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ABSTRACT 

 

In this dissertation we detail the development, implementation, and testing of a new cut-

cell discretization for the discrete ordinates form of the neutron transport equation. This 

method provides an alternative to homogenization for problems containing material 

interfaces that do not coincide with mesh boundaries. A line is used to represent the 

boundary between the two materials in a mixed-cell converting a rectangular mixed-cell 

into two non-orthogonal, homogeneous cut-cells.  The linear-discontinuous Galerkin 

finite element method (LDGFEM) spatial discretization is used on all of the rectangular 

cells as well as the non-orthogonal sub-cells.  We have implemented our new cut-cell 

method in a test code which has been used to evaluate its performance relative to 

homogenization. 

 

We begin by developing the equations and methods associated with the LDGFEM 

discretization of the transport equation in RZ geometry for a homogenous orthogonal 

mesh. Next we introduce cut-cell meshes and develop a modification to the LDGFEM 

equations to account for material interfaces. We also develop methods to account for 

meshing errors encountered when representing curved material interfaces with linear cell 

faces.  
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Finally we present test problems including manufactured solutions, fixed source, and 

eigenvalue problems for geometries with curvilinear material interfaces. The results of 

these test problems show the new cut-cell discretization to be second-order convergent 

for the scalar flux removed from singularities in the solution, as well as significantly 

more computationally efficient than homogenization. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Use of the transport equation 

Hastened significantly by the discovery of the neutron by Chadwick in 1932, significant 

engineering feats have been accomplished during the last century through the harnessing 

of nuclear physics and radiation transport [1]. Some of the most significant applications 

involve the design and operation of nuclear reactors, the harnessing of radiation for 

medical applications, the application of radiation physics for the purposes of national 

defense, and a host of other industrial applications [2]. In each case the ability to model 

and predict the behavior of systems governed by radiation physics is of primary concern 

to the application. 

 

The fundamental equation used to describe the distribution and behavior of nuclear 

particles interacting with a system of background atoms or nuclei is known as the 

linearized Boltzmann transport equation (LBTE), although many nonlinear forms of the 

equation exist [3]. This equation is used as the starting point for modeling neutron, 

photon, and charged particle interactions. In this work we will consider a linear version 

of the neutron transport equation though nonlinear versions of the Boltzmann equation 

occur in the descriptions of other systems and most of the underlying results are relevant 

to these forms as well. The neutron transport equation is a physical statement of particle 
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conservation that forms the basis of essentially all neutron modeling. A compact form of 

the neutron transport equation may be written as  

  
   

     

, , ,1
, , ,

, , , , , , , , ,

r E t
r E t

v E t

r E t r E t Q r E t




 

 
 



   

 (1.1) 

with associated boundary conditions that provide the incoming angular flux along the 

boundaries of the problem domain 

    , E, , t , E, , t , 0,boundary boundary boundary boundaryr r n       (1.2) 

as well as an appropriate initial boundary condition 

    0, E, , t , E, .r F r     (1.3) 

A derivation and thorough description of this equation may be found in [4]. The physical 

interpretation of this equation is facilitated by considering a differential phase space cell 

represented as the product of independent differentials dV dE d . If we consider 

multiplication of Eq. (1.1) by this quantity then we may easily associate each term of the 

equation with a physical interpretation. The first term in the equation denotes the time 

rate of change of the particle population existing in the phase space cell. The second 

term denotes the net rate at which particles are removed from the phase space cell due to 

spatial streaming (outflow of particles from dV minus inflow of particles into dV ). The 

third term represents the rate at which particles incur collisions, thus being removed 

from the phase space cell. The right hand side is written as a general, problem-dependent 



 

3 

 

 

source term comprised of mechanisms giving rise to new particles in the phase space 

such as in-scatter, fixed source terms, fission, delayed neutron precursor ingrowth, etc.  

The fundamental unknown in the neutron transport equation is the angular flux of 

particles denoted as  . This quantity is simply the product of the particle density and 

speed denoted as v  in the equation. The total macroscopic cross section is indicated by 

  and is a material property denoting the probability that a particle incurs an interaction 

per unit path length traversed. The argument r  represents a point in three-dimensional 

space,   is a unit vector describing particle direction of travel, E  is used to denote 

particle energy, and t  represents time. 

 

The source term appearing on the right side of Eq. (1.1) takes various forms defining 

different problem types. In a fixed source computation with scattering the source term 

takes the form  

 
   

   ' ' ' ' ' '

, , , , , ,

, , , , , .

fixed source

s

Q r E t S r E t

dE d r E E r E t 

   

      
 (1.4) 

Here the doubly differential scattering cross section is given as s , and its product with 

the angular flux integrated over all incident angles and energies yields the rate at which 

particles emerge into the phase space cell dV dE d  due to scattering [4]. The term S

denotes an inhomogeneous source term associated with the underlying media. This term 

is used to model sources that are material-dependent and do not depend on the neutron 
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flux itself. One example includes spontaneous fission sources such as 252Cf. This form of 

the equation is used to model non-multiplying systems. For problem types modeling 

dynamic systems such as pulsed neutron sources the full time-dependent form is used. 

For many problem types the underlying system behavior is steady state and a time-

independent form is used. 

 

In k-eigenvalue computations, a time-independent form of the transport equation is 

solved where the source term on the right side of Eq. (1.1) takes the form 

 
       

   

' ' ' '

' ' ' ' ' '

, , , , ,

, , , , .

eigenvalue f

s

E
Q r E dE r E r E

k

dE d r E E r E


 

 

  

     



 
 (1.5) 

Here the quantity k  is known as the multiplication factor, the quantity   denotes the 

fraction of fission neutrons born with energy E , and the product f  denotes the 

neutron production cross section [4]. The quantity k  is the single most important 

parameter governing the behavior of multiplying systems and may be interpreted 

physically as the mean number of neutrons born from fission following the insertion of a 

single neutron into the system of interest. The quantity   represents the mean number of 

neutrons born per fission, and the fission cross section f  denotes the probability of 

fission per unit path length for a neutron traversing the system. This form of the neutron 

transport equation is used to model multiplying systems, most notably a nuclear reactor. 
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1.2 Solution of the neutron transport equation 

In general the transport equation is an equation in seven independent unknowns: three in 

space, two in angle, one in energy, and one in time. Since the source term present on the 

right hand side of Eq. (1.1) involves an integral of the angular flux and the left hand side 

involves partial derivatives of the angular flux, the equation is known as a partial 

integro-differential equation. Save for very simplified cases, there exist no analytical 

solutions to this equation, and the solution requires the use of various numerical 

techniques. Though several assumptions are made in deriving Eq. (1.1), there exist many 

regimes in which the equation provides highly accurate descriptions of particle behavior 

[4]. 

 

Probably the most widely used deterministic method for solving the transport equation is 

known as the discrete ordinates, or SN method [5]. The method is known as the discrete 

ordinates method because it relies on solving the transport equation for particles 

travelling along a collection of discrete directions. For complicated fundamental physics 

equations such as Eq. (1.1) the standard solution technique involves the discretization of 

the analytical equations into a set of linear algebraic equations that may be solved on a 

computer. The SN method is a technique by which the angular dependence of the 

transport equation is discretized by requiring that the transport equation itself hold for a 

discrete collection of angles. With respect to the spatial variable, discretization may be 

thought of as slicing the problem domain into a collection of sub-domains known as 
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spatial cells. This process is known as spatial discretization, and a common method 

employed is that known as the finite element method (FEM) [6]. The FEM converts the 

problem domain into a collection of simple spatial elements. The fundamental unknown 

is then represented by an expansion in space of a particular polynomial form on each 

individual element. The underlying governing equations are then used to obtain a set of 

equations that relate the unknowns in one cell to the expansion in other cells as well as 

known boundary conditions. Elements are linked to one another by spatial proximity and 

an underlying connectivity that is prescribed again based on the underlying physics. This 

process is widely used in all of engineering because of its relative simplicity and the fact 

that it reduces very complex systems to a large system of linear algebraic equations that 

may be readily solved on a modern computer. A description of the FEM applied to 

various forms of the neutron transport equation may be found in [7], [8], or [9]. 

 

By far the most popular spatial elements chosen for the FEM are those formed from an 

orthogonal meshing of the problem domain. Thus in 1D a collection of connected slab 

elements is most common, in 2D a collection of juxtaposed rectangles is most common, 

and in 3D a collection of brick elements is most common. In each case the underlying 

numerical discretization proves to be exceedingly simple for orthogonal meshes relative 

to more general polyhedral meshes. In addition to greatly simplifying method 

development and implementation, orthogonal meshes have significant advantages with 

respect to parallelization on a computer system. Essentially the orthogonal nature of the 
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spatial mesh defines very separable work that may be easily distributed across 

processors with little need for communication overhead [10]. For this reason orthogonal 

FEM meshing remains very common in the radiation transport community despite the 

advent of general polygonal mesh generation and the associated spatial discretizations. 

 

Once a set of equations are prescribed on each cell within the spatial mesh the discrete 

ordinates equation is solved via what is known as sweeping. Sweeping is a term used to 

denote the characteristic stepping procedure employed by which the transport equation is 

solved in succession on adjacent elements. For a particular angle in the angular mesh the 

flux of particles entering a particular cell is known from a boundary condition on the 

domain. The underlying spatial discretization is used in conjunction with these 

unknowns to determine the angular flux within that cell and thus the angular flux that 

leaves the cell and enters an adjacent cell is known. Having now prescribed the angular 

flux entering the adjacent cell the spatial discretization equations may be used to find the 

angular flux within that element. This procedure continues until the angular flux for the 

current angle is known throughout the entire problem domain. A single occurrence of 

this procedure for a particular angle is known as a spatial transport sweep. We note that 

if one formulates the spatial discretization equations for all elements into a single matrix 

equation the underlying matrix is block lower triangular. This means that the solution 

may be decomposed into the sweeping procedure described above with subsequent 

savings of computer memory and computational complexity. 
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1.3 Limitations of orthogonal meshes 

Despite significant advantages relative to general polyhedral meshes, orthogonal meshes 

have one fundamental shortfall. Very few real-world geometries are themselves 

orthogonal in nature. In general, curved surfaces are much more common and indeed 

represent most items of interest in the world we live in. Examples of objects of interest 

for the transport equation include: a set of cylindrical annuli comprising a fuel pin found 

in a nuclear reactor or the surface of a biological organ that is to receive radiation 

therapy. For these applications the underlying material distribution cannot be exactly 

described by a collection of orthogonal elements. Considering such an object an 

orthogonal meshing will result in cells that exhibit a material discontinuity along a 

curved interface internal to the cell.  

 

The standard approach for dealing with the meshing of curvilinear domains with 

orthogonal meshes involves a collection of mesh refinement and homogenization. 

Homogenization is the term used to refer to the procedure whereby a heterogeneous 

spatial cell is replaced with a homogeneous cell having material properties that 

correspond to some form of averaging of the original constituents [11]. The fundamental 

problem with homogenization concerns its degradation of numerical method accuracy. 

Truncation error is a term used to describe numerical error in the limit as the mesh size 

approaches zero. In this limit the error made by a numerical method using a step size h 

may typically be shown to be bounded by a constant multiplied by some power of h. 
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The analysis of methods in this limit is known as asymptotic truncation error analysis, 

and the results are typically written in “Big-O” notation as 

  .n nch O h     (1.6) 

 

An in-depth discussion of truncation error analysis is developed in [12]. Referring to Eq. 

(1.6) we note that the truncation error is given by  , the step size is given by h, the order 

of the method is represented by the parameter n , and the error bound is given for some 

constant c  (independent of mesh size). The truncation error analysis details the behavior 

of the numerical method as the mesh size is reduced. Thus in the asymptotic limit 

reducing the mesh size by a factor of two results in the reduction of discretization error 

by a factor of two for a first order method, a factor of four for a second order method, 

and so on.  

 

Homogenization is itself a first-order method locally. This means that in the asymptotic 

limit a reduction in meshing error of a factor of two requires a factor of two increased 

computational work in 1-D, a factor of four in 2-D, and a factor of eight in 3-D. This 

unfortunate circumstance has driven the development of high order spatial 

discretizations that are more computationally efficient. The linear discontinuous (LD) 

spatial discretization is one such method that is second order convergent in the 

asymptotic limit. Thus in the asymptotic limit a reduction in meshing error of a factor of 

two requires a factor of 2  more computational work in 1-D, a factor of 2 in 2-D, and a 
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factor of 2 2  in 3-D. This additional computational efficiency can translate to reduced 

computer runtime, or more typically better solutions (lower error) in the same run time 

as compared to a first order method. However, when applied to problems exhibiting 

material interfaces treated with homogenization, the resulting method is degraded to be 

locally first-order convergent. In summary, the use of homogenization degrades spatial 

discretization order of convergence and serves as a major impediment to computational 

efficiency in problems with material interfaces that do not coincide with mesh 

boundaries. It is upon a solution of this central problem that this dissertation shall focus. 

 
1.4 Summary of previous work 

To date very little direct work in the radiation transport community has been done to 

confront the underlying dilemmas associated with homogenization. Instead, the 

community has employed a host of treatments that reduce the ill effects of 

homogenization but do not solve the underlying problem. The one exception involves 

the use of general polyhedral unstructured meshing. However, for the reasons discussed 

in section 1.2 it is still desirable to find an alternative to homogenization for orthogonal 

meshes. Nonetheless, we make particular note of this exception because our new method 

shall rely upon a very limited implementation of the same principle. 

 

In recent years much work has been done to employ a technique known as adaptive 

mesh refinement (AMR) in which the underlying mesh is non-uniformly refined in 

resolution in such a way to specifically target features with preferential mesh resolution 
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[13]. For spatial meshing this typically involves the relative refinement of material 

interfaces and optically thick cells. This technique when used in conjunction with 

homogenization can significantly improve computational efficiency. Still, all spatial 

discretization schemes are locally first-order convergent in homogenized cells, and the 

fundamental problem has not been solved. We note that AMR is in general highly 

advantageous, and it is desirable that any interface reconstruction scheme be capable of 

seamlessly integrating into spatial AMR techniques. 

Though little work has been done in the field of neutron transport, the subject of 

interface reconstruction has seen much work in the field of fluid mechanics beginning 

with the Navier-Stokes equation, which is itself derived from the nonlinear Boltzmann 

transport equation. In contrast to the neutron transport equation, this equation is used to 

describe a distribution of particles that interact with themselves. In fluid mechanics 

Cartesian grids have proven useful relative to boundary-conforming meshes due to 

simplicity in automated mesh generation and refinement flexibility. In these applications 

so called cut-cell techniques have been created in which local modifications to the mesh 

and discretizations are made in the presence of cells containing material discontinuities. 

The cells in question are converted into cut-cells where the “cut” representing the 

material interface forms distinctive spatial domains in the original cell. The resulting 

sub-cells are referred to as cut-cells. This technique can be traced back to a paper by 

Purvis published in 1979 [14]. A more modern overview of the approach as applied in 

fluid mechanics is given by Ingram [15]. The cut-cell method has been widely applied in 
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the field of fluid mechanics to deal with the material interfaces occurring between rigid 

bodies and the fluid flow around them [16-18]. In particular, Bouchon and his 

collaborators developed a second-order-convergent method for the solution of the 

Navier-Stokes equations that relies on cut-cell meshes [19]. The work done in fluid 

mechanics serves as the primary inspiration for the work described in this thesis. 

 

As part of this research some initial work was done exploring non-cut-cell based 

alternatives to homogenization.  In an attempt to improve the accuracy of the LANL-

developed SN code PARTISN, we developed, implemented, and tested a first-order 

interface reconstruction technique based upon the diamond difference spatial 

discretization [20]. This method is equivalent to standard diamond difference on 

orthogonal grids but with appropriate modifications in the underlying material 

properties. The angular flux is assumed linear within a cell, while cross sections are 

assumed piece-wise constant with a discontinuity coinciding with the material interface. 

The underlying method was shown to be equivalent to flux-weighting the underlying 

cross sections. The method was implemented in one-, two-, and three-dimensional 

geometries and was shown to be significantly more accurate than standard volume-

weighted homogenization. For completeness, an analog of this approach is implemented 

in this work for comparison purposes. 
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1.5 Summary of new cut-cell discretization 

In this dissertation we introduce a new cut-cell discretization for the SN equations in RZ 

geometry. This cut-cell method begins with an orthogonal mesh but modifies the mesh 

by creating cut-cells in the geometry to account for the presence of curvilinear material 

interfaces. The standard linear-discontinuous finite element method is applied in all 

orthogonal cells, and modification is made to account for the presence of cells comprised 

of two distinct material regions. This method is shown to be second-order convergent for 

the scalar flux and also significantly more computationally efficient than the standard 

approach of homogenization.  

 

In Section 2 we develop a numerical method for solution of the one-group, steady state 

transport equation in RZ geometry for orthogonal finite elements. After straightforward 

modification, the equations generated are applicable to general polygons in 2-D. In 

Section 3 we introduce two new cut-cell discretizations for the RZ transport equation 

and show how the discretizations developed in Section 2 may be modified to account for 

the presence of cut-cells. We also detail the homogenization method which is the 

historical standard technique for dealing with heterogeneous mesh cells. Next we detail 

three methods for accounting for mass discrepancies that arise from linearizing a 

material interface. In Section 4 we present the results of test problems including two 

manufactured solutions, a fixed source test problem, and an eigenvalue test problem. In 
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sections 5 and 6 we summarize the results, make some conclusions, and enumerate some 

areas for future work.  
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CHAPTER II 

DEVELOPMENT OF A 2D RZ TRANSPORT CODE ON ORTHOGONAL 

MESHES 

 

In this section we introduce the one-group RZ transport equation with isotropic 

scattering with the goal of developing the equations and methods needed to create a 

computational code for solving the transport equation on homogeneous orthogonal grids. 

