Coastal, Col = Colluvium, EI = Residuum, 

Extrusive Igneous, Eol = Eolian, GF = Glaciolfluvial, GT = Glacial Till, IM = 

Residuum, Igneous/Metamorphic Undifferentiated, LP = Lacustrine/Playa, O = Organic, 

Undif = Undifferentiated Residuum/Alluvium/Colluvium. 
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Table 4. Results for fixed effect models expressed as the root-mean-squared error for 

each aerial gamma radiometric variable across the United States. 

Fixed Effect 

Model† 

Dose Rate 40K 238U 232Th 

RMSE 
%  

Diff. 
RMSE 

%  

Diff. 
RMSE 

% 

Diff. 
RMSE 

% 

Diff. 

 nGy hr-1   ppm  ppm  

1. Mean value 17.6 - 0.57 - 0.77 - 2.41 - 

2. Mean + Clay 17.4 0.9 0.57 0.0 0.77 0.0 2.32 1.4 

3. Mean + PM 17.2 2.1 0.55 3.5 0.76 1.3 2.36 1.7 

4. Mean + 

Division 
17.0 3.0 0.54 5.3 0.75 2.6 2.27 3.1 

5. Mean + Clay + 

PM 
15.7 10.8 0.47 17.5 0.73 5.2 2.28 6.5 

6. Mean + Clay + 

Division 
15.6 11.4 0.47 17.5 0.72 6.5 2.20 7.5 

7. Mean + PM + 

Division 
15.4 12.5 0.46 19.3 0.72 6.5 2.22 8.2 

8. Mean + Clay + 

PM + Division 
15.3 13.0 0.46 19.3 0.71 7.8 2.14 9.2 

† PM is Parent Material or generalized lithology from Fig. 2; Division is the physiographic division name 

from Fig. 3; and % Diff. is percent difference between the RMSE of a given fixed-effect model and the 

initial mean RMSE. 

 

 

 

The fixed effects with the most influence in estimating means based on the highest 

percent reduction in RMSEs were (in order): physiographic division, parent material and 

clay content, although higher percent differences in aerial gamma radiometric RMSE 

occurred when multiple fixed effects were included in the model (Table 4). 

Physiography was effective in explaining variations in 40K not only in terms of parent 

materials, but because physiography accounts for climatic spatial variability as well. 

Weathering mechanisms such as hydrolysis can aid in the mobility of 40K within a 

landscape and can thus be used to additionally explain aerial gamma radiometric patterns 

(Bierwirth, 1996). Therefore, these results suggest that relationships between aerial 
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gamma radiometrics and soil properties can be improved after considering soils and their 

parent material types located or nested within a given physiographic division. 

II.3.3. National and Regional Scale Exploration 

Results from the fixed-effects models suggest that dose rate and 232Th are good 

choices for mapping soil properties because, once physiographic division was included 

as a fixed effect, adding clay content further reduced the RMSE of dose rate and 232Th 

(Table 4). Although 232Th provided a higher reduction in RMSE with the addition of clay 

content, dose rate was chosen to represent aerial gamma radiometrics in creating the soil 

property suitability maps because it contains information on physiography (40K) as well 

as clay content (232Th) (Wilford et al., 1997).  

Figures 6a-6e show suitability maps based on R2 values for soil properties (i.e. clay 

and sand contents, CEC, CCE, pH) and aerial dose rate within different physiography 

and parent material combinations. In terms of spatial coverage, soil texture along with 

CEC show the highest amount of areas suggesting further aerial gamma radiometric 

exploration because these properties are most closely associated with original parent 

material mineralogy signatures. Furthermore, these properties are typically static in 

nature, meaning that their variability is more associated with natural soil forming 

conditions in contrast with CCE and pH which show the lowest amount of areas 

suggesting possible influence in terms of soil management such as the addition of 

fertilizers and/or lime, which can affect not only the variability of pH and CCE but 

radioactivity as well (Bouma and Finke, 1993; Boukhenfouf, 2011).  
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Regardless of soil property, there are a low amount of areas classified as strongly 

suitable for further exploration and as such requires further discussion. As Ryan et al. 

(2000) explains, a low Adj. R2 using environmental correlation modeling can be a result 

of three causes: (1) a natural poor relation; (2) the data feature space is very small 

compared to its possible predicted values; and (3) the presence of extreme local soil 

variation. With respect to the first cause, legacy aerial gamma radiometrics suffers from 

a poor resolution because of survey conditions such as relatively high altitude sensors 

(120 meters) and a large distance between flight lines (i.e. 2, 5 and 10 kilometers 

according to Duval et al. (2005)). The NCSS-SCD spatial distribution contributes to this 

issue because most soil samples were collected outside of the footprint represented by 

the aerial gamma detector or lie between adjacent survey transect lines, suggesting 

additional uncertainty in soil aerial gamma radiometric abundances (Beamish, 2014). 

The second cause is usually not problematic, as there are a high number of samples 

within each division, although some areas are more variable than others (Fig. 4). The 

third cause cannot be answered from the methodology employed here, as a spatial 

average of soil samples would be required. Therefore, we conclude that the first cause is 

the most likely explanation for the moderate-weak relationships shown from the 

suitability maps of Figure 6, although such correlations are expected to improve at larger 

spatial scales. 

II.3.3.1. Texture (Clay and Sand Content) 

A suitability map for clay content (Figure 5) indicates that aerial gamma 

radiometrics can potentially map clay content within unconsolidated parent materials 
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such as eolian, alluvial, coastal and glacial sediments, as well as chemical and clastic 

sedimentary residuum located within the Interior Plains (IV) and Atlantic Plains (II) 

(Figs. 3 and 5). Within these two physiographic divisions, aerial gamma radiometrics 

can map clay content because these parent materials give different signals depending 

based on mineralogy. For example, soils low in clay content for glaciofluvial deposits 

within the Interior Plains were classified as siliceous or poor in radioelemental 

abundance, whereas high clay soils were classified as illitic or high radioelemental 

content (Wilford et al., 1997). Therefore, moderate or strong suitability classifications 

with respect to clay content are dependent on the range of mineralogy types that occur 

within a given parent material. 

 

 

 

  

Figure 5: Suitability maps for further aerial gamma radiometric exploration for clay 

content models under different physiography/parent material combinations. 
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Significant relationships between dose rate and clay were relatively high within the 

Atlantic Plains and the Interior Plains because these areas are characterized by relatively 

flat topography, where changes in dose rate are typically associated with changes in clay 

or soil formation. In contrast, areas associated with higher variability in topography such 

as the Appalachian Highlands, Interior Highlands, Rocky Mountain Systems and 

Intermontane Plateaus do not contain any parent materials classified as suitable for 

further exploration due to soil processes such as erosion which can transport 40K, 238U 

and 232Th downslope and thus modify the original gamma signal. 

Although aerial gamma radiometrics was a poor predictor of clay content in areas 

with more variable topography, it could map clay content within the Pacific Mountain 

Systems due to the presence of organic carbon. Rawlins et al. (2009) explained that soil 

organic carbon can cause a decrease in dose rate emissions because organic materials 

can accumulate water (and thus attenuate gamma-rays) and/or simply reduce the amount 

of mineral content available. A majority of the soils forming from igneous parent 

materials in the area (i.e. classified as ‘slightly suitable’) were classified as andisols 

according to USDA Taxonomy, and such soils can accumulate high amounts of soil 

organic carbon (Nanzyo, 2002).  

A suitability map for sand content is shown in Figure 6 and generally overlaps with 

clay content suitable areas such as the Atlantic and Interior Plains (Fig. 5) because 

within these landscapes sand sized particles are either characterized by low gamma 

abundant minerals such as quartz or high gamma abundant minerals within the clay 
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and/or silt sized fractions (Mahmood et al., 2013). For example, the r-squared value 

between sand content and dose rate for eolian deposits within the Atlantic Plains was 

very high (R2 = 0.74) because of sharply contrasting sand and dose rates located within 

the southern Texas sand sheet (high sand, low gamma abundance) and loess deposits 

adjacent to the Mississippi River (lower in sand, higher in silts) which have a relatively 

higher abundance in dose rate due to the presence of potassium feldspars and/or trace 

minerals rich in 238U and 232Th such as zircon (Heinrich, 2008).  

 

 

 

 

Figure 6: Suitability maps for further aerial gamma radiometric exploration for sand 

content models under different physiography/parent material combinations. 
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Although overlapping of suitability occurred between sand and clay content maps, 

there were several areas where sand content suitability diverged from clay content such 

as the Appalachian and Interior Highlands, as well as the Rocky Mountain systems. 

Within the Appalachian and Interior Highlands, sands were classified as ‘slightly 

suitable’ and clays unsuitable for further aerial exploration because the source of 

radiometric content lies within both the clay- and silt-sized fractions, while the Rocky 

Mountains predominantly the silt-sized fraction (R2 = 0.25 for silt and dose rate within 

igneous and metamorphic residuum, Figure 3). Therefore, relationships between sand 

content and aerial dose rate can be established if the gamma radiometric source is 

located either within the clay- or silt-sized fractions, further suggesting that relationships 

between clay content and dose rate are more restrictive in nature.  

II.3.3.2. Cation Exchange Capacity  

The cation-exchange capacity (CEC) suitability map United States indicates that 

relationships with aerial dose rate in general are poorer compared with that of clay and 

sand contents (Figure 7). Relatively lower R2 values for CEC and dose rate were found 

due to differences in the source of CEC. For example, in areas where clay content 

defines CEC (i.e. Atlantic Plains), a strong suitability classification was given whereas 

areas where clay and organic material content both contribute to CEC (i.e. organic rich 

soils within the Interior Plains and Pacific Mountain Systems) were predominantly 

classified as slightly suitable. As previously discussed, soils rich in organic material can 

hold large amounts of water which can attenuate emitted gamma-rays from the soil. 

Additionally, when clay minerals and associated 40K begin to weather and eluviate from 
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the soil, 232Th and 238U can be retained by soils rich in organic matter, leading to a 

poorer relationship between the two variables (Wilford, 2012).  

 

 

 

 

 Figure 7: Suitability maps for further aerial gamma radiometric exploration for CEC 

models under different physiography/parent material combinations. 

