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ABSTRACT

Cellular behavior is controlled through multivariate interactions between various

biological molecules such as proteins and DNA. Various methods have previously

been proposed to model such interactions. However many of these methods require

large volumes of data to effectively estimate the associated unknown parameters. In

this work we explore the use of Bayesian methods to exploit the prior knowledge

about pathway information in combination with collected data in order to make

accurate and useful inferences about tissue level behavior. These predictions would

in turn help in the discovery of better therapeutic strategies such as the development

of better combination therapies involving kinase inhibiting drugs. Various problems

of modeling cancerous and healthy tissues from a Bayesian perspective have been

addressed in this work. We give a short description of these problems here in this

section.

An important problem in the study of cancer is the understanding of the hetero-

geneous nature of the cell population. The clonal evolution of the tumor cells results

in the tumors being composed of multiple sub-populations. Each sub-population

reacts differently to any given therapy. This calls for the development of novel (regu-

latory network) models, which can accommodate heterogeneity in cancerous tissues.

Here we present a new approach to model heterogeneity in cancer. We model het-

erogeneity as an ensemble of deterministic Boolean networks based on prior pathway

knowledge. We develop the model considering the use of qPCR data. By observing

gene expressions when the tissue is subjected to various stimuli, the compositional

breakup of the tissue under study can be determined. We demonstrate the viability

of this approach by using our model on synthetic data, and real world data collected
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from fibroblasts.

Another problem which is addressed in this work is the determination of locations

of dysregulations in a Boolean network used to model signal transduction networks.

Knowledge about which proteins/genes are dysregulated in a regulatory network,

such as in the Mitogen Activated Protein Kinase (MAPK) Network, can be used not

only to decide upon which therapy to use for a particular case of cancer, but also

help in discovering effective targets for new drugs. The posterior inference problem

is solved using a version of the message passing algorithm. We have done simulation

experiments on synthetic data to verify the efficacy of the algorithm as compared

to the results from the much more computationally intensive Markov Chain Monte-

Carlo methods. We also applied the model to analyze data collected from fibroblasts,

thereby demonstrating how this model can be used on real world data.

Another important issue in Bayesian computation is that the processing of the

collected data must be done as efficiently as possible in terms of computational speed

and memory requirements. The use of Markov Chain Monte Carlo methods is time

consuming and hence other methods need to be used for the analysis. The use of

conjugate exponential models is investigated in the modeling of the heterogeneity

of cancerous tissues where variational methods could be used in a straightforward

manner. Variational algorithms, which allow for the fast computations of posterior

probability distributions of variables of interest, have been used in the inference of

the compositional breakup of the heterogeneous tissue under study. The efficacy of

these methods has been demonstrated by comparing them with other methods such

as Markov chain Monte Carlo and Expectation maximization.
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NOMENCLATURE

ATP Adenosine triphosphate

RNA Ribonucleic acid

mRNA Messenger RNA

MAPK Mitogen activated protein kinase

qPCR Quantitative real-time polymerase chain reaction

MCMC Markov chain monte carlo

MH Metropolis-Hastings

FBS Fetal bovine serum

ARACNE Algorithm for the reconstruction of accurate cellular networks
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1. INTRODUCTION ∗

1.1 Background

Bayesian methods are getting more and more popular in the statistics and ma-

chine learning community as the community is finding more and more use of this

approach to solve various problems in science and engineering. In this work we have

used Bayesian methods in conjunction with other methods (such as Boolean algebra)

in the modeling of cancerous tissues. Such modeling of cancerous tissues will help

in the discovery of better therapeutic strategies such as the development of better

combination therapies involving kinase inhibiting drugs. Various problems of model-

ing cancerous and healthy tissues from a Bayesian perspective have been addressed

in this work. This thesis has three primary sections. A short introduction for the

following sections is given below.

1.2 Organization

In section 2, we deal with the modeling of the heterogeneity of cancer tissues.

We have modeled the heterogeneity in cancerous tissues as a collection of Boolean

networks. Prior knowledge about locations of various common mutations occur-

ring in cancer tissues can be encoded as stuck-at faults in the Boolean networks.

By observing gene expressions when the tissue is subjected to various stimuli, the

compositional breakup of the tissue under study can be determined. A multilevel

∗Parts of this section are reprinted with permission from “A Model for Cancer Tissue Heterogene-
ity” by A. K. Mohanty, A. Datta, and V. Venkatraj, 2013. IEEE Transactions on Biomedical
Engineering, volume 61, no. 3, pages 966 - 974, c© 2013 IEEE. doi:10.1109/TBME.2013.2294469,
and “Using the message passing algorithm on discrete data to detect faults in boolean regu-
latory networks” by A. K. Mohanty, A. Datta, and V. Venkatraj, 2014. BMC Algorithms for
Molecular Biology, volume 9, no. 20, 12 pages. doi:10.1186/s13015-014-0020-6, and “A Conju-
gate Exponential Model for Cancer Tissue Heterogeneity” by A. K. Mohanty, A. Datta, and V.
Venkatraj, 2015. IEEE Journal of Biomedical and Health Informatics, preprint, c© 2015 IEEE.
doi:10.1109/JBHI.2015.2410279.
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hierarchical model was used to account for the stochasticity in the observed data

as well as the variations among the various gene expressions. We demonstrate the

viability of this approach by using our model on synthetic data, and real world data

collected from fibroblasts.

Section 3 deals with the Bayesian estimation of possible locations of dysregula-

tions in a given Boolean network provided we have certain observed data from the

tissue under study. If we have a Boolean network used to model a signal transduction

network such as the Mitogen Activated Protein Kinase (MAPK) Network, estimat-

ing these possible locations of dysregulations in the network can prove to be useful

in not only deciding which therapy to use for a particular case of cancer, but also

help in discovering effective targets for new drugs. The posterior inference problem

is solved using a version of the message passing algorithm. We have done simulation

experiments on synthetic data to verify the efficacy of the algorithm as compared

to the results from the much more computationally intensive Markov Chain Monte-

Carlo methods. We also applied the model to analyze data collected from fibroblasts,

thereby demonstrating how this model can be used on real world data.

In section 4, we have investigated the use of variational Bayesian methods in

the computation of posterior marginal distributions of the unobserved variables in

a probability model and applied these methods to the modeling of heterogeneity

of cancer tissues. The use of conjugate exponential models is investigated in the

modeling of the heterogeneity of cancerous tissues where variational methods could

be used in a straightforward manner. Variational algorithms, which allow for the fast

computations of posterior probability distributions of variables of interest, have been

used in the inference of the compositional breakup of the heterogeneous tissue under

study. The efficacy of these methods has been demonstrated by comparing them with

other methods such as Markov chain Monte Carlo and Expectation maximization.
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2. A BAYESIAN MODEL FOR CANCER TISSUE HETEROGENEITY ∗

2.1 Introduction

Cancer progression can be modeled as evolution among cells which become neo-

plastic due to the accumulation of mutations which give them a proliferative ad-

vantage over their normal neighbours [27]. Although there is wide spread consensus

that most macroscopic tumors have a unicellular origin as described in [27, 37], step-

wise accumulation of mutations as described in [27] causes the appearance of variant

sublines which makes the neoplastic cell population a heterogeneous one. The het-

erogeneity of cancer cell populations raises certain issues in the treatment strategy

to be followed because a certain treatment which may be effective on a certain sub-

population of the neoplastic cells but not on the others may show good results on

a particular patient, but not on another patient where the sensitive neoplastic cell

subpopulation is not a major fraction of the entire cancerous cell population. Hence

estimating the proportion wise breakup of the cell subpopulations in a cancer for any

given patient is a problem which needs to be addressed. Once the dominant sub-

populations have been identified, the appropriate decisions regarding therapy can be

taken such as which subpopulation to target and how much of therapy should be

administered to the patient. Proponents of the cancer stem cell theory [30, 1] say

that the growth and progression of many cancers are driven by small subpopulations

of cancer stem cells and that therapies should be designed to target these stem cell

subpopulations. The second popular theory is that most of the cells in the tumor

are contributive to tumor maintenance [36, 5]. Such a view would imply that ther-

∗Parts of this section are reprinted with permission from “A Model for Cancer Tissue Heterogene-
ity” by A. K. Mohanty, A. Datta, and V. Venkatraj, 2013. IEEE Transactions on Biomedical
Engineering, volume 61, no. 3, pages 966 - 974, c© 2013 IEEE. doi:10.1109/TBME.2013.2294469.
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apies should be aimed to target all the major subpopulations in the cancer tissue.

Whichever model may be closer to the true state of affairs, a mathematical model

which incorporates heterogeneity in the cancer tissue is a vital tool in the treatment

of a complex disease such as cancer.

2.2 Model description

Cellular behavior is controlled through multivariate interactions between various

biological molecules such as proteins and DNA [37, 9]. Various methods have been

proposed to model such interactions. These include differential equations [4], de-

terministic and probabilistic Boolean networks [34, 9], and Bayesian and dynamic

Bayesian networks [11, 42]. For methods such as the probabilistic Boolean networks,

the network parameters are very difficult to learn from real world data simply due to

the huge search space for the parameters. The REVEAL algorithm [21] is a general

method to learn deterministic Boolean networks from time domain data. However

time domain data is difficult to collect. In addition, a lot of the previous methods

rely on the discretization of real world observations such as gene expression levels,

which results in the loss of valuable information. The ARACNE method [23] is a

way to use continuous valued observations to determine regulatory interactions.

In the biological literature, there is a wealth of information regarding the marginal

regulatory interactions, usually referred to as pathway knowledge, which has been

collected by biologists over a long period of time. Unfortunately most genetic regu-

latory network modeling methodologies tend to ignore this information. Using this

information would result in methodologies which describe cellular behavior more ac-

curately. A method to use such prior pathway knowledge while designing networks

was presented in [19]. Here Boolean networks, which are extensively used in digital

logic design, were used to model signal transduction networks. Boolean networks,
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which involve discrete variables, are a good choice to model protein-protein inter-

action networks since such reactions involve proteins changing from one state to

another, usually by the addition or removal of phosphate groups, and are generally

accompanied by ATP hydrolysis which pushes the reactions to completion. When

such a signal transduction network contains transcription factors, then the Boolean

model can be used to model the behavior of the genes whose mRNA are transcribed

by these transcription factors. This is where we cross over to the domain of contin-

uous variables. The information obtained by observing these gene expressions can

be used to find out the relative effect of various sub-populations in the tumor tissue

on the observables. This inferred relative effect can be interpreted as the combined

effect of the proportion wise breakup of the tumor cell subpopulations as well as

other random factors.

In [18] the authors present a Boolean model of the Mitogen Activated Protein

Kinase (MAPK) signal transduction network, as reproduced in Fig. 2.1 and represent

cancer as a stuck-at fault in the network. Such a treatment reduces the problem of

the selection of kinase inhibitors for combination therapy to a simple case where the

kinase inhibitors can be selected based on their effect on the variables of interest (the

ones which are responsible for cell proliferation or apoptosis). Analysis in [18] has

been done considering only single stuck at faults at a time which can be extended to

the scenario of multiple faults. However, in either case, this approach assumes that

the entire cancerous tissue can be modeled by a single faulty network. However, in

reality, each faulty network models only one faulty cell type, that is models only one

of the subpopulations. To model the entire cancer population, we need an ensemble

of networks where the number of networks required is equal to the number of major

subpopulations in the cancer tissue. This ensemble has to be deduced from expert

knowledge. In our model, the subpopulations or networks in the ensemble exert their

5



effect on the observables in a weighted average fashion. Our objective is to find out

the extent to which each network influences the behaviour of the tissue by observing

the behaviour of the outputs, which is determined by the set of parameters in the

model.

A survey of the existing literature can give us prior knowledge about the most

likely points in a network where a stuck-at fault may occur. For instance, in 30% of

human breast cancers we see an over expression of the ERBB2 gene [37]. This may

cause ligand independent firing translating to a stuck-at one fault in the Boolean

network. A stuck-at one fault at ERBB2 means that the variable corresponding to

ERBB2 in the Boolean network shown in Fig. 2.1 is always upregulated regardless

of the activity status of the proteins upstream of it. Similarly 90% of pancreatic

cancer cases have a mutated Ras gene which causes it to lose its gtpase activity [37].

In other words, we have a stuck-at one fault associated with the Ras gene. Thus

based on information such as the origin of the cancer tissue and prior knowledge of

the most likely locations where faults can take place, we can reduce the number of

networks in our ensemble.

2.2.1 A simple example

Let us consider a hypothetical cancer where we have narrowed down the number

of major subpopulations to three. Let the first subpopulation be modeled by a

Boolean network with a stuck-at one fault at ERK1/2, let the second subpopulation

have two stuck-at-one faults at ERBB2/3 and Raf, and let the final subpopulation

have a stuck-at-zero fault at PTEN. The different fault locations corresponding to the

different subpopulations are shown as purple squares in the single Boolean network

in Figure 2.1. Suppose we expose the cell culture to the drug U0126. This is a

kinase inhibitor which targets MEK1 as shown in Figure 2.1. (All the drugs used in

6



this example are kinase inhibitors whose molecular targets are shown in Figure 2.1.)

Let us also assume that the serum, as typically used in tissue cultures, has EGF,

HBEGF, IGF, and NRG1 in it. If we observe the behavior of the transcription

factor SP1 (shown at the bottom of the Boolean network in Figure 2.1 with green

arrows), the first network predicts no change in the behavior of SP1 while in the

second and third networks, SP1 will be downregulated. One way to observe the

activity of SP1 is to measure the expression of a gene activated by the SP1 response

element, for instance cMYC. In the second experiment if we expose the cell culture

to a combination of AG1024 and Lapatinib, then SP1 will be upregulated in the first

and second subpopulations but downregulated in the third subpopulation.

In the control experiment with no drug exposure, it is clear that all the sub-

populations will have their SP1 transcription factors upregulated. The usual prac-

tice followed to calculate the normalized gene expression ratio is by the delta-delta

method [22]. This involves normalizing with respect to a housekeeping gene such

as GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) followed by normalization

with respect to the control experiment. The normalized gene expression ratio is the

variable that we are interested in following.

A simple and realistic approach for modeling the normalized gene expression ratio

utilizes the ratio of two normally distributed random variables, each with its standard

deviation being directly proportional to its mean. The constant of proportionality is

called the coefficient of variation, which is assumed to be constant for all the normally

distributed random variables. A biological justification for this assumption of con-

stant coefficient of variation has been provided in [7] where the gene expressions were

measured using microarrays, while the observation of this phenomenon is reported in

[6]. In this paper, our results will be developed specific to the above example where

the observed variables are normalized gene expression ratios. However, the results

7



could be extended to the analysis of other observables where the relative effect of

the various subpopulations on their behaviour is to be determined. This would re-

quire the use of models other than the ratio of two normal random variables, such as

the gamma distribution, the log-normal distribution, or any other model which best

fits the data. Though other models can be used, this model has certain advantages

when it comes to determining the unknown parameters from collected data as we

will demonstrate in the later sections.