In section 3.2 we will develop modifications to these methods that account for cells with 

material interfaces that do not coincide with orthogonal mesh boundaries. 

 

2.1 One-group transport equation in RZ geometry with isotropic scattering 

In order to focus this research on the development of a cut-cell discretization we will 

employ the steady state, mono-energetic (one-group), transport equation with isotropic 

scattering. While these simplifications are not strictly necessary, it will greatly simplify 

the work required to develop and implement our new cut-cell discretization. We begin 

development of our basic equations with a picture of the cylindrical coordinate system 

we wish to employ as shown in Figure 1. 
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Figure 1. Diagram of RZ coordinate system 
 

 

With this coordinate system we write the one-group, steady state, direction and space 

dependent RZ transport equation in conservation form assuming isotropic fixed and 

scattering sources as: 

 
         

 

1
, , , , , , , , ,

,

r r z r z r z r z r z
r r r z

Q r z

      


  
      

  


   
 (2.1) 

Here the unknown angular flux is given by  , the total source is Q , the total cross 

section is  , and the angular variable   is as shown in the picture above. 
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 The direction of particle travel is denoted by the unit vector  , where its directional 

cosines are 

 

sin cos ,

sin sin ,

cos .

r

z

e

e

e



  

  

 

  

  

  

  (2.2) 

The total source term for a fixed source problem may be expressed as a sum of a 

scattering source and an inhomogeneous source term by simplifying Eq. (1.4) to obtain 

      , ,
, .

4 4s

r z S r z
Q r z




 
    (2.3) 

Likewise, the total source term for an eigenvalue problem is found via simplification of 

Eq. (1.5) to obtain: 

      , ,1
, .

4 4s f

r z r z
Q r z

k

 
 

 
   (2.4) 

Here the term s  denotes the macroscopic scattering cross section, S  denotes the 

inhomogeneous source term,   gives the mean number of neutrons per fission, f  is the  

fission cross section, and k  is the multiplication factor of the system . The variable   

denotes the scalar flux and is related to the angular flux via 

  
4

, , .d r z


      (2.5) 

We note that the left side of Eq. (2.1) consists of a set of independent first-order partial 

differential equations (PDE’s) for each direction that are easily inverted. All coupling 
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between directions occurs in the source term. Thus the equation is iteratively solved by 

inverting the left side while lagging the source terms. This is commonly called source 

iteration. This procedure requires a starting angular flux iterate which is typically taken 

as zero. 

 

The discrete ordinates method (SN) is characterized by collocating the transport equation 

at a set of quadrature directions on the unit sphere and use of an associated quadrature 

formula to compute the scalar flux [5].  

 

In order to solve Eq. (2.1) we will discretize the equation in both space and angle. In 

section 2.2 we discretize in angle and in section 2.3 we discretize in space. In general the 

energy and time variables must be discretized as well. In an effort to focus on the cut-

cell spatial discretization we have restricted this work to steady state problems with a 

single energy group. 

 

2.2 Weighted diamond angular discretization 

The existence of the angular derivatives appearing in Eq. (2.1) requires some form of 

angular discretization. We shall proceed to develop an angular discretization by 

presuming a level set angular quadrature on the unit half sphere. In this case the term 

level set indicates that angular ordinates are comprised of a set of distinct rows of 
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constant   directional cosine, each with various values of   directional cosine. An 

image depicting an angular quadrature set of this form is given in Figure 2 below. 

 

In Figure 2 we have shown a total of N  distinct   levels with an equal amount of levels 

for both negative and positive directions. We restrict ourselves to symmetric level sets in 

which the parameter N  is even. On each   level we have a set of angles formed by 

allowing the   directional cosines to take on various values symmetric about zero. We 

number the   levels from negative to positive starting with   level one and proceeding 

to   level N . For a given   level n  the various values of   are labeled from least to 

greatest with the index n
fm  being the first angular direction and the index n

lm  being the 

last angular direction. We have introduced the concept of angular cell center indices and 

angular edge indices by enumerating each with integer indices and half-integer indices 

respectively. 
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Figure 2. Depiction of a level set angular quadrature on unit half sphere  
 

 

The standard weighted diamond angular discretization for the RZ transport equation 

given by (2.1) may now be written as 

 1/2 1/2 1/2 1/2 ,m m m m m
m m m m m

m

r Q
r r r w z

           
   

 
  (2.6) 

where m  is the angular index [4]. Equation (2.6) denotes a balance over the angular cell 

associated with index m . Integral values of m  are associated with the cell averages and 

half-integer values are associated with cell edges. The   coefficients are constructed in 

such a way as to preserve the constant solution. They are defined as 

1Level 

Level N 


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n
lm

1m
f

1/ 21m
f
1/ 21m

f
1m

l

mN
fmN

l

nm
f



1/ 2nm
f

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1/2

1/2 1/2

0

.

1

n
fm

m m m m

n n
f l

w

n N m m m



  


 



 

   

  (2.7) 

Here we have used n
fm  to represent the first weighted direction on the n’th   level and 

n
lm  is the index of the last weighted direction on the n’th   level. The parameter mw  

represents the quadrature weight associated with direction .m  As written in Eq. (2.7) we 

have assumed that the angular quadrature set has a total of N  discrete   cosines. 

Likewise, for an arbitrary   cosine direction indexed as n  we have assumed a total of 

1n n
f lm m   discrete   cosines. 

 

We relate the angular cell-edge fluxes appearing in Eq. (2.6) to the angular cell-center 

fluxes using the weighted diamond relation: 

 

 1 1
1/2 1/2

,1/2

1

.

1

n
f

m m m m m m

s nm

n n
f ln N m m m

     
 

 
 



  



   

  (2.8) 

The   weighting factors used in Eq. (2.8) are defined with the relation set 

 

   
   

1/2 1/2 1/2

1/2 1/2

1/2 1/2

1/2

/

sin cos

1 .n
f

m m m m m

m n m

m m n m

n n
f l m

C w

n N m m m

    

  
  

 

  

 

 



  



 

    

 (2.9) 
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The term n  is the angle appearing in Figure 1 for the set of quadrature directions 

defined by   level .n  The numerical value may be computed from 

  1cos .n n    (2.10) 

 The factor nC  is a normalization constant chosen such that the sum of the quadrature 

weights multiplied by that constant on level n   is unity according to 

 1
.n

f

n
l

n m

i
i m

C

w





  (2.11) 

The angles denoted 1/2m   and 1/2m   are the angles associated with the angular cell 

edges for direction m as defined in Figure 1. The starting value for the angle   on each 

  level is 
1/2n

fm
 


  and is associated with the starting direction flux. Given this angle 

the starting value of   on each level, 
1/2n

fm



 may be computed from 

 2

1/2
1 .n

f
nm

 


     (2.12) 

 

In Eq. (2.8) we have used ,s n  to indicate the so-called starting direction flux. The 

starting direction flux which is the value of 
1/2n

fm



 on each   level and is the angular 

flux associated with the direction   . When we evaluate Eq. (2.1) at    we get 

the following equation for the starting direction flux on each   level: 
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  , , , ,, .n s n n s n s n s nr z Q
r z

      
  

 
 (2.13) 

It is important to note that the starting direction flux equation is a Cartesian equation. In 

particular, this equation is identical to that used for neutron transport in XY geometry. 

When employing an angular quadrature to update the scalar flux, the starting direction 

carries no weight and thus does not appear on the right side of  (2.6).  Its presence is 

necessary solely to initialize the angular differencing procedure introduced in Eq. (2.6) 

to discretize the angular variable. In order to solve for the weighted directions on each 

xi-level, we must first solve the XY transport equation for the starting direction. The 

starting direction equation given by Eq. (2.13) has no angular derivative and thus 

requires no further angular discretization. The spatial discretization required to solve this 

equation will be developed in section 2.3.2. 

 

If we make use of the weighted diamond in angle extrapolation given by Eq. (2.8) in 

order to eliminate the angular outflow edge value of the angular flux within Eq. (2.6) we 

obtain: 

 

1/2 1/2 1/2 1/2

11

.

m
m m m m m

m mm
m

m

m m m m

r
r r r w

Q
z

    
  

  

   

 
  

  



  



  (2.14) 

The recursion formula given by Eq. (2.8) defines a stepping procedure whereby angular 

outflows are determined and used as angular inflows for the next angle starting with the 
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starting direction fluxes given by Eq. (2.13). Since the angular inflow edge fluxes are 

known we rearrange Eq. (2.14) by moving them to the right hand side to obtain 

 

1/2

1/2 1/2

1/2

1

.

m m
m m m m m

m m

m
m m

m
m m

m

r
r r r w z

Q
r w

     


  






 



 
  

 

 
 

  

  (2.15) 

To simplify things we now define some coefficients that simplify the angular 

differencing terms above as follows. 

   1 1 1
1/2 1/21m m m m m m mw w      
      (2.16) 

 1 1
1/2m m m mw    
   (2.17) 

These definitions allow us to write Eq. (2.15) in the more compact form 

 1/2

1 1
.m

m m m m m m m m mr Q
r r r z r

         

 
    

 
  (2.18) 

This equation and the underlying auxiliary angular differencing procedure are the 

angularly discretized RZ transport equation. This equation shall be the starting point for 

the spatial discretization described in section 2.3.1. 

 

In this section we have developed an angular discretization for the RZ transport equation 

that depends on an angular quadrature set with angles arranged in levels of constant 

directional    cosines, with each individual level comprised of a set of angles of 

differing   cosines. The solution algorithm takes the form of stepping procedure 
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whereby angular fluxes are computed a single   level at a time. A form of the XY 

geometry transport equation is solved for the starting direction flux to initiate the 

procedure. The angular fluxes are evaluated for the angular cell centered directions via 

Eq. (2.18) and then the weighted diamond relation given by Eq. (2.8) is used to 

determine the angular edge outflow fluxes. These fluxes are the angular edge inflow 

fluxes for the next direction on the current   level and thus a marching procedure for 

evaluating angular fluxes for a given   level is defined. The angular fluxes between 

successive   levels are coupled only through the scalar flux and thus the above 

procedure is repeated for all   levels present in the angular quadrature set. 

 
2.3 Linear discontinuous Galerkin finite element spatial discretization 

Eq. (2.13) and Eq. (2.18) are angularly discretized, spatially analytic representations of 

particle balance for RZ geometry. In this section we apply a linear discontinuous 

Galerkin finite element method (LDGFEM) discretization in space to each equation. 

 

2.3.1 Spatial discretization for weighted directions 

In order to spatially discretize Eq. (2.18) we multiply through by an arbitrary weight 

function ib , and then integrate over the volume of a spatial cell. In RZ geometry this is 

equivalent to multiplying through by 2 r , and then integrating over the area of the cell. 

We omit the factor of 2  since it appears in all terms. Doing this we obtain 
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 1/2

1 1
.

cell

m
i m m m m m m m m mA

dAr b r Q
r r r z r

         

            (2.19) 

We now use the Divergence Theorem on the spatial leakage terms. If we consider the 

spatial streaming terms in Eq. (2.19) separately for a moment we note that we may write 

 ,
cell

m
i m m mA

dAr b r
r r z

           (2.20) 

as  

 .
cell

i m m m mA
dAb r r

r z
           (2.21) 

Using the divergence operator this may be written as 

  .
cell

i m mA
dAb r    (2.22) 

Now we consider the product rule applied to the divergence operator. We note that 

      .m i m i m m m m ib r b r r b            (2.23) 

Using this expansion we may rewrite the spatial streaming term as 

   .
cell cell cell

i m m m i m iA A A
dAb r dA b r dAr b              (2.24) 

Using this for the streaming term we may rewrite Eq. (2.19) as 

 

1/2.

cell cell cell cell

cell cell

m i m m i i m i m mA A A A

i m m i mA A

dA b r dAr b dAb r dAb

r b Q dA dA b

    

  

      

 

   

 
  (2.25) 

If we use the divergence theorem we may rewrite this as 
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1/2.

cell cell cell

cell cell

i s m m m m i i m i m ms A A A

i m m i mA A

dsb n r dAr b dAb r dAb

r b Q dA dA b

    

 





     

 

   

 
  (2.26) 

Here the term sn  denotes the outward unit normal to surface S  and S  represents the 

surface of our element. 

 

 We will be considering polygonal elements of S-sides. This means we can write the 

surface integral as a sum of integrals over each face of our spatial elements. We also 

note that we may split up the contributions between the surface terms involving the 

unknowns and the surface terms known from the upstream condition, which we will 

explain shortly. If we do this and split the interface terms we have 
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  

    

 
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  

 

   

 

  (2.27) 

Here sL  is used to indicate a particular face of a polygonal element and sdL  is a 

differential element of length on that face. The surface terms are split up according to the 

upstream condition, which is determined by the sign of the quantity .sn  If this 

quantity is negative then the current quadrature angle m  is inflow for the face in 

consideration and its value is known from a boundary condition on the element in 
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question. In this case this term is known and has been moved to the right-side of Eq. 

(2.27). If the quantity sn  is positive then m is outflow for the face in question and 

this term is a loss term and thus is placed on the left-side of Eq. (2.27). 

 

The next step in our spatial discretization involves the specification of a trial space for 

the spatial dependence of the angular flux on each element. We choose a trial space that 

is linear in the variables r  and .z  We seek a linear basis expansion for the angular flux 

of the form 

   0
0, .r z

m m r m z mr z b b b        (2.28) 

Here the linear angular flux representation has been written in terms of the three 

unknowns 0 ,m  ,r
m  and z

m  using arbitrary basis functions 0 ,b  ,rb and .zb  This 

expansion is known as the linear discontinuous (LD) expansion because no continuity 

between elements is enforced. The choice of basis functions is somewhat arbitrary but 

they must span the linear trial space. For the weighted-direction equations we choose to 

use 

  

 

0 1

.
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z z

b z
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
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



  (2.29) 

Here the variables ctrdr  and ctrdz  denote coordinates of the centroid of the finite element 

under consideration. The parameters r  and z  are characteristics sizes in the r and z 
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dimensions for the finite element under consideration. These characteristic sizes are used 

to scale the basis functions, which reduces issues with machine round-off error. We note 

that this choice of basis functions simplifies evaluation of the element-averaged angular 

fluxes since the mean value of a linear function over a domain is equal to its value at the 

centroid coordinates of that domain. In this manner the basis functions chosen above 

dictate that the mean value of the angular flux over any element for angle m  is simply 

0
m . 

 

If we insert our linear flux expansion from Eq. (2.28) into Eq. (2.27) we obtain an 

equation with three unknowns for an arbitrary weight function ib  . We note that both the 

spatial inflow fluxes and angular inflow fluxes are presumed known at this point. In 

order to solve this system we require three separate equations which we shall obtain 

from substituting various forms of the weighting function ib  into Eq. (2.27). By 

choosing weighting functions equal to the basis functions used in the trial space we 

obtain what is known as a Galerkin finite element method (GFEM). This defines a 

system of three equations in three unknowns in conjunction with inflow spatial fluxes 

and inflow angular edge fluxes whose solution provides a linear angular flux profile on a 

particular element.  

 

The complete weighted-direction equations for our LDGFEM are given below. 
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  (2.30) 

 
2.3.2 Spatial discretization for non-weighted directions 

The LDGFEM equations in RZ geometry given by Eq. (2.27) require the starting 

direction fluxes appearing in Eq. (2.8). The starting direction fluxes obey the XY 

transport equation given in Eq. (2.13). In this section we discretize the starting direction 

flux equation using a LDGFEM. 

 

We begin by following the same procedure outlined in section 2.3.1 but applied to the 

starting direction equation. If we multiply this equation by an arbitrary weight function 

ib  and integrate over the Cartesian element area we obtain 

 .
cell

i m m m m m mA
dA b Q

r z
              (2.31) 

For simplicity we have denoted the starting direction fluxes for a particular direction 

with an m  prefix rather than the integer half-multiple indices used in section 2.3.1.  

The divergence theorem may be applied to rewrite this as 
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 .
cell cell cell

i s m m i i m i ms A A A
dsb n dA b dAb b Q dA  


           (2.32) 

 

As before the surface integral may be split up into contributions from each polygonal 

face, with inflow and outflow terms moved to separate sides of the equation. When this 

is done we obtain the general FEM form of the starting direction flux equation. 
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  (2.33) 

 

The final step in spatial discretization of the starting direction equations is expansion of 

the angular flux in a linear trial space and choice of weighting functions. We choose the 

same linear flux that was specified for the weighted-direction equation as provided by 

Eq. (2.28) and Eq. (2.29). The full system may be written as below. 
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  (2.34) 
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We note that in Cartesian geometry our choice of basis functions is not as convenient 

since the centroid coordinates are those of the curvilinear grid and not the Cartesian. 

