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ABSTRACT

Axillary meristem production and activity contribute to the high plasticity of 

plant development which allows plants to respond to environmental changes. Branches 

arise from axillary buds that form in the leaf axil. These buds may remain dormant, or 

may grow out to form branches immediately. Alternatively, the axillary buds may also 

persist in a dormant state for an indefinite period of time until appropriate signals permit 

outgrowth to commence. Branching is regulated by phytohormones, including auxin 

acting via the polar auxin transport stream, and locally within the bud by the action of 

branching integrators like BRC1 and MAX2. Branching is also regulated by 

environmental factors such as competition signals (low Red light: Far-Red light [R: FR])

that inhibit bud outgrowth. Our recent studies indicate that ABA acts within the bud to

suppress outgrowth. NCED3 is a key enzyme in the ABA biosynthesis pathway, and 

ABA2 is another important ABA biosynthesis gene. ABA accumulated to significantly 

higher levels in lower, more dormant buds compared to less dormant buds at higher 

rosette positions. Additionally, bud ABA content and the correlative inhibition index, 

which is a measure of systemic branching suppression, were increased in plants grown 

under low R:FR compared to those grown under high R:FR. Under low R:FR the 

NCED3 deficient mutant nced3-2 and the ABA2 deficient mutant aba2-1 had 

significantly more branches and lower correlative inhibition index than WT. The results 

indicate that the suppression of branching by low R:FR may be mediated, at least in part, 

by elevated levels of ABA in the buds.
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1. INTRODUCTION

Branching (tillering in monocots) is relevant to maximizing the utilization of 

resources and production of vegetative and/or reproductive structures of crops. Axillary 

meristems contribute to plant secondary growth by allowing the plant to change its 

architecture to respond to environmental conditions. Studies on axillary meristem 

outgrowth and development may help us understand how to modify plants to improve 

yield and/or other characteristics.

Many factors are involved in the regulation of axillary branching, including 

developmental, genetic, hormonal, and environmental factors. Plant hormones play an 

important role as endogenous factors regulating bud outgrowth and development. 

Abscisic acid (ABA) is a hormone that has been implicated in the regulation of 

branching, but until recently a definitive role had not been proven. One recent study 

showed that ABA plays an important role in axillary bud outgrowth (Reddy et al., 2013). 

However, little is known about the mechanisms of ABA regulation of axillary bud 

outgrowth. It seems that the effects depend on transport sites and paths inside plant.

Correlative inhibition (CI) of branching describes the capacity of some positive 

primary growth process to suppress the secondary growth including the outgrowth of 

lateral buds and shoot. The correlative inhibition index (CII) can be used to quantify 

branching strength using the differences in inter-branch size (Finlayson et al., 2010; Su 

et al., 2011). The correlative inhibition index (CII) is the negative slope of the lengths of 

the top three rosette branches [branch n (uppermost branch), branch n-1 (branch 
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immediately below branch n) and branch n-2 (branch immediately below branch n-1)].

Larger CII values mean weaker branching.

Light signals are among the key environmental factors influencing plant growth 

and development. Plant responses to competition- derived light signals are mediated by

phytochromes (phy). Previous studies in our lab revealed that low R:FR or phyB loss of 

function increases the CII (Finlayson e al., 2010). Furthermore, increasing the red light: 

far red light ratio (R:FR) on plants grown under low R:FR activated the outgrowth of 

lower position buds that otherwise remain arrested and was associated with reduced bud 

ABA content and decreased expression of ABA-related genes (Reddy et al., 2013). 

Plants deficient in the ABA biosynthesis enzymes NCED3 or ABA2 have significantly 

more branches than WT. As a result, it was concluded that ABA plays an important role 

in the R:FR regulation of bud outgrowth.

Much remains to be discovered regarding the role of ABA in regulating

Arabidopsis branching. Moreover, the relationship between ABA and other branching 

regulators are still unknown. The primary objective of this study was to define the role

of ABA in regulating bud outgrowth and development, extending the study of its 

involvement in R:FR responses, and examining how ABA may play a more general role 

in branching. Wild type Columbia (Col-0), the NCED3 deficient mutant nced3-2 and the 

ABA2 deficient mutant aba2-1 were used to quantify branching responses under 

continuous exposure to high and low red light: far-red light ratios (R:FR). The 

hypothesis tested was that ABA plays an important role in regulating branching under 

both light regimens. To thoroughly understand the interaction between ABA and light 



3

competition signals in branching regulation, the pattern of ABA accumulation in axillary 

buds of plants grown under high and low R:FR was investigated using Col-0. The main 

hypothesis for this objective was that low R:FR will result in elevated bud ABA 

accumulation. Moreover, it was also predicted that lower buds will accumulate more 

ABA which may act locally in the bud. Beyond the ABA role in the R:FR responses, the 

interaction between ABA and auxin and how they regulate bud outgrowth was also 

investigated. It was hypothesized that ABA acts downstream of auxin to inhibit bud 

outgrowth. Finally, to further investigate the mechanism of ABA regulation of branching, 

the relative location of ABA in the branching pathway with respect to other known 

components including Branched 1(BRC1) and MAX2 was investigated. The hypothesis 

was that MAX2 or BRC1, or both, act downstream of the ABA-mediated branching 

pathway.
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2. LITERATURE REVIEW

The high plasticity of plant development allows plants to respond to changes in 

the environment. The production and activity of axillary meristems contributes to this 

plasticity of plants (Bennett et al., 2006). Axillary buds are initiated in leaf axils and may 

then form a branch or remain dormant depending on what signals the bud receives. The 

signals can be endogenous or exogenous, or both (Domagalska and Leyser, 2011). Plant 

hormones and light are endogenous and exogenous signals, respectively, involved in the 

regulation of the outgrowth and development of axillary buds. 

