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ABSTRACT 

 

Elasticity imaging, which is also known as Elastography, aims to determine the 

elastic property distribution of non-homogeneous deformable solids such as soft tissues. 

This can be done non-destructively using displacement fields measured with medical 

imaging modalities, such as ultrasound or magnetic resonance imaging. Elasticity imaging 

can potentially be used to detect tumors based on the stiffness contrast between different 

materials. This requires the solution of an inverse problem in elasticity. This field has been 

growing very fast in the past decade. One of the most useful applications of elasticity 

imaging may be in breast cancer diagnosis, where the tumor could potentially be detected 

and visualized by its stiffness contrast from its surrounding tissues. In this work the inverse 

problem will be solved for the shear modulus which is directly related to the Young’s 

modulus through the Poisson’s ratio. The inverse problem is posed as a constrained 

optimization problem, where the difference between a computed (predicted) and measured 

displacement field is minimized. The computed displacement field satisfies the equations 

of equilibrium. The material is modeled as an isotropic and incompressible material. The 

present work focuses on assessing the solution of the inverse problem for problem 

domains defined with a continuous and discontinuous shear modulus distribution. In 

particular, two problem domains will be considered: 1) a stiff inclusion in a homogeneous 

background representing a stiff tumor surrounded by soft tissues, 2) a layered ring model 

representing an arterial wall cross-section. The hypothetical "measured" displacement 

field for these problem domains will be created by solving the finite element forward 
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problem. Additionally, noise will be added to the displacement field to simulate noisy 

measured displacement data. 

According to the results of my thesis work, the potential of the elasticity imaging 

in the medical field is emerging. The inclusion in problem domain 1, representing a stiffer 

tumor in a uniform background, can be found and located in the shear modulus 

reconstructions. Thus, these reconstructed images can potentially be used to detect tumors 

in the medical field. 

 
 

 

 

 



 

iv 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Goenezen, and my committee 

members, Dr. Liang, Dr. Muliana, for their guidance and support throughout the course of 

this research. 

Thanks also go to my friends and colleagues and the department faculty and staff 

for making my time at Texas A&M University a great experience. 

 Finally, thanks to my mother and father for their encouragement. 



 

v 

 

 

TABLE OF CONTENTS 
 
 
 Page 
 
ABSTRACT .................................................................................................................... ii 
 
ACKNOWLEDGEMENTS ........................................................................................... iv 
 
TABLES OF CONTENTS ...............................................................................................v 
 
LIST OF FIGURES ........................................................................................................ vi 
 
LIST OF TABLES ....................................................................................................... xiii 
 
1. INTRODUCTION ........................................................................................................1 
 
2. METHODS ...................................................................................................................5 
 
 2.1. Forward Problem .................................................................................................5 
 2.2. Inverse Elasticity Problem ..................................................................................6 
 
3. RESULTS ...................................................................................................................10 
 
 3.1. Strain Analysis in Forward Problem .................................................................10 
 3.2. Shear Modulus Reconstruction .........................................................................21 
 
4. DISCUSSION, CONCLUSIONS AND FUTURE WORK .......................................82 
 
 4.1. Discussion .........................................................................................................82 
 4.2. Conclusions .......................................................................................................86 
 4.3. Future Work ......................................................................................................87 
 
REFERENCES ...............................................................................................................89 
 
  



 

vi 

 

LIST OF FIGURES 
 
 

 Page 
 
Figure 2.1 Flow chart of solving the inverse problem .....................................................9 

Figure 3.1 Model 1 .........................................................................................................11 

Figure 3.2 Target shear modulus distribution ................................................................12 

Figure 3.3 Target shear modulus distribution along the horizontal centerline ...............13 

Figure 3.4 Horizontal strain visualization ......................................................................14 

Figure 3.5 Spatial difference in horizontal strain between different material ................16 

Figure 3.6 Model 2 .........................................................................................................17 

Figure 3.7 Target shear modulus distribution ................................................................18 

Figure 3.8 Target shear modulus distribution as a function of thickness .......................19 

Figure 3.9 Radial strain with continuously and element-wise defined material ............20 

Figure 3.10 Spatial difference in radial strain between different materials ...................21 

Figure 3.11 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and noise free data ..................................................................23 

Figure 3.12 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and noise free data along the horizontal centerline ................24 

Figure 3.13 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and noise free data along the vertical centerline ....................24 

Figure 3.14 Shear modulus reconstruction from element-wise defined material with 
fine mesh and noise free data ......................................................................25 

Figure 3.15 Shear modulus reconstruction from element-wise defined material with 
fine mesh and noise free data along the horizontal centerline ....................26 

Figure 3.16 Shear modulus reconstruction from element-wise defined material with 
fine mesh and noise free data along the vertical centerline ........................26 

  



 

vii 

 

Figure 3.17 Spatial error of the shear modulus reconstruction with a coarse mesh .......28 

Figure 3.18 Spatial error of the shear modulus reconstruction with a fine mesh ...........28 

Figure 3.19 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data ..................................................................30 

Figure 3.20 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data along the horizontal centerline ................30 

Figure 3.21 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data along the vertical centerline ....................31 

Figure 3.22 Spatial error of the shear modulus reconstruction with a coarse mesh  ......31 

Figure 3.23 Shear modulus reconstruction from continuously defined material with  
fine mesh and noise free data  .....................................................................32 

Figure 3.24 Shear modulus reconstruction from continuously defined material with  
fine mesh and noise free data along the horizontal centerline ....................33 

Figure 3.25 Shear modulus reconstruction from continuous displacement field with  
fine mesh and noise free data along the vertical centerline ........................33 

Figure 3.26 Spatial error of the shear modulus reconstruction with a fine mesh ...........34 

Figure 3.27 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 1% noise ..........................................................................35 

Figure 3.28 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 1% noise along the horizontal centerline ........................36 

Figure 3.29 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 1% noise along the vertical centerline .............................36 

Figure 3.30 Spatial error of the shear modulus reconstruction with a coarse mesh  
and 1% noise in the displacement field ......................................................37 

Figure 3.31 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 3% noise ..........................................................................38 

Figure 3.32 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 3% noise along the horizontal centerline ........................38 

  



 

viii 

 

Figure 3.33 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 3% noise along the vertical centerline .............................39 

Figure 3.34 Spatial error of the shear modulus reconstruction with a coarse mesh  
and 3% noise in the displacement field  .....................................................39 

Figure 3.35 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 1% noise ..............................................................................41 

Figure 3.36 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 1% noise along the horizontal centerline ............................41 

Figure 3.37 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 1% noise along the vertical centerline .................................42 

Figure 3.38 Relative spatial error with a fine mesh and 1% noise in the displacement 
field .............................................................................................................42 

Figure 3.39 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 3% noise ..............................................................................43 

Figure 3.40 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 3% noise along the horizontal centerline ............................44 

Figure 3.41 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 3% noise along the vertical centerline .................................44 

Figure 3.42 Relative spatial error in the shear modulus with a fine mesh and 3%  
noise in the displacement field....................................................................45 

Figure 3.43 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 1% noise ..........................................................................46 

Figure 3.44 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 1% noise along the horizontal centerline ........................47 

Figure 3.45 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 1% noise along the vertical centerline .............................47 

Figure 3.46 Relative spatial error in the shear modulus with a coarse mesh and 1% 
noise in the displacement field ...................................................................48 

Figure 3.47 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 3% noise ..........................................................................49 

  



 

ix 

 

Figure 3.48 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 3% noise along the horizontal centerline ........................49 

Figure 3.49 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 3% noise along the vertical centerline .............................50 

Figure 3.50 Relative spatial error in the shear modulus with a coarse mesh and 3% 
noise in the displacement field ...................................................................50 

Figure 3.51 Shear modulus reconstruction from continuously defined material with  
fine mesh and 1% noise ..............................................................................51 

Figure 3.52 Shear modulus reconstruction from continuously defined material with  
fine mesh and 1% noise along the horizontal centerline ............................52 

Figure 3.53 Shear modulus reconstruction from continuously defined material with  
fine mesh and 1% noise along the vertical centerline .................................52 

Figure 3.54 Relative spatial error in the shear modulus with a fine mesh and 1%  
noise in the displacement field ...................................................................53 

Figure 3.55 Shear modulus reconstruction from continuously defined material with  
fine mesh and 3% noise ..............................................................................54 

Figure 3.56 Shear modulus reconstruction from continuously defined material with  
fine mesh and 3% noise along the horizontal centerline ............................54 

Figure 3.57 Shear modulus reconstruction from continuously defined material with  
fine mesh and 3% noise along the vertical centerline .................................55 

Figure 3.58 Relative spatial error in the shear modulus with a fine mesh and 3%  
noise in the displacement field....................................................................55 

Figure 3.59 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and noise free data ..................................................................57 

Figure 3.60 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and noise free data along the radial direction .........................58 

Figure 3.61 Relative spatial error in the shear modulus plotted in radial direction .......58 

Figure 3.62 Shear modulus reconstruction from element-wise defined material with 
fine mesh and noise free data ......................................................................59 

  



 

x 

 

Figure 3.63 Shear modulus reconstruction from element-wise defined material with 
fine mesh and noise free data along the radial direction .............................60 

Figure 3.64 Relative spatial error in the shear modulus plotted in radial direction .......60 

Figure 3.65 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data ..................................................................62 

Figure 3.66 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data along the radial direction .........................62 

Figure 3.67 Relative spatial error in the shear modulus plotted in radial direction .......63 

Figure 3.68 Shear modulus reconstruction from continuously defined material with  
fine mesh and noise free data ......................................................................64 

Figure 3.69 Shear modulus reconstruction from continuously defined material with  
fine mesh and noise free data along the radial direction .............................64 

Figure 3.70 Relative spatial error in the shear modulus plotted in radial direction .......65 