This means the Cartesian cell-average fluxes are not simply 0
m  as before. One could 

choose a different basis for the starting direction equations than that for the curvilinear 

grid in order to achieve the same simplicity. Though this makes cell-averaged flux 

evaluation simple in the Cartesian grid, the convenience is essentially washed away 

because the starting direction fluxes must be mapped to the curvilinear grid prior to 

starting the first weighted direction.  

 
 
2.4 Angular quadrature 

The discrete ordinates method for solving the transport equation depends on the ability 

to integrate the angular flux to obtain the scalar flux and thus compute the scattering 

source. The transport equation is solved for the angular flux at discrete angles and then a 

quadrature formula is used to compute the scalar flux. Thus the scalar flux is 

approximated with a quadrature formula of the form 

    
4

1

, , , t , , t .
ndir

m m
m

d r E r E w


 


     (2.35) 

Here m  represents the angular flux at the discrete ordinate ,m  while mw  is the weight 

assigned to quadrature point .m  A total of ndir  discrete directions are included in the 

quadrature set.  
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For this work we make use of the standard Gauss-Chebyshev triangular quadrature sets 

described in [21]. Essentially the quadrature uses specific ordinates on the unit sphere 

and associated weights to perform the integration given by Eq. (2.35). A graphical 

depiction of such a quadrature set is shown in Figure 3.  

 

 

1Level 

Level isn 





 

Figure 3. Depiction of a Gauss-Chebyshev triangular quadrature set on the unit 
half sphere 
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This quadrature set consists of a total of isn  discrete   levels where isn  is chosen as an 

even number such that the quadrature symmetrically accounts for both negative and 

positive   directional cosines. The distinct   level values are determined from the 1-D 

Gaussian quadrature of order isn for the interval  1,1 .    Considering the negative 

valued   levels the values of   are found from the formula 

  21 cos ,i n i     (2.36) 

where the azimuthal angle   is as shown in Figure 1. The I  values of i  for   level n

are found from the formula for the Chebyshev nodes distributed on the interval 

 , 2 .    These may be computed from the formula 

  2 1 .
2i i

I

     (2.37) 

The associated quadrature weights are determined by the weights of the 1-D Gaussian 

quadrature defining the   cosines. The quadrature weights for all values of   on a 

particular   level are the same. The sum of all quadrature weights for all directions in 

the set is normalized to 4 . 

 

This defines the ordinates and weights for 0.   The top quarter sphere is symmetrical 

and may be obtained by reflecting those nodes about 0  . The total directions ,ndir  



 

35 

 

 

contained in a triangular Gauss-Chebyshev quadrature set having isn    levels may be 

computed from 

 
 2

.
2

isn isn
ndir


  (2.38) 

 

For this work we have used various orders of the Gauss-Chebyshev quadrature set 

defined above. For reference the S8 triangular quadrature set is given in Table 1 below. 

A graphical depiction of this quadrature set is shown in Figure 4. 

 

 

Table 1. Gauss-Chebyshev S8 angular quadrature 
Ordinate mu xi wt Ordinate mu xi wt

1 ‐0.1973 ‐0.9603 0.3180 21 ‐0.9641 0.1834 0.2849

2 0.1973 ‐0.9603 0.3180 22 ‐0.8174 0.1834 0.2849

3 ‐0.5584 ‐0.7967 0.3493 23 ‐0.5461 0.1834 0.2849

4 ‐0.2313 ‐0.7967 0.3493 24 ‐0.1918 0.1834 0.2849

5 0.2313 ‐0.7967 0.3493 25 0.1918 0.1834 0.2849

6 0.5584 ‐0.7967 0.3493 26 0.5461 0.1834 0.2849

7 ‐0.8218 ‐0.5255 0.3285 27 0.8174 0.1834 0.2849

8 ‐0.6016 ‐0.5255 0.3285 28 0.9641 0.1834 0.2849

9 ‐0.2202 ‐0.5255 0.3285 29 ‐0.8218 0.5255 0.3285

10 0.2202 ‐0.5255 0.3285 30 ‐0.6016 0.5255 0.3285

11 0.6016 ‐0.5255 0.3285 31 ‐0.2202 0.5255 0.3285

12 0.8218 ‐0.5255 0.3285 32 0.2202 0.5255 0.3285

13 ‐0.9641 ‐0.1834 0.2849 33 0.6016 0.5255 0.3285

14 ‐0.8174 ‐0.1834 0.2849 34 0.8218 0.5255 0.3285

15 ‐0.5461 ‐0.1834 0.2849 35 ‐0.5584 0.7967 0.3493

16 ‐0.1918 ‐0.1834 0.2849 36 ‐0.2313 0.7967 0.3493

17 0.1918 ‐0.1834 0.2849 37 0.2313 0.7967 0.3493

18 0.5461 ‐0.1834 0.2849 38 0.5584 0.7967 0.3493

19 0.8174 ‐0.1834 0.2849 39 ‐0.1973 0.9603 0.3180

20 0.9641 ‐0.1834 0.2849 40 0.1973 0.9603 0.3180
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Figure 4. Graphical depiction of S8 Gauss-Chebyshev angular quadrature 
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2.5 Spatial quadrature 

The inner products appearing in our LDGFEM equations given in Eq. (2.30) and Eq. 

(2.34) require the integration of basis functions over our polygonal elements. In each 

case we will need to integrate polynomials over general elements of these forms. Here 

we describe quadrature sets that make this possible for arbitrary pentagons, 

quadrilaterals, and triangles. 

 

2.5.1 Integrations on triangular elements 

In order to perform integrations on triangular elements we shall make use of a coordinate 

transformation that facilitates easy numerical evaluation. We wish to map all triangular 

elements in our mesh to the right unit-isosceles triangle. Figure 5 depicts two triangular 

elements that will be used to describe the process. On the left is a triangular domain e  

which depicts an arbitrary triangular element within our RZ domain. Each of the vertices 

are labeled counter clockwise as shown. On the right side of Figure 5 is a right unit-

isosceles triangle that encompasses the domain .p  In this coordinate system the 

vertices are also labeled counter clockwise with the vertex associated with the right-

angle labeled vertex 1. A local coordinate system is setup for this parent element in 

which the coordinates s   and t   vary between 0 and 1. We now wish to define a 

transformation that maps functions defined on the so-called element space e  to the so-

called parent space p  which has a very simple form for which area integrals are readily 

computed. 
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Figure 5. Coordinate transformation for triangular element integration 
 

 

In order to map the element space to the parent space we require interpolation functions 

 ,i s t  for each of the 3 parent nodes that have particular properties. The interpolation 

functions must be linearly independent and span the geometric space. In addition the 

interpolation functions must each uniquely take on a value of unity at one node and zero 

at the other nodes. In terms of the Kronecker delta this simply means 

 

 ,

1 3 ,

1 3

i j j ijs t

i

j

 

 
 

  (2.39) 

where there is an interpolation function for each node. We choose to use the following 

well known set of interpolation functions which satisfy all the above requirements. 
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With these interpolation functions we may now define a 1:1 transformation that maps 

any point in the triangular element e , to a point on the parent unit right isosceles 

triangle p .This mapping is 

 

 

 

3

1

3

1

,

, .

i i
i

i i
i

r r s t

z z s t
















  (2.41) 

The relationship between a differential area in the element space e  and the parent 

space p  is given by the determinant of the Jacobian matrix of the transformation. The 

Jacobian matrix for a 2-D change of variables from    , ,r z s t  is 

 .

r r

s tJ
z z

s t

  
    
  
   

 (2.42) 

The determinant of this Jacobian matrix is: 

 
r z r z

J
s t t s

   
 
   

 (2.43) 

The differential elements in each space are then related by: 

 dr dz J ds dt  (2.44) 

If we evaluate the Jacobian for this transformation we find that it is independent of s and 

t , and is related to the area of the element triangle A by: 

      1 3 2 3 2 3 1 32J A r r z z r r z z        (2.45) 
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We will perform our element integrations of the arbitrary function  ,F r z  in the parent 

space p  by transforming both the integrand and the domain according to 

       , , , , .
e p
F r z dA F r s t z s t J ds dt

 
   (2.46) 

With the integrations transformed to the parent triangle we may use one of several 

available quadrature formulas. These quadrature formulas are normally written in terms 

of area coordinates. The geometric interpolation functions we have used are completely 

equivalent. The resulting integration formula is written as 

       
1

1
, , , , ,

2e

N

i i i i i
i

F r z dr dz F r s t z s t J w




   (2.47) 

where the N  point quadrature formula approximates the integral using ordinates  ,i is t  

and associated weights iw .  

 

In determining which quadrature set to use for our triangular element integrations we 

note that we would like to exactly integrate all polynomials appearing in our discretized 

equations. The inner product r rr b b  results in the highest order polynomial in s  and t . 

We seek a quadrature that is exact for up to and including order three polynomials. We 

shall make use of a known four-point quadrature set that is exact for polynomials of up 

to order three. Table 2 contains the four point quadrature set used for this work [22]. 
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Table 2. Triangular spatial quadrature set 

1 2 3

1/ 3 1/ 3 1/ 3 27 / 96

3 / 5 1/ 5 1/ 5 25 / 96

1/ 5 3 / 5 1/ 5 25 / 96

1/ 5 1/ 5 3 / 5 25 / 96

w  


 

 

 

2.5.2 Integration on quadrilateral elements 

In order to perform integrations on quadrilateral elements we shall again make use of a 

coordinate transformation that facilitates easy numerical evaluation. We wish to map all 

quadrilateral elements in our mesh to the bi-unit square. Figure 6 depicts two 

quadrilateral elements that will be used to describe the process. On the left is a 

quadrilateral domain e  which depicts an arbitrary quadrilateral element within our RZ 

domain. Each of the vertices are labeled counter clockwise as shown. On the right side 

of Figure 6 is a bi-unit square that encompasses the domain .p  In this coordinate 

system the vertices are also labeled counter clockwise with the vertex associated with the 

lower left corner labeled vertex 1. A local coordinate system is setup for this parent 

element in which the coordinates s   and t   vary between -1 and 1. The transformation 

proceeds by finding interpolation functions mapping the element space e  to the parent 

space ,p  which has a very simple form for which area integrals are readily computed. 

 



 

42 

 

 

 

 

Figure 6. Coordinate system transformation for quadrilateral element integration 
 

 

In order to map the element space to the parent space we require interpolation functions 

 ,i s t  for each of the 4 parent nodes that have particular properties. As before, the 

interpolation functions must be linearly impendent and span the geometric space. In 

addition the interpolation function must each take on a value of unity at one node and 

zero at the other nodes. In terms of the Kronecker delta this simply means 
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  (2.48) 

where there is an interpolation function for each node. We choose to use the following 

well known set of interpolation functions which satisfy all the above requirements. 
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  (2.49) 

With these interpolation functions we may now define a 1:1 transformation that maps 

any point in the rectangular element e , to a point on the bi-unit square p . 

 

The mapping is: 
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  (2.50) 

The relationship between a differential area in the element space e  and the parent 

space p  is again given by the determinant of the Jacobian matrix of the transformation.  

 

If we evaluate the Jacobian for this transformation using Eq. (2.43) we obtain Eq. (2.51). 
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 (2.51) 



 

44 

 

 

We may now perform our element integrations of the arbitrary function  ,F r z  in the 

parent space p  using the formula given by Eq. (2.46). With the integrations 

transformed to the bi-unit square we may use one of several available quadrature 

formulas. The general quadrature integration formula is written as 

       
1

, , , , ,
e

N

i i i i i
i

F r z dr dz F r s t z s t J w




   (2.52) 

where the N  point quadrature formula approximates the integral using ordinates  ,i is t  

and associated weights iw .  

 

In determining which quadrature set to use for our quadrilateral element integrations we 

again note that we would like to exactly integrate all polynomials appearing in our 

discretization. The inner product r rr b b  results in the highest order polynomial in s  

and t . We seek a quadrature that is exact for up to and including order three 

polynomials. A four-point product Gaussian quadrature set achieves this. Table 3 

contains the four point quadrature set used predominantly for this work [21]. 
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Table 3. Product Gaussian quadrature set for spatial integration on quadrilaterals 

1 1 1

43 3
1 1 1

43 3
1 1 1

43 3
1 1 1

43 3

i i is t w

 





 

 

 

2.5.3 Integration on pentagonal elements 

Numerical integration on pentagons is performed via triangular decomposition. A 

graphical depiction of the decomposition procedure is shown in Figure 7. On the left 

hand side of the figure is shown an arbitrary pentagonal element encompassing the 

domain .e  Vertices are numbered using the counter clockwise convention starting in 

the lower left hand corner. Three distinct triangles are formed by connecting the sets of 

vertices  1,2,3 ,   1,3,4 , and  1,4,5 .  The new sub elements are denoted 1 ,e  2,e  and 

3.
e  Numerical integration on the pentagonal elements is then computed using the 

triangular quadrature described in section 2.5.1 via accruing the contributions from each 

triangular sub-element. We note that careful choice of the triangular construction 

procedure can make some amount of difference in numerical conditioning. In particular 
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it is desirable to avoid elements that are near degenerate – with one side that is very 

small relative to the other sides. 

 

To summarize we transform the pentagonal integration via triangular decomposition 

using 

        
1 2 3

, , , , .
e e e e
F r z dA F r z dA F r z dA F r z dA

   
        (2.53) 

Each sub element is a triangle and may be integrated using the quadrature formula given 

by Eq. (2.47) and the quadrature set given in Table 2. 
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Figure 7. Decomposition of pentagonal elements into three triangular elements 
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2.5.4 Line integrals on polygonal faces 

The advection terms present in the LDGFEM equations require computation of line 

integrals of basis functions over the faces of our mesh elements. We will perform these 

integrations with coordinate transformations and standard quadrature formula just as we 

did the area integrals. In order to describe this procedure we will make use of the sketch 

shown in Figure 8. 

 

 

r

z

C

1

2

1

2

 

Figure 8. Depiction of line integral over cell face 
 

 

Here we have labeled the two arbitrary vertices 1 and 2 using the lower left-hand corner 

convention. We have denoted the curve representing this face as C  and we have also 

defined the value of the angular flux at each vertex as 1  and 2.  We shall also denote 

the RZ coordinates at each vertex as  1 1,r z  and  2 2, .r z   
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 We now consider the line integral of some arbitrary function  ,F r z  over the curve C 

  ,
C

ds F r z   (2.54) 

We define the slope of the line segment comprising C as: 

 2 1

2 1
face

z z
m

r r





  (2.55) 

We may write a differential unit of arc length along C in two ways. 

 

2

2 2

2

1

1

face

face

m dr
ds dr dz

m dz
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  (2.56) 

We choose to integrate in the variable z  for vertical faces and integrate in the variable r  

otherwise. Using this convention we may write the form of an arbitrary line integral on 

the polygonal face as follows. 

  
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 
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  
 






   (2.57) 

In practice it is best to choose the variable of integration in a way that maximizes its 

deviation across the line segment in order to reduce numerical round-off issues. 

 

In order to perform the surface integrations we first perform a coordinate transformation. 

In order to setup the coordinate transformation we need geometrical interpolation 

functions that map a line segment. The nodes are the endpoints of the segment. As 
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before we require interpolation functions  ,i s t  for each of the nodes span the 1-D 

space. We choose to use the following interpolation functions which satisfy our 

requirements. 
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  (2.58) 

The transformation maps an arbitrary face to a bi-unit line segment defined in one one- 

dimension. With these interpolation functions we may now define a 1:1 transformation 

that maps any polygonal face to a unit length line segment. The coordinate mapping is 
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 (2.59) 

Using Eq. (2.43) we may write down a formula for the Jacobian of this transformation. 

    
2 1 1 2

2 2

2 1 2 1

2

,

,
1 face

z z r r

J r r z z
otherwise

m

 
   




  (2.60) 

We note that the Jacobian is just the Euclidean length of the line segment analogous to 

how the Jacobian for our triangular transformation was twice the triangle area. 
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We now choose to approximate the line integral with a N  point quadrature to obtain the 

formula 

  
    

    

1 2
1

2

1

, ,

,

, 1 , .

N

i i i
i

N
C

i i face i
i

F r s z s J w r r

ds F r z

F r s z s m J w otherwise






 

 






   (2.61) 

The function  ,F r z  will be a product of basis functions when corresponding to outflow 

faces in a cell. For inflow faces the integrand is a product of basis functions and the 

linear representation of the angular flux on that face. Assuming that code data structures 

store the value of the angular flux at vertices the inflow terms require that we construct 

the linear representation of the angular flux along the face. This may be done one of two 

ways depending on which variable we have chosen to integrate against. 

  
 

 

2 1
1 1

2 1

2 1
1 1

2 1

,face

r r
r r

r z

z z
z z

 


 

       
 

  (2.62) 

Here the linear representation of the angular flux face  is constructed from the two 

known values at each vertex of the face. 

 

For our purposes all integrals may be written as polynomials in the variable .s  The most 

complex integrand encountered is a cubic. By using a 2-point Gaussian quadrature set 
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we may ensure that all integrals are evaluated exactly by our quadrature rule given in Eq. 

(2.61). The well-known two-point Gaussian quadrature formula is given in Table 4 [21]. 