2.1 Axillary meristem/bud development

Axillary bud meristems form on the adaxial surface of the joint of the leaf and 

the stem. Cell division is essential for the development of axillary meristems. Initially,

the cells produced by cell division in the meristem will grow larger which leads to a 

larger meristem. Once established, the axillary meristem will begin producing leaf 

primordia, then form small leaves and a short stem at which point the axillary meristem 

has become an axillary bud. The buds then may remain dormant, or grow out to form 

branches. These different behaviors of axillary buds result from different patterns of 

branching development control (Sussex and Kerk, 2001). In Arabidopsis grown under 

conditions promoting extended vegetative growth, or in late flowering mutants, axillary 

meristem initiation can occur in an acropetal wave at lower positions during the 

vegetative phase, and then in the typical basipetal wave in the upper positions following 

the floral transition (Grbic and Bleecker, 2000). Under long days, plants will transit from 
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vegetative growth to reproductive growth, and start producing flower. Once plant has 

gone through the floral transition, it stops producing vegetative leaves and therefore the 

number of rosette and cauline leaves and the number of potential axillary buds will be 

fixed at this stage. 

Arabidopsis is a widely used model plant for biological studies. Because of the 

small size and short life cycle, it is possible to grow it in growth chambers with 

controlled humidity, temperature, etc. It has been used frequently in plant architecture 

studies. The axillary bud of Arabidopsis will grow out to form axillary shoot and then to 

form lateral inflorescence during prolonged vegetative growth (Stirnberg et al., 1999). In 

most cases, some of the axillary buds will remain dormant because of apical dominance 

which results from the suppression of shoot apex on the axillary buds development. 

2.2 Apical dominance

Apical dominance is a phenomenon whereby the main shoot dominates the 

growth of axillary buds below it. Previous studies showed that the removal of the 

Arabidopsis shoot tip can lead to the release of the outgrowth of axillary buds (Cline, 

1996; Beveridge et al., 2000). The communication between the shoot apex and axillary 

buds on the plant can partially regulate the fate of axillary buds (whether they form 

branches or remain dormant temporarily or permanently) (Stafstrom et al., 1998; 

Shimizu-Sato and Mori, 2001). The communication depends on various signals,

transporters and regulators. Auxin is a phytohormone produced in the shoot apex and 

young leaves and transported in the polar auxin transport stream to influence bud 

outgrowth at more basal positions. In some species, exogenous auxin can repress axillary 
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buds outgrowth (Thimann and Skoog, 1933). The auxin transported down in the shoot

from shoot apex was the reason which resulting in the transition of the buds between 

dormancy and growth. Decapitation is to remove the shoot tip which is the source of 

auxin. It eliminates the source of auxin production which may allow axillary buds to 

export auxin into the main shoot Polar Auxin Transport Stream (PATS) and transition 

from dormancy to growth. It was found that exogenous auxin applied to decapitated peas 

allows the plants to regain the apical dominance. Decapitated peas showed a stronger 

response to exogenous auxin than Arabidopsis (Cline, 1996; Beveridge et al., 2000; 

Cline et al., 2001). These results indicated that auxin participates in branching 

regulation. However, the regulation of bud outgrowth in Arabidopsis is not determined 

by auxin alone. It has been suggested that auxin may regulate branching indirectly by 

influencing the supply of CK to the axillary buds (Cline, 1994). Using pea, King and 

Van Staden (1988) showed that axillary buds at different positions have different 

responses to CK treatment. This result also indicated that auxin is not the only hormone 

that involving in branching regulation. In summary, studies on apical dominance

revealed that hormone networks plays an important role in determining the status of 

axillary buds. 

2.3 Shoot branching

The process of shoot branching can be divided into development into five stages 

(Schmits and Theres, 2005). The first stage is the establishment of axil identity. Then the 

process goes through the axillary meristem initiation, the organization of the meristem, 

the formation of the axillary bud, and finally the outgrowth of the bud. Auxin and
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strigolactone are major branching regulators that act in the last stage (Lincoln et al., 

1990; Arumingtyas et al., 1992; Rameau et al., 2002; Stirnberg et al., 2002; Takeda et 

al., 2003; Snowden et al., 2005).

Branched1 (BRC1) is also an important branching regulator which acts locally in 

the axillary bud (Aguilar-Martínez et al., 2007; Finlayson et al., 2007). BRC1 encodes a 

TCP domain protein that is closely related to the transcription factor TEOSINTE 

BRANCHED1 (TB1) that represses axillary bud outgrowth in grasses. BRC1 is a

negative regulator of axillary bud outgrowth. It has been shown that BRC1 acts

downstream of auxin and the strigolactone-mediated pathway to suppress bud outgrowth

(Aguilar-Martinez et al. 2007; Finlayson 2007). BRC1 deficient mutant Arabidopsis has

significantly more branches than WT. Recently, it was found that BRC1 is required to 

inhibit axillary bud outgrowth in response to low R:FR (Finlayson et al., 2010; Eduardo 

González-Grandío et al., 2013). 

Breaking bud dormancy is a complex process that requires environmental 

stimuli, hormone networks and branching-regulated gene activation. Among these 

factors, hormone networks have been studied and discussed in great detail. Abundant 

evidence has shown how hormones including auxin, cytokinins, strigolactone and 

abscisic acid are involved in regulating branching.

2.4 Hormones involved in branching regulation

2.4.1 Auxin

The role of auxin in branch development is well established. In peas and

Arabidopsis, it has been shown that decapitation can lead to the release of apical 



8

dominance and rapid outgrowth of axillary buds (Beveridge et al., 2000; Cline, 1996). 

Studies have shown that the fate of the axillary buds in the transition stage is partially 

regulated by communication among axillary buds, and between the shoot apex and 

axillary buds (Stafstrom et al., 1998; Shimizu-Sato and Mori, 2001). Auxin and its 

signaling pathway play important roles in this communication. AUXIN-RESISTANT1 

(AXR1) is an Arabidopsis protein that acts in the auxin signaling pathway to regulate 

branching and other auxin responses. It promotes auxin signaling by enabling 

destabilization of the Aux/IAA transcriptional repressors (Gray et al., 2001). The

Arabidopsis axr1-12 mutant has a hyperbranching phenotype because of reduced auxin 

signaling and thus loss of apical dominance (Lincoln et al., 1990; Stirnberg et al., 1999). 