 

 

 

II.3.3.3. Calcium Carbonate Equivalent 

Calcium carbonate equivalent (CCE) suitability coverage differed from that of 

texture and CEC in terms of total coverage as well as locations of suitable areas (i.e. 

Intermontane Plateaus and Pacific Mountain Systems) (Fig. 8). The areas classified as 

‘strongly suitable’ are characterized by desert environments (such as the Grand Canyon) 

with low water contents and therefore low leaching potential. A limited leaching 
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environment allows for the presence of to accumulate calcium carbonates on the soil 

surface which can dilute the overall aerial gamma radiometric signal and therefore 

allowing for mapping of CCE, assuming aerial gamma radiometrics and texture 

correlations are low (Stahr et al., 2013). For example, a significant relationship between 

CCE and dose rate occurred for soils forming from chemical sedimentary residuum 

found within arid environments (VII) correlations and aerial gamma radiometric 

correlations with clay content were low (ρ = 0.00). The soils within this area with 

relatively abundant carbonates were classified as carbonatic mineralogy according to and 

were heavily depleted in 40K, 238U and 232Th, while the soils lower in carbonates were 

characterized as smectitic (or gamma-rich) mineralogy. 

 

 

 

 

Figure 8: Suitability maps for further aerial gamma radiometric exploration for 

calcium carbonate equivalent (CCE). 
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II.3.3.4. pH 

The most strongly suitable regions according to pH and dose relationships exhibited 

positive trends and were located within Pacific Mountain System alluvial sediments  

because of the acidic conditions due to high rainfall conditions and conifers located in 

the most northwestern states (i.e. Washington state) (Fig. 9). Relationships between pH 

and dose rate were generally positive because 238U and 232Th become soluble under 

acidic conditions and are adsorbed to clay surfaces (Petersen et al., 2012).  Within 

Pacific Mountain System alluvial sediments, pH appears to respond to changes in 

carbonates (Fig. 8), although pH variability (and therefore suitability) can be affected by 

sources other than CCE. For example, alluvial sediments within the Atlantic Plains 

unlike that of CCE were classified as ‘moderately suitable’ for further exploration 

because this area is more associated with the suitability maps for clay and sand content 

than CCE. However, other areas such as the Interior Plains that responded to changes in 

texture (Figs. 5-6) were classified as unsuitable with respect to pH possibly due to the 

influence of land management practices.  
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Figure 9: Suitability maps for further aerial gamma radiometric exploration for pH. 

 

 

 

II.3.4. Comparative Analysis of Digital Environmental Covariates  

The purpose for exploring relationships between soil properties and aerial gamma 

radiometrics is, in part, to assess its suitability as a covariate to interpolate soil properties 

across the United States. The previous analysis suggested that such assessments are ideal 

only when considering region-specific areas as well as the parent materials within each 

region. Previous analysis of comparing dose rate with soil samples and their properties 

(such as clay content) indicated that areas located within flat topographies, while those 

from more variable topography were less correlated, regardless of parent material type. 

These flat landscapes were generally classified as ‘moderately suitable’ or ‘strongly 

suitable’ and three areas were therefore selected as characterized in the methodology for 
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further aerial gamma radiometric exploration, particularly in predicting clay content 

compared with other SCORPAN covariates such as elevation, slope and gSSURGO. 

Validation results after applying the different predictive models are shown in Table 

5. Within the High Plains, the performance of aerial dose rate in predicting clay content 

using regression-kriging (RK) surpassed that of ordinary kriging (OK) or from other 

environmental covariate regression-kriging models, despite the relatively coarse line-

spacing distances set in the original survey (i.e. 5 km). In addition to higher accuracy, 

the incorporation of dose rate reduced the bias under the Cubist model (-3.6 to -2.4%, 

respectively, Table 5). Dose rate was also more accurate in predicting clay content in the 

High Plains because the area is primary characterized by unconsolidated eolian deposits 

that provide different gamma radiometric signatures in terms of mineralogy such as K-

feldspar (gamma-rich) and quartz (gamma-poor) (Muhs and Holliday, 2001).    

In contrast with the High Plains, dose rate models within the Glaciated North and the 

Coastal Plains were less accurate than OK and/or non-gamma radiometric RK models 

(Table 5). The mixed results of the gamma radiometric RK models compared with OK 

or non-gamma radiometric models can be explained through several sources. First, the 

gamma radiometric data in these two areas were collected at coarse line-spacing 

distances (10 km) and therefore contain a lower signal to noise ratio compared with 

surveys from the High Plains (5 km). Second, the two areas did not consist of a uniform 

parent material as in the High Plains, and it is therefore possible that unsuitable parent 

materials according to figure 6a could degrade the dose rate RK models, especially if 

these ‘unsuitable’ parent materials were preferentially sampled. 
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Table 5. Validation results from spatial prediction models of surface soil clay content 

for the High Plains in Texas, Coastal Plains and Glaciated North using environmental 

covariates. Goodness-of-fit statistics are expressed in terms of adjusted R2 (R2), Root 

Mean Squared Error (RMSE), and bias.   

Model† 

High Plains  

(n = 64) 

East Gulf Coastal 

Plains  

(n = 158) 

Glacial North 

(n = 125) 

R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias 

DR 0.33 11.7 -2.0 0.28 13.9 -4.0 0.32 9.1 -0.3 

Clay 

content 
0.27 12.3 -2.8 0.23 15.7 -5.8 0.38 8.8 -0.4 

gSSURGO 0.20 12.9 -4.2 0.44 12.0 -1.5 0.48 8.0 -0.6 

Elevation 0.26 12.5 -2.5 0.25 14.3 -2.7 0.38 8.9 -0.4 

Slope 0.27 12.4 -2.3 0.22 15.8 -5.8 0.39 9.0 -0.4 

All Covar.-

no DR 
0.49 10.3 -3.6 0.44 12.0 -1.5 0.48 8.0 -0.6 

All Covar.-

w. DR 
0.47 10.2 -2.4 0.48 11.5 -1.9 0.45 8.2 -0.6 

† DR = dose rate; All Covar. = All covariates. All models except clay content (ordinary kriging) were 

conducted using regression-kriging. 

 

 

 

II.4. Conclusions 

The purpose of this study was to analyze relationships between legacy aerial gamma 

radiometrics and soil datasets across large spatial scales. Under the hypothesis that the 

spatial distribution of aerial gamma radiometric patterns are affected by parent-material 

and physiography types, a legacy soil database was selected and spatially joined with a 

physiography and reclassified lithology maps in an attempt to link soil property with 

aerial gamma radiometric data across the United States. 

Initial investigations towards the spatial distribution of the legacy soil samples 

indicated an unbalanced sampling scheme, and samples were biased towards soils 
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forming from clastic sedimentary rock, especially within the central-northern United 

States, based on relative areal proportions and coefficient of variation calculations. The 

locations of the samples proved to be problematic in terms of the gamma radiometric 

response, as most samples were not collected based on initial surveys. 

To link aerial gamma radiometrics with soil properties, a fixed-effect model analysis 

was conducted to identify all sources of gamma (dose rate, 40K, 238U, 232Th) variation. 

The addition of clay content as a fixed effect term lowered the RMSE in the estimation 

of these aerial gamma radiometric variables up to 1 %, and up to 4 and 19 % when 

incorporated with lithology and physiographic groups respectively, suggesting that aerial 

gamma radiometrics are best explained in terms of physiographic and parent material 

units as well as clay content across the United States.  

Aerial gamma radiometric data, in particular dose rate, was found to be related to 

with soil properties such as texture (clay and sand contents), cation-exchange capacity, 

and in certain regions calcium carbonate. Clay content in general provided the strongest 

linear relationships with aerial gamma radiometrics regardless of parent material, while 

sand content exhibited similar but opposite trends, although trends for both variables 

were dictated by soil composition (i.e. organic carbon, clay mineralogy) and regions of 

similar geomorphic landscapes. Linear models for Cation-exchange capacity 

relationships were similar but generally weaker than that of clay content due to areas 

where organic material contributes to CEC such as within the northwestern United 

States. Relationships between calcium carbonate were weak except within arid 

landscapes in the western United States. The generalized landscapes in which aerial 
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gamma radiometrics was most strongly related with soil properties were found for soils 

locate over flat terrains with parent materials that provided contrasting gamma-ray 

responses.  

Comparative analysis between aerial gamma radiometrics and digital environmental 

SCORPAN covariates (i.e. slope, lithology, gSSURGO clay estimates) in predicting clay 

content through regression- and ordinary-kriging modeling indicated that gamma data 

was a useful tool that can be implemented over flat terrain soils, but results were mixed 

when compared with digital covariates.  

Further investigations are needed towards verifying the data quality of the aerial 

gamma radiometric maps provided by United States Geological Survey (USGS) and one 

such approach could begin with the initial surveys. For example, transect lines 

conducted at various line-spacing distances (2, 5 and 10 km) across the United States are 

currently available alongside the gridded data and could be validated by conducting 

surveys where the gamma-ray sensor is located much closer to the ground. The success 

of these different survey methods, however, is only useful to the extent that ground 

surveys are mapping soil properties, and we have shown here that such relationships can 

be strong, especially within a given set of physiography and parent material types. 
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CHAPTER III 

UNDERSTANDING AERIAL GAMMA RADIOMETRICS 

THROUGH PROXIMAL SURVEYS 

 

III.1. Introduction 

Reliable and accurate soil information is needed for assessing soil capability not only 

at the m-scale but across regions at the 1,000 to 10,000 km scale. For example, 

initiatives such as the GlobalSoilMap.net project are working to map five soil properties 

(clay, sand, bulk density, pH, carbon) at a 1-arc second scale (Arrouays et al., 2014), and 

land surface and hydrology modeling projects are running at finer and finer resolutions 

because of accessibility of computing power (Wood et al., 2011; Cheney et al., 2015). 