Let us assume that we are observing the expression of a reporter gene of SP1,

say cMYC. Let the effect of the 3 subpopulations on the normalized gene expression

ratio of cMYC be in the ratio of αcMY C,1 : αcMY C,2 : αcMY C,3. We will call these

the relative ratio parameters of cMYC which represent the extent to which each

subpopulation manifests its effect on an observable (cMYC in this case). Each term

in the ratio represents the net effect of a subpopulation which includes various factors

such as the cell population and the concentration of the mRNA level in the cells.

Thus the normalized gene expression ratio of cMYC for the first experiment, where

the cell culture is exposed to U0126, is a random variable, which in turn is the

ratio of two normally distributed random variables. The one in the numerator has a

mean directly proportional to αcMY C,1 and standard deviation directly proportional

to αcMY C,1×c (where c is the coefficient of variation which is considered constant for

all genes). This is because the addition of U0126 shuts down the activity of the SP1

transcription factor in the other two subpopulations. The one in the denominator has

a mean directly proportional to αcMY C,1 +αcMY C,2 +αcMY C,3 and standard deviation

directly proportional to (αcMY C,1+αcMY C,2+αcMY C,3)×c since the control experiment

has no drugs added and therefore, the activity of SP1 is not suppressed in any

of the subpopulations. For the second experiment, following the same logic, the

normalized gene expression ratio of cMYC is a ratio of two normally distributed

8



random variables. The random variable in the numerator has a mean of αcMY C,1 +

αcMY C,2 and a standard deviation of (αcMY C,1+αcMY C,2)×c while the random variable

for the denominator is the same as that for the first case.

For an intuitive understanding let us consider that the data points are generated

by a model where the coefficient of variation is 0. In that case we will simply get the

following two equations from the two experiments as shown below. If rcMY C,1 and

rcMY C,2 denote the two measured normalized gene expression ratios of cMYC from

the two experiments, we have:

αcMY C,1

αcMY C,1 + αcMY C,2 + αcMY C,3

= rcMY C,1 (2.1)

αcMY C,1 + αcMY C,2

αcMY C,1 + αcMY C,2 + αcMY C,3

= rcMY C,2. (2.2)

Since αcMY C,1 : αcMY C,2 : αcMY C,3 is a ratio, we can have the terms of the ratio

sum to 1 to get another equation.

αcMY C,1 + αcMY C,2 + αcMY C,3 = 1 (2.3)

Equations (2.1), (2.2) and (2.3) will let us calculate the relative ratio parameters

assuming the data points are drawn from a model with coefficient of variation c equal

to 0.

However, in biological experiments a large sample size is hard to come by and

sometimes we cannot afford to do a sufficient number of experiments to generate

enough information just by observing a single observable (cMYC in our example

above). For instance, if instead of the two experiments (excluding the control exper-

iment) for the case described above, we do one experiment where we expose the cell
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culture to a combination of the two drugs LY294002 and U0126, then from the faulty

networks ensemble, it is apparent that the transcription factor FOS-JUN (also known

as activator protein 1 or AP1) will be upregulated in the first and third subpopula-

tions while it will be downregulated in the second one. Looking at SP1, it will be

upregulated in the first subpopulation while it will be downregulated in the second

and third subpopulations. Let us assume that we are observing a reporter gene of

FOS-JUN. If we consider the case where c is 0 and use the same method as shown in

equations (2.1) through (2.3), we will need to use the observed values of two different

variables (a reporter gene of SP1 and a reporter gene of FOS-JUN) to estimate the

relative influence of the subpopulations on the observables. However this method

rests on the assumption that the relative effects of the different subpopulations is

the same for all the observables, which in this example are the genes transcribed by

FOS-JUN and SP1. This is a strong assumption since as mentioned earlier, the ob-

served variables are affected not only by the proportions of the subpopulations, but

also by individual random effects arising from many possible factors which make the

assumption of equal relative ratio parameters unrealistic. However the data coming

from different observables should not be ignored since all the observable data points

contain information about the proportion wise breakup of the subpopulations. This

calls for a model which utilizes all the information coming from various sources.

Even though for each individual observable variable, the proportion wise breakup

of the subpopulations is a small factor affecting its behavior, this factor affects all

the observed variables. Thus taking information from all the observed variables will

allow us to determine the proportion wise breakup among the subpopulations with

better accuracy.

One such model is the multilevel hierarchical model. In this model, the relative

ratio parameters vector αi = ( αi,1 αi,2 αi,3 )T for each observable variable i (the genes
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transcribed by SP1 and AP1 in our examples) are drawn from a governing Dirichlet

distribution having a parameter vector which needs to be estimated from the data

points. Hence the relative ratio parameters for each observable variable i sum up to 1

and are all non negative. The parameter vector of the governing Dirichlet distribution

is representative of the average of the information from all observed variables.

2.3 A hierarchical model for heterogeneous cancer tissue

Multilevel Hierarchical models are important new tools which are becoming in-

creasingly popular in modern quantitative research. These models are useful in cases

where the data is organized as a hierarchy of nested populations. In our case such

a model is applicable since according to our requirement, the relative ratio param-

eters vector for gene i, αi = ( αi,1 αi,2 αi,3 )T determine the distribution of the gene

expression ratio of the gene i and αi will be a different vector for each gene. For the

purpose of presentation, the coefficient of variation is not made to have a hierarchical

structure and the same value is assumed for all the observable variables, although it

is possible to develop a hierarchical structure for the coefficient of variation allowing

it to vary from gene to gene. A lot of literature is available on multilevel hierarchical

models [12, 13, 16]. So we will not go into an in-depth discussion about a general Hi-

erarchical model. Instead, in this section, we will only describe the details pertaining

to our model.

Figure 2.2 shows the conditional dependencies of the model. All the observations

for each observable variable have a probability distribution which depends on the

“relative ratio parameters” for that variable. These relative ratio parameters are

drawn from an underlying Dirichlet distribution, the parameter vector K of which

is to be estimated. A Dirichlet distribution generates vectors with non negative

values whose elements add up to 1. With the appropriate parameter vector K, the
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distribution can be made to take a variety of shapes and center around any mode

(peak value of the probability distribution). This mode can be interpreted as the

average effect of the subpopulations on the observables. The larger the values of

the elements of the parameter vector K, the “sharper” the Dirichlet distribution is

around the mode.

Another big advantage of a hierarchical model is that it allows for the sharing of

information across observables. Consider the experiment discussed in the previous

section where the hypothetical tissue was exposed to LY294002 and U0126. Looking

at SP1 and FOS-JUN separately, there is not enough information to infer the rela-

tive ratio parameters for these two observables, but combining the data from these

two observables allows us to determine the parameters of the underlying Dirichlet

distribution. This will be demonstrated using synthetic data derived from the model

of the MAPK signal transduction network in a simulation example and applied to

real data derived from experiments on fibroblasts.

The probability distribution of the normalized gene expression ratio for the jth

data point collected from an experiment involving the measurement of the ith gene

is dependent on the relative ratio parameters vector αi , the coefficient of variation

c, and the “expression profile” di,j. The expression profile is simply a vector whose

length is equal to the number of subpopulations in our ensemble. An element of

this vector di,j is 1 if the contribution to the jth data point collected from an ex-

periment involving the ith gene is expected to be upregulated in the corresponding

subpopulation, 0 otherwise. This will change from one experiment to the next for

the same gene depending upon the behavior of the Boolean networks in the ensem-

ble. For example the expression profile for the gene transcribed by SP1 in the first

example in the previous section is ( 1 0 0 )T for the case where exposure to U0126

has occurred, and ( 1 1 0 )T for the case where exposure to AG1024 and Lapatinib
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has occurred. We make the reasonable assumption that the expression profile for

each observable variable is known for each experiment since it is dependent on the

deterministic behavior of the Boolean networks in the ensemble. As explained in the

previous section, the normalized gene expression ratio is a ratio of two normally dis-

tributed random variables. We will derive the probability density function (pdf) of

the ratio of two normally distributed random variables below. Consider two normal

random variables T1 and T2 with mean and standard deviations µ1 and c × µ1 and

µ2 and c× µ2 respectively. Define

R :=
T1

T2

(2.4)

and define

X := T2 (2.5)

Following the standard procedure for computing the joint density of functions of two

random variables, the Jacobian comes out to be

J =

∣∣∣∣∣∣∣
 X R

0 1


∣∣∣∣∣∣∣ = |X| (2.6)

Since X = T2 has very thin tails in the negative region, we get

J ≈ X (2.7)

Thus we have

PR,X(r, x) = PT1(t1)× PT2(t2)× J (2.8)
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or

PR,X(r, x) ≈ 1

2πµ1µ2c2

× exp
(
− 1

2c2µ2
1

(rx− µ1)2 − 1

2c2µ2
2

(x− µ2)2

)
x (2.9)

Define m = µ1

µ2
. Since we have PR(r) =

∫
PR,X(r, x)dx, integrating the joint

density over all x, we obtain

PR(r) =
m(r +m)

√
2πc(r2 +m2)

3
2

exp

(
− 1

2c2

(r −m)2

(r2 +m2)

)
(2.10)

We note that the expression in equation 2.10 above agrees with the ratio distri-

bution derived in [7].

Define mi,j = dTi,jαi. Thus the conditional probability distribution of the nor-

malized gene expression ratio of the ith gene in the jth experiment comes out to

be

P (ri,j/αi, di,j, c) =
mi,j(ri,j +mi,j)√
2πc(r2

i,j +m2
i,j)

3
2

× exp
(
− 1

2c2

(ri,j −mi,j)
2

(r2
i,j +m2

i,j)

)
(2.11)

Let N be the number of networks in the ensemble. For our examples we have

N = 3 since we have chosen to include 3 networks in the ensemble. However, it is

not a hard and fast rule to include exactly three networks in the ensemble since the

number of subgroups can be more or less than three. The probability distribution of
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the relative ratio parameters vector αi of the ith gene is given by

P (αi/K) =

∏N
q=1 α

Kq−1
i,q

Beta(K)
(2.12)

where Beta(K) is the beta function defined as

Beta(K) =

∏N
q=1 Γ(Kq)

Γ
(∑N

q=1Kq

) (2.13)

Here Γ represents the Gamma function. Let ni be the number of data points

of the ith gene from all experiments combined and let V be the total number of

observables (genes). Let r denote the set of all the data points ri,j taken together.

Let d denote the set of all di,j taken together. Then considering the parameters of

interest K and c, we get the likelihood function of the data points to be

P (r/K, c, d) =
V∏
i=1

∫ ni∏
j=1

P (ri,j/αi, di,j, c)P (αi/K)dαi (2.14)

This needs to be maximized over K and c in order to obtain the maximum

likelihood estimate of K and c. The integrations can be difficult or impossible to

perform analytically. So we will resort to Markov Chain Simulation to estimate the

posterior probability distribution of the elements in the parameter vector K.

2.3.1 Estimating parameter values from observed data

Once the ensemble of networks has been chosen from biological knowledge, ex-

perimental data about gene behavior in response to kinase inhibitor drugs can be

used to estimate the parameters of the model. We will use the Metropolis-Hastings

(M-H) algorithm to generate samples from the posterior distributions of the unknown

parameters, which are the parameter vectors K, all the αi’s and the coefficient of
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variation c, conditional on all the data r. The M-H algorithm generates a Markov

Chain in the unknown parameter space whose stationary distribution is the required

posterior distribution of the unknown parameters. Letting this Markov Chain run

to stationarity and drawing samples from the Markov chain is equivalent to drawing

samples of the unknown parameters from their posterior distribution. There is a lot

of available general literature on this algorithm [12, 13, 16] and so we will simply

focus on the specifics for our case.

The usual Bayesian Method requires us to define priors over the parameters K

and c. For c, we choose the prior such that the reciprocal of the square of c is gamma

distributed with a shape parameter of v0

2
and an inverse scale parameter of

v0c20
2

.

1

c2
∼ Γ

(
v0

2
,
v0c

2
0

2

)
(2.15)

Here Γ represents the Gamma distribution and not the Gamma function.

For K we choose a proper prior where all the elements of K are independently

identically exponentially distributed. The means for these exponential distributions

can all be made equal and arbitrarily large so that the prior is almost flat as compared

to the posterior. Choosing proper prior distributions ensures that the posterior is

also proper.

To run the M-H algorithm, we need the full conditionals of the unknown variables.

Define α−i as the set {α1, α2, ..., αi−1, αi+1, ...αV }. Then the full conditional of αi is
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as follows

P (αi/K, c, r, α−i, d) ∝
ni∏
j=1

P (ri,j/αi, di,j, c)P (αi/K)

∝
ni∏
j=1

(
mi,j(ri,j +mi,j)

(r2
i,j +m2

i,j)
3
2

exp

(
− 1

2c2

(ri,j −mi,j)
2

(r2
i,j +m2

i,j)

))

×
N∏
q=1

α
Kq−1
i,q (2.16)

Define α as the set of all the relative ratio parameters vectors αi’s. Let P (K) be the

prior over K. Then the full conditional of K is as follows

P (K/α, c, r, d) ∝ P (K)×
V∏
i=1

P (αi/K)

∝ P (K)× 1

(Beta(K))V

N∏
q=1

(
V∏
i=1

αi,q

)Kq−1

(2.17)

The full conditional of c is such that

1

c2
∼ Γ

((
v0 +

∑V
i=1 ni

)
2

, (
v0c

2
0 +

∑
i,j

(ri,j−mi,j)2

(r2
i,j+m

2
i,j)

)
2

)
(2.18)

The parameters are sampled from their full conditionals one after the other and

after each cycle the newly generated values are stored. c can be generated from

its full conditional simply by taking a sample from the standard gamma distribution

with the above parameters as shown in equation 2.18 and taking the reciprocal of the

square root of the sample. This convenient step is possible due to the specific form

of P (ri,j/αi, di,j, c) which results from the ratio of two normally distributed random
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variables. But K and the αi’s need to be sampled from non standard distributions.

We use random walk proposal distributions to generate new values of K and αi’s

from their previous values.

New values K∗ are sampled from their proposal distributions in the following

manner. For the qth element K∗q of K∗, do the following

• Sample t from uniform(Kq − UK ,Kq + UK), where Kq is the qth element of K.

• If t < 0, then set K∗q = −t, else set K∗q = t.

UK is a tuning parameter which can be adjusted to improve the behavior of the

Markov Chain. Using the method as described above makes the proposal distribution

symmetric [16]. The acceptance ratio for K is calculated as

RK =
P (K∗/α, c, r, d)

P (K/α, c, r, d)
(2.19)

and K is updated to K∗ with a probability of min(RK , 1).