 

 

Table 4. Two-point Gaussian quadrature on bi-unit line segment 

1 1

23
1 1

23

i is w




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2.6 Treatment of the total source term 

To this point we have not discussed the right hand side of the transport equation given 

by (2.1). In this section we detail various considerations for treatment of the total source 

term for two particular scenarios of interest in this work. The simplest most common 

form of the source term is that taken for so called fixed source problems while another 

particularly relevant form is known as a k-eigenvalue computation. Below we discuss 

the relevant treatments in each scenario. 

 

2.6.1 Fixed source computations 

So called fixed source computations are those characterized by a total source that 

includes contributions from in-scatter and an inhomogeneous source. Fixed source 

computations are the name given to computations that seek the neutron distribution in a 

medium given a known neutron source. An example of such a problem might include the 

modeling of domain containing a spontaneous fission source located in specific location 

in the domain. In this scenario we may write the monoenergetic transport equation with 

isotropic scattering source term as 

        
, .

4 4
s

fixed source

r r S r
Q r

 
      (2.63) 

Here the total scattering cross section is s , the inhomogeneous source is S , and the 

scalar flux is still  . The presence of the 4  parameter is used to uniformly distribute in 

angle the particle production. When solving the discretized form of the transport 
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equation the inhomogeneous source is specified by problem input and the scattering 

source is computed using the last iterate of the scalar flux associated with the source 

iteration procedure. 

 

The discretized forms of the transport equation given by Eq. (2.30) and Eq. (2.34) 

require that we compute moments of the total source term on each finite element. In 

order to perform this computation we simply use the full linear representation of the 

source term and perform inner products on finite elements using the spatial quadrature 

schemes developed in section 2.5. 

 

2.6.2 Eigenvalue computations 

K-eigenvalue computations are the name given to a class of transport problems 

involving multiplying media with no fixed source which are the most prevalent 

application of the neutron transport equation. These problems model the neutron 

population in systems exhibiting some form of multiplication whereby the underlying 

materials have neutron generation cross sections whereby neutrons having collisions in 

the media may give rise to more neutrons. Such chain reactions form the basis of the 

field of nuclear engineering and are fundamental to the operation of nuclear reactors as 

well as national defense applications. 
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For eigenvalue computations we may write the monoenergetic transport equation with 

isotropic scattering source term as: 

          1
, .

4 4
f s

k eigenvalue

r r r r
Q r

k

   
      (2.64) 

The parameter k  is known as the k-eigenvalue or multiplication factor of the system and 

characterizes the system’s ability to maintain a chain reaction. The terms   and f  are 

the mean numbers of neutrons produced per fission and the macroscopic cross section 

for fission respectively. These terms are typically grouped and the product of each may 

be interpreted as the probability of neutron production from the fission reaction per unit 

path length traveled by a neutron. The term s  represents the macroscopic scattering 

cross section and   represents the scalar flux as before. 

 

If we examine the transport equation for an eigenvalue problem we note that we may 

write the analytic expression in operator form as  

 
1

,H S F
k

     (2.65) 

where H  represents the streaming plus absorption operator, S  is the scattering operator,  

and F  is the fission source operator. We recognize (2.65) as an eigenvalue problem and 

note that in general solutions will take the form of a set of eigenvalue and eigenvector 

pairs. For our problems it may be shown that only a single eigenvector is positive 

throughout the problem domain. This eigenvector is known as the fundamental mode 
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and represents the neutron distribution in a multiplying system. The eigenvalue is known 

as the multiplication factor of the system. 

 

The traditional procedure for solving k-eigenvalue problems is known as power iteration 

and is the technique employed in this work. The basic iteration formula may be written 

in operator notation as 

  
     11 1

,l l

l
H S F

k
     (2.66) 

where a standard choice for the eigenvalue iteration is 

    
 

 

1

1 .

l

l l V

l

V

dV F
k k

dV F







  


 (2.67) 

The integrals appearing in (2.67) are performed over the entire volume of the problem 

domain. In practice the angular flux is typically normalized prior to each iteration.  

 

To understand how power iterations works it is instructive to note that the multiplication 

factor may be physically interpreted as the mean number of neutrons generated by a 

given neutron during its traversal from inception to ultimate disappearance (capture, 

leakage, etc.). Following one complete iteration of source iteration, successive iterates of 

the scalar flux may be used to generate an estimate of the multiplication factor via the 

relationship given by Eq. (2.67). As the power iteration procedure converges the spatial 
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distribution of the scalar flux attains that of the fundamental mode and then Eq. (2.67)

yields the multiplication factor for the system.  

 

We note that k-eigenvalue problems do not themselves specify the neutron population in 

a system but rather its distribution and its multiplication characteristics. The magnitude 

of the scalar flux is mathematically arbitrary in such systems. In particular the neutron 

population can only be at steady state when the multiplication factor of the system is 

unity. Even in this case the amplitude of the neutron population is still arbitrary.  For this 

reason as well as numerical considerations the fluxes are normalized at the beginning of 

each iteration. 

 

The implementation of k-eigenvalue problems proceeds by introducing another iteration 

loop on the outside of the scattering source iteration procedure. The discretized forms of 

the transport equation given by Eq. (2.30) and Eq. (2.34) still require that we compute 

moments of the total source term on each finite element. These inner products on finite 

elements are computed as before using the spatial quadrature schemes developed in 

section 2.5. 

 

2.7 Boundary conditions 

Both the weighted and non-weighted discretized LDGFEM equations require the 

specification of boundary conditions whereby the angular flux entering the problem 
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domain is provided. If we refer to the cylinder caps with a “top” and “bottom” 

designation, and the cylinder lateral face with the “face” designation, then we must have 

for a cylinder of extent      , 0, x 0,r z R Z     the following: 

 

   
   
   

, 0, n 0 , ,

, , n 0 , ,

, , n 0 , .

m s bottom m

m s top m

m s face m

r z r

r z Z r

r R z z

 

 

 

     

     

     

 (2.68) 

Here we have stated that the angular flux for directions incoming to the problem domain 

must be prescribed by the problem statement as a boundary condition. In general the 

functional form of the angular flux along a boundary must be used to determine the 

moments of the angular flux incoming to a cell boundary. For this work boundary 

conditions are set by storing fluxes at each node of the cell face coinciding with the 

cylinder boundary. The actual fluxes stored are found by enforcing that the spatial 

moments of the boundary flux match the moments of the mapped linear representation. 

For linear boundary fluxes this simplifies to storing value of the boundary flux at each 

vertex of the boundary face. 

 

Both the spatial and angular dependence of the angular flux must be specified. In theory 

it is possible to discretely specify the angular flux for all incoming directions in the 

angular quadrature. For this work we have restricted ourselves to typical scenarios 

involving either isotropic or normal incident partial currents on the problem boundaries.  
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For an isotropic angular flux the user specifies the incoming partial current and thus the 

angular flux is found via  

 
n 0

; n 0

.
nm boundary

m boundary

boundary
boundary incident

m boundary m
m

J

w
  

  


 

 (2.69) 

Here boundary
incidentJ  is the specified incoming partial current on an arbitrary boundary, m is a 

particular ordinate in the angular quadrature, mw is the weight associated with that 

quadrature angle, and nboundary  denotes the outward unit normal associated with the 

boundary. Vacuum boundary conditions may be obtained by simply setting the incoming 

partial current to zero. For normal incidence we simply associate all angular fluxes with 

the quadrature angle that is closest to normally incident on the boundary face. Thus the 

boundary fluxes are obtained via 

    
n 0

, | max n
max n

0 .
m boundary

boundary
incident

m boundaryboundary
m boundary m

J
m

w

otherwise

  


 

  



 

 (2.70) 

For RZ geometry is it necessary to specifically implement a cylinder centerline boundary 

condition. To obtain the appropriate expression for the cylinder boundary condition we 

note that due to the definition of the angular variables the only way a particle may 

stream into the cylinder centerline is if it has direction   . These are particles 

transported in the starting direction flux sweep. Thus the appropriate centerline boundary 

condition may be verbally stated as: the angular flux at the cylinder origin, for all 
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weighted directions, must be equal to the starting direction flux at the origin for that 

particular  -level. In equation form this says simply: 

    _0, 0,m m sdr z r z     (2.71) 

Here the linear representation of the angular flux for angle m , for an arbitrary cell face 

along the cylinder centerline is denoted m . The associated starting direction flux for 

angle m  is denoted _m sd . We note that the full linear spatial dependence must be 

mapped on each cell face aligned with the cylinder origin. This is equivalent to mapping 

the weighted-direction fluxes at each cell face vertex. Thus this boundary condition 

provides a total of two equations for each polygonal element having a face coinciding 

with the cylinder origin. Since a total of three equations are needed in each cell the two 

equations denoted by Eq. (2.71) take the place of the r and z moment equations given by 

Eq. (2.30). We summarize by stating that for elements along the cylinder centerline the 

LDGFEM equation reduce to conservation and the matching of the linear angular flux 

profile along the cylinder centerline as specified by the starting direction flux. 

 

2.8 Solution procedure 

In this section we have developed many equations which may be collectively used to 

numerically solve the neutron transport equation on orthogonal grids in RZ geometry. 

We now discuss in some detail the procedure by which these equations are employed. 

We begin with a simple flow diagram for the process given in Figure 9. 
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Figure 9. Flow diagram for numerical solution of RZ transport equation for fixed 
source problem 

 

 

Referring to this figure we note that processes are given numbers. Using this numbering 

scheme as a reference we shall describe the solution procedure. We note that the diagram 
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shown is for fixed source computations. Problems involving k-eigenvalue computations 

are modified with the power iteration procedure on top of the scattering source iteration. 

 

The solution procedure begins with problem input where the problem geometry, material 

properties, and boundary conditions are specified. Also specified are numerical 

discretization parameters such as mesh size, angular quadrature order, etc. Next the 

problem is encased in a space/angle mesh as indicated by step 2. The meshing procedure 

used is discussed in some detail in section 3.1 of this document. In step 3 of the flow 

diagram data structures are set up to perform the computation. 

 

The actual computation begins with the outermost loop referred to as the source iteration 

loop. Since the angular flux appears on both sides of Eq. (2.1), an iterative procedure is 

used in which an iterate of the angular flux is used to compute the total source term, the 

discretized equations are solved to yield a new angular flux iterate, and this new angular 

flux is used to compute a new source term. This procedure continues until convergence 

is reached whereby solving the discretized equations results in a flux that is arbitrarily 

close to the last iterate. In practice the scalar flux itself is used to test convergence. The 

standard form of this iteration is a form of Richardson iteration and may be written for a 

fixed source problem as 

    1 1 1 q,l lL P L      (2.72) 
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where  1l   denotes the new iterate of the angular flux to be solved for,  l  is the old 

angular flux iterate used to compute the total source term, the terms L  and P  represent 

the discretized loss and production operators describing Eq. (2.30), and the term q  

represents the fixed source term. As the space-angle grid is swept a new iterate of the 

scalar flux is accrued using Eq. (2.35). 

   

The processes located within the source iteration loop are typically referred to as the 

space-angle sweeps and are indicated by the xi-level loop, the mu loop, and the spatial 

sweeps indicated by steps 4 and 5 within Figure 9. The xi and mu loops represent the 

angular discretization and are arranged such that each xi-level is independent, while the 

ordinates represented by each value of mu on a particular xi-level are linked via the 

angular differencing procedure given by Eq. (2.8). Referring to Figure 3 the angular 

loops may be visualized as marching from bottom to top and from right to left in the 

quadrature set. Thus for a particular xi-level the solution procedure is as follows. First 

the starting direction flux is swept through the spatial grid. Next the weighted diamond 

in angle approximation given by equations (2.8) and (2.9) is used to compute the angular 

inflow fluxes associated with the first weighted direction present on the current xi-level. 

Then for all weighted directions on the current xi-level, the weighted-direction 

discretization is used to sweep the spatial grid. Subsequent spatial sweeps are performed 

for each distinct value of mu using the weighted diamond in angle approximation to 

provide angular edge inflow fluxes until all ordinates on a given xi-level have new 



 

63 

 

 

iterates for the angular flux. These new angular flux iterates give rise to the new iterate 

of the scalar flux, thus completing the source iteration procedure. At this point a test for 

convergence is performed upon the scalar fluxes by computing a norm of the difference 

of two successive iterates. If convergence has been achieved then the sweeping 

procedure ends and control proceeds to program output as indicated in step 7. If 

convergence has not been achieved then the new scalar flux is used to compute a new 

total source term and the source iteration procedure continues. 

To this point we have not detailed the spatial sweeping procedure indicated by steps 4 

and 5 and referred to above in the description of the angular sweep. For both the 

weighted and un-weighted directions the spatial sweeping procedure is essentially 

identical save that the set of equations applied is different.  The right side of Figure 9 

details the spatial sweeping procedure and will be used to describe the process. A spatial 

sweep begins in step 5.1 where the problem boundary conditions are used to establish 

the incoming angular flux along the problem boundaries. The spatial sweeping 

procedure may be thought of physically as tracking this known flux through the problem 

domain, across the underlying media, and out of the problem domain as an outgoing 

boundary flux. With the boundary conditions set the total angular source term is 

computed for each spatial element using the procedure discussed in section 2.6. For a 

particular angular ordinate being swept the orientation of the various cell faces dictate a 

particular order in which the spatial cells must be swept. In particular the angular fluxes 

incident upon a cell face must either come from previously determined outflow angular 
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fluxes on the adjoining cell, or from a boundary condition. For orthogonal grids this 

process is simple and may viewed as sweeping the cylinder from top to bottom for 

negative xi, from bottom to top for positive xi, from outside to inside for negative mu, 

and from inside to outside for positive mu. For example when sweeping a particular 

angular ordinate having negative mu and positive xi the sweep order proceeds first from 

the cylinder lateral surface to the cylinder centerline, and then from the bottom to top of 

the cylinder. In order to detail the spatial sweeping procedure itself we start with a 

picture of a typical spatial grid as shown in Figure 10 below. 
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Figure 10. Graphical representation of a RZ spatial mesh 
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 The RZ coordinate system is oriented as shown and the spatial grid is comprised of a 

total of I  cell columns, each comprised of J  rows. This gives a total of *I J  

orthogonal cells. Cell numbering begins in the lower left corner and marches outward as 

shown. An arbitrary cell index is denoted by the location indices  ,i j . We wish to 

consider the sweeping procedure for an arbitrary angle denoted as m  as shown in the 

figure. For the particular angle shown the direction cosines are 0m   and 0m  . Thus 

the first cell to be swept lies at the location indices  ,I J . The solution process involves 

solving for the three unknowns used to expand the linear angular flux in the cell. For 

weighted directions this is given by Eq. (2.30) and for un-weighted directions this is 

given by Eq. (2.34). The solution of these equations require: the incoming angular flux 

profiles on the inflow faces of the cell, the angular edge inflow fluxes for the current 

ordinate, and the angular source term.  

 

With regard to the picture shown in Figure 10 the incoming angular fluxes for the cell 

with location indices  , JI  lie along the top and right side faces and are known from 

boundary conditions. The incoming angular edge fluxes are required only for the 

weighted direction equations and are in general determined from either the starting 

direction flux sweep on the current xi-level, or the previously swept weighted angular 

ordinate. The actual expansion of the angular source term is dependent on problem type 
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and is detailed in section 2.6 of this document. By filling in all the known parameters 

one obtains a 3x3 matrix equation whose solution provides the angular flux expansion in 

the element located at indices  , JI . With the angular flux profile in this cell determined 

it is now possible to compute the outgoing angular flux profile occurring along the left 

face of this cell. This flux profile is in turn the previously unknown incident flux profile 

for the right face of the cell lying at index  1,I J . Since the other incoming flux 

profile along the top of this cell is known from a boundary condition, the equations may 

now be solved to find the flux profile in this cell. In this manner the entire mesh row 

defined by the indices  , , 1i J i I   is swept with the resulting linear angular flux 

profile stored for each cell.  

 

When the sweeping procedure reaches the cell lying at indices  1, J  the underlying 

equations must be modified for weighted directions to account for the RZ centerline 

boundary condition. The underlying equations still represent a 3x3 matrix equation for 

the angular flux within the cell. The first equation is the conservation statement provided 

by the zero’th moment of Eq. (2.30). The second and third equations are found by 

specifying the angular flux profile along the cylinder centerline to match that of the 

starting direction flux along the centerline for the current xi-level. This detail was 

discussed in section 2.7 of this document. With this modification the underlying system 

may be solved to find the angular flux within the cell lying at indices  1, .J  
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Returning to the cylinder lateral face we note that the cell lying at indices  , 1I J   now 

has defined angular flux profiles on the incident faces occurring at the top and right side 

of the cell. Therefore the spatial sweeping procedure may be executed for this row of 

cells. This procedure continues until the entire spatial mesh has been swept and the 

angular flux profiles are known for the current angular ordinate within each spatial cell. 

When this process is completed the contributions to the new scalar flux iterate are 

accrued, angular outflow fluxes are computed, and the procedure continues to the next 

angular ordinate.  
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CHAPTER III 

DESCRIPTION OF CUT-CELL METHODS 

 

3.1 Mesh generation 

In order to test our new cut-cell methods we will need the ability to create meshes 

exhibiting curvilinear material interfaces. In general, multi-dimensional mesh generation 

is a complex task. The purpose of this work is the development of the underlying spatial 

discretization and not mesh generation itself, thus we seek a simple solution for the 

creation of meshes that exhibit curvilinear material interfaces. A simple yet adequately 

sophisticated approach involves the modeling of 1-D spherical geometries within a 2-D 

RZ mesh. In this section we describe this meshing technique. 