Figure 3.71 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 1% noise ..........................................................................66 

Figure 3.72 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 1% noise along the radial direction .................................66 

Figure 3.73 Relative spatial error in the shear modulus with a coarse mesh and 1% 
noise in the displacement field....................................................................67 

Figure 3.74 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 3% noise ..........................................................................68 

Figure 3.75 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 3% noise along the radial direction .................................68 

Figure 3.76 Relative spatial error in the shear modulus with a coarse mesh and 3% 
noise in the displacement field....................................................................69 

Figure 3.77 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 1% noise ..............................................................................70 

Figure 3.78 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 1% noise along the radial direction .....................................70 

  



 

xi 

 

Figure 3.79 Relative spatial error in the shear modulus with a fine mesh and 1%  
noise in the displacement field....................................................................71 

Figure 3.80 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 3% noise ..............................................................................72 

Figure 3.81 Shear modulus reconstruction from element-wise defined material with 
fine mesh and 3% noise along the radial direction .....................................72 

Figure 3.82 Relative spatial error in the shear modulus with a fine mesh and 3% noise 
in the displacement field .............................................................................73 

Figure 3.83 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 1% noise ..........................................................................74 

Figure 3.84 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 1% noise along the radial direction .................................74 

Figure 3.85 Relative spatial error in the shear modulus with a coarse mesh and 1% 
noise in the displacement field....................................................................75 

Figure 3.86 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 3% noise ..........................................................................76 

Figure 3.87 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 3% noise along the radial direction .................................76 

Figure 3.88 Relative spatial error in the shear modulus with a coarse mesh and 3% 
noise in the displacement field....................................................................77 

Figure 3.89 Shear modulus reconstruction from continuously defined material with  
fine mesh and 1% noise ..............................................................................78 

Figure 3.90 Shear modulus reconstruction from continuously defined material with  
fine mesh and 1% noise along the radial direction .....................................78 

Figure 3.91 Relative spatial error in the shear modulus with a fine mesh and 1%  
noise in the displacement field....................................................................79 

Figure 3.92 Shear modulus reconstruction from continuously defined material with  
fine mesh and 3% noise ..............................................................................80 

Figure 3.93 Shear modulus reconstruction from continuously defined material with  
fine mesh and 3% noise along the radial direction .....................................80 

  



 

xii 

 

 

 

Figure 3.94 Relative spatial error in the shear modulus with a fine mesh and 3%  
noise in the displacement field ..................................................................81 

 

  



 

xiii 

 

LIST OF TABLES 

 

 Page 
 
Table 3.1 Material properties .........................................................................................17 

 



 

1 

 

1. INTRODUCTION  

 

The elastic properties of tissues can be mapped in-vivo and non-invasively using 

interior displacement fields measured with medical imaging modalities such as ultrasound 

or magnetic resonance imaging. This requires the solution of an inverse problem in 

elasticity, which is often referred to as elasticity imaging or elastography [1-5, 9-11, 17, 

20, 44, 45]. This has important applications in detecting tumors based on their stiffness 

contrast between the tumor and its surrounding tissue. One of the most useful applications 

of elasticity imaging may be in breast cancer diagnosis [6–8]. These elastic properties 

could be utilized to classify different tissue types and potentially distinguish between 

cancerous and benign tissues. Elastography initially started as strain imaging [36, 37] 

resulting in boundary sensitive elasticity images. In order to avoid these artifacts in strain 

imaging, the shear modulus reconstruction is obtained by solving the inverse problem 

from the physical equations of equilibrium for the actual elastic properties, such as the 

Young's modulus or shear modulus. Another method, known as direct inversion 

algorithms, solves the partial differential equations directly for the elastic property 

distribution [14, 24-27]. However, this method requires an accurate estimation of all 

components of the displacement field, which is usually not the case using displacement 

data from ultrasound techniques. 

The solution of the inverse problem has been extended to nonlinear and 

incompressible hyperelastic materials in [9, 10]. Mesh locking due to the incompressibility 

constraint has been addressed therein as well utilizing stabilized finite element methods. 
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In this thesis, all material models are linear, and due to the plane stress assumption, no 

mesh locking for the incompressibility assumption is expected. The main focus of this 

thesis is to assess the error in the shear modulus reconstruction due to the assumption of 

shear modulus continuity in the problem domain when solving the inverse problem. In [9-

11, 17] the elastic property distribution (e.g., shear modulus distribution) is interpolated 

with linear shape functions and the elastic properties are nodal unknowns in the finite 

element mesh. Thus, the number of elastic property unknowns is equivalent to the number 

of mesh nodes in the finite element model. This also implies that the elastic property 

distribution is continuous over the problem domain as opposed to discontinuous over finite 

elements which is common in most commercial finite element solvers. Thus, solving the 

inverse problem assuming a continuous elastic property distribution when the actual 

elastic property distribution is discontinuous, will lead to errors in the final 

reconstructions. In this thesis, this discretization error will be studied and its impact on the 

final reconstructed shear modulus distribution.  

The discretization error in the finite element forward problem has been studied by 

various researchers. For example, Kim and Paulino [11] analyzed functionally graded 

materials, whose element incorporates the material property gradient at the size scale of 

the element. They used the generalized isoparametric formulation, i.e., the same shape 

functions to interpolate the unknown displacements, the geometry, and the material 

parameters. This important isoparametric concept is also applied in [9]. They compared 

the performance of elements for functionally graded materials with that of conventional 

homogeneous elements. Their findings show that the continuously defined material 
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elements are superior to the conventional homogeneous elements. Horgan and Chan [12] 

investigated the effects of discontinuous versus continuous defined materials on the 

response of linearly elastic isotropic plane strain and plane stress cases. They considered 

an analog of the classic Lamé problem which showed that the response of the continuous 

case is significantly different from that of the discontinuous case.  

The inverse problem in this thesis is posed as a constrained minimization problem 

and solved iteratively using a limited BFGS method, which is a quasi-Newton method. An 

objective function is formulated to minimize the difference between the predicted and 

measured displacement fields. A regularization term based on the total variation 

diminishing is also included in the objective function. The predicted displacement satisfies 

the forward problem. The constitutive model for the forward problem is modeled in plane 

stress and the material is assumed to be incompressible in 3D. 

Again, since the shear modulus µ is a function of the coordinate, there are two 

main methods to interpolate it. One is to define the shear modulus element-wise [11, 12], 

this is that the shear modulus is constant on finite elements. 

Another way is to define the shear modulus continuously by defining their shear 

modulus values on the mesh nodes and interpolate them with finite element shape 

functions in the entire problem domain. In this thesis, the forward problem will be solved 

utilizing both discretization methods for the shear modulus distribution. Then the inverse 

problem is solved utilizing the hypothetical "measured" displacement data from both 

discretization methods. However, the inverse problem is solved assuming that the shear 

modulus is defined continuously in the problem domain. The error in the final 
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reconstructions will be compared for two problem domains representing 1) a small and 

stiff inclusion in a soft background domain representing a stiff tumor surrounded by soft 

tissue, and 2) a layered ring model representing an arterial wall. 
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2. METHODS  

 

For the present work, an in-house written inverse problem solver will be utilized 

which is written based on a finite element framework. In the inverse solver program, the 

difference between the measured displacement and the predicted displacement is 

minimized iteratively. Here, the predicted displacement satisfies the forward problem, i.e. 

the equations of equilibrium, which is computed for the current estimate of the shear 

modulus distribution. The forward problem is briefly discussed for a constitutive model 

given in Section 2.1. Then the inverse problem along with the objective function are 

introduced in Section 2.2. 

2.1 Forward Problem 

In the forward problem the displacement field is solved for a given target shear 

modulus distribution and boundary conditions. While the material response is modeled to 

be linear, geometric nonlinearity has been taken into account despite of the fact that small 

strains were used throughout this work. The reason for this is pure convenience as is 

elaborated on more thoroughly below. 

The inverse solver utilized in this work has a build-in forward problem solver 

based on finite element methods. The currently available subroutine supports a nonlinear 

material response with 2 elastic properties, the shear modulus and a nonlinear elastic 

property. This is due to the fact that most soft tissues have a nonlinear stress-strain 

response with gradual stiffening at large strains [39, 40]. Researchers often use an 

exponentially stiffening strain energy function to model this nonlinear mechanical 
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response in soft tissues [41, 42]. In [9], the authors replace the first principal invariant of 

the Cauchy Green tensor I1 in the Blatz model with J-2/3I1, leading to a stress formulation 

that has a clearly defined deviatoric and hydrostatic stress term. The strain energy function 

used therein is given by: 

2

3
1 3

1
2

J I

W e
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                                           (2.1) 

Here µ is the shear modulus, γ is a nonlinear parameter that describes the nonlinear 

material response, and I1 = trace(C) is the first principal invariant of the Cauchy Green 

tensor. It is a standard procedure to derive the stress-strain relationship from this strain 

energy density function as well as the finite element algorithms. The details on this are 

omitted here and details on this can be reviewed in [9]. 

The nonlinear stress-strain behavior in uniaxial tension for this strain energy 

density function is given by the equation: 

 
2 2
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 
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 
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where σ is the uniaxial Cauchy stress and λ is the stretch. As mentioned earlier, the present 

work focuses on linear materials, which can be represented by this strain energy density 

function by setting the nonlinear property to zero. This leads to the exponential to become 

1. It is noted that geometric nonlinearity is taken into account following this procedure. 

2.2 Inverse Elasticity Problem 

The shear modulus is reconstructed by solving an inverse problem for a known 

displacement field in the problem domain. The inverse problem is posed as a constrained 



 

7 

 

minimization problem and solved iteratively using the limited BFGS method, which is a 

quasi-Newton method. The predicted displacement satisfies the forward problem for the 

current estimate of the shear modulus. The inverse problem formulation is as follows: Say 

we have n measured (numerical) displacement fields 1 ,... , n
meas measu u , find the shear 

modulus µ such that the objective function 

 
0

2 2 2
00

1

1 1

2 2
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i i

i meas
i

w Tu Tu c d


   


                                (2.3) 

is minimized based on the predicted displacement fields that satisfy the equations of 

equilibrium and boundary conditions. 