New values α∗i are generated from a Dirichlet proposal distribution with param-

eter value vector given by αi
Uαi

. Uαi is a tuning parameter. Define D(x/y) to be the

probability distribution of x which is Dirichlet distributed with parameter y. Since

the proposal distributions used for the αi’s are not symmetric, the acceptance ratio

is calculated as

Rαi =
P (α∗i /K, c, r, α−i, d)D(αi/

α∗
i

Uαi
)

P (αi/K, c, r, α−i, d)D(α∗i /
αi
Uαi

)
(2.20)

αi is updated to α∗i with a probability of min(Rαi , 1).

The series of steps described above results in a Markov Chain whose stationary

distribution is the same as the posterior distribution of the unknown parameters. Let-

ting this Markov Chain run to stationarity and drawing samples from the Markov
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chain is equivalent to drawing samples of the unknown parameters from their poste-

rior distribution.

Once the draws from the posterior distribution of the unknown parameters have

been obtained, we can obtain the posterior mean, the values with the maximum pos-

terior distribution value (the modes) and the confidence intervals of the parameters

from the kernel density estimate. Such estimates of the parameter vector K can then

be used to determine the proportion wise breakup of the subpopulations correspond-

ing to the networks included in the ensemble. Such methods will be demonstrated

in the coming subsections.

2.3.2 Experiments with synthetic data

To demonstrate the working of the algorithm, we ran simulations of the algo-

rithm on synthetic data. We generated synthetic data from the example described

previously which was derived from the MAPK signal transduction network, which is

a well understood network. Three networks with the “stuck-at” faults as described

in the previous example were taken in the ensemble. One reporter gene for each of

the 4 transcription factors was considered as an observable. Thus we have 4 observ-

ables with 4 different “relative ratio parameter vectors”. K was fixed to be ( 10 6 3 )T .

This corresponds to a Dirichlet distribution with a mode of ( 0.5625 0.3125 0.1250 )T . c

was fixed to be 0.1 since typical values of the coefficient of variation were reported

in [7] to be close to 0.17. First the “relative ratio parameters” for the 4 observ-

ables were generated from the Dirichlet distribution with parameter vector K and

then held fixed for each reporter gene for the 4 transcription factors FOS-JUN, SP1,

SRF-ELK1, and SRF-ELK4. Then observations of the observables were generated

for various combinations of drugs following the model of the ratio of two normally

distributed random variables. 12 drug combinations were chosen out of the 63 pos-
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sible combinations of the 6 drugs in the model in such a way so that the “expression

profiles” for each gene cannot generate a sufficient number of equations permitting

calculation of the “relative ratio parameters” for that gene, in the event that the co-

efficient of variation c were zero. For example all observed data-points corresponding

to the reporter of FOS-JUN had their corresponding expression profiles as ( 1 0 1 )T

and all observed data-points of the rest of the observables had their corresponding

expression profiles as ( 1 0 0 )T . This is done so as to demonstrate how the sharing

of information from all the observables can be used to obtain an estimate of the

parameter vector K of the underlying Dirichlet distribution.

For the purposes of demonstrating the algorithm, the prior for the elements of

the parameter vector K were chosen to have exponential distributions with means of

1000, and the parameters for the prior of c were chosen as follows. The value v0 was

taken as 1 and c0 was taken to be 0.

The Markov Chain was run for 3000 iterations to make it reach stationarity. The

tuning parameters were adjusted to get acceptance rates of close to 30% for the

unknown parameters. The Markov chain was run for 400,000 iterations and thinned

100 times (1 in 100 samples generated was stored for each parameter). This resulted

in a maximum inefficiency factor of less than 4 among all the parameters. The reader

is referred to [12, 13, 16] for information on Markov Chain Monte Carlo diagnostics

and the inefficiency factor.

Multivariate kernel density estimation for any general N dimensional parameter

vector is made using the multivariate Gaussian kernel with a diagonal covariance

matrix, the jth element of which is given by Cj =
(

σj

n
1

N+4

)2

, where σj is the standard

deviation of the jth element of the parameter vector under consideration, n is the

number of samples drawn from the posterior distribution, and N is the number of

elements in the parameter vector (3 for K in our example). This rule of thumb is

20



discussed in [33].

Figure 2.3 shows the kernel density estimate of the marginal distributions of

the elements of K along with their priors. The priors are far too spread out and

non-informative as compared to the posteriors. Hence the value of K with the

maximum posterior distribution is equivalent to the maximum likelihood estimate.

This estimate comes out to be ( 9.1367 5.1330 2.2130 )T which was estimated from the

kernel density estimate of the joint distribution of the 3 elements of the parameter

vector K using gradient ascent with non-negativity constraints. Comparing it to the

actual value of K, we can see that it is quite close. Confidence intervals can also

be calculated from the kernel density estimates, although we have not shown such

calculations here. The more the data fed to the model, the more accurate is the

estimate and the confidence intervals are narrower.

We are more interested in the posterior distribution from which the relative ratio

parameters of the observables come. That is if we know the parameter vector K,

we would like to know the distribution of the relative ratio parameters, which is

nothing but Dirichlet distributed with the parameter vector K. But since K has a

posterior distribution, we would like to know the value of
∫
P (α/K)P (K/r, d) dK,

where α = ( α1 α2 α3 )T is Dirichlet distributed with parameter vector K, and r is the

set of all observed data points. This can be obtained by sampling α from Dirichlet

distributions with parameters set as the samples drawn from the posterior of K.

Repeating this process for all the samples of K, we get the samples of α. The

posteriors of the elements of α for this example are shown in Figure 2.4. The mode

is derived from the kernel density estimate using gradient ascent subject to the

constraint that the elements of α sum to 1 along with non-negativity constraints.

The mode obtained is ( 0.5974 0.2930 0.1095 )T . Comparing it to the original mode of

( 0.5625 0.3125 0.1250 )T , we can see that it is quite close.
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2.3.3 Verification using experimental data

In order to test if the theory developed so far would work, we need to collect

data from an experiment performed on a tissue where the dominant population or

the dominant network is known. In a cancerous cell line, one cannot be sure which

network is dominant. But in a normal cell line, such as adult fibroblasts, it is fair to

assume that a network modeling a faultless MAPK signal transduction network would

be the most dominant one, no matter what networks are included in the ensemble.

Hence we performed a simple experiment on adult fibroblasts to demonstrate the

approach.

Adult fibroblasts were grown in Fibroblast Basal Medium (ATCC) in 60mm tis-

sue culture petri dishes till confluence. Following this, the cells were maintained in

Dulbecco’s modified Eagles medium-F12 (DMEM/F12) (Atlanta Biologicals), sup-

plemented with 0.2% fetal bovine serum (Atlanta Biologicals) for 4 days (All concen-

trations of the supplements used were calculated with respect to plain DMEM/F12

medium without serum). The medium was changed every day after wash with phos-

phate buffer solution (PBS). All cell cultures were incubated at 37 ◦C in a 5% CO2

incubator.

The cells were then exposed to DMEM/F12 supplemented with 0.2% FBS and

100µM Anisomycin for 30 minutes. Anisomycin is a protein synthesis inhibitor which

activates the MAPK signal transduction network and keeps it responsive to kinase

specific inhibitors [2, 10]. That is, with the addition of Anisomycin, we anticipate

the MAPK signal transduction network to respond to the addition of a drug such

as U0126. Anisomycin, being a protein synthesis inhibitor, would also cut of any

feedback path which has a translation (protein synthesis) step in it. The tissue

culture petri dishes were then grouped into 3 groups (groups 0, 1 and 2). After
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the initial 30 minutes of exposure to Anisomycin, each group was then exposed to

DMEF/F12 supplemented with 20% FBS,100µM Anisomycin, 50µM of LY294002,

and/or 10µM of U0126 as shown in table 2.1.

Group 0 is not exposed to LY294002 or U0126, which are highly specific inhibitors

of PI3 Kinase (PI3K in Figure 2.1) and MEK1 respectively. The molecular targets of

LY294002 and U0126 are shown in Figure 2.1. Genes having the SP1 and SRF-ELK

response elements in their promoters were quantified through real time PCR and

the delta-delta method [22] with GAPDH as the reference gene and group 0 as the

control.

EGR1 is measured as a reporter gene of SRF-ELK transcription factor [8]. JUN,

BIRC5, and cMYC are measured as reporters of SP1 [31, 24, 20]. Other genes

having the SP1 response element in their promoters are Decorin, IRF3 and VEGFA

[35, 40, 32, 29]. Four different alternative transcripts of Decorin were measured.

Thus we have a total of ten observables. The expression values calculated are shown

in table 2.2.

For the sake of demonstration we assumed 3 networks to be in the ensemble.

Network 1 has no mutations, i.e. no “stuck-at” faults. This network models the

normally behaving fibroblasts. Network 2 is assumed to have a “stuck-at 1” fault

at ERK1/2 and network 3 is assumed to have “stuck-at 1” faults at SRF-ELK1

and SRF-ELK4. The “expression profiles” for all the genes for the experimental

conditions of groups 1 and 2 are known and depend on the behaviour of the 3

networks included in the ensemble. These are shown in table 2.2.

As described in the previous section, samples from the posterior distributions of

the unknown parameters were drawn using the Metropolis-Hastings Algorithm. The

number of samples were drawn until the effective sample size was atleast 300 for all

the parameters. The reader is referred to [16] for information on effective sample
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sizes in Markov Chain Monte Carlo analysis.∫
P (α/K)P (K/r, d) dK was estimated as described in the previous section. The

marginals of the 3 components of α are shown in Figure 2.5. The spread of the

distribution is large due to lack of enough data points. The mode is derived from

the kernel density estimate using the gradient ascent subject to the constraint that

the elements of α sum to 1 and non-negativity constraints. This mode comes out

to be ( 0.6453 0.2255 0.1292 )T . As expected, the faultless network representing normal

fibroblasts has the maximum influence on the behaviour of the observables, close to

65% . This simple experiment is a demonstration of how real world technology such

as QPCR can be used to determine the composition of a heterogeneous tissue.

2.4 Summary and comments on possible future work

In this work we addressed the important problem of heterogeneity in cancer tis-

sues and presented a model which has the ability to use prior pathway knowledge

and knowledge about likely mutations in cancers to represent a heterogeneous cancer

tissue as an ensemble of faulty Boolean networks. We demonstrated the general idea

of our approach by considering the observed variables to be genes transcribed by key

transcription factors. We modeled the gene expression ratios as ratios of normally

distributed random variables whose means were affected by the networks in the en-

semble to varying degrees. However, if some other observables are used, then the

ratio of normally distributed random variables formulation may not hold and hence

the lowest level of the hierarchical model would have to be altered. However, the

overall approach of hierarchically modeling the relative ratio parameters would re-

main the same. We also demonstrated how the Metropolis-Hastings MCMC method

can be used to estimate the relative effect that each subpopulation exerts on the

observed variables. This estimate gives us an idea about which subpopulation is the
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most dominant one among all the subpopulations in the ensemble. Such estimates,

if obtained using data from individual patients, could help customize combination

therapy design and could help improve the success rate of such cancer therapies. for

more information on this work, the reader is referred to [25].

Future work could also focus on algorithms that allow the addition of networks

other than the ones with which the algorithm starts or the deletion of networks so

as to better fit the data. The results in this paper have been developed with qPCR

data in mind. However, we do believe that similar models could be developed to

integrate data from more modern technologies such as Next Generation Sequencing

and flow cytometry combined with prior pathway knowledge in order to determine

the compositional breakup of the tissue. The details, of course, would need to be

worked out and could form the basis for future investigations. Work on speeding up

the computation of the posterior marginals has also been done and is described in

later sections of this thesis.
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Figure 2.1: A Boolean network model of the MAPK signal transduction network
with target locations of inhibitory drugs shown.
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Figure 2.2: A Bayesian network representing the conditional dependencies in our
model.

Figure 2.3: Marginal distribution of the elements of the parameter vector K.

Table 2.1: Table showing which groups were exposed to which compounds
FBS Anisomycin LY294002 U0126

Group 0 X X
Group 1 X X X
Group 2 X X X X
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Figure 2.4: Marginal distribution of the elements of α for simulation experiments.

Table 2.2: Table showing the normalized gene expression ratios, their reference se-
quence (RefSeq) numbers and their “expression profiles”

gene RefSeq group 1 group 2
exp. profiles norm. gene exp. exp. profiles norm. gene exp.

EGR1 NM 001964.2 1 1 1 0.598739352 0 1 1 0.47963206
JUN NM 002228.3 1 1 1 0.493116352 0 1 0 0.154963462

BIRC5 NM 001168.2 1 1 1 0.579867973 0 1 0 0.384218795
CMYC NM 002467.4 1 1 1 0.320856474 0 1 0 0.257028457

DNC(Decorin)

NM 133504.2 1 1 1 0.081899588 0 1 0 0.008668512
NM 133505.2 1 1 1 0.072795849 0 1 0 0.024180703
NM 133507.2 1 1 1 0.334481889 0 1 0 0.166085727
NM 133503.2 1 1 1 0.435275282 0 1 0 0.279321785

IRF3 NM 001571.5 1 1 1 0.517632462 0 1 0 0.262429171
VEGFA NM 003376.5 1 1 1 0.444421341 0 1 0 0.316439148
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Figure 2.5: Marginal distribution of the elements of α for data derived from experi-
ments on fibroblasts.
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3. USING THE MESSAGE PASSING ALGORITHM ON DISCRETE DATA TO

DETECT FAULTS IN BOOLEAN REGULATORY NETWORKS ∗

3.1 Introduction

Modeling cellular behavior is a first step towards the holistic understanding of

the multivariate interactions among various genes. One possible approach to do that

is through gene regulatory networks. These networks could also help in developing

better intervention strategies in order to shift the state of the cell or the tissue to a

more favorable one. Many different approaches have been proposed in the literature

for modeling the behavior of genetic regulatory networks. Many of these methods

have been discussed in the previous sections. These include differential equations [4],

deterministic and probabilistic Boolean networks [34, 9], and Bayesian and dynamic

Bayesian networks [11, 42]. Some of these methods rely on the assumption that the

transition probabilities are provided beforehand. Such an assumption may not be

realistic since the sheer volume of data required to effectively estimate the transition

probabilities makes it a practically difficult proposition. Some methods such as the

REVEAL algorithm [21] provide approaches to learn deterministic Boolean networks

from discretized time course data. However time course data from biological samples

itself can be difficult to come by.

One way to get around the problem of insufficient data is to use prior knowledge

about the regulatory interactions between the various biological molecules in a cell.