 

We start by considering a single homogeneous sphere with radius 0a . This sphere is 

encased symmetrically in a right circular cylinder. For simplicity we require that the 

centroid of the sphere coincide with the centroid of the cylinder. For a cylinder of radius 

R  and height Z  we require that the sphere be totally encased such that 

 0 ,R a   (3.1) 

and 

 02 .Z a   (3.2) 

A sketch of such a sphere embedded in a cylinder is shown on the left side of Figure 11. 
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Z

 

Figure 11. Sphere encased in RZ cylinder 
 

 

We note that this procedure forms two distinct material regions with a curvilinear 

interface as desired. We will denote the material inside of the sphere as material A and 

the material outside of the sphere as material B as indicated in the figure. If material B is 

taken as a void and vacuum boundary conditions are applied to the cylinder, then we are 

modeling a 1-D bare sphere. If instead reflective boundary conditions are employed on 

the cylinder lateral face and caps, then we have an infinite lattice of spheres comprised 

of material A arranged in a matrix of material B. 

  

Geometries such as this are those for which we create meshes in this work. We shall also 

consider geometries constructed from a series of spheresN  spherical shells with radii
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0 1, , ,
spheresNa a a where 0 1, spheresNa a a  . The inner sphere has radius 0a  while each 

subsequent ring creates a spherical shell around the inner sphere. Thus a mesh created 

from an embedded sphere and a single shell with reflective boundary conditions might 

model an infinite lattice of fuel spheres each having a metal coating. 

 

Our meshing procedure proceeds by encasing the RZ cylinder in a rectangular base mesh 

with no attention paid to the presence of material interfaces. The right side of Figure 11 

depicts this meshing for a uniform 3x6 mesh. This orthogonal mesh is then given 

substructure by reconstructing the material interfaces with a line segment in every cell 

that contains multiple materials. Such cells will heretofore be referred to as mixed-cells 

while the underlying non-orthogonal sub-components shall be referred to as cut-cells. 

An illustration depicting this procedure is shown in Figure 12. 

 

A linear representation of the material interface provides two degrees of freedom. The 

line segment is chosen to coincide with the true interface position on each of the mixed-

cells. The resulting linear reconstructed interface is continuous throughout the entire 

domain. In particular this choice of fit imposes continuity of the line segments across 

adjacent mixed-cells sharing an interface. One could choose the segment to be a least 

squares approximation of the arc in each mixed-cell, but this would result in the 

reconstructed interface being discontinuous throughout the mesh. This discontinuity 

creates complications since the spatial dependence of the flux must be remapped to 
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convert the outflows of one cell to the inflows of its adjacent neighbor when the fluxes 

are not uniquely defined. By choosing the line segment to interpolate the true interface 

along the boundaries of the mixed-cell, this situation is avoided.  
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Z
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Z

 

Figure 12. Linear interface meshing procedure 
 

 

Referring to Figure 12 we note that our linear reconstruction of the curvilinear interface 

leaves a region in each mixed-cell where the linear reconstruction does not match the 

original curvilinear interface. This meshing error changes the mass of each material 

present in a mixed-cell. Although this effect is ignored in the graphic shown in Figure 

12, we shall establish mechanisms for accounting for this issue in section 3.3. 
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For this work we restrict ourselves to base meshes that result in at most a single material 

interface in any mixed-cell. If the base orthogonal grid is insufficiently fine to achieve 

this result, it is globally refined to satisfy the criterion. Such a restriction is not 

absolutely necessary but it suffices to demonstrate the efficacy of our approach. In 

practice limiting the breadth of substructure has certain advantages in terms of 

implementation, resource efficiency, and, most importantly, amenability to 

parallelization. 

 

The resulting mesh consists of an orthogonal base mesh comprised of a mixture of 

homogeneous rectangles and heterogeneous mixed-cells containing two non-orthogonal 

polygonal elements. All mixed-cells are comprised of a pair of juxtaposed polygons that 

share a face at the reconstructed interface. These polygonal sub-elements of the mixed-

cell are referred to as cut-cells. For the two-material case all cut-cells are triangles, 

quadrilaterals, or pentagons.  

 

It is theoretically possible for a material interface to exactly coincide with the corner of a 

mixed-cell. Such an occurrence introduces additional complexity in the implementation 

but does not change the underlying discretization in any fundamental way. For this work 

we have restricted ourselves to meshes that do not exhibit such an effect. During mesh 

generation, if such an occurrence is encountered, the base orthogonal mesh is tweaked, 

and mesh generation restarts using this new base mesh. With the restrictions denoted 
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previously there are a total of ten distinct mixed-cell types arising from the meshing 

procedure described above. A summary of these cut-cell types may be found in 

Appendix A. 

 

3.2 Numerical cut-cell discretizations 

In order to motivate the discussion of the various numerical methods it is instructive to 

begin with a sketch of a mixed-cell. A representative sketch of a mixed-cell and 

associated cut-cells is shown in Figure 13. Using a lower left-hand numbering scheme, 

the volumes and an arbitrary cross section have been labeled for cut-cell 1 and cut-cell 2. 

 

 

R0a

Z

1 1,V 

2 2,V 

 

Figure 13. Sketch of representative mixed-cell 
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Using this sketch, a total of three different numerical methods shall be introduced in this 

section.  

 

3.2.1 Homogenization 

The standard treatment applied in the presence of material interfaces within a mixed-cell 

is the well-known technique of homogenization. Homogenization is so named because it 

approximates a multi-material region by replacing it with a homogenous region having 

material properties that are some average of those of the original constituents.  More 

specifically the simplest homogenization scheme volume-weights the cross-sections of 

each material to produce an average: 

 hom

i i
i

i
i

V

V


 




  (3.3) 

Here hom  is the resulting homogenized microscopic cross section for some arbitrary 

reaction, i  is the cross section for material i , and iV  represents the volume occupied 

by material i . With respect to Figure 13 a homogenization treatment of the interface 

replaces the mixed-cell with a singular rectangular cell with the average cross section 

given by: 

 1 1 2 2
hom

1 2

V V

V V

  



  (3.4) 

In this manner all mixed-cells in the problem domain are converted to homogenous cells. 

Homogenization combined with successive mesh refinement is almost universally used 
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to treat multi-material cells resulting from the imposition of a rectangular grid on a 

problem domain containing interfaces that do not coincide with the mesh boundaries. 

 

In order to describe these steps and the associated underlying sweeping procedure in the 

context of our cut-cell meshes, we shall use the sketch shown in Figure 14. On the far 

left of this figure we have our 3x6 rectangular meshing resulting in mixed-cells. Shown 

is a particular angle in the quadrature set that is to be swept through the spatial grid. In 

the middle is shown the mixed-cell lying at rectangular grid cell indices of (2,2) in our 

mesh. This mixed-cell is comprised of a juxtaposition of a triangular and pentagonal 

element. Our numbering scheme has been used to label the volume elements and 

associated material properties with a “1” and “2” subscript as shown. We note that the 

cross-section shown is arbitrary and represents any material property including a fixed 

source term or fission cross-section. On the far right of the figure is shown the single 

rectangular element created from the homogenization procedure described above and by 

Eq. (3.4). A single volume element V  has been formed from the union of the triangular 

and pentagonal elements. Homogenized cross sections are computed via Eq. (3.4) for 

each material property. The resulting homogeneous rectangular element has had each of 

its four faces labeled 1 2 3 4, , ,f f f f  in a counter clockwise, negative-to-positive directional 

cosine convention. 
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Figure 14. Homogenization sweeping procedure 
 

 

The sweeping procedure for the homogenization method degenerates to the same 

procedure used on a regular orthogonal mesh after the homogenization process. In 

particular, considering the incoming angle m


 shown in the figure element, faces 3f  

and 4f  are inflow faces determined from outflows computed from mesh cells lying at 

indices (3,2) and (2,3), respectively. Note that these upwind faces provide a single linear 

angular flux profile on each of these faces since the homogenization procedure is applied 

to those cells as well. For the quadrature angle in consideration, the faces 1f  and 2f  are 

outflow faces. Thus the solution to the angular flux within the cell may now be 

computed using the inflow flux profiles and the DGFEM equations given by Eq. (2.30).  
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Although simple and easy to implement, homogenization is locally first-order accurate. 

This means that any higher order spatial discretization scheme for the transport equation 

will be degraded by the homogenization process. The effective order of convergence 

exhibited for such a scheme will vary depending upon the problem type, the quantity of 

interest, and primarily on the number and importance of the homogenized cells. For this 

work we have implemented a homogenization treatment to be used as the baseline 

comparison for the new cut-cell method. 

 

3.2.2 Continuous flux cut-cell method (CFCM) 

A very intuitive improvement on the homogenization technique may be theorized by 

considering for a moment the collision integral present in the RZ LDGFEM equations: 

 
cell

i mA
dAb r   (3.5) 

If one assumes that the exact geometry is known at the time of meshing, the piecewise-

constant spatial dependence of the cross-section appearing in Eq. (3.5) may be preserved 

in the fundamental discretization while retaining a single linear representation of the 

angular flux over the mixed-cell. In particular, with respect to Figure 13 the collision 

integral is written as: 

 
1 2

1 1 2 2
cell

i m i m i mV V V
dAb r dV b r dV b r          (3.6) 

If one treats the total cross-section, scattering cross-section, fission cross-section, and 

inhomogeneous source terms in this manner, the resulting LDGFEM equations give a 
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scheme we shall refer to as the continuous flux cut-cell method (CFCM). We denote this 

method the “continuous flux” cut-cell method because although the discrete material 

regions in the mixed-cell are retained, the finite element trial space for the angular flux is 

a single linear representation across the mixed-cell. That is the angular flux is forced to 

be continuous across the material interface. This is physically incorrect as the true flux 

remains continuous but experiences a discontinuity in the derivative.  

 

In order to describe these steps and the associated underlying sweeping procedure we 

shall again make use of a sketch, which is shown in Figure 15. The left and middle 

graphics in this figure show a base mesh, resulting mixed-cells, and a blown-up view of 

a particular mixed-cell identical to that described in Section 3.2.1. The graphic on the far 

right in Figure 15 depicts the mixed-cell with terminology appropriate for the CFCM. In 

particular this mixed-cell retains distinct material properties for the triangular and 

pentagonal cut-cells. Using the face numbering scheme described in Section 3.2.1, the 

faces of the mixed-cell have been numbered. We note that despite the distinct cut-cell 

structure to this mixed-cell the CFCM method need only consider the four faces as 

numbered in the figure and described below. The single linear representation of the 

angular flux within the mixed-cell has been denoted as  .  
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Figure 15. CFCM sweeping procedure 
 

 

The sweeping procedure for the CFCM retains the characteristics of sweeping on a 

homogenous orthogonal grid with slightly increased complexity when a cut-cell is 

encountered. For the incoming angle m


 shown in the figure, faces 3f  and 4f  are 

inflow faces determined from outflows computed from previously swept mesh cells 

lying at indices (3,2) and (2,3), respectively. Note that these upwind faces provide a 

single linear angular flux profile on each of these faces since the CFCM procedure 

generates a single linear angular flux profile in each mixed-cell. For the quadrature angle 

in consideration, the faces 1f  and 2f  are outflow faces.  Thus the cell-to-cell interfacing 

for the CFCM remains identical to homogenization, which is itself identical to that used 

on a homogenous orthogonal mesh. The difference between the CFCM and 

homogenization lies in how the within-cell collision and source terms are computed 
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within the DGFEM equations. The CFCM method replaces all area integrals appearing 

in the DGFEM equations with piecewise-defined integrals that operate on each cut-cell 

individually. These integrals are all of the form shown in Eq. (3.6). With this 

modification, the solution to the angular flux within the cell may now be computed using 

the inflow flux profiles and the DGFEM equations. 

 

As mentioned in Section 1.4 we have previously tested the analog of the CFCM 

technique for the diamond difference spatial discretization. The diamond difference, or 

Crank Nicolson, spatial discretization is equivalent to a continuous finite element 

method (CFEM) with a linear trial space. The results of that work may be summarized 

by stating that for multi-dimensional k-eigenvalue problems the CFCM method used in 

conjunction with diamond difference produces better accuracy and global order of 

convergence than homogenization.  This occurs despite still yielding degraded order of 

convergence due to the presence of mixed-cells. We were able to show for that 

implementation that the CFCM method was equivalent to a particular homogenization in 

which the homogenized cross-sections are obtained by flux-volume weighting. This fact 

makes the method advantageous because it is easy to implement in existing codes, has 

relatively low additional computational cost, and gives improved accuracy and 

convergence compared to standard homogenization. 
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In this work we have implemented the linear-discontinuous analog of the CFCM 

described above. This has been done in order to provide a comparison to the new cut-cell 

method introduced in Section 3.2.3. 

 

3.2.3 Discontinuous flux cut-cell method (DFCM) 

The obvious flaw of the CFCM is due to the inability of a single linear function on the 

mixed-cell to adequately represent the discontinuous nature of the angular flux 

derivative at a material interface. Our new cut-cell method accounts for this by 

introducing distinct linear flux profiles within each cut-cell. Near the region of a material 

interface the two distinct fluxes allow for a more adequate representation of the spatial 

kink in the true solution. In addition, the jump discontinuity in the LD solution provides 

another degree of freedom to cope with the spatial kink in the underlying solution. We 

shall refer to this new cut-cell method as the discontinuous flux cut-cell method 

(DFCM). We have used the name DFCM to refer to the fact that the numerical angular 

flux across the material interface in a mixed-cell is itself discontinuous. We note that as 

the DFCM converges the angular flux becomes continuous across the interface but its 

derivative does not. Thus the DFCM maintains the correct physical behavior at the 

interface while the CFCM does not. 

 

In order to describe these steps and the associated underlying sweeping procedure we 

shall again make use of a sketch, which is shown in Figure 16. The left and middle 
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graphics in this figure show a base mesh, resulting mixed-cells, and a blown-up view of 

a particular mixed-cell identical to that described in Section 3.2.1. The graphic on the far 

right in Figure 16 depicts the mixed-cell with terminology appropriate for the DFCM. In 

particular this mixed-cell retains distinct material properties and linear flux profiles for 

both the triangular and pentagonal cut-cells. Using the face numbering scheme described 

in Section 3.2.1, the faces of each cut-cell have been numbered. For simplicity the face 

describing the material interface has been dual-numbered as 5/7f . The distinct linear 

representations of the angular flux within each cut-cell have been denoted as 1  and 2 .  
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Figure 16. DFCM sweeping procedure 
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The sweeping procedure for the DFCM retains some of the characteristics of sweeping 

on a homogenous orthogonal grid but introduces cell-to-cell interaction complexities not 

encountered for homogenization or the CFCM. Referring to the incoming angle m


 

shown in Figure 16, we note that faces 3f , 4f , and 8f   are inflow faces. The face 

denoted 5/7f  represents the material interface and will be an outflow face for cut-cell 1 

and an inflow face for cut-cell 2. Referring to the top face of the mixed-cell comprised of 

the faces 4f  and 8f  we note that the upwind cell located at mesh indices (2,3) will 

provide two distinct linear flux profiles – one for each face. The face 3f  will have its 

inflow flux profile provided by the upwind cell located at mesh indices (3,2). The faces 

denoted 1f  and 6f  will ultimately provide the two distinct inflow flux profiles required 

by the mesh cell lying at indices (1,2). Likewise, the outflow face denoted 2f  provides a 

single inflow flux profile to the mesh cell lying at indices (2,1).    

 

In general the mixed-cell sweeping procedure for the DFCM relies on a unique flux 

profile on each inflow face for each cut-cell element. For the meshes defined in Section 

3.1, this is ensured by continuity of the material interface throughout the mesh domain in 

conjunction with specified boundary conditions on the domain boundary. The procedure 

for determining sweep order on the cut-cells comprising the mixed-cell is the next step 

in the DFCM process. In general the sweep order is set by iteratively determining which 

cut-cells have defined flux profiles on each inflow face for the current quadrature angle. 
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This is done by computing the dot product of the outward face normal and the unit 

vector describing the direction of the current quadrature angle. For the meshes described 

in Section 3.1 there is at most one non-orthogonal face present in a mixed-cell and there 

are always two cut-cells in a mixed-cell; thus this process is quite simple. The quantity 

intm fn  , where 
intfn  is the outward unit-normal associated with the shared material 

interface is evaluated for each of the two cut-cells, and the cut-cell for which this 

quantity is positive is swept first. The other cut-cell is swept afterward since the required 

inflow flux profile will then be known. 

 

With the mixed-cell sweeping order determined as enumerated above, the angular flux 

profile in one cut-cell is computed using the LDGFEM equations given by Eq. (2.30) 

and the appropriate inflow flux profiles. Subsequently the outgoing flux profiles are 

stored, and the flux profile in the remaining cut-cell is computed using Eq. (2.30) and the 

newly available interface flux profile. The additional outgoing flux profiles in the mixed-

cell are stored, and the sweeping procedure continues to the next mesh cell. 

