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ABSTRACT 

 

 

Wheat (Triticum aestivum L.) is the most-widely cultivated and third most-

produced grain crop in the world. Wheat contributes 19% calories and 21% protein of 

the global population diet. With an astounding increase in this global population, that is 

projected to reach 9 billion by 2050, demand for wheat is expected to reach 900 million 

tons by 2050. However, narrow genetic base and continued pressure from abiotic and 

biotic stresses pose a tough challenge to achieve the expected increase in grain yield. 

Research leading to the evolution of synthetic hexaploid wheat (Triticum durum 

x Aegilops tauschii) and synthetic derived wheat (SDW) (elite bread wheat X synthetic 

hexaploid wheat) provided a tremendous opportunity to improve wheat production. 

Preliminary studies showed that SDW had the potential to increase grain yield due to 

larger seed size and weight. However, heads per square meter and seeds per head are 

also major determinants of grain yield. Single seed weight was found to be highly 

heritable in SDW populations in our previous studies. Therefore, we hypothesized that 

indirectly selecting for heads per square meter and seeds per head, while maintaining 

single seed weight, will boost yield further. 

Multi location yield trials were conducted in 2013 and 2014 to determine grain 

yield and it’s components, morphological traits, resistance to green bug (Schizaphis 

graminum, Rond), leaf rust (Puccinia triticina), stripe rust (Puccinia striiformis f.sp. 

Tritici), and powdery mildew (Erysiphe graminis f. sp. Tritici). We estimated 

quantitative genetic parameters including variance components, heritability, and genetic 
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gain. In addition, we determined response to direct selection and correlated response to 

an indirect selection using heads per square meter and seeds per head as the indirect 

selection components. We further estimated the efficiency of indirect selection. 

Multi-location yield trials indicated certain SDW produced higher grain yield 

than their recurrent parents and common check varieties. Comparison of the top ten 

yielding SDW lines mean with the mean of recurrent parents showed SDW lines 

produced 11.7% higher grain yield than recurrent parents. The SDW lines maintained a 

similar number of seeds per head and heads per square meter as recurrent parents but had 

10% higher single seed weight. Also, SDW showed higher levels of leaf and stripe rust, 

greenbug, and powdery mildew resistance compared to their recurrent parents. There 

were certain indications to show that some resistance was transmitted from primary 

synthetics. Genetic analyses, such as the genotypic coefficient of variation, heritability, 

and genetic gain showed that there is tremendous scope for grain yield improvement by 

utilizing SDW. Genetic gain results indicated that grain yield can be improved by 15.6% 

per cycle at 10% selection intensity (i = 1.76). The efficiency of indirect selection for 

yield, using heads per meter square, was only 0.41. Similarly, seeds per head and single 

seed weight had an efficiency of 0.46 and 0.21, respectively. 

These results indicate that SDW contributed some favorable alleles for yield, 

biotic stress resistance, and abiotic stress tolerance. These results also showed that SDW 

contributions were advantageous under both rainfed and irrigated conditions, which 

makes them an invaluable source for increasing genetic diversity and improving 

performance of Texas A&M AgriLife wheat germplasm. 
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NOMENCLATURE 

CAS Castroville, TX 

CH Chillicothe, TX 

CS College Station, TX 

DYB Diyarbakir, Turkey 

SHW Synthetic Hexaploid Wheat (Primary synthetics) 

SDW Synthetic Derived Wheat lines 

GY Grain yield 

TW Test weight 

HT Height 

HS Heading score 

GG Genetic gain 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction  

Wheat (Triticum aestivum L.) is the most-widely cultivated and third most-produced 

grain crop (Pradhan et al. 2012). Wheat contributes 19% of the calories and 21% of the 

protein of the global population diet (Pradhan et al. 2012; FAO 2011a). Wheat usually 

occupies more than 240 million hectares worldwide annually. This is 1.4 times larger 

than the total area under rice (Oryza sativa) and maize (Zea Mays L.) combined (FAO 

2011b). Hubert et al. (2010) indicated that the world’s population might reach 9 billion 

by 2050. They projected the demand for all cereal crops to reach about 56% with 26% of 

this increase coming from wheat alone. This alarming demand for an increase in wheat 

production has posed a big challenge for crop breeders and agronomists and is keeping 

them actively searching for novel approaches to increase productivity. In order to meet 

the growing demand for food, we need to either increase the area under cultivation or 

increase the total production. Constraints such as the declining arable land area due to 

urban sprawl and marginalization of cultivated soils, lack of access to irrigation, etc. 

makes it difficult to achieve a horizontal increase in the production area of field crops. 

Therefore, vertical increase of yield potential (Reynolds and Borlaug, 2006) and 

precision agriculture technologies are essential. Improvement in grain yield potential 

requires a broad genetic diversity for yield and related traits and responsiveness to good 

crop management practices.  
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1.2 Wheat origin and domestication 

Wheat belongs to the family Poaceae (=Gramineae) of Angiosperms and the tribe 

Triticeae. This tribe contains 25 recognized annual and perennial genera, among them 

Triticum, Aegilops and Einkorn are the most commonly grown (Huang et al., 2002). 

Depending on number of chromosomal set (ploidy level), cultivated wheat is classified 

into three groups: diploid (2n=2x=14; AA), tetraploid (2n=4x=28; AABB) and 

hexaploid wheat (2n=6x=42, AABBDD). Man domesticated diploid wheat, a.k.a., wild 

Einkorn, about 10,000 years ago in the Karaca Dag Mountains in southeast Turkey 

(Feuillet et al., 2008). There are two species within wild einkorn, namely, Triticum 

monococcum and Triticum urartu. Similarly, Triticum timopheevii and Triticum 

turgidum are the two major species within cultivated tetraploid wheat. Overall, there are 

seven subspecies within tetraploid wheat, namely emmer (Triticum turgidum ssp. 

dicoccum), macaroni (Triticum turgidum ssp. durum), persian (Triticum turgidum ssp. 

carthlicum), georgian (Triticum turgidum ssp. paleocolchicum), polish (Triticum 

turgidum ssp. plonicum), and khorassan (Triticum turgidum ssp. turanicum), and 

Triticum timopheevii. ssp. timopheevii (Dubcovsky and Dvorak, 2007). Within hexaploid 

wheat, Triticum aestivum and Triticum zhukovskyii are the major cultivated species 

(Dubcovsky and Dvorak, 2007). The former is further classified into five subspecies, 

namely bread wheat (Triticum aestivum ssp. aestivum), dinkel or large spelt (Triticum 

aestivum ssp. spelta), club (Triticum aestivum ssp. compactum), shot (Triticum aestivum 

ssp. sphaerococcum), and Triticum aestivum ssp. macha. (Schuber, 2009). 
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Triticum aestivum (bread wheat) is the most commonly cultivated species, occupying 

90% of the total wheat area (Faris et al., 2002). Bread wheat wide adaptation to different 

climatic conditions, elevations, stresses and presence of special gluten protein are the 

reasons behind its large acreage and acceptance within the Triticum genus. The origin 

and domestication of bread wheat occurred nearly 10,000 years ago on the banks of river 

Tigris and Euphrates in the fertile-crescent region that includes present day Turkey, 

Syria, Iraq, Iran, and Israel (Schuber, 2009). Convergence of three diploid genomes A, B 

and D resulted in today’s cultivated bread wheat. Each of these genomes has seven 

chromosomes. These seven chromosomes form seven homologous groups with three 

closely related genomes (Gupta et al., 2008). Recent studies have shown that Triticum 

urartu is the possible donor of the A genome (Gustafson et al., 2009) in hexaploid 

wheat. The first polyploidization between A genome donor Triticum urartu and 

currently unknown/known B genome source produced tetraploid wheat Triticum 

turgidum L. (2n=4x=28; AABB) (Nevo et al., 2002). Some studies have reported 

Aegilops speltoides to be the closest existing species of the B genome in polyploid 

wheats (Dvořák and Zhang, 1990). Eventually, a second polyploidization that included 

natural hybridization and chromosomal doubling between Triticum turgidum L. and 

Aegilops tauschii Coss. (syn. Aegilops squarrosa; 2n=2x=14; DD) resulted in present 

day cultivated Bread wheat (Triticum aestivum L.; 2n=6x=42; genome AABBDD) 

(Huang et al., 2002) (Figure 1.1).   
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Figure 1.1 Evolutionary diagram of bread wheat (Triticum aestivum L.) 
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1.3 Present status of yield potential in bread wheat  

Grain yield improvement is one of the main objectives of U.S. and global wheat 

breeding programs (Graybosch and Peterson, 2010). Wheat grain yield has increased 

substantially in the 20th Century due to genetic improvement in the plant ideotypes and 

tolerance to biotic and abiotic stresses, enhanced agronomic practices, and use of 

fertilizers, pesticides, fungicides, and herbicides. Many studies have credited one-half of 

grain yield improvement in the past century to genetic improvement of crops alone 

(Rudd, 2009; Feyerherm et al., 1984). 

Battenfield et al., (2013) reported an average of 0.43 to 1.3% global increase of 

grain yield per year. Similarly, Rudd (2009) has reported that in the last century grain 

yield increased at an average of 1% per year. Genetic gain studies in the U.S. Great 

Plains by Graybosch and Peterson (2010) have shown yield improvement of 1.1 to 1.3% 

per year (from 1959 to 2008) in the Southern Regional Performance Nursery (SRPN) 

and 0.79 to 0.85% in the Northern Regional Performance Nursery (NRPN). Based on 

this study, they concluded that a yield plateau might have been reached in the U.S. Great 

Plains hard winter wheats. Wheat breeders in the region might be able to make further 

improvement in yield potential only via the adoption of new breakthrough technologies 

or introduction of new biological material and diversity, according to this study. In 

contrast to Graybosch and Peterson, Battenfield et al. (2013) did not point to a yield 

plateau in U.S. Great Plains hard winter wheat germplasm; however, they indicated that 

genetic gain for grain yield was low around 0.40% per year. Similar studies conducted 

by Patrignanai et al. (2014) showed that hard red winter wheat grain yield in the 
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southern U.S. Great Plains has increased at the rate of 34 kg ha-1 year-1 from 1955 to 

1980 and only 6 kg ha-1 year-1 from 1980 to 2012. A number of similar studies pointed to 

the need for increasing wheat grain yield potential to the meet the growing food demand. 

Wheat grain yield can be divided into two major categories, grains m-2 and grain 

weight (single seed weight) (Slafer et al., 1996). The first Green Revolution resulted 

from an increase in grains m-2 attributable to gibberellic acid sensitive dwarfing genes 

(Rht1 and Rht2). These dwarfing genes not only reduced the plant height but also played 

a significant role in partitioning the photosynthates to the reproductive tissue; in this case 

grains m-2. As a result, semi-dwarf wheats set more grains in the head compared to tall 

wheats (Miralles et al. 1998; Calderini and Reynolds 2000). While the grains m-2 

component has increased over the time, grain weight remained unchanged or reduced 

since the beginning of the Green Revolution. Therefore, recent studies have focused on 

improving genetic gain for single seed weight while maintaining other traits intact. 

Furthermore, lack of genetic diversity in the bread wheat genome for yield potential and 

adaptation to biotic and abiotic stresses has also resulted in a lower genetic gain for grain 

yield. Hence, there is a need for creating new diversity in the bread wheat genome, and it 

is hypothesized that such diversity can come from wheat relatives and synthetic wheat. 

 

1.4 Importance of genetic diversity in bread wheat  

Genetic diversity is essential for plant breeders in developing high yielding, 

climate-resilient crops (FAO 2011a). Wheat has a tremendous amount of genetic 

diversity. However, because of 10,000 years of domestication accompanied by recurrent 
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selection for agronomically superior genotypes we have lost access to more than 69% of 

genetic diversity present in the wheat genomes (Brubaker, 2013). Aegilops tauschii 

contributed the D genome and Aegilops speltoides could be the possible donor of the B 

genome (Gill et al., 2006). Together, Aegilops species contributed two of the three 

genomes in the present day bread wheat. This has narrowed the genetic base further. All 

of these factors have collectively contributed to the low genetic gain values in wheat. 

Gill et al. (2004) have reported wheat grain yield should increase at the rate of 2% per 

year to meet the growing global food demand. Therefore, addressing the issues of 

genetic bottleneck present in the bread wheat genome has become the top most priority 

for wheat breeders. 

Wild relatives, landraces, traditional and modern wheat varieties are the 

important sources for introducing genetic variation. A broad range of novel genetic 

diversity within the A, B and D genome has persuaded breeders to accept wild relatives 

as a choice for introducing genetic diversity into the bread wheat genome (Metakovsky 

et al., 1984). The close genetic proximity of wild relatives Aegilops tauschii (D genome) 

to cultivated bread wheat D genome makes it one of the best choices of a hybridizing 

source for enriching diversity. Many studies have reported a substantial level of novel 

genetic variability for abiotic and biotic stresses in wild relatives and landraces of wheat. 

Oliver et al. (2005) have reported that there is more genetic diversity for disease and 

insect resistance, endosperm proteins, gliadins and glutenins in Aegilops tauschii than in 

Triticum aestivum. 
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Wild relatives of wheat are good sources for biotic and abiotic stress tolerance in 

wheat. However, there are no known wild relatives for hexaploid wheat. Therefore, new 

sources of genetic diversity can be introduced into hexaploid wheat by reproducing 

hexaploid wheat original cross (Triticum turgidum X Aegilops tauschii). The hexaploid 

wheat produced by artificial synthesis is called as synthetic hexaploid wheat (SHW) 

(Zhang et al., 2008), which represents a promising source for improving qualitative and 

quantitative traits in present day bread wheat (McFadden and Sears 1944 cited in 

Feldman and Levy 2005). 

The International Maize and Wheat Improvement Center (CIMMYT) in Mexico 

developed more than 1,100 SHW lines. A number of studies have shown that there is 

ample amount of genetic diversity for biotic and abiotic stress tolerance in these SHW 

lines (Mujeeb-Kazi et al. 2000a, 2000b, 2001a, 2001c, 2001b). A number of studies 

showed that SDW produced higher grain yield than elite varieties (Warburton et al., 

2006, Mujeeb-Kazi et al., 1996).  This is probably due to improvement in yield 

components (Calderini and Reynolds, 2000), resistance to insects and diseases (Mujeeb-

Kazi et al. 2001c, 2001b, Hartel et al., 2004), and tolerance to abiotic stresses, such as 

heat, drought and salinity (Trethowan and Mujeeb-Kazi, 2008; Reynolds et al., 2005). 
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Figure 1.2 Schematic representation of development of primary synthetic wheat 

and synthetic derived wheat lines 
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1.5 Definition and history of synthetic wheat 

The pioneering work of hybridizing Emmer (Triticum turgidum ssp. dicoccum) 

with bread wheat by McFadden in the 1930’s resulted in first artificial synthetic wheat. 

Artificial synthetic wheat had a good level of resistance to stem rust. Eventually, it led to 

the release of ‘Hope’ wheat, which saved the U.S. wheat industry when it was 

succumbing to severe stem rust epidemics. Through this process, McFadden successfully 

introduced the Sr2 gene as a source for adult plant resistance, which wheat breeders 

continue to utilize today. McFadden and Sears (1946) coined the term SHW to represent 

synthesis of allopolyploid. 

Decades later, in 1980’s, Mujeeb Kazi and other researchers at CIMMYT started 

developing synthetic wheat to obtain new genetic diversity for karnal bunt (Tilletia 

indica) and other traits (Mujeeb-Kazi et al., 1996; Warburton et al., 2006). As mentioned 

earlier, there are two subspecies within Aegilops tauschii; Aegilops tauschii ssp. tauschii 

and Aegilops tauschii ssp. strangulata (Hammer, 1980). Aegilops tauschii ssp. 

strangulata considered as the direct donor of D genome to common wheat (Pestsova et 

al., 2000). However, only a few accessions of ssp. strangulata believed to be involved in 

the evolution of present day hexaploid wheat. Therefore, hybridizing either with ssp. 

tauschii or ssp. strangulata will contribute a good amount of genetic diversity for bread 

wheat improvement. There have been efforts to develop SHW by hybridizing with both 

wild emmer and durum wheat (Niwa et al., 2010, Mujeeb Kazi 2000a). Ultimately, the 

durum parent was the primary choice as a tetraploid parent because of it's agronomic and 

free threshing characteristics (Trethowan and van Ginkel, 2009). 
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In CIMMYT, the primary synthetics (PS) or SHW were developed by 

hybridizing female Triticum turgidum ssp. durum (AABB) with male Aegilops tauschii 

(DD) (Mujeeb-Kazi et al., 1996). This hybridization event resulted in sterile triploid 

embryos, which were rescued and cultivated on culture media until they differentiated 

into plantlets with roots and shoots. Mujeeb-Kazi et al., (2008) treated these 

differentiated plantlets with colchicine to induce chromosomal doubling and to facilitate 

hexaploid seeds set upon self-fertilization (2008) (Figure 1.2). 

Ogbonnaya et al. (2013) reported that more than 1500 SHW were produced from 

1940 to 2010. Out of these, CIMMYT-Mexico produced around 1300 SHW from 1988 

to 2010 using 900 Aegilops tauschii accessions. These Aegilops tauschii accessions were 

characterized and grouped according to breeding objectives and were randomly 

hybridized with tetraploid wheats (Mujeeb-Kazi et al., 2001) as pointed above. Based on 

agronomic performance and disease resistance, 128 SHW out of the 1300 core 

collection, grouped into Elite-I and Elite-II categories were selected and distributed 

globally. The Elite-I had 95 SHW with good agronomic characteristics, biotic and 

abiotic stress tolerance (Mujeeb-Kazi et al., 2000); whereas the Elite-II had 33 SHW 

lines with good resistance to leaf rust, stripe rust, stem rust and other diseases (Mujeeb-

Kazi and Delgado, 2001). Most of the SHW’s in this core collection of 128 SHW were 

spring types (>1000) with very few winters (186) (Cox et al., 1995). Apart from 

CIMMYT-Mexico, ICARDA-Syria, CSIRO-Canberra, University of Sydney-Australia, 

NIAB-United Kingdom, USDA-ARS-USA, and the University of Melbourne-Australia 

also produced different sets of SHW (Gatford, 2004). 
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Overall, SHWs are low yielding and have poor agronomic and quality traits 

(Trethowan and van Ginkel, 2009). Linkage drag and a high degree of F1 hybrid necrosis 

are the major constraints in using SHW at a large scale. Therefore, backcrossing these 

SHW to adapted wheat varieties is essential to reap the maximum benefit. Backcrossing 

one or two times would introduce desired alleles and traits into the adapted wheat 

background with minimal linkage drag (Trethowan and van Ginkel, 2009). The 

hexaploid wheat resulting from backcrossing SHW with adapted wheat varieties is often 

regarded as SDW (Figure 1.2). 

 

1.6 Impact of synthetic wheat in wheat improvement 

In the last two decades, the need and enthusiasm for utilizing SHW in wheat 

breeding programs has significantly increased. An estimated one-third of the advanced 

lines in the CIMMYT global wheat-breeding program are synthetic derivatives (Imtiaz et 

al., 2007). Many novel useful traits and genes from these SHW have been identified and 

utilized to improve disease and insect resistance, abiotic stress (drought, heat and 

salinity) tolerance, high biomass, large root system, micronutrient (Fe and Zn) content , 

and yield and yield components (large kernel size) (Ogbonnaya et al., 2007, Trethowna 

and Mujeeb-Kazi, 2008). A survey of seven years of data from 2005 to 2012 showed that 

17% of all entries in CIMMYT advanced lines and spring bread wheat observation 

nursery (SBWON) in ICARDA were synthetic derivatives (Ogbonnaya et al., 2013). 

However, the percentage varied among the nurseries. About 35% of the entries of 



 

13 

 

CIMMYT’s Semiarid Wheat Yield Trials (SAWYT) and 46% of ICARDA’s SAWYT in 

were synthetic derivatives during that period. 

In 2006, China released its first documented SDW variety, ‘Chuanmai 42’. This 

variety had higher grain yield and grain weight and better stripe rust resistance than 

some of the elite varieties in few provinces (Yang et al., 2006, 2009). Chuanmai 42, 

which was cultivated in more than 100,000 ha, out-yielded all commercial varieties in 

Sichuan province for two years, including “Chuanmai 107” by 22.7% (Yang et al., 

2009). Following the success of Chuanmai 42, China released four more SDW varieties 

(Yang et al. 2009; Ogbonnaya et al., 2013). Similarly, a number of SDW varieties have 

been released by many other countries around the world. A private company in Uruguay 

and Argentina has released commercial variety ‘NOGAL’ and Instituto National de 

Insvestigacion Agropecuaria (INIA) in Uruguay has released two more varieties, 

namely, “Genesis 2354” and “Genesis 2359”. Similarly, Spain has released commercial 

variety ‘Carmona’ (Ogbonnaya et al., 2007). 

 

1.6.1 Disease and insect resistance 

As mentioned earlier, bread wheat D genomes came from Aegilops tauschii (Gill 

et al., 2006). Aegilops is an important source of disease and insect resistance (Friebe et 

al., 1991; Gill et al., 2006). Therefore, SHW has shown a broad range of genetic 

diversity for diseases and insect resistance. A number of studies have documented 

resistance to leaf rust (LR; Puccinia triticina Erikss. & Henn.) (Cox et al., 1997; Assefa 

and Fehrmann, 2000), stripe/yellow rust (YR; Puccinia striiformis Westend. f. sp. 



 

14 

 

Tritici) (Ogbonnaya et al., 2008, Badebo and Ferhmann, 2005), and stem rust (SR; 

Puccinia graminis Pers. f. sp. Tritici) (Maraisa et al., 1994). Resistance was also 

documented for other diseases such as Fusarium head blight (Fusarium graminearum) 

(Mujeeb-Kazi et al. 2001b), Karnal bunt (Mujeeb-Kazi et al. 2001c, 2008), Septoria 

tritici leaf blotch (Mycosphaerella graminicola) (Arraiano et al., 2001), Spot blotch 

(Cochliobolus sativus) (Mujeeb-Kazi et al., 2001b), Tan spot (Pyrenophora tritici-

repentis) (Tadesse et al., 2007) and Powdery mildew (Erysiphe graminis f. sp. Tritici) 

(Hu and Xin, 2001). Similarly, resistance among SHW exists for insect pests such as, 

Greenbug (Schizaphis graminum Rondani) (Weng et al., 2005; Gill et al., 1991), Hessian 

fly (Mayetiola destructor) (Friesen et al., 2008; Yu et al., 2010, 2012), and Cereal Cyst 

Nematode (CCN; Heterodera avenae) (Eastwood et al., 1991). Gill et al., (2006) have 

documented a number of diseases and insect resistant genes transferred from wild 

relatives into cultivated wheat. 

Among wheat diseases, LR is the most prevalent around the world (Roelfs et al., 

1992). In the U.S. and Canada, it causes yield loss of 25 to 95% on susceptible varieties 

and 10 to 28% on resistant lines (Peturson et al., 1945). Many major LR resistance genes 

have been deployed in many varieties around the world. However, rapidly evolving 

races of Puccinia triticina Eriks. have developed virulence to many of these genes and 

defeated resistance. To date, more than 90 LR (standard designations: Lr1 to Lr68) and 

89 YR resistance genes (standard designations: Yr1 to Yr49) have been reported 

(McIntosh et al., 2010). Eight of these LR genes come from Aegilops tauschii 

background. The Lr40 gene was found to be allelic to Lr21 (Huang and Gill, 2001) and 
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Lr41 was found to be allelic to Lr39 (Singh et al., 2004). The other major Lr genes that 

came from Aegilops tauschii background are Lr32, Lr42, Lr22 (Lr22a), and Lr21. 

Among these, Lr42 is widely used in U.S. and worldwide for leaf rust resistance in 

breeding programs. This gene is most common in high yielding rust resistant lines from 

CIMMYT (Martin et al., 2003). To date, the gene Yr28 is the only stripe rust resistance 

gene that comes from the D genome of Aegilops tauschii (Singh et al., 2000). 

A number of studies have reported the introduction of a new source of resistance 

from SHW. In the U.S., one of the most promising results of SHW was the introduction 

of greenbug resistance gene Gb3 into common wheat. This gene was first identified in 

‘Landon’-derived SHW line Largo and was eventually introduced into famous winter 

wheat varieties such as TAM 110 and TAM 112 (Lu et al., 2012).  

Yu et al. (2012) reported that 52 out of 118 CIMMYT SHW lines were resistant 

or moderately resistant to Hessian fly. As the tetraploid parent in the original cross was a 

susceptible durum parent, the resistance in these SHW lines should have come from 

Aegilops tauschii. The molecular studies on these resistant lines using PCR-based 

markers showed resistant genes closely linked to H13, H22, H23, H26, and H32. 

However, remaining 19 lines had different haplotypes suggesting these lines might 

contain new genes for Hessian fly resistance. Eastwood et al. (2006) identified SDW 

lines with high grain yield potential in environments with high terminal moisture stress 

and low yield level and these lines came from Aegilops tauschii accessions with CCN 

resistance. 
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1.6.2 Abiotic stress tolerance 

Synthetics have also contributed genes for tolerance to abiotic stresses such as 

drought, heat, salinity, as well as nutrient use efficiency. Heat and drought are major 

constraints for wheat production in Texas specifically and the U.S. Great Plains in 

general. A number of experiments were conducted to study the response of SHW and 

SDW to drought and heat stresses. These studies showed that SDW lines generally had 

better tolerance to heat and drought than their recurrent parents did (Yang et al., 2002; 

Trethowan and Mujeeb-Kazi, 2008; Yang et al., 2009). Some of these studies attributed 

this enhanced tolerance to heat and drought to greater root biomass in deeper layers and 

better water extraction capacity (Reynolds et al., 2007). Similarly, Ogbonnaya et al. 

(2013) pointed out that thicker and deeper root systems facilitated better performance of 

SDW under drought conditions. Studies conducted by Lopez and Reynolds (2011) 

indicated that early flowering and increased water use efficiency at anthesis improved 

terminal drought tolerance in SDW. Some wild accessions of Aegilops such as Aegilops 

tauschii, Aegilops speltoides and Aegilops geniculate have shown the capacity to 

withstand better drought (Zaharieve et al., 2001). Yang et al. (2002) documented some 

of the SHW and SDW lines showed better tolerance to frequent heat spells than their 

recurrent parents. Zaharieva et al. (2001) reported that few accessions of Aegilops such 

as Aegilops geniculate, Aegilops speltoides, Aegilops searsii have shown better heat 

tolerance than common wheat check cultivars. Aegilops tauschii has also shown a good 

level of tolerance to many nutrient deficiencies. Cakmak et al. (1999), for instance, have 
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documented many accessions of Aegilops tauschii that possess tolerance to zinc 

deficiency.  

 

1.6.3 Enhancing yield potential  

A number of studies have shown a high level of genetic variation for yield and its 

components in SHW (Calderini and Reynolds, 2000; Mujeeb-Kazi and Hettel, 1995). 

Further studies also demonstrated potential for yield improvement in SDW (Ogbonnaya 

et al., 2013). Molecular analysis of these SDW lines has indicated improvement in the 

genetic diversity of bread wheat genome (Dreisigacker et al., 2008). Ogbonnaya et al. 

(2007) and Dreccer et al. (2007) reported SDW lines produced up to 30% and 11% 

higher grain yield than famous Australian varieties in northern and southern Australia, 

respectively.  

Studies conducted at ICARDA showed that SDW had 25% higher grain yield 

than their recurrent parent (Cham-6) under stressed and non-stressed conditions. The 

best SDW line in this set had 124% and 128% higher grain yield than Cham-6 under 

stressed and non-stressed conditions, respectively (Ogbonnaya et al., 2013). Mean grain 

yield in stressed sites was 0.89-1.66 t ha-1 and in non-stressed sites was 2.64 - 6 t ha-1. In 

China, ‘Chuanmai 42’ out-yielded commercial cultivar ‘Chuanmai 107’ by 22.7% (0.45 

to 0.75 t ha-1). Preliminary results of BC1F5 at the National Institute of Agricultural 

Botany (NIAB), UK suggested that use of SHW in breeding programs enhanced yield 

potential. These results showed that the best SDW lines had 113 and 119% higher grain 

yield than their recurrent parents and elite control lines, respectively (Ogbonnaya et al., 
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2013). Based on studies conducted in southern Queensland, Australia Christopher et al. 

(2006) reported that SDW had better stay-green phenotype and out-yielded commercial 

varieties ‘Hartog’, ‘Banks’, and ‘Baxter’ by 55%, 31% and 15%, respectively. The yield 

of these SDW lines was 12% higher than that of CIMMYT stay-green variety Seri-M82. 

Under terminal water stress conditions, SDW lines yielded 25% higher grain yield than 

their recurrent parents in Mexico yield trials (Lopez and Reynolds, 2011). Many studies 

were conducted to elucidate this increase in grain yield of SDW. For instance, at 

CIMMYT-Mexico, Dreccer et al. (2006) reported that increased yield was associated 

with an increase in water use efficiency and root length density. However, these results 

were not consist with studies conducted in Victoria, Australia. Rattey et al. (2008) 

attributed this increase in grain yield of SDW to greater grain size under both high and 

low yielding conditions. Similarly, Yang et al. (2009) attributed this increase to larger 

kernels and better resistance to stripe rust. Reynolds (2007) and Lopez and Reynolds 

(2011) accredited it to high root biomass and better water extraction capacity, especially 

in places where wheat is grown on stored soil moisture. They also reported that under 

terminal water stress conditions, early flowering and increased water use efficiency at 

anthesis were critical for this increase.  

 

1.7 Impact of genotype-by-environment (G*E) interaction on grain yield and yield 

components in synthetic wheat 

Grain yield is a poorly heritable and complex quantitative trait. Environment and 

GE interaction play a significant role in determining overall grain yield in wheat (Wu et 
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al., 2012). Grain yield and stability of a genotype play a decisive role in determining the 

release of a variety (Zafarnaderi et al., 2013). The literature is full of studies that worked 

on elucidating the relationship between yield and its components (single seed weight, 

heads per square meter, and seeds per head) in bread wheat and SDW (Cooper et al., 

2013). A number of these studies have shown that synthetics increased grain yield under 

both low and high-yielding environmental conditions. A larger advantage was witnessed 

in low-yielding (185 gm-2) than high-yielding environments (429 gm-2) (Rattey eta l., 

2010, 2011; Gororo et al., 2002). Yield components such as increased seed size and 

single seed weight (Gororo et al., 2002, Cooper et al., 2012, 2013), and heads per square 

meter (Dreccer et al., 2008) were accredited for this increase. Similarly, physiological 

and morphological traits such as cooler canopies (Reynolds et al., 2007), improved water 

extraction characteristics with an increased partitioning of root biomass to deeper layers 

(Reynolds et al., 2007), and increased biomass at maturity (Reynolds et al., 2007) were 

accredited for improved performance of SDW. Along with physiological, morphological 

and yield components, improved resistance to biotic stresses and tolerance to abiotic 

stresses were accredited for this increase (Lopes and Reynolds, 2011; Ogbonnaya et al., 

2007; Trethowan et al., 2005; Cooper et al., 2012; Narasimhamoorthy et al., 2006). In 

Australia, SDW lines yielded 8-30% higher grain yield than adapted varieties. The 

average rainfall in these areas ranges from 275-700 mm (Ogbonnaya et al., 2007). Rattey 

et al. (2011) reported that SDW lines had 16-18% higher single seed weight than broadly 

adopted Australian lines and some studies recorded single seed weight as high as 67 mg 

when tested in CIMMYT, Mexico (Calderini and Reynolds, 2000) 
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1.8 Indirect selection for grain yield in wheat 

Indirect selection for a trait is practiced when selecting for the primary trait is 

less efficient than a secondary one that is highly correlated with the primary trait. For 

instance, selecting for primary traits can be very expensive and difficult especially when 

the traits are expressed late in the plant life cycle. Gallais (1984) has reported that 

indirect selection for a secondary trait is never as effective as direct selection for the 

primary trait, unless the former has high narrow-sense heritability and the additive 

genetic correlations between two traits is high. Under stress conditions, indirect selection 

for yield is very effective even if the heritability of primary and secondary traits are 

almost equal (Hill et al., 1999). Greater effectiveness was related to the high genetic 

correlation between two traits and high narrow sense heritability of the secondary trait. 

A number of studies were conducted to study the relationship between yield and 

its components. These studies suggested that yield components seeds per head, heads per 

square meter, and single seed weight have significant impact on overall grain yield 

(Cooper et al., 2012, Gorjanovic and Balalic, 2006). 

Savil and Nedelea (2012) studied the impact of spike length, spikelet number, 

seed per head, seed weight per head, and plant height on yield. Based on these studies, 

they reported that indirect selection for seed weight per head and plant height were the 

most efficient methods for increasing grain yield. Seed weight per head (71.62%) had the 

highest influence on grain yield followed by plant height (14%) and spikelet number 

(7%) in their study. Bahadur and Lodhi (1995) indicated that indirect selection for seeds 

per head might increase grain yield. Some other studies argued that single seed weight 
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and seed per head as the most efficient indirect selection yield components (McNeal et 

al., 1978). Austin (1994) reported selection for heads per unit area and seeds per head 

were the main contributors to yield improvement. Iftikhar et al. (2012) reported that 

single seed weight had the highest positive direct effect on yield (0.970). This suggests 

that single seed weight might be a suitable selection criterion for developing high 

yielding wheat genotypes for rainfed areas. The rationale for this assumption is plant 

available soil moisture during grain filling period plays an important role in determining 

single seed weight and hence the overall grain yield. They also reported positive indirect 

effect between yield and plant height (0.153), peduncle length (0.066) and head length 

(0.104), grain per head (0.137) and indirect negative effect via days to heading (-0.212) 

and tiller per plant (-0.135).  

 

1.9 Correlations and path-coefficient analysis 

Correlation coefficients and path-coefficients help to determine the 

interrelationship between yield and its components. Correlation coefficients only 

determine the interrelationships among the different traits. However, path-coefficient is a 

standardized partial regression coefficient that suggests direct and indirect relationship 

among variables and also partitions correlations coefficients into direct and indirect 

components (Dewey and Lu, 1959). Therefore, correlations and path-coefficients can be 

great resources for indirectly selecting for a complex trait (Pordel and Maragheh, 2013).  

Path-coefficient analysis for yield and its components such as heads per square 

meter, seeds per head, and single seed weight, can determine how each component 
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influences yield as well as other components. Based on studies conducted under field 

conditions in India, Khan et al. (1999) found a high correlation between grain yield and 

single seed weight, seeds per head, and harvest index. Similar to previous studies, 

Mondal et al. (1997) reported tillers per plant, seeds per head, and single seed weight 

had a direct positive effect on grain yield. Gupta and Chaturvedi (1995) reported that 

plant height and days to maturity had direct negative effects on grain yield. Some durum 

wheat studies conducted in Egypt reported that tillers per plant had the highest direct 

effect on grain yield (Bakhit et al., 1989). Dakioku and Akaya (1999) reported that heads 

per square meter and seed weight per head had a direct effect on grain yield and seeds 

per head had a positive indirect effect on grain yield through grain weight. Under 

terminal drought stress conditions, seeds per head, single seed weight, and total biomass 

had direct positive effects on grain yield (Mollasadeghi et al., 2011). Similarly, 

Zakaizadesh et al. (2010) have reported that heads per square meter, seed weight per 

head, and total biological yield had direct effects on grain yield. Under heat stress 

conditions, heads per square meter had a highest positive direct effect on grain yield in 

their study. Path-coefficient studies conducted by Pordel and Maragheh (2013) reported 

peduncle length had a highest direct effect on grain yield and infertile tillers had an 

indirect effect on grain yield.  

Based on studies conducted at multiple locations in Texas, Cooper et al. (2012) 

reported heads per unit area, seeds per head, and single seed weight had a direct positive 

effect on grain yield. Among these components, heads per unit area had the greatest 

effect on grain yield followed by seeds per head. Seed weight consistently remained less 
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affected by indirect effects from other yield components. Based on studies conducted on 

SDW lines, Mohsin et al. (2009) reported seeds per head and head length had a positive 

direct effect on grain yield.  

In the U.S. Great Plains, the wheat crop faces the duel menace of biotic and 

abiotic stresses, these stresses cumulatively contributing to lower yields. In order to 

increase grain yields under these circumstances, a breeder need to have access to good 

genetic diversity, have better understanding of the germplasm he has, and genetic 

relatedness among breeding materials. In an effort to increase the available genetic 

diversity in the Texas A&M wheat breeding program, breeders at Texas A&M 

University hybridized and backcrossed synthetic hexaploid wheat with two of their elite 

wheat cultivars. Thus, resulting populations are called synthetic derived wheat (SDW) 

populations. These SDW populations believed to have novel sources of alleles for yield, 

biotic stress resistance, and abiotic stress tolerance. The following studies, which 

emphasized on characterizing these SDW populations for grain yield, biotic stress 

resistance, and abiotic stress tolerance will help us to address some of the common 

challenges  

 

  

 

 

 

 

 

 

 

 



 

24 

 

2. GENOTYPE-BY-ENVIRONMENT INTERACTION IN SYNTHETIC 

DERIVED HARD RED WINTER WHEAT LINES 

 

2.1 Introduction 

Wheat (Triticum aestivum L.) is the most widely cultivated and third most 

produced grain crop (Pradhan et al. 2012). Wheat contributes 19% of the calories and 

21% of the protein of the global population diet (Pradhan et al. 2012; FAO 2011a). 

Wheat usually occupies more than 240 million hectares worldwide annually. This is 1.4 

times larger than the total area under rice (Oryza sativa) and maize (Zea Mays L.) 

combined (FAO 2011b). Due to its wide global distribution, wheat is subjected to many 

biological and environmental challenges. However, because of domestication and 

repeated selection by nature and human, we have lost accesses to more than 69% of the 

genetic diversity that is actually present in the wheat genome (Brubaker, 2013). Globally 

wheat grain yield has been increasing at an annual rate of 1%. However, wheat workers 

need to double this rate to meet the needs of a growing population (Gill et al., 2004). A 

narrow genetic base and continued pressure from abiotic and biotic stresses pose a tough 

challenge to achieve the needed gain in wheat grain yield. 

New approaches and technologies, including broadening the genetic diversity for 

grain yield and biotic and abiotic stresses tolerance, are highly needed. Synthetic 

hexaploid wheat, developed by interspecific hybridization between durum wheat 

(Triticum turgidum L.) and accessions of wild goat grass (Aegilops tauschii L.) is one of 

the most efficient methods to introduce lost genetic diversity into the bread wheat 
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genome. The primary synthetics (PS), or synthetic hexaploid wheat (SHW) per se, have 

a very poor agronomic performance and weak end-use quality attributes. Therefore, 

SHWs are repeatedly backcrossed to elite common wheat genotypes. The developed 

lines from this repeated backcrossing are called synthetic derived wheat (SDW) lines 

and they have a better agronomic performance and usually better end-use quality 

attributes. Many studies have shown that SDW contributed to increasing grain yield in 

spring wheat backgrounds (Ogbonnaya et al., 2013). However, only a few studies have 

been conducted to study contributions to winter wheat backgrounds. The objectives of 

this study were to 1) study the genetic variability of yield and its components in SDW 

lines and to identify superior genotypes for advanced yield trials and 2) study the extent 

of genotype-by-environment interaction (GE) in SDW lines.  

 

2.2 Materials and methods 

2.2.1 Germplasm 

The SDW lines used in this study were developed by backcrossing selected 

CIMMYT (International Center for Maize and Wheat Improvement) SHW from Elite-I 

(8 SHW) and Elite-II (2 SHW) sets to Texas A&M AgriLife Research hard red winter 

wheat varieties, ‘TAM 111’ and ‘TAM 112’ (Tables 2.1). Elite I set consists of 95 

primary synthetics with better morphological characteristics and abiotic and biotic stress 

tolerance (Mujeeb-Kazi et al., 2000). Similarly, Elite II set consists of 33 selected 

primary synthetics that had better resistance to biotic stresses such as leaf rust, stripe 

rust, stem rust and other common wheat diseases (Mujeeb Kazi and Delgado, 2001a). 
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Breeders at Texas A&M AgriLife Research had developed 40 SDW populations by 

hybridizing and backcrossing ten primary synthetics with TAM 111 and TAM 112 and 

evaluated them across various locations in Texas. Based on agronomic, morphological, 

and biotic stress tolerance, heads were carefully chosen from selected SDW populations 

and advanced to head-rows (BC1 F5:6) and later generations. Data from BC1F5:8 and 

BC1F5:9 is presented in this chapter.  