In the biological literature, a lot of information is available regarding the various

regulatory interactions. This information has been collected by biologists over a long

∗Parts of this section are reprinted with permission from “Using the message passing algorithm
on discrete data to detect faults in boolean regulatory networks” by A. K. Mohanty, A. Datta,
and V. Venkatraj, 2014. BMC Algorithms for Molecular Biology, volume 9, no. 20, 12 pages.
doi:10.1186/s13015-014-0020-6.
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period of time. These regulatory interactions, collectively referred to as pathway

knowledge, are generally not incorporated into the various methods of modeling

gene regulatory networks. Using this information, however, would result in models

which describe cellular behavior more accurately.

A possible approach to use such prior information has been developed in [19]. In

that reference, the authors use Boolean logic to model signal transduction networks.

In [25], the authors have used boolean models derived from prior information to

model the heterogeneity of cancerous tissues. Furthermore, in [18] Boolean logic is

used to model the Mitogen Activated Protein Kinase (MAPK) signal transduction

network and the result of that modeling is shown in Figure 2.1. Here, each connect-

ing wire corresponds to a variable which represents the state of the corresponding

protein/gene. In this model each variable is assumed to have two states, an activated

and a deactivated one. For example the state of EGFR will be upregulated or acti-

vated when the cell is exposed to EGF. The way the various variables are dependent

on each other can be modeled using standard Boolean logic functions such as AND,

OR, NOT, NAND, etc.. This is shown in Figure 2.1. In [18] the authors presented

a stuck-at fault model of the mutations which result in the neoplastic behavior of

the tissue. A stuck-at-one fault corresponds to a variable permanently being in an

activated state irrespective of the states of the variables upstream of it. Similarly

a stuck-at-zero fault would mean a variable has a permanently downregulated state

irrespective of the states of the other upstream variables. These “stuck” variables

would however affect the variables downstream of them through the Boolean Logic

gates which have these variables as inputs. To show how Boolean regulatory networks

with stuck-at faults can be used to model cancerous tissue, we give the following ex-

amples. In 30% of human breast cancers there is an over expression of the ERBB2

gene [37]. This causes ligand independent firing translating to a stuck-at-one fault
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in the Boolean network. A stuck-at one fault at ERBB2 means that the variable

corresponding to ERBB2 in the Boolean network shown in Figure 2.1 is always up-

regulated regardless of the activity status of the variables upstream of it. Similarly in

90% of the pancreatic cancer cases we see a mutated Ras gene which causes it to lose

its gtpase activity [37]. In other words, we have a stuck-at-one fault associated with

the Ras variable. Stuck-at faults could also be interpreted as points of dysregulation

in the Boolean network brought about by certain genes irrespective of the presence

of mutations.

Locating stuck-at faults in a given Boolean regulatory network could help in the

identification of key dysregulated genes that have a strong impact on the observable

variables. This in turn could be used to identify targets for new drugs. Knowledge

about the locations of the stuck-at faults along with knowledge about the targets of

the kinase inhibitory drugs can be used to come up with optimal intervention strate-

gies. A method to devise optimal intervention strategies using such Boolean regula-

tory networks with stuck-at faults is described in [18]. Accordingly, the problem we

pose is this: given data points, where each data point consists of a combination of

drugs used as the input and the activity of the observable variables as outputs, is it

possible to locate the variables where stuck-at-faults have occurred? In the following

sections we represent the problem as a statistical model with unknown parameters

which are estimated from the data points using the message passing algorithm. This

algorithm allows for rapid computation of the posterior probabilities of the parame-

ters. The estimates obtained are evaluated by comparison with the results given by

Markov Chain Monte Carlo methods.
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3.2 Model description

There are many ways to model a gene regulatory network which describes the

behavior of neoplastic tissue. The general rule is that the more the number of

unknown parameters, the more the amount of data that is required to get an effective

estimate of those parameters. Hence the modeling must be done keeping in mind

the limited amount of data available from biological experiments.

As has been pointed out before, literature survey would enable us to know the

most likely locations in the Boolean network where stuck-at faults can take place.

As stated in the previous sections, in 30% of human breast cancers there is an over

expression of the ERBB2 gene, and in 90% of the pancreatic cancer cases we see a

mutated Ras gene. These are among many examples where prior knowledge about

locations of faults is available. This knowledge would allow us to limit the search

space for faults in the network. For example we may provide a set of locations where

we want to search for faults.

One important assumption made in the modeling of mutations is that they are

random events that occur independently of each other [15, 14, 41]. We make use

of this assumption in our model by assuming that the faults occur unconditionally

independent from each other with certain unknown probabilities associated with

them. These unknown probability parameters are to be estimated from the collected

data. These estimated probabilities will indicate our confidence about where the

faults have occurred in the Boolean regulatory network.

We now explain the key ideas through a simple example. Let us assume that we

have narrowed down the set of locations where we want to search for faults to be

composed of RAF, IRS1, and RHEB as shown in Figure 2.1 (we are assuming stuck-

at-one faults). Let their probabilities of occurrences be ρ1, ρ2, and ρ3 which are to
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be determined. Define ρ = ( ρ1 ρ2 ρ3 )T as the vector of the three parameters. Three

possible locations of faults implies that there are 23 different fault combinations and

their associated networks corresponding to the binary numbers 000, 001,....,111. The

first network is one with no faults and has a probability of

P (M = 0/ρ) = (1− ρ1)(1− ρ2)(1− ρ3). (3.1)

The second network has a single stuck-at-one fault at RHEB alone, and it’s prob-

ability is given by P (M = 1/ρ) = (1 − ρ1)(1 − ρ2)ρ3. Similarly, the third network

has a single stuck-at-one fault at IRS1 alone, with a probability of P (M = 2/ρ) =

(1 − ρ1)ρ2(1 − ρ3), and so on. The variable M is the decimal equivalent of the

binary number representing the different fault combinations and could equivalently

represent the particular faulty Boolean network being considered. Since there are

three possible locations where stuck-at-faults can take place in this example, M can

take 23 = 8 different values. In our convention, we use integers from 0 to 23 − 1 to

represent the values taken by M . For example M = 6 corresponds to a network with

faults at RAF and IRS1 but not at RHEB and has a corresponding probability of

ρ1ρ2(1− ρ3).

In this example the dimension of ρ is three, but it can be any integer depending

on the size of the search space. Determining the entries of ρ allows us to determine

the most likely faulty networks. Let V be the dimension of ρ. Then it is clear that

P (M = m/ρ) has the following form:

P (M = m/ρ) =
V∏
v=1

ρRv,mv (1− ρv)1−Rv,m (3.2)

where Rv,m is either 0 or 1 and m can vary from 0 to 2V − 1.
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Consider any one of the variables represented as arrows at the bottom of figure 2.1.

Let us represent that variable by Oj. j varies from 1 to 7 in our example based on

figure 2.1. The behavior or Oj is determined by the network and what faults are

in it. Let oi,j be an observation of that variable when the combination input is Ii.

oi,j can be either 0 or 1 since we are dealing with a boolean network here. Given

that the network M is any one of the 2V possible networks and given that the

drug combination input is Ii, the probability P (Oj = oi,j/M = m, Ii) can be either

0 or 1. It is 1 when oi,j matches the output of the jth output variable of the mth

network for the the input drug combination Ii, and is 0 otherwise. Let us represent

P (Oj = oi,j/M = m, Ii) by Sm,i,j. The probability P (M = m/ρ) is a function of ρ

as described in equation (3.2). Therefore, by the theorem of total probability,

P (Oj = oi,j/Ii, ρ) =
2V −1∑
m=0

Sm,i,jP (M = m/ρ) (3.3)

In our example, we will proceed by assuming that the observable variables (the

Oj’s) are independent given the faulty network and the drug combinations. This

assumption can be easily relaxed for the case when the 7 observable variables rep-

resented as arrows at the bottom of figure 2.1 are observed together for each drug

combination used as the input. In this case, instead of P (Oj/M), we will be working

with P (O1, O2, ..., O7/M). This however does not affect our fundamental results and

is a simple extension of our example.

Let O represent all of the observed data for all the observable variables and I rep-

resent the entire set of the corresponding inputs. Let J be the number of observable

variables and N be the number of observations for each observable variable. Then
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we have

P (O/ρ, I) =
J∏
j=1

N∏
i=1

P (Oj = oi,j/Ii, ρ) (3.4)

which is nothing but the likelihood function. In order to handle experimental repeats,

we can have the the drug combinations Ii to be the same for more than one value of

the index i.

An estimate of ρ can be obtained from equation 3.4, either by maximum likelihood

estimation, or by calculating the posterior mean of the parameters. If the prior

distributions of all the elements of ρ are assumed to be uniformly distributed between

0 and 1, the posterior distribution of ρ is directly proportional to P (O/ρ, I). If

P (O/ρ, I) comes out to be zero for all values of ρ, then we have every reason to

question the validity of the Boolean network used to model the behavior of the

biological network, or the set of possible locations of faults. Various estimates of ρ,

such as the posterior mean or the posterior mode (the value of ρ where the posterior

distribution is maximal) can be obtained from P (O/ρ, I). Now we can algebraically

expand the right hand side of equation (3.4) to write P (O/ρ, I) as

P (O/ρ, I) =
∑
k

V∏
v=1

ρ
Q1v,k
v (1− ρv)Q2v,k (3.5)

whereQ1v,k andQ2v,k are non negative integers. Calculating P (ρ/O, I) from P (O/ρ, I)

is now trivial since it only involves calculation of a multiplicative normalization con-

stant.

P (ρ/O, I) =
P (O/ρ, I)∫
P (O/ρ, I) dρ

(3.6)

where in the denominator there is the normalization constant which turns out to be

∫
P (O/ρ, I) dρ =

∑
k

V∏
v=1

β(Q1v,k + 1, Q2v,k + 1) (3.7)
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where β(∗, ∗) is the beta function. This equation is derived by considering a uniform

prior on all the elements of ρ. The integrations can be done easily because of the form

of equation 3.5. Each variable ρv is integrated from 0 to 1. Equation 3.6 shows the

joint posterior distribution of all the unknown parameters ρ1 through ρV considered

together. In order to find the marginal distribution of any given parameter of interest,

we will need to integrate out the rest of the parameters. For example P (ρl/O, I) for

any given value of l can be found out to be

P (ρl/O, I) =

∑
k ρ

Q1l,k
l (1− ρl)Q2l,k

∏V
v=1
v 6=l

β(Q1v,k + 1, Q2v,k + 1)∑
k

∏V
v=1 β(Q1v,k + 1, Q2v,k + 1)

(3.8)

Following this the posterior means can also be calculated.

However the number of additive terms in equation 3.5 represented by the summing

variable k in general rises exponentially with the number of data points collected.

In the worst case, the left hand side of equation (3.3) will contain 2V terms. Since

the number of multiplicative terms in equation 3.4 is NJ (the number of data points

collected), upon expanding the right hand side of equation 3.4 we get 2V NJ additive

terms in equations 3.5, 3.7, and 3.8. Thus the computational cost to compute the

mean of any given ρl is O(2V NJ). Hence the total computation cost to compute the

posterior means of all the elements of ρ (ρ1 through ρV ) is O
(
V × 2V JN

)
. Therefore

the straightforward approach for calculating the posterior distributions of ρl’s and

their posterior means will get intractable as the amount of data collected increases.

To get around this difficulty we will use an iterative algorithm to obtain an

approximation of the marginal distributions of the elements of the parameter vector

ρ. From the marginal distribution it will be straightforward to obtain the posterior

means and confidence intervals of the individual elements of ρ.
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3.3 Factor graph representation of the model

Factor Graphs are an important tool used in various applications such as signal

processing and telecommunications. Many algorithms can be easily understood and

derived using the factor graph approach. These include Kalman Filters, the Viterbi

Algorithm, the Forward-Backward algorithm and Turbo Codes to name a few. The

approach involves first representing the probability model as a factor graph and then

applying the message passing algorithm along the edges. The reader is referred to [17]

and [39] for an in-depth coverage of factor graphs and the message passing algorithm.

Here we provide a short primer to the subjects and go into the details of only our

particular example.

3.3.1 A simple example

Consider a simple function g (x1, x2, x3) = f1 (x1, x2)× f2 (x2, x3) f3 (x3), where

xi are discrete variables. Suppose we want to calculate
∑

x1,x3
g (x1, x2, x3) for a

particular value of x2 (the marginal of x2). In addition, suppose that each xi can

take A different values. Hence the straight forward approach would require us to

sum g (x1, x2, x3) over A2 different values. However
∑

x1,x3
g (x1, x2, x3) can also be

calculated as

∑
x1,x3

g (x1, x2, x3) =

(∑
x1

f1 (x1, x2)

)(∑
x3

f2 (x2, x3) f3 (x3)

)
(3.9)

which sums over 2A different values. For continuous variables, the summation is

replaced by integration. The optimal strategy for calculating the marginal of x2 is

straightforward to derive in this simple example. However a systematic approach

to find the optimal strategy to calculate the marginal of any variable for any given

probability function is given by the message passing algorithm which acts on the
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factor graph representation of the function.

The factorization of a function can be represented by a factor graph. A factor

graph is a bipartite graph with a variable node corresponding to each variable xi and

a factor node corresponding to each independent factor fj and has an undirected

edge connecting a variable node of xi to a factor node of fj iff xi is an argument

of fj [17, 39]. The factor graph of g (x1, x2, x3) is shown in figure 3.1. Messages

pass along the edges in both directions. Messages are functions of the variable whose

node is associated with the edge. Let µfj→xi (xi) and µxi→fj (xi) denote the messages

from fj to xi and vice versa. We simply write down the update equations below.

For an in-depth discussion on their derivation, the reader is referred to [17] and [39].

The messages are calculated as follows:

µxi→fj (xi) =
∏

h∈n(xi)\{fj}

µh→xi (xi) (3.10)

µfj→xi (xi) =
∑
∼{xi}

fj (X)
∏

y∈n(fj)\{xi}

µy→fj (y)

 (3.11)

where n (xi) and n (fj) denote the neighbors of xi and fj respectively in the

factor graph. n (xi) \{fj} represents the set of all the neighbors of xi except fj. The

definition of n (fj) \{xi} is similar. Since the factor graph is bipartite, the neighbors

of a variable node can only be factor nodes, and the neighbors of a factor node

can only be variable nodes. X denotes the set of arguments of fj.
∑
∼{xi} denotes

summation over all local variables except xi. The set of local variables will simply

be the set X, since the factor node fj is connected by undirected edges only to the

variable nodes of its arguments. The message going away from a leaf variable node is

the constant 1, while the message going away from a leaf factor node is the value of
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that local factor. Using these rules on the simple example, we have µx1→f1 (x1) = 1

and µf3→x3 (x3) = f3(x3).