The hyperbranching phenotype of axr1 mutants and related physiological evidence has 

been taken as support for a role of auxin in the regulation of shoot branching.

2.4.2 Cytokinins

CK is also involved in the regulation of many aspects of plant development, such 

as seed germination, meristem formation, apical dominance, and stem growth and 

differentiation (Mok and Mok, 2001; Heyl and Schulling, 2003). CK is known to be 

produced in the root (Chen et al. 1985). However, it was later found that the synthesis of 

CK can also occur in aerial parts, especially in the young developing leaves with active 

cell division (Nordstrom et al., 2004). Besides the biosynthesis of CK, its signaling 

pathway also regulates meristem growth and development. The function of cytokinins 

(CK) in the regulation of branching has been considered to be closely related to auxin. 

Sachs and Thimann (1967) suggested that endogenous auxin inhibits cytokinin 
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production in the buds. It was recently found that auxin negatively regulates the level of 

CK in pea by suppressing a CK biosynthesis enzyme both at nodes and in roots (Tanaka 

et al., 2006). Evidence has clearly shown that cytokinin (CK) is involved in the 

promotion of bud outgrowth. Previous studies have proved that exogenous CK can 

partially weaken apical dominance and promote outgrowth of the axillary buds (Wickson 

and Thimann, 1958; Cline et al., 1997; Faiss et al., 1997), especially when CK was 

directly applied to the bud. Cytokinin appears to interact with auxin in controlling apical 

dominance (Bangerth 1994; Li et al., 1995; Cline et al., 1997; Dun et al., 2012). 

Moreover, it was recently shown that low concentrations of cytokinin applied to the 

main stem vascular system below a specific axillary bud node can stimulate the 

outgrowth of the bud. It was concluded that cytokinin can enhance axillary bud 

development from a distance (Dun et al., 2012). 

2.4.3 Strigolactone

Strigolactone, which is a carotenoid-derived hormone, has been identified as 

another regulator of shoot branching. In Arabidopsis, MORE AXILLARY GROWTH1-

4 [MAX1-MAX4] are proteins which are involved in the carotenoid-derived hormone 

biosynthesis and signaling pathways. Deficiency in those proteins will lead to 

hyperbranching and resistance to exogenous auxin (Stirnberg et al., 2002; Bainbridge et 

al., 2005, McSteen and Leyser, 2005, and Bennett et al., 2006). This suggests that these 

proteins are involved in branching repression and they need auxin to influence bud 

outgrowth. Arabidopsis MAX3 and MAX4 have been shown to encode divergent 

members of the carotenoid cleavage dioxygenase (CCD) family that can act on multiple 
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linear and cyclic carotenoid substrates and generate a mobile signal (Sorefan et al., 2003; 

Booker et al., 2004). MAX3 encodes for CCD7 (Booker et al., 2004; Schwartz et al., 

2004), and MAX4 encodes for CCD8 (Sorefan et al., 2003). Studies have provided 

evidence that exogenous auxin can enhance the expression of MAX4 (Sorefan et al., 

2003; Agusti et al., 2011). The negative effect of auxin on branching may require the up-

regulation of MAX4, which was detected in the root, especially in the root tip (Sorefan et 

al., 2003).

MAX1 is a cytochrome p450 family member (Booker et al., 2005). The MAX-

dependent signal generated by MAX3 and MAX4 requires further modification by 

MAX1 to synthesize the strigolactone. MAX2 has been identified as an F-box LRR 

containing member of the SCF family of ubiquitin ligases that functions in regulating 

protein degradation (Stirnberg et al., 2002). It acts in the MAX-dependent hormone 

signal transduction pathway (Stirnberg et al., 2002; Booker et al., 2005). Over-

expression of MAX2 rescues the hyperbranching phenotype of max2 mutants (Stirnberg 

et al. 2007). This supports the contention that axillary bud outgrowth is controlled the 

SCFMAX2 complex. 

The interactions between auxin and strigolactone have been studied. Though max

mutant buds are resistant to the inhibitory effects of apically applied auxin, the AXR1-

mediated auxin signaling pathway was found not to be directly involved in the MAX-

dependent regulation of branching (Bennett et al., 2006). An auxin efflux facilitator 

termed PIN1 has been suggested as the direct regulator in branching suppression in the 

auxin signaling pathway. max mutants were found to have increased auxin transport 
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capacity resulting from increased abundance of PIN1 (Bennett et al., 2006). The

accumulation of PIN1 in the stem may allow axillary buds to export auxin out to the 

stem and thus decrease the negative effects of auxin (Mader et al., 2003; Tanaka et al., 

2006). This may allow axillary buds release from dormancy and lead to hyperbranching 

phenotype of max mutants (Bennett et al., 2006). 

However, another hypothesis described MAX-dependent hormone as a second 

messenger whom produced long-range transmissible signals in root and shoot and the 

signals may interact with auxin and involve in branching inhibition. To prove this 

hypothesis, grafting experiments were conducted on several species. Genes involved in 

in the carotenoid-derived hormone biosynthesis and signaling pathways have been 

identified in pea (RAMOSUS1-5 [RMS1-RMS5]) and petunia (DECREASED APICAL 

DOMINANCE1-3 [DAD1-DAD3]), and the orthologs to MAX4 in pea and petunia have 

already been identified as RMS1 and DAD1, respectively (Snowden et al., 2005; Sorefan 

et al., 2003; Foo et al. 2005). Auxin-independent signal was considered involved in 

branching inhibition through tracing the expression of RMS1 in rms mutants (Bainbridge 

et al., 2005).The hyperbranching phenotype of max1 and max3 mutants in Arabidopsis, 

the rms1, rms2 and rms5 mutants in pea, and the dad1 mutant in Petunia all suggested 

that the long-range signal may be produced to inhibit branching (Beveridge, 2000; 

Beveridge et al., 1997; Morris et al., 2001; Napoli, 1996; Turnbull et al., 2002).