 

2.2.2 Experimental design 

In 2011, head-rows (BC1 F5:6) were planted in Chillicothe (CH), TX (latitude = 34.2oN, 

longitude = 99.5oW) under rainfed conditions. Based on heads per square meter, seeds 

per head and other agronomic traits, 213 lines were advanced to the BC1F5:7 generation. 

These 213 lines were laid out in a randomized complete block design (RCBD) with two 

replications of 1 meter (m) rows at Bushland (BD), TX (latitude = 35.2oN, longitude = 

102.1oW) and Castroville (CAS), TX (latitude = 29.35oN, longitude = 98.88oW). In 

2013, the same set of 213 lines along with the check varieties TAM 111, TAM 112, and 

‘TAM 401’ were planted as yield plots (BC1F5:8) at College Station (CS), TX (latitude = 

30.5oN, longitude = 96.4oW) under irrigated conditions. This trial was laid out in an 

augmented design with TAM 112 as the repeated check and TAM 111 and TAM 401 as 

random checks. We determined yield and it’s components using plot yield and 50 heads.
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Table 2.1 Primary Synthetic wheat and their associated Aegilops tauschii accession, synthetic derived wheat populations, 

pedigrees and number of lines that were evaluated in each of these families in field trials in 2013 and 2014 

Pop 

ID 

Aegilops 

tauschii 

accession 

Name 

(Synthetic hexaploid 

wheat) 

Name 

(Synthetic 

derived 

wheat) 

Pedigree                                                                      

(Synthetic derived wheat) 

Selection 

history    

No. 

of 

lines 

1 WX198 CIMMYT E95Syn4152-5 X05VSBC01 TAM 111*2/CIMMYT E95Syn4152-5 BC1F5 11 

2 WX198 CIMMYT E95Syn4152-5 X05VSBC49 TAM 112*2/CIMMYT E95Syn4152-5 BC1F5 8 

3 WX219 CIMMYT E95Syn4152-16 X05VSBC07 TAM 111*2/CIMMYT E95Syn4152-16 BC1F5 8 

4 WX219 CIMMYT E95Syn4152-16 X05VSBC51 TAM 112*2/CIMMYT E95Syn4152-16 BC1F5 4 

5 WX629 CIMMYT E95Syn4152-37 X05VSBC17 TAM 111*2/CIMMYT E95Syn4152-37 BC1F5 5 

6 WX629 CIMMYT E95Syn4152-37 X05VSBC57 TAM 112*2/CIMMYT E95Syn4152-37 BC1F5 13 

7 WX408 CIMMYT E95Syn4152-61 X05VSBC31 TAM 111*2/CIMMYT E95Syn4152-61 BC1F5 11 

8 WX408 CIMMYT E95Syn4152-61 X05VSBC60 TAM 112*2/CIMMYT E95Syn4152-61 BC1F5 1 

9 WX314 CIMMYT E95Syn4152-78 X05VSBC35 TAM 111*2/CIMMYT E95Syn4152-78 BC1F5 5 

10 WX314 CIMMYT E95Syn4152-78 X05VSBC65 TAM 112*2/CIMMYT E95Syn4152-78 BC1F5 9 

11 WX417 CIMMYT E2Syn4153-31 X05VSBC46 TAM 111*2/CIMMYT E2Syn4153-31 BC1F5 6 

12 . CIMMYT E95Syn4152-51 X05VSBC24 TAM 111*2/CIMMYT E95Syn4152-51 BC1F5 12 
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Based on heads per square meter, seeds per head, overall grain yield, and biotic stress 

tolerance, 93 lines were advanced to the BC1F5:9  generation (2014), which were laid out 

in an alpha lattice design with two replications at CAS, CH, and CS and Diyarbakir 

(DYB), Turkey (latitude = 38.1422 oN, longitude = 40.2711 oE). Wheat varieties 

‘TAMW101’, TAM 111, TAM 112, ‘TAM 113’, ‘TAM 304’, ‘TAM 305’, and TAM 

401 were planted as checks along the SDW lines in 2014 yield trials. Based on location 

and year, each trial was given a unique name. Yield trials conducted in 2013 were named 

as CS2013 and those conducted in 2014 were named as CAS2014, CH2014, CS2014, 

and DYB2014 respective of location. Trials in CAS2014 and CS2014 were planted at a 

seed rate of 1582 seeds plot-1 in a plot of 5.11 m2 area (3.35 m X 1.52 m). In the CH2014 

trial, yield plots were planted with a similar seedling rate equivalent to 340 seeds m-2. 

Each yield plot in CH2014 trial measured a total area of 4.64 m2 (3.04 m X 1.52 m) after 

removing alley ways. In the DYB2014 trial, plots were planted at a seeding rate of 350 

seeds m-2 in an area of 3 m2 (3.04 m X 0.91 m). In 2014, except CAS2014, all trials were 

planted under rainfed conditions. Temperature and rainfall data for these locations are 

reported in Table 2.2. Plots in CAS2014 were supplemented with 10 cm of irrigation 

using a linear irrigation system. Depending on previous season cropping pattern and 

irrigation method, nutrient supply was determined for each environment. Trials in each 

location were fertilized at standard rates for optimum crop production in the location. In 

CH2014, plots were supplemented with N at the rate of 30 kg ac-1. Similarly, trials in 

CS2014 and CAS2014 were supplemented with N at the rate of 18.2 kg ac-1 and 49 kg 

ac-1, respectively. Plots in DYB2014 were supplemented with nutrients at two stages. At 
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the time of planting, nutrients were supplemented with 20N-20P fertilizer at the rate of 

30 kg ac-1. During tillering, plots were supplemented with 18 kg ac-1 of ammonium 

nitrate.  

 

2.2.3 Environments 

Trials at DYB2014, CS2014 and CH2014 were grown under rainfed and the one 

at CAS2014 was grown under irrigated conditions. The growing season (Oct 31st, 2013 –

June 2nd, 2014) precipitation for CH2014 was 148.8 mm, for CS2014 (Nov 25th, 2013- 

May 26th, 2014) was 319.2 mm, and for DYB2014 (Jan 7th, 2014 - June 24th, 2014) was 

163 mm (Table 2.2) (weatherunderground.com). 

 

2.2.4 Measurements 

2.2.4.1 Pre-harvest measurements 

Observations on agronomic traits, such as heading date (HS), plant height (HT), 

lodging score, and agronomic score (Agscore), were recorded during the cropping 

season.Feekes scale was used to determine the heading date (Large, 2007). The heading 

date was recorded when plants reached Feekes scale 10.1 and 50% of the heads in the 

plot had emerged from the boots.  The number of Julian days each genotype took to 

reach 50% heading from Jan 1st was recorded as approximate heading date. Heading 

dates changed from location to location depending on climatic pattern and number of 

days taken to accumulate certain heat units to reach the heading stage. To be able to 
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Table 2.2 Maximum (Max), mean (Ave), and minimum (Min) temperature (Temp) and precipitation (rain) data for every 

month during cropping season in each environment 

Codes for environments are CH2014 = Chillicothe, CS2014 = College Station, CAS2014 = Castroville, DYB2014 = 

Diyarbakir 

 

 

 

 

 

 

 

 

 CH2014 CS2014 CAS2014 DYB2014 

Month Rain 

(mm) 

Temp 

(o C) 

Rain 

(mm) 

Temp 

(o C) 

Rain 

(mm) 

Temp 

(o C) 

Rain 

(mm) 

Temp 

(o C) 

 Total Max Ave Min Total Max Ave Min Total Max Ave Min Total Max Ave Min 

Nov 8.6 17.2 10.6 3.3 34.0 11.7 6.7 1.7 15.5 18.9 13.3 7.8 . . . . 

Dec 25.9 10.6 3.9 -2.8 19.3 15.0 9.4 3.9 9.9 16.1 10.0 3.9 . . . . 

Jan 0.0 13.3 5.6 -2.8 33.0 15.6 8.9 2.2 1.3 16.7 8.9 0.6 25.4 10.0 4.4 -1.7 

Feb 3.0 11.1 5.0 -1.7 22.6 16.7 11.7 5.6 4.8 19.4 12.8 5.6 18.5 13.3 5.6 -2.2 

Mar 19.8 18.9 10.6 2.8 40.9 20.0 13.9 7.8 18.8 22.2 15.0 8.3 37.8 16.7 10.6 4.4 

Apr 24.4 26.1 17.8 10.0 31.2 25.6 20.0 14.4 22.1 28.3 21.1 13.9 31.5 21.7 13.9 6.7 

May 63.0 31.1 23.3 15.6 138.2 28.9 22.8 16.7 8.6 31.7 23.3 14.4 38.4 27.8 19.4 10.6 

 . . . . . . . . . . . . 10.2 32.8 24.4 16.1 
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compare the heading at different locations, we generated new scoring pattern called 

heading score. In this new format, depending on the location, we classified heading dates 

into a scale of one to five, with one being very early, two being early, three medium, 

four late, and five very late. Heading dates of TAM 112, TAM 111, and TAM 401 were 

considered as standards for early, early-medium, and medium heading, respectively.  

Measurements for HT were done when plants reached physiological maturity 

(loss of the green color in the last internode below the head). Measurements were 

recorded on representative plants in the center of the plot by measuring height from the 

soil surface to the tip of the head, excluding awns.  

Straw strength, a.k.a. lodging-resistance score was estimated using a scale of one 

to five, with one being erect and five completely lodged. The Agscore was documented 

using a scale of one to ninge, with one being the poorest and nine being the best looking 

genotypes, overall.  

 

2.2.4.2 Harvest and post-harvest measurements  

A representative sample of 50 heads was collected from each yield plot. These 

heads were re-counted and bulk threshed, using an Almaco belt thresher model BT14, 

and weighed. Apart from the 50 heads sample, yield plots were bulk harvested using a 

Winterstieger combine. Total harvested grain weight (TGW) was determined by adding 

50 head sample weight (SW) and yield plot weight (YW). Grain yield (GY; t ha-1) per 

plot was calculated by entering the TGW weight in the formula 2.1 
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Formula 2.1 

Grain Yield (t ha -1)= {
[(

TGW
0.454

)  (
43560

total area of plot in ft2
)]

60
}×0.0673 

Yield component such as single seed weight (SeedWt), seeds per head 

(SeedsHead-1) and head per square meter (HeadNo; heads m-2) were estimated based on 

the 50 head samples. One thousand seeds from the 50 head samples were counted, using 

a Data Count S-25 Plus seed counter, and thousand seed weight was recorded. Based on 

thousand seed weighed and TGW we estimated SeedWt, SeedsHead-1, and HeadNo 

using the formulas 2.2 to 2.4. Test weights were also determined.  

 

Formula 2.2 

Single seed weight (SeedWt) =  (
Thousand seed weight 

1000
) 

Formula 2.3 

        Seeds per head (SeedsHead−1) =  [
(

SW
SeedWt

)

50
] 

 

Formula 2.4 

Heads per square meter (HeadNo) =

{
  
 

  
 
[

(
TGW
SeedWt

)

total plot area in m2]

SeedsHead−1

}
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Where, SW= 50 head sample weight, TGW = total harvested grain weight. 

 

2.2.5 Statistical analysis 

Statistical analysis was performed using SAS 9.4 (SAS Institute Inc., 2008), SAS 

based META, AgroBase Gen II and Microsoft Excel. Individual and combined analyses 

for alpha lattice experiments were performed using PROC GLM procedure. Data from 

CS2013 was analyzed in AgroBase Gen II using moving mean analysis. Analysis for 

covariance (ANCOVA) was conducted to adjust for some of the post-planting errors in 

the field. Plots in the CH2014 were affected by unevenly distributed root rot. Uneven 

plant stand was observed in the DYB2014 yield trials. Heavy rains after physiological 

maturity resulted in plant lodging in the CS2014 trial. Stability analysis was conducted 

using AgroBase Gen II.  

 

2.3 Results and discussion 

Trials from CAS2014, CH2014, DYB2014, and CS2014 were analyzed for 

homogeneity of error variance and normality using Leven’s and Shapiro-Wilkins’s tests, 

respectively (Grassini et al., 2013). Leven’s test showed there was no significant 

difference between the error variances and hence assumption of homogeneity of error 

variance was fulfilled for combined analysis. Shapiro-Wilkin test showed that the (W) 

statistic was close to unity; however, the p-value (P < W) was significantly different at 

0.05 significance level. This suggests that errors were not normally distributed. Violation 

of the normality assumption should not cause major problems with a population size of 
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more than 30 or 40 lines (Ghasemi and Zahediasl, 2012; Pallant, 2007) and the sampling 

distribution tended to be normal regardless the shape of the data (Field, 2009; Elliott, 

2007). Therefore, the assumption of normality was ignored in these analyses.  

Combined analysis of variance (ANOVA) across four environments showed that 

there was a significant difference among the genotypes for GY, TW, SeedWt, 

SeedsHead-1, HeadNo, HT, and HS (Tables 2.3). Significant differences for the 

aforementioned traits were attributed to the differences in the genotypes and the way 

they responded to each environment. We also observed there were highly significant 

differences in the environments and genotype-by-environment interaction (G*E) for all 

the aforementioned traits.  

Environment (32%) formed the major portion of the total variation, followed by 

G*E (6.5%), and genotype (2.2%) (Table 2.3). The large sum of squares for 

environments indicates that environments in which trials were conducted were diverse 

and large differences among their means might have contributed to differences for these 

traits. As the trials were conducted in sub-tropical to semi-arid climatic locations under 

extreme drought to optimum irrigation conditions, a large difference was expected. The 

presence of significant G*E interactions illustrates that genotypes performed differently 

across the test environments. Kang and Pham (1991) indicated that presence of 

significant G*E interaction affects the selection of genotypes.  

The ANOVA for GY, TW, SeedWt, SeedsHead-1, HeadNo, HT, and HS was also 

performed for individual environments. The ANOVA for GY showed significant 

differences among the genotypes at CH2014 and DYB2014 but not at CAS2014 and 
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CS2014 (Table 2.4, Table 2.5, Table 2.6, and Table 2.7). Yield trials in CAS2014 were 

planted under irrigated conditions with severe and unevenly distributed leaf and stripe 

rusts. Heavy rains around physiological maturity caused lodging in CS2014. 

Furthermore, plots at CAS2014 and CS2014 had high CV%. These factors combined 

might have made it difficult to detect differences among genotypes in the CAS2014 and 

CS2014 environments.  

The ANOVA indicated significant differences among the genotypes for TW, 

SeedWt, SeedsHead-1, HT, and HS traits at all four individual environments. Significant 

differences were observed among genotypes for HeadNo at CH2014 and DYB2014 but 

not at CS2014.
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Table 2.3 Mean square values of GY (grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo 

(heads m-2), HT (plant height) and HS (heading score) for alpha lattice combined analysis of variance (ANOVA)  

 Source df Mean Squares 

    GY TW SeedWt  

105 

SeedsHead-1 HeadNo HT HS 

Environment (E) 3 277.13* 5260.24** 65.25** 5495.49** 1854963.89** 4436.23** 2.86** 

Genotype (G) 99 0.59* 8.54** 5.42** 77.41** 5653.44** 169.25** 3.07** 

Rep 1 0.0017 33.66** 6.12** 156.13** 46204.97** 89.65* . 

Block(Rep) 18 0.88* 1.87 1.42** 36.91* 5858.49 . 0.17 

G*E 297 0.58** 6.03** 1.42** 30.65** 5533.41** 65.01* 0.79* 

Error 271-376 0.44 1.31 0.53 20.37 3877.17 20.07 0.20 

*, ** Significant at 0.05 and 0.01, respectively 

G*E = Genotype by environment interaction, Rep = Replication, Environment = Location 
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Table 2.4 Mean squares values of GY (grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo 

(heads m-2), HT (plant height) and HS (heading score) for alpha lattice trial in Castroville, TX-2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

*, ** Significant at 0.05 and 0.01, respectively 

Rep = Replication 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Source df Mean Squares 

    GY TW SeedWt 

105 

SeedsHead-1 HeadNo HT HS 

Genotype 99 0.64 8.27** 2.84** 41.13** 4894.37 74.83** 1.84** 

Rep 1 0.37 5.88* 0.18 1.81 5907.85 0.01 3.65** 

Block(Rep) 18 0.53 1.07 0.40 16.89 5084.57 2.47 0.19 

Error 79-81 0.73 0.89 0.34 12.31 5436.35 1.7 0.19 
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Table 2.5 Mean squares values of GY (grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo 

(heads m-2), HT (plant height) and HS (heading score) for alpha lattice trial in Chillicothe, TX-2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*, ** Significant at 0.05 and 0.01, respectively 

Rep = Replication, Covariate = Root rot  

 

 

 

 

 

 

 Source df Mean Squares 

    GY TW SeedWt  

     105 

SeedsHead-1 HeadNo HT HS 

Genotype 99 0.13** 8.07** 1.03** 19.50** 3470.54** 36.40** 0.42** 

Rep 1 12.68** 156.42** 2.14* 236.72** 282817.22** 10.96 0.1 

Block(Rep) 18 0.08** 4.23** 0.85** 45.86** 2293.44 40.67** 0.14* 

Covariate  1 0.82** 2.58 0.03 113.40** 3084 2.68 0.12 

Error 78 0.03 1.69 0.39 8.73 1439.42 14.81 0.07 
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Table 2.6 Mean squares values of GY (grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo 

(heads m-2), HT (plant height) and HS (heading score) for alpha lattice trial in Diyarbakir, Turkey -2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*, ** Significant at 0.05 and 0.01, respectively 

Rep = Replication, Covariate = Plant Stand 

 

 

 

 

 

 

 

 Source df Mean Squares 

    GY SeedWt  

    105 

SeedsHead-1 HeadNo HT HS 

Genotype 99 0.73* 2.74** 56.91** 8597.80** 142.59** 1.29** 

Rep 1 12.81** 27.91** 26.96 17888.62 581.47** 2.43* 

Block(Rep) 18 1.85** 1.93** 23.21 8271.4 98.95* 0.47 

Covariate  1 5.34 0.69 9.38 51741.41** 0.02 0.02 

Error 78 0.48 0.68 29.54 5169.25 53.62 0.44 
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Table 2.7 Mean squares values of GY (grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo 

(heads m-2), HT (plant height) and HS (heading score) for alpha lattice trial in College Station, TX -2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*, ** Significant at 0.05 and 0.01, respectively 

Rep = Replication, Covariate = Harvestable plant stand

 Source df Mean Squares 

    GY TW SeedWt  

    105 

SeedsHead-1 HeadNo HT HS 

Genotype 99 0.29 8.69** 1.84** 45.86** 2005.27 59.02** 1.50** 

Rep 1 0.78 1.12 3.29** 73.42 1944.91 15.74** 0.08 

Block(Rep) 18 0.26 0.43 0.87* 30.43 2653.91 1.77 0.09 

Covariate  1 22.16** 0.13 0.59 17.17 149476.10 5.97 0.07 

Error 75-79 0.22 1.06 0.43 24.18 1949.46 1.91 0.1 
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2.3.1 Grain yield characteristics 

Combined analysis of GY across environments showed a wide range of diversity 

from 2.14 t ha-1 - 3.54 t ha-1 and a mean of 2.92 t ha-1. The least significant difference 

(LSD 0.05) between genotypes for GY was 0.82 t ha-1. There was a fivefold difference in 

GY between high yielding and low yielding environments. The highest mean GY was 

observed in DYB2014 and lowest mean GY was observed in CH2014. In DYB2014, 

mean GY of 5.33 t ha-1 and a range of 3.86 - 6.76 t ha-1 was observed. In CH2014 mean 

GY of 1.01 t ha-1 and a range of 0.29 - 1.59 t ha-1 was observed (refer to page 44).  

Although total precipitation in DYB2014 was almost similar to CH2014, GY 

average was exceptionally high in DYB2014. Favorable environmental conditions that 

include ideal temperature along with very good precipitation at the key stages of plant 

growth and residual soil moisture might be responsible for this. Plots in DYB2014 (81 

mm) received two times more precipitation than plots in CH2014 (42.5 mm) during 

early plant establishment stage (Feekes scale 1-5, Large, 1954). This might have helped 

plants to produce more tillers and biomass (NDVI data for biomass not presented here). 

Many studies have shown a positive correlation between HeadNo and GY in winter 

wheat and between biomass at anthesis and GY (Petcu, 2003; White and Wilson, 2006). 

In addition, plots in DYB2014 (38.3 mm) received 2/3rd more precipitation than plots in 

CH2014 (21.08 mm) around anthesis (Feekes scale 10.1-10.5). In addition to 

precipitation, temperatures also played a critical role in determining GY at these two 

locations. Studies have shown that for every one degree rise in the temperature above 22 

°C preceding anthesis, SeedsHead-1 were reduced by 4%, and when temperature rises 
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above 30 °C it causes complete sterility (Fischer 1985; Saini and Aspinall, 1982). 

Temperature data during the cropping season, especially 30 days around anthesis 

(Feekes scale 10.1 to 10.5), better explains potential reasons for low yields in CH2014. 

Number of days when average temperature was above 22 °C in DYB2014 (4 days) was 

smaller than CH2014 (11 days). Furthermore, number of days when maximum 

temperature was more than 30 °C was lower in DYB2014 (8 days) compared to CH2014 

(14 days). All of these factors might have contributed to the higher GY at DYB2014 and 

thus lower impact on seed set (seeds head-1 and seed filling).  

 

2.3.2 Yield components characteristics  

2.3.2.1 Single seed weight (SeedWt) 

 A combined analysis showed there was a wide range of diversity for SeedWt. A 

range of 25.9 g - 40.9 mg and an average of 30.8 mg was observed. The LSD0.05 value 

for SeedWt was 3.7 g (Table 2.8). The lowest and highest SeedWt values were observed 

in CH2014 and CAS2014, respectively (Table 2.8).  

The period between anthesis and physiological maturity, a.k.a., grain filling 

period/duration, is very important in determining SeedWt (Singh et al., 2014). 

Environment and genotype both play an important role in determining grain-filling 

duration in wheat (Bauer et al., 1985). Singh et al., (2014) reported high temperatures 

and water stress during grain filling period could significantly reduce grain filling 

duration and consequently SeedWt. Studies conducted by Jocković et al., (2014) have 

also shown a positive but not significant correlation between grain filling duration and  
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thousand seed weight. Some other studies have reported that a 5 °C increase in 

temperature above 20 °C increased the rate of grain filling and reduced the grain filling 

duration by 12 days in wheat (Yin et al., 2009). Drought and heat stress might have 

contributed to the low SeedWt in CH2014 trials.  Temperature and precipitation data 

showed there were around six days when the temperature exceeded 25 °C in CAS2014 

and around seven days in CH2014.  

 

2.3.2.2 Seeds per head (SeedsHead-1) 

Combined analysis of SeedsHead-1 showed an average of 35 SeedsHead-1, a 

range of 27 - 43 SeedsHead-1
 and an LSD0.05 of 6 SeedsHead-1 (Table 2.8). There was 

indeed a broad range of diversity within synthetic germplasm for this trait to warrant 

more progress through selection in the future.  

Seed set in wheat is influenced by several factors, including temperature and 

water stresses. These two environmental stresses cause pollen sterility and ovary 

abortion and consequently lower overall seed set (Boyer and Westgate 2004). Bauder 

(2001) reported that water stress during the jointing stage significantly affects SeedHead-

1 in winter wheat. Based on studies conducted on stem reserves in wheat, Blum (1998) 

stated that pre-anthesis stem reserves are important for determining flowering and grain 

development under terminal drought and heat stress conditions. Fischer (1985) has 

shown that for every one degree rise in the temperature above 22 °C preceding anthesis 

SeedsHead-1 are reduced by 4%, and when temperature rises above 30 °C it causes 

sterility (Saini and Aspinall, 1982). Plots in CH2014 received around 21 mm of
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Table 2.8 Mean, range, LSD (least significant differences) for GY (grain yield), TW (test weight), SeedWt (single seed 

weight), SeedsHead-1, HeadNo (heads m-2), HT (height), and HS (heading score) by environment and combined analysis 

across environments  

 GY TW SeedWt (mg) Seed Head-1 HeadNo HT HS 

Combined 

Mean 2.92 75.9 30.8 35 262 82.6 2.7 

Range (2.14-3.54) (72.6-78.3) (25.9-40.9) (27-43) (201-330) (73.2-97.4) (1.7-4.3) 

LSD 0.82 2.7 3.7 6 74 6.5 0.9 

CAS2014 

Mean 3.45 78.6 34.3 36 289 90.6 2.9 

Range (1.96-4.84) (72.2-83.4) (23.3-45.4) (25-47) (162-617) (79.5-105.4) (1.5-5.5) 

LSD 1.66 1.9 3.7 8 160 2.7 1 

CH2014 

Mean 1.01 71.1 26.1 22 181 58.8 2.1 

Range (0.29-1.59) (60.7-74.4) (18.5-36.0) (14-30) (95-600) (44.2-71.0) (0.96-4) 

LSD 0.35 2.7 4.3 7 149 7.5 0.54 

DYB2014 

Mean 5.33 83..3 34.0 38 431 93.8 2.9 

Range (3.86-6.76) (78.1-87.3) (26.7-48.8) (25-56) (280-673) (72.9-126.8) (1.5-5) 

LSD 1.47 . 5.5 12 195 15.1 1.3 

CS2014 

Mean 1.88 70.6 28.8 43 158 87.2 2.9 

Range (0.68-2.66) (64.6-76.1) (20.9-40.7) (30-55) (65-248) (71.9-100.0) (1.5-5) 

LSD 0.97 1.9 4.4 11 94 2.6 0.6 

Codes for environments are CAS2014 = Castroville, CH2014 = Chillicothe, Combined = across four environments, CS2014 = 

College Station, and DYB2014 = Diyarbakir  
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precipitation during anthesis. The average temperature exceeded 22 °C for 11 out of 30 

days around anthesis and grain filling; also, we recorded 14 days when the maximum 

temperature exceeded 30 °C. In addition, there was root rot incidence in the field. All 

these factors combined might have reduced the seed set in CH2014 trials. Although, 

plants in CS2014 had much higher SeedsHead-1 than CH2014, there was not great 

difference in SeedWt. Fischer et al., (1977) have reported SeedsHead-1 and SeedWt were 

negatively correlated. Plants in CS2014 were also exposed to water (26 mm) and 

temperature stresses (11 days above 22 °C) around anthesis, but the intensity of stress 

was less than that at CH2014. Plants in CS2014 could potentially have good pre anthesis 

stem reserves because of good early season precipitation (108 mm).  

 

2.3.2.3 Heads per square meter (HeadNo) 

HeadNo is one of the most important traits that influence overall GY in wheat. 

The combined environment analysis for HeadNo showed a mean of 262 heads m-2 and a 

range of 201 - 330 head m-2, and an LSD0.05 of 74 heads m-2 (Table 2.8). The highest and 

lowest values for this trait were observed in DYB2014 and CS2014, respectively.  

Studies by Zhong-hu and Rajaram (1994) and Simanae (1993) revealed that 

HeadNo and SeedsHead-1 are the most sensitive yield components under drought. Very 

good early season precipitation accompanied by ideal temperatures for plant growth and 

development in DYB2014 might have contributed to high tiller number and maintenance 

(supported by NDVI data, which is not presented here). Moreover, ideal temperature and 

precipitation at frequent intervals during grain filling in DYB2014 helped in efficient 
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mobilization of nutrients from source to sink. Trials in CS2014 and CH2014 had 

relatively low HeadNo. Low precipitation around anthesis might have resulted in lower 

HeadNo in CS2014. Studies conducted by Moayedi et al. (2010) best support the above 

statement. They have reported that HeadNo is very sensitive to drought stress and a 

drastic reduction in HeadNo might occur during reproductive stage with the onset of 

water stress.  

 

2.3.3 Morphological characteristics 

2.3.3.1 Plant height (HT) 

Overall plants were shortest in CH2014 and taller in CAS2014 and DYB2014 

(Table 2.8 and Table 2.9).  Water stress seems to have a negative impact on overall HT. 

These results are in agreement with studies conducted by Richard et al., (1996) who 

reported water stress during cropping season reduced HT, which resulted in decrease in 

total biomass accumulated and GY. Similar results were also reported by Guendouz et 

al. (2012) who pointed out that plants were relatively shorter under water stressed 

conditions.  

 

2.3.3.2 Heading score/heading date (HS) 

There was a great range of genetic diversity for heading date/score (HS) in the 

current germplasm. The HS varied from very early to very late. However, most of the 

genotypes were classified as medium (Table 2.8 and Table 2.9). TAM 401, TAM 112 

and TAM 111 were used as a reference for determining very early to very late heading 
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genotypes. TAM 401, TAM 112 and TAM 111 were classified as early, early to 

medium, and medium heading, respectively. Except CH2014, HS for most other 

locations HS was around 2.9. Plots in CH2014 seem to have headed earlier than other 

locations. Bauder (2001) reported that drought stress in winter wheat stimulates early 

heading and make plants head seven to ten days earlier than normal. Intensity and 

duration of stress also plays a vital role in determining how early a plant will be heading. 

Early heading eventually results in shortened growth period, HT, biomass accumulation 

and consequently lower GY. Precipitation and temperature data has shown that plots in 

CH2014 were consistently exposed to both water and temperature stress. This might 

have played a role in preponing the heading date in CH2014 compared to other 

locations.
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Table 2.9 Best linear unbiased estimation (BLUEs) values of GY (grain yield), TW (test weight), SeedWt (single seed 

weight), SeedsHead-1, HeadNo (heads m-2), HT (height), and HS (heading score) for all genotypes and their corresponding 

stability estimates (bi) and regression deviation (𝑆𝑑𝑖
2 ) for combined analysis 

ID Genotype GY TW SeedWt 

Seed 

Head-1 HeadNo HT HS bi 𝑆𝑑𝑖
2  

  t ha-1 kg hl-1 mg count count cm 1-5   

1 TX11Vsyn0101 3.24 77.1 32.4 36 251 84.8 2.7 1.27 0.24 

2 TX11Vsyn0103 2.65 73.5 25.9 36 271 78.4 2.7 0.77 -0.14 

3 TX11Vsyn0110 2.96 76.5 30.9 33 277 87.2 2.6 1.00 0.09 

4 TX11Vsyn0111 2.77 77.8 35.1 30 252 82.0 1.9 1.01 -0.10 

5 TX11Vsyn0112 2.71 76.2 30.1 36 238 83.6 3.1 1.01 0.09 

6 TX11Vsyn0113 2.95 78.1 33.7 34 237 87.6 2.4 1.04 0.18 

7 TX11Vsyn0116 2.95 75.1 30.3 33 279 77.8 3.0 1.02 0.29 

8 TX11Vsyn0118 3.28 76.2 31.9 36 279 81.6 2.4 0.95 -0.19 

9 TX11Vsyn0119 2.86 76.8 31.4 36 242 79.9 3.6 1.09 -0.20 

10 TX11Vsyn0120 2.97 75.0 33.1 39 209 88.3 3.0 1.06 0.09 

11 TX11Vsyn0122 3.51 77.0 30.3 41 259 85.0 3.3 1.23 -0.21 

12 TX11Vsyn0123 3.28 77.2 31.9 37 255 86.1 2.1 1.14 -0.22 

13 TX11Vsyn0124 2.61 75.1 29.7 35 258 83.3 4.0 0.93 -0.23 

14 TX11Vsyn0127 2.63 75.7 32.5 37 203 90.2 3.8 0.84 0.17 

15 TX11Vsyn0130 3.01 76.8 27.1 37 288 76.7 3.1 1.08 0.09 

16 TX11Vsyn0131 2.50 77.1 32.4 30 248 84.1 2.4 0.93 0.11 

17 TX11Vsyn0133 3.03 76.6 31.8 36 247 83.3 2.6 1.18 -0.09 

18 TX11Vsyn0134 2.75 76.6 31.8 32 255 80.7 2.2 0.95 0.03 

19 TX11Vsyn0135 2.86 76.2 32.9 36 223 78.8 3.0 1.16 -0.01 

20 TX11Vsyn0136 3.04 74.0 29.7 33 301 93.5 4.0 1.06 0.62 

21 TX11Vsyn0137 3.33 76.2 33.1 33 283 83.0 4.2 1.17 -0.06 

22 TX11Vsyn0138 2.73 75.4 36.6 32 244 87.4 2.2 0.89 0.12 

23 TX11Vsyn0140 3.24 75.7 40.9 28 273 89.7 2.1 0.94 -0.11 
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Table 2.9 Continued 

ID Genotype GY TW SeedWt 

Seed 

Head-1 HeadNo HT HS bi 𝑆𝑑𝑖
2  

24 TX11Vsyn0146 3.02 76.8 33.1 31 286 87.5 3.4 0.96 0.02 

25 TX11Vsyn0153 2.59 75.0 27.5 34 279 73.2 2.5 0.82 -0.20 

26 TX11Vsyn0154 2.94 76.7 27.6 38 268 81.0 2.5 0.80 -0.02 

27 TX11Vsyn0156 2.96 74.3 30.9 36 227 85.5 3.2 1.03 -0.18 

28 TX11Vsyn0158 2.85 77.5 34.5 34 231 84.0 3.3 0.99 0.11 

29 TX11Vsyn0159 2.86 73.8 27.5 40 235 78.6 3.1 1.09 1.05 

30 TX11Vsyn0160 3.24 77.4 32.6 35 272 82.4 3.7 1.01 0.58 

31 TX11Vsyn0161 2.74 75.6 26.4 36 293 84.4 3.8 0.98 0.04 

32 TX11Vsyn0164 2.96 75.3 31.2 36 266 81.3 2.7 0.59 0.27 

33 TX11Vsyn0165 3.46 75.1 32.8 37 278 87.1 2.4 1.06 0.12 

34 TX11Vsyn0167 3.18 77.3 32.1 33 277 80.6 2.8 0.98 0.07 

35 TX11Vsyn0168 2.72 74.0 28.6 35 252 80.7 2.5 0.82 0.14 

36 TX11Vsyn0169 2.82 77.4 34.3 35 225 84.3 2.9 0.92 0.28 

37 TX11Vsyn0174 2.55 75.5 33.8 31 244 85.7 3.6 0.90 0.23 

38 TX11Vsyn0175 2.81 74.3 28.4 33 285 81.0 2.9 1.03 0.18 

39 TX11Vsyn0178 2.99 75.8 29.4 34 279 79.7 2.8 0.97 0.65 

40 TX11Vsyn0179 2.87 76.6 29.8 31 317 77.9 2.9 1.23 -0.16 

41 TX11Vsyn0180 2.85 74.5 27.9 39 232 81.2 3.6 1.12 -0.17 

42 TX11Vsyn0182 3.35 76.9 33.4 35 262 90.0 2.0 1.22 -0.09 

43 TX11Vsyn0185 3.28 76.5 30.4 35 275 81.2 2.9 1.41 0.02 

44 TX11Vsyn0188 3.18 73.4 30.6 34 290 82.8 4.1 0.88 0.22 

45 TX11Vsyn0189 3.24 76.1 30.9 32 313 80.2 2.1 1.01 0.47 

46 TX11Vsyn0190 2.85 73.6 26.8 37 282 80.3 2.7 0.84 -0.23 

47 TX11Vsyn0191 3.08 78.4 30.3 35 281 84.2 2.4 1.08 -0.12 

48 TX11Vsyn0195 3.24 76.6 33.7 37 236 89.4 2.4 1.20 -0.23 

49 TX11Vsyn0196 2.75 74.4 35.7 33 219 86.3 2.3 0.85 0.06 

50 TX11Vsyn0197 3.02 76.4 34.5 35 240 89.5 2.2 1.09 -0.23 
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Table 2.9 Continued  

ID Genotype GY TW SeedWt 

Seed 

Head-1 HeadNo HT HS bi 𝑆𝑑𝑖
2  

51 TX11Vsyn0199 3.29 76.1 31.0 34 306 89.2 4.1 0.94 -0.02 

52 TX11Vsyn0201 2.64 75.6 34.2 29 253 83.7 2.7 0.95 -0.21 

53 TX11Vsyn0208 2.68 76.7 32.1 33 231 88.4 2.4 1.08 -0.17 

54 TX11Vsyn0211 2.72 76.6 31.5 36 236 80.4 2.8 0.83 -0.20 

55 TX11Vsyn0212 2.80 73.3 28.5 43 221 76.9 2.4 0.73 0.05 

56 TX11Vsyn0213 3.10 75.9 30.8 39 246 79.7 2.3 1.08 0.34 

57 TX11Vsyn0216 2.95 76.2 27.0 36 286 78.6 3.3 0.92 0.12 

58 TX11Vsyn0217 2.90 76.1 35.5 32 245 90.2 2.3 1.11 -0.09 

59 TX11Vsyn0219 3.07 74.2 32.4 33 264 78.3 2.6 1.05 0.17 

60 TX11Vsyn0225 3.19 76.0 32.9 33 285 75.7 2.2 1.11 -0.06 

61 TX11Vsyn0226 2.85 76.3 33.0 31 247 79.4 2.3 1.03 0.11 

62 TX11Vsyn0228 2.82 77.5 30.3 33 272 80.2 2.1 1.01 -0.06 

63 TX11Vsyn0229 2.50 74.4 31.1 32 240 83.0 2.0 0.81 -0.01 

64 TX11Vsyn0230 3.13 77.5 33.0 32 270 80.5 2.2 0.98 -0.19 

65 TX11Vsyn0232 2.38 76.1 31.2 29 236 87.4 2.0 0.97 0.32 

66 TX11Vsyn0234 3.14 77.4 30.3 34 291 78.8 1.9 1.13 -0.01 

67 TX11Vsyn0238 2.86 74.8 30.8 35 250 77.4 2.2 0.97 -0.17 

68 TX11Vsyn0240 2.52 76.2 30.9 29 262 86.2 2.0 0.94 -0.19 

69 TX11Vsyn0241 2.88 74.8 28.5 32 297 75.8 2.0 1.02 -0.04 

70 TX11Vsyn0243 2.72 75.7 35.8 29 247 88.4 2.2 0.78 -0.11 

71 TX11Vsyn0253 2.49 75.7 27.8 29 319 83.6 1.9 1.02 -0.12 

72 TX11Vsyn0261 2.80 76.3 30.7 40 221 77.3 2.5 0.92 -0.05 

73 TX11Vsyn0263 2.98 75.3 30.6 34 266 80.2 2.6 1.14 0.01 

74 TX11Vsyn0264 3.05 74.1 30.5 34 272 80.2 2.4 0.94 0.17 

75 TX11Vsyn0265 3.05 76.0 31.6 31 298 90.5 2.0 0.96 -0.04 

76 TX11Vsyn0266 2.86 75.3 30.1 37 249 81.8 2.1 0.87 0.46 

77 TX11Vsyn0267 2.53 75.4 28.2 34 239 78.1 2.1 1.04 0.12 

78 TX11Vsyn0271 3.16 76.6 30.8 32 283 83.9 2.0 1.23 0.29 
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Table 2.9 Continued  

ID Genotype GY TW SeedWt 

Seed 

Head-1 HeadNo HT HS bi 𝑆𝑑𝑖
2  

79 TX11Vsyn0272 3.19 73.6 30.4 32 307 78.5 2.2 1.14 0.10 

80 TX11Vsyn0275 2.88 77.7 30.4 33 271 79.1 1.7 0.99 0.21 

81 TX11Vsyn0277 3.07 75.6 31.3 36 257 82.2 3.0 1.14 -0.16 

82 TX11Vsyn0279 2.52 75.6 27.3 33 259 76.2 2.4 0.92 0.62 

83 TX11Vsyn0280 2.26 72.5 27.6 29 268 83.8 2.0 1.02 0.50 

84 TX11Vsyn0282 2.64 75.0 28.1 31 285 87.3 4.0 0.80 0.27 

85 TX11Vsyn0294 2.97 73.9 27.5 38 250 75.6 2.3 0.97 0.21 

86 TX11Vsyn0300 3.42 75.1 28.4 43 280 85.1 2.5 1.19 -0.12 

87 TX11Vsyn0303 2.14 77.6 28.2 36 202 93.9 4.2 0.66 -0.02 

88 TX11Vsyn0305 2.53 74.1 28.2 35 253 80.9 3.3 0.60 0.79 

89 TX11Vsyn0306 2.70 76.3 30.5 36 235 82.8 3.2 0.93 0.03 

90 TX11Vsyn0308 2.90 76.1 31.2 37 231 80.5 2.9 0.95 0.15 

91 TX11Vsyn0309 2.82 74.8 30.5 36 235 87.3 2.1 1.13 -0.07 

92 TX11Vsyn0312 3.16 75.3 26.2 37 330 83.1 3.0 1.13 -0.13 

93 TX11Vsyn0313 2.82 76.8 29.4 37 237 97.4 4.2 0.86 -0.10 

94 TAM112 3.19 76.6 28.3 33 324 74.6 2.0 1.18 0.00 

95 TAM111 2.80 77.6 29.1 39 231 80.5 2.9 0.81 -0.03 

96 TAM113 3.34 78.8 29.6 35 302 78.8 2.9 1.25 -0.15 

97 TAM304 3.20 74.8 26.5 40 279 73.4 2.4 1.09 0.43 

98 TAM305 2.60 77.0 28.9 36 243 74.9 2.4 0.89 0.59 

99 TAM401 3.54 75.3 27.1 40 304 82.3 2.4 1.46 1.35 

100 TAMW101 2.78 77.7 35.2 27 288 75.9 3.1 0.72 -0.11 

 Mean 2.92 75.87 30.8 34 262 82.6 2.7   

 Minimum 2.14 72.55 25.9 27 202 73.2 1.7   

 Maximum 3.54 78.83 40.9 43 330 97.3 4.3   

 LSD 0.82 2.72 3.7 6 74 6.5 0.9   

 CV (%) 22.8 1.6 7.5 13.1 23.7 5.4 16.7   



 

 

52 

 

2.3.4 Interrelationships between traits 

2.3.4.1 Correlations among yield and other traits 

Correlation coefficient values help us to understand the nature and magnitude of 

the relationship between two variables. Phenotypic correlation coefficients (rp) are 

reported in table 2.10. Except for seed weight, all yield components had a positive and 

significant correlation with overall GY. Many other studies conducted on synthetic, 

spring, and winter wheat also showed similar results (Khan and Naqvi, 2012; Mohsin et 

al., 2009; Gupta et al., 1999). Seed weight had positive but no significant correlation 

with GY (rp = 0.14, P < 0.05). HeadNo had the highest positive correlation with GY (rp = 

0.44, P < 0.001) followed by SeedsHead-1 (rp = 0.33, P < 0.001). Studies conducted by 

Khan and Naquvi (2012) also showed that HeadNo had a positive and significant 

correlation with GY under different water levels and stresses imposed at different 

growth stages. Similar results were also reported for SeedsHead-1 (Khan and Naquvi, 

2001). Morphological traits such as HS (rp = -0.029) and HT (rp = -0.022) had negative 

but non-significant correlation with GY. Hossain et al., (2012a) reported that heat and 

water stresses play a critical role in determining HT and heading date in wheat, 

especially in dryland areas. Three out of four trials in our study were planted under 

rainfed conditions. Therefore, temperature and precipitation are believed to have played 

an important role in determining HT and heading date in our study. A number of studies 

have shown a negative correlation between heading date and GY under extreme 

temperature and water stress conditions (Hossain et al., 2012b; Mohammadi et al., 

2012). Our results showed that trials in most locations were exposed to high 
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temperatures, and in some locations water stress was also present. Although, three out of 

four trials were planted under rainfed conditions, only one had extreme water stress 

during the vegetative stage. Water stress from jointing to heading stages plays a critical 

role in determining HT in wheat (Khokhar et al., 2010). Many studies have shown that 

when water stress is very low during the vegetative stage, HT had a negative correlation 

with GY depending on germplasm used in the study (Khokhar et al., 2010).  