The marginal distribution of a variable is simply the product of all the messages

being received by the corresponding variable node. Hence
∑

x1,x3
g(x1, x2, x3) =

µf1→x2(x2) × µf2→x2(x2) and thus equation (3.9) is derived using factor graphs and

the message passing algorithm. Calculating the rest of the messages would allow

us to calculate the marginals of x1 and x3 as well. The message passing algorithm

would terminate when messages along both directions of all the edges in the graph

have been calculated.

µf1→x2(x2) =
∑
∼{x2}

f1 (x1, x2)µx1→f1 (x1) =
∑
x1

f1 (x1, x2) (3.12)

µx3→f2(x3) =
∏

h∈n(x3)\{f2}

µh→x3(x3) = µf3→x3(x3) = f3(x3) (3.13)

µf2→x2(x2) =
∑
∼{x2}

f2 (x2, x3)µx3→f2 (x3) =
∑
x3

f2 (x2, x3) f3 (x3) (3.14)

The message passing algorithm terminates and gives exact marginals for the cases

where the factor graph has no cycles. But the most interesting applications are for

those cases where the factor graph has cycles, where the marginals are calculated by

iteratively updating the messages (for example the iterative decoding of turbo codes).

We similarly use an iterative version of the message passing algorithm in our model

to approximate the marginal posterior distribution of the unknown parameters.
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3.3.2 Using factor graphs and the message passing algorithm on the signal

transduction network model

Now, P (ρ/O, I) ∝ P (O/ρ, I) as is evident from equation (3.6), while the expres-

sion for P (O/ρ, I) is given in equation (3.4). Let Pi,j represent the multiplicative

factor P (Oj = oi,j/Ii, ρ) in equation (3.4). In a factor graph, each multiplicative fac-

tor is represented by a factor node and each element of ρ is represented by a variable

node. Hence there are NJ number of factor nodes with each corresponding to one

particular multiplicative term in equation 3.4, and there are V number of variable

nodes with each corresponding to one particular unknown parameter (one out of ρ1

through ρV ). The purpose of this algorithm is to compute the posterior marginal

distributions of the unknown parameters ρ1 through ρV , which can then be used to

compute their means and confidence intervals.

Figure 3.2 shows the factor graph of equation (3.4). As we can see the factor graph

in figure 3.2 has cycles. In a factor graph with cycles, the message passing algorithm

does not terminate and the messages are locally updated with every iteration. Every

time a new message is calculated, it replaces the old message. The iterative message

passing algorithm is as follows:

1. initialize all µρv→Pi,j (ρv) = 1

2. calculate all µPi,j→ρv (ρv) as per equation (3.11).

3. calculate all µρv→Pi,j (ρv) as per equation (3.10).

4. repeat steps 2 and 3 in that order.

Since we are dealing with continuous variables between 0 and 1, the summations are

replaced by integrations. Every time µPi,j→ρv (ρv) are computed in step 2, they come
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out to be polynomials of degree one due to the multiplicatively separable nature of

the integrands involved and that all the parameters ρv are being integrated from 0 to

1 (a rectangular integration region). Let them be represented as b0,v,i,j + b1,v,i,j × ρv.

Hence µPi,j→ρv (ρv) can be represented by a vector bv,i,j = ( b0,v,i,j b1,v,i,j )T . Every

time µρv→Pi,j (ρv) are computed in step 3, they will be polynomials of degree NJ − 1

since they are simply the product of all incoming messages except one. Let them be

represented as
∑NJ−1

k=0 ak,v,i,jρ
k
v . Hence µρv→Pi,j (ρv) can be represented by a vector

av,i,j = ( a0,v,i,j a1,v,i,j ... aNJ−1,v,i,j )T .

The values b0,v,i,j and b1,v,i,j can be updated in step 2 as follows.

b0,v,i,j ←
2V −1∑
m=0

Sm,i,j(1−Rv,m)×

∏
lε{1...V }
l 6=v

(
NJ−1∑
k=0

ak,l,i,j
k + 2

)Rl,m

×

(
NJ−1∑
k=0

ak,l,i,j
(k + 1)(k + 2)

)1−Rl,m

(3.15)

b1,v,i,j ←
2V −1∑
m=0

Sm,i,j(2Rv,m − 1)×

∏
lε{1...V }
l 6=v

(
NJ−1∑
k=0

ak,l,i,j
k + 2

)Rl,m

×

(
NJ−1∑
k=0

ak,l,i,j
(k + 1)(k + 2)

)1−Rl,m

(3.16)

The av,i,j can be updated in step 3 by performing polynomial multiplications of

the NJ−1 incoming first degree polynomials to the v′th variable node and comparing
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coefficients. That is, the following equation must be satisfied.

NJ−1∑
k=0

ak,v,i,jρ
k
v =

∏
g 6=i,h 6=j

(b0,v,g,h + b1,v,g,h × ρv) (3.17)

By comparing coefficients of either side of equation (3.17), the values of the elements

of the vector av,i,j are updated. This is also equivalent to the convolution of the

message vectors bv,g,h for g 6= i, h 6= j. At each iteration, the message vectors can be

multiplied by constants so as to prevent overflow or underflow when implementing

the algorithm on a digital computer with finite precision. In that case the final solu-

tions we get are simply the required marginal distributions scaled by some unknown

constant. If we are simply interested in the marginal distributions, then it is not

necessary to keep track of the multiplied constants. We simply need to normalize

the marginals so that their integrals from 0 to 1 give unity.

The message vectors av,i,j and bv,i,j are iteratively updated until some convergence

criteria is satisfied (for example if the Hellinger distance between the marginals of

two successive iterations is below a certain threshold). In our simulations, we saw

that as few as 2 iterations gave satisfactory results in terms of convergence. Hence

the time complexity of the algorithm is dependent on steps 2 and 3 of the algorithm.

In order to calculate µρv→Pi,j (ρv) in step 3, first calculate the polynomial Uv (ρv) =∏
g,h µPg,h→ρv (ρv) of degree NJ . Then find the quotient of the division operation

Uv (ρv) ÷ µPi,j→ρv (ρv). This gives µρv→Pi,j(ρv). Along with that, we can also cal-

culate and store the value of θv,i,j,1 =
∫ 1

0
ρvµρv→Pi,j(ρv)dρv and θv,i,j,0 =

∫ 1

0
(1 −

ρv)µρv→Pi,j(ρv)dρv which will be used in step 2. Note that θv,i,j,1 =
∑NJ−1

k=0
ak,v,i,j
k+2

and

θv,i,j,0 =
∑NJ−1

k=0
ak,v,i,j

(k+1)(k+2)
. Calculating the coefficients of Uv (ρv) is of time complex-

ity at most O ((NJ)2). This is because it involves the convolution of NJ different

first degree polynomials. Calculating the quotient of Uv (ρv) ÷ µPi,j→ρv , and θv,i,j,1
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and θv,i,j,0 are of time complexity O (NJ). The last three operations of O (NJ) have

to be done for all NJ of the factor nodes for each variable node. Hence the time

complexity of calculating the messages from one variable node to all factor nodes is

of time complexity O ((NJ)2). Repeating this action for all V variable nodes gives

us the time complexity of step 3 of the algorithm to be O ((NJ)2V ).

If we look at equations (3.15) and (3.16), the computation of bv,i,j seems to be of

O
(
NJV 2V

)
time complexity. Since there are NJV of bv,i,j to be computed, step 2

seems to be of O
(
(NJ)2(V )22V

)
time complexity. However some of the computations

are repeated and storing these computations for reuse can reduce the time complexity.

Let κm,i,j =
∏V

l=1 θ
Rl,m
l,i,j,1θ

1−Rl,m
l,i,j,0 . Then µPi,j→ρv(ρv) =

∑2V −1
m=0 Sm,i,jρ

Rv,m
v (1− ρv)1−Rv,m

× κm,i,j

θ
Rv,m
v,i,j,1θ

1−Rv,m
v,i,j,0

. Computation of κm,i,j for all m is of O(V 2V ) time complexity for

a given factor node Pi,j. Computation of µPi,j→ρv(ρv) for all v is of O(V 2V ) time

complexity for a given factor node Pi,j. Hence computation of µPi,j→ρv(ρv) from

a single factor node to all variable nodes is of O(V 2V ) time complexity. Hence

total computation for all factor nodes in step 2 comes out to be of O(NJV 2V ) time

complexity.

Hence the complexity of each iteration of the algorithm comes out to beO(NJV (2V +

CNJ)), where C is a constant. This is quadratic with respect to the number of data

points NJ , as opposed to the exponential complexity of the straightforward approach

discussed in the previous sections section.

Once the convergence criteria is met and the algorithm is terminated, the marginal

distribution of ρv is calculated as

P (ρv/O, I) = γ
∏
i,j

µPi,j→ρv(ρv) (3.18)

where γ is a normalization constant which can be calculated to give
∫ 1
0 P (ρv/O, I)dρv = 1.
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3.4 Simulation experiments

We did simulations where the algorithm was tested on synthetic data as well as

applied to real world data. The marginal posterior distributions estimated using

the iterative message passing algorithm were compared with the marginal posteriors

estimated using the time consuming and computationally intensive Markov Chain

Monte Carlo (MCMC) methods and the estimates obtained using both methods

came out to be close thereby verifying the iterative message passing algorithm’s

correctness.

Various literature on MCMC methods exist [12, 13, 16]. We will describe the

details used in our simulations instead of going into a detailed discussion of MCMC

methods. The Markov Chain Monte Carlo Method involves creating a Markov Chain

whose stationary distribution is the required posterior distribution. The Metropolis-

Hastings Algorithm will be used to generate such a Markov Chain since the samples

need to be generated from a non standard probability distribution. This method

will be used to generate samples from the posterior distribution of the unknown

parameters of the vector ρ. These samples can then be used to get an estimate of

the joint as well as the marginal posterior distributions of the unknown parameters

using kernel density estimation.

Samples are drawn from the posterior distribution of ρ using the Metropolis-

Hastings (MH) Algorithm in the following manner. Let the nth sample drawn from

the posterior distribution of ρ be ρ(n) = ( ρ(n)
1 ρ

(n)
2 ... ρ

(n)
V ).

1. Initialize all elements of ρ(0) to be 0.5.

2. At the nth iteration of the MH algorithm, generate ρ∗ from the proposal dis-

tribution U(ρ/ρ(n),∆). The proposal distribution and the tuning parameter ∆

will be discussed in the next paragraph.
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3. Calculate the acceptance ratio

D =
P (O/ρ∗, I)U(ρ(n)/ρ∗,∆)

P (O/ρ(n), I)U(ρ∗/ρ(n),∆)

(Recall that the prior of the parameter vector is constant). P (O/ρ∗, I) and

P (O/ρ(n), I) can be easily calculated for known values of ρ∗ and ρ(n) without

the expansion of P (O/ρ, I) described in equation (3.5). Accept ρ∗ as the next

sample ρ(n+1) with probability min(1, D), or keep ρ(n+1) equal to ρ(n) with

probability 1−min(1, D).

4. Repeat steps 2 and 3 to generate samples from the posterior of P (ρ/O, I).

The proposal distribution U(ρ/ρ(n),∆) is such that ρi is Beta distributed with

parameters
ρ

(n)
i

∆
and

1−ρ(n)
i

∆
, that is

U(ρ/ρ(n),∆) =
V∏
i=1

ρ
ρ
(n)
i
∆
−1

i (1− ρi)
1−ρ(n)

i
∆
−1

Beta(
ρ

(n)
i

∆
,

1−ρ(n)
i

∆
)

(3.19)

where Beta(x, y) is the beta function with parameters x and y and ∆ is a scalar

tuning parameter which controls the variance of the distributions of the ρi’s. It can

be adjusted to give autocorrelation properties of the Markov Chain within acceptable

ranges.

3.4.1 Experiments with synthetic data

To demonstrate the working of the algorithm, we ran simulations of the message

passing algorithm as well as the MH algorithm on synthetic data. We generated

synthetic data from the example described in section II which was derived from the

MAPK signal transduction network, which is a well understood network.

The set of locations where faults can take place was taken to be composed of
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RAF, IRS1, and RHEB. The probabilities of stuck-at-one faults at these locations

(The parameters ρ1, ρ2, and ρ3) were taken as 0.7, 0.4, and 0.2. Synthetic obser-

vations of the observable variable (the variables shown at the bottom of figure 2.1

as arrows) were generated for various drug combinations as inputs (the drugs being

AG1024, AG825, Lapatinib, LY294002, U0126, and Temsirolimus, whose action on

the Boolean network of the MAPK network is shown in figure 2.1) according to the

probability model described in the previous sections. The inputs at the top of the

network corresponding to growth factors (EGF, HBEGF, IGF, and NRG1) were all

taken as 1 (if the cells were being grown on petridishes, then this would be equivalent

to the case where all the four growth factors have been supplied in the serum). Hence

the data set {(oi,1, oi,2, ..., oi,J), Ii} is generated. There are 6 drugs in the Boolean

model. All the 26 − 1 drug combinations were used to generate the data points.

Hence i varies from 1 to 63.

After the synthetic data set was generated, the marginal posterior distributions

of the elements of ρ (The parameters ρ1, ρ2, and ρ3) were estimated using both the

message passing algorithm as well as the MCMC method. For the MCMC method,

the tuning parameter ∆ is set to 0.04 which gives an acceptance rate of 40%. The

reader is referred to [16] for information on acceptance rates. Then the Markov Chain

was run to generate 50,000 samples to attain stationarity (the burn in period). Fol-

lowing this, the Markov chain was run long enough to generate 250,000 samples and

thinned by a factor of 50 (one in 50 samples generated was stored for each param-

eter) resulting in 5000 samples for each ρv. This resulted in effective sample sizes

of atleast 4000 for each of the ρi’s. the reader is referred to [16] for information on

effective sample sizes. The algorithms were implemented in MATLAB. The message

passing algorithm was terminated after 2 iterations which took about 4 seconds. For

our purposes, we used the Hellinger Distance between the marginals of the first pa-
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rameter ρ1 calculated at consecutive iterations of the message passing algorithm to

fall below a certain threshold to signal termination of the algorithm. However other

convergence criterions could also be used. The MCMC samples were generated in

30 minutes after the initial burn in period. The marginal posterior distribution of

ρ1 through ρ3 calculated using both the message passing algorithm and the MCMC

approach are shown in figure 3.3. Kernel density estimation with a Gaussian Kernel

was used to estimate the marginals from the sample values generated using the MH

algorithm. The estimate P̂ (ρv/O, I) of P (ρv/O, I) is calculated from the samples as

follows

P̂ (ρv/O, I) =
1

L

L∑
n=1

1√
2πσv

exp

(
−(ρv − ρ(n)

v )2

2σ2
v

)
(3.20)

where σv is the bandwidth of the Gaussian kernel which is set to δv

L
1
5

. L is the

number of samples generated by the MH algorithm (5000 in our case) and δv is the

standard deviation of the generated samples. This rule of thumb to calculate the

bandwidth of the Gaussian kernel is discussed in [33].