The general equation for the objective function is shown in Eq. (2.3), where the 

first term is a measure of the difference between the measured (numerical) and predicted 

displacement fields in the L2 norm represented by 
2

0
 . Then a weighting factor wi is used 

to scale each term to make sure that all the displacements, small and large, have the same 

contribution to the objective function. The tensor T is a diagonal tensor that allows a 

different weight for each displacement component. The regularization term is shown as 

the second term in Eq. (2.3), where α is the regularization parameter. This has to be chosen 

appropriately depending on the noise level in the measured displacements. The 

regularization factor can be chosen based on the so called L-curve method, the Morozov's 

discrepancy principle, or on a smoothness criteria as utilized in this work. The smoothness 

criteria assumes that a small region is sufficiently smooth, while the overall shear modulus 

distribution is not overly smoothed, which could occur for a large choice of the 

regularization factor. More information about how to choose appropriate regularization 
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parameter can be referred to [43]. The total variation diminishing (TVD) regularization is 

used because it can smooth the overall solution of the inverse problem while the sharp 

inclusion boundaries are still preserved ([16]). In other words, gradients in the shear 

modulus are not penalized. The constant c is a small non-zero number that ensures that the 

regularization term is differentiable.  

Finally, it is important to note that the gradient of the objective function with 

respect to the nodal unknown shear modulus is required at every minimization call, and it 

is crucial to compute this efficiently utilizing the adjoint method. The adjoint method 

enables solving the gradient, thus the overall inverse problem, in a reasonable time. A flow 

chart is given below, listing the steps in solving the inverse problem with the adjoint 

method. Details on the gradient calculation are given in [9, 10, 11, 17] and will not be 

further discussed here. Figure 2.1 shows a flow chart of solving the inverse problem. 



 

9 

 

 

Figure 2.1 Flow chart of solving the inverse problem 
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3. RESULTS

3.1 Strain Analysis in Forward Problem 

In this section a strain error analysis will be performed to compare the strain from 

the forward problem in both element-wise and continuously defined materials for two 

models, Model 1 and Model 2 described below. This analysis will be done utilizing a 

coarse and a fine mesh with bilinear finite elements. 

3.1.1 Target Shear Modulus Distribution in Model 1 

The first is a model that can represent a stiff tumor in a homogeneous soft 

background with unit length. Uniform Dirichlet boundary conditions are prescribed on the 

top with a magnitude of 0.01. This yields an overall compressive strain of 1%. The radius 

of the inclusion is 0.2. The motion in y direction of the bottom edge is fixed and the center 

node of the bottom edge is fixed to avoid rigid body motion. The other boundary 

conditions are assumed to be traction free. The shear modulus ratio between the inclusion 

and the background is 10. The model is shown in Figure 3.1.  
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Figure 3.1 Model 1 

Figure 3.2 shows the target shear modulus distribution in both continuously and 

element-wise defined materials using a coarse mesh and a fine mesh. The coarse mesh has 

900 bilinear elements and the fine mesh has 3600 bilinear elements. The corresponding 

target shear modulus distribution along the horizontal centerline is shown in Figure 3.3.  

In Figure 3.3 (a), (b), the linear transition of the shear modulus occurs at the border 

between the inclusion and the background. This demonstrates that the material is 

continuously defined. While in Figure 3.3 (c) and (d), the discontinuous transition of the 

shear modulus occurs at the border of the inclusion and the background. This demonstrates 

that the material is element-wise defined. As the mesh is refined (cf. (a), (b)), the linear 

transition of the shear modulus is getting closer to the discontinuous case. 
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(a) Continuously defined material 
coarse mesh 

(b) Continuously defined material 
fine mesh 

(c) Element-wise defined material 
coarse mesh 

(d) Element-wise defined material 
fine mesh 

Figure 3.2 Target shear modulus distribution 
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(a) Continuously defined material 
in coarse mesh 

(b) Continuously defined material 
in fine mesh 

(c) Element-wise defined material 
coarse mesh 

(d) Element-wise defined material 
fine mesh 

Figure 3.3 Target shear modulus distribution along the 
horizontal centerline 

The effect of using these two different material discretization schemes is analyzed 

with respect to the strain. Figure 3.4 represents the calculated strain in continuously and 

element-wise defined materials using both coarse and fine mesh. In Figure 3.4, the 

inclusion is sort of visible in the strain images. But there are also other patterns in the 

strain image, which may cause misleading interpretations when screening for diseased 
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tissues in real medical applications. Thus, strain imaging has limited applicability to detect 

diseased tissues. 

(a) Continuously defined material in coarse mesh (b) Continuously defined material in fine mesh 

(c) Element-wise defined material in coarse mesh (d) Element-wise defined material in fine mesh 

Figure 3.4 Horizontal Strain Visualization 

Next, a total relative strain difference ∆�  is defined to compare the strain 

difference obtained from the continuously and element-wise defined shear modulus 

distribution. 
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where n
x ie is the horizontal strain at the ith node using continuously defined material, e

xie is 

the horizontal strain at the ith node using element-wise defined material. This total relative 

strain difference between the continuously and element-wise defined materials decreases 

from 7.63% to 4.72% when the mesh is refined. Further a relative spatial strain difference 

between the continuously and element-wise defined shear modulus is shown in Figure 3.5 

for a coarse and fine mesh. The spatial difference is defined as follows: 

 
n e
x i xi

e
xi

e e
spatial difference

e


 (3.2) 

From Figure 3.5, it is observed that the maximum spatial difference occurs at the 

border of inclusion and background. The maximum spatial difference decreases slightly 

with mesh refinement from 72% to 62%. This observation is highly important, as the strain 

will affect the stress in the same order. Thus, a stress analysis could be underestimated or 

overestimated by about 60%-70% if the shear modulus is not properly discretized. 
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(a) coarse mesh (b) fine mesh 

Figure 3.5 Spatial difference in horizontal strain between different materials 

3.1.2 Target Shear Modulus Distribution in Model 2 

The second model is a ring model that could represent an artery model which has 

an inner radius of 1 and the ratio between the thickness and the outer radius is 0.15. 

Dirichlet boundary conditions are prescribed on the inner radius with a magnitude of one 

percent of the thickness. The outer surface of the model is assumed to be traction free. The 

model is shown in Figure 3.6. The shear modulus values for model 2 are given in Table 

3.1. 
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Figure 3.6. Model 2 

 
 

 

Figure 3.7 shows the target shear modulus distribution in both continuously and 

element-wise defined materials using a coarse mesh and a fine mesh. The coarse mesh has 

720 bilinear elements and the fine mesh has 2880 bilinear elements.  The corresponding 

target shear modulus distribution as a function of the thickness of the model along the 

horizontal centerline is shown in Figure 3.8. In Figure 3.8 (a), (b), the linear transition of 

the shear modulus occurs at the border between layers. This demonstrates that the material 

is continuously defined. While in Figure 3.8 (c) and (d), the discontinuous transition of 

the shear modulus occurs at the border of the layers. This demonstrates that the material 

is element-wise defined. As the mesh is refined (cf. (a), (b)), the linear transition of the 

shear modulus is getting closer to the discontinuous case. 

 

Shear modulus Homogeneous Nonhomogeneous 
μ1 1 1 
μ2 1 5 
μ3 1 10 

 

Table 3.1 Material properties 
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(a) Continuously defined material 

coarse mesh 
(b) Continuously defined material 

fine mesh 

  
(c) Element-wise defined material 

coarse mesh 
(d) Element-wise defined material 

fine mesh 

 
Figure 3.7 Target shear modulus distribution 
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(a) Continuously defined material 

in coarse mesh 
(b) Continuously defined material 

in fine mesh 

  
(c) Element-wise defined material 

coarse mesh 
(d) Element-wise defined material 

fine mesh 
  

Figure 3.8 Target shear modulus distribution as a function 
of thickness  

 

 

The effect of using these two shear modulus discretization schemes is also 

compared for the radial strain. Figure 3.9 represents the calculated strain in continuously 

and element-wise defined materials using both coarse and fine mesh. It is observed that 

the difference between the radial strain with continuously and element-wise defined 
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materials decreases when the mesh is refined by a factor of 2 along both the radial and 

circumferential direction. 

(a) radial strain in coarse mesh (b) radial strain in fine mesh 

Figure 3.9 Radial strain with continuously and element-wise defined material 

A total relative difference ∆� is defined to compare the strain using continuously 

and element-wise defined materials. 
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where n
x ie is the raidal strain at the ith node using continuously defined material, e

xie is the 

radial strain at the ith node using element-wise defined material. This total relative 

difference between the continuously and element-wise defined materials decreases from 

11.97% to 8.83% when the mesh is refined. Further spatial difference is shown in Figure 

3.10. The spatial difference is defined as follows: 



21 

 
n e
x i xi

e
xi

e e
spatial difference

e


 (3.4) 

From Figure 3.10, it is observed that the maximum spatial difference occurs at the 

interface between the inclusion and background. The maximum spatial difference even 

increases slightly with mesh refinement from 32% to 35%. Again it is noted that these 

large strain differences will be inherited in the stresses. Thus, the stress computation could 

be off significantly if the shear modulus discretization does not represent the actual shear 

modulus discretization.  