Among the yield components, SeedWt had negative and highly significant 

correlation with SeedsHead-1 (rp = -0.43) and HeadNo (rp = -0.30). Similarly, SeedsHead-

1 had negative and significant correlation with HeadNo (rp = -0.32). Non-significant 

negative correlation was observed between HS and HeadNo (rp = -0.070) and between 

HS and SeedWt (rp = - 0.14). However, the positive significant correlation between HS 

and SeedsHead-1 (rp = 0.21) was observed (Table 2.10).  

 

Table 2.10 Pearson correlation coefficients among GY (grain yield), TW (test weight), 

SeedWt (Single seed weight), SeedsHead-1, HeadNo (heads m-2), HS (heading score), 

and HT (height) based on means of combined analysis 

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level; ns 

not significant  
 

 

 

 

 GY TW SeedWt SeedHead-1 HeadNo HS HT 

GY  0.17 ns 0.14 ns 0.32** 0.44** -0.029 ns -0.02 ns 

TW   0.33** -0.12 ns -0.03 ns -0.03 ns 0.12 ns 

SeedWt    -0.43** -0.30** -0.14 ns 0.40** 

SeedsHead-1     -0.28** 0.21* -0.13ns 

HeadNo      -0.07 ns -0.25* 

HS       0.25* 

HT        
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2.3.4.2 Path coefficient analysis among yield and yield components 

Simple correlation coefficients cannot explain the importance of each factor and 

interrelationship among the factors in producing a given correlation coefficient (Ibrahim 

et al., 2012). Therefore, tools such as path coefficient analysis that partitions the 

correlation coefficient into direct and indirect effects can be more effective than simple 

correlations in examining the effect of a specific factor and hence to understand the 

relationship between two traits. This information on direct and indirect effects will help 

in formulating an effective selection strategy for improvement of a particular trait. Grain 

yield is a product of three yield components such as SeedWt, SeedsHead-1, and HeadNo. 

The values that are bold and in the diagonal direction are the direct effect and the values 

that are horizontal in the same row are indirect effects (Table 2.11). The combination of 

direct and indirect effects results in total effect due to that trait on GY. For example, in 

the case of combined analysis, direct effect of HeadNo on GY is 0.95 but because of 

indirect negative effect of similarly strong SeedWt (-0.25) and SeedsHead-1 (-0.26) total 

effect due to HeadNo is limited at 0.44. Many studies have shown that an increase in one 

yield component might result in decreasing other component because of yield 

compensatory effects to maintain a balance between the source and the sink (Cooper et 

al., 2012; Fischer et al., 1985). 

In the combined environment analysis, the highest and most significant positive 

correlation was observed between HeadNo (0.44) and GY followed by SeedsHead-1 

(0.33) and GY. Lowest and the non-significant correlation was observed between 

SeedWt (0.14) and GY (Table 2.11). The values of path coefficients are in accordance 
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with Pearson correlation coefficients. Similar results were reported by Cooper et al. 

(2012). This suggests that HeadNo followed by SeedsHead-1 was the best indirect 

selection criteria for increasing GY in SDW. Any gain in HeadNo and SeedsHead-1 can 

positively improve GY. The same rules applied to other environments as well. Path 

coefficient analysis for single environments showed similar results as combined analysis 

(Table 2.11).  

 

Table 2.11 Estimates of direct, indirect effect of SeedWt (Single seed weight), 

SeedsHead-1, and HeadNo (heads m-2) on grain yield (GY) and total correlation with GY 

based on means of combined analysis 

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level;   

ns not significant 

Codes for environments are CAS2014 = Castroville, CH2014 = Chillicothe, Combined = 

across four environments, CS2014 = College Station, and DYB2014 = Diyarbakir  

 

Trait SeedWt HeadNo SeedHead-1 GY 

 Combined 

SeedWt 0.83 -0.29 -0.40 0.14ns 

HeadNo -0.25 0.95 -0.26 0.44** 

SeedsHead-1 -0.35 -0.26 0.94 0.33** 

CAS2014 

SeedWt 0.64 −0.29 −0.14 0.21* 

HeadNo −0.20 0.93 −0.19 0.54** 

SeedsHead-1 −0.13 −0.24 0.71 0.34** 

CH2014 

SeedWt 0.30 0.01 −0.06 0.26** 

HeadNo 0.01 0.95 −0.14 0.56** 

SeedsHead-1 −0.03 −0.18 0.57 0.36** 

DYB2014 

SeedWt 0.77 −0.24 −0.41 0.12ns 

HeadNo −0.18 1.02 −0.56 0.28** 

SeedsHead-1 −0.29 −0.53 1.08 0.26** 

CS2014 

SeedWt 0.47 −0.23 −0.20 0.04ns 

HeadNo −0.11 0.95 −0.03 0.81** 

SeedsHead-1 −0.18 −0.06 0.53 0.29** 



 

 

56 

 

2.3.5 Elite genotypes 

 

Combined analysis of environments showed that 8 out of the top 10 lines in the 

yield trials were SDW lines. We documented a number of SDW lines that had higher 

GY than their recurrent parents and some other check varieties in individual 

environments as well as in the combined analysis (refer to page 59 and 60). The SDW 

line TX11Vsyn0122 ranked consistently high across the different environments. Nine of 

the top ten SDW lines had TAM 111 as the recurrent parent and only one line 

(TX11Vsyn0300) had TAM 112 as the recurrent parent. This suggests that TAM 111 

might have better combining ability than TAM 112. Combining ability studies showed 

that among the recurrent parents TAM 111 had better general combining ability than 

TAM 112 (data not presented).  

Apart from mean GY, stability of the genotype is one more factor that needs to 

be considered when releasing a variety. We used Eberhart and Russell’s (type III) 

regression coefficient method to determine stability. Eberhart and Russell (1966) 

suggested that both linear regression coefficient (bi) and deviation (𝑆𝑑𝑖
2 ) from the 

regression coefficient need to be considered when determining stability. The bi 

determines linear response to environmental change by explaining the relationship 

between the yield of the genotype for each environment and mean yield for the 

environment. On the other hand, 𝑆𝑑𝑖
2   determines consistency of this response by 

explaining the deviation from the regression. When the regression coefficient (bi) is 

close to 1 and 𝑆𝑑𝑖
2

 is not different from zero the genotype is considered to have average 

stability (Eberhart and Russell’s, 1966). When the bi is more than 1 the genotype is 
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considered to have low stability but high sensitivity to environmental changes and might 

be better for high yielding environments (Wachira et al., 2002). When the bi is less than 

1 the genotype has high stability and low sensitivity to environmental changes and might 

be better for low yielding environments (Wachira et al., 2002). Overall, the genotypes 

with high mean yield, average stability and zero deviation from the regression are 

considered the best for the trait under consideration. Stability values for each SDW lines 

are presented in the table on page 48 to 51.  

The coefficient of variation (CV) for GY in CAS2014 (24%), CS2014 (26%), 

and CH2014 (17.8%) was higher than the acceptable range for variety trials (Table 

2.12). There might be multiple reasons for the high CV in some of these environments. 

Uneven distribution of rust across the field along with lodging might have caused 

excessive CV in the CAS2014 trial. In the CS2014 trial, lodging caused by excessive 

rain during physiological maturity might have resulted in high CV. Drought stress 

accompanied by root rot might have resulted in high CV in CH2014. 

Comparing the mean of the top ten yielding SDW with the mean of seven check 

varieties showed that SDW lines (3.34 t ha-1) produced 0.30 t ha-1 higher GY than the 

check varieties average (3.05 t ha-1). A detailed study of the factors that produced higher 

GY in SDW lines showed that SDW lines maintained similar SeedsHead-1 and HeadNo 

but had higher SeedWt than check varieties. Our studies showed that SDW lines had an 

average of 32.0 mg SeedWt, 37 SeedsHead-1, and 273 heads m-2; whereas the check 

varieties had 29.0 mg SeedWt, 36 SeedsHead-1, and 281 heads m-2. Although check 

varieties had 7 more heads m-2 on average than the SDW lines, when we considered the 
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LSD0.05 of 74 heads m-2 this is a negligible value. We also observed that SDW lines (85.3 

cm) were relatively taller than check varieties (77.2 cm) by 8 cm. Check varieties and 

SDW lines were classified as being early to medium heading (score 2.6 to 2.8) (Table 

2.13). These results are in accordance with the findings of Narasimhamoorthy et al., 

(2006).  

 

2.3.6 GGE biplot (5 environments) 

GGE biplot is a data visualizing software that helps to understand G*E 

interactions in a more efficient way (Yan et al., 2003). GGE biplot can classify 

genotypes into different mega environments and determine the elite and ideal genotype 

for each one of these environments. In addition, GGE biplot helps to estimate the 

stability of genotypes and understand the interrelationship among the target 

environments and target traits. Data from all five environments was used to for GGE 

biplot analysis. The five environments included CS2013, CAS2014, CS2014, CH2014, 

and DYB2014.  

 

2.3.6.1 GGE biplot for grain yield 

The polygon view of the GGE biplot for GY presents which genotype is best for 

which mega environments (Figure 2.1). The polygon is formed by connecting the 

genotypes that are furthest away (good or bad) from the origin of the biplot so that all 

genotypes are grouped within the polygon. A sector is formed by drawing perpendicular 

line between two adjacent genotype that form 



 

 

59 

 

Table 2. 12 Mean grain yield (BLUEs) of ten top yielding synthetic derived wheat lines determined from combined analysis 

and performance of these lines in each environment, their respective ranking (R), stability (bi) and regression deviation (𝑆𝑑𝑖
2 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID Genotype 

CAS  

2014 R 

CH 

2014 R 

DYB 

2014 R 

CS   

2014 R Across R bi 𝑺𝒅𝒊
𝟐  

  t ha-1  t ha-1  t ha-1  t ha-1  t ha-1    

11 TX11Vsyn0122 4.28 11 1.39 9 6.28 6 2.05 31 3.51 2 1.23 -0.21 

33 TX11Vsyn0165 3.93 24 0.98 58 6.02 15 2.49 7 3.46 3 1.06 0.12 

86 TX11Vsyn0300 4.24 12 0.98 57 6.01 16 1.85 53 3.42 4 1.19 -0.12 

42 TX11Vsyn0182 3.48 45 0.78 80 6.18 9 2.02 34 3.35 5 1.22 -0.09 

21 TX11Vsyn0137 4.41 8 1.23 22 5.88 20 1.64 73 3.33 7 1.17 -0.06 

51 TX11Vsyn0199 3.86 29 0.62 93 4.9 73 2.43 13 3.29 8 0.94 -0.02 

12 TX11Vsyn0123 3.89 27 1.24 20 6.03 14 1.94 44 3.28 9 1.14 -0.22 

8 TX11Vsyn0118 3.85 30 1.19 27 5.4 48 2.15 25 3.28 10 0.95 -0.19 

43 TX11Vsyn0185 4.64 2 0.79 78 6.31 5 1.31 93 3.28 11 1.41 0.02 

1 TX11Vsyn0101 3.31 59 1.23 25 6.76 1 1.94 43 3.24 12 1.27 0.24 

94 TAM112 3.24 65 1.12 35 6.21 8 1.63 74 3.19 19 1.18 0.00 

95 TAM111 3.4 48 1 51 4.77 78 2.23 22 2.80 70 0.81 -0.03 

96 TAM113 4.19 14 1.06 46 6.59 2 1.68 65 3.34 6 1.25 -0.15 

97 TAM304 4.84 1 1.28 17 5.83 22 1.51 83 3.20 17 1.09 0.43 

98 TAM305 1.97 99 0.93 65 5.48 43 1.93 45 2.60 88 0.89 0.59 

99 TAM401 4.47 7 1.06 44 6.39 3 2.02 32 3.54 1 1.46 1.35 

100 TAMW101 3.32 56 1.13 33 4.33 96 2.06 30 2.78 71 0.72 -0.11 

 Mean 3.45  1.01  5.33  1.88  2.92    

 Min 1.97  0.29  3.86  0.68  2.14    

 Max 4.84  1.59  6.76  2.67  3.54    

 LSD 1.66  0.35  1.47  0.97  0.82    

 CV (%) 24.1  17.8  13.8  26.0  22.8    
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Table 2.13 Mean GY (grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo (heads m-2), HT 

(height), and HS (heading score) of top ten yielding synthetic derived wheat lines and check varieties across four 

environments 

BLUEs = Best linear unbiased estimated mean; Codes for environments are CAS2014 = Castroville, CH2014 = Chillicothe, 

Combined = across four environments, CS2014= college station, and DYB2014 = Diyarbakir

ID Genotype GY TW SeedWt Seed Head-1 HeadNo HT HS 

  t ha-1 kg hl-1 mg count heads m-2 cm scale 1-5 

11 TX11Vsyn0122 3.51 77.0 30.3 41 259 85.0 3.3 

33 TX11Vsyn0165 3.46 75.1 32.8 37 278 87.1 2.4 

86 TX11Vsyn0300 3.42 75.1 28.4 43 280 85.1 2.5 

42 TX11Vsyn0182 3.35 76.9 33.4 35 262 90.0 2.0 

21 TX11Vsyn0137 3.33 76.2 33.1 33 283 83.0 4.2 

51 TX11Vsyn0199 3.29 76.1 31 34 306 89.2 4.1 

12 TX11Vsyn0123 3.28 77.2 31.9 37 255 86.1 2.1 

8 TX11Vsyn0118 3.28 76.2 31.9 36 279 81.6 2.4 

43 TX11Vsyn0185 3.28 76.5 30.4 35 275 81.2 2.9 

1 TX11Vsyn0101 3.24 77.1 32.4 36 251 84.8 2.7 

94 TAM112 3.19 76.6 28.3 33 324 74.6 2.0 

95 TAM111 2.80 77.6 29.1 39 231 80.5 2.9 

96 TAM113 3.34 78.8 29.6 35 302 78.8 2.9 

97 TAM304 3.20 74.8 26.5 40 279 73.4 2.4 

98 TAM305 2.60 77.0 28.9 36 243 74.9 2.4 

99 TAM401 3.54 75.3 27.1 40 304 82.3 2.4 

100 TAMW101 2.78 77.7 35.2 27 288 75.9 3.1 

 Mean 2.92 75.9 30.8 34 262 82.6 2.7 

 Min 2.14 72.5 25.9 27 202 73.2 1.7 

 Max 3.54 78.8 40.9 43 330 97.4 4.2 

 LSD 0.82 2.7 3.7 6 74 7.8 0.9 

 CV (%) 22.8 1.6 7.5 13.1 23.7 5.4 16.7 
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 the polygon (Yan et al., 2003). For example, line 3 is drawn between genotype 11 and 

56 and this forms sector 3. Nine sectors were formed when a polygon was drawn. 

Although, there were nine sectors, our testing environments were divided into only four 

sectors. A genotype that is in the corner of the polygon a.k.a. vertex is the most 

responsive genotype for that sector and environments within that sector. Sector 3 was 

formed between perpendicular lines 3 and 4. This sector includes environments CS2013 

and CAS2014 and genotype TX11Vsyn0213 (ID = 56) is the best genotype for sector 3.  

Similarly, genotype TX11Vsyn0294 (ID = 85) is the best for CS2014 and sector 4. 

Genotype TX11Vsyn0275 (ID = 80) is the best for CH2014 environment and sector 1, 

and genotype TX11Vsyn0122 (ID = 11) is best for environment DYB2014 and sector 2. 

The other vertex genotypes TX11Vsyn0174 (ID = 37), TX11Vsyn0303 (ID = 87), 

TX11Vsyn0282 (ID = 84), and TX11Vsyn0305 (ID = 88), which were located away 

from all other testing environments, were the poorest among all the environments. The 

genotypes that are close to the origin of the biplot are less responsive to environmental 

changes than the vertex genotypes.  

Interrelationship among the testing environments for GY is presented in figure 

2.2. Vectors or the lines that connect the environments to the origin of the biplot were 

used to study the interrelationship between these environments. The angle between any 

two vectors approximates the correlation coefficient between them (Yan et al., 2003). An 

obtuse (> 90°) angle indicates a negative correlation whereas an acute angle indicates a 

positive correlation. On the other hand, a right angle is indicative of the absence of 

correlation. The angle between CS2013 and CAS2014 was very narrow, indicating that 
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these environments were very similar. The same is true for CH2014 and CS2014, which 

also had an obtuse angle between them. Based on this biplot view, there seem to be three 

major groups of environments (Figure 2.2): group 1 included DYB2014 and CH2014, 

group 2 included CS2013 and CAS2014, and group 3 included CS2014 by its own. This 

clustering of environments matches to a lot of extent the climatic pattern and growing 

conditions within each group. Group 1 environments DYB2014 (163 mm) and CH2014 

(148.8 mm) received similar precipitation and had similar temperatures during the 

cropping season. Likewise, group 2 included environments CS2013 and CAS2014, 

which were closer geographically to one another. Although, CS2014 had similar climatic 

conditions as group 2 environments these plots were grown under rainfed conditions and 

were subjected to different growing conditions.  

The length of the environment vector is proportional to the variance within the 

environment and hence discriminating ability (Yan et al., 2003). The environments with 

longer vectors show greater range of variance and larger variability among entries. 

Figure on page 69 shows that CH2014, DYB2014, and CS2014 had longer vectors than 

CAS2014 and CS2013; therefore, there was more variability among genotypes in the 

first three environments than the latter two.  
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Figure 2.1 GGE biplot showing the best genotypes for grain yield (GY) in each test environment. 

Codes for environment are: CH2014= Chillicothe, DYB2014= Diyarbakir, CAS2014= Castroville, 

CS2014= College Station 2014, CS2013= College Station 2013 and Combined = combined mean.  

ID for lines are: =TX11Vsyn0101; 2=TX11Vsyn0103; 3=TX11Vsyn0110; 4=TX11Vsyn0111; 

5=TX11Vsyn0112; 6=TX11Vsyn0113; 7=TX11Vsyn0116; 8=TX11Vsyn0118; 9=TX11Vsyn0119; 

10=TX11Vsyn0120; 11=TX11Vsyn0122; 12=TX11Vsyn0123; 13=TX11Vsyn0124; 

14=TX11Vsyn0127; 15=TX11Vsyn0130; 16=TX11Vsyn0131; 17=TX11Vsyn0133; 

18=TX11Vsyn0134; 19=TX11Vsyn0135; 20=TX11Vsyn0136; 21=TX11Vsyn0137; 

22=TX11Vsyn0138; 23=TX11Vsyn0140; 24=TX11Vsyn0146; 25=TX11Vsyn0153; 

26=TX11Vsyn0154; 27=TX11Vsyn0156; 28=TX11Vsyn0158; 29=TX11Vsyn0159; 

30=TX11Vsyn0160; 31=TX11Vsyn0161; 32=TX11Vsyn0164; 33=TX11Vsyn0165; 

34=TX11Vsyn0167; 35=TX11Vsyn0168; 36=TX11Vsyn0169; 37=TX11Vsyn0174; 

38=TX11Vsyn0175; 39=TX11Vsyn0178; 40=TX11Vsyn0179; 41=TX11Vsyn0180; 

42=TX11Vsyn0182; 43=TX11Vsyn0185; 44=TX11Vsyn0188; 45=TX11Vsyn0189; 

46=TX11Vsyn0190; 47=TX11Vsyn0191; 48=TX11Vsyn0195; 49=TX11Vsyn0196; 

50=TX11Vsyn0197; 51=TX11Vsyn0199; 52=TX11Vsyn0201; 53=TX11Vsyn0208; 

54=TX11Vsyn0211; 55=TX11Vsyn0212; 56=TX11Vsyn0213; 57=TX11Vsyn0216; 

58=TX11Vsyn0217; 59=TX11Vsyn0219; 60=TX11Vsyn0225; 61=TX11Vsyn0226; 

62=TX11Vsyn0228; 63=TX11Vsyn0229; 64=TX11Vsyn0230; 65=TX11Vsyn0232; 

66=TX11Vsyn0234; 67=TX11Vsyn0238; 68=TX11Vsyn0240; 69=TX11Vsyn0241; 

70=TX11Vsyn0243; 71=TX11Vsyn0253; 72=TX11Vsyn0261; 73=TX11Vsyn0263; 

74=TX11Vsyn0264; 75=TX11Vsyn0265; 76=TX11Vsyn0266; 77=TX11Vsyn0267; 

78=TX11Vsyn0271; 79=TX11Vsyn0272; 80=TX11Vsyn0275; 81=TX11Vsyn0277; 

82=TX11Vsyn0279; 83=TX11Vsyn0280; 84=TX11Vsyn0282; 85=TX11Vsyn0294; 

86=TX11Vsyn0300; 87=TX11Vsyn0303; 88=TX11Vsyn0305; 89=TX11Vsyn0306; 

90=TX11Vsyn0308; 91=TX11Vsyn0309; 92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 

94=TAM112; 96=TAM113; 97=TAM304 
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Figure 2.2 Biplot showing the relationship among environments and combined mean (across five 

environments) for grain yield (GY). Codes for environment are: CH2014= Chillicothe, DYB2014= 

Diyarbakir, CAS2014= Castroville, CS2014= College Station 2014, CS2013= College Station 2013 

and Combined = combined mean. ID for lines are: 1=TX11Vsyn0101; 2=TX11Vsyn0103; 

3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 7=TX11Vsyn0116; 

8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 11=TX11Vsyn0122; 

12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 15=TX11Vsyn0130; 

16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 19=TX11Vsyn0135; 

20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 23=TX11Vsyn0140; 

24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 27=TX11Vsyn0156; 

28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 31=TX11Vsyn0161; 

32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 35=TX11Vsyn0168; 

36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 39=TX11Vsyn0178; 

40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 43=TX11Vsyn0185; 

44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 47=TX11Vsyn0191; 

48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 51=TX11Vsyn0199; 

52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 55=TX11Vsyn0212; 

56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 59=TX11Vsyn0219; 

60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 63=TX11Vsyn0229; 

64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 67=TX11Vsyn0238; 

68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 71=TX11Vsyn0253; 

72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 75=TX11Vsyn0265; 

76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 79=TX11Vsyn0272; 

80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 83=TX11Vsyn0280; 

84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 87=TX11Vsyn0303; 

88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 91=TX11Vsyn0309; 

92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 96=TAM113; 97=TAM304 
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2.3.6.2 GGE biplot for seed weight (SeedWt) 

For SeedWt, data is classified into seven sectors and four out of the five 

environments were grouped into one sector, indicating that this trait was consistent 

among the environments. Environment CS2013 is classified into a separate sector with 

genotype 70 (ID) being the best in this sector (Figure 2.3 and Figure 2.4).  

 

2.3.6.3 GGE biplot for seeds per head (SeedsHead-1) 

The environments CS2013 and CH2014 were classified into sector 7, CAS2014 

into sector 1, and DYB2014 and CS2014 into sector 3 for SeedsHead-1 (Figure 2.5 and 

Figure 2.6). Genotypes TX11Vsyn0313 (ID = 93), TX11Vsyn0300 (ID = 86), and 

TX11Vsyn0159 (ID = 29) were the best in sectors 7, 2, and 3, respectively. 

 

2.3.6.4 GGE biplot for heads per square meter (HeadNo) 

The variance for HeadNo was lowest in CS2013 followed by CAS2014 and was 

highest in CS2014 and CH2014 (Figure 2.7 and Figure 2.8). It appears that as the stress 

level (biotic and abiotic) decreases, the discriminating ability for HeadNo also decreases 

for the particular environment. This in turn might have affected variability for GY in 

these environments. Biplot results of HeadNo (Figure 2.8) go hand in hand with the 

results of GY. As the variance for HeadNo increased variance for GY also increased in 

each environment. These results are further supported by the correlation coefficients 

between these two variables as discussed before (refer to table on page 76). 
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2.3.6.5 GGE biplot for relationship between yield and yield components (5 

environments)  

Figure 2.9 shows the relationship between GY and its components (SeedWt, 

SeedsHead-1, and HeadNo). The tester relationship biplot follows similar rules as 

mentioned for other traits (McDermott and Coe, 2012). Among the three primary yield 

components of interest, HeadNo and SeedsHead-1 had acute and almost equally sized 

angles with GY, indicating a positive correlation between each and GY. The increase in 

any of these factors would increase GY. On the other hand, SeedWt, had an 180 ° angle 

with GY, pointing to the absence of correlation between the two traits, which is in 

agreement with Cooper et al., (2012). This confirms results of the Pearson’s correlations 

coefficients (Table 2.14) and path coefficient analysis (Table 2.15). 

  SeedWt had an obtuse angle with HeadNo and SeedsHead-1. Similarly, HeadNo 

had an obtuse angel with SeedsHead-1. These results are in accordance with Pearson’s 

correlations coefficients as discussed previously (Table 2.14). These results also agree 

with Cooper et al., (2012).  

Vector length is used to study the variation and discriminating ability of that 

particular trait (Yan et al., 2003).  GY had the shortest vector, followed by SeedWt and 

equally sized vectors for HeadNo and SeedsHead-1. Therefore, GY had the lowest 

variation among genotypes, which was followed closely by SeedWt which agrees with 

Cooper et al., (2012) who also reported that most synthetics have higher SeedWt than 

check varieties and hence less variation for this trait. The larger variability for 
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SeedsHead-1 and HeadNo indicates that further improvement can be made by utilizing 

these two traits.  

Figure 2.10 presents the “which won where” view of the biplot that shows which 

genotypes performed best for a trait or in an environment (McDermott and Coe, 2012). 

Genotypes 97, 56, 85, and 47 had the highest yield whereas genotypes TX11Vsyn0208 

(ID = 53), TX11Vsyn0179 (ID = 40), and TX11Vsyn0228 (ID = 62) had the highest 

HeadNo across environments. Genotypes TX11Vsyn0174 (ID = 37), TX11Vsyn0219 

(ID = 59), and TX11Vsyn0111 (ID = 4) had relatively large SeedWt and genotypes 

TX11Vsyn0300 (ID = 86), TX11Vsyn0122 (ID = 11), and TX11Vsyn0212 (ID = 55) 

had the highest SeedsHead-1. 
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Figure 2.3 GGE biplot showing the best genotypes for single seed weight (SeedWt) in each test 

environment. Codes for environment are: CH2014= Chillicothe, DYB2014= Diyarbakir, CAS2014= 

Castroville, CS2014= College Station 2014, CS2013= College Station 2013 and Combined = 

combined mean. ID for lines are: 1=TX11Vsyn0101; 2=TX11Vsyn0103; 3=TX11Vsyn0110; 

4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 7=TX11Vsyn0116; 8=TX11Vsyn0118; 

9=TX11Vsyn0119; 10=TX11Vsyn0120; 11=TX11Vsyn0122; 12=TX11Vsyn0123; 

13=TX11Vsyn0124; 14=TX11Vsyn0127; 15=TX11Vsyn0130; 16=TX11Vsyn0131; 

17=TX11Vsyn0133; 18=TX11Vsyn0134; 19=TX11Vsyn0135; 20=TX11Vsyn0136; 

21=TX11Vsyn0137; 22=TX11Vsyn0138; 23=TX11Vsyn0140; 24=TX11Vsyn0146; 

25=TX11Vsyn0153; 26=TX11Vsyn0154; 27=TX11Vsyn0156; 28=TX11Vsyn0158; 

29=TX11Vsyn0159; 30=TX11Vsyn0160; 31=TX11Vsyn0161; 32=TX11Vsyn0164; 

33=TX11Vsyn0165; 34=TX11Vsyn0167; 35=TX11Vsyn0168; 36=TX11Vsyn0169; 

37=TX11Vsyn0174; 38=TX11Vsyn0175; 39=TX11Vsyn0178; 40=TX11Vsyn0179; 

41=TX11Vsyn0180; 42=TX11Vsyn0182; 43=TX11Vsyn0185; 44=TX11Vsyn0188; 

45=TX11Vsyn0189; 46=TX11Vsyn0190; 47=TX11Vsyn0191; 48=TX11Vsyn0195; 

49=TX11Vsyn0196; 50=TX11Vsyn0197; 51=TX11Vsyn0199; 52=TX11Vsyn0201; 

53=TX11Vsyn0208; 54=TX11Vsyn0211; 55=TX11Vsyn0212; 56=TX11Vsyn0213; 

57=TX11Vsyn0216; 58=TX11Vsyn0217; 59=TX11Vsyn0219; 60=TX11Vsyn0225; 

61=TX11Vsyn0226; 62=TX11Vsyn0228; 63=TX11Vsyn0229; 64=TX11Vsyn0230; 

65=TX11Vsyn0232; 66=TX11Vsyn0234; 67=TX11Vsyn0238; 68=TX11Vsyn0240; 

69=TX11Vsyn0241; 70=TX11Vsyn0243; 71=TX11Vsyn0253; 72=TX11Vsyn0261; 

73=TX11Vsyn0263; 74=TX11Vsyn0264; 75=TX11Vsyn0265; 76=TX11Vsyn0266; 

77=TX11Vsyn0267; 78=TX11Vsyn0271; 79=TX11Vsyn0272; 80=TX11Vsyn0275; 

81=TX11Vsyn0277; 82=TX11Vsyn0279; 83=TX11Vsyn0280; 84=TX11Vsyn0282; 

85=TX11Vsyn0294; 86=TX11Vsyn0300; 87=TX11Vsyn0303; 88=TX11Vsyn0305; 

89=TX11Vsyn0306; 90=TX11Vsyn0308; 91=TX11Vsyn0309; 92=TX11Vsyn0312; 

93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 96=TAM113; 97=TAM304; 98=TAM305; 

99=TAM401; 100=TAMW101. 
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Figure 2.4 Biplot showing the relationship among environments and combined mean (across five 

environments) for single seed weight (SeedWt). Codes for environment are: CH2014= Chillicothe, 

DYB2014= Diyarbakir, CAS2014= Castroville, CS2014= College Station 2014, CS2013= College 

Station 2013 and Combined = combined mean. ID for lines are: 1=TX11Vsyn0101; 

2=TX11Vsyn0103; 3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 

7=TX11Vsyn0116; 8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 

11=TX11Vsyn0122; 12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 

15=TX11Vsyn0130; 16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 

19=TX11Vsyn0135; 20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 

23=TX11Vsyn0140; 24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 

27=TX11Vsyn0156; 28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 

31=TX11Vsyn0161; 32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 

35=TX11Vsyn0168; 36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 

39=TX11Vsyn0178; 40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 

43=TX11Vsyn0185; 44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 

47=TX11Vsyn0191; 48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 

51=TX11Vsyn0199; 52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 

55=TX11Vsyn0212; 56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 

59=TX11Vsyn0219; 60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 

63=TX11Vsyn0229; 64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 

67=TX11Vsyn0238; 68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 

71=TX11Vsyn0253; 72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 

75=TX11Vsyn0265; 76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 

79=TX11Vsyn0272; 80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 

83=TX11Vsyn0280; 84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 

87=TX11Vsyn0303; 88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 

91=TX11Vsyn0309; 92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 

96=TAM113; 97=TAM304; 98=TAM305; 99=TAM401; 100=TAMW101 
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Figure 2.5 GGE biplot showing the best genotypes for seeds per head (SeedsHead-1) in each test 

environment. Codes for environment are: CH2014= Chillicothe, DYB2014= Diyarbakir, CAS2014= 

Castroville, CS2014= College Station 2014, CS2013= College Station 2013 and Combined = 

combined mean. ID for lines are: 1=TX11Vsyn0101; 2=TX11Vsyn0103; 3=TX11Vsyn0110; 

4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 7=TX11Vsyn0116; 8=TX11Vsyn0118; 

9=TX11Vsyn0119; 10=TX11Vsyn0120; 11=TX11Vsyn0122; 12=TX11Vsyn0123; 

13=TX11Vsyn0124; 14=TX11Vsyn0127; 15=TX11Vsyn0130; 16=TX11Vsyn0131; 

17=TX11Vsyn0133; 18=TX11Vsyn0134; 19=TX11Vsyn0135; 20=TX11Vsyn0136; 

21=TX11Vsyn0137; 22=TX11Vsyn0138; 23=TX11Vsyn0140; 24=TX11Vsyn0146; 

25=TX11Vsyn0153; 26=TX11Vsyn0154; 27=TX11Vsyn0156; 28=TX11Vsyn0158; 

29=TX11Vsyn0159; 30=TX11Vsyn0160; 31=TX11Vsyn0161; 32=TX11Vsyn0164; 

33=TX11Vsyn0165; 34=TX11Vsyn0167; 35=TX11Vsyn0168; 36=TX11Vsyn0169; 

37=TX11Vsyn0174; 38=TX11Vsyn0175; 39=TX11Vsyn0178; 40=TX11Vsyn0179; 

41=TX11Vsyn0180; 42=TX11Vsyn0182; 43=TX11Vsyn0185; 44=TX11Vsyn0188; 

45=TX11Vsyn0189; 46=TX11Vsyn0190; 47=TX11Vsyn0191; 48=TX11Vsyn0195; 

49=TX11Vsyn0196; 50=TX11Vsyn0197; 51=TX11Vsyn0199; 52=TX11Vsyn0201; 

53=TX11Vsyn0208; 54=TX11Vsyn0211; 55=TX11Vsyn0212; 56=TX11Vsyn0213; 

57=TX11Vsyn0216; 58=TX11Vsyn0217; 59=TX11Vsyn0219; 60=TX11Vsyn0225; 

61=TX11Vsyn0226; 62=TX11Vsyn0228; 63=TX11Vsyn0229; 64=TX11Vsyn0230; 

65=TX11Vsyn0232; 66=TX11Vsyn0234; 67=TX11Vsyn0238; 68=TX11Vsyn0240; 

69=TX11Vsyn0241; 70=TX11Vsyn0243; 71=TX11Vsyn0253; 72=TX11Vsyn0261; 

73=TX11Vsyn0263; 74=TX11Vsyn0264; 75=TX11Vsyn0265; 76=TX11Vsyn0266; 

77=TX11Vsyn0267; 78=TX11Vsyn0271; 79=TX11Vsyn0272; 80=TX11Vsyn0275; 

81=TX11Vsyn0277; 82=TX11Vsyn0279; 83=TX11Vsyn0280; 84=TX11Vsyn0282; 

85=TX11Vsyn0294; 86=TX11Vsyn0300; 87=TX11Vsyn0303; 88=TX11Vsyn0305; 

89=TX11Vsyn0306; 90=TX11Vsyn0308; 91=TX11Vsyn0309; 92=TX11Vsyn0312; 

93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 96=TAM113; 97=TAM304; 98=TAM305; 

99=TAM401; 100=TAMW101 
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Figure 2.6 Biplot showing the relationship among environments and combined mean (across five 

environments) for seeds per head (SeedsHead-1). Codes for environment are: CH2014= Chillicothe, 

DYB2014= Diyarbakir, CAS2014= Castroville, CS2014= College Station 2014, CS2013= College 

Station 2013 and Combined = combined mean. ID for lines are: 1=TX11Vsyn0101; 

2=TX11Vsyn0103; 3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 

7=TX11Vsyn0116; 8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 

11=TX11Vsyn0122; 12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 

15=TX11Vsyn0130; 16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 

19=TX11Vsyn0135; 20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 

23=TX11Vsyn0140; 24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 

27=TX11Vsyn0156; 28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 

31=TX11Vsyn0161; 32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 

35=TX11Vsyn0168; 36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 

39=TX11Vsyn0178; 40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 

43=TX11Vsyn0185; 44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 

47=TX11Vsyn0191; 48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 

51=TX11Vsyn0199; 52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 

55=TX11Vsyn0212; 56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 

59=TX11Vsyn0219; 60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 

63=TX11Vsyn0229; 64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 

67=TX11Vsyn0238; 68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 

71=TX11Vsyn0253; 72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 

75=TX11Vsyn0265; 76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 

79=TX11Vsyn0272; 80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 

83=TX11Vsyn0280; 84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 

87=TX11Vsyn0303; 88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 

91=TX11Vsyn0309; 92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 

96=TAM113; 97=TAM304; 98=TAM305; 99=TAM401; 100=TAMW101 



 

 

72 

 

 
Figure 2.7 GGE biplot showing the best genotypes for heads per square meter (HeadNo) in each test 

environment. Codes for environment are: CH2014= Chillicothe, DYB2014= Diyarbakir, CAS2014= 