As we can see in figure 3.3, there is almost no difference in the inference of the

marginal posterior distributions of the unknown parameters between the message

passing algorithm and the MCMC approach. The posterior mean of ρv is calcu-

lated from the message passing algorithm as
∫ 1

0
ρvγ

∏
i,j µPi,j→ρv(ρv)dρv and from

the MCMC approach as 1
L

∑
n ρ

(n)
v . These come out to be ( 0.7254 0.3891 0.2799 ) and

( 0.7326 0.3961 0.2830 ) respectively. These estimates are close to each other and to the

actual values of ( 0.7 0.4 0.2 ).

This simulation shows that the message passing algorithm successfully calculates

the posterior marginal distributions of the unknown parameters ρ1 through ρ3 and
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gives the same inferences as the Metropolis-Hastings algorithm. We did simulations

with various values of ρ and for different sets of locations of faults. The iterative

message passing algorithm gave estimates of the posterior marginal distributions of

the parameters same as those estimated using the MCMC approach for all the test

cases considered in our simulations.

3.4.2 Applications to real data

To test our model, we performed experiments on healthy adult fibroblasts where

it is fair to assume that there are no cancer causing mutations present in the tissue.

Hence it is fair to assume that a Boolean regulatory network with no faults would

best model this tissue.

Adult fibroblasts were grown in petri-dishes till confluence and then maintained

in 0.2% FBS (Fetal Bovine Serum) for four days. It is a general assumption that FBS

contains most of the important growth factors. After this, the cells were exposed to

0.2% FBS and 100µM Anisomycin for 30 minutes. Anisomycin is a protein synthesis

inhibitor which activates the MAPK signal transduction network and keeps it respon-

sive to kinase specific inhibitors [2, 10]. That is, with the addition of Anisomycin,

we anticipate the MAPK signal transduction network to respond to the addition of

kinase inhibitors such as U0126. Anisomycin, being a protein synthesis inhibitor,

would also cut off any feedback path which has a translation (protein synthesis) step

in it. The cells were then grouped into three groups (group 0, group 1, and group

2). Group 0 was the control group which was exposed to 100µM Anisomycin only.

Group 1 was exposed to 100µM Anisomycin and 50µM of LY294002. Group 2 was

exposed to 100µM Anisomycin, 50µM of LY294002, and 10µM of U0126. All three

groups were also exposed to 20% FBS along with the other chemicals. LY294002

and U0126 are highly specific inhibitors of PI3 Kinase (PI3K in Figure 2.1) and
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MEK1 respectively. The molecular targets of LY294002 and U0126 are shown in

Figure 2.1. Genes having the SP1 and SRF-ELK response elements in their pro-

moters were quantified through real time PCR and the delta-delta method [22] with

GAPDH as the reference gene and group 0 as the control. The genes were measured

in quadruplets for each experiment.

EGR1 is measured as a reporter gene of SRF-ELK transcription factor [8]. JUN,

and cMYC are measured as reporters of SP1 [31, 20]. Other genes having the SP1

response element in their promoters are Decorin, IRF3 and VEGFA [35, 40, 32, 29].

These six genes were quantified in quadruplets for each experiment. The readings

of each gene are discretized using Otsu’s method [28]. As an example the readings

of ERG1 and their corresponding discretized values are shown in table 3.1. The

threshold level for EGR1 came out to be 0.3824. the expressions above this level

are labeled as 1 and those below are labeled as 0. The measured normalized gene

expression ratios are shown in table 3.2.

For demonstration purposes, we have taken the set of locations where to search

for faults to be composed of ERK1/2 and IRS1 (shown in Figure2.1). The marginal

posterior probability distributions of the probabilities of faults associated with these

two locations are shown in figure 3.4.

As we can see in figure 3.4, the posterior marginal distribution associated with

ERK1/2 comes out to be quite tightly distributed with a mean of 0.1538 while that

for IRS1 comes out to be uniformly distributed between 0 and 1. This is because

the data does not contain any discriminating information about the occurrence of

any fault at IRS1 under this MAPK Boolean model. But it does tell us that the

probability of occurrence of a fault at the variable corresponding to ERK1/2 is pretty

low, judging by its mean to be having a low value of close to 15%. This is expected

since the data comes from adult fibroblasts, where we can be fairly sure that no cancer
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causing mutations are present. If data had been collected after exposure to other

combinations of other drugs (for instance Lapatinib or Temsirolimus) then the data

might have allowed the model to make meaningful inferences regarding occurrences

of faults at locations besides ERK1/2 as well as give sharper confidence intervals

than that shown in figure 3.4.

3.5 Summary and comments on possible future work

In this work we have described a method to estimate the probabilities with which

certain faults have taken place in a given Boolean Regulatory network, provided

we have the observations of the observable variables whose behavior is determined

by the network. We have described the probability model and described a fast

algorithm based on message passing to make the inferences about the posterior

marginal probability distributions of the unknown parameters of the model (These

parameters being the probabilities of the occurrences of the faults). We have com-

pared the performance of the algorithm with Markov Chain Monte Carlo techniques

(the Metropolis-Hastings Algorithm) through simulations, and we have shown that

the message passing algorithm gives results comparable to those obtained using the

MCMC methods with the added advantage of much smaller computation times. We

also applied the model to analyze data collected from fibroblasts, thereby demon-

strating how this model can be used on real world data. Such a computationally

manageable approach has the potential to allow the inference of locations of faults

in a Boolean regulatory network in a probabilistic setting from data, such as gene

expression data. For further information on this work, the reader is referred to [26].

Locating the points of dysregulations in a deterministic Boolean signal trans-

duction network could be used to suggest therapies as described in [18]. Since we

are locating faults in a probabilistic setting, the therapy could be designed keeping
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in mind the tradeoff between treating cancer and managing the side effects of the

treatment. For example, consider a case where we have two possible locations of

faults. Let the computed probability of the occurrence of a fault at the first location

be smaller than that of the second location. Then we may only consider the second

fault in our therapy design process, thereby reducing the exposure of the patient to

excessive drugs which may have unwanted side effects.

Future work could focus on performing experiments on cancerous cell lines being

exposed to various combinations of drugs and infer from the collected data the likely

locations of dysregulations in the corresponding Boolean regulatory network. Also,

algorithms could be developed to automate the process of selecting the set of locations

of faults instead of having the user provide it to the algorithm.
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Figure 3.1: The factor graph representation of a factorizable function. The variable
nodes are circular and the factor nodes are rectangular.

Figure 3.2: The factor graph representation of the probability model of the signal
transduction network. The variable nodes are circular and the factor nodes are
rectangular.

Table 3.1: Gene expression levels and their discrete values for the gene EGR1. The
threshold level using Otsu’s method comes out to be 0.3824 for EGR1.

group 1 normalized gene expression 0.5987 0.7320 0.5586 0.6199
discrete value 1 1 1 1

group 2 normalized gene expression 0.4796 0.2892 0.2535 0.2698
discrete value 1 0 0 0
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Figure 3.3: Marginal posterior distribution of ρ1 through ρ3 calculated using both
the message passing algorithm and the MCMC approach.

Table 3.2: Table showing the normalized gene expression ratios and their reference
sequence (RefSeq) numbers.

EGR1 JUN CMYC DECORIN IRF3 VEGFA
RefSeq NM 001964.2 NM 002228.3 NM 002467.4 NM 133503.2 NM 001571.5 NM 003376.5

Group 1 0.5987 0.4931 0.3209 0.4353 0.5176 0.4444
0.7320 0.6736 0.2852 0.4601 0.4204 0.4989
0.5586 0.6598 0.3439 0.4147 0.3560 0.5176
0.6199 0.7792 0.2994 0.4323 0.3345 0.5105

Group 2 0.4796 0.1550 0.2570 0.2793 0.2624 0.3164
0.2892 0.2793 0.2059 0.3789 0.2553 0.4601
0.2535 0.3015 0.2717 0.3737 0.2253 0.4633
0.2698 0.3415 0.2679 0.3536 0.2031 0.3660
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Figure 3.4: Marginal posterior distribution of the unknown parameters associated
with ERK1/2 and IRS1.
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4. A CONJUGATE EXPONENTIAL MODEL FOR CANCER TISSUE

HETEROGENEITY ∗

4.1 Introduction

In the previous sections we have discussed how the clonal evolution of cells makes

most neoplastic tissues heterogeneous. Hence it becomes important to incorporate

heterogeneity into the modeling of gene regulatory networks which are to be used in

the study of cancerous tissues, especially those oriented towards developing effective

therapies for cancer treatment. An attempt was made in [25] to model cancer tissue

heterogeneity. In that paper, the authors used a collection of Boolean Networks to

model the various subpopulations in a given tissue. A multilevel hierarchical model

was used to model the extent to which each Boolean network affects the behavior

of each of the observed gene expressions. The authors demonstrated the use of this

model by applying it to gene expression measurements from healthy fibroblasts when

they were exposed to various stimuli. Markov Chain Monte Carlo Methods were used

to estimate the posterior probability distributions of the unknown parameters which

would indicate the proportion wise breakup of the tissue under study. In this paper

we make certain approximations to the model which would allow us to employ faster

(variational) methods to carry out the same estimation.

It has been discussed how prior knowledge can be used to model gene regulatory

networks in the form of Boolean networks and how these Boolean networks can

be used to design combination therapies [19, 18]. It has also been discused how an

ensemble of Boolean networks can be used to represent a heterogeneous cancer tissue

∗Parts of this section are reprinted with permission from “A Conjugate Exponential Model for
Cancer Tissue Heterogeneity” by A. K. Mohanty, A. Datta, and V. Venkatraj, 2015. IEEE Journal
of Biomedical and Health Informatics, preprint, c© 2015 IEEE. doi:10.1109/JBHI.2015.2410279.
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in previous sections and also in [25]. In this model, the subpopulations or networks

in the collection of chosen networks exert their effect on the observable variables

(the gene expression ratios) in a weighted average fashion. The objective was to

find these weights associated with each subpopulation or network in the ensemble.

This problem was solved using Markov Chain Monte Carlo (MCMC) methods. In

this paper, we will address this problem of finding out these weights in a variational

Bayes framework resulting in a significant speed-up of the computational time.

Prior knowledge about the qualitative location of faults in the network can be

used to determine the initial model and which networks to choose in the ensemble.

For instance, in 30% of human breast cancers we see an over expression of the ERBB2

gene [37]. This can be interpreted as a stuck-at one fault at the variable corresponding

to ERBB2 in the Boolean network in figure 2.1. Another example is that of pancreatic

cancer where 90% of the cases show a mutated Ras gene [37] translating to a stuck-

at one fault in the corresponding location in the Boolean network. Using such prior

knowledge, it is possible to decide which networks to include in the ensemble.

4.2 Methods

Once the networks to be included in the ensemble have been chosen based on

prior knowledge, the problem is to estimate the weights associated with each of the

networks from collected data. The observable variables can be anything in principle.

We will develop our methods based on normalized gene expression ratios. These are

real valued readings for each gene. [22] discusses the method to measure normal-

ized gene expression ratios using QPCR. When exposed to a certain stimulus (like

a particular combination of kinase inhibitory drugs), some of the output variables,

as shown at the bottom of figure 2.1 using arrows, will be up-regulated or “one” for

some of the Boolean networks in the ensemble, and some of the output variables will
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be down-regulated or “zero” for some of the other networks in the ensemble. For ex-

ample let us consider an example where we have three networks in the ensemble. This

example has also been discussed in [25]. Let the first subpopulation be modeled by a

Boolean network with a stuck-at one fault at ERK1/2, let the second subpopulation

have two stuck-at-one faults at ERBB2/3 and Raf, and let the final subpopulation

have a stuck-at-zero fault at PTEN. The different fault locations corresponding to

the different subpopulations are shown as shaded squares in the single Boolean net-

work in Figure 2.1. Suppose we expose the cell culture to the drug U0126. This is

a kinase inhibitor which targets MEK1 as shown in Figure 2.1. (All the drugs used

in this example are kinase inhibitors whose molecular targets are shown in Figure

1.) Let us also assume that the serum, as typically used in tissue cultures, has EGF,

HBEGF, IGF, and NRG1 in it. Hence in other words, the corresponding variables

represented at the top of figure 2.1 are all one or upregulated. If we observe the

behavior of the transcription factor SP1 (shown at the bottom of the Boolean net-

work in Figure 2.1 with an arrow), the first network has SP1 upregulated while in

the second and third networks, SP1 will be downregulated. If we are observing the

expression for a gene which has the SP1 response element (such as cMYC), then

that gene will be influenced by just the first network to an extent determined by the

weight assigned to that network.

We can represent the activities of the different Boolean networks with relation to

the ith gene (the three Boolean networks with relation to cMYC in the above example)

using a vector di = ( 1 0 0 )T , where the subscript i stands for the ith gene. We define

this vector as the “expression profile” [25]. This expression profile will depend on

the stimulus given to the tissue (the combination of the kinase inhibitor drugs for

example) and the networks included in the ensemble. These expression profiles will

be provided along with the data. Let the weights associated with the three networks
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with relation to the ith gene be represented by a vector αi = ( αi,1 αi,2 αi,3 )T . Then

if we are considering a model which combines the networks in a weighted average

fashion, then the gene expression for the ith gene in the overall model could be

quantified by the dot product dTi αi. This approach was used in [25], where the

normalized gene expression ratios were modeled as a ratio of two normal random

variables. This method was an extension of the model described in [7]. Let us say

that several measurements of the ith gene were made. Let di,j be the “expression

profile” for the jth measurement of the ith gene. di,j will depend on the drugs to which

the tissue was exposed. Let ri,j be the corresponding measured gene expression ratio

for the ith gene. Then [25] derived P (ri,j/αi, di,j, c) as

P (ri,j/αi, di,j, c) =
mi,j(ri,j +mi,j)√
2πc(r2

i,j +m2
i,j)

3
2

× exp
(
− 1

2c2

(ri,j −mi,j)
2

(r2
i,j +m2

i,j)

)
(4.1)

where mi,j = dTi,jαi. The parameter c is the coefficient of variation used to account

for the uncertainty in the data. For a detailed derivation of equation 4.1, the reader

is referred to [25].