(a) coarse mesh (b) fine mesh 

Figure 3.10 Spatial difference in radial strain between different materials 

3.2 Strain Analysis in Forward Problem 

The TVD regularization in the objective function contains a gradient operator 

acting on the shear modulus. This implies that for convenience of implementing the 

inverse algorithms, it is simpler to assume that the shear modulus distribution is 
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continuous in the entire problem domain. However, if the actual shear modulus 

distribution is in fact discontinuous in the problem domain, a certain error will be 

committed. In this section, this reconstruction error will be studied for the hypothetical 

displacement fields obtained in section 3.1. 

3.2.1 Shear Modulus Reconstruction in Model 1  

3.2.1.1 Element-wise Defined Material with Noise Free Data 

There is one inclusion in a homogeneous background for the shear modulus. The 

inclusion has the shear modulus value of 10 and the shear modulus in the background is 

unity. The measured displacement field is created by solving the forward problem as 

described in section 3.1. The same boundary conditions as described in section 3.1 for the 

forward problem are used to solve the inverse problem in this section. Both coarse and 

fine mesh are considered. 

 The reconstruction of the shear modulus using the inclusion model is given in 

Figure 3.11and 3.14 using coarse and fine mesh, respectively. The shear modulus will 

increase as the regularization parameter, α decreases. In Figure 3.11 (c) the reconstructed 

shear modulus ratio of inclusion to background approaches the exact value, 10, when the 

regularization parameter, α=2e-11. Figure 3.12 and 3.13 show the shear modulus value 

plotted along the horizontal and vertical lines through the center of the inclusions. In 

Figure 3.17 the relative error in shear modulus is visualized spatially. One can observe 

that the shear modulus is well recovered. The comparison between the exact and 

reconstructed value of the shear modulus along both the horizontal and vertical centerline 

in Figure 3.17 show that the reconstructed value is almost good except at the borders of 
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the different material domains. The reason for this is that the gradient of the objective 

function will change continuously. 

 

 
(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

 
(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

 
Figure 3.11 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and noise free data 
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(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

   
(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

 
Figure 3.12 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and noise free data along the horizontal centerline 
 
 
 

(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

 
Figure 3.13 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and noise free data along the vertical centerline 



 

25 

 

For the shear modulus reconstructions utilizing a fine mesh, Figure 3.14 shows the 

reconstruction of the shear modulus using the displacement field obtained from the 

element-wise defined shear modulus discretization with a fine mesh. In Figure 3.14 (d) 

the reconstructed shear modulus ratio of inclusion to background approaches the exact 

value, 10, when the regularization parameter, α=1e-11. Figure 3.15 and 3.16 show the 

shear modulus value plotted along the horizontal and vertical lines through the center of 

the inclusions. In Figure 3.18 the relative error in shear modulus is visualized spatially. 

One can observe that the shear modulus is well recovered. One can also observe that the 

shear modulus is reproduced very well with clear inclusion boundaries, even though its 

boundaries are very close to the domain boundaries. 

 

(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

 
Figure 3.14 shear modulus reconstruction from element-wise defined material with fine 

mesh and noise free data 
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(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

 
Figure 3.15 Shear modulus reconstruction from element-wise defined material with fine 

mesh and noise free data along the horizontal centerline 
 
 

 

   
(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

   
(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

 
Figure 3.16 Shear modulus reconstruction from element-wise defined material with fine 

mesh and noise free data along the vertical centerline 
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The total relative error in the shear modulus reconstruction is defined here by 
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Also the relative spatial error in the shear modulus reconstruction is defined here by 
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In Figure 3.17 and 3.18, the relative spatial error in the shear modulus reconstruction is 

visualized for the coarse and fine mesh, respectively. One can observe that the largest error 

occurs at the interface between inclusion and background, which can be expected from the 

previous section. One can also observe that the relative spatial error for the coarse mesh 

is significantly higher than for the fine mesh. Thus, mesh refinement helps to reduce the 

relative spatial error as well as the relative total error in the shear modulus reconstruction. 
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(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

Relative error = 25.96% Relative error = 24.69% Relative error = 24.72% 

   
(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

Relative error = 25.06% Relative error = 25.99% Relative error = 26.81% 

Figure 3.17 Spatial error of the shear modulus reconstruction with a coarse mesh 
 

 
 

   
(a) α=1e-10 (b) α=3e-11 (c) α=2e-11 

Relative error = 22.21% Relative error = 15.58% Relative error = 15.05% 

   
(d) α=1e-11 (e) α=4e-12 (f) α=3e-12 

Relative error = 14.83% Relative error = 14.79% Relative error = 14.75% 

Figure 3.18 Spatial error in the shear modulus reconstruction with a fine mesh 
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3.2.1.2 Continuously Defined Material with Noise Free Data 

In the following, the inverse problem is solved utilizing the displacement data 

obtained from the continuously defined shear modulus distribution in the forward 

problem. No noise is added to the displacement data yet. For the coarse mesh in Figure 

3.19 (d), the reconstructed shear modulus ratio of inclusion to background approaches the 

exact value, 10, when choosing the regularization parameter, α=1e-12. One can observe 

that the value of the shear modulus will stop increasing when the value approaches the 

exact value, 10. This is one difference from the reconstruction using the element-wise 

defined material. Figure 3.20 and 3.21 show the shear modulus value plotted along the 

horizontal and vertical centerline. In Figure 3.22 the relative error in shear modulus is 

visualized spatially. One can observe that the shear modulus is well recovered.  
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(a) α=5e-11 (b) α=1e-11 (c) α=5e-12 

   
(d) α=1e-12 (e) α=5e-13 (f) α=1e-13 

Figure 3.19 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data 

 
 

 

   
(a) α=5e-11 (b) α=1e-11 (c) α=5e-12 

   
(d) α=1e-12 (e) α=5e-13 (f) α=1e-13 

Figure 3.20 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data along the horizontal centerline 
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(a) α=5e-11 (b) α=1e-11 (c) α=5e-12 

   
(d) α=1e-12 (e) α=5e-13 (f) α=1e-13 

Figure 3.21 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data along the vertical centerline 

 
 
 

   
α=5e-11 α=1e-11 α=5e-12 

Relative error = 13.58% Relative error = 7.38% Relative error = 5.88% 

   
α=1e-12 α=5e-13 α=1e-13 

Relative error = 2.54% Relative error = 1.51% Relative error = 0.37% 

Figure 3.22  Spatial error in the shear modulus reconstruction with a coarse mesh  
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Figure 3.23 shows the reconstruction of the shear modulus using the displacement data 

from the continuously defined material with a fine mesh. One can observe that the value 

of the recovered shear modulus stops increasing when the value approaches the exact 

value, 10. Figure 3.24 and 3.25 show the shear modulus value plotted along the horizontal 

and vertical centerlines. In Figure 3.26 the relative error in the shear modulus is visualized 

spatially. Here, the relative error increases as the mesh is refined. It can be observed that 

the shear modulus is well recovered, i.e. the shear modulus is reproduced very well with 

clear inclusion boundaries. The total relative error and the maximum spatial error decrease 

when the mesh is refined (cf. Figure 3.22, 3.26). 

 

   
(a) α=5e-11 (b) α=1e-11 (c) α=5e-12 

   
(d) α=1e-12 (e) α=5e-13 (f) α=1e-13 

 
Figure 3.23 Shear modulus reconstruction from continuously defined material with fine 

mesh and noise free data 
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(a) α=5e-11 (b) α=1e-11 (c) α=5e-12 

   
(d) α=1e-12 (e) α=5e-13 (f) α=1e-13 

Figure 3.24 Shear modulus reconstruction from continuously defined material with fine 
mesh and noise free data along the horizontal centerline 

 
 
 

   
(a) α=5e-11 (b) α=1e-11 (c) α=5e-12 

   
(d) α=1e-12 (e) α=5e-13 (f) α=1e-13 

 
Figure 3.25 Shear modulus reconstruction from continuously defined material with fine 

mesh and noise free data along the vertical centerline 
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α=5e-11 α=1e-11 α=5e-12 

Relative error = 15.92% Relative error = 9.51% Relative error = 7.87% 

   
α=1e-12 α=5e-13 α=1e-13 

Relative error = 4.68% Relative error = 3.63% Relative error = 1.57% 

Figure 3.26 Spatial error in the shear modulus reconstruction with a fine mesh  
 

 

3.2.1.3 Element-wise Defined Material with Noised Data 

Thereafter noise is added to the displacement field to simulate the hypothetical 

‘measured’ displacement and use these in the inverse solver to reconstruct the spatial 

distribution of the material properties. These reconstructions are compared with the 

original distributions in order to assess the performance of this approach. About 1% and 

3% white Gaussian noise are added to the displacement data to simulate noisy 

experimental data. For 1% noise the shear modulus reconstruction is plotted in Figure 3.27 

for different regularization factors. The regularization parameter α=1e-10, appears to yield 

an optimal shear modulus reconstruction in terms of the smoothness and contrast of 

inclusion to background as well as the shape of the inclusion.  It can be observed that the 
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shear modulus reconstructions are in good agreement with the exact distributions. In order 

to visualize the change of the shear modulus at the interface of inclusion and background, 

Figure 3.28 and 3.29 are provided, where the reconstructed shear modulus is plotted along 

both, the horizontal and vertical centerlines. The relative spatial error is plotted in the 

Figure 3.30. One can observe that the maximum relative spatial error occurs at the border 

of the inclusion and the background.  