Castroville, CS2014= College Station 2014, CS2013= College Station 2013 and Combined = 

combined mean. ID for lines are: 1=TX11Vsyn0101; 2=TX11Vsyn0103; 3=TX11Vsyn0110; 

4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 7=TX11Vsyn0116; 8=TX11Vsyn0118; 

9=TX11Vsyn0119; 10=TX11Vsyn0120; 11=TX11Vsyn0122; 12=TX11Vsyn0123; 

13=TX11Vsyn0124; 14=TX11Vsyn0127; 15=TX11Vsyn0130; 16=TX11Vsyn0131; 

17=TX11Vsyn0133; 18=TX11Vsyn0134; 19=TX11Vsyn0135; 20=TX11Vsyn0136; 

21=TX11Vsyn0137; 22=TX11Vsyn0138; 23=TX11Vsyn0140; 24=TX11Vsyn0146; 

25=TX11Vsyn0153; 26=TX11Vsyn0154; 27=TX11Vsyn0156; 28=TX11Vsyn0158; 

29=TX11Vsyn0159; 30=TX11Vsyn0160; 31=TX11Vsyn0161; 32=TX11Vsyn0164; 

33=TX11Vsyn0165; 34=TX11Vsyn0167; 35=TX11Vsyn0168; 36=TX11Vsyn0169; 

37=TX11Vsyn0174; 38=TX11Vsyn0175; 39=TX11Vsyn0178; 40=TX11Vsyn0179; 

41=TX11Vsyn0180; 42=TX11Vsyn0182; 43=TX11Vsyn0185; 44=TX11Vsyn0188; 

45=TX11Vsyn0189; 46=TX11Vsyn0190; 47=TX11Vsyn0191; 48=TX11Vsyn0195; 

49=TX11Vsyn0196; 50=TX11Vsyn0197; 51=TX11Vsyn0199; 52=TX11Vsyn0201; 

53=TX11Vsyn0208; 54=TX11Vsyn0211; 55=TX11Vsyn0212; 56=TX11Vsyn0213; 

57=TX11Vsyn0216; 58=TX11Vsyn0217; 59=TX11Vsyn0219; 60=TX11Vsyn0225; 

61=TX11Vsyn0226; 62=TX11Vsyn0228; 63=TX11Vsyn0229; 64=TX11Vsyn0230; 

65=TX11Vsyn0232; 66=TX11Vsyn0234; 67=TX11Vsyn0238; 68=TX11Vsyn0240; 

69=TX11Vsyn0241; 70=TX11Vsyn0243; 71=TX11Vsyn0253; 72=TX11Vsyn0261; 

73=TX11Vsyn0263; 74=TX11Vsyn0264; 75=TX11Vsyn0265; 76=TX11Vsyn0266; 

77=TX11Vsyn0267; 78=TX11Vsyn0271; 79=TX11Vsyn0272; 80=TX11Vsyn0275; 

81=TX11Vsyn0277; 82=TX11Vsyn0279; 83=TX11Vsyn0280; 84=TX11Vsyn0282; 

85=TX11Vsyn0294; 86=TX11Vsyn0300; 87=TX11Vsyn0303; 88=TX11Vsyn0305; 

89=TX11Vsyn0306; 90=TX11Vsyn0308; 91=TX11Vsyn0309; 92=TX11Vsyn0312; 

93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 96=TAM113; 97=TAM304; 98=TAM305; 

99=TAM401; 100=TAMW10 
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Figure 2.8 Biplot showing the relationship among environments and combined mean (across five 

environments) for heads per square meter (HeadNo). Codes for environment: CH2014= Chillicothe, 

DYB2014= Diyarbakir, CAS2014= Castroville, CS2014= College Station 2014, CS2013= College 

Station 2013 and COMBINED = combined mean. ID for lines are: 1=TX11Vsyn0101; 

2=TX11Vsyn0103; 3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 

7=TX11Vsyn0116; 8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 

11=TX11Vsyn0122; 12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 

15=TX11Vsyn0130; 16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 

19=TX11Vsyn0135; 20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 

23=TX11Vsyn0140; 24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 

27=TX11Vsyn0156; 28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 

31=TX11Vsyn0161; 32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 

35=TX11Vsyn0168; 36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 

39=TX11Vsyn0178; 40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 

43=TX11Vsyn0185; 44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 

47=TX11Vsyn0191; 48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 

51=TX11Vsyn0199; 52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 

55=TX11Vsyn0212; 56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 

59=TX11Vsyn0219; 60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 

63=TX11Vsyn0229; 64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 

67=TX11Vsyn0238; 68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 

71=TX11Vsyn0253; 72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 

75=TX11Vsyn0265; 76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 

79=TX11Vsyn0272; 80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 

83=TX11Vsyn0280; 84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 

87=TX11Vsyn0303; 88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 

91=TX11Vsyn0309; 92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 

96=TAM113; 97=TAM304; 98=TAM305; 99=TAM401; 100=TAMW101 
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Figure 2.9 Biplot showing relationship among GY (grain yield) and yield components SeedWt 

(singles seed weight), SeedsHead-1), and HeadNo (heads m-2). Codes for traits are: SEED/HEAD = 

seeds per head, HEAD_NO= Heads m-2, SEED_WT = single seed weight. ID for lines are: 

1=TX11Vsyn0101; 2=TX11Vsyn0103; 3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 

6=TX11Vsyn0113; 7=TX11Vsyn0116; 8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 

11=TX11Vsyn0122; 12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 

15=TX11Vsyn0130; 16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 

19=TX11Vsyn0135; 20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 

23=TX11Vsyn0140; 24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 

27=TX11Vsyn0156; 28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 

31=TX11Vsyn0161; 32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 

35=TX11Vsyn0168; 36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 

39=TX11Vsyn0178; 40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 

43=TX11Vsyn0185; 44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 

47=TX11Vsyn0191; 48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 

51=TX11Vsyn0199; 52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 

55=TX11Vsyn0212; 56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 

59=TX11Vsyn0219; 60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 

63=TX11Vsyn0229; 64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 

67=TX11Vsyn0238; 68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 

71=TX11Vsyn0253; 72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 

75=TX11Vsyn0265; 76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 

79=TX11Vsyn0272; 80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 

83=TX11Vsyn0280; 84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 

87=TX11Vsyn0303; 88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 

91=TX11Vsyn0309; 92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 

96=TAM113; 97=TAM304; 98=TAM305; 99=TAM401; 100=TAMW101 
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Figure 2.10 Biplot showing best genotypes for GY (grain yield) and yield components SeedWt 

(singles seed weight), SeedsHead-1), and HeadNo (heads m-2). Codes for traits are: SEED/HEAD = 

seeds per head, HEAD_NO= heads m-2, SEED_WT = single seed weight. ID for lines are: 

1=TX11Vsyn0101; 2=TX11Vsyn0103; 3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 

6=TX11Vsyn0113; 7=TX11Vsyn0116; 8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 

11=TX11Vsyn0122; 12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 

15=TX11Vsyn0130; 16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 

19=TX11Vsyn0135; 20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 

23=TX11Vsyn0140; 24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 

27=TX11Vsyn0156; 28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 

31=TX11Vsyn0161; 32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 

35=TX11Vsyn0168; 36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 

39=TX11Vsyn0178; 40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 

43=TX11Vsyn0185; 44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 

47=TX11Vsyn0191; 48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 

51=TX11Vsyn0199; 52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 

55=TX11Vsyn0212; 56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 

59=TX11Vsyn0219; 60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 

63=TX11Vsyn0229; 64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 

67=TX11Vsyn0238; 68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 

71=TX11Vsyn0253; 72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 

75=TX11Vsyn0265; 76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 

79=TX11Vsyn0272; 80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 

83=TX11Vsyn0280; 84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 

87=TX11Vsyn0303; 88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 

91=TX11Vsyn0309; 92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 

96=TAM113; 97=TAM304; 98=TAM305; 99=TAM401; 100=TAMW101 
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Table 2.14 Pearson correlation coefficients among GY (grain yield), TW (test weight), 

SeedWt (Single seed weight), SeedsHead-1, HeadNo (heads m-2), HS (heading score), 

and HT (height) based on combined mean values of five environments 

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level 

 ns not significant

 GY TW SeedWt SeedHead-1 HeadNo HS HT 

GY  0.22* 0.12 ns 0.41** 0.31** −0.26** −0.15 ns 

TW   0.38** −0.11 ns −0.03 ns 0.01 ns 0.05 ns 

SeedWt    −0.42** −0.30** −0.15 ns 0.42** 

SeedsHead-1     −0.32** 0.12 ns −0.06 ns 

HeadNo      −0.29** −0.36** 

HS       0.21* 

HT        
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Table 2.15 Estimates of direct and indirect effect of yield components on grain yield at 

five environments and combined mean of five environments 

* Significant at the 0.05 probability level; ** Significant at the 0.01 probability level ; ns

not significant 

Codes for environments are CAS2014 = Castroville, CH2014 = Chillicothe, Combined = 

across five environments, CS2014 = College Station, and DYB2014 = Diyarbakir  

Trait Seed Wt. Head No. Seed Head-1 Yield 

Combined (five environments) 

SeedWt 0.76 −0.24 −043 0.09 

HeadNo −0.22 0.83 −0.31 0.31 

SeedsHead-1 −0.32 −0.26 1.00 0.41 

CAS2014 

SeedWt 0.64 −0.29 −0.14 0.21* 

HeadNo −0.20 0.93 −0.19 0.54** 

SeedsHead-1 −0.13 −0.24 0.71 0.34** 

CH2014 

SeedWt 0.30 0.01 −0.06 0.26** 

HeadNo 0.01 0.95 −0.14 0.56** 

SeedsHead-1 −0.03 −0.18 0.57 0.36** 

DYB2014 

SeedWt 0.77 −0.24 −0.41 0.12ns 

HeadNo −0.18 1.02 −0.56 0.28** 

SeedsHead-1 −0.29 −0.53 1.08 0.26** 

CS2014 

SeedWt 0.47 −0.23 −0.20 0.04ns 

HeadNo −0.11 0.95 −0.03 0.81** 

SeedsHead-1 −0.18 −0.06 0.53 0.29** 

CS2013 

SeedWt 0.30 −0.43 −0.15 -0.28** 

HeadNo −0.12 1.06 −0.05 0.89** 

SeedsHead-1 −0.11 −0.11 0.44 0.22* 
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2.3.6.6 Stability analysis using GGE biplot (5 environments) 

Presence of G*E interaction in the study affects the usefulness of the genotypes 

by confounding genotype performance (Kang and Pham, 1991), which also necessitates 

estimating stability, repeatability, and heritability of the particular trait (Becker and 

Leon, 1988) 

The yield stability of each genotype across five environments was tested using 

the average environmental coordination (AEC) (Yan et al., 2003). A line known as the 

average environmental axis is drawn through the center of the biplot and average of 

principle components (PC1and PC2) of all environments. The AEC axis with double end 

arrow separates below average and above average GY means. In our study genotypes 9 

to 11 are the above average yielding and genotypes TX11Vsyn0175 (ID = 38) to 

TX11Vsyn0174 (ID = 37) are the below average yielding ones (Figure 2.11). The AEC 

axis with one direction arrow in the direction of highest GY mean is used to determine 

the best genotypes with high mean and good stability. Any genotype with a short vector 

(stable) and furthest to the right of the biplot in direction of the arrow (high mean) on 

AEC axis would have high performance and broad adaptation for the given trait (refer to 

figure in page 80). Genotypes with high GY mean and long vectors are best suited for 

specific environments. Environments are further classified into two groups; group A 

consisted of environments CS2013, CAS2014, and CS2014 and group B consisted of 

environments DYB2014 and CH2014. Genotype TX11Vsyn0191 (ID = 47) was the best 

in group A due to its high GY mean and good stability. Genotype TX11Vsyn0213 (ID = 

56) and TX11Vsyn0294 (ID = 85) are good for specific environments within group B.
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Apart from TX11Vsyn0191 (ID = 47), genotypes TX11Vsyn0158 (ID = 28), 

TX11Vsyn0182 (ID = 42), TX11Vsyn0230 (ID = 64) had good stability but have lower 

GY mean compared to TX11Vsyn0191 (ID = 47). Genotype TX11Vsyn0122 (ID = 11) 

was the best in group B due to its high GY mean and good stability. Genotypes 

TX11Vsyn0234 (ID = 66) and TX11Vsyn0225 (ID = 60) had low GY mean but high 

stability (Figure 2.11 and Table 2.16). These lines might be good for low yielding 

environments with highly unpredictable yield levels. 

In conclusion, environments that are better discriminating and have closer angles 

to the average environmental are good for selecting generally adapted germplasm. 

Discriminating but non-representative test environments are useful for selecting 

specifically adapted genotypes if the target environment divided into mega environments 

(Yan et al., 2003; McDermott and Coe, 2012).  
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Figure 2.11 GGE biplot showing environment discrimination ability, genotype mean performance 

and stability. Codes for environment are: CH2014=Chillicothe, DYB2014=Diyarbakir, 

CAS2014=Castroville, CS2014= College Station-I, CS2013= College Station-II, and COMBINED = 

combined mean across five environments. ID for lines are: 1=TX11Vsyn0101; 2=TX11Vsyn0103; 

3=TX11Vsyn0110; 4=TX11Vsyn0111; 5=TX11Vsyn0112; 6=TX11Vsyn0113; 7=TX11Vsyn0116; 

8=TX11Vsyn0118; 9=TX11Vsyn0119; 10=TX11Vsyn0120; 11=TX11Vsyn0122; 

12=TX11Vsyn0123; 13=TX11Vsyn0124; 14=TX11Vsyn0127; 15=TX11Vsyn0130; 

16=TX11Vsyn0131; 17=TX11Vsyn0133; 18=TX11Vsyn0134; 19=TX11Vsyn0135; 

20=TX11Vsyn0136; 21=TX11Vsyn0137; 22=TX11Vsyn0138; 23=TX11Vsyn0140; 

24=TX11Vsyn0146; 25=TX11Vsyn0153; 26=TX11Vsyn0154; 27=TX11Vsyn0156; 

28=TX11Vsyn0158; 29=TX11Vsyn0159; 30=TX11Vsyn0160; 31=TX11Vsyn0161; 

32=TX11Vsyn0164; 33=TX11Vsyn0165; 34=TX11Vsyn0167; 35=TX11Vsyn0168; 

36=TX11Vsyn0169; 37=TX11Vsyn0174; 38=TX11Vsyn0175; 39=TX11Vsyn0178; 

40=TX11Vsyn0179; 41=TX11Vsyn0180; 42=TX11Vsyn0182; 43=TX11Vsyn0185; 

44=TX11Vsyn0188; 45=TX11Vsyn0189; 46=TX11Vsyn0190; 47=TX11Vsyn0191; 

48=TX11Vsyn0195; 49=TX11Vsyn0196; 50=TX11Vsyn0197; 51=TX11Vsyn0199; 

52=TX11Vsyn0201; 53=TX11Vsyn0208; 54=TX11Vsyn0211; 55=TX11Vsyn0212; 

56=TX11Vsyn0213; 57=TX11Vsyn0216; 58=TX11Vsyn0217; 59=TX11Vsyn0219; 

60=TX11Vsyn0225; 61=TX11Vsyn0226; 62=TX11Vsyn0228; 63=TX11Vsyn0229; 

64=TX11Vsyn0230; 65=TX11Vsyn0232; 66=TX11Vsyn0234; 67=TX11Vsyn0238; 

68=TX11Vsyn0240; 69=TX11Vsyn0241; 70=TX11Vsyn0243; 71=TX11Vsyn0253; 

72=TX11Vsyn0261; 73=TX11Vsyn0263; 74=TX11Vsyn0264; 75=TX11Vsyn0265; 

76=TX11Vsyn0266; 77=TX11Vsyn0267; 78=TX11Vsyn0271; 79=TX11Vsyn0272; 

80=TX11Vsyn0275; 81=TX11Vsyn0277; 82=TX11Vsyn0279; 83=TX11Vsyn0280; 

84=TX11Vsyn0282; 85=TX11Vsyn0294; 86=TX11Vsyn0300; 87=TX11Vsyn0303; 

88=TX11Vsyn0305; 89=TX11Vsyn0306; 90=TX11Vsyn0308; 91=TX11Vsyn0309; 

92=TX11Vsyn0312; 93=TX11Vsyn0313; 95=TAM111; 94=TAM112; 96=TAM113; 97=TAM304; 

98=TAM305; 99=TAM401; 100=TAMW101 
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Table 2.16 Mean grain yield (GY), test weight (TW), single seed weight (SeedWt), seeds per head (SeedsHead-1), heads per 

square meter (HeadNo), plant height (HT), heading score (HS) of top ten yielding synthetic derived wheat lines and check 

varieties  across five environments 

 

 

 

 

 

 

 

 

 

 

 

 

ID Genotype GY TW SeedWt Seeds 

Head-1 

HeadNo HT HS 

  t ha-1 kg hL-1 mg count Heads m-2 cm scale 1-

5 

56 TX11Vsyn0213 3.46 71.8 30.6 39 272 81.6 2.4 

11 TX11Vsyn0122 3.46 72.7 32.3 42 246 88.4 3.2 

47 TX11Vsyn0191 3.44 76.8 31.1 37 297 85.4 2.5 

85 TX11Vsyn0294 3.36 69.9 29.4 42 254 81.9 2.6 

1 TX11Vsyn0101 3.31 73.2 33.9 37 250 88.9 2.8 

21 TX11Vsyn0137 3.27 72.9 32.9 35 269 84.3 3.8 

12 TX11Vsyn0123 3.22 72.0 31.3 40 243 89.3 2.3 

48 TX11Vsyn0195 3.22 71.5 35.8 37 226 94.0 2.7 

61 TX11Vsyn0226 3.19 72.7 33.7 33 268 84.1 2.1 

33 TX11Vsyn0165 3.19 71.1 32.9 35 257 90.5 2.8 

95 TAM111 3.10 73.6 30 38 251 84.4 3.1 

94 TAM112 2.98 70.3 28.4 33 291 75.8 2.2 

96 TAM113 3.38 73.5 29.6 35 302 78.6 2.9 

97 TAM304 3.36 69.7 26.7 41 283 73.4 2.4 

98 TAM305 2.58 71.8 28.6 37 235 75.8 2.4 

99 TAM401 3.01 71.1 29.3 41 249 85.6 2.3 

100 TAMW101 2.71 75.3 34.9 26 290 75.6 3.1 

 Mean 2.89 71.9 31.8 35 254 85.6 2.8 

 Minimum 2.19 68.7 26.6 26 186 73.4 1.8 

 Maximum 3.46 76.8 42.4 43 338 98.8 4.3 
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3. GENETIC PARAMETERS AND RESPONSE TO INDIRECT

SELECTION FOR GRAIN YIELD IN SYNTHETIC DERIVED 

WHEAT LINES 

3.1 Introduction 

A number of studies have reported that the rate of genetic gain for grain yield in 

wheat (Triticum aestivum L.) has drastically decreased since the onset of the Green 

Revolution (Graybosch and Peterson, 2010; Gill et al., 2004; Patrignani et al., 2014). 

The rate of genetic gain varied from 0.1% in poor to 2-3% in irrigated environments 

(Pingali and Rajaram, 1999). Globally, grain yield of wheat has been increasing at 

annual rate of 1%. However, grain yield has to increase at an annual rate of 2% to meet 

the needs of the growing world’s population (Gill et al., 2004). 

Crop scientists around the world have been exploring new ways to improve the 

genetic gain for grain yield, including the use of wheat wild relatives. Synthetic 

hexaploid wheat (SHW) developed by hybridizing Triticum turgidum L. and Aegilops 

tauschii has contributed to improving the genetic diversity in wheat. A number of studies 

have reported synthetic wheat’s have contributed new source of resistance to biotic 

stresses and tolerance to abiotic tolerance (Mujeeb Kazi et al, 2000a, 2000b, 2001a, 

2001b, 2001c) and it is believed that synthetic might have contributed certain set of 

alleles for yield potential. Although, a number of studies show the utility of synthetic 
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wheat in breeding programs, few studies have been conducted to understand the genetic 

parameters associated with SHW and synthetic derived wheat (SDW). 

The efficiency of selection depends on the magnitude and nature of the genetic 

variation present in a population (Farshadfa et al., 2013) and without genetic variation, 

the progress of a trait is impractical. A detailed study to understand the nature and 

magnitude of the genetic variation present in a set of SDW populations is of importance 

for planning ways to improve genetic gain for grain yield in the U.S. Great Plains and 

other wheat production areas around the world. A number of biometrical methods are 

available to determine the genetic variation present in any population of a crop (Wolie et 

al., 2013). 

Besides genetic variability, many other factors are important for the success of a 

breeding program. For instance, knowledge of heritability of a trait plays a significant 

role by discerning the reliability of the phenotypic value as a guide to the genotypic 

value. Knowledge of narrow-sense (h2) and broad-sense heritability (H2) are very 

important in determining the selection procedure for the trait, for predicting gain from 

selection, and determining the relative importance of genetic effects. 

Genetic advance (GA), a.k.a. the breeder’s equation, indicates the magnitude of 

expected genetic gain (GG) from one cycle of selection at certain selection intensity (i) 

(Singh, 2001). A high heritability value along with high genetic gain is the rule of thumb 

that a breeder follows while making selection. Therefore, it is important to estimate GG, 

H2, and genetic and phenotypic variations for any trait that is intended for improvement. 
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The ultimate objective of most plant breeding programs is to increase grain yield 

per se without jeopardizing end-use quality and tolerance to biotic and abiotic stresses. 

However, direct selection for grain yield is more laborious and time consuming, as large 

numbers of advanced lines need to be evaluated in multiple years at multiple locations. 

Moreover, grain yield is poorly heritable and highly influenced by genotype-by-

environment (G*E) interaction (Reynolds et al., 1999). This has compelled researchers 

to identify new ways that can assist in improving grain yield potential in wheat. Many 

studies have experimented with different ways of conducting different indirect selection 

for grain yield. Babar et al., (2007) have conducted studies to use spectral reflectance as 

indirect selection criteria to select for higher grain yield. Similarly, Gutierrerz et al. 

(2011) have used canopy temperature as a selection criterion for higher grain yield. 

However, few studies have investigated the efficiency of indirect selection for grain 

yield via yield components such as numbers of heads for square meter (HeadNo), seeds 

per head (SeedsHead-1), and single seed weight (SeedWt).  

Cooper et al. (2012, 2013) conducted multiple studies on SDW populations in the 

BC1F4 and BC1F5 generations.  They reported that grain yield (GY) had a moderate 

correlation with HeadNo (0.54) and SeedsHead-1 (0.53). Among all yield and yield 

components, SeedWt (0.32) was the most heritable followed by SeedsHead-1 (0.25), and 

HeadNo (0.15) but the heritability for grain yield per se was poor in these studies. 

Therefore, we hypothesized that indirect selection for HeadNo and SeedsHead-1 could 

increase grain yield in SDW in spite of yield compensatory effects. The objectives of 

this study were to 1) understand the genetic and phenotypic variability, heritability, and 
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genetic gain in SDW for yield, its components, and other important agronomic traits and 

2) determine the efficiency of indirect selection for grain yield using components such as

HeadNo and SeedsHead-1 

3.2 Materials and methods 

3.2.1 Plant material 

Germplasm used in this study was developed by backcrossing selected CIMMYT 

(International Maize and Wheat Improvement Center) SHW from Elite I and Elite II set 

to Texas A&M AgriLife Research hard red winter wheat varieties, TAM 111 and TAM 

112. Breeders at Texas A&M AgriLife Research had developed many SDW populations 

by hybridizing eight SHW from Elite I set and two SHW from Elite II set to TAM 111 

and 112. Based on agronomic, morphological, and biotic stress tolerance heads were 

carefully chosen from selected SDW populations and advanced to head-rows (BC1 F5:6) 

and later generations. We started with 321 SDW lines as head-rows in 2011. Based on 

HeadNo and SeedsHead-1 a set of 213 lines were selected from the head-rows generation 

and advanced to BC1F5:7 and later generations. For this chapter, only BC1F5:8 and BC1F5:9 

generations data were used for calculations. 

3.2.2 Experimental design and testing locations 

In 2013, the set of 213 lines were laid out in an augmented design at Colleges 

Station, TX (latitude = 30.5oN, longitude = 96.4oW). The following year, a selected set 

of 93 lines from the 213 lines were laid out in an alpha lattice design with two 
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replications at Castroville (CAS), TX (latitude = 29.35oN, longitude = 98.88oW), 

Chillicothe (CH), X (latitude = 34.2oN, longitude = 99.5oW), Diyarbakir (DYB), Turkey 

(latitude = 38.1422 oN, longitude = 40.2711 oE), and College Station, TX. 

 

3.2.3 Traits recorded 

The traits measured or estimated were grain yield (GY) in t ha-1, test weight 

(TW) in kg hL-1, HeadNo in heads m-2, SeedsHead-1, SeedWt in mg, plant height (HT) in 

cm, and heading score (HS) using a scale of 1 to 5; where 1 = very early heading, 2 = 

early heading, 3 = medium heading, 4 = late heading, 5 = very late heading.  

 

3.2.4 Statistical analysis 

Individual analysis of variance for each environment was done using Proc GLM 

model of SAS 9.4.  

 

3.2.5 Genetic parameter estimates 

The genotypic (𝜎𝑔
2) and phenotypic  (𝜎𝑝

2)  variances for individual environments 

(Formula 3.1 to 3.3) were estimated using the methods described by Fehr (1989), where 

MSg = mean square for genotype, MSg*e = mean square for genotype-by-environment 

interaction, MSerr = mean square for error, r = replication, and e= environment. Variance 

components were determined for traits such as GY, TW, SeedWt, SeedsHead-1, HeadNo, 

HT, and HS.   
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  Broad sense heritability (H2) for individual environments (Formula 3.4) was 

estimated as described by Falconer (1989) and Holland et al. (2003). Formula 3.4a was 

used to estimate heritability values in the alpha lattice experiment. Formula 3.4b was 

used to estimate heritability values in the augmented design experiment. Heritability 

estimates were conducted on entry mean basis.   

Realized heritability (ℎ𝑅
2) was determined for GY and HeadNo as described by 

Guthrie et al. (1984). These calculations were done using the mean of 10% highest and 

10% lowest yielding lines from BC1F5:8 and observing their response in the BC1F5:9 

generation using formula 3.5.  

Genetic coefficient of variation (GCV) and phenotypic coefficient of variation 

(PCV) were estimated using formulae 3.6 and 3.7, respectively (Johnson et al., 1955), 

where, 𝜎𝑔
2 = genotypic variance, 𝜎𝑝

2 = phenotypic variance, and �̅� = mean value of a 

particular trait. 

 Genetic gain (GG) was calculated using formula 3.8 as suggested by Allard 

(1960), where, K = constant at 10% selection intensity, 𝜎𝑝 = phenotypic standard 

deviation, and h2 = narrow-sense heritability of the trait. Genetic gain mean (GGM) was 

determined using formula 3.9 as described by Johnson et al. (1955), where, GG = 

genetic gain and �̅� = mean value of a particular trait. 

 Phenotypic correlation coefficient (rp) and genotypic correlation coefficient (rg) 

were determined using formulae 3.10 and 3.11, respectively (Miller et al., 1958), where, 

𝐶𝑂𝑉𝑝(𝑥,𝑦) = phenotypic covariance between traits x and y, 𝜎𝑝(𝑥)
2  = phenotypic variance 
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for x, 𝜎𝑔(𝑦)
2  = phenotypic variance for y, 𝐶𝑂𝑉𝑔(𝑥,𝑦) = genetic covariance between x and 

y, 𝜎𝑔(𝑥)
2  = genotypic variance for trait x, and  𝜎𝑔(𝑦)

2  = genotypic variance for trait y.  

 Expected response (R) to direct selection for a primary trait such as GY was 

calculated using formula 3.12 (Falconer, 1996), where,  ℎ𝑥
2 = narrow sense heritability of 

the primary trait (GY), √𝜎𝑝(𝑥)
2

 = phenotypic standard deviation for primary trait, i = 10% 

selection intensity expressed as standardized units. 

Formula 3.13 was used to calculate the correlated response (CR) in the primary 

trait (GY) resulted from the selection for a secondary trait (HeadNo or SeedsHead-1 or 

SeedWt) as described by Falconer (1996). The components of this formula are described 

as follow: ℎ𝑥  = square root of narrow sense heritability of the primary trait, ℎ𝑦 = square 

root of narrow sense heritability of secondary trait,   𝑟𝑔  = genetic correlation between 

primary and secondary traits, √𝜎𝑝(𝑥)
2

 = phenotypic standard deviation of primary trait, 

and i = 10% selection intensity expressed as standardized units. 

 The relative efficiency (
𝐶𝑅

𝑅
) of indirect selection (using HeadNo or SeedWt or 

SeedsHead-1) for GY versus direct selection for GY was calculated using formula 3.14 

(Falconer, 1996), where, ℎ𝑦 = square root of heritability of secondary trait (HeadNo or 

SeedsHead-1 or SeedWt), ℎ𝑥  = square root of heritability of primary trait, 𝑟𝑔  = genetic 

correlation between primary and secondary traits.  

The rationale for doing indirect selection was that in BC1F5 generation HeadNo 

had a highest correlation (0.54) with the GY and higher heritability (0.15) than the grain 
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yield (-0.21). From this study, we also came to know that SeedWt (0.30) had higher 

heritability than SeedsHead-1 and HeadNo. Therefore, we proposed optimizing either 

HeadNo or SeedsHead-1 would increase GY in spite of yield compensatory effects. 

Hence, this study was conducted to understand the efficiency of indirect selection for 

GY via the use of yield components (HeadNo or SeedsHead-1 or SeedWt). As yield is a 

complex quantitative trait, any method for predicting it early on in the pipeline would 

help to speed the breeding process. 

Individual variances:  
  

Genetic variance(𝜎𝑔
2):                                         MSg – MSerr                        ...Formula 3.1 

                                                                                            r                  

                      

Error variance(𝜎𝑒𝑟𝑟
2 ):                                               MSerr                                            ... Formula 3.2 

 

Phenotypic variance(𝜎𝑝
2):                                       𝜎𝑔

2 +𝜎𝑒𝑟𝑟
2

                       .....Formula 3.3 

                                                                                                    

Heritability (H2) alpha lattice:                        (
𝜎𝑔
2

𝜎𝑔
2+

𝜎𝑒𝑟𝑟
2

𝑟

)                           ...Formula 3.4a 

 

Heritability (H2) augmented design:                      
𝜎𝑔
2

𝜎𝑝
2                                  ...Formula 3.4b 

 

Realized heritability(ℎ𝑅
2):                BC1F5:9 high – BC1F5:9 low                   ...Formula 3.5 

                                                                                      BC1F5:8 high – BC1F5:8 low    

 

 

Genotypic coefficient of variation (GCV):                

√𝜎𝑔
2

�̅�
 X100                  ...…Formula 3.6 

 

Phenotypic coefficient of variation (PCV):                

√𝜎𝑝
2

�̅�
 X100                 .......Formula 3.7     
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Genetic gain (GG):                                              (K) 𝜎𝑝 (h2)                     ...…Formula 3.8 

 

Genetic gain mean (GGM):                                     
𝐺𝐺

�̅�
  X100                   ...…Formula 3.9 

                                                                    

Phenotypic correlation coefficient (rp):                   
𝐶𝑂𝑉𝑝(𝑥,𝑦)

√𝜎𝑝(𝑥)
2  𝜎𝑝(𝑦)

2
              .....Formula 3.10 

                                                                        

Genotypic correlation coefficient (rg):                      
𝐶𝑂𝑉𝑔(𝑥,𝑦)

√𝜎𝑔(𝑥)
2  𝜎𝑔(𝑦)

2
            .... Formula 3.11 

                                                                                

 Response to selection (𝑅):                                      i  ℎ𝑥
2  √𝜎𝑝(𝑥)

2
                    ......Formula 3.12 

 

 Correlated response to selection (𝐶𝑅):             i  ℎ𝑦 ℎ𝑥   𝑟𝑔 √𝜎𝑝(𝑥)
2       ….....Formula 3.13 

 

 Efficiency of selection:       
𝐶𝑅

𝑅
                             

ℎ𝑦

ℎ𝑥
   𝑟𝑔                         ...... Formula 3.14 

                                                                                                                          

 

3.3 Results and discussion 

3.3.1 Analysis of variance 

Analysis of variance for individual environments showed significant differences 

among genotypes for most of the traits in this study, except for GY in CAS2014 and 

CS2014 (refer to tables on page 36 to 40). This suggested that there was a considerable 

amount of genetic variability among the SDW lines. These 93 SDW lines were selected 

from 12 populations with different pedigrees.  
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3.3.2 Estimation of heritability 

Heritability values of more than 0.8 are considered high, values  0.79 - 0.4 

medium, and less than 0.39 low (Singh et al., 2001). Wolie et al. (2013) indicated that it 

is easy to select for and advance traits possessing high as opposed to poor heritability 

values due to the high environmental influence on the latter. 

Values of H2 for individual environments and across five environments are 

presented on page 97 and 98. Mean values across five environments indicated that HS 

(0.88), SeedWt (0.82), HT (0.82), and TW (0.84) were highly heritable, SeedsHead-1 

(0.55) was moderately heritable, and GY (0.38) and HeadNo (0.14) were poorly 

heritable (Table 3.1). Most of these results are in accordance with the studies conducted 

by Meena et al. (2013). Moderate to high heritability for HT, HS, and SeedWt were 

reported by Hokrani et al. (2013). Considering the range of environments where trials 

were conducted and with additional stress factors (drought, leaf and stripe rust, root rot, 

and lodging) in different environments, it was expected to see the trends of this nature 

for these traits. In addition, traits that are associated with reproductive fitness are likely 

to have low heritability (Falconer, 1961).In most of the individual environments, 

HeadNo had the lowest, SeedsHead-1 moderate, and SeedWt had the highest heritability 

values.  

Realized heritability(ℎ𝑅
2) accounts for the additive genetic variation that is 

transmitted to the subsequent generation and is the true heritability that is of most 

practical value to breeders (Kharkwal and Jain, 2004). Falconer (1989) indicated that 

low heritability values are associated with low additive genetic variation and high 
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phenotypic variation. In contrary to this statement, Visscher et al. (2008) pointed out that 

low heritability doesn’t necessarily mean low additive variance. Low heritability might 

be the result of small proportion of variation caused by genotype out of all the observed 

variation. High phenotypic variation can arise for multiple reasons such as gene 

mutation, selection pressure, and environmental factors. Realized heritability calculated 

in this study indicated that GY was poorly to moderately heritable with a range of 0.29 

to 0.55 values. HeadNo was classified as low to moderately heritable with a range of 

0.37 to 0.76 values and SeedsHead-1 was classified as moderately to highly heritable 

with a range of 0.44 to 0.82 values. SeedWt was also classified as moderately to highly 

heritable with a range of 0.47 to 0.83 values (Table 3.2). These realized heritability 

values were determined at 10% selection intensity. Based on the moderately heritability 

values for most of these traits, it seems there is good scope for improving each of these 

traits. 

 

3.3.3 Estimation of variance components 

 

 Yield and its components in wheat are quantitative in nature and are influenced 

by environmental conditions (Wu et al., 2012). Therefore, understanding the phenotypic 

and genotypic variations present in the population by studying the PCV and GCV can be 

useful in estimating the scope for improvement by selection (Wolie et al., 2013). This 

would in turn help in improving the efficiency of breeding programs by redesigning the 

selection processes. A breeder’s main objective is to have a high percentage of GCV that 

provides more choice for selection. However, a certain percent of variation could be 
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attributed to environmental factors, which cannot be inherited. Therefore, determining 

the percentage of environmental influence on visible variation is very critical. The 

ultimate objective of most breeding programs is to make incremental increases in yield 

potential while maintaining end-use quality and tolerance to biotic and abiotic stresses. 

Therefore, most breeding programs desire to have high GCV values with minimal 

difference between PCV and GCV. The results that are presented in tables on page 97 to 

102 show �̅�, 𝜎𝑔
2 , 𝜎𝑝

2 , H2, GCV, PCV, GG, and GGM for each trait in each individual 

environment (Table 3.3, Table 3.4, Table 3.5, Table 3.6, and Table 3.7) and also across 

the five environments (Table 3.8). Since there weren’t any standardized statistical 

methods to combine the alpha lattice design studies with an augmented design, we 

determined the mean values across five environments by weighed mean analysis. Having 

more environments and replications increased the accuracy of estimation for these traits. 