Aerial gamma-ray radiometrics have been proposed to accomplish such a task because it 

indicates spatial variations in soil minerals as well as changes in weathering intensity 

due to differences in landscape position (Wilford, 2012; Beamish, 2013; Arrouays et al., 

2014; Stockmann et al., 2015). In aerial gamma radiometrics, a sensor is placed at large 

altitudes (120 m) and detects gamma radiation passively emitted by unstable 

radioelements within the soil due to radioactive decay and include elements such as 

potassium (40K, 1.46 MeV), uranium (238U, 1.76 MeV) and thorium (232Th, 2.62 MeV) 

(Minty, 1997b). Collectively, these three naturally occurring radioactive materials have 

successfully been used to differentiate soil types and associated attributes such as texture 

and calcium carbonate over regional areas (Bierwirth, 1996; Beamish, 2015; Wilford et 

al., 2015). However, these studies have been confined to aerial gamma radiometrics 
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collected in Australia and the United Kingdom, and there is currently a lack of 

understanding between pre-existing aerial gamma radiometrics and soil properties across 

the conterminous United States (Minty, 2009; Stockmann et al., 2015).  

Initial assessment and validation of legacy gridded data available in the U.S. 

provided by the United States Geological Survey (USGS) (Chapter II) indicated weak 

relationships with geo-referenced lab characterized soil properties of clay, CEC, sand, 

and inorganic carbon, even after stratification into physiography and subsequent parent 

materials across the U.S. The relationships between aerial gamma radiometrics and soil 

data were thought to be poorly distinguished partly because of the unbalanced sampling 

design, naturally associated with such a legacy database. Within a given physiography or 

parent material, the spatial distribution of soil samples in the National Characterization 

Soil Survey-Soil Characterization Database (NCSS-SCD) were not ideal for querying 

the extremes of the aerial gamma radiometric response. In other words, the soil samples 

were not stratified by aerial gamma radiometric response and can be quite clustered 

within different physiography and parent material types.  

One of the assumptions made within Chapter II that was critical in analyzing 

relationships between aerial gamma radiometric soil properties was that aerial gamma 

radiometric data are representative of emissions located on the ground, at the location 

the pedon was sampled. This assumption, however, is weak because of the gridded aerial 

gamma radiometric maps for the US are inherently low in spatial resolution due to 

coarse line-spacing distances (5 and 10 km in the US compared with 0.4 km in 

Australia) and high altitudes (120 m in the U.S. compared with 80 km in Australia). A 
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high altitude sensor results in a large footprint or field-of-view (an ellipse of dimensions 

265 x 378 m), and a relatively large FOV implies that soil heterogeneities become 

spatially averaged due to differences in support volume with regard to single soil 

samples (pedons) and aerial gamma radiometrics. Therefore, there is a need to test the 

quality of this aerial gamma radiometric data in the United States as well as understand 

how useful aerial gamma radiometrics can be to soil mapping. The relevance of 

validating the USGS aerial gamma radiometrics database lies within recent digital soil 

mapping efforts which have used a rasterized aerial gamma radiometric dataset as a soil 

environmental covariate for digital soil class and property predictions (Odgers et al., 

2015; Cheney et al., 2015).  

In an ideal experiment, gamma measurements provided by an aerial gamma 

spectrometer would be validated by collecting a statistically representative amount of 

soil samples within the footprint of an aerial gamma radiometric sensor (Cardarelli II et 

al., 2011). As well, the methodology should include a design that stratifies the sampling 

with respect to aerial gamma radiometric response (Minasny and McBratney, 2006; 

Cardarelli II et al., 2011). An alternative data collection method that can be used to 

ground-truth and understand aerial gamma-ray data could be to conduct a vehicle-

traversed, on-ground or proximal gamma radiometric survey. A proximal gamma 

radiometric survey can be used to collect a high resolution gamma radiometric pattern 

that can be used for soil sampling and averaging up to the aerial footprint. As well, the 

support volumes of a single soil sample and proximal gamma radiometric data are more 

similar. Vehicle-traversed systems are not entirely without limitation, however, for they 
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are limited in spatial scope and are inhibited by obstacles such as fences and property 

boundaries (Stockmann et al., 2015). 

Initial analysis of ground-truthing aerial gamma radiometrics with proximal data 

within literature suggests that comparisons between aerial gamma radiometrics and 

proximal gamma radiometrics are most successful when the aerial gamma radiometric 

data is variable in itself. For example, Kock and Samuelsson (2011) compared aerial 

gamma radiometric point measures collected by the Geological Survey of Sweden with 

backpack or foot-traversed proximal gamma radiometric measurements (i.e. 40K, 238U 

and 232Th) from three different landscapes in southern Sweden, and in their results they 

found that 238U and 232Th measurements were most successful (R2 of 0.82 and 0.79, 

respectively) when at least one site within each radioelement exhibited large amounts of 

variability. Therefore, comparisons of aerial and proximal gamma radiometrics should 

be most successful either within one parent material undergoing differential weathering 

conditions or between parent materials providing contrasting radiometric signatures. 

While proximal and aerial gamma radiometric comparisons will provide an 

indication of aerial gamma radiometric agreeability between the two survey methods, 

their comparisons are only meaningful from a soil science context if proximal gamma 

radiometric data are mapping spatially variable soil properties, and recent literature has 

indicated such relationships can be established. For example, Priori et al. (2014) 

correlated the 40K, 238U and 232Th energy windows with soil texture across three parent 

materials in Italy (i.e. flysch, sandstones and marine alluvial deposits). Additionally, 

Viscarra-Rossel et al. (2007) mapped clay content, nutrients (K, Fe), pH, and salinity in 
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two different soil settings (i.e. residual and alluvial parent materials) in Australia using 

hyperspectral GR. Various adjusted R2 values were reported, with silt content, fine sand, 

K and Fe concentrations lowest in adjusted R2. These investigations demonstrate the 

site-specific nature of gamma radiometrics regardless of selected soil properties, as well 

as the best representation (i.e. individual or combined energy windows) of gamma 

radiometrics in predicting soil properties within various parent materials, but such 

applications to our knowledge are non-existent for soil landscapes within the U.S. 

The overall goal of this investigation is to improve our understanding of aerial 

gamma radiometrics collected over different parent materials within the United States. 

To achieve this goal, proximal gamma radiometric surveys and soil samples were 

collected over three parent materials and co-located with aerial gamma radiometric 

transect lines. We hypothesize that aerial gamma radiometric responses are more 

strongly related to soil properties than can be shown using legacy soil survey databases 

and that the relationship (i.e. strength and type) between aerial gamma radiometrics and 

soil properties varies with parent material. 

To test our hypotheses, two specific objectives are addressed. First, assess the 

strength of relationships between laboratory derived soil properties and proximal 

gamma-ray spectral data on a field-scale using Pearson correlation coefficients and 

multiple linear regression modelling; and second to compare the spatial patterns between 

proximal and aerial gamma-ray spectrometer data (e.g. dose rate, 40K, 238U and 232Th) 

through scatter plots and analysis of covariance. 
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III.2. Materials and Methods 

III.2.1. Site Descriptions 

Four sites in three different locations were chosen for proximal gamma radiometric 

surveys within the state of Texas (Fig. 10). The site selection criteria included accessing 

different parent materials and capturing variability in the raw aerial gamma radiometric 

point data in Central Texas. These sites represent several parent materials located within 

the region, including alluvium (young and old) as well as residuum (shale, sandstone and 

marl). Because of the far distance between aerial gamma radiometric survey transects, 

only one transect line was chosen and analyzed at each parent material site.  

 

 

 

 

Figure 10. Geographical locations of the three proximal gamma radiometric surveys 

described within the text.  
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Site A includes approximately 895 ha (30°39'59.07"N, -96°32'44.92"W) nearby the 

Brazos River and contains soils deposited onto a nearly-level floodplain within the last 

2000 years (Waters and Nordt, 1995; Chervenka, 2002). The original source of these 

sediments are found within the Blackwater Draw Formation within the southern High 

Plains and contain mixed mineralogy (Holliday, 1989). Surface soil textures are mapped 

as clay, silty clay loam, and silt loam according to the USDA Soil Survey (Soil Survey 

Staff, 2014a; Fig. 11a). The soil classifications are Very-fine, mixed, active, thermic 

Chromic Hapluderts, Fine, fine-silty mixed, superactive, thermic Udifluventic 

Haplusteps, Coarse-silty, Coarse-Loamy, mixed, superactive, calcareous, thermic Udic 

Ustifluvents. The primary land use for soils in Site A is irrigated and dryland cropping of 

corn and cotton with conventional tillage. The average annual precipitation is 99 

centimeters. 

Site B is approximately 156 ha (30°29'7"N -96°50'59"W) and contains soils formed 

on uplands over discrete and interbedded shale and sandstone residuum (Jurena, 2005; 

Fig. 11b). These bedrock types were initially deposited in shallow marine environments 

around the Eocene geologic time period, between 50 and 36 million years ago when an 

ancient sea transgressed the Texas land mass (Jurena, 2005). The soil surface textures 

mapped are loam, loamy fine sand, fine sandy loam, fine sand, sandy clay loam, and clay 

(Soil Survey Staff, 1999). The soil classifications are Fine, Fine-loamy, loamy, siliceous, 

smecitic, mixed, active, semi-active thermic Arenic, Grossarenic, Ultic, Udertic, 

Psammentic Paleustalfs; Fine, smectitic, thermic Udertic Argiustolls; and Fine, 
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smectitic, mixed, thermic Udic Haplusterts. The Alfisols at this site form from parent 

materials rich in glauconite, an iron potassium phyllosilicate indicative of shallow-

marine environments (Triplehorn, 1965; Jurena, 2005). The primary land use is 

pastureland, and the average annual precipitation is 97 centimeters. 