 

   
(a) α=2e-10 (b) α=1e-10 (c) α=9e-11 

   
(d) α=8e-11 (e) α=7e-11 (f) α=6e-11 

 
Figure 3.27 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and 1% noise 
 
 
 
 
 



 

36 

 

   
(a) α=2e-10 (b) α=1e-10 (c) α=9e-11 

   
(d) α=8e-11 (e) α=7e-11 (f) α=6e-11 

 
Figure 3.28 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and 1% noise along the horizontal centerline 
 
 
 

   
(a) α=2e-10 (b) α=1e-10 (c) α=9e-11 

   
(d) α=8e-11 (e) α=7e-11 (f) α=6e-11 

 
Figure 3.29 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and 1% noise along the vertical centerline 
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(a) α=2e-10 (b) α=1e-10 (c) α=9e-11 

Relative error = 28.62% Relative error = 24.54% Relative error = 24.21% 

   
(d) α=8e-11 (e) α=7e-11 (f) α=6e-11 

Relative error = 23.93% Relative error = 23.72% Relative error = 23.63% 

Figure 3.30 Spatial error of the shear modulus with a coarse mesh and 1% noise in the 
displacement field 

 
 
 
In the following, the shear modulus will be reconstructed for the displacement data with 

3% white Gaussian noise. In Figure 3.31 it can be observed that reconstructions are not in 

good agreement with the exact distributions. The shape of the inclusion is not well 

recovered and the background is not homogeneous. In order to visualize the change of the 

shear modulus in the border of the inclusion and the background, Figure 3.32 and 3.33 

show the reconstruction of the recovered shear modulus in both the horizontal and vertical 

direction along the centerline. The relative spatial error is plotted in Figure 3.34. The total 

relative error as well as the relative spatial error increases with increasing noise level (cf. 

Figure 3.30, 3.34).  
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(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3.8e-10 (e) α=3.6e-10 (f) α=3.4e-10 

 
Figure 3.31 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and 3% noise 
 
 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3.8e-10 (e) α=3.6e-10 (f) α=3.4e-10 

 
Figure 3.32 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and 3% noise along the horizontal centerline 
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(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3.8e-10 (e) α=3.6e-10 (f) α=3.4e-10 

Figure 3.33 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and 3% noise along the vertical centerline 

 
 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

Relative error = 44.62% Relative error = 39.61% Relative error = 40.75% 

   
(d) α=3.8e-10 (e) α=3.6e-10 (f) α=3.4e-10 

Relative error = 41.30% Relative error = 42.00% Relative error = 42.85% 

Figure 3.34 Relative spatial error with a coarse mesh and 3% noise in the displacement 
field 
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Next, the same will be analyzed for the fine mesh model. Figure 3.35 shows the 

reconstruction of the shear modulus using "measured" displacement data with 1% white 

Gaussian noise level, where the actual target shear modulus distribution is discontinuous 

between the inclusion and background interface. One can observe that the shear modulus 

reconstruction is much better than the reconstruction with the coarse mesh. Figure 3.36 

and 3.37 show the shear modulus value plotted along the horizontal and vertical 

centerlines. In Figure 3.38 the relative error in the shear modulus is visualized spatially. 

Here, the relative error does not change much as the mesh is refined, because the 

reconstruction is well recovered and the convergence is reached. One can also observe 

that the shear modulus is reproduced very well with clear inclusion boundaries, even 

though its boundaries are very close to the domain boundaries. Still, the maximum error 

occurs at the border of the inclusion and the background (see Figure 3.38). 
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(a) α=4e-11 (b) α=3.8e-11 (c) α=3.6e-11 

   
(d) α=3.4e-11 (e) α=3.2e-11 (f) α=3e-11 

Figure 3.35 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 1% noise 

 
 
 

   
(a) α=4e-11 (b) α=3.8e-11 (c) α=3.6e-11 

   
(d) α=3.4e-11 (e) α=3.2e-11 (f) α=3e-11 

Figure 3.36 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 1% noise along the horizontal centerline 
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(a) α=4e-11 (b) α=3.8e-11 (c) α=3.6e-11 

(d) α=3.4e-11 (e) α=3.2e-11 (f) α=3e-11 

Figure 3.37 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 1% noise along the vertical centerline 

 
 
 

   
(a) α=4e-11 (b) α=3.8e-11 (c) α=3.6e-11 

Relative error = 16.10% Relative error = 15.94% Relative error = 15.80% 

   
(d) α=3.4e-11 (e) α=3.2e-11 (f) α=3e-11 

Relative error = 15.68% Relative error = 15.57% Relative error = 15.73% 

Figure 3.38 Relative spatial error with a fine mesh and 1% noise in the displacement field 
 



 

43 

 

For 3% noise in the displacement field the shear modulus is plotted in Figure 3.39 for 

different regularization factors. The regularization parameter α=3e-10 appears to yield a 

proper shear modulus reconstruction based on the smoothness criteria. It can be observed 

that reconstructions are not in good agreement with the exact distributions. The border of 

inclusion and background is not well recovered. In order to illustrate the change of the 

shear modulus in the border of the inclusion and the background, Figure 3.40 and 3.41 

show the reconstruction of the shear modulus in both the horizontal and vertical direction 

along the centerline. The relative spatial error is plotted in Figure 3.42 for different choices 

of the regularization factor. 

 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Figure 3.39 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 3% noise 
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(a) α=1e-10 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Figure 3.40 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 3% noise along the horizontal centerline 

 
 
 

   
(a) α=1e-10 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Figure 3.41 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 3% noise along the vertical centerline 
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(a) α=1e-10 (b) α=5e-10 (c) α=4e-10 

Relative error = 45.45% Relative error = 37.17% Relative error = 34.47% 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Relative error = 30.99% Relative error = 20.20% Relative error = 20.20% 

Figure 3.42 Relative spatial error with a fine mesh and 3% noise in the displacement field 
 
 
 
3.2.1.4 Continuously Defined Material with Noised Data 

In this section, the shear modulus will be reconstructed for the displacement data 

obtained by solving the forward problem with the continuously defined shear modulus 

distribution. Furthermore, 1% and 3% noise are added to the displacement field. The 

displacement field with 1% noise is utilized to reconstruct the shear modulus distribution 

given in Figure 3.43 for various regularization factors. The regularization parameter 

1 10e    is chosen, resulting in a smooth shear modulus reconstruction. It can be 

observed that the reconstructions are in good agreement with the exact distributions. In 

order to better visualize the shear modulus transition between inclusion and background, 

the shear modulus values are plotted along the horizontal and vertical line passing through 

the center of the inclusion (see Figures 3.44 and 3.45, respectively). The relative error is 
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plotted in Figure 3.46. It can be observed that the maximum relative error occurs at the 

border of the inclusion and the background. 

 

   
(a) α=5e-10 (b) α=4e-10 (c) α=3e-11 

   
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

 
Figure 3.43 Shear modulus reconstruction from continuously defined material with 

coarse mesh and 1% noise 
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(a) α=5e-10 (b) α=4e-10 (c) α=3e-11 

   
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

 
Figure 3.44 Shear modulus reconstruction from continuously defined material with 

coarse mesh and 1% noise along the horizontal centerline 
 
 
 

   
(a) α=5e-10 (b) α=4e-10 (c) α=3e-11 

   
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

 
Figure 3.45 Shear modulus reconstruction from continuously defined material with 

coarse mesh and 1% noise along the vertical centerline 
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(a) α=5e-10 (b) α=4e-10 (c) α=3e-11 

Relative error = 36.82% Relative error = 34.02% Relative error = 30.46% 

   
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

Relative error = 25.73% Relative error = 19.51% Relative error = 15.76% 

Figure 3.46 Relative spatial error with a coarse mesh and 1% noise in the displacement 
field 

 
 
 
The displacement field with 3% noise is utilized to reconstruct the shear modulus 

distribution. Figure 3.47 represents the shear modulus reconstructions for various 

regularization factors. The regularization parameter α=3.4e-10 appears to yield the best 

recovered shear modulus. It can be observed that the inclusion is visible, but due to the 

high noise level in the displacement field, the shear modulus value loses significantly on 

contrast. The shear modulus values along the horizontal and vertical line through the 

center of the inclusion are given in Figures 3.48 and 3.49 to visualize the transition at the 

interface of inclusion and background. Further, relative spatial error in the shear modulus 

is plotted in Figure 3.50. 
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(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

 
Figure 3.47 Shear modulus reconstruction from continuously defined material with 

coarse mesh and 3% noise 
 
 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

 
Figure 3.48 Shear modulus reconstruction from continuously defined material with 

coarse mesh and 3% noise along the horizontal centerline 
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(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Figure 3.49 Shear modulus reconstruction from continuously defined material with 
coarse mesh and 3% noise along the vertical centerline 

 
 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

Relative error = 44.48% Relative error = 35.22% Relative error = 32.03% 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Relative error = 28.20% Relative error = 23.53% Relative error = 22.00% 

Figure 3.50 Relative spatial error in the shear modulus with a coarse mesh and 3% noise 
in the displacement field 
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In Figure 3.51 the reconstruction of the shear modulus is shown using a fine mesh. 

One can observe that the shear modulus reconstruction is much better than the 

reconstruction with the coarse mesh. Figure 3.52 and 3.53 show the shear modulus value 

plotted along the horizontal and vertical centerlines. In Figure 3.54 the relative error in the 

shear modulus is visualized spatially. Here, the relative spatial error in the shear modulus 

does not change much as the mesh is refined. One can observe that the shear modulus is 

very well reproduced with clear inclusion boundaries, even though its boundaries are very 

close to the domain boundaries. Again, the maximum error occurs at the border of the 

inclusion and the background (see Figure 3.54). 