In summary, it is already clear that the MAX-dependent hormone plays a role in 

inhibiting branching. However, the relationship between the MAX-dependent hormone 

this novel carotenoid-derived hormone and auxin still needs further investigation. 
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2.4.4 Abscisic acid

Various studies have provided conflicting evidence regarding the role of abscisic 

acid (ABA) in branching. Eliasson (1975) described that the abscisic acid-like inhibitor 

can strongly inhibit lateral buds outgrowth in Populus tremula L. and Pisum sativum L.

Zieslin (1978) reported the similar inhibitor by providing the evidence showing that the 

inhibitive effects on axillary bud outgrowth was induced by old stem and leave tissues. 

Also, it has been proven that ABA can inhibit bud outgrowth by applying it directly to 

active buds (Rogan and Smith, 1976; Wareing and Phillips, 1983; Tamas, 1995; Taylor

et al., 1995). However, studies with ABA insensitive Arabidopsis mutants (abi1-1 and 

abi2-1) showed that auxin can inhibit axillary bud outgrowth independently without

ABA activity, thus it was concluded that ABA cannot be a second messenger for 

indoleacetic acid (IAA) in apical dominance responses in Arabidopsis (Chatfield et al., 

2000). A subsequent study on the interaction of auxin and ABA of pea showed that 

applying ABA below the axillary bud position moderately repressed axillary bud 

outgrowth (Cline and Oh, 2006). Moreover, additive repression of axillary bud 

outgrowth in Ipomoea nil was observed when combining apical auxin with basal ABA 

treatments. These results proved that basally applied ABA partially restored apical 

dominance via acropetal transport up in the shoot, which suggests that ABA might 

interact with auxin and other unidentified inhibitors to regulate branching (Cline and Oh, 

2006). The inhibitory effects directly depended on the application site and transport 

direction because only basally applied, and acropetal transported, ABA suppressed 

axillary bud outgrowth. In summary, the relationship between ABA and auxin is still 
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unknown. But it is now clear that ABA inhibits bud outgrowth in response to low R:FR 

(Reddy et al., 2013). 

2.5 Environmental factors influencing shoot branching

Environmental factors including parameters such as light intensity and the red: 

far red ratio (R:FR), which is a competition signal, also contribute to the control of shoot 

branching. 

2.5.1 Light signals

Photosynthetic photo flux density (PPFD) is a light signal that can affect bud 

outgrowth. Increasing the PPFD reduces the correlative inhibition (CI), which is a 

measure of systemic inhibition of branching, and releases the outgrowth of lower 

branches (Su et al., 2011). Far red light (FR) is an early signal reflected by neighbor 

plants eliciting shade-avoidance responses. The red light far-red light ratio is another 

important branching influencing factor.

2.5.1.1 Red:Far-red light

The R:FR is the ratio of red light and far-red light, with the photon irradiance 

between 655 and 665 nm and between 725 and 735 nm, respectively. In a high density 

growing conditions, plants will absorb the red light while reflect the far-red light to 

neighbor plants thus decrease the ratio of R:FR of their competitors. Neighbor plants 

who received the reflected far-red light will then show “shade avoidance syndromes” 

(SAS) as a response to the decrease of R:FR during their whole life including

germination, subsequent growth and development (Franklin et al., 2005). The SAS

describes plants avoiding shade and maximizing light resource occupation when 
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growing in a population (Smith and Whitelam, 1997; Ballare, 1999). Studies on Lolium 

multiflorum showed that tillering activity can be regulated by the R;FR, with tillering 

elevated by high R:FR (Deregibus et al., 1983; Casal et al., 1986). It was concluded that 

phytochrome was involved in the process. This conclusion was further supported by the 

work by Wan and Sosebee (1998) demonstrating that high R:FR was able to stimulate 

both basal and aerial tiller production in Eragrostis curvula. Phytochromes are known to 

be responsible for sensing the R:FR (Kebrom et al., 2006; Finlayson et al., 2010). 

Among the five members in Arabidopsis (phyA-phyE), phytochrome B (phyB) plays the 

major role in sensing the R:FR (Franklin et al. 2003; Chen et al. 2004). 

To investigate the potential role of ABA in regulating branching, wild type 

Arabidopsis and various mutants were used. The specific objectives are to:

1) Define the role of ABA in regulating branching under continuous high and low 

R:FR.  Hypothesis- ABA plays an important role in regulating branching under both 

light regimens.

2) Define the pattern of ABA accumulation in axillary buds of plants grown under high 

and low R:FR. Hypothesis- Low R:FR will result in elevated bud ABA

accumulation. Younger buds will accumulate more ABA which acts locally in the 

bud.

3) Characterize the interaction between ABA and auxin and how they regulate bud 

outgrowth. Hypothesis- ABA acts downstream of auxin to inhibit bud outgrowth. 



15

4) Determine where in the branching pathway ABA operates with respect to other 

known components. Hypothesis- MAX2 or BRC1, or both, act downstream of the 

ABA-mediated branching pathway.
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3. MATERIALS AND METHODS

3.1 Plant materials and growth conditions

Arabidopsis thaliana was used as plant material. Seeds were stratified in distilled 

water for 2-4 days at 4°C and then planted on a commercial growth medium (LC1). 

Plants were grown in trays (30 x 60 cm) with 36 cells and 1 plant per cell in a growth 

chamber with 18 h photoperiod (long days) at 24°C during the day and 18°C during the 

night. Each cell was fertilized with 7 ml of 1X Hoagland’s solution once a week until 

harvest. Diodes emitting far-red light were used to decrease the R:FR. Light was 

measured with a Licor Li-1800 spectroradiometer and the R:FR was calculated as the 

photon flux from 655 to 665 divided by the photon flux from 725 to 735.