Combined analysis of the five environments showed that GCV/PCV ratio for 

SeedWt (96%) was highest, followed by TW (95%), HS (91%), HT (85%), SeedsHead-1 

(63%), GY (47%), and HeadNo (31%) (Table 3.8). The highest values indicated that 

environment had least influence on the expression of these traits and prospects of gain 

from selection were very high for these traits and vice versa for lower value traits. High 

influence of the environment fades one’s ability to see and select for the variation that is 

heritable and hence results in low selection gains. Similar results were reported by 

Meena et al. (2014) and Abinasa et al. (2011). Based on studies conducted in groundnut 

by Deshmukh et al. (1986), PCV and GCV values more than 20% were considered to be 

high, values between 10-20% to be moderate, and values less than 10% to be low. 
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Table 3.1 Mean, genotypic variance (𝜎𝑔
2), phenotypic variance (𝜎𝑝

2), 𝑒𝑟𝑟𝑜𝑟 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒   (𝜎𝑒𝑟𝑟
2 ) and heritability (H2) for GY 

(grain yield), TW (test weight), SeedWt (single seed weight), SeedsHead-1, HeadNo (heads m-2), HT (plant height), and HS 

(heading score) under different environments  

Trait GY TW SeedWt SeedsHead-1 HeadNo HT HS 

 t ha-1 kg hL-1 Mg count Heads m-2 Cm scale 1-5 

CAS2014 

Mean 3.45 78.6 34.3 36 289 90.6 3 

𝜎𝑔
2 0.01 4.0 1.49x105 16 223 42.1 0.98 

𝜎𝑒𝑟𝑟
2  0.67 0.9 0.34X105 14 6346 1.7 0.21 

𝜎𝑝
2 0.69 4.9 0.00001.824 30 6569 43.8 1.19 

H2 0.04 0.9 0.90 0.70 0.07 0.98 0.90 

CH2014 

Mean 1.01 71.1 26.1 22 181 58.8 2 

𝜎𝑔
2 0.06 3.3 0.39 X105   6 1062 13.3 0.20 

𝜎𝑒𝑟𝑟
2  0.03 1.8 0.42 X105 11 5422 13.1 0.07 

𝜎𝑝
2 0.09 5.1 0.81 X105 16 6484 26.4 0.27 

H2 0.81 0.79 0.65 0.51 0.28 0.67 0.85 

DYB2014 

Mean 5.33 83.3 34.0 38 431 93.8 3 

𝜎𝑔
2 0.13 1.2 1.16 X105 15 350 53.8 0.53 

𝜎𝑒𝑟𝑟
2  0.49 0.7 0.66 X105 38 9109 50.2 0.42 

𝜎𝑝
2 0.62 1.9 1.83 X105 53 9460 104 0.95 

H2 0.34 0.63 0.78 0.44 0.07 0.68 0.72 

CS2014 

Mean 1.88 70.6 28.8 43 158 87.2 3 

𝜎𝑔
2 0.04 4.46 0.79 X105 13 16 32.5 0.78 

𝜎𝑒𝑟𝑟
2  0.23 0.92 0.43 X105 28 2018 1.6 0.10 

𝜎𝑝
2 0.27 5.38 1.22 X105 41 2034 34.1 0.87 

H2 0.26 0.91 0.79 0.47 0.02 0.98 0.94 
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Codes for environments are CAS2014 = Castroville, CH2014 = Chillicothe, Combined = across four environments, CS2014= 

college station, and DYB2014 = Diyarbakir 

 

 

 

Table 3.2 Realized heritability (ℎ𝑅
2)values for grain yield (GY), heads per square meter (HeadNo), seeds per head     

(SeedHead-1), and single seed weight (SeedWt) for CS2014 (College Station), CAS2014 (Castroville), CH2014 (Chillicothe), 

DYB2014 (Diyarbakir) 

 

 

 

 

 

 

Table 3.1 Continued  

Trait GY TW SeedWt SeedsHead-1 HeadNo HT HS 

CS2013 

Mean 2.65 76.1 36.1 37 203 99 3 

𝜎𝑔
2 0.2699 36.6684 21.60 X105 20.6 1135 80.14 1.413 

𝜎𝑒𝑟𝑟
2  0.3429 0.6616 0.21 X105 12.55 3110 20.68 0 

𝜎𝑝
2 0.6128 37.33 21.82 X105 33.15 4245 100.82 1.413 

H2 0.44 0.98 0.99 0.62 0.27 0.79 1 

Combined 

Mean 2.86 75.94 31.9 35.2 252 85.9 2.80 

𝜎𝑔
2 0.10 9.93 5.1X105 14.0 557 44.4 0.78 

𝜎𝑒𝑟𝑟
2  0.35 1.00 0.4 X105 20.8 5201 17.4 0.16 

𝜎𝑝
2 0.45 10.93 5.5 X105 34.8 5758 61.8 0.94 

H2 0.38 0.84 0.82 0.55 0.14 0.82 0.88 

 GY HeadNo SeedsHead-1 SeedWt 

CS2013-CS2014 0.32 0.37 0.82 0.64 

CS2013-CAS2014 0.49 0.61 0.78 0.83 

CS2013-CH2014 0.29 0.58 0.44 0.47 

CS2013-DYB2014 0.55 0.76 0.84 0.63 
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However, based on studies conducted in wheat, Abinasa et al. (2011) have reported 

values more than 10% were considered to be high and values less than 5% to be low. For 

this study GCV values more than 20% were recorded for HS (31%) and SeedWt (22%), 

10 to 20% for GY (11%) and SeedsHead-1 (11%), 5 to 10% for HeadNo (9%), HT (8%), 

and less than 5% were documented for TW (4%) (Table 3.8). Selections for HeadNo and 

SeedsHead-1 were done at the BC1F5 and in BC1F5:8 generations, and this might have 

resulted in moderate to low genetic variation for these traits. Similarly, multiple 

selections for medium plant height were done from early to advanced generations. This 

might have reduced the available amount of genetic variation for HT. The PCV and 

GCV values for TW were less than 5%, suggesting that it is very difficult to improve this 

trait through plant breeding. Similar results were reported by Abinasa et al. (2011). The 

PCV values for HeadNo (30%), GY (24%) and SeedWt (23%) were considered very 

high. These results indicated that there was a broad range of diversity for these traits. A 

greater proportion of the variation for HeadNo and GY was caused by the environmental 

coefficient of variation (ECV). In conclusion, there seems to be ample amount of 

heritable variation in the SDW lines that can be utilized to improve yield and its 

components via both direct and indirect selection. 
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Table 3.3 Estimates of genotypic (𝜎𝑔
2) and phenotypic (𝜎𝑝

2) variance, genotypic (GCV) and phenotypic coefficient of variation 

(PCV), heritability (H2), genetic gain (GG) and genetic gain as percent mean (GGM) for Castroville, TX in 2014 at 10% 

selection intensity (K=1.76). Where, GY = grian yield, TW = test weight, SeedWt = Single seed weight, SeedsHead-1 = Seeds 

per head, HeadNo = heads per square meter, HT = plant height, HS = heading score 

  
Trait Mean 𝝈𝒈

𝟐  𝝈𝒑
𝟐 H2 GCV (%) PCV (%) GG GGM (%) 

GY 3.45 0.014 0.68 0.04 3.4 24.0 0.06 1.7 

TW 78.6 4 5.0 0.9 2.6 2.8 3.5 4.5 

SeedWt  34.3 1.5 X105 1.8 X105 0.9 11.2 12.5 0.68 19.7 

SeedHead-1 36 16 30 0.7 11 15 7 18.9 

HeadNo 289 223 6569 0.07 5 28 9 3.2 

HT 90.6 42.1 43.8 0.98 7.2 7.3 11.4 12.6 

HS 3 1 1.2 0.9 33.9 37.4 1.7 59.4 
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Table 3.4 Estimates of genotypic (𝜎𝑔
2) and phenotypic (𝜎𝑝

2) variance, genotypic (GCV) and phenotypic coefficient of variation 

(PCV), heritability (H2), genetic gain (GG) and genetic gain as percent mean (GGM) for Chillicothe, TX in 2014 at 10% 

selection intensity (K=1.76).Where, GY = grian yield, TW = test weight, SeedWt = Single seed weight, SeedsHead-1 = Seeds   

per head, HeadNo = Heads per square meter, HT = Plant height, HS = Heading score 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Trait Mean 𝝈𝒈
𝟐  𝝈𝒑

𝟐 H2 GCV (%) PCV (%) GG GGM (%) 

GY 1.01 0.058 0.072 0.81 23.9 26.6 0.38 37.7 

TW 71.1 3.3 4.2 0.79 2.5 2.9 2.8 4.0 

SeedWt  26.1 0.4 X105 0.6 X105 0.65 7.5 9.3 0.28 10.6 

SeedHead-1 22 6 11 0.51 10.8 15 3 13.6 

HeadNo 181 1062 3773 0.28 18 34 30 16.8 

HT 58.8 13.3 19.8 0.67 6.2 7.6 5.2 8.9 

HS 2 0.2 0.2 0.85 21.0 22.8 0.7 34.2 
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Table3.5 Estimates of genotypic (𝜎𝑔
2) and phenotypic (𝜎𝑝

2) variance, genotypic (GCV) and phenotypic coefficient of variation 

(PCV), heritability (H2), genetic gain (GG) and genetic gain as percent mean (GGM) for Diyarbakir, Turkey in 2014 at 10% 

selection intensity (K=1.76). Where, GY = grian yield, TW = test weight, SeedWt = Single seed weight, SeedsHead-1 = Seeds 

per head, HeadNo = heads per square meter, HT = plant height, HS = heading score 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trait  Mean 𝝈𝒈
𝟐  𝝈𝒑

𝟐 H2 GCV (%) PCV (%) GG GGM (%) 

GY 5.33 0.13 0.37 0.34 6.7 11.4 0.37 6.9 

TW 83.3 1.2 1.6 0.63 1.7 2.0 1.4 2.2 

SeedWt  34.0 1.2 X105 1.5 X105 0.78 10.0 11.4 0.53 15.6 

SeedHead-1 38 15 34 0.44 10.2 15.4 4 11.8 

HeadNo 431 350 4905 0.07 4.3 16.3 9 2.0 

HT 93.8 53.8 78.9 0.68 7.8 9.5 10.7 11.4 

HS 3 0.5 0.7 0.72 24.8 29.3 1.1 37.0 
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Table 3.6 Estimates of genotypic (𝜎𝑔
2) and phenotypic (𝜎𝑝

2) variance, genotypic (GCV) and phenotypic coefficient of variation 

(PCV), heritability (H2), genetic gain (GG) and genetic gain as percent mean (GGM) for College Station, TX in 2014 at 10% 

selection intensity (K=1.76). Where, GY = grian yield, TW = test weight, SeedWt = Single seed weight, SeedsHead-1 = Seeds 

per head, HeadNo = heads per square meter, HT = plant height, HS = heading score 

 

 

 

 

 

 

 

Trait  Mean 𝝈𝒈
𝟐  𝝈𝒑

𝟐 H2 GCV (%) PCV (%) GG GGM (%) 

GY 1.88 0.04 0.15 0.26 10.6 20.9 0.18 9.53 

TW 70.6 4.5 4.9 0.91 2.9 3.1 3.5 5.01 

SeedWt  28.8 0.8 X105 1.0 X105 0.79 9.7 10.9 0.44 15.18 

SeedHead-1 43 13 27 0.47 8.4 12.3 4 10.21 

HeadNo 158 16 1025 0.02 2.5 20.3 1 0.55 

HT 87.2 32.5 33.3 0.98 6.5 6.6 9.9 11.36 

HS 3 0.8 0.8 0.94 30.5 31.4 1.5 52.13 
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Table 3.7 Estimates of genotypic (𝜎𝑔
2) and phenotypic (𝜎𝑝

2) variance, genotypic (GCV) and phenotypic coefficient of variation 

(PCV), heritability (H2), genetic gain (GG) and genetic gain as percent mean (GGM) for College Station, TX in 2013 at 10% 

selection intensity (K=1.76). Where, GY = grian yield, TW = test weight, SeedWt = Single seed weight, SeedsHead-1 = Seeds 

per head, HeadNo = heads per square meter, HT = plant height, HS = heading score 

 

 

 

 

 

 

 

 

 

Trait  Mean 𝝈𝒈
𝟐  𝝈𝒑

𝟐 H2 GCV (%) PCV (%) GG GGM (%) 

GY 2.86 0.27 0.61 0.44 19.6 29.6 0.61 22.9 

TW 71.8 36.7 37.3 0.98 8.0 8.0 10.6 13.9 

SeedWt  32.0 21.6 X105 21.8X105 0.99 40.7 40.9 25.7 71.3 

SeedHead-1 35 21 33 0.62 12.2 15.5 6 16.9 

HeadNo 252 1135 4245 0.27 16.6 32.2 31 15.1 

HT 85.9 80.1 100.8 0.79 9.0 10.1 14.0 14.2 

HS 2.8 1.4 1.4 1.00 35.8 35.8 2.1 63.0 
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Table 3.8 Mean genotypic variance (𝜎𝑔
2), phenotypic variance (𝜎𝑝

2) , genotypic (GCV) and phenotypic coefficient of variation 

(PCV), heritability (H2), genetic gain (GG) and genetic gain as percent mean (GGM) across five environments at 10% 

selection intensity (K=1.76). Where, GY = grian yield, TW = test weight, SeedWt = Single seed weight, SeedsHead-1 = Seeds 

per head, HeadNo = heads per square meter, HT = plant height, HS = heading score 

Trait  Mean 𝝈𝒈
𝟐  𝝈𝒑

𝟐 H2 GCV (%) PCV (%) GG GGM (%) 

GY 2.86 0.10 0.45 0.38 11.14 23.52 0.45 15.64 

TW 75.9 9.9 10.9 0.84 4.15 4.35 4.9 6.45 

SeedWt  31.9 5.09 X105 5.50 X105 0.82 22.38 23.28 11.0 33.67 

Seed Head-1 35 14 35 0.55 10.63 16.76 6 16.16 

HeadNo 252 557 5758 0.14 9.35 30.06 19 7.51 

HT 85.9 44.4 61.8 0.82 7.76 9.15 11.3 13.21 

HS 2.8 0.8 0.9 0.88 31.53 34.59 1.5 53.69 
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3.3.4 Estimation of genetic gain  

 Burton et al. (1952) reported that determining heritability along with GCV would 

help with the reliable estimation of the amount of genetic gain that is possible through 

phenotypic selection. Heritability values are of less practical importance without the 

knowledge of the amount of genetic gain, especially while making a selection based on 

phenotypic appearance. Johnson et al. (1955) indicated that high heritability values are 

not necessarily associated with high genetic gain, and, therefore, advised to consider 

genetic gain values along with GCV and heritability values simultaneously in a logical 

breeding program. 

 Mean heritability values across five environments had a range of 0.14 - 0.88 and 

genetic gain mean (GGM) had a range of 5.8% - 50.8% at 10% selection intensity (refer 

to the table on page 104). Bello et al (2012) stated that high heritability along with high 

genetic gain indicates additive genetic variance might be governing the trait under 

consideration and that high heritability with low genetic gain indicates non-additive 

genetic effect might be governing the trait. They also indicated that low heritability 

along with low genetic gain indicates non-additive genetic effect might be governing the 

trait. Among all traits, HS and SeedWt had the highest heritability values along with 

high GGM. This suggests the presence of additive genetic effects for these traits, which 

makes it relatively easy to fix these traits in the early generations. Similar results were 

observed in the individual environments (Table 3.3, Table 3.4, Table 3.5, Table 3.6, and 

Table 3.7). These results are in accordance with some of the results reported by Shah 

(1998). On the other hand, HeadNo exhibited low heritability (0.14) and low GGM 
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(5.8%) in the combined environments analysis. Almost similar results were observed in 

individual environments. For those traits that had low heritability and GGM, indirect 

selection based on the secondary traits might be more efficient than direct selection, as 

long as the assumptions of indirect selection are satisfied. Indirect selection is 

appropriate when progress through direct selection is slow, hard and less efficient such 

as in the case of HeadNo and GY. Grain yield had low heritability with moderate genetic 

gain. SeedsHead-1 had moderate heritability and moderate GGM values. Similar results 

for SeedsHead-1 were reported by Rana et al. (1999) and Meena et al. (2014). 

The main objective of most plant breeding programs is to create plant types with 

improved traits to increase the overall productivity of economical products with the 

minimal use of resources and time. In order to do so, a good understanding of the genetic 

material at hand is very critical. This study gave us an idea of available genetic variation, 

heritability, and percentage of genetic gain that can be achieved for each of these traits. 

 Based on the multi-environment analysis, GY can be increased by 15.6% at 10% 

selection intensity (K = 1.76) in these SDW lines. Estimated genetic gain for grain yield 

at 10% selection was 0.45 t ha-1. This indicated that whenever we selected best 10% of 

lines in one generation the resulting progenies would have their mean yield increased by 

0.45 t ha-1. In other words, GY mean was increased from 2.86 t ha-1 to 3.31 t ha-1 across 

generations due to the culling of poorer types that do not have merit for advance. Same 

rules apply for other traits as well. Mean SeedWt value increased from 0.032 to 0.043 g, 

seedHead-1 from 35 to 41, TW from 75.9 to 80.8 kg hal-1, HeadNo from 252 to 271 
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heads m-2, HT from 85.9 to 97.2 cm, and HS increased from 3 to 4 days (Table 3.8). 

Mean HT and HS can be increased or decreased depending on the target environment. 

 

3.3.5 Estimation of response to selection, correlated response to selection and 

efficiency of indirect selection 
 

The efficiency of direct selection (R) for a trait is equivalent to 1.00, as selection 

is based on grain yield per se. When the 
𝐶𝑅

𝑅
  or (

Response to indirect selection

Response to direct selection 
) is less than 

1.00, indirect selection is considered to be less efficient than direct selection for the 

primary trait per se. In contrast, when the 
𝐶𝑅

𝑅
 is more than 1.00, indirect selection is 

considered to be more efficient than direct selection. Often times, indirect selection for 

GY is never as efficient as direct selection per se (Gallais, 1984). 

Conner and Hartl (2003) have reported indirect selection and CR are not the 

same but they are closely related. They have also stated “Indirect selection occurs within 

a generation and is caused by phenotypic correlation (rp), while correlated response 

occurs across generations and is caused by genotypic correlations (rg)”. Genotypic 

correlation values are derived from phenotypic correlation values after eliminating 

environmental correlation values. In most of the studies, rg are very close to rp values. 

Waitt and Levin (1998) conducted a study to determine the relationship between rg and 

rp correlation using 4000 data points collected from 27 plant species for 40 years. Based 

on this study, Waitt and Levin have reported 94% of matrix correlations between rg and 

rp were similar at significance level 0.05. Therefore, use of rp to calculate correlated 

response and efficiency of indirect selection does gives very close estimates as 
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calculating these values using rg. Many other studies utilized rp for the calculation of 

indirect selection. In wheat, Cooper et al. (1997) have also shown that rp can be used to 

determine the efficiency of indirect selection. In this study, rp was used instead of rg to 

calculate CR and (
𝐶𝑅

𝑅
). As rg and rp are closely linked the CR and (

𝐶𝑅

𝑅
) values should not 

have changed very much. 

In this study, indirect selection for HeadNo was not as efficient as direct 

selection for GY per se. Similar results were reported for SeedWt. Except for one 

instance, almost similar results were reported for SeedsHead-1. The Mean (
𝐶𝑅

𝑅
) across 

five environment for HeadNo, SeedWt, and SeedHead-1 were at 0.41, 0.46 and 0.21, 

respectively (Table 3.9). These results are in accordance with Gallais’s (1984) statement 

“indirect selection is rarely as efficient as direct selection for the primary trait”. 

There might be multiple reasons for low efficiency for indirection selection for 

HeadNo. Among them, the relatively low heritability might have played a significant 

role. Although the correlation between HeadNo and GY seems to be between low to 

moderate (chapter II results) heritability of the secondary was no better than the primary 

trait.  Mean H2 for GY across five environments was at 0.38; however; for HeadNo it 

was only 0.14 (Table 3.8). Gallais (1984) stated that indirect selection is more efficient 

than direct selection only when the secondary trait had higher heritability than the 

primary one and there is high genetic correlation between the two traits. This does not 

rule out the option of utilizing HeadNo as indirect selection component because indirect 

selection can still be practiced as it is easy to score for HeadNo and it is more time 
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efficient than selecting for GY per se. From this study, we can say that HeadNo is 41% 

as efficient as directly selecting for GY. 

Results showed the efficiency of indirect selection for SeedHead-1 was higher 

than HeadNo possibly because of a balance between heritability and correlation. 

Although correlation was low (chapter II results), heritability (0.55) was moderate for 

SeedHead-1 (Table 3.9). 

The efficiency of indirect selection for SeedWt remains to be lowest among the 

three components. Although the heritability of this trait is high (0.82), its correlation 

with grain yield was very low (chapter II results). 

Based on results presented in Table 3.9, indirect selection for grain yield 

components (HeadNo, SeedsHead-1, and SeedWt) is not as efficient as direct selection 

for GY per se. However, chances for increasing the efficiency of indirect selection using 

yield components is not ruled out. Based on simulation models developed in ryegrass, 

Conaghan et al. (2008) reported efficiency of indirect selection can be increased by 

increasing the number of replications and increasing selection intensity (i) by including 

more number of genotypes but essentially testing the same number of genotypes at 

similar selection intensities. 
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Table 3.9 Correlated response (CR) in grain yield for indirect selection based on HeadNo (heads m-2), SeedsHead-1, and 

SeedWt (single seed weight) at 10% selection intensity (K=1.76), and relative efficiency (CR/R) of indirect selection to direct 

selection for grain yield 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Environment Mean Yield  

 (t ha-1) 

Yield HeadNo 

(heads m-2) 

SeedsHead-1 SeedWt 

(g) 

  R (%) CR (%) CR/R CR (%) CR/R CR (%) CR/R 

CAS2014 3.45 1.23 0.84 0.69 1.73 1.41 1.21 0.99 

CH2014 1.01 37.69 12.48 0.33 10.79 0.29 8.77 0.23 

DYB2014 5.33 6.85 0.88 0.13 2.01 0.29 1.24 0.18 

CS2014 1.88 9.47 1.86 0.20 0.67 0.07 0.66 0.07 

CS2013 2.65 22.87 15.88 0.69 5.98 0.26 -9.62 -0.42 

Mean 2.86 15.62 6.39 0.41 4.24 0.46 0.45 0.21 

Mean H2 0.38 0.38 0.14 0.55 0.82 
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4. RESPONSE OF SYNTHETIC DERIVED HARD RED WINTER 

WHEAT LINES TO BIOTIC STRESSES IN THE GREAT PLAINS OF 

USA 

 

 

 

4.1 Introduction 

 

The U.S. is the third largest wheat (Triticum aestivum L.) producing (46 thousand 

MT) and top wheat exporting country (32 thousand MT) (FAO STAT, 2013; USDA-

NASS, 2013) with largest share of total production coming from winter wheat. Winter 

wheat production (33 thousand MT) accounts for 72% and hard red winter wheat (16 

thousand MT) accounts for 36% of the total wheat production in the USA (USDA-

NASS, 2013).  

The Great Plains, where wheat is constantly exposed to a wide range of biotic 

and abiotic stresses (Liu et al., 2014), is an important wheat-growing region in the U.S. 

Rust is the most important and economical fugal disease in the U.S. Great Plains and 

worldwide (Kolmer et al., 2009, Wegulo and Byamukama, n.d.). Leaf rust (LR; Puccinia 

triticina Erikss. & Henn.), stripe rust (YR; Puccinia striiformis Westend. f. sp. Tritici), 

and stem rust (SR; Puccinia graminis Pers. f. sp. Tritici) are the three types of rust 

diseases that attack wheat (Kolmer et al., 2009, 2013). In the U.S. Great Plains, LR is the 

most common of the three rust fungal pathogens followed by YR and SR, respectively 

(Kolmer et al., 2009). Wegulo and Byamukama reported that YR used to be a common 
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disease in the Great Plains, but its incidence in mid and southern Great Plains has been 

on the rise since 2000.  

Depending on stage and severity of the infection, LR can cause yield loss 

anywhere from trace level to over 40% under most favorable conditions (Bowden, n.d.). 

Yield losses caused by YR can be much more severe than LR at a similar level of 

infection (Basnet, 2012). Wellings (2011) recorded up to 60% yield loss due to YR on 

susceptible spring wheat varieties. Some other studies reported losses of up to 40% and 

76% under farmers and experimental field conditions (Wegulo and Byamukama, n.d.). 

Texas is in the forefront of Puccinia Pathway in the U.S. (Stakman, 1934). Rust 

urediniospores that are carried to northern and eastern states usually overwinter in the 

southern parts of Texas (Kolmer et al., 2009). Therefore, planting wheat fields in Texas 

with rust resistant varieties can eventually decrease the distribution and severity of rust 

diseases in northern parts of the U.S. ‘TAM 111’ and ‘TAM 112’ are the two most 

widely cultivated hard red winter wheat varieties in the U.S. Great Plains and Texas 

(Reddy et al., 2014). TAM 112 scored susceptible to naturally occurring races of LR and 

YR in the region. TAM 111 was also susceptible to LR but scored resistant or 

moderately resistant to YR until a new race of YR caused a major epidemic in 2012 

(Basnet, 2012). Many breeding programs in the U.S. are utilizing race-specific major 

genes to alleviate the epidemic of LR and YR. However, race specific resistant genes are 

likely to be defeated within a short period with the rise of new virulent races (Kolmer et 

al., 2009). 
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Singh et al., (2010) reported that pyramiding four to five of the slow-rusting race 

non-specific minor genes can result in a genotype that has near the immune level of 

resistance to rust diseases. Therefore, many wheat-breeding programs have been looking 

for race non-specific resistant genes to build durable rust resistance. Some of the studies 

have shown few accessions of synthetic hexaploid wheat (SHW) are resistant to LR and 

YR (Mujeeb-Kazi et al., 2000; Mujeeb-Kazi and Delgado, 2001a) and seem to have both 

race-specific and race non-specific resistant genes (Zegeye, et al., 2014). Therefore, 

hybridizing the Great Plains wheat germplasm with SHW should improve rust resistance 

in the region.  

Greenbug (Schizaphis graminum Rondani) is a major economical pest in the U.S. 

Great Plains. To date, eleven biotypes (biotype A to biotype K) have been identified 

(Weng et al., 2004). Among these, biotypes E and I are the most predominant in the 

southern Great Plains and cause significant yield losses in wheat and grain sorghum 

(sorghum bicolor L.) (Porter et al., 1997). Host plant resistance is the most economical 

and eco-friendly approach to control greenbug infection (Punnuri et al., 2012). A number 

of greenbug resistant genes originated from different sources Gb1 (durum wheat), Gb2 

and Gb6 (rye), Gb5 (Aegilops speltoides), Gbx1, Gba, Gbb, Gbc, Gbd Gbz, Gb3, and Gbx2 

(Aegilops tauschii) (Azhaguvel et al., 2012) have been identified. Among all these 

genes, Gb3 has shown high level of resistance to biotype C, E, H, I, and K (Weng and 

Rudd, 2015). Scientists at Texas A&M AgriLife Research have identified SNP markers 

that are closely linked to Gb3 gene (Liu et al., 2014).  
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 Mujeeb-Kazi et al. (2000a, 2000b, 2001a) documented that some accessions of 

SHW are resistant to greenbug, LR, and YR. Some of these SHW from CIMMYT have 

been hybridized with elite wheat varieties of Texas A&M AgriLife Research wheat 

breeding program, with an objective to introduce new useful genetic diversity into the 

breeding program. The objectives of this study are to 1) characterize SDW lines for 

common biotic stresses in the U.S. Great Plains and 2) validate the greenbug resistance 

present in SDW lines with known markers for Gb3 gene. 

 

4.2 Materials and methods 

4.2.1 Diseases 

4.2.1.1 Germplasm 

The plant materials used in this study were developed by hybridizing and 

backcrossing a selected set of SHW from Elite-I and Elite-II sets to Texas A&M 

AgriLife Research elite varieties, TAM 111 and TAM 112. Germplasm was advanced 

using bulk and modified bulk methods until BC1F5. Selections for best plant type were 

done in the BC1F2 and BC1F3 generations. In BC1F5 generation, heads were selected from 

agronomically superior plants with low levels of disease pressure. A total of 321 

synthetic derived wheat (SDW) lines from 12 populations were planted as head-rows 

(BC1F5:6) at Chillicothe (CH), TX) (latitude = 34.2oN, longitude = 99.5oW) in 2011. A 

set of 213 lines were selected based on heads per square meter (HeadNo) and seeds per 

head (SeedsHead-1). These 213 lines were planted in one meter (BC1F5:7) rows in a 

randomized complete block design at Bushland (BD), TX (latitude = 35.2oN, longitude = 
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102.1oW) and Castroville (CAS), TX. (latitude = 29.35oN, longitude = 98.88oW). In 

2013, same 213 lines (BC1F5:8) were planted as yield plots in College Station (CS), TX 

(latitude = 30.5oN, longitude = 96.4oW). In 2014, a selected set of 93 lines were planted 

as yield plots in multiple environments. These 93 lines were selected from 12 

populations with diverse Aegilops tauschii parentage in the pedigree (Table 4.1). 

 

4.2.1.2 Field trials, scoring, and statistical analysis 

In 2013, one replication of 213 SDW lines was planted as yield plots in an 

augmented design. In 2014, a selected set of 93 SDW lines from these 213 lines was 

planted as yield plots. Two replications of these 93 lines were laid out in an alpha-lattice 

design. More details on experimental designs and experimental setup can be found in 

chapter II materials and methods. Although, each generation was planted at multiple 

locations, only one location in each generation had a damageable level of disease 

pressure. Rust scoring was done at CS in 2013 and CAS in 2014. Scoring for LR was 

done around mid-late April in CS trial (CS2013). The incidence of YR in the CS2013 

trial was not high enough to be documented. In the CAS2014 trial, scoring for LR was 

done around mid-April and for YR around late March. 

Field evaluations were done with naturally occurring races of rust pathogen that 

are prevalent in TX. The LR races that show virulence to Lr24, Lr17, Lr21, and 

Lr39/Lr41 are the most common races in the southern Great Plains (USDA-CDL). The 

YR races virulent to Yr9 and Yr8 are the most common in the U.S. (Kolmer et al., 2009). 

Scoring for LR and YR was done with different scoring methods. A visual score of 0 to 
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9 was recorded based on the cleanliness of the leaves. Simultaneously, Modified Cobb’s 

scale based on disease severity and infection type was also used (Peterson et al., 1948). 

The host response to infection was scored as resistant (R), moderately resistant (MR), 

moderately susceptible (MS), and susceptible (S). Coefficient of infection (CI) was 

calculated by multiplying infection type (R=0.2, MR=0.4, M=0.6, MS=0.8, S=1.0) with 

disease severity as described by Roelfs et al. (1992). All statistical analysis, including 

mean values and Pearson’s correlation coefficients, were performed using SAS 9.4 

PROC GLM procedure. 

Screening for powdery mildew (Erysiphe graminis f. sp. Tritici) resistance was 

done with naturally occurring races under field conditions. Disease severity scoring for 

powdery mildew was done using a scale of 0-9 where 0 = no disease and 9 = more than 

90% of plant surface covered with powdery mildew (Bennett and Westcott, 1982; 

Cufner, 2015). 

 

4.2.2 Insect pest (Greenbug) 

 

4.2.2.1 Plant material 

 Phenotypic screening for greenbug resistance was done on the same set of 213 

SDW lines as described in the rust studies.  
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Table 4.1 Primary Synthetic wheat and their associated Aegilops tauschii accession, synthetic derived wheat populations, 

pedigrees and number of lines that were evaluated in each of these families under field trials in 2013 and 2014 

Pop.ID Aegilops 

tauschii 

Accession 

Name 

(Synthetic hexaploid 

wheat) 

Name 

(Synthetic 

Derived Wheat) 

Pedigree                                                                      

(Synthetic Derived Wheat) 

Number  

of Lines 

1 WX198 CIMMYT E95Syn4152-5 X05VSBC01 TAM 111*2/CIMMYT E95Syn4152-5 11 

2 WX198 CIMMYT E95Syn4152-5 X05VSBC49 TAM 112*2/CIMMYT E95Syn4152-5 8 

3 WX219 CIMMYT E95Syn4152-16 X05VSBC07 TAM 111*2/CIMMYT E95Syn4152-16 8 

4 WX219 CIMMYT E95Syn4152-16 X05VSBC51 TAM 112*2/CIMMYT E95Syn4152-16 4 

5 WX629 CIMMYT E95Syn4152-37 X05VSBC17 TAM 111*2/CIMMYT E95Syn4152-37 5 

6 WX629 CIMMYT E95Syn4152-37 X05VSBC57 TAM 112*2/CIMMYT E95Syn4152-37 13 

7 WX408 CIMMYT E95Syn4152-61 X05VSBC31 TAM 111*2/CIMMYT E95Syn4152-61 11 

8 WX408 CIMMYT E95Syn4152-61 X05VSBC60 TAM 112*2/CIMMYT E95Syn4152-61 1 

9 WX314 CIMMYT E95Syn4152-78 X05VSBC35 TAM 111*2/CIMMYT E95Syn4152-78 5 

10 WX314 CIMMYT E95Syn4152-78 X05VSBC65 TAM 112*2/CIMMYT E95Syn4152-78 9 

11 WX417 CIMMYT E2Syn4153-31 X05VSBC46 TAM 111*2/CIMMYT E2Syn4153-31 6 

12 . CIMMYT E95Syn4152-51 X05VSBC24 TAM 111*2/CIMMYT E95Syn4152-51 12 
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4.2.2.2 Greenbug colony 

Greenbug biotype E is the major prevailing bitoype in the U.S. Great Plains. 

Initial colonies of biotype E were received from USDA-ARS, Stillwater, OK. These 

colonies were reared for several generations for a period of 1 month on susceptible 

check varieties ‘TAM 105’ and ‘TAM 107’ under controlled growth chamber conditions 

at Texas A&M AgriLife Research facility at Bushland, TX.  

 

4.2.2.3 Experimental setup and phenotyping 

 A seedbed of 32 linear rows was prepared using potting soil (Miracle Grow). Ten 

seeds from each genotype were planted in every linear row (Figure 4.1). Each seedbed 

comprised one row of susceptible check cultivar (TAM 111) and one row of resistant 

check cultivar (TAM 112) and 30 rows of SDW lines. Seedlings were infested at the 

two-leaf stage at the rate of 5-6 nymphs of greenbugs per seedling. Following 

infestation, seedlings were kept in climate-controlled growth chambers with 22 ±2 °C 

temperature, 21% relative humidity, and 12 hours photoperiod. Infested seedlings started 

showing stress symptoms approximately around ten days after infestation. Seedlings 

were scored around 13 – 16 days from the date of infestation when susceptible check 

(TAM 111) showed more than 80% yellow leaf area. Each seedling was scored as either 

R or S based on total percentage of green and yellow leaf area. A standardized scale of 

1-9 was developed to determine percent green area and yellow leaf area (refer to figure 

on page 119). Seedlings with a score of 1-4 were classified R; where, a score of 1 = 0% 

yellow leaf area, 2 = 1-10% yellow leaf area, 3 = 11-20% yellow leaf area, and 4 = 21-
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30% yellow leaf area. Seedlings with a score of 5 and above were classified as S; where, 

5 = 31 to 50% yellow leaf area, 6 = 51 to 70% yellow leaf area, 7 = 71 to 90% yellow 

leaf area, 8 = more than 90% yellow leaf area with some dead tissue, and 9 = 100% dead 

tissue. Screening was repeated three times to have a more accurate estimate of the 

resistance. Data analysis was done across all three replications using MS Excel. Lines 

were classified as R or S depending on percentage of seedlings scored as R or S. A line 

with more than 75% of the seedlings scored as R were classified as R type. Similarly,a 

line with 75 to 50% seedlings scored as R were classified as MR type, a line with 50 to 

25% seedlings scored as R were classified as MS type, and a line with less than 25% 

seedlings scored as R were classified as S type. 

 

4.2.2.4 Molecular analysis 

 Only a set of 93 lines from these 213 lines were selected for preliminary yield 

trials. Lines that had the best performance across the broad spectrum of traits and 

environments were selected for these preliminary yield trials. Therefore, molecular 

studies were restricted to these 93 lines. Ten randomly selected seeds from each of these 

93 lines (BC1F5:9 generation) and two check varieties (TAM 111 and TAM 112) were 

grown on cotton swabs. DNA was extracted from 10-day old seedlings using a modified 

CTAB protocol standardized at the AgriGenomics laboratory, Texas A&M University, 

College Station, TX (Doyle and Doyle, 1987). Extracted DNA samples were tested for 

quality using the gel electrophoresis and quantified using NanoDrop 1000 
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spectrophotometer. NanoDrop concentration values were used to dilute the DNA 

samples for required concentration (10 ng µL-1) for marker analysis. 

Texas A&M AgriLife Research has identified two closely linked SNP markers 

(Gb3-SNP15318 and Gb3-SNP18260) for Gb3 gene. For each SNP, an allele-specific 

forward primers and reverse primer were designed. KASP (KBioscience) genotyping 

assay was performed for each sample on 384 well plate using these primers. A total 

volume of 4 µL of KASP 1X master mixture was prepared using 1.912 µL of sterile 

deionized water, 2 µL KASP 2X reaction mixture, 0.032 µL of 50 mM MgCl2, 2 µL of 

template DNA (dry) at 10 ng µL-1 concentration (10% extra volume was prepared in 

order to avoid pipetting loses). Robotic pipetting was used to dispense master mix into 

384 well. Plates were sealed using flexi-seal heat based plate sealer at 170 °C 

temperature for 4 seconds. PCR was done using ABI 2720 thermal cycler. Touchdown 

cycling program as mentioned below was used for PCR cycling: 15 min at 94 °C; 10 

touchdown cycles of 20 seconds at 94 °C, and 60 seconds at 61-55 °C (the annealing 

temperature for each cycle being reduced by 0.6 °C per cycle); and 26-35 cycles of 20 s 

at 94 °C and 60 s at 55 °C. 

The plates were read on a fluorescent plate reader Pherastar Plus. High 

temperatures of the plate would result in poor or no data read. Therefore, it has been 

recommended to let the plates cool down to ambient temperature or less than 40 °C 

before reading on fluorescent plate reader. KASP uses the fluorophores FAM and CAL 

Fluor Orange 560 for distinguishing genotypes. The FAM and VIC data are plotted on 



 

 

119 

 

the x and y axes, respectively (Dreisigacker et al., 2013). Allelic combinations in each 

genotype were determined according to sample clusters (Figure 4.2). 

 

Figure 4.1 Step by step procedure to screen germplasm for greenbug resistance under 

control growth chamber conditions 
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Figure 4.2. KASP graphs of SNPs validation and cluster data presentation for 

distinguishing 93 genotypes  
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4.3 Results and discussion 

 

4.3.1 Analysis of variance (ANOVA) 

 

 Analysis of variance (ANOVA) for LR and YR indicated there was a significant 

difference among the genotypes in CS2013 and CAS2014 trials (Table 4.2). In addition, 

significant differences were observed among the replications in CAS2014. For YR, no 

significant differences were observed between the replications at 0.05 significance level. 

However, significant differences could be seen at 0.07 significance level. This advocates 

that there was a trend to show the variability between the replications for YR 

distribution. 

 

Table 4.2 Analysis of variance (ANOVA) for leaf rust and stripe rust coefficient of 

infection (CI) 

Leaf rust 2013 

 df Mean squares 

Genotype 99 1199** 

Rep 1 1660** 

Block (Rep) 18 163 

Error 80 87 

Leaf rust - 2014 

 df Mean squares 

Genotype 205 699** 

Error 26 45.5 

Corrected Total   

Stripe Rust - 2014 

 df Mean squares 

Genotype 99 8.51** 

Rep 1 0.72 

Block(Rep) 18 0.16 

Error 81 0.22 

*, ** Significant at 0.05 and 0.01, respectively  

 

 

 



 

 

122 

 

4.3.2 Response to biotic stresses (by individual line) 
 

 The D-genome contributing wild relative of wheat (Aegilops tauschii Coss.) has 

shown broad range of diversity for biotic and abiotic stresses (Assefa and Fehrmann, 

2000). Synthetic wheats, both SHW and SDW, have inherited part of this diversity 

because of hybridization with Aegilops tauschii Coss. This study has demonstrated that 

genetic diversity introduced from SHW, has improved the biotic stress tolerance in SDW 

lines (Table 4.3). 

These SDW lines showed broad range of diversity for LR, YR, powdery mildew 

and greenbug resistance (Table 4.3; Figure 4.3). Differences in infection types and 

disease severity were observed between CS2013 and CS2014. These differences might 

have occurred due to changes in the distribution of pathogen races between the two 

environments. In 2013, race MFPSB that showed virulence to Lr17 and Lr24 was most 

prevalent. In 2014, LR race MBDSD that showed virulence to Lr39, Lr17 was most 

prevalent. Ironically, the race that was absent (MBDSD) in 2013 was most prevalent in 

2014 (USDA-CDL). Similar trends were observed for a number of other races as well. 

Therefore, values have been converted to CI to facilitate better comparison across 

infection types and disease severities. These CI values across two environments were 

transformed to average coefficient of infection (ACI) by weighed mean analysis.  

Overall, SDW lines had better YR than LR resistance (Table 4.3; Figure 4.3). 

The mean ACI value for YR was 6.9, the minimum was 0.2, and the maximum was 50. 

The mean ACI value for LR was 32, the minimum was 0.2, and the maximum was 71 

(Table 4.3). This high YR resistance may be due to the transfer of race-specific major 
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resistant QTL (QYr.tam-2BL) from the TAM 111 parent (Basnet et al., 2014). Around 

62% of the SDW lines had TAM 111 as their primary and backcross parent. Therefore, 

there was a high probability to find this major QTL in the progenies. Around 25% of the 

lines in CAS2014 were classified as R or MR for LR resistance (Table 4.3). Both the 

backcross parents, TAM 111 and TAM 112, were susceptible to prevailing races of LR 

pathogen in the southern Great Plains of Texas. Therefore, resistance present in SDW 

are believed to have been inherited from the SHW. Reasons for this assumption are that 

some of the SHW lines (CIMMYT E95Syn4152-78, CIMMYT E95Syn4152-5, 

CIMMYT E95Syn4152-61 etc.) used in this study were scored MR/MS or MS/MR 

during preliminary studies (Genetic resources of the WGRC). As 1/3rd of the genome in 

a backcross is from the donor parent (primary synthetic) there is probability to find some 

MR/MS genotypes in the progenies (Robbins, 2012).  

Resistance to a wide range of insect pests has been reported in SHW (Mujeeb-

Kazi 2000b). For greenbug, 30% of lines were classified as R, 10% of lines were 

classified as MR/MS, and 60% of lines were classified as S (refer to figure in page 130). 