 

   
(a) α=5e-10 (b) α=4e-10 (c) α=3e-10 

   
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

 
Figure 3.51 Shear modulus reconstruction from continuously defined material with fine 

mesh and 1% noise 
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(a) α=5e-10 (b) α=4e-10 (c) α=3e-10 

   
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

 
Figure 3.52 Shear modulus reconstruction from continuously defined material with fine 

mesh and 1% noise along the horizontal centerline 
 
 
 

(a) α=5e-10 (b) α=4e-10 (c) α=3e-10 

(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

 
Figure 3.53 Shear modulus reconstruction from continuously defined material with fine 

mesh and 1% noise along the vertical centerline 
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(a) α=5e-10 (b) α=4e-10 (c) α=3e-10 

Relative error = 38.18% Relative error = 35.66% Relative error = 32.42% 

  
(d) α=2e-10 (e) α=1e-10 (f) α=5e-11 

Relative error = 27.92% Relative error = 21.05% Relative error = 15.72% 

 
Figure 3.54 Relative spatial error in the shear modulus with a fine mesh and 1% noise in 

the displacement field 
 
 
 

For the displacement field with 3% noise the shear modulus reconstruction is given in 

Figure 3.55 for different values of the regularization factor. The regularization parameter 

α=3e-10 appears to yield the best shear modulus reconstruction. It can be observed that 

the shear modulus reconstruction improves as compared to the reconstruction utilizing the 

coarse mesh. This is partially due to the fact that the inclusion can be better resolved with 

a finer mesh. However, it also appears that the background is much smoother and "more 

homogeneous". In order to visualize the change of the shear modulus at the border of 

inclusion and background, Figure 3.56 and 3.57 are provided for both, the horizontal and 

vertical centerline. The relative spatial error in the shear modulus is plotted in Figure 3.58. 
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(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

 
Figure 3.55 Shear modulus reconstruction from continuously defined material with fine 

mesh and 3% noise 
 
 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

 
Figure 3.56 Shear modulus reconstruction from continuously defined material with fine 

mesh and 3% noise along the horizontal centerline 
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(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Figure 3.57 Shear modulus reconstruction from continuously defined material with fine 
mesh and 3% noise along the vertical centerline 

 
 
 

   
(a) α=1e-9 (b) α=5e-10 (c) α=4e-10 

Relative error = 44.85% Relative error = 36.39% Relative error = 33.67% 

   
(d) α=3e-10 (e) α=2e-10 (f) α=1e-10 

Relative error = 30.22% Relative error = 25.47% Relative error = 18.64% 

Figure 3.58 Relative spatial error in the shear modulus reconstruction with a fine mesh 
and 3% noise in the displacement data 
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3.2.2 Shear Modulus Reconstruction in Model 2  

3.2.2.1 Element-wise Defined Material with Noise Free Data 

In this section, the layered ring model introduced earlier as Model 2, is analyzed. 

The three layers have a shear modulus ratio of 1, 5, and 10 from the inner to the outer 

layer. It is noted that while a layered ring model could represent an artery's layers (e.g. 

adventitia, media, and intima), the shear modulus values selected herein do not represent 

any of those actual values present in arteries. However, this study reveals that it is possible 

to determine the elastic properties knowing the displacement field. The measured field is 

created by solving the forward problem (see section 3.1). Quadrilateral elements are used 

to solve the forward problem. The loading scenario is considered as follows: the ring 

specimen is expanded by prescribing a uniform displacement in radial direction while 

keeping the outer surface traction free. In Figure 3.59, the reconstructed shear modulus is 

plotted for different choices of the regularization parameter, α. The shear modulus ratio of 

the outer layer to the inner layer and the shear modulus ratio of the middle layer to the 

inner layer are very close to the exact value of 10 and 5, respectively. Figure 3.60 shows 

the shear modulus value plotted along the radial direction. This can be done because the 

ring model is axisymmetric, so all the elastic parameters should be the same in the radial 

direction no matter what direction is chosen. In Figure 3.61, the relative spatial error in 

the shear modulus between the recovered value and the exact value is visualized spatially 

with different regularization parameters. One can observe that the shear modulus is well 

recovered. The comparison between the exact and reconstructed value of the shear 
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modulus along the radial direction in Figure 3.61 shows that the reconstructed shear 

modulus value is of good quality except at the borders of the layers.  

 

   
(a) α=3e-15 (b) α=2.5e-15 (c) α=2e-15 

   
(d) α=1.75e-15 (e) α=1.5e-15 (f) α=1e-15 

 
Figure 3.59 Shear modulus reconstruction from element-wise defined material with 

coarse mesh and noise free data 
 
 
 
 
 
 
 
 
 
 
 
 



 

58 

 

   
(a) α=3e-15 (b) α=2.5e-15 (c) α=2e-15 

   
(d) α=1.75e-15 (e) α=1.5e-15 (f) α=1e-15 

Figure 3.60 Shear modulus reconstruction from element-wise defined material with 
coarse mesh and noise free data along the radial direction 

 
 
 

(a) α=3e-15 (b) α=2.5e-15 (c) α=2e-15 
Relative error = 16.87% Relative error = 20.00% Relative error = 24.35% 

(d) α=1.75e-15 (e) α=1.5e-15 (f) α=1e-15 
Relative error = 24.66% Relative error = 24.65% Relative error = 24.65% 

Figure 3.61 Relative spatial error in the shear modulus plotted in radial direction 
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For the fine mesh, Figure 3.62 represents the reconstruction of the shear modulus for 

different regularization factors and noise free displacement data. In Figure 3.62 (b), the 

reconstructed shear modulus ratio of outer layer to inner layer approaches the exact value, 

10, when the regularization parameter, α=2.5e-15 is chosen. Figure 3.63 shows the shear 

modulus value plotted along the radial direction. In Figure 3.64, the relative error in the 

shear modulus is visualized spatially. One can observe that the shear modulus is well 

recovered, in other words the target shear modulus distribution is reproduced very well 

with clear boundary layers. 

 

   
(a) α=3e-15 (b) α=2.5e-15 (c) α=2e-15 

   
(d) α=1.75e-15 (e) α=1.5e-15 (f) α=1e-15 

 
Figure 3.62 Shear modulus reconstruction from element-wise defined material with fine 

mesh and noise free data 
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(a) α=3e-15 (b) α=2.5e-15 (c) α=2e-15 

   
(d) α=1.75e-15 (e) α=1.5e-15 (f) α=1e-15 

 
Figure 3.63 Shear modulus reconstruction from element-wise defined material with fine 

mesh and noise free data along the radial direction 
 
 
 

   
(a) α=3e-15 (b) α=2.5e-15 (c) α=2e-15 

Relative error = 17.27% Relative error = 17.26% Relative error = 17.23% 

   
(d) α=1.75e-15 (e) α=1.5e-15 (f) α=1e-15 

Relative error = 12.57% Relative error = 11.75% Relative error = 11.16% 

Figure 3.64 Relative spatial error in the shear modulus plotted in radial direction 
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3.2.2.2 Continuously Defined Material with Noise Free Data 

The shear modulus reconstruction is now assessed utilizing the displacement data, 

obtained from the continuously defined shear modulus distribution. In Figure 3.65 (e) the 

reconstructed shear modulus ratio of outer layer to inner layer approaches the exact value, 

10, when the regularization parameter, α=1e-16 is chosen. One can observe that the value 

of the shear modulus will stop increasing when the value approaches the exact value, 10. 

This is one difference from the reconstruction using the element-wise defined material in 

the previous section. Figure 3.66 shows the shear modulus value plotted along the radial 

direction. In Figure 3.67, the relative error in the shear modulus is visualized spatially. 

One can observe that the shear modulus is well recovered. The comparison between the 

exact and reconstructed value of the shear modulus along radial direction in Figure 3.66 

shows that the shear modulus is also well recovered at the borders of the layers.  
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(a) α=1e-13 (b) α=5e-15 (c) α=2.5e-15 

   
(d) α=1e-15 (e) α=1e-16 (f) α=1e-17 

Figure 3.65 Shear modulus reconstruction from continuously defined material with 
coarse mesh and noise free data 

 
 
 

   
(a) α=1e-13 (b) α=5e-15 (c) α=2.5e-15 

   
(d) α=1e-15 (e) α=1e-16 (f) α=1e-17 

 
Figure 3.66 Shear modulus reconstruction from continuously defined material with 

coarse mesh and noise free data along the radial direction 
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(a) α=1e-13 (b) α=5e-15 (c) α=2.5e-15 

Relative error = 18.65% Relative error = 18.67% Relative error = 1.44% 

   
(d) α=1e-15 (e) α=1e-16 (f) α=1e-17 

Relative error = 1.44% Relative error = 0.11% Relative error = 0.04% 

 
Figure 3.67 Relative spatial error in the shear modulus plotted in radial direction 

 
 
 

Figure 3.68 shows the reconstruction of the shear modulus using the fine mesh for 

different regularization factors. In Figure 3.68 (c) the reconstructed shear modulus ratio 

of outer layer to inner layer approaches the exact value, 10, when the regularization 

parameter, α=2e-15 is chosen. Figure 3.69 shows the shear modulus value plotted along 

the horizontal and vertical lines through the center of the inclusions. In Figure 3.70 the 

relative error in the shear modulus is visualized spatially. One can observe that the shear 

modulus is well recovered. In particular, one can also observe that the shear modulus is 

reproduced very well with clear layer boundaries. 
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(a) α=1e-14 (b) α=5e-15 (c) α=2.5e-15 

   
(d) α=1e-15 (e) α=1e-16 (f) α=1e-17 

Figure 3.68 Shear modulus reconstruction from continuously defined material with a fine 
mesh and noise free data 

 

 

   
(a) α=1e-14 (b) α=5e-15 (c) α=2.5e-15 

   
(d) α=1e-15 (e) α=1e-16 (f) α=1e-17 

Figure 3.69 Shear modulus reconstruction from continuously defined material with a fine 
mesh and noise free data along the radial direction 
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(a) α=1e-14 (b) α=5e-15 (c) α=2.5e-15 

Relative error = 18.61% Relative error = 13.59% Relative error = 13.60% 

   
(d) α=1e-15 (e) α=1e-16 (f) α=1e-17 

Relative error = 2.18% Relative error = 0.17% Relative error = 0.03% 

Figure 3.70 Relative spatial error in the shear modulus plotted in radial direction  
 

 