3.2 Branching analysis

First, the roles of NCED3 and ABA2 in regulating branching in Arabidopsis 

were determined by growing WT, nced3-2, aba2-1 under both low (0.08) and high R:FR 

(4.0) and then conducting an architectural analysis on the 10th day after anthesis. Thirty 

six individual plants of each genotype were examined. The architectural analysis 

included the number of primary and secondary rosette and cauline leaves, numbers and 

lengths of primary rosette and cauline branches (shoots > 3mm), numbers of secondary 

branches (shoots > 3mm), and numbers of primary and secondary rosette and cauline 

buds or meristems (shoots < 3mm). The number of rosette leaves was taken as the 

branching potential of the plant. The value of primary branches/ rosette leaves was used 

to compare the differences in bud outgrowth taking variations in rosette leaf number into 
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account. Similarly, the value of cauline branches/cauline leaves was calculated to

compare the differences in inflorescence branching.

3.3 Bud ABA content measurement

WT (Col-0) was grown under 185 mol m-2 s-1 PPFD, both low R:FR (0.08) and 

high (4.0) R:FR. Low R:FR application started 2 days after planting. The top three 

rosette axillary buds were harvested just before the predicted onset of elongation of the 

top bud. Four biological replicates were collected and kept in liquid nitrogen 

immediately with approximately 12 to 14 buds in each sample. Each sample was 

weighed immediately after collection and then frozen at -80°C. 10μL of labeled standard 

phytohormone isotopes 2H2ABA were added into each sample replicate. Tissue was 

grounded in 1.5mL microfuge tube with a plastic pestle and extracted by methanol for at 

least twice and then by 80% ethanol for once. Both methanol and ethanol were hot 

(55°C). The extracts were collected in a large culture tube and dried down to about 

100μL in the Speedvac at medium temperature. 800μL chloroform and 1mL water 

together with one drop of 2% NH4OH were used two times for removing contaminants 

including chlorophyll. Acidic hormones were attracted into chloroform phase. Then 1mL 

ethyl acetate together with one drop of 2.6% acetic acid was used for purifying the 

hormones further. Cryopumping was used for separating aqueous phases on the 

Speedvac. The upper ethyl acetate phase was transferred into Reactival after purification.

Methylation were used as analytical derivation of hormones. For methylation (ME), 

10μL methanol and a half drop of ethereal diazomethane were used for both isotope 

labeled and unlabeled samples. 7μL ethyl acetate was used for resuspending the sample 
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dried under N2 in Reactival and all the samples were transferred into ALS vials. The 

combination of derivation and ionization were sent for gas chromatography - mass 

spectroscopy- selected ion monitoring (GC-MS-SIM) measurement: negative chemical 

ionization (NCI) combined with ME. The GC-MS machine was an Agilent 7890 GC-

5975 MSD. The retention time together with the areas of both labeled standard selected 

ion (mass 284) peak and unlabeled sample selected ion (mass 278) peak were collected. 

ABA abundance was calculated according to the formula below:

Abundance = (((Areaunlabeled/Arealabeled)*1)/fresh weight)/MassABA*1000

3.4 ABA application treatment

Wild type, axr1-12, max2 and brc1 were grown with high R:FR (7.0) under 195 

mol m-2 s-1 PPFD. At 2 approximately days before anthesis, 1 L of 100 M ABA

together with 0.03% of Silwet was applied to top five rosette axillary buds [bud n 

(uppermost bud), bud n-1 (bud immediately below bud n) and bud n-2 (bud immediately

below bud n-1), etc.] for each genotype every day with 24h intervals untill harvest.

0.03% Silwet was used as control. A 10L glass syringe with a long narrow needle was 

used to apply ABA or pure silwet onto the meristem of the buds. Twenty four individual 

plants were treated and examined. Plants were harvested at 5 Days Post Anthesis (DPA) 

and branching analysis was conducted as described in 3.2.

3.5 Gene expression test

The roles of abscisic acid in branching were further assessed by measuring the 

expression of the ABA biosynthesis gene NCED3 in the three topmost rosette axillary 

buds from WT, brc1 and nced3-2 by quantitative real-time PCR (QPCR). Axillary buds 
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of various genotypes from the three topmost rosette leaf axils were collected by position 

before the onset of the outgrowth. Four biological replicates were collected, with 

approximately 12 buds in each replicate. Harvested buds were immediately frozen at -

80°C. Total RNA was extracted with TRIzol (Invitrogen). RNA concentration and purity

were estimated by spectrophotometry. Gel electrophoresis was used to verify RNA

quality and ensure similar concentrations among samples. Three and a half units of RQ1

DNAse was added to 5 μg of RNA from each sample to digest DNA according to the

manufacture’s protocol (Promega) followed by re-extraction of the RNA with TRIzol 

(Invitrogen). The concentration of each RNA sample after re-extraction was measured

by spectrophotometery and each RNA sample was suspended to the same concentration.

cDNA was synthesized from the RNA using the Superscript III kit according to the

manufacture’s protocol (Invitrogen). Controls (minus RT) were also prepared by

substituting water for the reverse transcriptase. RNAseH was added afterwards to 

remove the remaining RNA. The cDNA was then diluted 1:10 for further use. QPCR 

was performed using 3 replicates of plus RT sample and 1 of minus RT sample (used to 

verify that genomic DNA contamination did not substantially affect results). 10 L 

QPCR reactions were run using the SYBR Green Jumpstart kit (Sigma) on an ABI 7900 

HT SDS instrument (ABI), following the manufacturer’s recommendations. NCED3 and 

18S primers were used at 100 nM each forward and reverse. A standard curve for each 

primer set was generated from a dilution series of known concentrations of cloned 

fragments. Cycle threshold values of the target genes were determined and converted to 

the actual transcript number per reaction using the 18S ribosomal RNA as a control. The 



20

dissociation curve of each reaction was checked to verify primer specificity. For 

NCED3, the primer combination ACGGATTTCACGGTACATCATCG (forward) and

ATTCCGGGGACGTATATGCAGA (reverse) was used. For 18S rRNA, the primer 

combination AAACGGCTACCACATCCAAG (forward), 

ACTCGAAAGAGCCCGGTATT (reversed) was used. The expression levels of the 

various genes were compared in buds from different positions of individual genotypes, 

as well as between buds from the same position of various genotypes.