Most of the SDW with TAM 112 in the pedigree were resistant to greenbug and lines 

with TAM 111 in the pedigree were susceptible (Table 4.3; Figure 4.3). Hence, Gb3 gene 

is believed to be the major source of resistance in the SDW. 
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Table 4.3 Response of synthetic derived wheat (SDW) lines for naturally occurring races of leaf and stripe rust, powdery 

mildew and greenbug biotype E 

ID Genotype Leaf rust 

Infection 

Type-2014 

Leaf rust  

CI-2014 

Leaf rust 

Infection 

Type-2013 

Leaf rust 

CI-2013 

Leaf 

rust    

ACI  

Stripe rust 

Infection 

Type-2014 

Stripe 

Rust  

CI-2014 

Green

bug  

Powdery 

Mildew 

1 TX11Vsyn0101 MS 31.2 S 30.3 30.9 R 0.3 S 0 

2 TX11Vsyn0103 S 40.5 S 54.7 45.2 S 20.0 R 0 

3 TX11Vsyn0110 MS 27.5 MS 16.3 23.8 R 0.2 S 5 

4 TX11Vsyn0111 tMR 4.2 S 34.5 14.3 R 0.2 S 0 

5 TX11Vsyn0112 MS 10.6 MS 19.9 13.7 R 0.2 S 0 

6 TX11Vsyn0113 S 29.9 S 16.9 25.6 R 0.2 S 0 

7 TX11Vsyn0116 MS 22.8 S 44.7 30.1 R 0.2 S 5 

8 TX11Vsyn0118 S 10.4 S 46.0 22.2 R 0.2 S 0 

9 TX11Vsyn0119 MS 14.9 S 40.1 23.3 MS 10.0 S 0 

10 TX11Vsyn0120 MS 0.6 MS 35.6 12.3 R 0.2 S 0 

11 TX11Vsyn0122 R 1.8 MS 31.2 11.6 S 20.0 S 0 

12 TX11Vsyn0123 tMR 0.2 MS 38.0 12.8 TS 19.9 MS 0 

13 TX11Vsyn0124 R 0.2 S 18.7 6.4 R 0.2 S 0 

14 TX11Vsyn0127 R 0.4 S 49.5 16.8 R 0.2 S 6 

15 TX11Vsyn0130 S 53.0 S 40.1 48.7 S 20.0 R 2 

16 TX11Vsyn0131 S 56.5 S 45.4 52.8 S 20.0 S 0 

17 TX11Vsyn0133 S 72.9 S 58.1 68.0 R 0.2 MR 3 

18 TX11Vsyn0134 tMR 4.6 S 71.8 27.0 MR 2.2 MS 0 

19 TX11Vsyn0135 S 55.5 S 36.5 49.2 R 0.2 MS 0 

20 TX11Vsyn0136 MS 20.0 S 17.8 19.3 R 0.2 S 0 

21 TX11Vsyn0137 R 0.2 MS 34.6 11.7 MR 0.4 S 5 

22 TX11Vsyn0138 S 30.2 S 41.8 34.0 R 0.2 S 0 

23 TX11Vsyn0140 S 29.4 S 52.9 37.3 R 0.2 S 2 

24 TX11Vsyn0146 MS 14.5 MS 32.4 20.4 R 0.2 S 0 

25 TX11Vsyn0153 S 73.0 S 46.9 64.3 S 15.0 S 1 
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Table 4.3 Continued  

ID Genotype Leaf rust 

Infection 

Type-2014 

Leaf rust  

CI-2014 

Leaf rust 

Infection 

Type-2013 

Leaf rust 

CI-2013 

Leaf 

rust    

ACI  

Stripe rust 

Infection 

Type-2014 

Stripe 

Rust  

CI-2014 

Green

bug  

Powdery 

Mildew 

           

26 TX11Vsyn0154 S 58.6 S 28.9 48.7 R 0.2 R 6 

27 TX11Vsyn0156 MS 12.9 S 4.9 10.2 R 0.2 S 0 

28 TX11Vsyn0158 S 81.1 S 26.1 62.8 R 0.2 S 0 

29 TX11Vsyn0159 tMR 8.1 S 27.2 14.5 R 0.2 S 4 

30 TX11Vsyn0160 R/R 2.2 S 40.9 15.1 R 0.2 S 0 

31 TX11Vsyn0161 S 18.5 S 33.2 23.4 R 0.2 S 0 

32 TX11Vsyn0164 R 4.1 S 36.0 14.7 S 15.0 S 2 

33 TX11Vsyn0165 R 0.3 R 13.6 4.7 R 0.2 S 2 

34 TX11Vsyn0167 TR 0.2 MS 28.3 9.6 R 0.2 S 5 

35 TX11Vsyn0168 S 54.1 S 44.4 50.9 R 0.2 MS 2 

36 TX11Vsyn0169 tMR 1.0 S 22.1 8.0 R 0.2 S 2 

37 TX11Vsyn0174 S 74.6 S 65.5 71.5 R 0.2 S 5 

38 TX11Vsyn0175 S 68.3 MS/MR 17.6 51.4 S 15.0 S 0 

39 TX11Vsyn0178 S 51.4 S 44.4 49.0 R 0.2 S 1 

40 TX11Vsyn0179 S 25.1 S 15.2 21.8 S 50.0 S 1 

41 TX11Vsyn0180 S 28.9 S 55.2 37.7 R 0.2 S 0 

42 TX11Vsyn0182 S 48.0 MS 5.1 33.7 TMS 4.4 S 3 

43 TX11Vsyn0185 S 40.5 S 37.1 39.4 R 0.2 S 0 

44 TX11Vsyn0188 R 0.2 S 48.8 16.4 R 0.2 S 0 

45 TX11Vsyn0189 S 66.8 S 36.1 56.6 S 15.0 S 0 

46 TX11Vsyn0190 S 71.1 S 35.8 59.4 S 30.0 S 0 

47 TX11Vsyn0191 MS 5.0 S 51.6 20.5 R 0.2 S 0 

48 TX11Vsyn0195 S 22.8 S 37.4 27.6 R 0.2 R 2 

49 TX11Vsyn0196 MS 21.8 S 32.8 25.4 S 12.5 S 0 

50 TX11Vsyn0197 R 0.2 MS 32.7 11.0 R 0.2 R 0 



 

 

126 

 

Table 4.3 Continued  

ID Genotype Leaf rust 

Infection 

Type-2014 

Leaf rust  

CI-2014 

Leaf rust 

Infection 

Type-2013 

Leaf rust 

CI-2013 

Leaf 

rust    

ACI  

Stripe rust 

Infection 

Type-2014 

Stripe 

Rust  

CI-2014 

Green

bug  

Powdery 

Mildew 

51 TX11Vsyn0199 R 4.0 MS 23.1 10.4 R 0.2 S 0 

52 TX11Vsyn0201 R 0.6 S/MS 36.7 12.6 R 0.2 S 3 

53 TX11Vsyn0208 S 55.0 S 42.7 50.9 S 40.0 S 0 

54 TX11Vsyn0211 MR 0.4 S 42.7 14.5 MR 0.4 R 3 

55 TX11Vsyn0212 S 41.1 S 22.5 34.9 R 0.2 R 0 

56 TX11Vsyn0213 S 58.8 S 38.4 52.0 R 0.2 MS 5 

57 TX11Vsyn0216 . 14.2 S 10.0 12.8 S 25.0 S 0 

58 TX11Vsyn0217 S 13.4 S 45.2 24.0 R 0.2 S 1 

59 TX11Vsyn0219 S 23.8 tS 29.5 25.7 R 0.2 S 0 

60 TX11Vsyn0225 tMR 6.1 S 41.8 18.0 R 0.2 R 0 

61 TX11Vsyn0226 S 35.2 S 35.8 35.4 MR 0.4 R 0 

62 TX11Vsyn0228 S 65.1 S 52.5 60.9 MR 0.3 S 0 

63 TX11Vsyn0229 R 5.2 S 33.2 14.6 R 0.3 MR 0 

64 TX11Vsyn0230 MS 9.8 S 5.8 8.5 R 0.2 R 1 

65 TX11Vsyn0232 S 42.8 S 37.5 41.0 S 25.0 R 2 

66 TX11Vsyn0234 S 49.1 S 36.1 44.8 R 0.2 R 0 

67 TX11Vsyn0238 S 61.0 S 33.2 51.8 R 0.2 R 0 

68 TX11Vsyn0240 S 62.3 S 48.3 57.6 R 0.2 MR 2 

69 TX11Vsyn0241 S 72.4 S 50.5 65.1 MR 0.4 R 0 

70 TX11Vsyn0243 S 56.2 S 23.8 45.4 R 0.2 R 3 

71 TX11Vsyn0253 S 17.3 S 50.4 28.3 S 15.0 R 0 

72 TX11Vsyn0261 S 74.1 S 54.3 67.5 S 15.0 R 0 

73 TX11Vsyn0263 S 46.6 S 23.8 39.0 TMS 4.4 R 0 

74 TX11Vsyn0264 S 79.1 S 52.9 70.4 MR 0.4 R 0 

75 TX11Vsyn0265 S 61.8 S 52.9 58.8 S 45.0 R 3 

76 TX11Vsyn0266 S 64.0 S 38.7 55.5 S 35.0 R 0 
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Table 4.3 Continued 

ID Genotype Leaf rust 

Infection 

Type-2014 

Leaf rust  

CI-2014 

Leaf rust 

Infection 

Type-2013 

Leaf rust 

CI-2013 

Leaf 

rust    

ACI  

Stripe rust 

Infection 

Type-2014 

Stripe 

Rust  

CI-2014 

Green

bug  

Powdery 

Mildew 

77 TX11Vsyn0267 S 55.5 . . 55.5 MS 23.0 R 0 

78 TX11Vsyn0271 S 45.6 S 80.6 57.2 MS 8.0 R 4 

79 TX11Vsyn0272 S 28.4 S 43.0 33.3 S 35.0 R 3 

80 TX11Vsyn0275 S 18.3 S 45.7 27.5 R 0.2 MR 6 

81 TX11Vsyn0277 tMR 0.4 S 51.9 17.6 R 0.2 R 0 

82 TX11Vsyn0279 S 29.6 S 22.1 27.1 S 35.0 R 0 

83 TX11Vsyn0280 S 60.1 S 25.5 48.6 MS 12.0 R 0 

84 TX11Vsyn0282 S 16.0 S 39.6 23.8 R 0.3 R 0 

85 TX11Vsyn0294 S 20.7 S 44.7 28.7 R 0.2 S 0 

86 TX11Vsyn0300 S 57.8 S 28.1 47.9 TMS 2.4 S 3 

87 TX11Vsyn0303 MR 0.9 MS 8.5 3.4 R 0.2 S 4 

88 TX11Vsyn0305 S 20.4 S 53.8 31.5 S 40.0 S 7 

89 TX11Vsyn0306 MS 11.9 MS 25.0 16.3 R 0.2 S 5 

90 TX11Vsyn0308 MS 15.0 S 37.5 22.5 R 0.2 S 0 

91 TX11Vsyn0309 S 27.8 S 22.2 25.9 R 0.2 S 2 

92 TX11Vsyn0312 S 60.2 S 51.4 57.2 R 0.2 S 0 

93 TX11Vsyn0313 MS 11.0 S 33.2 18.4 R 0.2 S 0 

95 TAM111 S 41.4 S 58.5 47.1 tMR/MS 0.6 S 3 

94 TAM112 S 71.0 S 51.8 64.6 S/MS 19.0 R 0 

96 TAM113 R 0.2 . . 0.2 MR 0.3  . 

97 TAM304 tR 3.2 . . 3.2 MS 4.2  . 

98 TAM305 tR 0.2 . . 0.2 R 0.2  . 

99 TAM401 R 5.7 S/MS 18.7 10.0 R 2.1  0 
100 TAMW101 R 0.4 . . 0.4 S 20.0  . 

 Mean  29.9  36.2 31.6  6.9   

 Minimum  0.2  0.2 0.2  0.2   

 Maximum  81.1  80.6 71.5  50.0   
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Figure 4.3 Response of synthetic derived wheat lines to common biotic stresses in the 

USA Great Plain. 

 

 

 

Table 4.4 Pearson correlation of rust diseases with yield (GY), test weight (TW), single 

seed weight (SeedWt), seeds per head (SeedsHead-1), heads per square meter (HeadNo), 

plant height (HT), heading date (HS) 

Trait Leaf Rust CI-

2014 

Leaf Rust 

CI-2013 

Combined leaf 

rust CI 

Stripe Rust 

CI-2014 

GY -0.24** 0.11 ns -0.12 -0.17** 

TW -0.24** 0.031* -0.15 -0.14* 

SeedWt -0.22** -0.35** -0.26 -0.27** 

SeedsHead-1 -0.06ns 0.07 ns -0.02 -0.21** 

HeadNo -0.07 ns 0.21** 0.02 0.07 ns 

HT -0.24** -0.23 ns -0.24 -0.15* 

HS -0.27** -0.27 ns -0.27 -0.20** 
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Disease pressure for powdery mildew was not very high. A maximum score of 7 was 

recorded during the cropping season. For this study, genotypes with powdery mildew 

score of 0-1 were considered as highly resistant, 2-4 as moderately resistant and 5-7 as 

susceptible. TAM 112 was reported to have a high level of resistance to a score of 0.  

The other backcross parent TAM 111 was reported to have powdery mildew score of 3. 

Around 66% of genotypes were highly resistant, 23% moderately resistant, and 12% 

were susceptible (Figure 4.3).  

 

4.3.3 Scope for durable rust resistance 

Most of the wheat breeding programs in the U.S. Great Plains rely heavily on 

race-specific major genes for LR and YR resistance (Bockus et al., 2009). However, 

often times resistance based on major genes has a short life span because of the 

evolution of new virulent pathogen races to the resistant gene (Bux et al., 2012). This 

had compelled scientists to explore new ways to build durable rust resistance in wheat. 

Caldwell (1968) had proposed the concept of slow-rusting resistance in wheat, which 

was further supported by Dr. Sanjaya Rajaram of CIMMYT for developing durable rust-

resistant wheat (Singh et al., 2010). It took over 30 years to realize the concept of 

durable rust resistance using slow-rusting APR genes (Singh et al., 2010). CIMMYT has 

produced a large number of lines that are near immune to rust with APR genes (Singh et 

al. 2010). To date, Lr34/Yr18, Lr46/Yr29, and Lr67/Yr46 are the most studied and most 

effective APR genes (Singh et al., 2010). Lack of efficient genotyping tools to identify 

slow-rusting APR genes has raised the need for thorough field-based studies. Many 
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studies have shown CI is one of the most efficient ways to identify the level of APR 

(Pathan and Park, 2006; Ali et al., 2009; Gashaw and Bazie, 2014). Along with CI traits 

such as final rust severity (FRS) and area under disease progress curve (AUDPC) can act 

as supplemental information in determining slow-rusting genotypes. A number of studies 

have reported high correlation (R2 > 90) between CI and FRS and also CI and AUDPC 

(Nzuve et al., 2012; Safavi and Afshari, 2012). For this study, the level of APR was 

determined on the basis of the average coefficient of infection (ACI) by combining two 

environments CI values (Pathan and Park, 2006).  

Few studies have reported ACI values of 0-20, 20-40, and 40-60 can be classified 

as high, moderate, and low levels of resistance, respectively. The ACI values over 60 

can be considered as susceptible (Pathan and Park, 2006; Ali et al., 2009; Gashaw and 

Bazie, 2014). However, experimental conditions for these studies were different from 

those conducted by previous authors. The high ACI value for this study was 20-30 points 

lower than what was reported by Ali et al. 2009. Therefore, we propose considering ACI 

values over 40 as susceptible, values 0-19 as high resistance, 20-39 as moderate-low 

resistance. Infection types and CI values for this study gave us a hint that there are 

possibly some slow-rusting APR genes in the SDW lines (Table 4.3). Data would have 

been more reliable if multiple CI values were recorded from each location. However, 

one time score does not rule out the utility of CI in determining slow rusting APR 

(Pathan and Park 2006; Ali et al., 2009). A summary of ACI values across all SDW lines 

showed around 31% of lines for LR and 84% of lines for YR are considered to have a 

high level of resistance. Similarly, 35% and 14% of lines were considered to have 
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moderate-low level of resistance, and 33% and 2% were susceptible for LR and YR, 

respectively (Figure 4.3). These values suggest that there was a partial level of resistance 

in the SDW lines. Many studies have credited partial resistance to APR genes (Ellis et 

al., 2014). Therefore, there seems to be high chances for having one or few adult plant 

resistance (APR) genes in the SDW lines. A detailed classification of resistance within 

each population and among populations are presented in the figure on page 137 and 138. 

 

4.3.4 Pearson’s correlation coefficients 

 

Pearson correlation coefficients were obtained to determine the relationship 

between rust resistance, yield, yield components and morphological traits in the SDW 

lines (Table 4.4). Among the yield components, SeedWt was most affected by diseases. 

Both LR and YR had a highly significant negative correlation with SeedWt. YR had 

significant negative effect on SeedsHead-1. These results are justifiable as YR in 

CAS2014 occurs during jointing to booting stage. Herberk and Lee have reported 

jointing is a critical stage for determining seed number in wheat. Therefore, any stress 

(including YR) during this stage reduces seeds per head and later stresses reduce 

SeedWt. Similar results were reported by Murraye et al. (1995). Pearson correlations 

showed there was highly significant negative correlation between each of LR (-0.24;) 

and YR (-0.17) on one hand and GY (refer to the table on page 130). Many other studies 

such as Basnet (2012) have shown YR causes higher yield loss than LR at similar 

infection levels. 
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4.3.5 Response to biotic stresses (by population and primary synthetic) 

A detailed comparison for biotic stress response within and among 12 populations 

is presented in table 4.5 and in figures on page 137 to 138. Figure 4.4 presents LR 

resistance among 12 SDW populations. Populations X05VBC35 (ID = 9), X05VBC60 

(ID = 8) and X05VBC01 (ID = 1) had high percentage of partial resistance (ACI values 

1-39%) and populations X05VBC07 (ID = 3) and X05VBC51 (ID = 4) had lowest level 

of usable and partial resistance. A detailed study of pedigrees of population 9, 8 and 1 

revealed primary synthetic with MR/MS response to LR were part of their pedigrees. 

However, population 3 and 4 had primary synthetic with 40S response to LR in their 

pedigrees (Genetic resources of the WGRC). 

 Similarly, for YR, populations X05VBC51 (ID = 4), X05VBC17 (ID = 5), 

X05VBC24 (ID = 12), and X05VBC35 (ID = 9) had highest level of partial resistance 

and populations X05VBC46 (ID =11), X05VBC57 (ID = 6), and X05VBC31 (ID = 7) 

had lowest level of partial resistance (Figure 4.5). Most genotypes were recorded as 

having R or MR infection type with few immune (I) types. The key finding here is that  

populations (ID =2, 4, 6, 8, and 10), which have susceptible TAM 112 in their pedigree, 

were classified as having high level of resistance and most of these reactions were either 

R or MR or close to I type reaction (Figure 4.5). These results confirm that synthetics 

might have contributed one or few major genes or contributed multiple slow rusting 

genes as blocks.  

  The response of SDW to greenbug biotype E infestation is presented in figure 

4.6. Results showed populations X05VBC49 (ID = 2), X05VBC51 (ID = 4), X05VBC57 
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(ID = 6), and X05VBC60 (ID = 8) had high percentage of resistant lines. All these 

resistant populations had TAM 112 in their pedigrees. These populations were developed 

by hybridizing and backcrossing SHW to TAM 112. Therefore, probabilities of finding 

Gb3 gene as the resistant resource in these SDW lines was also high. However, 

population 10 had contradictory results. Although it had TAM 112 in the pedigree all the 

lines in this population were classified as susceptible. Chances of inheriting a single 

dominant gene, such as Gb3, in a backcross is supposed to be high but our results showed 

there was no inheritance (Figure 4.6). Therefore, we speculate that TAM 112 might not 

be the actual parent of this pedigree. There might have been some problem either during 

hybridization or backcrossing or labelling the genotype.  

 In case of powdery mildew, populations that had TAM 111 in their pedigrees 

seem to have around 20% lines with low level of resistance (Figure 4.7). However, lines 

with TAM 112 in their pedigrees had greater level of resistance. These results are 

justifiable as TAM 111 is classified as moderately susceptible and TAM 112 as resistant 

to powdery mildew. Overall, there seems to be a good level of resistance in the SDW 

lines for this disease agent.  

 Lines used in this study were selected from 12 populations with different 

pedigrees.  Every population had at least one of seven SHW as a parent in the pedigree. 

Therefore, a comparative study among populations will be useful for breeding programs. 

In addition, it gives an indirect estimate of best SHW for the trait of interest. Possibilities 

for calculating combining ability for every population was limited as not every SHW was 
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hybridized with both TAM 111 and TAM 112. Therefore, weighed mean analysis was 

done to determine the value of each SHW.  

For LR ACI values were used to determine the worth of SHW line. The weighed 

mean analysis showed SHW line CIMMYTE95Syn4152-78 (Aegilops tauschii = 

WX314) had the highest percentage of lines (86%) with ACI values 0-39. In contrast, 

primary synthetic CIMMYTE95Syn4152-16 (Aegilops tauschii = WX198) had the lowest 

percentage of lines (50%) with ACI values 0-39. This indicates CIMMYTE95Syn4152-

78 might be one of the best parents that can be studied more for APR genes. Similar 

studies for YR showed 100% of lines in SHW CIMMYTE95Syn4152-5 (Aegilops 

tauschii = WX198) and CIMMYTE95Syn4152-16 (Aegilops tauschii = WX219) had 

ACI value 0-39. SHW CIMMYTE95Syn4152-31 (Aegilops tauschii = WX417) had 

lowest percentage (83%) of lines with ACI values 0-39. However, most of the YR 

resistance was either I or R types. Therefore, there is less scope for utilizing them in 

building durable rust resistance. Overall, SHW CIMMYTE95Syn4152-78 (Aegilops 

tauschii = WX314) seems to be an ideal parent of choice for building resistance. 
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Table 4.5 Leaf rust and stripe rust coefficient of infection (CI) by population 

Pop 

ID 

Pedigree  Leaf rust CI 

CAS2014 

Leaf rust CI 

CS2013 

Leaf rust  

ACI  

Yellow rust 

CI CAS2014 

1 TAM 111*2/CIMMYT E95Syn4152-5 Mean 17.7 33.7 23 4.7 

Range (0.6-40.5) (16.3- 54.7) (11.6-45.2) (0.2-20.0) 

2 TAM 112*2/CIMMYT E95Syn4152-5 Mean 29.6 34.0 31.1 3.4 

Range (5.2-65.1) (5.8-52.5) (8.5-60.9) (0.2-25) 

3 TAM 111*2/CIMMYT E95Syn4152-16 Mean 30.4 44.8 35.2 7.9 

Range (0.2-72.9) (18.7-71.8) (6.4-68) (0.2-20) 

4 TAM 112*2/CIMMYT E95Syn4152-16 Mean 63 39.0 55 0.3 

Range (56.2-72.4) (23.8-50.5) (45.4-65.1) (0.2-0.4) 

5 TAM 111*2/CIMMYT E95Syn4152-37 Mean 18.8 35.9 24.5 0.2 

Range (0.2-30.2) (17.8-52.9) (11.7-37.3) (0.2-0.4) 

6 TAM 112*2/CIMMYT E95Syn4152-37 Mean 44.7 41.7 43.7 17.6 

Range (0.4-79.1) (0.0-80.6) (17.6-70.4) (0.2-45.0) 

7 TAM 111*2/CIMMYT E95Syn4152-61 Mean 43.6 37.5 41.6 10.5 

Range (0.2-74.6) (5.1-65.5) (16.4-71.5) (0.2-50.0) 

8 TAM 112*2/CIMMYT E95Syn4152-61 Mean 16 39.6 23 0.30 

9 TAM 111*2/CIMMYT E95Syn4152-78 Mean 9.9 32.5 17.4 2.7 

Range (0.2-22.8) (23.1-37.4) (10.4-27.6) (0.2-12.5) 

10 TAM 112*2/CIMMYT E95Syn4152-78 Mean 25 33.8 28 4.9 

Range (0.9-60.2) (8.5-53.8) (3.4-57.2) (0.2-40.0) 

11 TAM 111*2/CIMMYT E2Syn4153-31 Mean 30.5 33.6 31.5 11.0 

Range (0.4-58.8) (10.0-45.2) (12.8-52) (0.2-40.0) 

12 TAM 111*2/CIMMYT E95Syn4152-51 Mean 26.2 29.4 27.3 2.7 

Range (0.2-81.1) (4.9-46.9) (4.7-64.3) (0.2-15.0) 

Check TAM111  41.4 58.5 47.1 0.60 

Check TAM112  71. 51.8 64.6 19.00 

Check TAM113  0.2 . 0.2 0.30 

Check TAM304  3.2 . 3.2 4.20 

Check TAM305  0.2 . 0.2 0.20 

Check TAM401  5.7 18.7 10 2.10 

Check TAMW101  0.4 . 0.4 20.00 
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Table 4.6 Number of synthetic derived wheat (SDW) lines with high level of resistance (High R), moderate to low level of 

resistance (M-L R), and susceptible (S) within each population 

 

  Leaf Rust Stripe Rust 

 

Powdery 

Mildew 

Pop. 

ID Pedigree Total 

High 

R 

M-L 

R S 

High 

R 

M-L 

R S 

High 

R 

M-L 

R S 

1 TAM 111*2/CIMMYT E95Syn4152-5 11 4 4 2 9 2 0 9 0 2 

2 TAM 112*2/CIMMYT E95Syn4152-5 8 2 4 2 7 1 0 7 1 0 

3 TAM 111*2/CIMMYT E95Syn4152-16 8 1 3 4 6 2 0 4 2 1 

4 TAM 112*2/CIMMYT E95Syn4152-16 4 0 2 2 4 0 0 2 2 0 

5 TAM 111*2/CIMMYT E95Syn4152-37 5 2 2 1 5 0 0 3 1 1 

6 TAM 112*2/CIMMYT E95Syn4152-37 13 0 7 6 8 4 1 9 3 1 

7 TAM 111*2/CIMMYT E95Syn4152-61 11 1 5 5 9 1 1 9 1 1 

8 TAM 112*2/CIMMYT E95Syn4152-61 1 0 1 0 1 0 0 1 0 0 

9 TAM 111*2/CIMMYT E95Syn4152-78 5 1 4 0 5 0 0 3 2 0 

10 TAM 112*2/CIMMYT E95Syn4152-78 9 0 7 2 8 0 1 4 3 2 

11 TAM 111*2/CIMMYT E2Syn4153-31 6 0 5 1 4 1 1 4 1 1 

12 TAM 111*2/CIMMYT E2Syn4153-51 12 3 6 3 12 0 0 5 5 2 
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Figure 4.4 Proportion of leaf rust resistance within and among synthetic derived (SDW) wheat populations Pop. 

ID of synthetic derived wheat 1 = X05VSBC01, 2 = X05VSBC42, 3 = X05VSBC67, 4 = X05VSBC51, 5 = 

X05VSBC17, 6 = X05VSBC57, 7 = X05VSBC37, 8 = X05VSBC60, 9 = X05VSBC35, 10 = X05VSBC65, 11 = 

X05VSBC46, 12 = X05VSBC24 

 

 

 

 

Figure 4.5 Proportion of stripe rust resistance within and among synthetic derived (SDW) wheat populations. Pop. ID 

of synthetic derived wheat 1 = X05VSBC01, 2 = X05VSBC42, 3 = X05VSBC67, 4 = X05VSBC51, 5 = X05VSBC17, 

6 = X05VSBC57, 7 = X05VSBC37, 8 = X05VSBC60, 9 = X05VSBC35, 10 = X05VSBC65, 11 = X05VSBC46, 12 = 

X05VSBC24 
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Figure 4.6 Proportion of greenbug resistance within and among synthetic derived (SDW) wheat populations. Pop. ID 

of synthetic derived wheat 1 = X05VSBC01, 2 = X05VSBC42, 3 = X05VSBC67, 4 = X05VSBC51, 5 = X05VSBC17, 

6 = X05VSBC57, 7 = X05VSBC37, 8 = X05VSBC60, 9 = X05VSBC35, 10 = X05VSBC65, 11 = X05VSBC46, 12 = 

X05VSBC24 

 

 

 

 
Figure 4.7 Proportion of powdery mildew resistance within and among synthetic derived (SDW) wheat populations. 

Pop. ID of synthetic derived wheat 1 = X05VSBC01, 2 = X05VSBC42, 3 = X05VSBC67, 4 = X05VSBC51, 5 = 

X05VSBC17, 6 = X05VSBC57, 7 = X05VSBC37, 8 = X05VSBC60, 9 = X05VSBC35, 10 = X05VSBC65, 11 = 

X05VSBC46, 12 = X05VSBC24
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4.3.6 Validation of markers for greenbug resistance  

Phenotypic classification of lines as R or S was done based on a mean value 

obtained across three replications. There was great level of variability among SDW lines 

for greenbug resistance (Table 4.6). Around 30% (28 lines) of lines were classified as R, 

60% lines (56 lines) as S, and 10% (9 lines) lines as MR/MS. Most of the resistant lines 

had greenbug-resistant cultivar TAM 112 as a parent in their pedigree. TAM 112 carries 

single dominant greenbug resistant gene Gb3. Therefore, chances of finding Gb3 gene in 

this set of SDW lines was very high. However, we also found few resistant genotypes 

that had susceptible TAM 111 as a parent in their pedigrees. This indicates that SHW 

might also be contributing some source of greenbug resistance. Therefore, molecular 

studies were done to validate the source of resistance present in SDW. 

Texas A&M AgriLife research has developed flanking SNP markers that are 

closely linked to Gb3 gene (Gb3-SNP15318 and Gb3-SNP18260) on chromosome 7DL. 

We validated these SNP markers on SDW lines using KASP assay genotyping 

technology. Plates were read using a fluorescent plate reader Pherastar Plus and data was 

plotted on X and Y-axes. Based on the type of alleles present, we partitioned data into 

different clusters  

These results showed a great level of harmony between SNP markers and 

phenotypic scores (Table 4.7). For SNP15318 marker, there was 96% harmony between 

the genotyping and phenotyping score for susceptible lines and 80% harmony between 

the genotyping and phenotyping score for resistant genotypes. Similarly, for SNP18260 

marker, there was 98% harmony for susceptible genotypes and 90% harmony for 
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resistant genotypes. There were very few false positives and false negatives in this study. 

There were some missing values in the data. One possible reason for missing values 

might be attributed to the limited knowledge of temperature requirements for the KASP 

protocol. Plates were read right after removing from PCR cycler. Temperature of the 

plates during that time might have been higher than 40 °C. Genotyping and phenotyping 

scores show that greenbug resistant gene(s) is/are very closely linked to Gb3 loci.  

Future course of work includes doing genetic analyses to identify candidate 

genes and to do functional analysis for these two SNP markers. The functional analysis 

will eventually help to determine the source of resistance in these SDW lines. 
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Table 4.7. Phenotypic score and marker validation for greenbug resistance 

Pop. ID Pedigree Phenotype Gb3-SNP15318 Gb3-SNP18260 

  (No. of lines) (No. of lines) (No. of lines) 

  R MR MS S Total X:X X:Y Y:Y X:X X:Y Y:Y 

1 TAM 111*2/CIMMYT E95Syn4152-5 1 0 0 10 11 4 5 1 6 1 1 

2 TAM 112*2/CIMMYT E95Syn4152-5 5 1 0 2 8 0 4 4 0 0 6 

3 TAM 111*2/CIMMYT E95Syn4152-16 1 1 3 3 8 5 1 2 4 1 2 

4 TAM 112*2/CIMMYT E95Syn4152-16 3 1 0 0 4 0 1 3 0 0 4 

5 TAM 111*2/CIMMYT E95Syn4152-37 0 0 0 5 5 5 0 0 5 0 0 

6 TAM 112*2/CIMMYT E95Syn4152-37 12 1 0 0 13 1 2 9 1 0 11 

7 TAM 111*2/CIMMYT E95Syn4152-61 0 0 0 11 11 10 0 1 8 2 1 

8 TAM 112*2/CIMMYT E95Syn4152-61 1 0 0 0 1 0 0 1 0 0 0 

9 TAM 111*2/CIMMYT E95Syn4152-78 2 0 0 3 5 3 2 0 3 0 2 

10 TAM 112*2/CIMMYT E95Syn4152-78 0 0 0 9 9 9 0 0 8 1 0 

11 TAM 111*2/CIMMYT E2Syn4153-31 2 0 1 3 6 4 0 2 4 0 2 

12 TAM 111*2/CIMMYT E95Syn4152-51 1 0 1 10 12 10 0 2 10 1 1 

 TAM 112 1 0 0 0  0 0 1 0 0 1 

 TAM 111 0 0 0 1  1 0 0 1 0 0 

 Sum  28 4 5 56 93 51 15 25 49 6 30 

 Consistent of G to P      49  20 48  27 

 False positive       0  5 0  3 
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5. SUMMARY  

 

Wheat (Triticum aestivum L.) is one of the major staple food crops that 

contributes 19% calories and 21% protein of the global population diet. With the 

increase in global population, the demand for wheat could reach 900 million tons by 

2050. However, narrow genetic base and continued pressure from abiotic and biotic 

stresses pose a tough challenge to achieve the expected increase in wheat grain yield. 

Research leading to the evolution of synthetic hexaploid wheat (Triticum durum x 

Aegilops tauschii) and synthetic derived wheat (SDW) (elite bread wheat X synthetic 

hexaploid wheat) provided a tremendous opportunity to improve wheat production. 

Multi-location yield trials indicated certain SDW produced higher grain yield 

than their recurrent parents and common check varieties. The proportion of yield 

advantage varied from 12% to 39%, depending on the type of the environment. 

Combined analysis across locations demonstrated that mean of top ten yielding SDW 

lines was 12% higher than mean of recurrent parents, TAM 111 and TAM 112. A 

thorough investigation of factors contributing to higher yield showed that SDW had 

similar seeds per head, head m-2 as recurrent parents, however, had 10% higher single 

seed weight than recurrent parents. Overall, these SDW lines proved advantageous under 

biotic and abiotic stress environments, high and low yielding, rainfed, and irrigated 

environments. The highest percentage of yield advantage was observed in low yielding 

abiotic stress environments. 

In addition, quantitative genetic parameters such as variance components, 

genotypic coefficient of variation, heritability, and genetic gain were also estimated for 
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various traits. These estimates indicated that there is tremendous scope for grain yield 

improvement by utilizing SDW. Overall, genotypic coefficient of variation for grain 

yield and yield components indicated that there is high level of genetic variation among 

SDW lines for single seed weight (22%), seeds per head (11%), and grain yield (11%). 

Genetic gain results indicated that grain yield can be improved by 15.6% per cycle at 

10% selection intensity (i = 1.76). Indirect selection for yield using yield components 

indicated that the efficiency of indirect selection for yield is never as efficient as direct 

selection. Efficiency of indirect selection using heads per meter square, seeds per head, 

and single seed weight is 0.41, 0.46, and 0.21, respectively. 

In addition, SDW showed better resistance to leaf and stripe rust, greenbug, and 

powdery mildew resistance compared to their recurrent parents. Overall, 31%, 84%, 

30%, and 66% of lines in this population showed high level of resistance or low 

incidence of leaf rust, stripe rust, greenbug, and powdery mildew, respectively. There 

were certain indications to show that some resistance was transmitted from primary 

synthetics. 