Such a distribution has a mode close to around mi,j. Assuming the weights

associated with each network to be the same with relation to all the genes being

observed is a strong assumption. That is, assuming all the αi weight vectors to be

the same would imply that the Boolean networks affect all the genes with exactly the

same ratio. Hence [25] used a multilevel hierarchical model where each of the weight

vectors αi associated with the ith gene is different from the weight vectors associated

with the other genes, but they all are derived from an underlying distribution which

is an average of all the weight vectors. A schematic diagram of the Bayesian network

of the probability model used in [25] is shown in figure 2.2. The parameter K governs

the topmost level of the model.
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Assuming that there are V different observable variables or genes being measured,

and each gene i has ni observations associated with it (which may come from different

experiments), the variables r1,1 through rV,nV in figure 2.2 indicate the observed gene

expression data. The expression profile associated with each observation indicates

how each network is affecting the output variable. These expression profiles are not

shown in the diagram. The variables α1 through αV indicate the weight vectors

associated with each of the genes being observed. In [25], the authors constrained

all the components of each αi vector to be non-negative and their sum to one. The

logical choice was to make all the αi’s to be sampled from an underlying Dirichlet

distribution with a parameter vector K. The larger the values of the elements of K,

the closer all the αi’s are to each other. Learning this unknown parameter K from

the collected data would indicate the proportion wise breakup of the tissue.

The model parameters were learned in [25] using the Metropolis-Hastings algo-

rithm, which is a Markov Chain Monte Carlo (MCMC) based method. The problem

with such a method is that it is very computationally intensive. There are problems

of convergence, especially since it may be difficult to judge if the Markov Chain has

reached stationarity. In addition, the mixing may be poor which will require us to use

thinning to get a decent effective sample size, which further increases computation

time.

To get around the use of MCMC methods, in this paper we have resorted to the

use of variational methods to estimate the posterior distributions of the unknown

parameters. These methods involve assuming the distribution to have a certain

factorized form and iteratively refining these factors. The variational method can be

conveniently applied to the conjugate exponential family of models [38]. Hence we

approximate the model for heterogeneous cancer tissue presented in [25] in the form

of such a conjugate exponential model and derive the corresponding iterative update
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equations.

4.2.1 A description of the conjugate exponential model for cancer tissue

heterogeneity

Variational methods in Bayesian inference proceed by assuming a certain factor-

ized form of the joint posterior distribution of the unobserved variables [3]. This fac-

torization is done by first partitioning the unobserved variables into disjoint groups.

For example let us say that we have a set of unobserved variables Z and we want to

find an approximation of P (Z/D) which is the posterior distribution of the unob-

served elements conditional on the observed data D. We approximate this by Q (Z),

where

Q (Z) =
M∏
i=1

Qi (Zi) (4.2)

Z1 through ZM are disjointed partitions of the set Z [3]. Then the method proceeds

to minimize the KullbackLeibler (KL) divergence KL (Q(Z)||P (Z/D)). It should be

noted that

lnP (D) = KL (Q(Z)||P (Z/D)) + LQ(D) (4.3)

where

LQ(D) =

∫
ln

(
P (Z,D)

Q(Z)

)
Q(Z)dZ (4.4)

A derivation of equation 4.3 can be found in [3].

As the KL divergence is minimized, the lower bound LQ(D) increases mono-

tonically. This can be used to check if the minimization algorithm has achieved

convergence. Also the maximum achieved lower bound can be used for model selec-

tion.
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The KL divergence is minimized using the following update equation

lnQj (Zj) =

∫
lnP (Z,D)

∏
i 6=j

Qi(Zi)dZi + constant (4.5)

for each j, from 1 through M . The constant term can be adjusted to make sure

that Qj (Zj) is a proper probability distribution, that is it integrates to 1. For a

detailed derivation of the equation 4.5, the reader is referred to [3]. Equation 4.5

shows that the optimum Qj(Zj) depends on the other factors Qi(Zi) for i 6= j. Hence

the equations are solved iteratively by first initializing the parameters which describe

each distribution Qj(Zj) to appropriate values and cycling through the equations and

replacing the old values with the corresponding updates. The variational method can

be applied in a straightforward manner to the class of conjugate exponential models.

Conjugate exponential models are those where the conditional distributions involved

in the model belong to the exponential family and are conjugate with respect to the

parent variables [38]. Therefore we modeled heterogeneous cancerous tissue in the

form of a conjugate exponential model which would allow us to use the variational

framework to estimate the proportion wise breakup of the tissue under study.

As discussed previously, each collected gene expression reading has an “expression

profile” associated with it which depends on the Boolean Networks included in the

ensemble and the stimulus provided to the tissue in the form of kinase inhibitory drug

combinations. Each observed variable or gene i has a weight vector αi associated with

it. The weight vectors, which determine the extent to which each chosen Boolean

network in the ensemble affects the ith observable gene, are different for all the genes

whose expressions are measured. Hence here too we will use a Hierarchical model

(which, in addition will also belong to the conjugate exponential family).

The Bayesian network of the model is shown in figure 4.1. Since we are concerned
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with the ratio with which the different networks affect the observed gene expressions,

we can reduce redundancy by constraining the elements of each weight vector αi to

sum to 1, as was done in [25]. That is

N∑
q=1

αi,q = 1 (4.6)

where N is the number of networks in the ensemble. Therefore we have αi,N =

1−
∑N−1

i=1 αi,q. For convenience, we are not constraining the elements of the weight

vectors to be non negative. As we will see from simulations and from applications

to real data, the posterior distributions of these elements will have very little prob-

abilities in the regions where any element is negative. The probability distribution

of any gene expression reading is defined to be normally distributed with a mean of

dTi,jαi and a precision of ρ (inverse of variance). We are considering all the measured

gene expression ratios to have the same precision, although it is possible to have

a hierarchical structure for the precision too. From equation 4.6, we have dTi,jαi =∑N−1
q=1 αi,q(di,j,q−di,j,N)+di,j,N , where di,j,q’s are the elements of the expression profile

di,j. Define µi,j = di,j,N , Di,j = (di,j,1− di,j,N , di,j,2− di,j,N , ..., di,j,N−1− di,j,N)T , and

βi = (αi,1, αi,2, ..., αi,N−1)T . Then we have

P (ri,j/βi, ρ, di,j) = N
(
ri,j|DT

i,jβi + µi,j, ρ
−1
)

(4.7)

The probability distribution of βi is defined to be normally distributed with a mean of

K and a precision matrix of Λ, whereK = (K1 K2 ... KN−1 ) and Λ is an (N−1)×(N−1)

positive definite matrix. Hence we have

P (βi/K,Λ) = N (βi|K,Λ−1) (4.8)
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Hence the unknown parameters are ρ, K, and Λ, which in the Bayesian framework

are simply unobserved variables (along with all the βi’s). K could be interpreted

as the weights associated with the first N − 1 networks. 1 −
∑N−1

q=1 Kq could be

interpreted as the weight associated with the N th network.

The Bayesian approach needs us to define certain priors over the unknown pa-

rameters. Thus we define the prior over ρ to be a gamma distribution with a shape

and inverse scale parameter to be ao and bo respectively. The prior over K and Λ

was taken as the Normal-Wishart distribution. Thus we have

P (ρ) = Gamma (ρ|ao, bo) (4.9)

P (K/Λ) = N
(
K|Ko, (qoΛ)−1) (4.10)

and

P (Λ) = Wish
(
Λ|no,Λ−1

o

)
(4.11)

The joint posterior distribution of the unknown variables is

P (ρ, β,K,Λ/r) ∝ P (Λ)P (K/Λ)P (ρ)×
V∏
i=1

([
ni∏
j=1

P (ri,j/βi, ρ, di,j)

]
P (βi/K,Λ)

)
(4.12)

where β is the set of all the βi’s and r is the set of all the observed data. Our model

belongs to the conjugate exponential family. In the following section, we will approx-

imate the joint posterior distribution of the unknown variables using the variational

approach. This would in turn simplify the derivation of the marginal distributions

of the variables of interest (such as K which would indicate the proportion wise

breakup of the tissue).
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4.2.2 Derivation of the variational update equations

The approximation Q (ρ, β,K,Λ) of the posterior P (ρ, β,K,Λ/r) is assumed to

factorize in the following form.

Q (ρ, β,K,Λ) = Qρ(ρ)Qβ(β)QK,Λ(K,Λ) (4.13)

We then use equation 4.5 to derive the update equations for each of the factors. First

we apply equation 4.5 to Qρ(ρ). As per equation 4.5, we have

lnQρ(ρ) = E6=ρ [lnP (ρ, β,K,Λ/r)] + constants (4.14)

where

E 6=ρ [lnP (ρ, β,K,Λ/r)] =∫
[lnP (ρ, β,K,Λ/r)]Qβ(β)QK,Λ(K,Λ)dβdKdΛ (4.15)

The terms which are not dependent on ρ can be absorbed into the constants. Thus

we get

lnQρ(ρ) = E6=ρ

[
lnP (ρ) +

V∑
i=1

ni∑
j=1

lnP (ri,j/βi, ρ, di,j)

]
+ constants (4.16)

Upon simplifying we get

lnQρ(ρ) = aρ ln(ρ)− bρρ+ constants (4.17)
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where

aρ = ao +
1

2

V∑
i=1

ni (4.18)

and

bρ = bo +
1

2

V∑
i=1

ni∑
j=1

{(ri,j − µi,j)2 − 2(ri,j − µi,j)DT
i,jE[βi]

+DT
i,j(E[βiβ

T
i ])Di,j} (4.19)

and constants are all those terms which do not depend on ρ. Looking at the form

of equation 4.19 we can deduce Qρ(ρ) to be gamma distributed with aρ as the shape

parameter and bρ to be the inverse scale parameter. That is

Qρ(ρ) = Gamma (ρ|aρ, bρ) (4.20)

E[βi] and E[βiβ
T
i ] depend on Qβ(β).

Using similar steps, we get the result Qβ(β) =
∏V

i=1Qβi(βi). This factorization

is not implicitly assumed, but comes as a result of applying equation 4.5 to derive

the update equations for Qβ(β). Upon inspection, Qβi(βi) comes out to be normally

distributed as follows

Qβi(βi) = N (βi|µβi ,Λ−1
βi

) (4.21)

where Λβi is a (N − 1) × (N − 1) positive semidefinite precision matrix and µβi is

the mean vector of length N − 1 which are defined as

Λβi = E[Λ] + E[ρ]

ni∑
j=1

Di,jD
T
i,j (4.22)
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and

µβi = Λ−1
βi
{E[ΛK] + E[ρ]

ni∑
j=1

Di,j(ri,j − µi,j)} (4.23)

All the expectations in equations 4.22 and 4.23 are done with respect toQρ(ρ)QK,Λ(K,Λ).

Following similar steps, QK,Λ(K,Λ) comes out to be factorizable asQK,Λ(K/Λ)QK,Λ(Λ)

which are defined as follows:

QK,Λ(K/Λ) = N
(
K|KoK , [(qo + V )Λ]−1

)
(4.24)

QK,Λ(Λ) = Wish
(
Λ|no + V,Λ−1

oΛ

)
(4.25)

where KoK and Λ−1
oΛ are defined as:

KoK =

∑V
i=1 E[βi] + qoKo

V + qo
(4.26)

Λ−1
oΛ = Λ−1

o +
V∑
i=1

E[βiβ
T
i ] + qoKoK

T
o − (qo + V )KoKK

T
oK (4.27)

KoK and ΛoΛ are of length N − 1 and of dimension (N − 1)× (N − 1) respectively.

Now that the optimal form of each factor in the approximation is known, the

expectations can be easily computed. Thus we get:

E[βi] = µβi (4.28)

E[βiβ
T
i ] = µβiµ

T
βi

+ Λ−1
βi

(4.29)

E[Λ] = (no + V )ΛoΛ (4.30)

E[ρ] =
aρ
bρ

(4.31)
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E[K] = KoK (4.32)

E[ΛK] = (no + V )ΛoΛKoK (4.33)

The constants aρ, bρ, Λβi , µβi , KoK , ΛoΛ are all initialized to appropriate values and

then iteratively updated by cycling through the update equations 4.18, 4.19, 4.22,

4.23, 4.26, and 4.27 using the values of the expectations shown in equations 4.28

through 4.33. Equation 4.4 is used to calculate the lower bound at each iteration.

In the interest of space, the exact equation of the lower bound is not shown here.

However in our simulations and applications to real world data, we will show how

convergence is judged using the lower bound.

4.2.3 Simulation experiments

To demonstrate the algorithm, we ran simulations on synthetic data. First, the

synthetic data was generated from the following example. Three different Boolean

networks with stuck-at faults were taken in the ensemble. The first network was

chosen to have a stuck-at one fault at Ras. The second network was chosen to have

a stuck-at zero fault at PTEN. The third network was chosen to have a stuck-at one

fault at RAF. Hence N = 3. The three locations are shown as shaded squares in a

single Boolean network in figure 2.1. The activity of the four transcription factors

shown at the bottom of figure 2.1 would be different in the three networks for any

given drug combination. A total of 63 different drug combinations were chosen as

the stimulus. The location of the targets of these kinase inhibitory drugs is shown

in figure 2.1. Since there are six different drugs, there would be 63 different possible

combinations excluding the case of no drug exposure. It was assumed that five genes

per transcription factor were measured, hence a total of twenty different observable

variables were assumed in the simulation. Hence V = 20. Each experiment was
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repeated ten times in the simulation. This would result in each observable being

observed 10 times. Hence ni = 10 for all i’s ranging from 1 through 20. Since the

number of networks is three, hence the length of the vector K is two. K was set to

be ( 0.1 0.3 ). Hence the first network has a weight of 0.1 associated with it, the second

network has a weight of 0.3 associated with it, and the third network has a weight

of 0.6 associated with it. ρ was set to be 100 and Λ was set to be

Λ = [ 0.01 0.005
0.005 0.008 ]−1

.

For the purposes of demonstration, the parameters for the prior distributions of

the parameters were chosen as follows. ao and bo for the prior over ρ were both

chosen to be 0.5. This would make the prior over ρ to have a mean of 1. Ko was

chosen to be ( 1/3 1/3 )T and qo was chosen to be 0.001. Hence the prior belief assigns

equal weights to all the three networks. The small value of qo means that the prior

is spread out and non informative. As for the prior over Λ, no was chosen to be 1.1

and Λo was chosen as

Λo = [ 0.01 0.005
0.005 0.008 ]−1

.

For comparison purposes, we also did the posterior inference using Gibbs sam-

pling and found point estimates of the unknown parameters using Expectation Max-

imization algorithm. The full conditionals of the unobserved variables in the Gibbs

sampling algorithm are listed below. (Some of the notations used here are similar

to those used in the derivation of the variational update equations. The reader is

advised to keep in mind that the full conditionals are derived independent of the
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derivations in the previous subsection).