3.6 Statistical analysis

Eighteen biological replicates of each genotype/light treatment were used for

architectural analysis, and each experiment was performed twice. The data from the two 

experiments were combined giving a total of 36 observations per genotype/light

treatment. Four biological replicates of each genotype/light treatment were collected for 

the gene expression analysis, with approximately 12 buds in each replicate. All statistics 

analyses were run using JMP software and Analysis of Variance (ANOVA). A Tuckey 

HSD test was used for post hoc comparisons with significance at α = 0.05. Student’s t-

test was used for comparisons between treatments within genotypes with significance at 

α = 0.05. Fischer’s exact probability test was used for comparisons of branch outgrowth 

frequency between treatments with significance at α = 0.05.
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4. RESULTS 

4.1 Objective 1: Defining the role of ABA in regulating branching under high and 

low R:FR

Figure 1 Phenotypes of WT, nced3-2 and aba2-1 grown under low and high R:FR.

Figure 1 shows the phenotypes of three genotypes grown under low (0.08) and 

high R:FR (4.0). Branching analysis revealed that all three genotypes had significantly 

less rosette leaves under low R:FR than under high R:FR (Fig. 2A). The number of 

WT nced3-2 aba2-1

Low R:FR

High R:FR
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rosette branches of nced3-2, aba2-1 and WT are significantly smaller under low R:FR

comparing with the branches number under high R:FR (Fig. 2B). Also, WT and aba2-1 

had significantly greater correlative inhibition indices under low R:FR than under high 

R:FR. The differences between the correlative inhibition under low R:FR and high R:FR 

in WT was much larger than the differences in aba2-1. However, the correlative 

inhibition index in nced3-2 was not significantly different under low and high R:FR 

(Fig. 2C). Additionally, a decrease in the R:FR also led to a decrease in plant height of 

WT and nced3-2 but not in the height of aba2-1 (Fig. 2D). All three genotypes showed a 

significant decrease in cauline branches numbers, sum of rosette branch lengths and sum 

of cauline branches lengths (Fig. 2 E, F, G).

Figure 2 Number of rosette leaves (A), number of rosette branches (B), correlative inhibition (C),

plant height (D), number of cauline leaves (E), sum of rosette branch lengths (F) and sum of 

cauline branch lengths (G) of WT, nced3-2 (nced3) and aba2-1 (aba2) under low and high 

R:FR. Results are means ± SE, and different letters indicate a significant difference between 

light treatments within genotypes at α = 0.05.
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Figure 2 Continued.
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Figure 2 Continued.
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Figure 2 Continued.

When making comparisons among genotypes, it was found the plant height and 

cauline branch lengths were significantly smaller in the two ABA deficient mutants 

compared to WT. The rosette leaf numbers and rosette branch numbers were 

significantly greater in the mutants than WT. The correlative inhibition index value was 

significantly lower in mutants than in WT both under low and high R:FR. aba2-1

produced smaller plants with reduced plant height and cauline branch lengths than 

nced3-2, while nced3-2 was smaller than WT. Thus, the order of plant size from the 

smallest to largest was: aba2-1< nced3-2<WT. Under high R:FR, aba2-1 had the most

rosette leaves and rosette branches, nced3-2 had intermediate rosette branch numbers

and WT had the fewest rosette branches. There were no significant differences in rosette 

branch numbers between genotypes under low R:FR. 

The numbers of primary cauline branches of the various genotypes were 

analyzed to determine the roles of NCED3 and ABA2 in the regulation of cauline 
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branching (Fig. 2G). All three genotypes had almost 100% bud initiation (cauline 

branches+axillary buds)/ axil (data not shown) and elongation. Therefore, NCED3 and 

ABA2 seems have no effects on cauline axillary meristem initiation or outgrowth. 

Moreover, the number of cauline branches of all three genotypes showed significant 

differences under low and high R:FR. This suggests that ABA does not play a necessary 

role in determining the number of cauline leaves under low R:FR.

4.2 Objective 2: Defining the pattern of ABA accumulation in axillary buds of 

plants grown under high and low R:FR 

Figure 3 Top three rosette [bud n (Rn), bud n-1 (Rn-1), bud n-2 (Rn-2)] ABA content of WT under 

low and high R:FR. Results are means ± SE, and different letters indicate a significant 

difference at α = 0.05.
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Figure 3 shows the ABA content of the top three rosette buds of WT under low 

and high R:FR. Bud n-2 had highest ABA content both under low and high R:FR, while 

bud n had the lowest ABA content. Under low R:FR, the ABA level in bud n-1 was 

significantly higher than the level in bud n while lower than the level in bud n-2. 

However, there was no significant difference between the ABA level in bud n and in bud 

n-1 under high R:FR. In general, all three buds showed significantly higher ABA content 

under low R:FR comparing to the ABA content under high R:FR. The difference 

between the ABA level of bud n-2 and bud n was larger under low R:FR than under high 

R:FR, although bud n had an elevated ABA level under low R:FR compared to the level 

under high R:FR. The order of bud ABA content from smallest to largest was the same 

under low and high R:FR, which is bud n< bud n-1< bud n-2. 

4.3 Objective 3: Characterizing the interaction between ABA and auxin and how 

they regulate bud outgrowth 

Figure 4 shows the phenotypes of WT and axr1-12 Arabidopsis genotypes with 

and without exogenous ABA treatment. Branching analysis revealed that both genotypes 

had significantly smaller rosette branch lengths after ABA application (Fig. 5A). 