 

The DFCM accounts for both the material discontinuity as well as the known kink in the 

underlying flux within a mixed-cell. These are significant advantages relative to both 

homogenization and the CFCM and certainly provide the opportunity for increased 

computational efficiency and order of convergence. The cost of these improvements 

relative to the traditional methods involves increased memory usage and some increase 
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in the sweeping complexity. For all mixed-cells the memory storage requirements are 

approximately twice that of homogenization and about 50% more than the CFCM 

method. 

 

Arguably the most significant advantage of the DFCM is that the basic sweeping 

procedure on orthogonal grids remains unchanged. The cut-cell treatment may be 

considered as a sub-sweeping step that occurs for a portion of the cells in the grid. By 

limiting the degree of substructure allowed, the DFCM is readily applicable to the block-

orthogonal grids that exhibit significant parallelization advantages relative to general 

polyhedral grids.  

 

Lastly, we make a note concerning the use of adaptive mesh refinement (AMR) relative 

to the use of DFCM on meshes exhibiting curvilinear material interfaces. AMR 

techniques typically implicitly provide increased mesh resolution in the vicinity of 

boundary layers such as those occurring at material interfaces. While this approach is 

quite powerful, we speculate that the DFCM technique used in combination with AMR 

will yield the most computationally efficient solutions to this class of problems. 

 

3.2.4 Summary 

In this section a total of three distinct spatial discretizations were introduced for solving 

the LDGFEM equations on cut-cell meshes. The homogenization method replaces the 
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mixed-cell with a single rectangular element with mean material properties obtained 

from volume-weighting the underlying constituents. Homogenization is the historical 

standard applied in essentially all codes today. The CFCM employs a single linear trial 

space for the angular flux over the entire mixed-cell but allows distinct material 

properties in each cut-cell. We have previously shown that a similar implementation for 

the Crank-Nicholson spatial discretization is more accurate than homogenization but is 

still first-order convergent. Our new cut-cell method referred to as the DFCM employs 

separate discontinuous linear trial spaces for the angular flux within each cut-cell 

comprising a mixed-cell as well as distinct material properties in each cut-cell. This new 

method requires sub-sweeping on mixed-cells but accounts for the known angular flux 

derivative discontinuity occurring at material interfaces. 

 

3.3 Interface treatments 

Figure 17 shows an exaggerated blow-up of a mixed-cell resulting from the mesh 

generation procedure described in Section 3.1. On the left side of the figure is our 

example 3x2 orthogonal mesh. On the right side of the figure is the mixed-cell located at 

mesh indices (2,2). Also shown is the original curvilinear arc passing through the mixed-

cell, as well as the linear reconstruction. The sketch has been drawn in such a way to 

exaggerate the mesh error arising from representing the arc with a line segment. The 

resulting cut-cells and their respective volumes have been labeled in the figure. We shall 



 

87 

 

 

define V  as the volume lying between the interface arc and its linear representation. 

We shall refer to this volume as the mixed-cell interface residual. 
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Figure 17. Mesh interface residual 
 

 

The inability of the linear cut-cell mesh to exactly conform to curvilinear boundaries 

results in the presence of cut-cells whose underlying polygonal elements are not truly 

homogenous. More specifically, the cut-cells that are formed do not exactly replicate the 

distribution of materials in the original geometry. Typically one of the polygonal cut-
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cells will be homogenous, and the other will not. This mixed-cell interface residual 

represents a meshing error that may affect the accuracy of our numerical discretizations.  

 

If the cross-sections are not adjusted, the reconstructed homogeneous cut-cells will 

contain different amounts of material than their respective counterparts in the true 

geometry. In particular one cut-cell will gain mass and the other will lose mass, but the 

total mass present in the mixed-cell will not be preserved. There exist at least three 

reasonable approaches to treat this effect. We discuss each treatment in the sections that 

follow. 

 

It is worthwhile to note that two of the three techniques introduced below rely on 

detailed geometry information that may not be available in real-world scenarios. In many 

instances, inputs to mesh generation routines may lack the fidelity needed to fully 

reconstruct the original geometry. An example might be a mesh generation package that 

takes a computer-aided design (CAD) input that has been rasterized, thus eroding the 

original geometric detail. Another notable issue that may arise concerns the desire to 

perform transport calculations on cut-cell meshes in multi-physics problems. In this 

scenario it is quite possible that the discretizations and numerical techniques used for 

other physics associated with the problem may place restrictions on what form of 

meshing may be used. In practice the best interface mass treatment will be dictated by 

the specific code implementation, desired accuracy, and the ability to control meshing 
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characteristics. In this work we have implemented three separate techniques for 

comparison. 

 

3.3.1 Mesh refinement (no-treatment=NT) strategy 

The simplest approach to handling the interface residual is to ignore its presence and 

accept the associated mass change. We shall refer to this approach as the no-treatment 

(NT) residual mass treatment. As the mesh is refined the total number of cut-cells 

increases while the total interface length converges to the line integral over the true 

curved geometry. Thus the mean interface residual associated with cut-cells decreases 

rapidly with mesh refinement. We note that this treatment is the only one presented that 

appropriately handles an interface reconstruction between two user-defined material 

regions that are in reality the same material. This means that the ability of our LDGFEM 

to preserve the linear solution in space for any mesh size is retained only when no 

interface residual treatment is used on cut-cell meshes. The other interface residual 

treatments do not retain this limit. Even though we point this result out we should note 

that in practice this result is purely academic as cut-cell meshes should not be generated 

for homogenous domains. 

 

For the specific cut-cell meshes generated in this work, one may show that the interface 

residual volume represents the difference in areas between a circle and a special 

inscribing polygon. For real-world meshes the underlying behavior is not as simple, but 
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it is believed that such meshes could always be constructed such that the total interface 

residual throughout the domain is a smoothly decaying monotonic function of mesh 

refinement. 

 

3.3.2 Cell-wise mass preservation (CWMP) treatment 

The traditional approach to handling the interface residual that is used in fluid dynamics 

applications is based on the desire to preserve the total mass contained in a mixed-cell. 

For neutron transport this means modifying the macroscopic cross-sections in each sub-

cell so the mass present in the polygonal representation of the material region post-

meshing is the same as that in the original geometry. Since density is linearly 

proportional to the cross-section we may write this mass preservation as 

 .poly poly true true
i i i i

i i

V V     (3.7) 

Here true
i and poly

i represent the true and polygonal reconstructed macroscopic cross-

section, respectively, for material constituent i . The volumes within the mixed-cell 

occupied by material constituent i  for the true geometry and the polygonal 

representation are given by true
iV  and poly

iV , respectively. Referring to Eq. (3.7) we see 

that in order to preserve mass in a specific cut-cell given a polygonal representation that 

underestimates the true volume, the density of the material in that cut-cell should be 

increased. Likewise, when the polygonal representation overestimates the volume of a 
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particular cut-cell, the density is decreased to preserve the mass. If we define the volume 

differential associated with cut-cell i  as 

 ,true poly
i i iV V V     (3.8) 

then the appropriate cross section to use in a reconstructed polygonal cut-cell is simply: 

 1poly true i
i i poly

i

V

V

 
 

  
 

  (3.9) 

We note that iV  may have either sign. We have defined the interface residual such that 

the quantity has a negative or positive sign depending on whether the underlying cut-cell 

has been under- or over-represented by its polygonal representation. If the cut-cell 

volume is underestimated by the polygonal representation, then the volume differential 

is given a positive sign. If the cut-cell volume is overestimated by the polygonal 

representation, then it has a negative sign. This interface residual treatment is applied to 

all mixed-cells present in the mesh. We will refer to this technique as the cell-wise mass 

preservation (CWMP) treatment.  

 

We now mention two important notes concerning the implementation of the CWMP 

technique. This fix-up must be applied for all material properties. More specifically Eq. 

(3.9) is applied to the total cross-section, the scattering-cross section, the fission cross-

section, and the fixed source terms. We also note that this procedure should be 

performed individually for the Cartesian and curvilinear meshes since the underlying 

mixed-cell interface residuals attain different values on these two meshes. 
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 The CWMP treatment is fundamentally sound in that there are physical reasons for 

preserving the mass in a cell. In particular for a k-eigenvalue problem it is well known 

that preservation of the total fissionable material is important. There are some drawbacks 

to the CWMP approach, however. First, such a treatment requires some additional 

computational effort. Possibly more importantly this process creates many additional 

boundary layers in the modeled geometry. Finally, the CWMP treatment has the 

potential for causing significant statistical noise in the numerical solution because the 

amount and location of the moved mass will exhibit a non-smooth behavior as the mesh 

is refined. 

 
3.3.3 Region-wise mass preservation (RWMP) treatment 

The final interface residual treatment implemented in this work will be referred to as the 

region-wise mass preservation (RWMP) treatment. This technique is motivated by a 

desire to damp the statistically noisy behavior exhibited by the CWMP treatment as well 

as reduce the memory requirements for the computational solution. While the location 

and relative size of the interface residuals for various meshes are statistically varying 

properties, the total interface residual accrued over a single material interface in the 

problem exhibits smooth behavior as the mesh is refined. For the test geometries we 

have run this is a very smooth, monotonically decreasing function. This is because mesh 

refinement for our test geometries is equivalent to inscribing a circle with polygons of 

increasing dimension.  
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 The RWMP treatment is the region-wide analog of the CWMP treatment. In this 

treatment cross-sections are specified on a region-wide basis for each distinct, 

contiguous material region in the problem domain. Starting with the cut-cell mesh the 

integral interface residual is tallied for all mixed-cells on the periphery of material 

constituent A. Then the cross-section for each specific problem region is set to a single 

value which preserves the mass between the true geometry of the region and its 

representation by the combination of homogenous grid cells and cut-cells alike. 

 

The RWMP treatment is more difficult to implement than the CWMP treatment but 

requires less memory since in general each cut-cell does not have distinct cross sections 

as in the case of CWMP. We also note that RWMP is in general more resistant to 

statistical oscillations and mesh imprinting.  

 

3.3.4 Summary 

In Section 3.3 we introduced three different interface treatments for accounting for the 

mesh discrepancies that are created by reconstructing curvilinear material interfaces with 

line segments. If not specifically accounted for, the total mass of material present in each 

material domain as meshed does not match that in the original geometry.  

 



 

94 

 

 

The NT method is used to denote the treatment where no attempt to account for this 

effect is undertaken. Instead, refinement of the base orthogonal mesh encasing the 

problem is used to gradually eliminate this error essentially by representing each 

curvilinear interface with more and more line segments. 

 

The CWMP method is used to denote the treatment where cross-sections in each mixed-

cell are perturbed in such a way as to preserve material mass in each mixed-cell. The 

RWMP method is used to denote the treatment where a single cross-section for each 

distinct material region in the geometry is used for all underlying cells in such a way as 

to preserve the integral mass present in the true geometry and the meshed representation 

for that material region. 
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CHAPTER IV 

TEST PROBLEMS 

4.1 Test problem techniques and evaluation metrics 

In this section we detail several metrics that shall be used in the evaluation of the 

performance of the cut-cell methods for the various test problems. 

 

4.1.1 The method of manufactured solutions 

The method of manufactured solutions is a very common technique used to evaluate the 

performance of numerical methods. When applied to the transport equation in order to 

evaluate the performance of a spatial discretization, the method proceeds as follows. The 

evaluation begins by choosing a problem domain, material properties, and an assumed 

analytical angular flux. The presumed angular flux is inserted into the right side of the 

transport equation forming a total source term. In operator notation we denote this 

simply as: 

 L P Q    (4.1) 

Here L  denotes a “loss” operator and includes the streaming, collision, and out-scatter 

terms.  The P  term denotes a “production” operator and includes the in-scatter source 

only. Though in theory one may choose to employ a scattering medium, it is sufficient 

and convenient to select a purely absorbing medium. With the total source term defined 

by the presumed angular flux, one then applies the numerical method to the problem. If 

one chooses a purely absorbing medium, then the manufactured solution test problem 
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reduces to inverting the loss operator. For our purposes this is equivalent to performing 

one space-angle sweep using the numerical method to be evaluated. Following this 

space-angle sweep, one obtains the solution for the angular flux for the discretized 

equations on the selected space-angle grid. The convenience of the manufactured 

solution is that the discretized solution may now be directly compared to the analytical 

solution. 

 

For this work we have made extensive use of manufactured solutions in order to evaluate 

the performance of our numerical methods. The power of this technique is that methods 

may be specifically evaluated in certain limits and the behavior of the methods may be 

isolated to particular characteristics. For instance, a spatial discretization believed to be 

exact for linear solutions may be evaluated using a manufactured solution that is linear 

in space. If this hypothesis is true, then any linear angular flux profile chosen for the 

manufactured solution will generate the exact analytical solution on any space-angle 

grid. 

 

4.1.2 Scalar flux norms 

In order to quantitatively evaluate the performance of our numerical methods, it will be 

necessary to measure the error associated with solving the discretized equations 

associated with a numerical method on a particular space-angle grid. Since the parameter 

most commonly of interest to transport computations is the scalar flux, this parameter 
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will be chosen as the metric of interest. In general the Euclidean norm will be used to 

quantitatively evaluate the discrepancy between the solution of the numerical method h  

and the analytical solution .  The definition of the Euclidean norm is simply: 

  
2

2 ,hL dV  


   (4.2) 

where the spatial integration is performed over the entire problem domain .  If we 

consider for a moment a general test problem, we note that while the analytical flux   is 

an arbitrary function, the discretized solution h for our methods is a piece-wise linear 

function defined on polygonal elements comprising the domain of an RZ cylinder. 

 

For this work we have chosen to evaluate the scalar flux norm given in Eq. (4.2) by 

accruing contributions over each spatial cell using quadrature integration. Thus if we 

denote the accrual over every cell as 
cells
 , the quadrature formula in an arbitrary cell as 

qdpts
 , and an arbitrary quadrature weight as w , we have 

  2

2 .h
cells qdpts

L w  
 

  
 

   (4.3) 

 

The quadrature formula used to evaluate Eq. (4.3) is chosen as the same used to evaluate 

the inner products appearing in the discretizations as derived in Section 2.5. Thus the 

quadrature formula is only exact when the underlying function is linear within a 
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polygonal element. We note that in general this is not the case, and in particular, test 

problems run using the method of manufactured solutions will be subject to this 

discrepancy. With respect to manufactured solutions this error is inversely proportional 

to mesh size and is duplicated when inner products of the analytical flux are computed in 

order to set the total source.  

 

For manufactured solutions, a more rigorous and expensive integration depending on 

Monte Carlo sampling was initially investigated. When it was determined that this 

technique did not affect the results, it was abandoned for the simple quadrature formula 

that neglects the conformity of the manufactured solution to the cut-cell boundaries. 

 

4.1.3 Computational efficiency 

The order of convergence for a particular numerical method is a mathematical property 

that describes the relationship between numerical error and discretization step size. 

Though this parameter is very much related, it is not in general the fundamental metric 

by which modelers typically evaluate the performance of a code. To be more specific, it 

is generally the computational efficiency that will most impact the end users of the 

software implementing a particular method. More concisely, a better metric for method 

performance involves either the time to compute a solution to a given tolerance or the 

tolerance that may be achieved by a method within a given amount of time.  
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In order to introduce this evaluation metric, we will define computational efficiency as 

the inverse of the product of error and solution time for a given problem as follows: 

 
1

.
ET

   (4.4) 

Here  is the computational efficiency, E  is a measure of error in a numerical solution, 

and T  represents the time required to achieve that solution. Referring to Eq. (4.4) we see 

that the computational efficiency normalizes method performance using time. Thus the 

computational efficiency for two numerical methods is equivalent if one method 

produces half the error in twice the time relative to another method. For our new spatial 

discretizations in RZ geometry, this metric will allow for method comparison despite 

discrepancies in mesh generation time, underlying data structure complexity, and 

computational cost per grid cell.  

 

For the test problems run in this work, computational time shall be defined as the cpu 

time elapsing between the time a code begins mesh creation to the time a final scalar 

flux solution is obtained. For this work no parallelism has been implemented, and thus 

computational time is roughly proportional to the time required to mesh, setup data 

structures, and sweep the space-angle grid to a given tolerance on the scattering source.  
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In order to understand the effects of computational efficiency when applied to the 

various methods, it is instructive to briefly consider the behavior of computational time 

as the characteristic mesh size is reduced. 

 

In RZ geometry the total number of grid-cells will scale in a quadratic manner as the 

mesh size is refined linearly. Thus a base mesh constructed from a 10x20 meshing 

generates four times the grid cells as a base mesh constructed from a 5x10 meshing. 

Neglecting cut-cells and mesh generation time we note that the time required to sweep a 

particular space-angle grid will scale in a quadratic manner with respect to the inverse of 

mesh step size. This result means that neglecting the contribution from cut-cells, a 

second order method will asymptotically approach a constant computational efficiency 

while the computational efficiency for lower order methods will asymptotically decay 

with mesh refinement. 
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4.2 Linear flux manufactured solution 

The motivation for this test problem concerns the desire to validate our coding of the 

three basic discretizations, investigate meshing behavior, and investigate the presence of 

any numerically ill conditioning effects. A simple test of our new method involves 

application to a problem having a spatially linear flux profile throughout a fixed domain. 