The full conditional of Λ is:

P (Λ/...) = Wish
(
Λ|nΛ,Λ

−1
Λ

)
(4.34)

where

nΛ = no + V + 1 (4.35)

Λ−1
Λ = Λ−1

o + qo(K −Ko)(K −Ko)
T +

V∑
i=1

(βi −K)(βi −K)T (4.36)

The full conditional of K is:

P (K/...) = N

(
K|qoKo +

∑V
i=1 βi

qo + V
, (qo + V )Λ

)
(4.37)

The full conditional of ρ is:

P (ρ/...) = Gamma (ρ|aρ, bρ) (4.38)

where

aρ = ao +
1

2

V∑
i=1

ni (4.39)

and

bρ = bo +
1

2

V∑
i=1

ni∑
j=1

{(ri,j − µi,j −DT
i,jβi)

2

(ri,j − µi,j)2 − 2(ri,j − µi,j)DT
i,jβi + (DT

i,jβi)
2} (4.40)
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The full conditionals of each of the βi’s are:

P (βi/...) = N
(
βi|µβi ,Λ−1

βi

)
(4.41)

where

Λβi = Λ + ρ

ni∑
j=1

Di,jD
T
i,j (4.42)

and

µβi = Λ−1
βi

(
ΛK + ρ

ni∑
j=1

(ri,j − µi,j)Di,j

)
(4.43)

The expectation maximization algorithm can also be used to find a maximum

likelihood estimate of the unknown parameters ρ, K, and Λ. The hidden variables

which are not observed are simply all the βi’s for i ranging from 1 through V .

The derivation is skipped in the interest of space. The Expectation Maximization

Update equations are as follows. Define ρ(n), K(n), and Λ(n) to be the estimates of

the parameters in the nth iteration. Define Σ
(n)
i , M

(n)
i and S

(n)
i to be

Σ
(n)
i =

[
Λ(n) + ρ(n)

ni∑
j=1

Di,jD
T
i,j

]−1

(4.44)

M
(n)
i = Σ

(n)
i

[
Λ(n)K(n) + ρ(n)

ni∑
j=1

Di,j(ri,j − µi,j)

]
(4.45)

S
(n)
i =

ni∑
j=1

{(ri,j − µi,j)2 − 2(ri,j − µi,j)DT
i,jM

(n)
i

+DT
i,j(M

(n)
i M

(n)T
i + Σ

(n)
i )Di,j} (4.46)
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Then the update equations are:

ρ(n+1) =

∑V
i=1 ni∑V
i=1 S

(n)
i

(4.47)

K(n+1) =

∑V
i=1M

(n)
i

V
(4.48)

{
Λ(n+1)

}−1
=

1

V

V∑
i=1

(
M

(n)
i M

(n)T
i + Σ

(n)
i

)
−K(n+1)K(n+1)T (4.49)

where ρ(n+1), K(n+1), and Λ(n+1) are the updated values of the parameters.

Figure 4.2 shows the posterior marginal distributions of the elements of K de-

rived using both the Gibbs sampling method as well as the variational Bayesian

method. The third graph in figure 4.2 is simply the marginal posterior density of

1−K1−K2. As we can see, the distributions computed using both the methods are

almost identical. Same is true for the posterior distribution of ρ which is shown in

figure 4.3. Figure 4.4 shows how the lower bound stops improving after 80 iterations

of the variational algorithm thereby indicating convergence. The mean of the poste-

rior distribution of K comes out to be (0.1044, 0.3015)T and (0.1042, 0.3011)T from

the variational method and the Gibbs sampling method respectively. The maximum

likelihood estimate of K using the expectation maximization algorithm comes out

to be (0.1042, 0.3015)T . Figure 4.5 shows that the log likelihood function shows no

significant improvement after 100 iterations of the expectation maximization algo-

rithm, thereby indicating convergence. All three estimates are close to the actual

value of (0.1, 0.3)T thereby showing the correctness of the algorithms.

From figure 4.2, we can see that the marginal posterior distributions of the ele-

ments of K lie mostly within the interval (0, 1). The marginal posterior distribution

of 1−
∑N

q=1 Kq (the third graph in figure 4.2) also lies within the interval (0, 1).
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4.2.4 Verification using experimental data

In order to test the model, we need to collect data from a tissue where the

dominant population or the dominant network is already known. In a cancerous cell

line, one cannot be sure which network is dominant. But in a normal cell line, such

as adult fibroblasts, it is fair to assume that a network modeling a faultless MAPK

signal transduction network would be the most dominant one, no matter what other

networks are included in the ensemble. Hence we performed a simple experiment on

adult fibroblasts to demonstrate the approach. For a detailed description of the wet

lab procedures, the authors are referred to [25]. The experiments were performed

on three groups of cell cultures. The first group was not exposed to any kinase

inhibitory drugs and served as the control. The second and third groups were exposed

to the drugs LY294002 and a combination of LY294002 and U0126 respectively.

Their target locations are shown in figure 2.1. GAPDH (Glyceraldehyde-3-Phosphate

Dehydrogenase) was used as the reference gene. Genes having the SP1 or the SRF-

ELK response elements in their promoters were quantified through real time PCR

and the delta-delta method [22]. A total of ten different genes (including alternative

transcripts) were quantified [25]. Hence V = 10. Their measured expression values

are shown in table 4.1.

For the sake of demonstration we assumed 3 networks to be in the ensemble.

Hence N = 3. Network 1 has no mutations, i.e. no stuck-at faults. This net-

work models the normally behaving fibroblasts. Network 2 is assumed to have a

stuck-at one fault at ERK1/2 and network 3 is assumed to have stuck-at one faults

at SRF-ELK1 and SRF-ELK4. The “expression profiles” for all the genes for the

experimental conditions of the second and third groups are known (can be easily

derived from figure 2.1) and depend on the behavior of the 3 networks included in
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the ensemble. These are shown in table 4.1.

The marginal posterior distributions of the elements of K are computed using the

variational approach and are shown in figure 4.6. The lower bound stops improving

after 300 iterations as can be seen in figure 4.8, thereby indicating convergence. Only

the results of the variational computations are shown since the Markov Chain Monte

Carlo approach could not produce decent effective sample sizes. As we can see, most

of the probability mass lies in the valid region. Specifically, most of the posterior

marginal probabilities associated with the elements ofK are within 0 and 1. Hence we

get meaningful interpretations of the inferred value of K. The mean of the posterior

distribution of K comes out to be ( 0.6716 0.2740 )T . As expected, the first faultless

network representing normal fibroblasts has the maximum influence on the behavior

of the observables, close to 67%. The other two networks have influences of 27%

and 6% respectively. [25] reports values of ( 0.6453 0.2255 0.1292 )T which are very close

to those calculated in this paper. The Expectation maximization algorithm also

gives very close values of ( 0.6764 0.2745 0.0490 )T . The log likelihood stops improving

after 250 iterations of the Expectation Maximization algorithm as can be seen in

figure 4.9, thereby indicating convergence. This simple experiment shows how this

model can be used to determine the proportional breakup of the subpopulations in

a heterogeneous tissue.

4.3 Summary and comments on possible future work

Here the problem of heterogeneity in cancer tissue cell populations was addressed

and a model was developed which uses a collection of different Boolean networks to

model the various sub populations in the tissue. It was demonstrated using both syn-

thetic and real world data collected from fibroblasts, how this model can be used to

find out the relative abundance of the various subpopulations in a given tissue under
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study using QPCR gene expression data. This work is an extension of the previous

work in [25]. The novelty of this work is in the improvement in the computation time.

A hierarchical conjugate exponential model was used in this paper, which allowed

the use of variational methods for Bayesian estimation of the relative abundances

of the various subpopulations. The efficacy of the variational methods was verified

by comparing the results obtained to those obtained using MCMC (Gibbs sampling)

and Maximum likelihood (Expectation Maximization) methods. Determining the

relative abundance of the various subpopulations in an individual patient could be

used to come up with customized combination therapies which are tailored to the

patient so as to improve the efficacy and reduce side effects (for example, we may

want to target the dominant subpopulation(s) using the minimal amount of drugs

so as to reduce side effects).

Variational methods are becoming increasingly important as Bayesian methods

are gaining interest since these methods allow for speedy computation of posterior

distributions of variables of interest. Moreover the lower bound, which is easily com-

puted in variational methods, provides for an effective proxy for the likelihood of the

data which can be used for model selection. Hence this approach can also be extended

to solving the problem of determining how many Boolean networks to include in the

ensemble as well as determining which Boolean networks to include in the ensemble.

Besides variational methods, other methods, such as expectation propagation may

also be used to solve the problem of determining the dominant subpopulations in

a heterogeneous cancer tissue in a Bayesian framework with reduced computational

requirements.

The model in this paper was developed keeping QPCR gene expression data in

mind. However similar methods can be developed which use data from more state

of the art technologies such as Next Generation Sequencing and flow cytometry.
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Figure 4.1: A Bayesian network representing the conditional dependencies in the
conjugate exponential model.

Figure 4.2: Posterior marginal distributions of the elements of K for synthetic data.
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Figure 4.3: Posterior marginal distribution of ρ for synthetic data.

Figure 4.4: Increase of the log of the lower bound with iterations of the variational
Bayes algorithm for synthetic data.
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Figure 4.5: Increase of data log likelihood with the iterations of the expectation
maximization algorithm for synthetic data.

Table 4.1: Table showing the gene expression measurements, their “expression pro-
files”, and their reference sequence (RefSeq) numbers.

gene RefSeq group 1 group 2
expression profile gene expression expression profile gene expression

EGR1 NM 001964.2 1 1 1

0.5987

0 1 1

0.4796
0.7320 0.2892
0.5586 0.2535
0.6199 0.2698

JUN NM 002228.3 1 1 1

0.4931

0 1 0

0.1550
0.6736 0.2793
0.6598 0.3015
0.7792 0.3415

BIRC5 NM 001168.2 1 1 1 0.5799 0 1 0 0.3842

CMYC NM 002467.4 1 1 1

0.3209

0 1 0

0.2570
0.2852 0.2059
0.3439 0.2717
0.2994 0.2679

Decorin

NM 133504.2

1 1 1

0.0819

0 1 0

0.0087
NM 133505.2 0.0728 0.0242
NM 133507.2 0.3345 0.1661

NM 133503.2

0.4353 0.2793
0.4601 0.3789
0.4147 0.3737
0.4323 0.3536

IRF3 NM 001571.5 1 1 1

0.5176

0 1 0

0.2624
0.4204 0.2553
0.3560 0.2253
0.3345 0.2031

VEGFA NM 003376.5 1 1 1

0.4444

0 1 0

0.3164
0.4989 0.4623
0.5176 0.4633
0.5105 0.3660
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Figure 4.6: Posterior marginal distributions of the elements of K for data collected
from fibroblasts.

Figure 4.7: Posterior marginal distribution of ρ for data collected from fibroblasts.
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Figure 4.8: Increase of the log of the lower bound with iterations of the variational
Bayes algorithm for data collected from fibroblasts.

Figure 4.9: Increase of data log likelihood with the iterations of the expectation
maximization algorithm for data collected from fibroblasts.
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5. CONCLUSIONS ∗

In this dissertation, we have presented methods to model cancer tissues primar-

ily by using Bayesian methods. These methods range from accurate modeling and

inference using MCMC methods to computationally efficient methods such as belief

propagation and variational Bayesian methods. The thesis was divided into three

sections, each focusing on a certain sub-problem. A summary of these three sections

is provided in the following paragraphs.

In section 2, we addressed the important problem of heterogeneity in cancer

tissues and presented a model which has the ability to use prior pathway knowledge

and knowledge about likely mutations in cancers to represent a heterogeneous cancer

tissue as an ensemble of faulty Boolean networks. We demonstrated the general idea

of our approach by considering the observed variables to be genes transcribed by key

transcription factors. We also demonstrated how the Metropolis-Hastings MCMC

method can be used to estimate the relative effect that each subpopulation exerts on

the observed variables. This estimate gives us an idea about which subpopulation

is the most dominant one among all the subpopulations in the ensemble. Such

estimates, if obtained using data from individual patients, could help customize

combination therapy design and could help improve the success rate of such cancer

therapies. for more information on this work, the reader is referred to [25].

∗Parts of this section are reprinted with permission from “A Model for Cancer Tissue Heterogene-
ity” by A. K. Mohanty, A. Datta, and V. Venkatraj, 2013. IEEE Transactions on Biomedical
Engineering, volume 61, no. 3, pages 966 - 974, c© 2013 IEEE. doi:10.1109/TBME.2013.2294469,
and “Using the message passing algorithm on discrete data to detect faults in boolean regu-
latory networks” by A. K. Mohanty, A. Datta, and V. Venkatraj, 2014. BMC Algorithms for
Molecular Biology, volume 9, no. 20, 12 pages. doi:10.1186/s13015-014-0020-6, and “A Conju-
gate Exponential Model for Cancer Tissue Heterogeneity” by A. K. Mohanty, A. Datta, and V.
Venkatraj, 2015. IEEE Journal of Biomedical and Health Informatics, preprint, c© 2015 IEEE.
doi:10.1109/JBHI.2015.2410279.
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In section 2, the methods suggested depended heavily on MCMC techniques.

However for these methods to become practically applicable, the computational com-

plexity needs to be reduced. Various computationally efficient methods exist to speed

up the computation of posterior distributions. In section 3, an algorithm based on

loopy belief propagation or message passing has been presented to estimate the most

likely locations of faults in a Boolean network based on observed data. We have com-

pared the performance of the algorithm with Markov Chain Monte Carlo techniques

(the Metropolis-Hastings Algorithm) through simulations, and we have shown that

the message passing algorithm gives results comparable to those obtained using the

MCMC methods with the added advantage of much smaller computation times. We

also applied the model to analyze data collected from fibroblasts, thereby demon-

strating how this model can be used on real world data. Such a computationally

manageable approach has the potential to allow the inference of locations of faults

in a Boolean regulatory network in a probabilistic setting from data, such as gene

expression data. For further information on this work, the reader is referred to [26].

In section 4, an approximation of model described in section 2 is presented so as

to allow for the use of variational Bayesian methods in the estimation of conditional

posterior distributions of the unobserved variables in the model. The novelty of this

work is in the improvement in the computation time. A hierarchical conjugate expo-

nential model was used in this section, which allowed the use of variational methods

for Bayesian estimation of the relative abundances of the various subpopulations.

The efficacy of the variational methods was verified by comparing the results ob-

tained to those obtained using MCMC (Gibbs sampling) and Maximum likelihood

(Expectation Maximization) methods. Variational methods are becoming increas-

ingly important as Bayesian methods are gaining interest since these methods allow

for speedy computation of posterior distributions of variables of interest. Moreover
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the lower bound, which is easily computed in variational methods, provides for an

effective proxy for the likelihood of the data which can be used for model selection.

Hence this approach can also be extended to solving the problem of determining

how many Boolean networks to include in the ensemble as well as determining which

Boolean networks to include in the ensemble. Besides variational methods, other

methods, such as expectation propagation may also be used to solve the problem

of determining the dominant subpopulations in a heterogeneous cancer tissue in a

Bayesian framework with reduced computational requirements. This could be a pos-

sible direction for future research.
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