3.2.2.3 Element-wise Defined Material with Noised Data 

For 1% noise the shear modulus is plotted in Figures 3.71. It can be observed that 

the reconstructions are in good agreement with the exact distributions. To visualize the 

shear modulus at the interface of the layers, Figure 3.72 and 3.73 are provided. Therein, 

the shear modulus values are plotted for both, the horizontal and vertical centerlines. The 

relative spatial error in the shear modulus is plotted in Figure 3.74. One can observe that 

the maximum relative error occurs at the border of the layers. 
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(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

 
Figure 3.71 Shear modulus reconstruction from element-wise defined material with a 

coarse mesh and 1% noise 
 
 
 

   
(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

 
Figure 3.72 Shear modulus reconstruction from element-wise defined material with a 

coarse mesh and 1% noise along the radial direction 
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(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

Relative error = 37.78% Relative error = 37.09% Relative error = 36.51% 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

Relative error = 35.37% Relative error = 34.42% Relative error = 33.53% 

 
Figure 3.73 Relative spatial error in the shear modulus with a coarse mesh and 1% noise 

in the displacement field 
 
 
 
For the displacement field with 3% noise the shear modulus reconstruction is plotted in 

Figure 3.74. It can be observed that reconstructions are not in good agreement with the 

exact distributions. The border of each layer is not well recovered. In order to illustrate 

the change of the shear modulus in the border of each layer, Figure 3.75 shows the 

reconstruction of the shear modulus from the element-wise defined material in radial 

direction. The relative spatial error in the shear modulus is plotted in the Figure 3.76. 
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(a) α=2e-11 (b) α=1e-11 (c) α=9e-12 

   
(d) α=8e-12 (e) α=7e-12 (f) α=6e-12 

 
Figure 3.74 Shear modulus reconstruction from element-wise defined material with a 

coarse mesh and 3% noise 
 
 
 

   
(a) α=2e-11 (b) α=1e-11 (c) α=9e-12 

   
(d) α=8e-12 (e) α=7e-12 (f) α=6e-12 

 
Figure 3.75 Shear modulus reconstruction from element-wise defined material with a 

coarse mesh and 3% noise along the radial direction 
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(a) α=2e-11 (b) α=1e-11 (c) α=9e-12 

Relative error = 58.21% Relative error = 38.63% Relative error = 37.76% 

   
(d) α=8e-12 (e) α=7e-12 (f) α=6e-12 

Relative error = 36.62% Relative error = 36.26% Relative error = 35.80% 

 
Figure 3.76 Relative spatial error in the shear modulus with a coarse mesh and 3% noise 

in the displacement field 
 
 
 

In Figure 3.77 the reconstruction of the shear modulus is presented for the fine 

mesh. One can observe that the shear modulus reconstruction with the fine mesh is much 

better than the reconstruction with the coarse mesh. Figure 3.78 shows the shear modulus 

value plotted along the radial direction. In Figure 3.79 the relative spatial error in the shear 

modulus is visualized spatially. Here, the relative error does not change much as the mesh 

is refined, because the reconstruction is already well recovered and the convergence is 

reached. One can also observe that the shear modulus is reproduced very well with clear 

layer boundaries. Again, the maximum error occurs at the border of the layers (see Figure 

3.79). 
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(a) α=1e-11 (b) α=1e-12 (c) α=9e-13 

   
(d) α=8e-13 (e) α=7e-13 (f) α=6e-13 

Figure 3.77 Shear modulus reconstruction from element-wise defined material with a fine 
mesh and 1% noise 

 
 
 

   
(a) α=1e-11 (b) α=1e-12 (c) α=9e-13 

   
(d) α=8e-13 (e) α=7e-13 (f) α=6e-13 

Figure 3.78 Shear modulus reconstruction from element-wise defined material with a fine 
mesh and 1% noise along the horizontal centerline 
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(a) α=1e-11 (b) α=1e-12 (c) α=9e-13 

Relative error = 57.94% Relative error = 34.72% Relative error = 34.33% 

   
(d) α=8e-13 (e) α=7e-13 (f) α=6e-13 

Relative error = 33.91% Relative error = 33.39% Relative error = 32.75% 

Figure 3.79 Relative spatial error in the shear modulus with a fine mesh and 1% noise in 
the displacement field 

 
 
 
For the displacement field with 3% noise the shear modulus is plotted in Figure 3.80. It 

can be observed that reconstructions are not in good agreement with the exact 

distributions. The border between the middle and outer layer is not well recovered. In 

order to illustrate the change of the shear modulus in the border of the layer, Figure 3.81 

shows the reconstruction of the shear modulus plotted along the radial direction. The 

relative spatial error in the shear modulus is plotted in Figure 3.82. 
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(a) α=1e-11 (b) α=7e-12 (c) α=6e-12 

   
(d) α=5e-12 (e) α=4e-12 (f) α=3e-12 

Figure 3.80 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 3% noise 

 
 
 

   
(a) α=1e-11 (b) α=7e-12 (c) α=6e-12 

   
(d) α=5e-12 (e) α=4e-12 (f) α=3e-12 

Figure 3.81 Shear modulus reconstruction from element-wise defined material with fine 
mesh and 3% noise along the horizontal centerline 
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(a) α=1e-11 (b) α=7e-12 (c) α=6e-12 

Relative error = 48.79% Relative error = 40.37% Relative error = 38.24% 

   
(d) α=5e-12 (e) α=4e-12 (f) α=3e-12 

Relative error = 36.66% Relative error = 35.55% Relative error = 34.68% 

Figure 3.82 Relative spatial error in the shear modulus with a fine mesh and 3% noise in 
the displacement field 

 
 
 
3.2.2.4 Continuously Defined Material with Noised Data 

To the displacement field obtained from the continuously defined shear modulus 

about 1% and 3% noise are added. For the displacement field with 1% noise the shear 

modulus reconstruction is plotted in Figure 3.83. It can be observed that the 

reconstructions are not in good agreement with the exact distributions. In order to illustrate 

the change of the shear modulus at the border of the layers, Figure 3.84 shows the 

reconstruction of the shear modulus in the radial direction. The relative error is plotted in 

Figure 3.85. One can observe that the maximum relative error occurs at the border of the 

layer. 
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(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

 
Figure 3.83 Shear modulus reconstruction from continuously defined material with a 

coarse mesh and 1% noise 
 
 
 

   
(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

Figure 3.84 Shear modulus reconstruction from continuously defined material with a 
coarse mesh and 1% noise along the radial direction 
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(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

Relative error = 32.23% Relative error = 32.01% Relative error = 31.68% 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

Relative error = 31.38% Relative error = 31.19% Relative error = 31.13% 

Figure 3.85 Relative spatial error in the shear modulus with a coarse mesh and 1% noise 
in the displacement field 

 
 
 
For the displacement field with 3% noise the shear modulus is plotted in Figure 3.86 for 

different regularization factors. It can be observed that the shear modulus reconstructions 

are not in good agreement with the exact distributions. The shear modulus values are 

poorly recovered as well as their interfaces between the layers. Figure 3.87 visualizes the 

change of the shear modulus along the thickness, i.e. in radial direction. The relative 

spatial error in the shear modulus is plotted in Figure 3.88. 
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(a) α=2e-11 (b) α=1.8e-11 (c) α=1.6e-11 

   
(d) α=1.4e-11 (e) α=1.2e-11 (f) α=1e-11 

 
Figure 3.86 Shear modulus reconstruction from continuously defined material with a 

coarse mesh and 3% noise 
 
 
 

   
(a) α=2e-11 (b) α=1.8e-11 (c) α=1.6e-11 

   
(d) α=1.4e-11 (e) α=1.2e-11 (f) α=1e-11 

Figure 3.87 Shear modulus reconstruction from continuously defined material with a 
coarse mesh and 3% noise along the horizontal centerline 
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(a) α=2e-11 (b) α=1.8e-11 (c) α=1.6e-11 

Relative error = 70.80% Relative error = 63.52% Relative error = 55.82% 

   
(d) α=1.4e-11 (e) α=1.2e-11 (f) α=1e-11 

Relative error = 50.84% Relative error = 45.91% Relative error = 42.81% 

Figure 3.88 Relative spatial error in the shear modulus with a coarse mesh and 3% noise 
in the displacement field 

 
 
 

Figure 3.89 shows the reconstruction of the shear modulus with different regularization 

factors using a fine mesh. Figure 3.90 represents the shear modulus plotted along the radial 

direction. In Figure 3.91 the relative error in the shear modulus is visualized in radial 

direction. Comparing this to the results with the coarse mesh, the relative error does not 

change much as the mesh is refined. One can clearly observe that the shear modulus is not 

reproduced, i.e. the shear modulus values are far off from the target shear modulus values 

and the interface between the layers are not resolved properly. The maximum error occurs 

at the border between the inclusion and the background (see Figure 3.91). 
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(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

Figure 3.89 Shear modulus reconstruction from continuously defined material with a fine 
mesh and 1% noise 

 
 
 

   
(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

Figure 3.90 Shear modulus reconstruction from continuously defined material with a fine 
mesh and 1% noise along the horizontal centerline 
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(a) α=1e-12 (b) α=9e-13 (c) α=8e-13 

Relative error = 33.37% Relative error = 33.04% Relative error = 32.60% 

   
(d) α=7e-13 (e) α=6e-13 (f) α=5e-13 

Relative error = 32.11% Relative error = 31.63% Relative error = 31.28% 

Figure 3.91 Relative spatial error in the shear modulus with a fine mesh and 1% noise  in 
the displacement field 

 
 

 
For the displacement field with 3% noise the shear modulus reconstruction is plotted for 

different regularization factors in Figure 3.92 for the fine mesh. It can be observed that the 

reconstructions are not in good agreement with the exact distributions. The border of the 

middle and outer layer is not well recovered. In order to clearly visualize the change in the 

shear modulus between these layers Figure 3.93 is provided, representing the shear 

modulus reconstruction along a radial direction. The relative spatial error in the shear 

modulus is plotted in Figure 3.94. 
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(a) α=2e-11 (b) α=1e-11 (c) α=9e-12 