For this test problem all runs have been performed with the NT interface residual 

treatment. We begin by presuming an isotropic, spatially linear angular flux  

  , ,
2

r z
r z 

   (4.5) 

defined on the cylinder described by: 

 
   
   
0, 0,1 ,

0, 0, 2 .

r R

z Z

 

 
  (4.6) 

We define the domain to be a purely absorbing homogeneous medium and thus

1t a   . The spherical meshing procedure described in section 3.1 is used to 

artificially insert a spherical material interface at the location interface 0.4999.x   For this 

problem the 1-D spatial variable x  is related to the cylindrical coordinates via 

  22 1 .x r z     (4.7) 

Material properties on each side of the interface are maintained homogenous, but this 

artificial interface creates cut-cells within the mesh so that we may test our three basic 

discretizations. 
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In order to determine the appropriate source term for this manufactured solution, we 

simply insert the angular flux given by Eq. (4.5) into the left side of the transport 

equation given by Eq. (2.1).  When this is done we obtain 

 2 2 2 2 2 2 2 2 ,AQ r z r z r z r z
r r z

  


                         
      (4.8) 

which simplifies to 

   / 2.Q r z          (4.9) 

The scalar flux corresponding to the angular flux given by Eq. (4.5) is simply 

    , 2 .r z r z     (4.10) 

The boundary conditions implied by Eq. (4.5) are  

  , 0, 0 ,
2s

r
r z n      (4.11) 

  , 2, 0 ,
2s

r Z
r z n 

     (4.12) 

and 

  1, , 0 .
2s

R z
r z n 
     (4.13) 

 

Our manufactured solution test problem proceeds using this source and associated 

boundary conditions. For a given mesh the chosen discretization is applied to produce 

the scalar flux solution. This scalar flux is then compared to the assumed form given by 

Eq. (4.10). The resulting error in the scalar flux is then computed for that mesh.  
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 Testing for this problem was performed using meshes of the form 2 ,I x I where I  

represents the number of cells along the r-axis, 2I  is the number of cells along the z-

axis, and 22I  is the total number of grid cells in the mesh. The test problem was run for 

each of the three spatial discretizations introduced in Section 3.2 using all possible 

meshes starting from a 5x10  mesh and proceeding to a 1000x2000 mesh. All problems 

were run with an 4S  angular quadrature set. 

 

Figure 18 depicts a summary of the meshing behavior for this test problem. The number 

and type of cut-cells resulting from the meshing procedure is shown as a function of 

mesh refinement. The number of quadrilateral-quadrilateral cut-cells, pentagonal-

triangular cut-cells, and total cut-cells are each shown versus the total number of grid 

cells. We note that for coarse meshes the resulting number of cut-cells formed exhibits 

the noisy behavior expected from the stair-stepping procedure. As the mesh is further 

refined the fraction of grid cells forming cut-cells rapidly declines, and the number of 

mixed-cells becomes a smooth function of mesh refinement. As the cell size increases 

linearly through subsequent mesh refinement the total number of cells within the mesh 

increases in a quadratic manner in 2-D. The linear nature of the notional material 

interface dictates that the resulting number of mixed-cells scales linearly in the mesh 

size. This result is particularly significant because it means that the computational cost 
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of the new cut-cell method will be rapidly dominated by sweeping on the orthogonal 

grid. 

 

 

 

Figure 18. Behavior of meshing characteristics for linear flux test problem 
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Since the angular flux for this homogenous problem is isotropic and linearly varying in 

space, each of our three basic discretization schemes should generate the exact solution 

on any mesh. A plot depicting the resulting 2L  norm of the scalar flux for various mesh 

sizes is shown in Figure 19. Also shown is the code balance parameter computed from 

the resulting solution on each mesh. As expected the scalar flux norm is zero to the 

limits of machine double precision for all meshes. This result provides code validation 

for each of the methods. We note that both the DFCM and CFCM methods yield errors 

and balance parameters that are equivalent to that found with the homogenization 

method which has no mixed-cells. This result is significant in that it suggests no 

significant numerical difficulties in the implementation of the various methods. In each 

of the meshes there is no instance of cut-cell interfaces coinciding with grid cell corners 

and dramatically affecting the numerical methods. Additionally, the scaling parameters 

introduced into the basis functions appear to function as intended. 
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Figure 19. Numerical conditioning of cut-cell methods applied to linear flux test 
problem 

 

 

4.3 Spatial kink manufactured solution 

The motivation behind this problem concerns the desire to test method performance for 

problems in which the solution exhibits a discontinuity in its derivative that does not 

coincide with an orthogonal mesh boundary. The use of a manufactured solution with 

isotropic angular flux and a spatial kink allows us to analyze the behavior of the spatial 

discretization itself. We choose an angular flux profile that is the piecewise union of a 

linear, quadratic, and constant function as follows. 
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 

   

2

2

, 0,

, ,

0 ,

A A

A
B B A B

A B

C

x x x

x
x x x x x

x x

otherwise



 



  

    
 

  (4.14) 

The problem domain is the cylinder described by 

 
 
 
0,1.4999 ,

0, 2.9998 .

r

z




 (4.15) 

The angular flux has been piecewise-defined as three distinct functions given by A  , 

B  , and C . Although the problem is encased in a 2-D mesh, the solution is circularly 

symmetric and is written as a function of the single spatial variable x . Material 

interfaces are present at spatial locations Ax  and .Bx  The underlying materials for each 

domain are purely absorbing and are also piecewise-defined in each region as follows. 

 

 
 

1 , 0,

2 , ,

0 ,

A A

t a B A B

C

x x

x x x

otherwise



  


  


   
 

  (4.16) 

For this problem the 1-D spatial variable x  is related to the cylindrical coordinates via 

 
2

2 2.9998
.

2
x r z

    
 

  (4.17) 

For simplicity and subsequent use we shall define 

 
2.9998

,
2

z z   (4.18) 

which allows us to rewrite Eq. (4.17) in the more compact form 
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 2 2x r z   . (4.19) 

 

The dimensions appearing in Eq. (4.15) and Eq. (4.17) are chosen to avoid any 

interference with the material interfaces Ax  and Bx . The material interfaces are placed at 

0.5Ax    and 1.0Bx  . Figure 20 shows a graphical representation of the analytical 

angular flux profile in the spherical coordinate .x  Note that the representation of C  is 

zero and not shown. 

 

 

 

Figure 20. Graphical representation of angular flux profile in spatial kink 
manufactured solution test problem 

 

 

Ax
x

0 Bx



A B
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In order to determine the appropriate source term for this manufactured solution we 

simply insert the angular flux given by Eq. (4.14) into the left side of the transport 

equation given by Eq. (2.1). For the first component we obtain 

 2 2 2 2 2 2 2 2 ,Ar z r z r z r z
r r z

  


                        
     (4.20) 

which simplifies to 

  2 22 2 .A AQ r z r z        (4.21) 

For the second component we obtain 

 

   

   

2 2
2 2 2 2

2 2
2 2 2 2 ,

A A
B B B

A B A B

A A
B B B

A B A B

x x
Q r z x r z x

r x x r x x

x x
r z x r z x

z x x x x




 

    
              

   
             

 

 
 (4.22) 

which simplifies to 

    
2 2

2 2

2 2

1
.A A

B t B
A B A B

x x
Q r z r z x

x x x xr z
  

 
        

 


 (4.23) 

For the last components we obtain 

 0.CQ   (4.24) 

And so collectively we have 
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   

   

 

2 2

2

2 2

2
2 2

2 2 , 0,

1
, ,

0 , .

A A A

A
B A B

A B

A
t B

A B

C

Q r z r z x x

x
Q r z x x x

x x r zQ
x

r z x
x x

Q otherwise

  

 



     



     
       

 

 






 (4.25) 

The appropriate boundary conditions are implied by Eq. (4.14) and are 

 
     

0 0 0
, 0, , 2.9998, 1.4999, ,

0,
n n n

r z r z r z  
     

       


 (4.26) 

where the cylinder outward unit normal at position  ,r z  is n . 

 

The scalar flux corresponding to the angular flux given by Eq. (4.14) is simply 

 

 

   

2

2

4 , 0,

4
, ,

0 ,

A A

A
B B A B

A B

C

x x x

x
x x x x x

x x

otherwise

 

 



  

    
 

 (4.27) 

 

A graphic depicting a 5x10 meshing of this problem, the resulting material regions, and 

associated cut-cells is shown in Figure 21. 
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Figure 21. Graphical representation of material distribution and meshing for 
spatial kink manufactured solution test problem 

 

 

Testing for this problem was performed using base meshes ranging from 5x10 up to 

1280x2560. Each possible mesh size between these ranges was used in order to assess 

any noisiness that may be exhibited in the underlying convergence trend. All problems 

were run with an 4S  angular quadrature set. Using the known analytic solution, the 2L  

norm of the scalar flux was computed for each mesh. This test problem was run using 

homogenization, the CFCM, and the DFCM. For each discretization the problem was 

run for the NT, CWMP, and RWMP interface residual treatments. Thus solutions were 

obtained for each of the nine possible permutations of these methods. The 2L   scalar flux 

convergence for all methods is shown in Figure 22. 
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Figure 22. Method performance for scalar flux convergence in spatial kink 
manufactured solution test problem 

 

 

Reference trend lines for first- and second-order convergence are shown in Figure 22. 

Referring to the convergence plot we may see that the DFCM is second-order 

convergent for the angular flux. The effective order of convergence for both 

Homogenization and CFCM is  1.33O h , although CFCM is the more accurate of the two 

methods.  With respect to the interface mass treatments, we note no significant 

distinction in the methods. We surmise that comparison between the interface residual 

treatments has apparently been precluded because the angular source computation is 
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performed with the analytical source term rather than perturbed fixed sources in mixed-

cells. 

 

The results depicted in Figure 22 demonstrate increased accuracy for the CFCM and the 

DFCM relative to homogenization when applied to the same orthogonal mesh base 

meshes. However, the CFCM and the DFCM incur additional computational cost to 

achieve this. In an attempt to normalize for this effect, we have computed the 

computational efficiency as defined by Eq. (4.4) for the scalar flux norm computed on 

the various mesh sizes. Figure 23 shows the computational efficiency of each method for 

this test problem. 

 

As the mesh is refined the DFCM obtains almost constant efficiency while the efficiency 

of the CFCM and homogenization methods peak and rapidly fall off as the mesh is 

refined. Given our definition of computational efficiency this is expected since the 

DFCM is second-order convergent and the CFCM and homogenization are first-order. 

This result is also dependent on the fraction of the mesh comprised of mixed-cells 

decreasing as the base mesh is refined. We showed in Figure 18 that the fraction of 

mixed-cells resulting from our meshing procedure is linear in the characteristic mesh 

size. Looking at the DFCM efficiency at fine mesh sizes, we do note a slight loss of 

efficiency with increasing mesh refinement. Most likely this slight degradation is caused 

by differences in CPU performance as problem sizes force computations from CPU 
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cache to RAM. There is little reason to expect any other factor since the method is 

shown to be second-order convergent and computational cost is quickly dominated by 

sweeping on the orthogonal grid cells. We conclude by noting that even for relatively 

coarse meshes the DFCM method is more efficient than homogenization by roughly an 

order of magnitude. This may be interpreted as an extra digit of accuracy for the same 

computational cost or the same accuracy for one-tenth of the computational time. As 

more accuracy is required, driving further mesh refinement, this discrepancy grows 

unbounded due to the discrepancy in order of convergence between the two methods. 

 

 

 

Figure 23. Computational efficiency for spatial kink test problem 
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 This test problem has shown DFCM to be second-order convergent for the 2L  scalar flux 

norm while the CFCM and homogenization are essentially first-order convergent. With 

respect to the 2L  scalar flux norm the efficiency of the DFCM method was shown to be 

asymptotically constant until memory swapping issues are encountered. Starting at 

relatively coarse meshes, the DFCM method is significantly more accurate than either 

the CFCM or homogenization. 

 
4.4 Fixed source test problem 

A fixed source test problem was run to investigate the performance of the methods for 

real problems with material interfaces which exhibit ray-effects and lack smoothness. 

 

The fixed source test problem is a 1-D spherical problem consisting of an inner source 

sphere surrounded by a moderating shell. Boundary conditions for this problem are 

vacuum on all sides. A graphical representation of this test problem is given in Figure 24 

with associated cross-sections. 
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Figure 24. Graphical depiction of problem setup for fixed source test problem 
 

 

The problem domain is the cylinder described by 

 
 
 
0,1.0001 ,

0, 2.0002 .

r

z




 (4.28) 

The overall geometry is comprised of an inner fuel region with fixed source and a 

surrounding spherical shell scattering region as indicated in Figure 24. The radius of the 

fuel region is taken as 0.25, and the thickness of the moderating shell is set to 0.5. The 

remaining RZ cylinder is void. This problem has two distinct material interfaces 

occurring between the fuel and moderator and between the moderator and void regions.  
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Testing for this problem was performed using approximately six different spatial meshes 

ranging from base grids of 5x10 to 160x320. In order to investigate spatial convergence 

for this problem it is necessary to simultaneously refine in both space and angle. A series 

of test problems were run versus spatial mesh size for each S8, S16, S32, and S48 angular 

quadrature sets. A scalar flux convergence tolerance of 1310  was used for all test 

problems. To assist in error computations a fine-mesh solution was generated for this 

problem using a base spatial mesh of 640x1280 with S48 angular quadrature and the 

DFCM method with CWMP. 

 

A plot depicting the scalar flux convergence for the fixed source test problem using S8 

angular quadrature is given in Figure 25. The immediate conclusion seen from this 

figure is that for mesh sizes finer than 40x80 all methods are essentially equivalent with 

no further scalar flux convergence occurring at finer mesh sizes. This is the expected 

result occurring due to the insufficient angular resolution provided by the S8 quadrature 

set. As the spatial mesh is refined the error becomes dominated by the angular 

discretization and thus there is no discernible distinction between the spatial 

discretization schemes. For fine meshes we see that DFCM is dominantly the best 

performing cut-cell method with CWMP yielding the best results for each cut-cell 

method. Furthermore, we note that the DFCM/CWMP combination provides essentially 

the same scalar flux error for all spatial meshes. This indicates that angular discretization 

errors dominate on all spatial meshes for the DFCM/CWMP technique. 
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Figure 25. Scalar flux convergence with S8 for fixed source test problem 
 

 

A plot depicting the scalar flux convergence for the fixed source test problem using S16 

angular quadrature is given in Figure 26. Here we note that all methods are essentially 

equivalent at spatial meshes finer than 80x160. As before, the DFCM cut-cell 

discretization is clearly the most accurate with CWMP being the most accurate residual 

technique. Both DFCM and CFCM are an order of magnitude more accurate at coarse 

mesh sizes. For this problem set it is still difficult to ascertain order of convergence 
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because all methods roll off so quickly. We again note that application of DFCM in 

conjunction with CWMP provides similar error across all spatial meshes. 

 

 

 

Figure 26. Scalar flux convergence with S16 for fixed source test problem 
 

 

Continuing with angular refinement, the scalar flux convergence results for the fixed 

source test problem using S32 angular quadrature are given in Figure 27.  Here we note 

that, unlike for coarser angular meshes, all methods show distinction throughout most of 

the spatial meshes, though some convergence occurs at the finest mesh. As before, the 



 

120 

 

 

DFCM cut-cell discretization is clearly the most accurate with CWMP being the most 

accurate residual technique. Both DFCM and CFCM are an order of magnitude more 

accurate than homogenization at coarse to moderate mesh sizes. Though there is still 

uncertainty in visually determining order of convergence, the moderate mesh sizes 

appear to exhibit near second-order convergence while homogenization is somewhat 

more degraded. This is the first angular mesh that is fine enough such that DFCM shows 

significant convergence with spatial refinement. 

 

 

 

Figure 27. Scalar flux convergence with S32 for fixed source test problem 
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  Advancing to the finest angular mesh, the scalar flux convergence results for the fixed 

source test problem using S48 angular quadrature are given in Figure 28. Here we note 

that for the first time the angular mesh appears sufficiently fine that spatial error 

dominates the majority of the results shown. We note that this is expected since the fine 

mesh solution used for comparison was computed on the same angular mesh. Each 

method shows distinction throughout all spatial meshes, though convergence begins to 

occur for CFCM and DFCM at the finest mesh. As before, the DFCM cut-cell 

discretization is clearly the most accurate with CWMP being the most accurate residual 

technique. Both DFCM and CFCM are significantly more accurate than homogenization 

with norms between 20 and 30 times smaller for the coarsest meshes shown. Though 

there is still some uncertainty in visually determining order of convergence, the 

moderate mesh sizes appear to exhibit near second-order convergence for DFCM and 

CFCM while homogenization is somewhat degraded. We note that the second order 

convergence trend is most notable for the NT and RWMP residual treatments, while the 

convergence of DFCM with CWMP is never as rapid in comparison. This suggests that 

despite using S48, the DFCM/CWMP method is accurate enough that the angular 

discretization errors degrade the observed order of convergence. Finally, we note that 

both CFCM and DFCM seem to obtain equivalence as the mesh is refined. This suggests 

that the singularities in the reference solution quickly dominate the convergence 
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behavior. For this reason the interface residual treatments themselves also have little 

bearing on the convergence for all but the coarsest meshes for this test problem.  