Site C consists of two regions, termed C1 and C2 and are located under the same 

aerial transect line (Figs. 11c and 11d). Site C1 is approximately 184 ha (31°27'36"N -

96°52'50"W) and contains soils formed on uplands consisting of marl (or carbonate-rich 

shale) residuum; while site C2 contains both upland marl and old alluvium or terrace 

landforms from the Brazos River. The primary soil surface textures in C1 are clay and 

silty clay; while at site C2, the surface textures are clay, silty clay loam, silty clay and 

clay loam. Soils at classifications at C1 are classified as Fine, smectitic, thermic Udic 

Haplusterts and Fine-silty, carbonatic, thermic Udortherntic Haplustolls; at C2, 

classifications additionally include Fine, smectitic, thermic Oxyaquic, Udertic Vertic 

Haplustalfs. The land-use for both sites C1 and C2 is corn, and the annual precipitation 

in the area is 85 centimeters (Soil Survey Staff, 1999; Miller and Greenwade, 2001).  
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Figure 11. Gamma radiometric sites a) A, b) B, and c) C1 and d) C2. Each site has the 

aerial (larger colored circles) and proximal (smaller colored circles) dose rate (Bq kg-1) 

with generalized bedrock types according to county soil surveys. Soil sampling locations 

are marked with black dots. The white polygon at site B represents a local water body.   
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III.2.2. Aerial Gamma Radiometric Surveys 

The aerial gamma radiometric surveys within each of the sites were conducted at 

different times and dates, as well as from different contractors. All sites were surveyed 

for the National Uranium Resource Evaluation program. Sites A and B were conducted 

by Geodata International, Inc. on April 20 and 21, 1977, respectively. Sites A and B lie 

along different transect lines (Geodata International Inc., 1979; Hill et al., 2009). The 

Site C survey was conducted by EG&G Geometrics, Inc. on October 11, 1979 

(Geometrics, 1980; Hill et al., 2009).  

The survey for Sites A and B used nine NaI scintillation crystals. Eight crystals of 

55.5 L were directed downward (4π steradian solid angle) and one 6.8 L crystal was 

directed upward (2π steradian solid angle). The flight was standardized to an altitude of 

120 m, and the average along-line distances for Sites A and B are 65 and 63 m, 

respectively. The average altitudes are 131 and 124 meters, respectively. 

Spectral information was collected by a pulse height analyzer every second and 

stored onto magnetic tape (Geodata International Inc., 1979). During post-processing, 

the downward looking crystal spectral data were converted into elemental concentrations 

using the following energy windows: 40K (1.322 MeV-1.638 MeV); 238eU (1.05-1.322 

plus 1.638-2.410 MeV); 232eTh (2.41 to 2.796 MeV). The data were then corrected for 

atmospheric radiation and altitude effects and converted to concentrations using 

experimentally determined sensitivity coefficients (Geodata International Inc., 1979; 

Minty, 1997a; IAEA, 2003). 
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Positional information was determined relative to a base point and heading using a 

combination of radar altimeter and a Doppler navigation system in a technique called 

dead-reckoning, which determines position based on velocity measurements (Kayton 

and Fried, 1997). During the survey, a co-pilot would write the record numbers or 

fiducials associated with visual check points such as cross roads or rivers, and these 

record numbers would be used as input to flight path recovery (Geodata International 

Inc., 1979). These pick-points serve as the basis for which all other sample points are 

geo-referenced, as spectral measurements were not instantaneously coupled with 

positional information. 

The geo-spatial accuracies of the aerial point measurements were checked using the 

surficial geology code assigned to each point along the transect line (Hill et al., 2009). 

This analysis revealed that gamma points located in Site A contained points with 

residuum geology codes, rather than alluvium, indicating a positional error. A positional 

error was also present at Site B, although its effects were less apparent because the soils 

formed under the same landform (i.e. uplands) rather than an abrupt transition (i.e. 

young alluvium to old alluvium) (Fig. 11). To remedy the positional offset of the aerial 

point measurements at Sites A and B, the surveys in Sites A and B were shifted along 

their respective transect lines based on the geomorphology of the surrounding areas as 

well as the direction of the aircraft during data collection. For example at Site A, aerial 

points were shifted approximately 1200 m east, toward sandier more weathered terrace 

material. Soils that develop over terraces were expected to emit a relatively lower 

amount of gamma radiation due to a higher degree of soil development (Wilford et al., 
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1997). The positional shift applied to Site B was more complicated because neither 

abrupt geomorphic features nor large bodies of water were present (Ahl et al., 2014). A 

shift of approximately 250 m east was applied based on the presence of forested areas. 

High wood content can attenuate gamma-rays because it contains an electron density 

higher than that found in soil (Wetterlind et al., 2012).  

Similar to surveys at Sites A and B, EG&G Geometrics, Inc. used a standardized 

flight sensor altitude of 120 m collected at one-second intervals (Geometrics, 1980). 

Geometrics used 50.3 and 8.4 L of NaI scintillation crystals for downward and upward 

looking directions, respectively. The system was also mounted on a fixed wing aircraft 

traveling at a general velocity of 225 km hr-1. The average along-line distance in the 

study area is 68 m, and the average altitude is 114 m. 

The spectral data collection methodology was similar to that of Sites A and B in 

terms of sampling interval, but the spectral energy window ranges differed as follows: 

40K (1.37 to 1.57 MeV); 238eU (1.04 to 1.21 plus 1.65 to 2.42 MeV) and 232eTh (2.41 to 

2.81 MeV). The flight path recovery technique was also different from Sites A and B, as 

a 35 mm tracking camera with a fiducial numbering system was used that 

instantaneously joined all spectral and positional data based on common fiducial 

numbers (Geometrics, 1980). The information content within the metadata for Site C 

differed from Sites A and B, as the former was more detailed in its processing steps. As 

well, coefficients for altitude were calculated, which is particularly useful if error 

budgets are to be created for legacy aerial gamma radiometric data (Løvborg and Mose, 

1987). 
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III.2.3. Proximal Gamma Radiometric Surveys 

The proximal gamma radiometric data were collected from a 4 L volume NaI 

gamma-ray spectrometer (Radiation Solutions Inc., Mississauga, Ontario, Canada). A 

mounting device for the spectrometer was installed onto the passenger side of a John 

Deere Gator field vehicle, with the sensor located at a height of approximately 55 cm 

above the ground. 

 The line spacing distances were not constant for all sites - the maximum line spacing 

distance was approximately 50 m (Site C2), while the lowest was 20 m (Site B). The 

speed of the vehicle across all Sites was consistent, approximately 4.5 m s-1. Raw 

continuous spectral data was collected every second in the form of 40K, 238U and 232Th 

mass concentrations that were instantaneously joined with spatially referenced 

coordinates collected by a Wide Area Augmentation System (WAAS) enabled GPS unit. 

The radioelement energy windows for the sensor are as follows, 40K (1.37 to 1.57 MeV); 

238eU (1.66 to 1.86 MeV), and 232eTh (2.41 to 2.81 MeV) (Radiation Solutions Inc.).  

Soil sampling design for Sites A and C1 was stratified using topography and aerial 

imagery. For Sites B and C2 the proximal gamma radiometric survey was stratified and 

randomly sampled. Soil samples were then collected at 0 to 15 cm depths. After 

proximal surveys were concluded, 34, 37, 24, and 19, soil samples were collected at 

Sites A, B, C1, and C2 respectively. 

Soil samples were air dried to 60○C for 48 hours and ground to pass through a 2-mm 

sieve. Soil particle-size distribution for all samples were measured using the pipette 
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method and wet-sieving sands (Gee and Or, 2002). Soil texture classes were assigned 

using the USDA soil textural classification system, and their distribution is shown in 

Figure 12. Inorganic carbon was only measured at Sites C1 and C2 because the soils 

effervesced when 10 N HCl was applied.  Inorganic carbon was measured using the 

modified-pressure calcimeter method (Sherrod et al., 2002). Inorganic carbon mass 

concentrations (g kg-1) were then converted into calcium carbonate equivalent by 

dividing by the inorganic carbon concentration by the molecular weight fraction of 

carbon (0.12).  

The laboratory information was then imported and managed alongside the proximal 

and aerial gamma spectral data within R (R Development Core Team, 2014). Descriptive 

statistics for gamma-ray variables (40K, 238eU and 232Th) as well as laboratory derived 

soil properties are shown in Table 6. The standard output provided by both the proximal 

and aerial sensor data (parts per million) were converted into specific activity (Bq kg-1) 

using constants defined by IAEA (2003).  

  



 

67 

 

 

 

Table 6 Continued Min.  Max.  Std. dev.  Mean 

Table 6: Descriptive statistics of soil sample analysis with proximal (P) and aerial (A) 

gamma radiometrics collected within each site. Dose rate is in nGy hr-1, while 40K, 
238U and 232Th are in Bq kg-1. 

 Min.  Max.  Std. dev.  Mean 

 Site A 

Soil properties, g kg-1  

Clay 91 733 236 362 

Sand 8 648 189 181 

Silt 188 698 150 457 

Gamma radiometrics     

Dose Rate (P) 72 328 37 232 
40K (P) 281 3167 369 2187 
238U (P) 36.5 301 34 142 
232Th (P) 13 202 27 115 

Dose rate (A) 28 76 8 54 
40K (A) 0.5 2.3 0.3 1.48 
238U (A) 0.5 3.9 0.7 2.19 
232Th (A) 2.9 13.1 2.0 8.29 

 Site B 

Soil properties, g kg-1  

Clay 11 484 145 212 

Sand 290 932 210 584 

Silt 54 433 82 203 

Gamma radiometrics     

Dose rate (P) 60 401 52 177 
40K (P) 130 2446 432 982 
238U (P) 28 388 29 118 
232Th (P) 13.6 314 51 124 

Dose Rate (A) 28 73 14 51 
40K (A) 0.1 1.7 0.4 0.71 
238U (A) 0.9 3.7 0.6 1.92 
232Th (A) 4.6 17.8 3.8 11.3 

 Site C1 

 Soil Properties, g kg-1  

Clay 399 553 37 488 

Sand 84 189 25 131 

Silt 326 467 33 382 
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Table 6 Continued Min.  Max. Std. dev.  Mean 

Calcium carbonate 

equivalent 
146 486 103 288 

Gamma Radiometrics 

Dose rate (P) 55 147 13 106 
40K (P) 148 930 110 520 
238U (P) 0 123 17 57 
232Th (P) 31 148 19 87 

Dose rate (A) 48 52 1 33 
40K (A) 0.5 0.6 0.0 0.53 
238U (A) 0.9 1.5 0.2 1.21 
232Th (A) 6.8 7.7 0.3 7.3 

Site C2 

Soil properties, g kg-1 

Clay 180 554 102 424 

Sand 69 454 108 186 

Silt 340 450 31 389 

Calcium carbonate 

equivalent 
0 17 4 2 

Gamma radiometrics 

Dose rate (P) 44 169 23 125 
40K (P) 51 1165 197 570 
238U (P) 12 165 19.9 75 
232Th (P) 12 171 23.4 101 

Dose rate (A) 33 46 4 41 
40K (A) 0.5 0.8 0.1 0.63 
238U (A) 1.4 2.4 0.3 1.92 
232Th (A) 6.7 9.3 0.7 8.02 
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Figure 12. A summary of soil texture classes for each site on a United States 

Department of Agriculture soil textural triangle. Sites A, B, C1 and C2 are represented 

by squares, circles, triangles and crosses, respectively. Reprinted from R code 

provided by Moeys (2015), originally sourced from Soil Survey Staff (1993). 