   
(d) α=8e-12 (e) α=7e-12 (f) α=6e-12 

Figure 3.92 Shear modulus reconstruction from continuously defined material with fine 
mesh and 3% noise 

 
 
 

   
(a) α=2e-11 (b) α=1e-11 (c) α=9e-12 

   
(d) α=8e-12 (e) α=7e-12 (f) α=6e-12 

Figure 3.93 Shear modulus reconstruction from continuously defined material with fine 
mesh and 3% noise along the horizontal centerline 
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(a) α=2e-11 (b) α=1e-11 (c) α=9e-12 

Relative error = 60.71% Relative error = 39.53% Relative error = 38.03% 

   
(d) α=8e-12 (e) α=7e-12 (f) α=6e-12 

Relative error = 36.76% Relative error = 35.89% Relative error = 34.93% 

Figure 3.94 Relative spatial error in the shear modulus with a fine mesh and 3% noise in 
the displacement field 
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4. DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 

In this thesis, the effect of defining the shear modulus distribution continuously 

versus discontinuously in the problem domain for non-homogeneous solids has been 

studied on two models using finite element techniques. For the continuously defined 

method, the shear modulus values are prescribed at the finite element mesh nodes and 

interpolated with bilinear shape functions. For the discontinuous method, the shear 

modulus is defined element-wise, i.e. constant on finite elements, as is common in most 

commercial finite element method software. 

The finite element forward problem has been solved for both shear modulus 

distributions (continuous and discontinuous) and the strain difference between them has 

been studied. Afterwards, the resulting displacement field from the continuously and 

element-wise defined shear modulus distribution has been utilized to solve the inverse 

problem in elasticity, i.e. to recover the shear modulus distribution. 

4.1 Discussion  

The inverse problem is solved as a constrained minimization problem as follows: 

Say we have n measured (numerical) displacement fields 1 ,... , n
meas measu u , find the shear 

modulus µ such that the objective function 
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                                (4.1) 

is minimized based on the predicted displacement fields satisfying the equations of 

equilibrium and boundary conditions. The first term of the objective function minimizes 
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the difference between the predicted and the measured displacement. The second term is 

a regularization term used to ensure the smoothness of the reconstructed materials. 

Before solving the inverse problem and analyzing the shear modulus 

reconstruction, the strain difference computed with element-wise and continuously 

defined material is analyzed obtained by solving the finite element forward problem. The 

accuracy of the shear modulus distribution using element-wise and continuously defined 

material as ground truth is evaluated afterwards solving the inverse problem. The forward 

problem, discussed in Section 3.1, is solved for the displacement field and the strain in 

horizontal direction computed. Then the difference in the strain between the two different 

shear modulus distributions is assessed using two models. The inverse problem, discussed 

in Section 3.2, is solved to get the shear modulus reconstruction from the continuous and 

discontinuous target shear modulus distribution in these models. The nonlinear parameter 

γ is set to zero as this study is concerned with only a linear material behavior. The objective 

function shown in Eq. 2.3 is minimized using only the vertical displacement field. This 

reveals the power of the inverse problem formulation as it does not require all 

displacement components for the inversion process. This is in particular important when 

the displacement data is obtained from ultrasound measurements, because the 

displacement component along the ultrasound transducer beam is of much higher quality 

than the displacement component perpendicular to it. Thus, it would make sense to discard 

the highly noisy displacement component from the inversion procedure. The 

reconstruction of the shear modulus for model 1 with both element-wise and continuously 

defined material using noise free data are presented in Figure 3.11 through 3.26. The 
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reconstructions of the shear modulus for model 1 with both element-wise and continuously 

defined material using different levels of noised data are presented in Figure 3.27 through 

3.58. The mesh then is refined by increasing the number of mesh nodes by a factor of 2 in 

each lateral and horizontal direction of the square domain. The coarse mesh has 961 total 

nodes, while the fine mesh has 3721 total nodes. The area of the square domain is 1. The 

reconstructions of the shear modulus for model 2 with both element-wise and continuously 

defined material with noise free data are presented in Figure 3.59 through 3.70. The 

reconstructions of the shear modulus for model 2 with both element-wise and continuously 

defined material with different levels of noised data are presented in Figure 3.71 through 

3.94. The mesh is also refined for this model by a factor of 2 in each radial and 

circumferential direction of the ring domain. The coarse mesh has 720 total nodes, while 

the fine mesh has 2880 total nodes. Table 3.1 lists the material properties of each layer of 

model 2. Different regularization parameters for the shear modulus reconstruction are used 

to select the reconstruction with the best smoothness criteria. It is observed that the value 

of the reconstructed shear modulus contrast increases as the regularization parameter 

decreases. 

The soft tissue in both problems is modeled with geometric nonlinearity for an 

incompressible material in plane stress. When solving the inverse problem, it is assumed 

that the shear modulus distribution is continuous over the problem domain. In other words, 

the shear modulus is unknown on the mesh nodes and interpolated here with bilinear shape 

functions. The ground truth (target shear modulus distribution) on the other hand is defined 

with the continuous and element-wise shear modulus distribution. In Figure 3.11 and 3.14, 
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the reconstructions from the element-wise defined target shear modulus distribution with 

noise free data are presented for model 1. The shear modulus contrast is clearly recovered 

and the inclusion shape is well resolved. In Figure 3.19 and 3.23, the reconstructions from 

the continuously defined target shear modulus distribution with noise free data is presented. 

Again, the shear modulus contrast is clearly recovered and the inclusion shape is well 

resolved. With the noised data shown in Figure 3.27 and 3.31, the shear modulus contrast 

decreases because of the larger regularization parameter. With increasing noise levels, the 

coarse mesh does not recover the shape of the inclusion well. However, after refining the 

mesh in Figure 3.35 and 3.39, the inclusion shape improves significantly, while the shear 

modulus contrast does not increase much. In model 2, the shear modulus between the 

middle and outer layer is of poor quality with noised data. This is because the ratio of the 

shear modulus between the outer layer and middle layer is only 2, while the ratio of the 

shear modulus between the middle and inner layer is 5. Thus it seems to be "easier" to 

recover the higher contrast in the shear modulus. Furthermore, in those shear modulus 

reconstructions, the different values of the regularization parameters result in different 

shear modulus contrasts. When the value of the regularization parameter increases, the 

shear modulus contrast decreases. This is because the regularization parameter penalizes 

the difference or changes in the shear modulus reconstruction. On the other hand, 

decreasing the regularization parameter results in oscillations and fluctuations of the shear 

modulus distribution when noisy displacement data is utilized. Thus, the right choice of 

the TVD regularization parameter is a trade-off between contrast and smoothness. A good 

choice of this parameter will give the accurate information about the soft tissue detected. 
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Finally, the stiff inclusion in model 1 could represent a tumor. And this has been shown 

to be reconstructed well with a fine mesh despite of high noise levels in the displacement 

field. This indicates the potential of using the shear modulus in detecting tumors as a 

medical modality. 

4.2 Conclusions 

In this thesis, the forward and inverse problem are solved with both element-wise 

and continuously defined materials to assess the strain and the shear modulus 

reconstruction. The effect of mesh refinement is tested to see if the solution improves. The 

effect of noise in two different models is also tested to simulate real noisy measured 

displacement data from medical devices, such as ultrasound devices, magnetic resonance 

imaging and optical coherence tomography (OCT). The tissue in these two models is 

modeled as an incompressible material in 3D in a state of plane stress. The performance 

of the shear modulus reconstruction can be improved, so that the potential of the elasticity 

imaging in the medical field is emerging. The inclusion in model 1, representing a stiffer 

tumor in a uniform background, can be found and located in the shear modulus 

reconstructions. Thus, these reconstructed images can potentially be used to detect tumors 

in the medical field. Following conclusions can be given about these reconstructed shear 

modulus images. First, the total relative error is much larger for the element-wise defined 

material. Second, the total relative error decreases when the mesh is refined for the 

element-wise defined material. Third, the total relative error remains similar when the 

mesh is refined for continuously defined material. Last but not least, the maximum spatial 
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error occurs at the interfaces of shear modulus changes and does not significantly reduce 

with mesh refinement. 

4.3 Future Work 

As future work, two questions need to be answered: 1) Why does model 2 (layered 

ring model) perform worse? 2) How can the reconstructions using noised data be 

improved? Solving the first problem can potentially improve the performance of detecting 

diseased tissues such as atherosclerotic plaques in blood vessels. The second question is 

important because medical devices, like ultrasound, in general acquire highly noisy 

displacement fields. By solving these problems, the accuracy of tumor detection in 

elasticity imaging can be significantly improved. Future work also comprises the 

extension of this study to other models, such as skin cancer, liver cirrhosis, liver tumors, 

prostate cancer, etc. 

Since the size of some tissues such as cardiovascular tissue is significantly larger 

in the axial direction comparing with that of the cross section perpendicular to the axial 

direction, it would also be desirable to model the tissue in plane strain and perform this 

study to analyze the shear modulus reconstruction from the element-wise and continuously 

defined shear modulus distributions. Furthermore, a way to define element-wise material 

to solve the inverse problem will be developed for characterizing discontinuous shear 

modulus distribution in the domain of interest. This will clearly reduce the errors in the 

shear modulus reconstructions if the ground truth is actually a discontinuously defined 

shear modulus distribution. Finally, the models in this thesis assumed the material (tissues) 

to be linear elastic. In fact, most tissues such as breast tumors, skin, arteries are nonlinear 
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and viscoelastic. Thus, the study needs to be extended to nonlinear solids and the inverse 

problem must be enriched to take into account viscoelastic material behavior. 
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