Differences in rosette branch lengths were only significant in n-1 to n-4 branches in WT 

while significant differences were observed in all top five branches in axr1-12 after 

treating with ABA (Fig. 5B). Also, WT had a significantly greater correlative inhibition 

index with and without exogenous ABA treatment compared to axr1-12. However, the

correlative inhibition index in axr1-12 was not significantly different after treating with 

ABA (Fig. 5C). Moreover, it seems ABA application does not change the rosette or 
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cauline branch numbers in WT (Fig. 6A, B). However, the rosette branch number was 

significantly decreased in axr1-12 after ABA treatment. The differences of the values 

between the rosette and cauline leaf numbers were not significant. The plant height was 

similarly not affected significantly after ABA treatment (Fig. 6C). 

                            

Figure 4 Phenotypes of WT not treated with ABA (A), WT treated with ABA (B), axr1-12 not treated 

with ABA (C) and axr1-12 treated with ABA (D).
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Figure 5 Sum of rosette branch lengths (A), axis lengths (B), correlative inhibition (C) of WT and 

axr1-12 (axr1) with (100 M ABA) and without ABA treatment (0 M ABA). Results are 

means ± SE, different letters indicate a significant difference at α = 0.05, and asterisks indicate 

a significant difference between ABA treatments within genotypes at α = 0.05.
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Figure 5 Continued.

The rosette branch outgrowth frequency is the average of the frequency of rosette 

branches elongated longer than 3mm. The outgrowth frequency of the top five rosette 

branches was significantly suppressed in axr1-12 after treating with 100 pmoles ABA.

All five rosette branches have significantly lower outgrowth frequency in the treatment 

group compared to control. In contrasting, no significant differences of the outgrowth 

frequency of the top three rosette branches were found in WT. Significant differences in 

outgrowth frequency were only found in n-3 and n-4 branches (Fig 6. D). 
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Figure 6 Number of elongated rosette branches (A), number of cauline leaves (B), plant height (C) 

and the rosette branch outgrowth frequency (D) of WT and axr1-12 (axr1) with (100 M 

ABA) and without ABA treatment (0 M ABA). Results are means ± SE, different letters 

indicate a significant difference at α = 0.05, and asterisks indicate a significant difference 

between ABA treatments within genotypes at α = 0.05.
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Figure 6 Continued.
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4.4 Objective 4: Determining where ABA operates in the branching pathway with 

respect to other known components 

4.4.1 Objective 4.1: Defining the role of exogenous ABA on MAX2 deficient mutant 

branching

Figure 7 Phenotypes of WT not treated with ABA (A), WT treated with ABA (B), max2 not treated 

with ABA (C) and max2 treated with ABA (D).

Figure 7 shows the phenotypes of WT and max2 with and without exogenous 

ABA treatment. Branching analysis revealed that WT had a significantly reduced sum of 

A C

B D
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rosette branch lengths after ABA application while max2 had no significant differences 

(Fig. 8A). Differences in the lengths of individual WT rosette branches were observed 

from n-1 to n-4 branches after treating with ABA, which is consistent with the results 

shown in objective 3. However, for max2, the differences in rosette branches length were 

only apparent in the topmost branch (branch n, Fig. 8B). WT also had a significantly 

greater correlative inhibition index with and without exogenous ABA treatment, but 

similar differences were not seen in max2 (Fig. 8C). 

Figure 8 Sum of rosette branch lengths (A), lengths of top five rosette branches (B), correlative 

inhibition (C), number of elongated rosette branches (D), number of cauline leaves (E) and 

the rosette branch outgrowth frequency (F) of WT and max2 with (100 M ABA) and 

without ABA treatment (0 M ABA). Results are means ± SE, different letters indicate a 

significant difference at α = 0.05, and asterisks indicate a significant difference between 

ABA treatments within genotypes at α = 0.05.
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Figure 8 Continued.
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Figure 8 Continued.
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Figure 8 Continued.

Again, ABA application changed the rosette branch numbers but not cauline 

branch numbers (Fig. 8D, E). The differences between the control and the ABA 

treatment in the rosette branch numbers and cauline leaf numbers were not significant. 

The plant height was also not affected significantly by ABA treatment. The outgrowth 

frequency of the top five rosette branches was not different in max2 after treating with 

100 pmoles ABA (Fig. 8F). In contrast, significant differences in outgrowth frequency 

were observed in n-2, n-3 and n-4 branches of WT. 
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4.4.2 Objective 4.2: Defining the role of exogenous ABA on BRC1 deficient mutant 

branching

Figure 9 Phenotypes of WT not treated with ABA (A), WT treated with ABA (B), brc1 not treated 

with ABA (C) and brc1 treated with ABA (D).

Figure 9 shows the phenotypes of WT and brc1 with and without exogenous 

ABA treatment. Branching analysis revealed that both genotypes had a significantly 

reduced sum of rosette branch lengths after ABA application (Fig.10A). Differences in 

D

B
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the lengths of individual rosette branches were observed in n-1, n-2 and n-3 branches of 

WT which were treated directly with ABA (Fig. 10B). Significant differences were 

found in the branch lengths of all five branches in brc1 with ABA treatment.

Figure 10 Sum of rosette branch lengths (mm) (A), lengths of top five rosette branches (B), 

correlative inhibition (C), number of elongated rosette branches (D), number of cauline 

leaves (E) and the rosette branch outgrowth frequency (F) of WT and brc1 with (100 M 

ABA) and without ABA treatment (0 M ABA). Results are means ± SE, different letters 

indicate a significant difference at α = 0.05, and asterisks indicate a significant difference 

between ABA treatments within genotypes at α = 0.05.
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Figure 10 Continued.
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Figure 10 Continued.
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Figure 10 Continued.

As with previous comparisons, WT had a significantly greater correlative 

inhibition index with exogenous ABA treatment than the control. For brc1, the

correlative inhibition index was not significantly different (Fig. 10C). Moreover, it 

seems ABA application did not change either the rosette or cauline branch numbers (Fig. 