III.2.4. Data Management and Statistical Modeling

Prior to merging soil property data with proximal gamma radiometrics, the latter was 

smoothed and interpolated. To increase the signal-noise ratio, a spatial moving average 
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of five measurements was calculated as suggested by Viscarra-Rossel et al. (2014). 

Additionally, proximal radiometric values that were outside of two standard deviations 

of the five-point averaged data were removed. Proximal radiometric data were then 

interpolated using inverse distance weighting, in the gstat package in R. 

Pearson correlation coefficients and their significance between laboratory soil 

properties and proximal gamma radiometrics were calculated. Under the assumption that 

soil moisture influences gamma spectral measurements signal, equation 1.5 was applied 

using a soil moisture measured at the time of the proximal gamma radiometrics 

measurements. Pearson correlation coefficients were reassessed (Appendix B). The 

results after moisture correction did not improve the Pearson correlation coefficients, 

and all models were therefore based off non-corrected proximal gamma radiometrics 

data – a similar result was found by Priori et al. (2014). 

The proximal gamma radiometric variables (40K, 238eU and 232Th) were then related 

to soil texture and calcium carbonate equivalent within and across all Sites through 

Pearson correlation coefficients and linear regression modeling. First simple regression 

models between each soil property and 40K, 238U and 232Th (including dose rate) were 

created.  To test the hypothesis that the GR signal is parent material specific, the 

estimated slope coefficients and intercepts describing the relationship between soil 

properties and proximal radiometric data between each site were compared using 

analysis of covariance (ANCOVA).  Second, multiple linear regression models were fit 

using all three variables as predictors, with their removal contingent on an inflation 

factor (VIF) greater than or equal to 5, as the variables can exhibit multi-collinearity 
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(Rodrigues Jr. et al., 2015). Stepwise-backwards elimination regression was then 

performed for the 40K, 238U and 232Th predictors, eliminating variables that were 

insignificant (p-value ≥ 0.05). The goodness-of-fit measures used to assess the models 

were the adjusted coefficient of determination (Adj. R2), as well as root-mean squared 

error (RMSE) and residual plots.  

Aerial gamma radiometric transect point data were compared with proximal gamma 

radiometric data through footprint analysis (Fig. 11). For each aerial gamma radiometric 

transect point, ellipsoidal buffers of size 265 and 378 m in the across-track and along-

directions, respectively, were created for every aerial gamma point measurement 

(Kosanke and Koch, 1978; Pitkin and Duval, 1980; Beamish, 2013). All of the proximal 

gamma radiometric values located within each buffer were averaged within an inverse-

distance weight to the ellipsoid center because the most intense signal is found directly 

beneath the detector (Kock and Samuelsson, 2011; Beamish, 2014). Scatter plots that 

relate aerial gamma radiometrics with spatially-averaged proximal gamma radiometrics 

were created and assessed by conducting an ANCOVA. 

III.3. Results and Discussion 

III.3.1. Proximal Gamma Radiometric Surveys 

Proximal and aerial gamma radiometric data were both spatially variable, both 

within and across parent materials (Fig. 11). In general, soils forming in alluvium in Site 

A and glauconitic sandstone in Site B (high 40K) emit higher amounts of gamma 

radiation than that from the siliceous sandstones (Site B), while the marl residuum found 

in Sites C1 and C2 was lowest in radioelemental abundance (Figs. 11a-11c). Limestone-
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based rocks such as marl are generally known to contain low amounts of radioelement 

concentrations due to an absence of gamma-rich silicates and abundance in carbonates 

(Ford et al., 2008; Stahr et al., 2013).  

A particularly interesting proximal gamma radiometric feature can be seen at the 

west end of Site B (Fig. 11b, arrow), where a pocket of unexpectedly high gamma 

radiation is present due to erosion of the sandy A and E horizons from local stream 

entrenchment, leaving behind an exposed clay-rich horizon. In addition to erosional 

features, the proximal sensor is also able to detect the presence of non-soil components 

at a high resolution such as roads (low gamma radiation, green) in Site A that are highly 

contrasted with nearby gamma-rich alluvial clay soils eastward (Fig. 11a).  

III.3.2. Proximal Gamma Radiometric and Soil Correlation Results 

The Pearson correlation analyses between proximal gamma radiometrics and 

laboratory soil properties are shown in Table 7. At Sites A and C2, dose rate has the 

strongest correlation with soil properties, with 232Th being equal or weaker than dose 

rate. At Site B, 232Th correlation with soil particle size was stronger than dose rate. In 

general, 238U was not correlated with soil properties. The particular soil property with the 

highest correlation varied by Site and was not consistent. For example, clay content 

correlation in Site A was much greater than that for Site B, while the opposite was true 

for sand content (Table 7). The relative age of the soils at these Sites might explain this 

observation, as there has not been a sufficient amount of time for 40K to become 

solubilized and lost from the soil surface at Site A (Wilford et al., 1997). 
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Although previous research (Buchanan et al., 2012) has suggested that silt content, 

unlike clay and sand content, is less well correlated with proximal gamma radiometrics 

data due to its mixture of  quartz and secondary minerals, the magnitude of correlation 

for silt content was higher than sand at Site A (Table 7). Such strong relationships with 

silt likely occurred because of its negative co-correlation with clay content (ρ = -0.61). 

Therefore, the relationship between silt content and proximal gamma radiometrics 

measurements are only reliable to the extent that clay and/or sand content are correlated 

with silt. The signs of the correlation coefficients for clay are consistently positive and 

sand content consistently negative, while the signs for silt content varied. This variation 

of positive and negative correlations with silt maybe attributed to the original source 

mineralogy that may or may not have undergone weathering to smaller particle sizes 

(Bierwirth, 1996). 

In terms of individual proximal gamma radiometric variables, the 40K and 232Th 

radioelements provided the more consistent and stronger models across all properties 

and Sites, while 238U was only weakly correlated at Site A (Table 7). 232Th is highly 

retained onto clay surfaces, and although it can become solubilized in very acidic 

conditions or adsorbed by organic complexes, this does not appear to be the case here 

(Bierwirth et al., 1996; Rachkova et al., 2010; Wilford, 2012). At Site B, the listed 

mineralogy types in the area (mixed, siliceous, smectitic) were more sharply contrasting 

in 40K and 232Th and less contrasting than 238U. Though 238U has the highest coefficient 

of variation of all proximal gamma radiometric variables, it has the least amount of info 

on measured soil properties. 
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Table 7: Significant Pearson correlation coefficients (p-value < 0.05) between proximal 

gamma radiometric measurements and lab-characterized soil data.  

Soil property Dose Rate 40K 238U 232Th 

 Site A 

Clay 0.90 0.91 0.58 0.87 

Sand -0.54 -0.60 NS -0.53 

Silt -0.74 -0.67 -0.56 -0.70 

 Site B 

Clay 0.74 0.64 NS 0.79 

Sand -0.77 -0.66 NS -0.83 

Silt 0.68 0.55 NS 0.73 

 Site C1 

Clay NS NS NS NS 

Sand NS NS NS NS 

Silt NS NS NS -0.43 

Calcium Carbonate -0.71 NS NS -0.71 

 Site C2 

Clay 0.91 0.70 NS 0.66 

Sand -0.93 -0.76 NS -0.70 

Silt NS NS NS NS 

Calcium Carbonate NS NS NS NS 

 

 

 

In addition to comparing soil properties and 40K, 238U and 232Th variables, 

correlations with dose rate (more representative of the entire gamma-ray spectrum) was 

also done. There are conflicting conclusions regarding whether 40K, 238U and 232Th or 

dose rate provides more information on spatial variation of soil properties (Mahmood et 

al., 2013). In general, dose rate and soil property relationships had smaller correlation 

coefficients compared to 232Th, although dose rate in Site C2 outperformed the 

individual windows due to strong relationships with 40K (Table 7). Using dose rate over 

the individual energy windows is therefore contingent upon the spatial variability of not 
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only 232Th, but 40K as well (Bierwirth, 1996). An additional representation of the 

gamma-ray spectrum includes full-spectrum analysis, but such a technique was not 

implemented in this study because the legacy aerial gamma radiometrics only provide 

specific energy windows and not full spectra information.  

III.3.3. Models of Soil Properties Using Proximal Gamma Radiometric Data 

III.3.3.1. Texture 

The magnitude of adjusted r-squared (Adj. R2) between the individual soil texture 

components and proximal gamma radiometric data differs by Site, although areas that 

are alluvium-derived (i.e. Sites A, C2) generally had higher Adj. R2 than soils developed 

from residuum (Table 8). Sites B and C2 contained the most statistically significant 

linear models between soil and proximal gamma radiometric variables (Table 8). 

Relationships between sand content and proximal data at site A were not linear because 

the soils high in sands have not been sufficiently weathered, and thus contain higher than 

expected gamma signatures. Site C1 performed poorly with proximal gamma 

radiometrics because the surface textures were predominantly clay (Table 8 and Figure 

11c). Site C2 also contains high clay textured soils forming from marl, but unlike Site 

C1 it contains Alfisols forming from old alluvium. Hence, Site C2 has more significant 

models for clay and sand content because of the translocation of silicate clays.  
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Table 8: Linear Regression models within and between sites and Analysis of Covariance 

(ANCOVA) results between sites. 