These results indicate that SDW contributed some favorable alleles for yield, 

biotic stress resistance, and abiotic stress tolerance. These results also showed that SDW 

contributions were advantageous under both rainfed and irrigated conditions, which 

makes them an invaluable source for increasing genetic diversity and improving 

performance of Texas A&M AgriLife wheat germplasm. 
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APPENDIXES 

 

 

Appendix 1 

 

Mean, range, LSD (least significant difference), CV (coefficient of variation) for  grain 

yield, test weight, seed wt. (single seed weight), seeds head-1, head number, height, 

heading score at Chillicothe, TX in 2014 

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

  t ha-1 kg hL-1 g count Heads 

m-2 

cm scale 1-

5 

1 TX11Vsyn0101 1.23 71.2 0.0278 24 178 64.8 2 

2 TX11Vsyn0103 1.14 68.7 0.0222 27 165 53.7 2 

3 TX11Vsyn0110 0.7 65.7 0.0235 21 151 60 2 

4 TX11Vsyn0111 1.03 73.1 0.0309 20 184 57.4 2 

5 TX11Vsyn0112 1.06 70.5 0.0263 25 174 55.4 2 

6 TX11Vsyn0113 1 73.4 0.03 20 152 59.8 2 

7 TX11Vsyn0116 0.62 71.7 0.0271 19 111 51.5 2 

8 TX11Vsyn0118 1.19 69.4 0.0257 23 189 68.9 1 

9 TX11Vsyn0119 0.73 70.5 0.0248 22 132 55.7 2 

10 TX11Vsyn0120 1.31 70.7 0.0282 28 176 60.2 2 

11 TX11Vsyn0122 1.39 69.6 0.0275 26 185 58.6 1 

12 TX11Vsyn0123 1.24 69.8 0.025 27 178 62.1 2 

13 TX11Vsyn0124 1.12 68.6 0.0251 22 201 59.8 2 

14 TX11Vsyn0127 0.35 69.1 0.0225 18 110 59.3 3 

15 TX11Vsyn0130 0.58 72.1 0.022 16 137 44.2 3 

16 TX11Vsyn0131 0.98 72.2 0.0264 22 213 67.1 2 

17 TX11Vsyn0133 0.94 69.7 0.025 19 204 57.4 2 

18 TX11Vsyn0134 0.85 70.2 0.0262 24 125 55.5 2 

19 TX11Vsyn0135 0.8 72.7 0.0283 19 157 57.8 1 

20 TX11Vsyn0136 0.81 68 0.0254 26 112 62.9 3 

21 TX11Vsyn0137 1.23 72.8 0.0269 23 191 57.5 2 

22 TX11Vsyn0138 1.45 69.5 0.0336 24 188 67.4 2 

23 TX11Vsyn0140 1.59 71.6 0.0361 26 166 67.7 2 

24 TX11Vsyn0146 0.88 73 0.0281 21 130 63.2 2 

25 TX11Vsyn0153 1.05 71.9 0.024 24 169 56.2 2 

26 TX11Vsyn0154 1 71.7 0.0245 22 196 60.6 2 

27 TX11Vsyn0156 0.92 69.7 0.0235 24 177 63.6 2 

28 TX11Vsyn0158 0.58 73 0.027 22 101 49.8 3 

29 TX11Vsyn0159 1.31 71.3 0.023 24 250 60.7 2 

30 TX11Vsyn0160 0.51 72.7 0.0294 21 109 54.6 4 

31 TX11Vsyn0161 0.29 60.7 0.0185 17 109 59.4 2 

32 TX11Vsyn0164 1.26 72.6 0.0258 21 231 59.7 2 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

33 TX11Vsyn0165 0.98 69.2 0.0264 23 149 65.4 2 

34 TX11Vsyn0167 1.06 72.3 0.0297 21 185 60.7 2 

35 TX11Vsyn0168 0.74 70.8 0.0257 18 146 52.3 2 

36 TX11Vsyn0169 0.66 72.7 0.0285 24 98 56.1 3 

37 TX11Vsyn0174 0.79 69.3 0.0277 18 132 51.6 2 

38 TX11Vsyn0175 1.4 70.6 0.0264 22 227 61.2 2 

39 TX11Vsyn0178 0.77 73.3 0.0255 29 106 56.9 2 

40 TX11Vsyn0179 0.8 69.8 0.0242 16 224 54.5 2 

41 TX11Vsyn0180 0.57 69.9 0.0244 20 147 55.4 3 

42 TX11Vsyn0182 0.78 72.9 0.0266 20 140 66.3 2 

43 TX11Vsyn0185 0.79 70.6 0.0249 24 124 60 3 

44 TX11Vsyn0188 0.95 70.2 0.0292 20 184 57 3 

45 TX11Vsyn0189 0.92 69.9 0.0273 20 167 57.6 2 

46 TX11Vsyn0190 1.13 68.6 0.0255 26 185 57.6 2 

47 TX11Vsyn0191 1.24 73.8 0.0239 29 175 58.8 2 

48 TX11Vsyn0195 0.95 72.5 0.0295 23 135 63.7 2 

49 TX11Vsyn0196 1 69.2 0.0283 15 204 60.5 2 

50 TX11Vsyn0197 1.14 71.9 0.0277 23 169 60.2 2 

51 TX11Vsyn0199 0.62 73.2 0.0269 20 116 56.6 3 

52 TX11Vsyn0201 0.75 70.6 0.0288 20 126 57 2 

53 TX11Vsyn0208 1.03 70.6 0.0271 14 600 61.6 2 

54 TX11Vsyn0211 0.81 72.7 0.0278 19 154 53.1 2 

55 TX11Vsyn0212 0.97 67.1 0.0253 28 139 55 2 

56 TX11Vsyn0213 1.07 68.6 0.0232 25 158 56.6 2 

57 TX11Vsyn0216 1.11 71.1 0.0211 27 200 61 2 

58 TX11Vsyn0217 0.76 72.4 0.0263 22 95 59.4 2 

59 TX11Vsyn0219 1.46 73.6 0.0279 21 244 60.4 2 

60 TX11Vsyn0225 1.23 71.6 0.0277 24 193 55 2 

61 TX11Vsyn0226 1.43 74.4 0.0273 22 221 62.6 2 

62 TX11Vsyn0228 1.23 73.4 0.0248 18 295 58.8 2 

63 TX11Vsyn0229 1.34 72.3 0.0278 20 214 60.2 2 

64 TX11Vsyn0230 1.34 71.4 0.0275 21 232 59.7 2 

65 TX11Vsyn0232 1.34 73.3 0.0269 24 196 64.7 2 

66 TX11Vsyn0234 1.11 72.9 0.0287 22 188 61 2 

67 TX11Vsyn0238 1.21 69.7 0.0262 22 211 55.7 2 

68 TX11Vsyn0240 0.82 72.6 0.0264 18 153 58.7 2 

69 TX11Vsyn0241 1.27 72.4 0.0244 22 251 56.5 2 

70 TX11Vsyn0243 1.04 71 0.0263 21 196 71 1 

71 TX11Vsyn0253 0.94 72.6 0.0259 19 214 57.2 2 

72 TX11Vsyn0261 1.55 72.7 0.0247 27 255 61.5 2 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

73 TX11Vsyn0263 1.15 70.1 0.024 21 229 57.2 2 

74 TX11Vsyn0264 1.4 70.2 0.0253 17 297 60.7 2 

75 TX11Vsyn0265 1.09 73.5 0.0266 21 219 60.2 2 

76 TX11Vsyn0266 0.98 73.6 0.0254 19 211 54.7 2 

77 TX11Vsyn0267 1.1 73.1 0.0278 17 251 54.8 2 

78 TX11Vsyn0271 1.19 71.8 0.0301 18 249 60.6 2 

79 TX11Vsyn0272 1.34 68.3 0.0274 24 214 63.4 2 

80 TX11Vsyn0275 1.59 73.8 0.025 23 266 64.2 2 

81 TX11Vsyn0277 0.8 70.2 0.0235 17 190 59.3 2 

82 TX11Vsyn0279 1.36 72.7 0.0255 20 280 58 3 

83 TX11Vsyn0280 0.95 69.3 0.0268 17 213 58.8 2 

84 TX11Vsyn0282 0.41 72.4 0.0256 14 134 48.6 4 

85 TX11Vsyn0294 0.81 69.9 0.0261 22 131 54.8 2 

86 TX11Vsyn0300 0.98 68.2 0.024 24 172 65.2 2 

87 TX11Vsyn0303 0.76 71.7 0.0239 24 132 60.2 3 

88 TX11Vsyn0305 0.74 69.1 0.0237 20 122 63.3 2 

89 TX11Vsyn0306 1.08 68.8 0.0277 25 154 60.1 2 

90 TX11Vsyn0308 0.75 70.1 0.0277 21 128 56.5 2 

91 TX11Vsyn0309 1.09 71.1 0.0259 22 177 65.7 2 

92 TX11Vsyn0312 0.68 71.4 0.0263 22 98 51.7 2 

93 TX11Vsyn0313 0.85 71.1 0.0245 28 136 59.2 3 

94 TAM111 1 72.9 0.0255 27 135 59.9 2 

95 TAM112 1.12 73 0.0254 24 174 57.6 2 

96 TAM113 1.06 74.2 0.0249 27 156 55.9 2 

97 TAM304 1.28 67.4 0.0223 30 196 54.3 1 

98 TAM305 0.93 72.5 0.0222 24 176 49.5 2 

99 TAM401 1.06 69.7 0.0218 23 216 60.2 2 

100 TAMW101 1.13 70.8 0.0288 18 206 55.9 2 

 Mean 1.01 71.1 0.0261 22 181 58.8 2 

 Minimum 0.29 60.7 0.0185 14 95 44.2 1 

 Maximum 1.59 74.4 0.0361 30 600 71 4 

 LSD 0.35 2.7 0.0043 7 149 7.5 1 

 CV (%) 17.6 1.9 8.2 16.1 41.5 6.4 12.9 
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Mean, range, LSD (least significant difference), CV (coefficient of variation) for  grain 

yield, test weight, seed wt. (single seed weight), seeds head-1, head number, height, 

heading score at Chillicothe, TX in 2014 

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

  t ha-1 kg hL-1 g count Heads 

m-2 

cm scale 

1-5 

1 TX11Vsyn0101 1.23 71.2 0.0278 24 178 64.8 2 

2 TX11Vsyn0103 1.14 68.7 0.0222 27 165 53.7 2 

3 TX11Vsyn0110 0.70 65.7 0.0235 21 151 60.0 2 

4 TX11Vsyn0111 1.03 73.1 0.0309 20 184 57.4 2 

5 TX11Vsyn0112 1.06 70.5 0.0263 25 174 55.4 2 

6 TX11Vsyn0113 1.00 73.4 0.0300 20 152 59.8 2 

7 TX11Vsyn0116 0.62 71.7 0.0271 19 111 51.5 2 

8 TX11Vsyn0118 1.19 69.4 0.0257 23 189 68.9 1 

9 TX11Vsyn0119 0.73 70.5 0.0248 22 132 55.7 2 

10 TX11Vsyn0120 1.31 70.7 0.0282 28 176 60.2 2 

11 TX11Vsyn0122 1.39 69.6 0.0275 26 185 58.6 1 

12 TX11Vsyn0123 1.24 69.8 0.0250 27 178 62.1 2 

13 TX11Vsyn0124 1.12 68.6 0.0251 22 201 59.8 2 

14 TX11Vsyn0127 0.35 69.1 0.0225 18 110 59.3 3 

15 TX11Vsyn0130 0.58 72.1 0.0220 16 137 44.2 3 

16 TX11Vsyn0131 0.98 72.2 0.0264 22 213 67.1 2 

17 TX11Vsyn0133 0.94 69.7 0.0250 19 204 57.4 2 

18 TX11Vsyn0134 0.85 70.2 0.0262 24 125 55.5 2 

19 TX11Vsyn0135 0.80 72.7 0.0283 19 157 57.8 1 

20 TX11Vsyn0136 0.81 68.0 0.0254 26 112 62.9 3 

21 TX11Vsyn0137 1.23 72.8 0.0269 23 191 57.5 2 

22 TX11Vsyn0138 1.45 69.5 0.0336 24 188 67.4 2 

23 TX11Vsyn0140 1.59 71.6 0.0361 26 166 67.7 2 

24 TX11Vsyn0146 0.88 73.0 0.0281 21 130 63.2 2 

25 TX11Vsyn0153 1.05 71.9 0.0240 24 169 56.2 2 

26 TX11Vsyn0154 1.00 71.7 0.0245 22 196 60.6 2 

27 TX11Vsyn0156 0.92 69.7 0.0235 24 177 63.6 2 

28 TX11Vsyn0158 0.58 73.0 0.0270 22 101 49.8 3 

29 TX11Vsyn0159 1.31 71.3 0.0230 24 250 60.7 2 

30 TX11Vsyn0160 0.51 72.7 0.0294 21 109 54.6 4 

31 TX11Vsyn0161 0.29 60.7 0.0185 17 109 59.4 2 

32 TX11Vsyn0164 1.26 72.6 0.0258 21 231 59.7 2 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

33 TX11Vsyn0165 0.98 69.2 0.0264 23 149 65.4 2 

34 TX11Vsyn0167 1.06 72.3 0.0297 21 185 60.7 2 

35 TX11Vsyn0168 0.74 70.8 0.0257 18 146 52.3 2 

36 TX11Vsyn0169 0.66 72.7 0.0285 24 98 56.1 3 

37 TX11Vsyn0174 0.79 69.3 0.0277 18 132 51.6 2 

38 TX11Vsyn0175 1.40 70.6 0.0264 22 227 61.2 2 

39 TX11Vsyn0178 0.77 73.3 0.0255 29 106 56.9 2 

40 TX11Vsyn0179 0.80 69.8 0.0242 16 224 54.5 2 

41 TX11Vsyn0180 0.57 69.9 0.0244 20 147 55.4 3 

42 TX11Vsyn0182 0.78 72.9 0.0266 20 140 66.3 2 

43 TX11Vsyn0185 0.79 70.6 0.0249 24 124 60.0 3 

44 TX11Vsyn0188 0.95 70.2 0.0292 20 184 57.0 3 

45 TX11Vsyn0189 0.92 69.9 0.0273 20 167 57.6 2 

46 TX11Vsyn0190 1.13 68.6 0.0255 26 185 57.6 2 

47 TX11Vsyn0191 1.24 73.8 0.0239 29 175 58.8 2 

48 TX11Vsyn0195 0.95 72.5 0.0295 23 135 63.7 2 

49 TX11Vsyn0196 1.00 69.2 0.0283 15 204 60.5 2 

50 TX11Vsyn0197 1.14 71.9 0.0277 23 169 60.2 2 

51 TX11Vsyn0199 0.62 73.2 0.0269 20 116 56.6 3 

52 TX11Vsyn0201 0.75 70.6 0.0288 20 126 57.0 2 

53 TX11Vsyn0208 1.03 70.6 0.0271 14 600 61.6 2 

54 TX11Vsyn0211 0.81 72.7 0.0278 19 154 53.1 2 

55 TX11Vsyn0212 0.97 67.1 0.0253 28 139 55.0 2 

56 TX11Vsyn0213 1.07 68.6 0.0232 25 158 56.6 2 

57 TX11Vsyn0216 1.11 71.1 0.0211 27 200 61.0 2 

58 TX11Vsyn0217 0.76 72.4 0.0263 22 95 59.4 2 

59 TX11Vsyn0219 1.46 73.6 0.0279 21 244 60.4 2 

60 TX11Vsyn0225 1.23 71.6 0.0277 24 193 55.0 2 

61 TX11Vsyn0226 1.43 74.4 0.0273 22 221 62.6 2 

62 TX11Vsyn0228 1.23 73.4 0.0248 18 295 58.8 2 

63 TX11Vsyn0229 1.34 72.3 0.0278 20 214 60.2 2 

64 TX11Vsyn0230 1.34 71.4 0.0275 21 232 59.7 2 

65 TX11Vsyn0232 1.34 73.3 0.0269 24 196 64.7 2 

66 TX11Vsyn0234 1.11 72.9 0.0287 22 188 61.0 2 

67 TX11Vsyn0238 1.21 69.7 0.0262 22 211 55.7 2 

68 TX11Vsyn0240 0.82 72.6 0.0264 18 153 58.7 2 

69 TX11Vsyn0241 1.27 72.4 0.0244 22 251 56.5 2 

70 TX11Vsyn0243 1.04 71.0 0.0263 21 196 71.0 1 

71 TX11Vsyn0253 0.94 72.6 0.0259 19 214 57.2 2 

72 TX11Vsyn0261 1.55 72.7 0.0247 27 255 61.5 2 
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Table Continued 

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

73 TX11Vsyn0263 1.15 70.1 0.0240 21 229 57.2 2 

74 TX11Vsyn0264 1.40 70.2 0.0253 17 297 60.7 2 

75 TX11Vsyn0265 1.09 73.5 0.0266 21 219 60.2 2 

76 TX11Vsyn0266 0.98 73.6 0.0254 19 211 54.7 2 

77 TX11Vsyn0267 1.10 73.1 0.0278 17 251 54.8 2 

78 TX11Vsyn0271 1.19 71.8 0.0301 18 249 60.6 2 

79 TX11Vsyn0272 1.34 68.3 0.0274 24 214 63.4 2 

80 TX11Vsyn0275 1.59 73.8 0.0250 23 266 64.2 2 

81 TX11Vsyn0277 0.80 70.2 0.0235 17 190 59.3 2 

82 TX11Vsyn0279 1.36 72.7 0.0255 20 280 58.0 3 

83 TX11Vsyn0280 0.95 69.3 0.0268 17 213 58.8 2 

84 TX11Vsyn0282 0.41 72.4 0.0256 14 134 48.6 4 

85 TX11Vsyn0294 0.81 69.9 0.0261 22 131 54.8 2 

86 TX11Vsyn0300 0.98 68.2 0.0240 24 172 65.2 2 

87 TX11Vsyn0303 0.76 71.7 0.0239 24 132 60.2 3 

88 TX11Vsyn0305 0.74 69.1 0.0237 20 122 63.3 2 

89 TX11Vsyn0306 1.08 68.8 0.0277 25 154 60.1 2 

90 TX11Vsyn0308 0.75 70.1 0.0277 21 128 56.5 2 

91 TX11Vsyn0309 1.09 71.1 0.0259 22 177 65.7 2 

92 TX11Vsyn0312 0.68 71.4 0.0263 22 98 51.7 2 

93 TX11Vsyn0313 0.85 71.1 0.0245 28 136 59.2 3 

94 TAM111 1.00 72.9 0.0255 27 135 59.9 2 

95 TAM112 1.12 73.0 0.0254 24 174 57.6 2 

96 TAM113 1.06 74.2 0.0249 27 156 55.9 2 

97 TAM304 1.28 67.4 0.0223 30 196 54.3 1 

98 TAM305 0.93 72.5 0.0222 24 176 49.5 2 

99 TAM401 1.06 69.7 0.0218 23 216 60.2 2 

100 TAMW101 1.13 70.8 0.0288 18 206 55.9 2 

 Mean 1.01 71.1 0.0261 22 181 58.8 2 

 Minimum 0.29 60.7 0.0185 14 95 44.2 1 

 Maximum 1.59 74.4 0.0361 30 600 71.0 4 

 LSD 0.35 2.7 0.0043 7 149 7.5 1 

 CV (%) 17.6 1.9 8.2 16.1 41.5 6.4 12.9 



 

 

168 

 

Mean, range, LSD (least significant difference), CV (coefficient of variation) for  

grain yield, test weight, seed wt. (single seed weight), seeds head-1, head number, 

height, heading score at Diyarbakir, Turkey in 2014 

 

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt. 

Seeds 

Head-1 

Head No HT HS 

  t ha-1 kg hL-1 g count Heads m-2 cm 1-5 

1 TX11Vsyn0101 6.76 85.7 0.0352 41 467 98.1 3 

2 TX11Vsyn0103 4.13 82.6 0.0268 35 603 82.7 3 

3 TX11Vsyn0110 5.41 83.4 0.0351 33 444 94.7 3 

4 TX11Vsyn0111 5.12 84.0 0.0376 31 412 92.6 2 

5 TX11Vsyn0112 5.24 83.4 0.0311 40 421 93.1 5 

6 TX11Vsyn0113 5.65 85.0 0.0389 39 393 102.1 3 

7 TX11Vsyn0116 4.96 82.2 0.0344 30 476 82.0 4 

8 TX11Vsyn0118 5.40 81.4 0.0328 42 377 94.4 3 

9 TX11Vsyn0119 5.73 81.4 0.0334 40 437 92.8 4 

10 TX11Vsyn0120 6.15 82.8 0.0388 47 343 102.1 3 

11 TX11Vsyn0122 6.28 84.5 0.0333 49 401 105.5 3 

12 TX11Vsyn0123 6.03 82.1 0.0313 47 403 98.3 3 

13 TX11Vsyn0124 4.99 79.3 0.0331 36 412 94.6 5 

14 TX11Vsyn0127 4.72 81.2 0.0392 41 281 99.4 5 

15 TX11Vsyn0130 5.40 83.0 0.0275 44 416 80.7 4 

16 TX11Vsyn0131 5.02 85.6 0.0370 36 379 101.3 2 

17 TX11Vsyn0133 5.79 85.7 0.0349 37 445 93.6 3 

18 TX11Vsyn0134 4.89 83.0 0.0342 30 480 89.7 2 

19 TX11Vsyn0135 5.37 82.9 0.0365 41 339 85.9 3 

20 TX11Vsyn0136 5.83 81.0 0.0359 44 376 116.5 5 

21 TX11Vsyn0137 5.88 82.4 0.0379 37 422 93.5 5 

22 TX11Vsyn0138 5.27 85.4 0.0444 25 500 104.7 1 

23 TX11Vsyn0140 5.41 84.9 0.0489 28 391 107.1 2 

24 TX11Vsyn0146 4.60 85.0 0.0367 27 475 102.8 4 

25 TX11Vsyn0153 4.43 80.6 0.0288 35 457 72.9 3 

26 TX11Vsyn0154 4.57 85.2 0.0339 43 341 83.6 3 

27 TX11Vsyn0156 5.54 85.0 0.0372 42 351 103.9 3 

28 TX11Vsyn0158 5.15 85.3 0.0391 38 356 94.0 4 

29 TX11Vsyn0159 5.70 81.2 0.0276 51 385 85.7 2 

30 TX11Vsyn0160 4.89 86.1 0.0362 37 364 88.8 3 

31 TX11Vsyn0161 4.43 82.1 0.0317 42 368 87.2 4 

32 TX11Vsyn0164 3.93 81.4 0.0312 36 359 78.3 3 

33 TX11Vsyn0165 6.02 82.5 0.0364 42 378 106.2 3 

34 TX11Vsyn0167 5.81 84.9 0.0376 35 445 91.0 3 

35 TX11Vsyn0168 4.66 82.5 0.0323 33 467 93.6 3 

36 TX11Vsyn0169 4.62 83.7 0.0342 40 331 94.6 3 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt. 

Seeds 

Head-1 

Head 

No 

HT HS 

37 TX11Vsyn0174 4.67 83.2 0.0402 30 430 97.8 4 

38 TX11Vsyn0175 5.74 84.2 0.0350 32 464 95.3 3 

39 TX11Vsyn0178 4.81 83.8 0.0307 32 477 85.7 3 

40 TX11Vsyn0179 6.23 83.4 0.0334 29 608 91.6 2 

41 TX11Vsyn0180 5.23 82.9 0.0300 46 389 93.6 4 

42 TX11Vsyn0182 6.18 87.1 0.0400 39 415 101.3 2 

43 TX11Vsyn0185 6.31 86.0 0.0344 41 490 89.1 3 

44 TX11Vsyn0188 4.73 80.8 0.0334 33 425 89.8 5 

45 TX11Vsyn0189 5.58 82.0 0.0335 35 514 88.8 3 

46 TX11Vsyn0190 4.51 78.8 0.0272 49 386 90.1 4 

47 TX11Vsyn0191 6.00 85.4 0.0326 34 529 95.9 3 

48 TX11Vsyn0195 6.14 83.8 0.0388 43 371 109.0 2 

49 TX11Vsyn0196 4.43 80.8 0.0407 37 287 97.6 2 

50 TX11Vsyn0197 5.75 82.8 0.0381 38 415 103.1 2 

51 TX11Vsyn0199 4.90 81.8 0.0320 35 446 103.6 5 

52 TX11Vsyn0201 4.95 81.4 0.0393 32 379 97.0 3 

53 TX11Vsyn0208 5.42 86.1 0.0399 35 413 92.7 3 

54 TX11Vsyn0211 4.48 82.2 0.0325 36 386 84.0 3 

55 TX11Vsyn0212 4.44 79.8 0.0288 45 326 86.6 3 

56 TX11Vsyn0213 5.27 81.6 0.0337 41 382 88.4 3 

57 TX11Vsyn0216 5.32 83.4 0.0302 45 410 83.3 4 

58 TX11Vsyn0217 5.36 83.2 0.0433 33 373 101.3 3 

59 TX11Vsyn0219 5.72 81.2 0.0315 36 498 92.6 4 

60 TX11Vsyn0225 5.62 85.7 0.0356 36 476 85.5 2 

61 TX11Vsyn0226 5.40 84.8 0.0357 35 426 96.7 2 

62 TX11Vsyn0228 5.48 86.5 0.0310 41 468 86.1 1 

63 TX11Vsyn0229 5.03 82.4 0.0342 36 405 97.4 3 

64 TX11Vsyn0230 5.38 86.3 0.0372 33 483 85.5 3 

65 TX11Vsyn0232 5.19 85.8 0.0356 38 418 108.1 2 

66 TX11Vsyn0234 6.04 85.7 0.0326 37 486 87.8 2 

67 TX11Vsyn0238 5.27 80.0 0.0348 42 356 89.9 2 

68 TX11Vsyn0240 4.55 87.1 0.0359 29 475 111.1 2 

69 TX11Vsyn0241 5.75 81.6 0.0285 42 475 82.0 2 

70 TX11Vsyn0243 4.55 85.0 0.0368 27 625 110.5 2 

71 TX11Vsyn0253 5.21 84.6 0.0293 26 673 92.1 2 

72 TX11Vsyn0261 5.16 84.0 0.0331 43 362 79.0 3 

73 TX11Vsyn0263 6.36 83.2 0.0334 37 498 97.9 3 

74 TX11Vsyn0264 5.81 81.7 0.0351 37 452 94.2 3 

75 TX11Vsyn0265 5.73 82.1 0.0338 33 504 99.2 3 

76 TX11Vsyn0266 5.33 82.5 0.0324 38 444 87.4 2 

77 TX11Vsyn0267 5.80 85.4 0.0326 39 452 88.4 3 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt. 

Seeds 

Head-1 

Head 

No 

HT HS 

78 TX11Vsyn0271 5.95 85.0 0.0327 38 486 103.0 2 

79 TX11Vsyn0272 6.17 82.0 0.0332 37 523 87.5 2 

80 TX11Vsyn0275 5.74 84.8 0.0311 37 514 91.4 2 

81 TX11Vsyn0277 5.67 82.9 0.0338 42 426 89.8 3 

82 TX11Vsyn0279 5.49 84.9 0.0313 41 418 87.3 3 

83 TX11Vsyn0280 4.95 79.7 0.0284 33 509 95.6 2 

84 TX11Vsyn0282 4.42 81.7 0.0298 32 446 96.3 4 

85 TX11Vsyn0294 5.27 79.8 0.0313 48 363 89.7 2 

86 TX11Vsyn0300 6.01 82.6 0.0326 46 396 103.1 3 

87 TX11Vsyn0303 3.86 83.2 0.0271 40 376 118.2 5 

88 TX11Vsyn0305 3.88 78.1 0.0285 36 372 82.0 4 

89 TX11Vsyn0306 4.85 82.8 0.0337 38 369 90.5 4 

90 TX11Vsyn0308 5.02 82.5 0.0352 38 389 93.7 4 

91 TX11Vsyn0309 5.96 83.4 0.0342 40 423 102.8 3 

92 TX11Vsyn0312 5.83 84.5 0.0292 39 529 93.6 3 

93 TX11Vsyn0313 4.69 83.7 0.0337 45 348 126.9 4 

94 TAM111 4.77 82.8 0.0319 44 343 90.5 3 

95 TAM112 6.21 85.0 0.0298 36 566 81.4 2 

96 TAM113 6.59 87.3 0.0335 33 558 87.9 3 

97 TAM304 5.83 82.2 0.0286 46 414 77.6 3 

98 TAM305 5.48 85.0 0.0360 34 447 88.9 2 

99 TAM401 6.39 83.3 0.0287 56 441 92.1 2 

100 TAMW101 4.33 84.9 0.0369 29 432 82.9 3 

 Mean 5.33 83.3 0.0340 38 431 93.8 3 

 Minimum 3.86 78.1 0.0268 25 281 72.9 1 

 Maximum 6.76 87.3 0.0489 56 673 126.9 5 

 LSD 1.47 . 0.0055 12 195 15.1 1 

 CV (%) 13.9 . 8.2 16.4 22.7 8.1 22.6 
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Mean, range, LSD (least significant difference), CV (coefficient of variation) for  

grain yield, test weight, seed wt. (single seed weight), seeds head-1, head number, 

height, heading score at College Station, TX in 2014 

 

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head 

No 

HT HS 

  t ha-1 kg hL-1 g count Heads 

m-2 

cm  1-5 

1 TX11Vsyn0101 1.94 71.9 0.0307 45 139 90.5 3 

2 TX11Vsyn0103 1.79 67.4 0.0218 47 180 84.4 3 

3 TX11Vsyn0110 2.42 72.9 0.0285 40 216 99.0 3 

4 TX11Vsyn0111 1.68 72.8 0.0367 35 129 79.6 2 

5 TX11Vsyn0112 0.88 70.2 0.0282 42 75 91.1 3 

6 TX11Vsyn0113 2.02 73.5 0.0344 41 147 85.5 2 

7 TX11Vsyn0116 2.09 69.4 0.0285 44 170 90.5 4 

8 TX11Vsyn0118 2.15 70.1 0.0306 47 151 87.9 2 

9 TX11Vsyn0119 1.51 71.0 0.0286 52 101 80.1 3 

10 TX11Vsyn0120 2.00 69.6 0.0324 48 125 97.1 3 

11 TX11Vsyn0122 2.05 70.3 0.0274 52 144 87.0 5 

12 TX11Vsyn0123 1.94 72.1 0.0307 44 145 93.0 2 

13 TX11Vsyn0124 1.66 72.3 0.0285 46 134 89.0 3 

14 TX11Vsyn0127 2.56 73.2 0.0303 50 174 99.0 3 

15 TX11Vsyn0130 1.67 72.1 0.0266 49 127 88.0 3 

16 TX11Vsyn0131 2.00 72.6 0.0319 33 178 84.9 3 

17 TX11Vsyn0133 1.66 72.8 0.0301 42 130 90.0 3 

18 TX11Vsyn0134 1.95 70.4 0.0288 39 175 93.0 2 

19 TX11Vsyn0135 1.75 72.6 0.0320 45 130 81.5 3 

20 TX11Vsyn0136 2.16 70.3 0.0292 42 177 99.0 5 

21 TX11Vsyn0137 1.64 72.4 0.0304 43 134 89.0 5 

22 TX11Vsyn0138 2.11 67.3 0.0354 41 165 96.0 3 

23 TX11Vsyn0140 1.96 72.4 0.0407 34 147 88.5 2 

24 TX11Vsyn0146 1.39 72.6 0.0311 39 122 91.0 4 

25 TX11Vsyn0153 1.80 67.5 0.0259 43 160 82.0 3 

26 TX11Vsyn0154 2.24 70.8 0.0262 42 210 88.0 3 

27 TX11Vsyn0156 2.00 72.1 0.0283 55 131 85.9 2 

28 TX11Vsyn0158 2.61 70.5 0.0316 42 199 82.0 3 

29 TX11Vsyn0159 1.70 70.6 0.0209 55 143 86.0 4 

30 TX11Vsyn0160 1.92 71.8 0.0311 42 150 90.0 5 

31 TX11Vsyn0161 2.01 71.7 0.0259 48 165 91.0 5 

32 TX11Vsyn0164 2.46 70.6 0.0279 48 182 85.9 3 

33 TX11Vsyn0165 2.49 69.3 0.0282 47 199 90.0 3 

34 TX11Vsyn0167 2.31 72.3 0.0277 41 206 89.5 3 

35 TX11Vsyn0168 2.36 66.3 0.0277 44 188 89.1 3 

36 TX11Vsyn0169 1.50 72.7 0.0319 39 131 86.1 3 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head No HT H

S 

37 TX11Vsyn0174 1.60 68.5 0.0274 40 143 91.0 4 

38 TX11Vsyn0175 1.27 68.8 0.0259 39 127 89.0 3 

39 TX11Vsyn0178 2.44 70.8 0.0254 45 210 88.4 3 

40 TX11Vsyn0179 1.57 71.4 0.0275 53 131 90.4 3 

41 TX11Vsyn0180 1.42 70.5 0.0251 43 136 75.0 3 

42 TX11Vsyn0182 2.02 70.1 0.0298 40 169 88.0 2 

43 TX11Vsyn0185 1.31 71.3 0.0282 43 108 81.6 4 

44 TX11Vsyn0188 1.68 66.0 0.0282 41 142 86.0 5 

45 TX11Vsyn0189 2.63 69.8 0.0301 36 245 83.5 2 

46 TX11Vsyn0190 1.57 64.6 0.0242 45 158 91.0 3 

47 TX11Vsyn0191 2.67 73.5 0.0277 46 215 90.0 2 

48 TX11Vsyn0195 2.46 71.7 0.0303 43 189 88.5 3 

49 TX11Vsyn0196 1.57 70.8 0.0344 36 130 90.0 3 

50 TX11Vsyn0197 1.85 70.7 0.0321 43 138 97.9 3 

51 TX11Vsyn0199 2.43 71.9 0.0300 45 185 90.4 5 

52 TX11Vsyn0201 1.65 69.2 0.0317 35 146 85.0 3 

53 TX11Vsyn0208 1.41 73.3 0.0305 46 114 94.0 3 

54 TX11Vsyn0211 1.70 72.1 0.0297 44 133 90.0 3 

55 TX11Vsyn0212 2.07 66.3 0.0260 51 158 87.0 3 

56 TX11Vsyn0213 2.47 71.0 0.0287 49 189 90.0 3 

57 TX11Vsyn0216 1.96 70.1 0.0240 43 191 85.0 3 

58 TX11Vsyn0217 1.41 71.5 0.0348 39 101 92.0 2 

59 TX11Vsyn0219 1.85 70.6 0.0321 33 159 76.5 2 

60 TX11Vsyn0225 1.92 69.9 0.0290 40 171 74.1 3 

61 TX11Vsyn0226 1.78 70.6 0.0298 37 152 81.0 2 

62 TX11Vsyn0228 1.46 76.1 0.0322 37 123 79.0 3 

63 TX11Vsyn0229 1.68 70.8 0.0285 41 151 90.0 2 

64 TX11Vsyn0230 2.28 71.6 0.0292 42 187 88.5 3 

65 TX11Vsyn0232 1.29 69.8 0.0269 30 175 91.0 2 

66 TX11Vsyn0234 2.07 71.9 0.0278 33 203 72.0 2 

67 TX11Vsyn0238 1.60 68.1 0.0266 45 135 75.4 3 

68 TX11Vsyn0240 1.48 71.7 0.0282 33 157 91.0 2 

69 TX11Vsyn0241 1.36 69.1 0.0267 32 169 83.0 2 

70 TX11Vsyn0243 1.87 67.5 0.0340 38 149 85.0 2 

71 TX11Vsyn0253 1.27 71.5 0.0280 37 127 84.1 2 

72 TX11Vsyn0261 1.22 72.6 0.0313 42 94 86.4 3 

73 TX11Vsyn0263 1.92 70.8 0.0296 40 164 86.9 3 

74 TX11Vsyn0264 1.99 68.9 0.0285 43 162 87.1 2 

75 TX11Vsyn0265 2.17 73.1 0.0339 43 150 83.5 2 

76 TX11Vsyn0266 2.42 69.1 0.0294 44 182 89.0 2 

77 TX11Vsyn0267 1.72 68.3 0.0253 46 154 79.5 2 
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Table Continued  

ID Genotype Grain 

Yield 

Test 

Weight 

Seed 

Wt 

Seeds 

Head-1 

Head No HT H

S 

78 TX11Vsyn0271 1.26 72.3 0.0301 36 117 86.0 3 

79 TX11Vsyn0272 1.89 70.1 0.0294 41 163 82.9 2 

80 TX11Vsyn0275 1.60 72.3 0.0276 42 138 83.5 2 

81 TX11Vsyn0277 1.83 72.7 0.0319 43 141 86.5 4 

82 TX11Vsyn0279 1.62 69.8 0.0244 43 157 81.0 3 

83 TX11Vsyn0280 0.68 66.5 0.0266 34 65 94.0 2 

84 TX11Vsyn0282 2.26 72.6 0.0249 36 248 94.5 5 

85 TX11Vsyn0294 2.49 66.6 0.0247 47 217 86.5 2 

86 TX11Vsyn0300 1.85 66.9 0.0244 54 136 81.0 3 

87 TX11Vsyn0303 1.82 74.9 0.0292 46 139 99.6 5 

88 TX11Vsyn0305 2.55 67.1 0.0246 44 244 87.0 3 

89 TX11Vsyn0306 2.65 71.6 0.0308 48 191 90.1 3 

90 TX11Vsyn0308 2.27 70.7 0.0286 50 156 86.0 2 

91 TX11Vsyn0309 1.41 66.6 0.0287 41 122 96.0 2 

92 TX11Vsyn0312 1.72 66.4 0.0229 42 191 89.0 3 

93 TX11Vsyn0313 1.72 72.8 0.0277 41 150 100 5 

94 TAM111 2.23 72.8 0.0262 46 186 85.0 3 

95 TAM112 1.63 70.2 0.0267 37 172 76.5 2 

96 TAM113 1.68 72.5 0.0275 43 151 81.0 4 

97 TAM304 1.51 68.5 0.0253 44 150 79.0 3 

98 TAM305 1.93 70.3 0.0266 48 156 81.1 3 

99 TAM401 2.02 70.6 0.0263 49 166 86.0 3 

100 TAMW101 2.06 74.6 0.0340 31 205 81.0 5 

 Mean 1.88 70.6 0.0288 43 158 87.2 3 

 Minimum 0.68 64.6 0.0209 30 65 72.0 2 

 Maximum 2.67 76.1 0.0407 55 248 100.0 5 

 LSD 0.97 1.9 0.0044 11 94 2.6 1 

 CV (%) 26.1 1.4 7.7 13.1 29.8 1.5 10 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

174 

 

Mean, range, LSD (least significant difference), CV (coefficient of variation) for  

grain yield, test weight, seed wt. (single seed weight), seeds head-1, head number, 

height, heading score at College Station, TX in 2013 

 

ID Genotype Grain    

Yield 

Test 

Weight 

Seed 

Wt. 

Seeds 

Head-1 

Head 

No. 

Heig

ht 

HS 

  t ha-1 kg hL-1 g count Heads 

m-2 

cm  1-5 

1 TX11Vsyn0101 3.30 77.1 0.0405 36 225 97.5 3 

2 TX11Vsyn0103 2.90 75.8 0.0340 43 202 97.3 3 

3 TX11Vsyn0110 2.30 77.6 0.0321 47 151 94.2 4 

4 TX11Vsyn0111 2.70 76.8 0.0403 37 188 93.6 3 

5 TX11Vsyn0112 3.20 76.3 0.0306 41 253 88.8 4 

6 TX11Vsyn0113 2.60 77.0 0.0388 40 166 103.8 3 

7 TX11Vsyn0116 3.20 74.2 0.0337 40 248 103.1 3 

8 TX11Vsyn0118 2.30 75.7 0.0343 35 197 95.3 3 

9 TX11Vsyn0119 3.30 76.4 0.0306 44 251 98.1 3 

10 TX11Vsyn0120 2.60 76.7 0.0398 39 159 106.2 4 

11 TX11Vsyn0122 3.30 78.4 0.0381 43 202 101.2 3 

12 TX11Vsyn0123 3.00 75.5 0.0355 39 217 99.9 3 

13 TX11Vsyn0124 2.20 76.2 0.0374 33 193 88.3 4 

14 TX11Vsyn0127 3.10 76.8 0.0347 34 274 85.9 4 

15 TX11Vsyn0130 2.80 77.5 0.0340 36 234 95.3 4 

16 TX11Vsyn0131 3.10 74.6 0.0362 36 248 95.7 2 

17 TX11Vsyn0133 2.90 77.0 0.0355 38 220 99.6 4 

18 TX11Vsyn0134 3.00 77.3 0.0343 38 231 92.0 3 

19 TX11Vsyn0135 3.10 89.6 0.0409 38 215 102.1 4 

20 TX11Vsyn0136 2.60 76.0 0.0378 43 160 116.2 3 

21 TX11Vsyn0137 3.20 77.5 0.0340 39 245 90.1 3 

22 TX11Vsyn0138 3.00 76.8 0.0383 41 185 96.2 3 

23 TX11Vsyn0140 3.10 76.6 0.0409 36 216 102.3 4 

24 TX11Vsyn0146 3.30 76.4 0.0402 35 248 105.1 4 

25 TX11Vsyn0153 2.90 77.5 0.0378 32 244 94.7 3 

26 TX11Vsyn0154 2.50 74.7 0.0349 37 200 96.6 4 

27 TX11Vsyn0156 1.70 77.5 0.0397 40 114 101.2 3 

28 TX11Vsyn0158 2.90 76.5 0.0376 37 216 106.8 3 

29 TX11Vsyn0159 1.60 76.1 0.0364 35 137 103.6 3 

30 TX11Vsyn0160 2.30 78.1 0.0319 42 183 94.9 2 

31 TX11Vsyn0161 3.00 75.1 0.0338 39 229 96.1 4 

32 TX11Vsyn0164 3.10 76.9 0.0342 38 247 93.5 3 

33 TX11Vsyn0165 2.50 76.0 0.0366 32 228 99.2 4 

34 TX11Vsyn0167 3.00 76.4 0.0355 39 219 103.4 4 

35 TX11Vsyn0168 2.20 74.6 0.0345 39 173 87.5 3 

36 TX11Vsyn0169 1.90 77.5 0.0407 40 117 99.0 2 
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Table Continued  

ID Genotype Grain    

Yield 

Test 

Weight 

Seed 

Wt. 

Seeds 

Head-1 

Head 

No. 

Heig

ht 

HS 

37 TX11Vsyn0174 1.90 73.9 0.0400 32 155 104.7 4 

38 TX11Vsyn0175 1.70 76.9 0.0391 36 125 99.4 4 

39 TX11Vsyn0178 2.70 76.5 0.0326 40 205 94.6 3 

40 TX11Vsyn0179 2.40 76.1 0.0391 32 205 101.6 3 

41 TX11Vsyn0180 1.90 75.2 0.0373 36 138 94.4 2 

42 TX11Vsyn0182 3.40 79.8 0.0373 43 219 108.1 3 

43 TX11Vsyn0185 2.70 75.7 0.0347 41 196 96.2 4 

44 TX11Vsyn0188 2.90 74.7 0.0415 31 218 103.0 3 

45 TX11Vsyn0189 2.70 75.0 0.0345 41 193 99.0 3 

46 TX11Vsyn0190 2.70 75.9 0.0364 36 219 96.2 3 

47 TX11Vsyn0191 4.10 90.7 0.0361 37 310 98.1 3 

48 TX11Vsyn0195 2.70 69.9 0.0400 38 186 107.9 4 

49 TX11Vsyn0196 2.40 76.4 0.0412 33 187 101.8 4 

50 TX11Vsyn0197 3.00 77.7 0.0366 38 222 104.4 4 

51 TX11Vsyn0199 3.30 76.0 0.0359 37 252 107.2 3 

52 TX11Vsyn0201 2.40 74.9 0.0390 31 205 92.7 3 

53 TX11Vsyn0208 3.20 76.3 0.0328 35 252 94.7 4 

54 TX11Vsyn0211 3.70 77.0 0.0367 38 272 94.0 3 

55 TX11Vsyn0212 3.10 75.0 0.0350 39 238 92.7 3 

56 TX11Vsyn0213 3.90 79.0 0.0330 40 280 93.5 3 

57 TX11Vsyn0216 2.60 76.2 0.0325 39 210 98.2 4 

58 TX11Vsyn0217 2.40 76.0 0.0371 35 199 102.5 4 

59 TX11Vsyn0219 3.10 75.4 0.0337 43 214 99.8 3 

60 TX11Vsyn0225 3.20 75.8 0.0381 36 242 98.1 2 

61 TX11Vsyn0226 3.40 77.8 0.0350 40 249 90.7 3 

62 TX11Vsyn0228 3.10 77.1 0.0354 30 264 96.8 4 

63 TX11Vsyn0229 3.60 78.2 0.0326 40 272 92.7 3 

64 TX11Vsyn0230 2.70 76.4 0.0403 40 152 96.0 3 

65 TX11Vsyn0232 2.20 75.0 0.0393 40 129 104.9 3 

66 TX11Vsyn0234 3.60 77.7 0.0357 45 233 99.2 3 

67 TX11Vsyn0238 2.80 76.7 0.0352 43 179 92.9 3 

68 TX11Vsyn0240 2.70 74.4 0.0311 41 208 104.8 3 

69 TX11Vsyn0241 2.40 76.7 0.0369 36 187 92.7 4 

70 TX11Vsyn0243 1.50 75.1 0.0419 35 106 103.8 1 

71 TX11Vsyn0253 2.20 76.3 0.0374 32 198 104.2 2 

72 TX11Vsyn0261 3.90 76.4 0.0352 44 259 99.5 3 

73 TX11Vsyn0263 3.00 75.8 0.0393 36 225 101.8 2 

74 TX11Vsyn0264 2.70 75.3 0.0354 35 226 101.4 3 

75 TX11Vsyn0265 2.80 74.9 0.0352 36 235 96.0 3 

76 TX11Vsyn0266 3.10 76.0 0.0335 35 277 89.4 2 

77 TX11Vsyn0267 2.80 76.1 0.0354 39 198 99.2 3 
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Table Continued  

ID Genotype Grain    

Yield 

Test 

Weight 

Seed 

Wt. 