10D, E). The differences in rosette and cauline leaf numbers with ABA treatment were 

not significant. The plant height was also not affected significantly by ABA treatment. 

The outgrowth frequency of the top five rosette branches in brc1 was not affected by 

ABA treatment (Fig. 10F). The sum of rosette branch lengths was reduced after 

treatment with ABA in both brc1 and WT (Fig. 10A). This indicates that ABA still has a 

negative effect on branching of brc1. 
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5. CONCLUSIONS AND DISCUSSIONS

5.1 Objective 1: Defining the role of ABA in regulating branching under continuous 

high and low R:FR 

The results showed that ABA plays a role in rosette bud outgrowth suppression 

and correlative inhibition in Arabidopsis. In WT, both rosette bud outgrowth and rosette 

leaf initiation were significantly repressed under low R:FR compared to high R:FR. For 

cauline branches, however, ABA plays a weaker role in branch initiation and elongation

suppression comparing with rosette branches. 

Taken together, these branching analysis results suggest that ABA has a negative 

role in regulating the correlative inhibition of branching under low R:FR. This result 

matches with a previous study that showed that ABA deficiency can cause increased bud 

outgrowth in plants grown under low R:FR (Reddy et al., 2013). ABA2 seemed to have

a greater effect on regulating the number of rosette leaves than NCED3 compared to 

WT, as the aba2-1 mutant had more branches and rosette leaves than the nced3-2

mutant.  This matches with Reddy’s result which showed that the ABA level in lower 

position buds of ABA2 deficient mutants was lower than the ABA level in NCED3

deficient mutants, compared to WT.

5.2 Objective 2: Defining the pattern of ABA accumulation in axillary buds of 

plants grown under high and low R:FR 

In summary, low R:FR had a significant role in elevating the bud ABA content, 

especially in lower position buds. This can partially explain the increase of the 
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correlative inhibition index of WT under low R:FR. Because the difference between the 

value of the correlative inhibition index under low and high R:FR in bud n-2 was larger 

than that in bud n, bud n-2 seems grow comparatively more slowly under low R:FR. 

According to the definition of CII, larger differences among top three axillary branches 

lead to larger slope. That is why there is a significant increase in CII of WT under low 

R:FR. This result provides additional evidence that ABA plays a negative role in 

determining the rosette branching potential under low R:FR.

5.3 Objective 3: Characterizing the interaction between ABA and auxin and how 

they regulate bud outgrowth 

Overall, these results suggest that exogenous ABA can partially inhibit 

branching. It seems that exogenous ABA has a stronger inhibitory effect on the 

branching pattern of axr1-12 than WT. The reason why there were no significant 

differences in the correlative inhibition index of axr1-12 may be because the mutant 

plants were too small with short branches which led to minor differences between upper 

position branches and lower ones. However, it was found that direct application of 

exogenous ABA can inhibit the outgrowth of axr1-12 rosette buds. The results suggest

that ABA may act locally in the bud, not systematically in the whole plant. Reduced

rosette branch lengths also indicated that ABA negatively regulates branch outgrowth 

and elongation. Since axr1-12 is auxin insensitive, stronger suppression on the 

outgrowth of branches of axr1-12 than WT indicated that ABA may act downstream of 

auxin. However, further evidence needs to be provided to fully support this view. 

Additionally, because the inhibitory effects of exogenous ABA did not last longer than 
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24h (data not shown), it further indicates that ABA may only act locally in the bud to 

regulate branching.

5.4 Objective 4: Determining where in the branching pathway ABA operates with 

respect to other known components 

In summary, the results suggested that exogenous ABA can partially inhibit 

branching of max2. It seems that exogenous ABA has a weaker inhibitory effect on the 

branching pattern of max2 than WT. ABA application did not suppress the outgrowth of 

rosette branches of max2 but it partially suppressed branch elongation. These results 

suggest that MAX2 may act partially downstream of ABA-mediated negative branching 

regulation. However, the evidence was not clear enough to confirm that MAX2 acts

downstream of ABA. If MAX2 acts downstream, then there should be no difference in 

branching suppression with ABA treatment when the function of MAX2 is lost. 

However, an inhibitory effect of exogenous ABA was observed in max2 which means 

MAX2 may only partially act downstream of ABA. One possibility is that the MAX-

mediated pathway may be parallel to the ABA-mediated pathway and they share the 

same downstream regulator. Another possibility is that ABA may increase carotenoid 

biosynthesis as a feedback while carotenoid increases MAX activity. Previous studies 

have suggested that strigolactone acts downstream of auxin (Brewer et al., 2009). Taken 

together, it can be postulated that ABA acts downstream of auxin to negatively regulate 

branching. However, the relationship between ABA and the MAX-related hormone is 

still unknown.

Exogenous ABA has a minor inhibitory effect on the branching pattern of brc1. 
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Significant differences between treatment and control were found in the sum of rosette 

branch lengths and in all ABA treated individual branch lengths. The rosette branch 

numbers and the rosette bud outgrowth frequency were not affected by the application. 

Compared with WT, exogenous ABA played a weak role in inhibiting the branching of 

brc1. Unlike in max2, brc1 showed significant decrease in branch lengths after ABA 

treatment in all top five branches. Thus, the data indicate that BRC1 may partially act

downstream of ABA in regulating branching. Moreover, the phenotype of brc1 looks 

more similar to WT than the phenotype of max2 or axr1 mutants. Because the outgrowth 

frequency had not been influenced, it suggests that ABA acts locally in the bud to 

suppress branching which is consistent with previous results.

All in all, the data support the hypothesis that ABA plays a role in bud outgrowth

suppression and correlative inhibition of Arabidopsis branching. It has been shown that 

ABA tends to accumulate in the buds with low outgrowth potential. Moreover, another 

conclusion has been reached that BRC1 may partially act downstream of ABA while 

ABA may act downstream of auxin to regulate branching. 
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