Site 
Adj. 

R2 
Model 

 

RMSE† 

Sites 

Compared 

Sign. Diff. † 

S. I. 

   g kg-1    

Clay 

All  0.19 357.1+0.1*K-3.3*U+1.8*Th 168 -   

A 0.85 -1708.2+0.8*K+4.9*Th 144 N/A N/A N/A 

B 0.40 -22.2+0.2*K 117 B to A N Y 

C2 0.82 -539.4+0.2*K+4.1*U+5.1*Th 38 C2 to A Y Y 

Sand 

All  0.33 10.1-0.009K+0.16*U 303 - - - 

A* 0.68 14.66-0.005*K 170 N/A N/A N/A 

B 0.42 932.2-0.4*K 163 B to A N N 

C2 0.85 1170.7-0.3*K-3.6*U-5.4*Th 50 C2 to A N N 

Calcium carbonate equivalent 

C1+

C2 
0.67 1149.1-5.9*U-6.3*Th 90 - - - 

C1 0.48 857.7-6.4*Th 80 
C1 to 

C2 
Y Y 

†RMSE is Root Mean Squared Error; S is slope and I is intercept. 

* Model was log-(Y) and square-root(X) transformed. 

 

 

 

The lower Adj. R2 at Site B relative to Sites A and C2 is attributed to the soils being 

in a more advanced stage of weathering. Weathering of soil minerals and translocation 

of clay-sized particles is advanced and maybe used to explain the scatter from the line of 

best fit for Site B (Fig. 13). For example, an outlier point (oval labeled ‘I’) that has a low 

dose rate due to 40K abundance could be due to the natural weathering or alteration of 

glauconite into secondary clay minerals such as vermiculite or montmorillonite, that are 

clay-sized particles. During this process, 40K is lost from its structure (McRae, 1972). 

One key indicator (besides mineralogical data) that was used to formulate this 

hypothesis was the observation of iron oxidation commonly associated with glauconitic 
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weathering, at this particular sample point (McRae, 1972). Additional points (‘II’) could 

also be explained in terms of glauconite weathering, whereby a relatively low amount of 

232Th was measured due to its co-precipitation with iron in the sand-sized fraction 

(Rachkova et al., 2010). Visual analysis confirmed the mobility of iron hydroxides in 

subsurface samples.  

 

 

 

 
Figure 13. Proximal gamma radiometrics (dose rate) by site plotted with measured 

clay content, where Sites A, B, C1 and C2 are indicated by orange, grey, blue and 

green circles, respectively. 

 

 

 

In addition to soil mineralogy, the scatter plot for clay content at Site B could be 

influenced by the relative location of the soil sample along a given catena. Figure 11b 

shows that Site B contains sample points that contain higher than expected radiometric 

values at low clay content and this is most likely due to their location on back slopes 
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(ranging from 2 to 8 percent), thereby the underlying Bt horizons are nearer to the 

surface; the most extreme example can be found in Figure 11 (III), and this point 

coincides with the sample located nearest the high pocket of gamma radiation (section 

III.3.1). In addition to clay content, sand content and proximal gamma relationships were 

strong and in general linear except for site A which can most likely explained through 

the predominance of gamma-rich sources within the sand and/or silt fractions (Fig. 14). 

 

 

 

  
Figure 14. Proximal gamma radiometrics (dose rate) by site plotted with measured  

sand content, where Sites A, B, C1 and C2 are indicated by orange, grey, blue and  

green circles, respectively. 

 

 

 

III.3.3.2. Calcium Carbonate Equivalent 

Although the relationship between texture and proximal gamma radiometrics was 

poor within Site C1, the model for calcium carbonate equivalent and proximal gamma 

radiometrics was strong (Fig. 15). These soils are high in clay (all over 400 g kg-1) and 
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weathered from marls and chalks rich in calcium carbonate. 232Th is clearly the 

radioelement that is responding the carbonate concentrations, not 40K. While 232Th and 

exhibit similar patterns due to their adsorption onto clay minerals, preferential loss of 

40K (and retention of 232Th) can occur when soils are subjected to fluid migration as 

several samples were located near an old fluvial channel.  

 

 

 

 

 Figure 15. Proximal gamma radiometrics (dose rate) by site plotted with measured 

calcium carbonate equivalent (CCE) , where Sites A, B, C1 and C2 are indicated by 

orange, grey, blue and green circles, respectively. 

 

 

 

In summary, proximal gamma radiometric measurements are most successful in 

mapping soil texture and calcium carbonate content only when the soil properties are 

variable themselves, a feature of which is a function of parent material type, weathering 

history, and localized soil conditions. 
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III.3.3.3. Site-specific Tests 

When soil measurements from all sites and their proximal gamma radiometric data 

are combined into one model, the Adj. R2 values are much lower, and the RMSE values 

were higher than the site-specific RMSE models (Table 8). The overall Adj. R2 clay 

models were much lower than that of sand and silt content, indicating that proximal 

gamma radiometric predictions of clay content are more sensitive to site-specific 

conditions (Mahmood et al., 2013). In comparing models between sites using ANCOVA 

models, the intercept and slope estimates from Sites A and B models were uniquely 

different from each other as well as Sites C1 and C2 (Table 8).  

III.3.4. Proximal and Aerial Gamma Radiometric Comparative Analysis 

Comparison of aerial with proximal gamma radiometrics allows some assessment of 

the quality and reliability of the legacy aerial gamma radiometric data. Scatter plots and 

linear trends between aerial and proximal gamma radiometric variables such as 40K, 238U 

and 232Th and dose rate were assessed (Fig. 16). 

Site A generally has higher radiometric concentrations than Sites B and C, and this is 

attributed to the ‘fresh’ radiometric deposits delivered by the Brazos River within the 

last 2000 years (Biewirth, 1996; Chervenka, 2002) (Fig. 16). The one exception to this 

generalization is for 232Th at Site B, where soils formed from a marine shale rich in 

glauconite, which is associated with highly elevated 232Th abundances (Gunn et al., 

1997; Wilford et al., 2015) (Fig. 16d). The lowest radiometric abundances occurred at 

Site C, as these soils developed from sedimentary carbonates (Ford et al., 2008; Wilford 

et al., 2012). 
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Aerial versus proximal gamma radiometrics at each site are generally in good 

agreement with each other, indicating that aerial data are adequately representing the 

spatial patterns on the ground, even within highly variable landforms such as at Site C 

(i.e. upland residuum grading into terraces, Fig. 16). Aerial gamma radiometrics at Site 

A, however, is most poorly related with proximal variables. The correlation was worse 

before spatially shifting the aerial data; however, the aerial data still appears poorly geo-

located because of the poor match with the proximal survey. 

If aerial gamma radiometric data is to be used seamlessly as a soil property covariate 

across a physiographic region, a repeatable response between aerial and proximal 

gamma radiometrics is needed. While the intercept of a regression line between aerial 

proximal gamma radiometrics might change due to base line abundances of 40K, 238U 

and 232Th in a soil, a consistent slope between parent material sites would show a similar 

GR response to soil properties between aerial and proximal surveys. An ANCOVA 

analysis was used to test this response by comparing the slopes and intercepts of the 

regression lines of aerial and proximal gamma radiometrics between sites (Table 9). 

Among the main radioelements (40K, 238U, 232Th) 40K provided the most consistent 

and strongest relationship between aerial and proximal gamma radiometrics across all 

sites. Additionally, the 40K model resulting from the combination of all sites is an 

improved model compared to individual Sites A and B (Table 9). 40K likely achieved 

better correlations between aerial and proximal gamma radiometrics compared with the 

other 40K, 238U and 232Th and dose rate because of the higher count rates encountered 

within its window, thus creating a higher signal to noise ratio. The fractional 
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measurement of gamma radiation operates under the Poisson distribution (
𝜎(𝑛)

𝑛
 = √

1

𝑛𝑡
, 

where nt = total counts per unit time) (IAEA, 2003). It should be noted that the above 

equation applies to gamma measurements on a count basis rather than a concentration 

basis; however, the conversion is linear and the trends do not change. 

 

 

 

 
Figure 16. Proximal plotted versus aerial gamma radiometrics for a) dose rate, b) 40K; c) 
238U, and d) 232Th. Sites A, B and C are indicated by red, black, and blue circles, 

respectively. 
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Figure 16. Continued. 
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Table 9: Linear regression R2 values comparing aerial and proximal gamma radiometric 

measurements are shown. As well, Analysis of Covariance (ANCOVA) results 

comparing slopes and intercepts to of each regression model to Site B when Site B is 

significant (p value ≤ 0.001). 

Site N R2 Sites Compared 
Significantly Different 

Slope Intercept 

Dose Rate 

All Sites 183 0.61 - - - 

A  111 0.26 A to B N Y 

B  33 0.93 - - - 

C  39 0.90 C to B N N 
40K 

All Sites 183 0.69 - - - 

A  111 NS - - - 

B  33 0.43 - - - 

C  39 0.78 C to B N Y 
238U 

All Sites 183 0.11 - - - 

A  111 NS    

B  33 NS - - - 

C  39 0.62 - - - 
232Th 

All Sites 183 0.49 - - - 

A  111 0.16 A to B Y Y 

B  33 0.84 - - - 

C  39 0.68 C to B N N 

 

 

 

Overall, the 232Th and 40K responses between aerial and proximal gamma 

radiometrics is quite similar between Sites C and B. The response at Site A is weak to 

begin with and might be similar if the positioning were better. The slopes of dose rate 

were similar between Sites, while the intercept is much higher for floodplains (Site A). 

Again, it is not clear if this is an effect of poor geo-referencing of the aerial gamma 

radiometric data. 
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238U is the only model that contains weak and no-significant comparisons between 

aerial and proximal gamma radiometrics that can be attributed to differences in soil 

moisture, differences in radon, a daughter product of 238U due to changing temperatures 

and pressures, and low counting measurements, or low signal-to-noise ratio (Bierwirth, 

1996; Minty, 1997a; Dickson, 2004). Analysis of historical weather data indicates that a 

rain event did occur before the time of the aerial gamma radiometric surveys at Sites A 

and B (not at C). Ideally, aerial gamma radiometric surveys should be supplemented by 

soil moisture data (Carroll, 1981), but the aerial gamma radiometric surveys were 

conducted only once, and the influence of soil moisture on the aerial 238U cannot be 

assessed (Beamish, 2015). 