Seeds 

Head-1 

Head 

No. 

Heig

ht 

HS 

78 TX11Vsyn0271 2.70 74.9 0.0295 40 222 94.0 2 

79 TX11Vsyn0272 2.70 74.6 0.0378 32 223 113.4 3 

80 TX11Vsyn0275 3.30 76.6 0.0345 37 280 104.7 4 

81 TX11Vsyn0277 3.20 75.2 0.0347 37 254 98.8 3 

82 TX11Vsyn0279 2.50 68.8 0.0347 37 199 99.5 3 

83 TX11Vsyn0280 2.40 74.7 0.0347 33 231 102.9 3 

84 TX11Vsyn0282 1.70 71.1 0.0364 37 130 103.1 4 

85 TX11Vsyn0294 4.00 76.2 0.0333 44 280 93.8 5 

86 TX11Vsyn0300 2.40 75.6 0.0354 44 151 104.9 3 

87 TX11Vsyn0303 2.70 80.1 0.0383 37 198 103.8 3 

88 TX11Vsyn0305 2.30 79.0 0.0318 40 188 102.0 5 

89 TX11Vsyn0306 2.50 76.9 0.0359 40 166 88.3 3 

90 TX11Vsyn0308 3.10 76.5 0.0354 39 228 99.5 2 

91 TX11Vsyn0309 2.90 76.4 0.0328 41 223 101.8 3 

92 TX11Vsyn0312 2.10 76.8 0.0350 39 154 93.4 4 

93 TX11Vsyn0313 2.00 75.5 0.0369 46 129 104.0 3 

94 TAM111 4.10 78.3 0.0334 39 309 99.0 4 

95 TAM112 2.70 65.7 0.0294 33 211 83.6 3 

96 TAM113 . . . . . . . 

97 TAM304 . . . . . . . 

98 TAM305 . . . . . . . 

99 TAM401 1.10 74.1 0.0379 36 89 98.2 2 

100 TAMW101 . . . . . . . 

 Mean 2.65 76.1 0.0361 37 203 99.0 3 

 Minimum 1.10 65.7 0.0294 30 89 83.6 1 

 Maximum 4.10 90.7 0.0419 47 310 116.2 5 

 LSD . . . . . . . 

 CV (%) 20.1 6.0 8.0 10.0 20.4 5.9 22.6 
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Appendix II 

 

*/test of normality/*; 

proc sort ; by loc rep; 

Proc univariate normal; 

Var GY TW SKW SeedsSpike SpikeNo Heading Height Agscore YRCI LRCI YR LR; 

run; 

*/test of homogeniety of varaiances/*; 

proc glm; 

proc sort ; by loc rep; 

class Genotype; 

model GY TW SKW  SeedsSpike SpikeNo Heading HeadingScore Height YRCI LRCI 

YR LR = Genotype / ss3; 

means Genotype /  hovtest=levene (type=abs); 

means Genotype / hovtest=BARTLETT; 

ODS Graphics off; 

run; 

*/individual location analysis with covariate/*; 

proc glm; by loc; 

class Genotype rep block; 

model GY TW SKW SeedsSpike SpikeNo Heading Headingscore Height Agscore YRCI 

LRCI YR LR = Genotype rep block(rep)covariate; 

random rep block(rep); 

means Genotype / tukey; 

lsmeans Genotype; 

ODS Graphics off; 

run; 

*/combined locations analysis with covariate/*; 

proc glm; 

class loc Genotype rep block; 

model GY TW SKW SeedsSpike SpikeNo Heading HeadingScore Height Agscore 

YRCI LRCI YR LR = loc Genotype rep block(rep) Genotype*loc rep(loc)covariate; 

random rep block(rep) rep(loc); 

means Genotype / tukey; 

lsmeans Genotype; 

ODS Graphics off; 

run; 

*/correlation analysis/*; 

proc corr; 

var GY TW SKW SeedsSpike SpikeNo Heading HeadingScore Height YRCI LRCI YR 

LR; 

run; 

 

*/correlation analysis few/*; 
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proc corr; 

var GY TW SKW SeedsSpike SpikeNo; 

run; 

 

*/regression analysis/*; 

proc reg; 

model GY = TW SKW  SeedsSpike SpikeNo Heading HeadingScore Height YRCI 

LRCI YR LR / noint; 

run; 

 

*/regression analysis/*; 

proc reg; 

model GY = TW SKW  SeedsSpike SpikeNo / noint; 

run; 

quit; 

 

 

*/rcbd combined analysis/*; 

; 

proc glm; 

class ID Rep; 

model GY TW SKW SeedsSpike SpikeNo Height HeadingScore LRCI= ID Rep; 

lsmeans ID/stderr pdiff; 

run; 

*/correlation analysis/*; 

proc corr; 

var GY TW SKW SeedsSpike SpikeNo HeadingScore Height LRCI; 

proc corr; 

*/regression analysis/*; 

proc reg; 

model GY = TW SKW  SeedsSpike SpikeNo HeadingScore Height LRCI/ noint; 

run; 

quit; 

 

 

*/Augmented design/*; 

data BS1Aug; 

input Genotype Rep GY TW SKW SeedsSpike SpikeNo

 Height Heading HeadingScore LRCI; 

if (Genotype>210)then new=0; else new=1; 

if (new) then check=999; else check=Genotype; 

datalines; 

; 

ods html; ods graphics on; 
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Proc glm; 

class Rep Genotype; 

model GY SKW SeedsSpike SpikeNo TW Height Heading HeadingScore 

LRCI=Genotype/solution; 

lsmeans Genotype; 

run; 

proc mixed; 

class Genotype check; 

model GY SKW SeedsSpike SpikeNo TW Height Heading HeadingScore 

LRCI=check/solution; 

random Genotype/solution; 

lsmeans check; 

run; 

ods graphics off; 

ods html close; 

 

 

*/genetic correlations /*; 

dm 'log;clear;output;clear;';                                                                                                                                                                            

options ps=500 ls=78;                                                                                                                                                                                   

                                                                                                                                                                                                        

                                                                                                                                                                                                        

data dmdii1;                                                                                                                                                                                            

Infile 'C:\Users\bkreddy\Desktop\Gencorr\CH_1.prn' firstobs=2;                                                                                                                                           

*FILENAME DATA1 DDE "EXCEL|[DMDII1.xls]Master!R2C1:R1054C40";/*This 

option is used to give a file name and where the data begins including headers,The file 

has to be open when using this option*/     

*INFILE DATA1 NOTAB DLM= '09'X DSD MISSOVER lrecl = 10240;/*SAS expects 

to see a TAB character placed between each variable that is communicated across the 

DDE link. Similarly, SAS places a TAB       

character between variables when data are transmitted across the link. When the 

NOTAB option is placed in a FILENAME statement that uses the DDE device-type 

keyword, SAS accepts character delimiters  

other than tabs between variables.The NOTAB option can also be used to store full 

character strings, including embedded blanks, in a single spreadsheet cell. For example, 

if a link is established     

between SAS and the Excel application, and a SAS variable contains a character string 

with embedded blanks, each word of the character string is normally stored in a single 

cell. */                   

                                                                                                                                                                                                        

INPUT Rep Block Entry GY TW SKW SS SN HT HS;                                                                                                                                                                                                                                                                                                                                                             

*USE DATA FROM ONLY ONE ENVIRONMENT FOR THIS EXAMPLE!;                                                                                                                                                  

data gencorr1; set dmdii1;                                                                                                                                                                              

*if entry <70; proc print;                                                                                                                                                                              
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*first, estimate variance components for each trait separately to compare to multivariate 

analysis below;                                                                                               

%macro varcomp(trait);                                                                                                                                                                                  

proc mixed data = gencorr1;                                                                                                                                                                             

class Rep Block Entry;                                                                                                                                                                                  

model &trait = ;                                                                                                                                                                                        

random  rep block(rep) entry;                                                                                                                                                                           

*also check effect of setting reps and blocks fixed on other variance components;                                                                                                                       

proc mixed data = gencorr1;                                                                                                                                                                             

class rep block entry;                                                                                                                                                                                  

model &trait = rep block(rep);                                                                                                                                                                          

random entry;                                                                                                                                                                                           

run;                                                                                                                                                                                                    

%mend;                                                                                                                                                                                                  

                                                                                                                                                                                                        

%varcomp(GY);                                                                                                                                                                                           

%varcomp(TW);                                                                                                                                                                                           

%varcomp(SKW);                                                                                                                                                                                          

%varcomp(SS);                                                                                                                                                                                           

%varcomp(SN);                                                                                                                                                                                           

%varcomp(HT);                                                                                                                                                                                           

%varcomp(HS);                                                                                                                                                                                           

                                                                                                                                                                                                        

*restructure data set for multivariate reml analysis;                                                                                                                                                   

data gencorr2; length trait $ 5; set gencorr1;                                                                                                                                                          

trait = "GY"; y = GY; output;                                                                                                                                                                           

trait = "TW"; y = TW; output;                                                                                                                                                                           

trait = "SKW"; y = SKW; output;                                                                                                                                                                         

trait = "SS"; y = SS; output;                                                                                                                                                                           

trait = "SN"; y = SN; output;                                                                                                                                                                           

trait = "HT"; y = HT; output;                                                                                                                                                                           

trait = "HS"; y = HS; output;                                                                                                                                                                           

                                                                                                                                                                                                        

drop GY TW SKW SS SN HT HS;                                                                                                                                                                             

                                                                                                                                                                                                        

* analyze variables pair-wise;                                                                                                                                                                          

                                                                                                                                                                                                        

%macro corr(trait1, trait2);                                                                                                                                                                            

data traits; set gencorr2; if trait = "&trait1" or trait = "&trait2";                                                                                                                                   

proc mixed asycov data = traits;                                                                                                                                                                        

class trait rep block entry;                                                                                                                                                                            

model y = rep(trait) block(rep*trait);                                                                                                                                                                  

random trait/subject = entry type = un;                                                                                                                                                                 
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repeated trait/ sub = rep*entry type = un;                                                                                                                                                              

ods output covparms = estmat; ods output asycov = covmat;                                                                                                                                               

run;                                                                                                                                                                                                    

proc iml;                                                                                                                                                                                               

use estmat; read all into e;                                                                                                                                                                            

use covmat; read all into cov;                                                                                                                                                                          

* Note that SAS introduces an extra first column into the covariance matrix which must 

be removed;                                                                                                      

C = cov(|1:nrow(cov), 2:ncol(cov)|);                                                                                                                                                                    

* Obtain genotypic and phenotypic covariance and variance components;                                                                                                                                   

CovG = e(|2,1|);                                                                                                                                                                                        

VG1 = e(|1,1|);                                                                                                                                                                                         

VG2 = e(|3,1|);                                                                                                                                                                                         

CovP = CovG + e(|5,1|);                                                                                                                                                                                 

VP1 = VG1 + e(|4,1|);                                                                                                                                                                                   

VP2 = VG2 + e(|6,1|);                                                                                                                                                                                   

* Create a module called "correl" that will estimate genotypic and phenotypic 

correlations                                                                                                              

and their standard errors;                                                                                                                                                                              

start correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG, RP, SERG, SERP);                                                                                                                                    

RG = CovG/sqrt(VG1*VG2);                                                                                                                                                                                

*Make the derivative vector for rg, note that the order of the rows and columns of the 

variance                                                                                                         

covariance matrix is VG1, CovG, VG2, VError1, CovError, VError2;                                                                                                                                        

dg = (-1/(2*VG1))//(1/CovG)//(-1/(2*VG2))//0//0//0;                                                                                                                                                     

varrg = (RG**2)*dg`*C*dg; serg = sqrt(varrg);                                                                                                                                                           

RP = CovP/sqrt(VP1*VP2);                                                                                                                                                                                

*Make the derivate vector for rp;                                                                                                                                                                       

d1p = -1/(2*VP1);                                                                                                                                                                                       

d2p = 1/CovP;                                                                                                                                                                                           

d3p = -1/(2*VP2);                                                                                                                                                                                       

dp= d1p//d2p//d3p//d1p//d2p//d3p;                                                                                                                                                                       

varrp = (RP**2)*dp`*C*dp; serp = sqrt(varrp);                                                                                                                                                           

finish correl;                                                                                                                                                                                          

call correl(C, CovG, VG1, VG2, CovP, VP1, VP2, RG, RP, SERG, SERP);                                                                                                                                     

print "Genotypic Correlation Between &trait1 and &trait2";                                                                                                                                              

print RG serg;                                                                                                                                                                                          

print "Phenotypic Correlation Between &trait1 and &trait2";                                                                                                                                             

print RP serp;                                                                                                                                                                                          

quit; run;                                                                                                                                                                                              

%mend;                                                                                                                                                                                                  

                                                                                                                                                                                                        

%corr(GY,TW);                                                                                                                                                                                           

%corr(GY,SKW);                                                                                                                                                                                          
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%corr(GY,SS);                                                                                                                                                                                           

%corr(GY,SN);                                                                                                                                                                                           

%corr(GY,HT);                                                                                                                                                                                           

%corr(GY,HS);                                                                                                                                                                                           

%corr(TW,SKW);                                                                                                                                                                                          

%corr(TW,SS);                                                                                                                                                                                           

%corr(TW,SN);                                                                                                                                                                                           

%corr(TW,HT);                                                                                                                                                                                           

%corr(TW,HS);                                                                                                                                                                                           

%corr(SKW,SS);                                                                                                                                                                                          

%corr(SKW,SN);                                                                                                                                                                                          

%corr(SKW,HT);                                                                                                                                                                                          

%corr(SKW,HS);                                                                                                                                                                                          

%corr(SS,SN);                                                                                                                                                                                           

%corr(SS,HT);                                                                                                                                                                                           

%corr(SS,HS);                                                                                                                                                                                           

%corr(SN,HT);                                                                                                                                                                                           

%corr(SN,HS);                                                                                                                                                                                           

%corr(HT,HS);                                                                                                                                                                                           

                                                                                                                                                                                                        

Run; 

 

Appendix V: 

Title1 'testpathsas'; 

options nodate; 

Data test; 

Input Name      Loc$      GY      SKW      SpikeNo      Seeds_Spike; 

cards; 

; 

%inc 'pathsas.sas'; 

%pathsas (data=test, 

indep=skw SpikeNo Seeds_Spike, 

dep0=GY, 

bylist=loc, 

printreg=no, 

printout=yes, 

corrind=yes, 

corrdep=yes, 

boot=yes, 

random=1234501, 

samples=200 

); 

run; 
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 The startup.sas file used for PATHSAS analysis. 

/* This program was pasted into SAS Program editor and has used a data file, 

pathsas.sas, and jackboot.sas files stored in a specified directory for analysis to be 

conducted */ 

Title1 'testpathsas'; 

options nodate; 

Data test; 

 infile ‘orig.data’; 

input name $ loc gy kw tp seed_t; 

run; 

%inc 'pathsas.sas'; 

%inc 'jackboot.sas'; 

%pathsas  (data=test, 

indep=kw tp seed_t, 

dep0=gy, 

bylist=loc, 

printreg=no, 

printout=yes, 

corrind=yes, 

corrdep=yes, 

boot=yes, 

random=4578091, 

samples=1000); 

run; 

 

A-9 The pathsas.sas macro used for PATHSAS analysis. 

/* This file was included in a specified directory that startup.sas was able to recognize */ 

%macro analyze(data=, out=); 

data data1; set &data; 

proc standard data=data1 mean=0 std=1 out=_sdata2; 

      by &bylist; var &indep &dep0 &dep; 

proc reg data=_sdata2 noprint 

      outest=_estdep(drop=_model_  _type_  _rmse_  intercept); 

      by &bylist; model &dep0=&indep; 

%if &dep ne %then %do; 

proc reg data=_sdata2 noprint 

   outest=estindep(drop=_model_  _type_  _rmse_  intercept); 

   by &bylist; 

   model &dep=&dep0; 

data _estind2; set estindep end=eof; 

   by &bylist; 

   array _r  regc1-regc&nodep; 

   retain   regc1-regc&nodep; 

  * if first.&bylast then _i_=0; _i_+1; _r=&dep0; 
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   if eof then output; drop &dep0 &dep _depvar_; run; %end; 

proc corr data=data1  outp=_corr  noprint; 

   by &bylist; var &indep; run; 

data _corr; set _corr; 

   if _type_='CORR'; 

   drop _type_; run; 

data _estdep; set _estdep; 

   array _reg &indep; 

   array _r2  reg1-reg&noind; 

   do over _reg; _r2=_reg; end; 

   drop &indep; run; 

data _tog; 

   if _n_=1 then set _estdep; set _corr; by &bylist; 

   array _dir  &indep; 

   array _corr &indep; 

   array _r2   reg1-reg&noind; 

   _n+1; &dep0=0; do over _dir; 

      if _n=_i_ then _dir= _r2; else _dir=_r2*corr; &dep0 + _dir; end; 

   drop _n; 

 *  keep &bylist--_name_ &indep  &dep0 _depvar_; 

   drop reg1-reg&noind ; format &indep &dep0 5.2; run; 

data _tog2; set _tog; 

 *  drop &indep; drop _depvar_; 

%if &dep ne %then %do; 

data _tog2; 

   if _n_=1 then set _estind2; 

   set _tog; by &bylist; 

   array _r regc1-regc&nodep; 

   array _t &dep; 

   do over _r; _t=&dep0 * _r; end; 

   format &dep &dep0 5.2; 

   format regc1-regc&nodep 5.2; 

   drop regc1-regc&nodep; 

*   drop &indep; drop _depvar_; run; %end; 

data &out; set _tog2; 

   rename _name_= indep; run; 

%mend analyze; 

 

%macro pathsas(data,indep,dep0,dep,bylist,printreg,printout,corrind, 

       corrdep,boot,random=1234501,samples=1000); 

     

%local  word printr; 

%global noind nodep noby bylast; 

  %let noind=0; %if &indep ne %then %do; 
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      %let word=%scan(&indep,1); %do %while (&word ne ); 

      %let noind=%eval(&noind+1);  

      %let word=%scan(&indep,&noind+1);%end;%end; 

 

    %let nodep=0; 

  %if &dep ne %then %do; 

      %let word=%scan(&dep,1); 

      %do %while (&word ne ); 

          %let nodep=%eval(&nodep+1); 

          %let word=%scan(&dep,&nodep+1); 

          %end; 

      %end; 

  %let noby=0; 

  %if &bylist ne %then %do; 

      %let word=%scan(&bylist,1); 

      %do %while (&word ne ); 

          %let noby=%eval(&noby+1); 

          %let by&noby=%scan(&bylist,&noby); 

          %let word=%scan(&bylist,&noby+1); %end; 

      %let bylast=%scan(&bylist,&noby); %end; 

%if %upcase(&printreg)=YES %then %let printr=; 

      %else %let printr=noprint; 

  %if &bylist eq %then %do; 

      %let bylist=_dummy; %let noby=%eval(1); 

      %let by&noby=%scan(&bylist,&noby); 

      %let bylast=%scan(&bylist,&noby); %end; 

data _data1; set &data; 

   %if &bylist eq _dummy %then _dummy=1;;  

   keep &bylist &dep0 &dep &indep; run; 

proc sort data=_data1; 

   by &bylist; 

proc standard data=_data1 mean=0 std=1 out=_sdata2; 

      by &bylist; 

      var &indep &dep0 &dep; run; 

proc reg data=_sdata2  &printr 

      outsscp=_sscp(keep=&bylist intercept _type_) 

      outest=_estdep(drop=_model_  _type_  _rmse_  intercept); 

      by &bylist; 

      model &dep0=&indep; run; 

data _sscp; set _sscp; 

   if _type_='N'; 

   rename intercept=nobs; 

   drop _type_; 

data _estdep; merge _sscp _estdep; 
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   by &bylist; array _v &indep; _look='no '; 

   if nobs<=&noind then do; _look='yes'; do over _v; _v=.; end; end;run; 

proc print data=_estdep; 

   where _look='yes'; var &bylist nobs; 

title3 'The following identification levels do not have enough obs. for 

 analysis'; 

title4 '   and the regression coeffients were set to missing      ';run; 

title3 ' ' ; 

title3 'Correlation coefficients for Independent variables'; 

%if %upcase(&corrind)=YES %then %do; 

   %if &bylist eq _dummy %then 

       %str(proc print data=_corr(drop=&bylist); format &indep 5.2; 

            run;); 

   %else %str(proc print data=_corr; format &indep 5.2; run;); 

   %end; 

%if %upcase(&corrdep)=YES and &nodep>0 %then %do; 

   title3 'Correlation coefficients for dependent variables'; 

   proc corr data=_data1  outp=_corrdep  noprint; 

      by &bylist; var &dep0 &dep; 

   data _corrdep; set _corrdep; 

      if _type_='CORR'; drop _type_; 

   %if &bylist eq _dummy %then %str( 

proc print data=_corrdep(drop=&bylist);  

format &dep0 &dep 5.2; run;); 

%else %str( proc print data=_corrdep; format &dep0 &dep 5.2; run;); 

   title3 ' ';%end; 

data _estdep; set _estdep; 

   array _reg &indep; array _r2  reg1-reg&noind; 

   do over _reg; _r2=_reg; end; drop &indep; run; 

data _tog; 

   merge _corr _estdep; by &bylist; 

   array _dir  &indep; 

   array _corr &indep; 

   array _r2   reg1-reg&noind; 

   if first.&bylast then do; _totc=0; _n=0; end; 

   _n+1; &dep0=.; do over _dir; if _n=_i_ then _dir= _r2; else _dir=_r2*_corr; 

&dep0 + _dir; end; drop _n; keep &bylist--_name_ &indep  &dep0 _depvar_ nobs; 

   format &indep &dep0 5.2; run; 

data _tog2; set _tog; 

   drop _depvar_; 

 

title3 'Direct Effects, Indirect Effects and Total Correlations'; 

%if %upcase(&printout)=YES %then %do; 

%if &bylist eq _dummy %then %str(proc print data=_tog2(drop=&bylist);run;); 
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       %else %str(proc print data=_tog2; run;); %end; 

title3 ' '; 

%if %upcase(&boot)=YES %then %do; 

    * %inc 'jackboot.sas'; 

      proc freq data=_data1; 

      tables %do i=1 %to &noby; &&by&i 

               %if &i lt &noby %then *; %end; 

         / noprint out=_levels; run; 

      data _null_; 

         if 0 then set _levels nobs=total; 

         call symput('nlevel',left(put(total,8.))); 

         stop; run; 

      data _out; delete; run; 

         %do i=1 %to &nlevel; title3 "&i"; 

             data _one; set _levels; 

                  if _n_=&i; 

                  drop count percent; run; 

             data _sub; 

                  merge _data1 _one(in=yes); 

                  by &bylist; if yes; 

             %boot(data=_sub, samples=&samples,id=indep, chart=0,  

                   print=0, random=&random,stat=&dep0 &dep); 

             %bootci(bc, id=indep, print=0 , stat=&dep0 &dep); run; 

             data _ci; 

                set bootci; 

             data _ci; 

                 if _n_=1 then set _one; 

set _ci(keep=indep name value alcl aucl confid method n); method=scan(method,2); 

if not(alcl<=value<=aucl) then check='*'; else check=' '; 

if (alcl<-1) or (aucl>1)  then check='*'; data _out; set _out _ci; run; %end; 

      title3 'Bootstrap 95% confidence intervals - using BC method'; 

      title4 "Random Seed= &random"; 

      title5 "Number of Resamples=&samples"; 

      proc print data= _out  label split='*'; 

%if &bylist eq _dummy %then %str(var indep name alcl value aucl ;); 

             %else %str(var &bylist indep name alcl value aucl  ;); 

label indep='Independent*Variables'; 

 

         format alcl aucl 6.2; run; 

      title3 ' '; %end; 

proc datasets library=work memtype=data; 

  delete 

   _CI _CORR _CORRDEP _DATA1 _ESTDEP _ESTINDEP _ESTIND2 _LEVELS 

_ONE  



 

 

188 

 

_SDATA2 _SSCP 

   _SUB _TOG _TOG2; run;quit; 

%mend pathsas; 

 

Example of jackboot.sas macro used for bootstrap analysis. 

/* This file was included in a specified directory that startup.sas was able to recognize */ 

%macro boot(data=,samples=200,residual=,equation size=,balanced   

random=0,stat=_numeric_,id=,biascorr=1,alpha=.05, print=1,chart=1); 

   %if %bquote(&data)= %then %do; 

      %put ERROR in BOOT: The DATA= argument must be specified.; 

      %goto exit; %end; %global _bootdat; %let _bootdat=&data; 

   %local by useby; %let useby=0; %global usevardf vardef; %let usevardf=0; 

   *** compute the actual values of the statistics; 

   %let vardef=DF; %let by=; %analyze(data=&data,out=_ACTUAL_); 

   %if &syserr>4 %then %goto exit; 

   *** compute plug-in estimates; 

   %if &usevardf %then %do; 

      %let vardef=N; 

      %analyze(data=&data,out=_PLUGIN_); 

      %let vardef=DF; 

      %if &syserr>4 %then %goto exit;%end; 

   %if &useby=0 %then %let balanced=0; 

   %if %bquote(&size)^= %then %do; 

      %if %bquote(&balanced)= %then %let balanced=0; 

      %else %if &balanced %then %do; 

         %put %cmpres(ERROR in BOOT: The SIZE= argument may not be used 

              with BALANCED=1.);%goto exit;%end; 

      %if %bquote(&residual)^= %then %do; 

         %put %cmpres;%goto exit;%end;%end; 

   %else %if %bquote(&balanced)= %then %let balanced=1; 

   *** find number of observations in the input data set; 

   %global _nobs;   data _null_;      call symput('_nobs',trim(left(put(_nobs,12.)))); 

      if 0 then set &data nobs=_nobs;      stop;   run; 

   %if &syserr>4 %then %goto exit; 

   %if &balanced %then 

%bootbal(data=&data,samples=&samples,random=&random,print=0); 

   %else %if &useby %then 

%bootby(data=&data,samples=&samples,random=&random,size=&size,print=0); 

   %if &syserr>4 %then %goto exit;%if &balanced | &useby %then %do; 

      %let by=_sample_;      %analyze(data=BOOTDATA,out=BOOTDIST); 

   %end; %else 

%bootslow(data=&data,samples=&samples,random=&random,size=&size); 

   %if &syserr>4 %then %goto exit;%if &chart %then %do; 

      %if %bquote(&id)^= %then %do; 
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         proc sort data=BOOTDIST; by &id; run; 

         proc chart data=BOOTDIST(drop=_sample_); 

            vbar &stat;by &id;run; %end; %else %do;  

proc chart data=BOOTDIST(drop=_sample_);vbar &stat; run;%end;%end; 

%bootse(stat=&stat,id=&id,alpha=&alpha,biascorr=&biascorr,print=&print) 

%exit:;%mend boot;%macro bootbal(data=&_bootdat,samples=200,random=0,print=0,); 

data BOOTDATA/view=BOOTDATA; 

%bootin; drop _a _cbig _ii _j _jbig _k _s; array _c(&_nobs) _temporary_;   

array _p(&_nobs) _temporary_;do _j=1 to &_nobs;_c(_j)=&samples;end; 

do _j=1 to &_nobs;_p(_j)=_j;end;_k=&_nobs; _jbig=_k; 

_cbig=&samples;do _sample_=1 to &samples;do _i=1 to &_nobs;do until(_s<=_c(_j)); 

_j=ceil(ranuni(&random)*_k); _s=ceil(ranuni(&random)*_cbig);end; 

_l=_p(_j);_obs_=_l;_c(_j)+-1; 

* put _sample_= _i= _k= _l= @30 %do i=1 %to &_nobs; _c(&i) %end;; 

if _j=_jbig then do; 

_a=floor((&samples-_sample_-_k)/_k); if _cbig-_c(_j)>_a then do; 

do _ii=1 to _k; if _c(_ii)>_c(_jbig) then _jbig=_ii;end; _ 

cbig=_c(_jbig); end; end; 

if _c(_j)=0 then do; if _jbig=_k then _jbig=_j; _p(_j)=_p(_k); _c(_j)=_c(_k); _k+-1; end; 

%bootout(_l);end;end;stop;run;%if &syserr>4 %then %goto exit; 

%if &print %then %do; proc print data=BOOTDATA; id _sample_ _obs_; run; 

%end;%exit:; 

%mend bootbal; 

%macro bootby(data=&_bootdat,samples=200,random=0,size=,print=0); 

%if %bquote(&size)= %then %let size=&_nobs; 

data BOOTDATA/view=BOOTDATA; 

%bootin; do _sample_=1 to &samples; do _i=1 to &size;  

_p=ceil(ranuni(&random)*&_nobs); _obs_=_p; %bootout(_p); end; end; stop; run; 

   %if &syserr>4 %then %goto exit; 

   %if &print %then %do;   proc print data=BOOTDATA; id _sample_ _obs_; run;  

%end;%exit:;  %mend bootby; 

%macro bootslow(data=&_bootdat,samples=20,random=0,size=); 

   %put %cmpres; %if %bquote(&size)= %then %let size=&_nobs; 

   data BOOTDIST; set _ACTUAL_; _sample_=0; delete; run; options nonotes; 

   %local sample; %do sample=1 %to &samples; %put Bootstrap sample &sample; 

data _TMPD_;  %bootin; do _i=1 to &size; 

_p=ceil(ranuni(%eval(&random+&sample))*&_nobs); 

        %bootout(_p); end; stop; run; 

      %if &syserr>4 %then %goto exit; %analyze(data=_TMPD_,out=_TMPS_); 

      %if &syserr>4 %then %goto exit; data _TMPS_; set _TMPS_; _sample_=&sample; 

run; 

      %if &syserr>4 %then %goto exit; proc append data=_TMPS_ base=BOOTDIST; 

run; 

      %if &syserr>4 %then %goto exit; %end; %exit:;  options notes; 
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%mend bootslow; 

%macro bootci(method, stat=,student=,id=,alpha=.05,print=1);%global _bootdat; 

   %if %bquote(&_bootdat)= %then %do; %put ERROR in BOOTCI: You must run 

BOOT before BOOTCI; %goto exit;%end; 

   data _null_;  length method $10; method=upcase(symget('method')); 

      if method=' ' then do; put 'ERROR in BOOTCI: You must specify one of the 

methods ' 

  'PCTL, HYBRID, T, BC or BCa';  abort;  end; 

      else if method='PERCENTILE' then method='PCTL'; 

      else if method not in ('PCTL' 'HYBRID' 'BC' 'BCA' 'T') 

then do; put "ERROR in BOOTCI: Unrecognized method '" method "'"; abort; end; 

      call symput('qmethod',method); run; 

   %if &syserr>4 %then %goto exit; %if &qmethod=T %then %do; 

      %if %bquote(&stat)= | %bquote(&student)= %then %do; 

data _null_; put 'ERROR: VAR= and STUDENT= must be specified with the T method'; 

run; 

 %goto exit; %end; %end; 

   %if %bquote(&id)^= %then %do; proc sort data=BOOTDIST; by &id _sample_; run; 

      %if &syserr>4 %then %goto exit; %end; 

   proc transpose data=BOOTDIST prefix=col out=BOOTTRAN(rename=(col1=value 

_name_=name)); 

      %if %bquote(&stat)^= %then %do; var &stat; %end; 

      by %if %bquote(&id)^= %then &id; _sample_; run; 

   %if &syserr>4 %then %goto exit; %if &qmethod=T %then %do; 

proc transpose data=BOOTDIST prefix=col  

   out=BOOTSTUD(rename=(col1=student _name_=studname)); var &student; 

         by %if %bquote(&id)^= %then &id; _sample_; run; 

      %if &syserr>4 %then %goto exit; 

      data BOOTTRAN; merge BOOTTRAN BOOTSTUD; 

         label student='Value of Studentizing Statistic' 

               studname='Name of Studentizing Statistic'; run; 

      %if &syserr>4 %then %goto exit; %end; 

proc sort data=BOOTTRAN; 

      by %if %bquote(&id)^= %then &id; name 

         %if &qmethod=BC | &qmethod=BCA %then value; 

         %else %if &qmethod=T %then _sample_;;run; 

   %if &syserr>4 %then %goto exit; %if &qmethod=T %then %do; 

      proc transpose data=_ACTUAL_ out=_ACTTR_ prefix=value; 

%if %bquote(&stat)^= %then %do; var &stat; %end; 

         %if %bquote(&id)^= %then %do; by &id; %end; run; 

      %if &syserr>4 %then %goto exit; 

proc transpose data=_ACTUAL_ prefix=col  

    out=_ACTSTUD(rename=(_name_=studname col1=student)); var &student; 

         %if %bquote(&id)^= %then %do; by &id; %end; run; 
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      %if &syserr>4 %then %goto exit; 

      data _ACT_T_; merge _ACTTR_ _ACTSTUD; 

         label student='Value of Studentizing Statistic' 

               studname='Name of Studentizing Statistic'; run; 

      %if &syserr>4 %then %goto exit; 

      proc sort data=_ACT_T_; 

         by %if %bquote(&id)^= %then &id; _name_ ; run; 

      %if &syserr>4 %then %goto exit; 

      data BOOTTRAN; 

         merge BOOTTRAN _ACT_T_(rename=(_name_=name)); 

         by %if %bquote(&id)^= %then &id; name; value=(value-value1)/student; 

      run; %if &syserr>4 %then %goto exit; %end; 

   %if &qmethod=BC | &qmethod=BCA %then %do; 

      %if &qmethod=BCA %then %do; 

         %global _jackdat; 

         %if %bquote(&_jackdat)^=%bquote(&_bootdat) %then %do; 

            %jack(data=&_bootdat,stat=&stat,id=&id,alpha=&alpha, 

                  chart=0,print=&print); %if &syserr>4 %then %goto exit; %end; 

         proc means data=JACKDIST noprint vardef=df; 

            %if %bquote(&stat)^= %then %do; var &stat;%end; 

            output out=JACKSKEW(drop=_type_ _freq_ _sample_) skewness=; 

            %if %bquote(&id)^= %then %do; by &id; %end; run; 

         %if &syserr>4 %then %goto exit; 

         proc transpose data=JACKSKEW prefix=col 

            out=_ACCEL_(rename=(col1=skewness _name_=name)); 

            %if %bquote(&stat)^= %then %do; var &stat; %end; 

            %if %bquote(&id)^= %then %do; by &id; %end; run; 

         %if &syserr>4 %then %goto exit; 

         proc sort data=_ACCEL_; 

            by %if %bquote(&id)^= %then &id; name ; run; 

         %if &syserr>4 %then %goto exit; 

      %end; 

      data _BC_; retain _alpha _conf; drop value value1; if _n_=1 then do; 

_alpha=&alpha; 

       _conf=100*(1-_alpha); call symput('conf',trim(left(put(_conf,best8.)))); end; 

         merge _ACTTR_(rename=(_name_=name)) BOOTTRAN; 

         by %if %bquote(&id)^= %then &id; name; if first.name then do; n=0; _z0=0; end; 

         n+1; _z0+(value<value1)+.5*(value=value1);  

if last.name then do; _z0=probit(_z0/n); output; end; run; 

      %if &syserr>4 %then %goto exit; 

      data BOOTPCTL; 

         retain _i _lo _up _nplo _jlo _glo _npup _jup _gup alcl aucl; 

         drop _alpha _sample_ _conf _i _nplo _jlo _glo _npup _jup _gup value; 

         merge BOOTTRAN _BC_ %if &qmethod=BCA %then _ACCEL_;; 
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         by %if %bquote(&id)^= %then &id; name; 

         label _lo='Lower Percentile Point' 

               _up='Upper Percentile Point' 

               _z0='Bias Correction (Z0)'; 

         if first.name then do;%if &qmethod=BC %then %do; 

               _lo=probnorm(_z0+(_z0+probit(_alpha/2))); 

               _up=probnorm(_z0+(_z0+probit(1-_alpha/2))); %end; 

            %else %if &qmethod=BCA %then %do;  

drop skewness; retain _accel; label _accel='Acceleration'; 

 _accel=skewness/(-6*sqrt(&_nobs))*(&_nobs-2)/&_nobs/sqrt((&_nobs-1)/&_nobs); 

_i=_z0+probit(_alpha/2); _lo=probnorm(_z0+_i/(1-_i*_accel)); _i=_z0+probit(1-

_alpha/2);  

_up=probnorm(_z0+_i/(1-_i*_accel)); %end; 

_nplo=min(n-.5,max(.5,fuzz(n*_lo))); _jlo=floor(_nplo); _glo=_nplo-_jlo; 

_npup=min(n-.5,max(.5,fuzz(n*_up))); _jup=floor(_npup); _gup=_npup-_jup; _i=0; end;   

_i+1;  if _glo then do; if _i=_jlo+1 then alcl=value; end; 

else do; if _i=_jlo then alcl=value; else if _i=_jlo+1 then alcl=(alcl+value)/2; end; 

         if _gup then do; if _i=_jup+1 then aucl=value; end; 

else do; if _i=_jup then aucl=value; else if _i=_jup+1 then aucl=(aucl+value)/2; end; 

         if last.name then do; output; end; run;  

%if &syserr>4 %then %goto exit;%end; 

%else %do; %local conf pctlpts pctlpre pctlname; %let pctlpre=a; %let pctlname=lcl ucl; 

      data _null_; _alpha=&alpha; _conf=100*(1-_alpha);  

          call symput('conf',trim(left(put(_conf,best8.)))); 

         %if &qmethod=PCTL %then %do; _lo=_alpha/2; _up=1-_lo; 

         %end; %else %if &qmethod=HYBRID | &qmethod=T %then %do; 

            _up=_alpha/2; _lo=1-_up; %end; _lo=100*_lo; _up=100*_up; 

       call symput('pctlpts',trim(left(put(_lo,best8.)))||' '|| 

                     trim(left(put(_up,best8.))));run; %if &syserr>4 %then %goto exit; 

      proc univariate data=BOOTTRAN noprint pctldef=5; 

         var value; output out=BOOTPCTL n=n  

pctlpts=&pctlpts pctlpre=&pctlpre pctlname=&pctlname; 

         by %if %bquote(&id)^= %then &id; name; run;%if &syserr>4 %then %goto 

exit;%end; 

   data BOOTCI;  retain &id name value alcl aucl confid method n; 

      merge  %if &qmethod=T %then _ACT_T_(rename=(_name_=name value1=value)); 

            %else _ACTTR_(rename=(_name_=name value1=value)); 

         BOOTPCTL; by %if %bquote(&id)^= %then &id; name; %if 

&qmethod=HYBRID %then %do; 

             aucl=2*value-aucl; alcl=2*value-alcl;%end; 

      %else %if &qmethod=T %then %do;  

             aucl=value-aucl*student;alcl=value-alcl*student;%end; 

      confid=&conf; length method $20; method='Bootstrap '||symget('method'); 

      label name  ='Name' 
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            value ='Observed Statistic' 

            alcl  ='Approximate Lower Confidence Limit' 

            aucl  ='Approximate Upper Confidence Limit' 

            confid='Confidence Level (%)' 

            method='Method for Confidence Interval' 

            n     ='Number of Resamples';run; 

   %if &syserr>4 %then %goto exit; %if &print %then %do; proc print data=BOOTCI 

label; 

         id %if %bquote(&id)^= %then &id; name; run; %end;  