The FOV that was selected for this analysis was based on the height and movement 

of the sensor, but such estimations are theoretical in nature, a problem that is further 

compounded when different sensor configurations are considered (Billings and 

Hovgaard, 1999). One source of error that could explain noise between aerial and 

proximal gamma radiometrics could be gamma-rays measured outside the FOV, but this 

feature is usually not a problem because the change in correlation between aerial and 

proximal gamma radiometric measurements begins to level off with increasing FOV size 

(Kock and Samuelsson, 2011). An additional source of error could lie within the 

representation of the FOV. While others have identified an optimal FOV size based on 

the highest R2 (Bollhoffer et al., 2013), this analysis used approximations actual 

conditions based on theory (Billings and Hovgaard, 1999). Although with the two 

methods measuring different areas, inaccurate positioning is suspected to be the main 
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driver of differences between aerial and proximal gamma radiometrics, as well as the 

spectral energy ranges measured are not identical. These results suggest that the overall 

aerial and proximal gamma radiometric comparisons can be successful, given that the 

initial point positions are accurately marked. 

III.3.5. Spatial Shifting of Aerial Gamma Radiometric Point Data 

Although the US aerial gamma data from the 1970s will always be associated with a 

certain amount of positional uncertainty, there are general guidelines that can be used to 

check the positional accuracy of a given aerial gamma radiometric survey. First, aerial 

gamma radiometric measurements over large bodies of water are expected to provide a 

significantly lower gamma signature than any soil body (Ahl et al., 2014). Second, aerial 

gamma radiometric measurements over areas that abruptly change in geomorphology 

generally correspond with abrupt changes in gamma emissions (Wilford et al., 1997). 

Third, areas that are heavily forested with a high wood density also provide an indicator 

of gamma-ray attenuation, as these types of vegetation can hold large volumes of water 

(Wetterlind et al., 2012). Unfortunately, the Sites in this study did not contain a nearby 

large (i.e. greater than the FOV) body of water, and so we used the second and third 

methods for Sites A and B, respectively. 

As explained previously, aerial gamma radiometrics at Site A seemed to provide the 

most disagreement with proximal gamma radiometrics after spatial shifts were applied 

(Fig. 16). The source of geo-spatial inaccuracy in modern aerial gamma radiometric 

systems stems from many inevitable sources, such as: 1) timing errors between the 

measurement and recording events; and 2) instantaneous precision of a non-differential 
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GPS system (Cardarelli II et al., 2011; Ahl et al., 2014). Not all of the above sources are 

applicable to the legacy US aerial gamma radiometric survey, as GPS was not 

implemented and instead a Doppler radar system was used. When all of these sources of 

error are combined, Cardarelli II et al. (2011) stated that the theoretical maximum shift 

would be 130 m in the direction of travel. However, the aerial survey conducted over 

Sites A and B required 1140 and 240 m.  

Further investigation into the metadata provided by Geodata International, Inc. 

revealed that potential sources of error lie within the transfer of positional information 

originally stored on the magnetic tape. We first considered Doppler radar error as the 

source; however, the shift applied was found to be systematic, meaning that the amount 

of shift needed did not change along-line, thus eliminating Doppler radar as a significant 

source of error (Kayton and Fried, 1997).  

Because the spatial shifts for Sites A and B varied, we suspect that the positional 

error is mainly attributed to the flight path recovery methodology used by Geodata 

International, Inc. Only pick-point records were selected based on landmark features, 

which were then identified on a base map - it is possible that the copilot or navigator 

responsible for marking these records either mislabeled the record number with the 

visual check point, or did not correctly associate the visual check-point with the 

reference information on the base map. Regardless of the source of the positional errors, 

the errors will regardless contribute to uncertainty when trying to use aerial gamma 

radiometrics as a covariate to map soil data. 
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III.4. Conclusions  

Relationships between soil properties such as clay, sand and calcium carbonate and 

their associated proximal gamma radiometric measurements correlate strongly, although 

the soil property with the strongest correlations varied by site. The trends for clay and 

sand content with dose rate and 40K, 238U and 232Th were positive and negative, 

respectively, whereas the trend was ambiguous. The highest correlations (0.91 and -0.93 

for clay and sand content, respectively) were located under a geomorphically diverse 

area with differential rates of pedogenesis and on old and new alluvium parent material. 

The gamma energy windows that exhibited the overall highest correlations with soil 

properties were (in order): 232Th, 40K and 238U, although 40K had strongest correlations 

with clay and sand in residuum/alluvium combinations. 238U had a low signal to noise 

ratio and was generally poorly correlated to soil properties. The choice of using either 

separate (40K, 238U and 232Th) or combined (dose rate) energy windows, therefore, 

depends on the patterns established within each energy window (40K, 238U, 232Th). In 

general, 232Th was the best predictor of soil properties, although dose rate was a better 

predictor when 40K variability was also present, most likely due to silicate clay 

translocation. 

Stepwise backwards elimination regression indicated that, in general, better 

predictions of soil texture and calcium carbonate were achieved site-specifically and 

when 40K, 238U and 232Th were added as separate predictors. As expected, clay, sand, and 

calcium carbonate models were most heavily weighted by 232Th concentrations, although 

the latter is weakly influenced by 238U. Analysis of Covariance tests indicated that clay 
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content and calcium carbonate were more sensitive to changes in site-specific conditions 

than that of sand content. Regional models for soil property predictions were generally 

lower in accuracy than its parent-material counterpart.  

Proximal and legacy aerial gamma radiometric comparisons within and between sites 

are in good agreement (except for 238U), with R2 values as high as 0.92. Dose rate 

provided the highest amount of agreement between aerial and proximal gamma 

radiometric measurements, while 40K had the highest amount of agreement with respect 

to individual energy windows. The finding that aerial 40K was most closely correlated 

with proximal 40K can be attributed to its high count rate (signal-noise ratio) compared 

with that of 232Th and 238U.  

Spatial misalignment of legacy aerial point data was an issue for several sites, and 

were subsequently accounted for by considering nearby environmental features such as 

abrupt changes in geomorphology, forested areas, and large water bodies. The 

magnitude of shift required was non-systematic within a given survey, and comparisons 

between aerial and proximal gamma radiometrics after shifting took place were mixed. 

Explanations for geo-positional inaccuracies stem from the methodology used by the 

contractors during post-processing. 

The work here provides several new insights into the relationship between the field 

of gamma-ray spectrometry and soil science: 1) calcium carbonate can be mapped with 

both proximal and aerial gamma radiometrics within a uniform residuum; 2) aerial 

gamma radiometric spatial patterns general match proximal gamma radiometric spatial 

patterns when aerial data are properly geo-positioned, 3) thus soil properties can be 
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mapped by aerial gamma radiometrics through the transitive property; 4) aerial gamma 

radiometric legacy data in the United States may or may not contain positional errors, 

and subsequent corrections to these datasets did not necessarily improve proximal 

gamma radiometrics and aerial gamma radiometric comparisons. 

There is still much that needs to be understood about aerial gamma radiometrics for 

robust implementation as a covariate in soil mapping. This study looked only at four 

parent materials in areas where aerial gamma radiometrics seemed to have a good 

correlation with soil properties (Ch. II). Looking at other parent materials such as 

igneous and metamorphic located across the US would further elucidate the aerial 

gamma radiometric signal. 
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CHAPTER IV  

 

SUMMARY 

 

IV.1. Purpose and Outcomes of Study 

The overall goal of this project was to gain an understanding regarding aerial 

gamma-ray spectrometry and its appropriate usage in predicting spatially variable soil 

properties within the United States. In this study, the following research objectives were 

therefore posed: 1) identify the usefulness of legacy USDA-NRCS soil property data in 

explaining aerial gamma radiometric data across the United States; 2) quantify the utility 

of pre-existing aerial gamma radiometric data in predicting selected soil properties (e.g. 

clay, sand, CEC, CCE, pH) within both parent material and physiographic types; 3) 

assess the usefulness of pre-existing aerial gamma radiometric data in comparison with 

other environmental covariates through predictions of clay content within a given 

environmental setting; 4) identify relationships between soil properties and gamma-ray 

spectra using a vehicle-borne gamma-ray spectrometer across different landscapes; and 

5) validate aerial gamma-ray spatial patterns with proximal gamma-ray surveys across 

different landscapes. 

IV.2. Assessment of Legacy Aerial Gamma Radiometrics in the U.S. 

In Chapter II, objectives 1 through 3 were addressed by analyzing pre-existing aerial 

gamma radiometric (GR) data against soil samples and their associated soil properties 

(i.e. texture, CEC, CCE, pH) provided by the United States Department of Agriculture. 

Initial investigations towards the aerial gamma radiometric data indicated that its 
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variability could be best understood in terms of physiographic units, followed by parent 

materials and clay content. Comparisons between the aerial gamma radiometrics and soil 

properties, therefore, were only conducted after first separating the soil samples into 

their respective physiographic and parent material types. The locations of these soil 

samples were found to be unfavorable, as the initial sampling strategy was not designed 

by the aerial gamma radiometrics feature space.  

In general, soil texture and CEC to a lesser extent were most strongly associated with 

the aerial gamma radiometric response due to a common link in clay mineralogy. As 

expected the trends between texture and CEC with aerial gamma radiometrics were 

found to be parent material and region specific. CCE was also significant but more 

poorly related with aerial gamma radiometric data, while pH was considered unreliable 

due to poor linearity. Soil properties were most strongly related with aerial gamma 

radiometrics within flat terrains, whereas relationships within more active geomorphic 

landscapes such as mountain ranges were poorer most likely due to the influence of 

erosion. In terms of parent materials, relationships between soil properties and aerial 

gamma radiometrics were strongest where there were contrasting aerial gamma 

radiometric responses such as clastic sedimentary parent materials or within coastal or 

glacial unconsolidated sediments. Finally, the performance of aerial gamma radiometrics 

in predicting clay content in various landscapes was most successful within 

unconsolidated sediments within flat terrains, although these results were not necessarily 

surprising based on the previous analysis. 
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IV.3. Understanding Aerial Gamma Radiometrics through Proximal Gamma 

Radiometrics 

Chapter III sought to identify the response of aerial gamma radiometrics by 

conducting surveys closer to the ground, as the latter collects gamma spectra at much 

higher spatial resolutions. In particular, proximal gamma radiometrics surveys were 

conducted across various parent materials to determine whether these differently formed 

soils provided similar responses in terms of aerial gamma radiometrics and soil 

properties. 

Initial results between lab characterized soil texture and CCE measurements with 

proximal gamma radiometric data indicated that such relationships were stronger than 

models created through the exploratory analysis from chapter II, suggesting that there is 

a foundational basis for using proximal gamma radiometrics as surrogate or proxy within 

field-scales. Relationships between soil properties and proximal gamma radiometrics 

were found to be site-specific after conducting an Analysis of Covariance Analysis 

(ANCOVA), meaning that the proximal gamma radiometric response is dependent on 

parent material type, and this corroborates with the findings from chapter II. 

Comparisons between the proximal and aerial measurements were generally 

significant and high in magnitude (R2 up to 0.93), although problems were encountered 

if there was poor spatial positioning from the original survey. Although dose rate 

comparisons were strongest within the individual sites, aerial and proximal 40K were 

most strongly correlated across all sites. ANCOVA analysis between proximal and aerial 
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gamma radiometric models within each site were significantly different in terms of 

intercept but not slope, suggesting similar responses. 

IV.4. Future Directions 

 This study has shown that aerial gamma radiometrics can become a useful indicator 

of soil properties such as soil texture if consideration is given towards physiography as 

well as parent material information. However, there are plenty of knowledge gaps that 

still remain before such a covariate can become implemented in future digital soil 

mapping models. For example, legacy aerial gamma radiometric data currently exists 

within other nations that would benefit from soil information on a national scale such as 

Brazil and Canada, to name a few. Such analyses are particularly relevant in these areas, 

as these soils form under different environments and therefore different parent material 

and physiographic types. As shown in chapter II, any national scale assessments of aerial 

gamma radiometrics should collect soil samples in such a way that is representative of 

the parent materials in the area. Additionally, future studies that are concerned with 

validating aerial gamma radiometric signals either within the U.S. other countries should 

focus on selecting different landscapes than those chosen for chapter III (for example 

igneous and/or metamorphic parent materials), as the work was limited to a select 

amount of parent materials due to time constraints as well as proximity to the Texas 

A&M campus.    

An additional knowledge gap that limits the use of the legacy aerial gamma 

radiometrics is its quality in terms of appropriate line-spacing distances or distance 

between adjacent transect lines. In chapter III, the results indicated that aerial gamma 
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radiometric data was mapping soil properties on the ground due to favorable 

comparisons between proximal gamma radiometrics and soil properties as well as 

proximal and aerial gamma radiometric methods, but such correlations were only made 

in the along-line direction, where the information content was denser. It would, 

therefore, be interesting to determine if aerial and proximal gamma measurements are 

comparable across transect lines, as this is a more common occurrence for soils and 

aerial gamma radiometrics in the United States. Through this type of analysis, it could 

then be understood if gridded or profile legacy aerial gamma radiometrics are more 

useful for predicting soil properties across the United States, as the former can 

potentially average small scale variations in gamma activity. 
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APPENDIX A 

Division Province Section 

I. Laurentian Upland 

(625) 
1. Superior Upland (625)

II. Atlantic Plain (2459)

2. Continental Shelf (not on map)

3. Coastal Plain

3a. Embayed section (417) 

3b. Sea Island section (137) 

3c. Floridian section (47) 

3d. East Gulf Coastal Plain 

(576) 

3e. Mississippi Alluvial Plain 

(482) 

3f. West Gulf Coastal Plain 

(800) 

4. Piedmont
4a. Piedmont Upland (430) 

4b. Piedmont Lowlands (113) 

5. Blue Ridge province
5a. Northern section (14) 

5b. Southern section (170) 

6. Valley and Ridge

province 

6a. Tennessee section (104) 

6b. Middle section (439) 

III. Appalachian

Highlands (2437) 
6c. Hudson Valley (11) 

7. St. Lawrence Valley
7a. Champlain section (79) 

7b. Northern section (14) 

8. Appalachian Plateaus

province 

8a. Mohawk section (11) 

8b. Catskill section (3) 

8c. Southern New York 

section (237) 

8d. Allegheny Plateau section 

(85) 
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8e. Kanawha section (411) 

8f. Cumberland Plateau 

section (80) 

8g. Cumberland Mountain 

section (11) 

9. New England

Province 

9a. Seaboard Lowland section 

(75) 

9b. New England Upland 

section (358) 

9c. White Mountain section 

(53) 

9d. Green Mountain section 

(42) 

9e. Taconic section (36) 

10. Adirondack province

IV. Interior Plains (11987)

11. Interior Low

Plateaus

11a. Highland Rim (606) 

11b. Lexington Plain (11) 

11c. Nashville Basin (11) 

12. Central Lowland

12a. Eastern Lake (1283) 

12b. Western Lake (1941) 

12c. Wisconsin Driftless (408) 

12d. Till Plains (1958) 

12e. Dissected Till Plains 

(1931) 

12f. Osage Plains (944) 

13. Great Plains

13a. Missouri Plateau 

(glaciated) (327) 

13b. Missouri Plateau 

(unglaciated) (640) 

13c. Black Hills (39) 

13d. High Plains (1154) 

13e. Plains Border (363) 

13f. Colorado Piedmont (139) 

13g. Raton (76) 

13h. Pecos Valley (88) 

13i. Edwards Plateau 
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13j. Central Texas 

V. Interior Highlands 

(3198) 

14. Ozark Plateaus

14a. Springfield-Salem 

plateaus (3160) 

14b. Boston Mountains (3) 

15. Ouachita province
15a. Arkansas Valley (17) 

15b. Ouachita Mountains (18) 

VI. Rocky Mountain

System (1308) 

16. Southern Rocky Mountains (218)

17. Wyoming Basin (164)

18. Middle Rocky Mountains (249)

19. Northern Rocky Mountains (677)

VII. Intermontane

Plateaus (2628) 

20. Columbia Plateau

20a. Walla Walla Plateau 

(436) 

20b. Blue Mountain section 

(105) 

20c. Payette section (151) 

20d. Snake River Plain (116) 

20e. Harney section (39) 

21. Colorado Plateaus

21a. High Plateaus of Utah 

(130) 

21b. Uinta Basin (53) 

21c. Canyon Lands (161) 

21d. Navajo section (121) 

21e. Grand Canyon section 

(91) 

21f. Datil section (33) 

22. Basin and Range

province 

22a. Great Basin section (895) 

22b. Sonoran Desert (223) 

22c. Salton Trough (7) 

22d. Mexican Highland (318) 

22e. Sacramento section (35) 

VIII. Pacific Mountains
23. Cascade-Sierra

Mountains

23a. Northern Cascade 

Mountains (73) 

23b. Middle Cascade 

Mountains (171) 

23c. Southern Cascade 

Mountains (89) 
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23d. Sierra Nevada (535) 

24. Pacific Border

province 

24a. Puget Trough (268) 

24b. Olympic Mountains (74) 

24c. Oregon Coast Range 

(286) 

24d. Klamath Mountains 

(151) 

24e. California Trough (378) 

24f. California Coast Ranges 

(481) 

24g. Los Angeles Ranges (98) 

25. Lower California province— (24)
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APPENDIX B 

Soil sensor voltage measurements were collected two different HH2 Soil 

Moisture Meters and are subsequently referred to as sensors A and B. For a given 

sampling site, voltage measurements were collected at the center as well as 1 meter apart 

from the center for a total of five measurements. Soils were then collected at each of the 

five sites using a bulk density corer. For more details regarding the procedure, please 

refer to IAEA (2008). 

The samples were located near Texas A&M campus, in particular at the Beef 

Center or the Animal Sciences Complex, as well the Padina sands located at site B 

(Caldwell, Texas) within the thesis. Additional data was provided by Diana Bagnall, a 

previous graduate student from the Hydropedology department at the Texas A&M 

University Riverside Campus.  

Samples were sealed and brought back to the laboratory, where they were then 

heated to 105 degrees Celsius to determine volumetric water content. Once the oven-dry 

soil masses were obtained, bulk density values were calculated and finally converted into 

gravimetric water content using the equation: Gravimetric water content = 

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑊𝑎𝑡𝑒𝑟 𝐶𝑜𝑛𝑡𝑒𝑛𝑡

𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
 . 

The calibration data, along with the measured voltage readings from the soil 

samples in Chapter III were imported into R. Predicted gravimetric measurements were 

then obtained at each site using one of the two calibration equations below, and the 
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“wet” gamma measurement converted to the “dry” measurement using the following 

equation adapted from Grasty et al. (1973) and Beamish (2013): 

100

)*11.1100( wN
N w

d


 , where Nd and Nw are the dry and wet signals; 1.11 is the 

electron density ratio of water compared with that of soil; and w is the gravimetric water 

content (g g-1). Finally, Pearson correlations were made between soil property and PGR 

data before and moisture correction and are presented in a table similar manner to that of 

Priori et al. (2014) below. These results indicate that proximal gamma radiometric 

corrections for water content need not be applied. 
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Total counts 40K 238U 232Th 

w/o 

cor. 

w/ 

cor. 

w/o 

cor. 

w/ 

cor. 

w/o 

cor. 

w/ 

cor. 

w/o 

cor. 

w/ 

cor. 

Moisture 0.20 0.41 -0.41 -0.40 -0.43 -0.43 -0.43 -0.43 

Clay 0.65 0.67 0.33 0.34 0.29 0.29 0.29 0.29 

Sand -0.69 -0.71 -0.33 -0.34 -0.27 -0.27 -0.27 -0.27 

y = 0.0395x - 2.2009
R² = 0.85
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y = 0.03x + 5.2427
R² = 0.85
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