 

 

 

Figure 28. Scalar flux convergence with S48 for fixed source test problem 
 

 

The interpretation of the scalar flux convergence results shown in Figure 25 through 

Figure 28 are complicated by the interplay in the spatial and angular discretizations as 

well as the use of a fine mesh reference solution. In order to properly summarize these 

results a few notes are in order. We begin by noting that the analytical solution to this 
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problem exhibits smoothness, meaning there are no discontinuities in the angular flux or 

its first derivative. However, the discrete ordinates angular flux solution for this problem 

exhibits singularities that degrade order of convergence. Two separate effects occur as 

the angular meshes are refined. First successive angular refinement diminishes the 

angular discretization contribution to error, thus allowing spatial discretization 

convergence to be exhibited in the convergence plots. Secondly successive angular 

refinement reduces the degree of singularity in the discrete ordinates solution. Noting 

these effects we may summarize the convergence of the spatial discretization methods 

for the fixed source test problem as follows.  For coarse angular meshes the angular 

discretization error dominates and all convergence trends rapidly flat line with no 

subsequent convergence after a few spatial meshes. For moderate fidelity angular 

meshes the spatial discretization error dominates at coarse spatial meshes and some 

convergence in space is observed before angular discretization errors and singularities 

take over. At the finest angular mesh there is in essence no angular discretization error 

since angular quadrature matches that of the fine mesh reference solution.  Here we still 

observe that the DFCM and CFCM methods show deteriorated convergence at the finest 

spatial meshes. For the S48 runs this degraded convergence is attributed purely to 

singularities in the underlying discrete ordinates solution. Further angular refinement 

continues to smooth out these singularities but eventually the spatial convergence for all 

methods is degraded by the underlying singularities present in the reference solution. 
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In summary, the scalar flux convergence trends for the fixed source test problem show 

significantly better convergence rate for CFCM and DFCM relative to homogenization. 

For moderate spatial mesh sizes both CFCM and DFCM when applied in conjunction 

with the NT residual treatment appear near second-order convergent briefly before 

experiencing degraded order of convergence due to angular discretization error. The 

CWMP residual treatment applied in conjunction with DFCM is so accurate that angular 

discretization error and singularities prohibit an asymptotic trend to the spatial 

convergence rate. In all cases the DFCM/CWMP appears most accurate and in the 

absence of angular effects this accuracy disparity is significant, with errors relative to 

homogenization of an order of magnitude lower typical. 

 

The scalar flux convergence plots shown in Figure 25 through Figure 28 show that both 

the DFCM and the CFCM are significantly more accurate than homogenization. In 

addition, the CWMP appears to be almost universally the most accurate residual 

treatment. These results establish accuracy, but they do not take into account the 

increased computational cost associated with these methods relative to homogenization. 

In order to weigh these considerations, the associated run times were used in conjunction 

with the scalar flux norms in order to compute computational efficiency. The 

computational efficiency for the various methods was computed for the fixed source test 

problem set using the S48 angular quadrature. For the purposes of this calculation, run 

time is defined as the cpu time elapsing from the start of meshing to convergence of the 
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scalar flux solution. Thus runtime includes time to allocate data structures, time to mesh, 

as well as time to perform sweeps and obtain convergence of the scattering source. The 

results for computational efficiency are contained in Figure 29. 

 

 

 

Figure 29. Computational efficiency for scalar flux with S48 for fixed source test 
problem 

 

 

The computational efficiency results follow those expected from the convergence plot 

shown in Figure 28, indicating that computational cost is dominated by sweeping on the 

orthogonal grid. At coarse to moderate mesh sizes the DFCM and CFCM methods are 
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significantly more efficient than homogenization with typically an order of magnitude 

difference in efficiency. The efficiency of all methods decays with increasing mesh 

refinement, which indicates that the interplay of the angular mesh is affecting 

convergence and efficiency. For a second-order convergent method, we expect 

efficiency to attain a constant value at coarse mesh sizes removed from processor cache 

effects. 

 
 
4.5 Eigenvalue test problem 

The eigenvalue test problem is identical to that presented in Section 4.4, but the fixed 

source material is replaced with a fissile media. For completeness the problem geometry 

and associated cross-sections are depicted in Figure 30. 

 

The problem domain is the cylinder described by 

 
 
 
0,1.0001 ,

0, 2.0002 .

r

z




 (4.29) 

The overall geometry is comprised of an inner fuel region with fissile source and a 

surrounding spherical shell scattering region as indicated in Figure 30. The radius of the 

fuel region is taken as 0.25, and the thickness of the moderating shell is set to 0.5. The 

remaining RZ cylinder is void. This problem has two distinct material interfaces 

occurring between the fuel and moderator and between the moderator and void regions.  
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Testing for this problem was performed in an analogous way as the fixed source test 

problem discussed in Section 4.4 with lower angular quadrature orders due to increased 

computational run times. Solutions were computed on a total of six different spatial 

meshes ranging from base grids of 5x10 to 160x320. A series of test problems were run 

versus spatial mesh size for each S4, S8, S16, and S32 angular quadrature sets. A scalar 

flux convergence tolerance of 1310  was used for all test problems. The fine-mesh 

solution was generated for this problem using a base spatial mesh of 640x1280 with S32 

angular quadrature and the DFCM method with CWMP. Convergence studies were 

performed for both the scalar flux error and the underlying eigenvalue. 
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Figure 30. Graphical representation of setup for eigenvalue test problem 
 

A plot depicting the scalar flux convergence for the eigenvalue test problem using S4 

angular quadrature is given in Figure 31. The immediate conclusion seen from this 

figure is that for mesh sizes finer than 10x20 all methods are essentially equivalent with 

no further scalar flux convergence occurring at finer mesh sizes. Although little 

distinction exists between the various methods, DFCM with CFCM is again most 

accurate.  
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Figure 31. Scalar flux convergence with S4 for eigenvalue test problem 
 

 

A plot depicting the scalar flux convergence for the fixed source test problem using S8 

angular quadrature is given in Figure 32. Here we note that only homogenization shows 

significant convergence across the various spatial meshes. As before, the DFCM cut-cell 

discretization is clearly the most accurate with CWMP being the most accurate residual 

technique. For this problem S8 is still not sufficient angular fidelity to track convergence 

trends on the selected spatial meshes. 
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Figure 32. Scalar flux convergence with S8 for eigenvalue test problem 
 

 

Continuing with angular refinement, the scalar flux convergence results for the 

eigenvalue test problem using S16 angular quadrature are given in Figure 33. Here we 

note sufficient angular resolution to observe some amount of convergence across all 

methods. As before, the DFCM cut-cell discretization is clearly the most accurate with 

CWMP being the most accurate residual technique. Both DFCM and CFCM are an order 

of magnitude more accurate than homogenization at coarse to moderate mesh sizes. 

Though there is still uncertainty in visually determining order of convergence, the 

moderate mesh sizes appear to show first-order convergence for homogenization. 
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Though more accurate than homogenization, DFCM and CFCM show flatter 

convergence than homogenization, indicating that these methods are too accurate to 

observe order of convergence at S16.  

 

 

 

Figure 33. Scalar flux convergence with S16 for eigenvalue test problem 
 

 

Advancing to the finest angular mesh, the scalar flux convergence results for the 

eigenvalue test problem using S32 angular quadrature are given in Figure 34. Here we 

note that for the first time the angular mesh appears sufficiently fine that spatial error 
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dominates the majority of the results shown. We note that this is expected since our fine 

mesh reference solution was computed with the same SN order. Each method shows 

distinction throughout all spatial meshes, though convergence begins to occur for CFCM 

and DFCM at the finest mesh. As before, the DFCM cut-cell discretization is the most 

accurate with CWMP being the most accurate residual technique. Both DFCM and 

CFCM are significantly more accurate than homogenization with an order of magnitude 

better accuracy across most meshes. Though there is still some uncertainty in visually 

determining order of convergence, the moderate mesh sizes appear to exhibit second-

order convergence briefly for DFCM and CFCM while homogenization is somewhat 

degraded. We note that the second-order convergence trend is most notable for the NT 

and RWMP residual treatments, while the convergence of DFCM with CWMP is never 

as rapid in comparison. This suggests that despite using S32, the DFCM/CWMP method 

is accurate enough that the angular discretization errors degrade the observed order of 

convergence. 

 

The interpretation of the scar flux convergence rate trends depicted in Figure 31 through 

Figure 34 are subject to the same space/angle interplay considerations as the fixed source 

test problem. The results and their interpretation follow the identical discussion laid out 

in section 4.4. 
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Figure 34. Scalar flux convergence with S32 for eigenvalue test problem 
 

 

The scalar flux convergence plots shown in Figure 31 through Figure 34 show that both 

the DFCM and the CFCM are significantly more accurate than homogenization. The 

DFCM is the most accurate method save a few cases with very coarse meshes. In 

addition, the CWMP appears to be almost universally the most accurate residual 

treatment. In order to assess computational efficiency for the various methods, the 

runtime was tabulated for the eigenvalue test problem using the S32 angular quadrature. 

The results for computational efficiency are contained in Figure 35. 

 



 

134 

 

 

 

Figure 35. Computational efficiency for scalar flux convergence with S32 for 
eigenvalue test problem 

 

 

The scalar flux computational efficiency results follow those expected from the 

convergence plot shown in Figure 34, indicating that computational cost is dominated by 

sweeping on the orthogonal grid. At coarse to moderate mesh sizes, the DFCM and 

CFCM methods are significantly more efficient than homogenization, typically with an 

order of magnitude difference in efficiency. The efficiency of all methods decays with 

increasing mesh refinement, which indicates that the interplay of the angular mesh is 

affecting convergence and efficiency. For a second-order convergent method we expect 
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efficiency to attain a constant value at coarse mesh sizes removed from processor cache 

effects. 

 

Of primary interest in neutron criticality problems is the eigenvalue itself. For this 

reason the convergence of the eigenvalue was studied in addition to the scalar flux. In 

each study we used the same space/angle meshing as was used for the scalar flux 

convergence study. A plot depicting the eigenvalue convergence for the eigenvalue test 

problem using the S4 angular quadrature is given in Figure 36. We immediately note that 

the convergence results for the eigenvalue are noisy in comparison to the results 

obtained for the scalar flux. This is to be expected since this quantity is not a 

mathematical norm and thus error cancellation can occur. It is also clear that 

convergence of all methods to the same eigenvalue occurs at the finest meshes. Due to 

the nosiness of the underlying trend data and the sparseness of the results, it is difficult 

to ascertain anything further from the S4 convergence data. 
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Figure 36. Eigenvalue convergence with S4 for eigenvalue test problem 
 

 

The eigenvalue convergence results for S8 are shown in Figure 37. Despite underlying 

noisiness we begin to see convergence trend information at this angular resolution. 

Homogenization in particular seems to be near second-order. DFCM and CFCM are 

rapidly degraded by lack of angular fidelity. We note that not much may be said of the 

various residual treatment schemes. 

 



 

137 

 

 

 

Figure 37. Eigenvalue convergence with S8 for eigenvalue test problem 
 

 

The eigenvalue convergence results for S16 are shown in Figure 37. These results again 

indicate that homogenization is near second-order though this is suspect as it appears 

that the results of this method are passing through the true solution at or near the finest 

mesh. The noisiness of the DFCM and CFCM make it hard to distinguish a firm order of 

convergence, although we note that CWMP begins to distinguish itself as the most 

accurate residual treatment on average. 
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Figure 38. Eigenvalue convergence with S16 for eigenvalue test problem 
 

 

Proceeding to the finest angular mesh, the eigenvalue convergence results for S32 are 

shown in Figure 39. Since these results are computed with an angular quadrature 

matching that used to generate the fine mesh solution, the space-angle meshing interplay 

is reduced and some trend information is observable. Most notably the results appear 

second-order convergent for DFCM and CFCM with homogenization showing slightly 

degraded effective order of convergence. The effective order of convergence of the 

eigenvalue for the homogenization treatment is  1.86O h .  The residual treatments 

distinguish themselves here, and we note that for DFCM and CFCM the CWMP 
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treatment is most accurate. Finally we note that in this particular plot it is most obvious 

that the trend behavior exhibits particular meshes where the numerical solution passes 

through the solution. This is particularly obvious with CFCM and DFCM. 

 

 

 

Figure 39. Eigenvalue convergence with S32 for eigenvalue test problem 
 

 

We conclude our study of eigenvalue convergence by presenting a plot showing the 

computational efficiency for the eigenvalue computation as shown in Figure 40. 
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Figure 40. Computational efficiency for eigenvalue computation with S48 for 
eigenvalue test problem 

 

 

The computational efficiency results follow those expected from the convergence plot 

shown in Figure 28, indicating that computational cost is dominated by sweeping on the 

orthogonal grid. At coarse to moderate mesh sizes, the DFCM and CFCM methods are 

significantly more efficient than homogenization, typically with an order of magnitude 

difference in efficiency. The efficiency of homogenization degrades as the mesh is 

refined, indicating that the order of convergence is degraded. The DFCM and CFCM 
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methods in conjunction with NT or RWMP attain near constant efficiency, indicating the 

second-order convergence noted previously.  
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CHAPTER V  

DOCUMENT SUMMARY 

 

In this paper we have introduced a new cut-cell discretization for the nS  form of the 

neutron transport equation. This new method has been developed, implemented, and 

tested using a test code developed specifically for this purpose. In this section we briefly 

summarize the major results of each section of this thesis.  

 

In section 1 of this document we introduce the neutron transport equation and briefly 

outline one technique by which it may be solved using numerical discretization. We then 

introduce the concept of orthogonal spatial meshing and the issues that arise when this 

spatial mesh does not conform to the boundaries of the underlying geometry. Next we 

introduce the concept of a cut-cell taken from the field of fluid mechanics in which the 

term is used to describe a spatial mesh cell that contains a material boundary. Having 

introduced the problem of interest, we then summarize some previous work that was 

performed on the topic of interface reconstruction for the neutron transport equation. The 

section concludes with a brief summary of our new cut-cell discretization developed in 

this thesis. 

 

In Section 2 of this document we developed all the equations necessary to solve the one-

group LDGFEM equations with isotropic scattering in RZ geometry for basic orthogonal 
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grids. The section begins by deriving the relevant FEM equations that describe the 

angular and spatial discretization of the transport equation. Though much of Section 2 is 

written as if the target is orthogonal grids, these equations are specifically developed 

such that they may be applied to arbitrary polygons in 2-D.  Next the document provides 

in some detail the description by which inner products may be evaluated for the specific 

polygonal elements of triangles, quadrilaterals, and pentagons. Section 2 ends with a 

description of sweeping, which is the process by which the SN equations are solved on a 

space-angle mesh. 

 

In Section 3 of this document we introduced three different techniques for handling the 

spatial discretization of cut-cells using the LDGFEM. The first method is known as 

homogenization and is the standard historical approach used for treating spatial cells 

comprised of multiple materials. This method simply replaces the cut-cell with a 

homogeneous cell consisting of the volume weighted mean of material properties 

intrinsic to the cut-cell. The second method is an analog of a cut-cell method recently 

introduced which we refer to as the CFCM. This method employs a piecewise constant 

cross-section representation of the cut-cell but still uses a single linear flux 

representation throughout the cut-cell. The third method represents our new technique 

and is referred to as the DFCM. This new method employs a piecewise constant cross-

section representation and a piecewise linear flux representation across the two cut-cells 

comprising a mixed-cell representing a material interface. Finally, in Section 3 we also 
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introduce three different methods for treating the material residuals that result in 

representing curvilinear geometries with linear segments. The simplest residual 

treatment method is referred to as the NT method and simply ignores the material 

residual. The RWMP method adjusts the overall material densities such that the total 

mass of materials is maintained when the geometry is meshed. The CWMP method 

adjusts material densities in each cut-cell such that the total mass of material present in 

each mixed-cell is preserved between the original geometry and the mesh geometry. 

 

In Section 4 of this document we introduced various techniques and metrics for 

evaluating the performance of our new methods. We then introduced a total of four test 

problems comprised of two manufactured solutions, a fixed source test problem, and a k-

eigenvalue problem. The results of the first manufactured solution serve to validate 

implementation and numerical conditioning of our new methods. The second 

manufactured solution test problem shows second-order convergence for the scalar flux 

in problems with curvilinear material interfaces in the absence of singularities for the 

DFCM method. The fixed source test problem briefly exhibits near second-order 

convergence for the scalar flux for the CFCM and DFCM before singularities in the 

underlying solution degrade the order of convergence. Homogenization shows an 

effective order of convergence for the scalar flux of  1.6O h . The CFCM and DFCM are 

both significantly more computationally efficient than homogenization. The eigenvalue 

problem briefly exhibits second-order eigenvalue convergence for CFCM and DFCM 
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prior to singularities degrading the convergence. Homogenization again yields an 

effective scalar flux convergence of  1.86O h . Both DFCM and CFCM show second 

order convergence for the eigenvalue itself, while homogenization converges with order 

 1.6O h .  In all test problems the DFCM method is shown to be the most 

computationally efficient of all methods evaluated. The CWMP method is almost 

universally the most accurate residual treatment for all problems run. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 
In this section we summarize the behavior of the various cut-cell methods developed in 

this work with some concluding behavior on their performance. We then detail some 

observations related to future work in this area. 

 

5.1 Conclusions 

The performance of the three discretization schemes described in this thesis vary 

significantly across different problem types and underlying computational result. Below 

we summarize the behavior of the methods for the problems investigated. 

 

For the manufactured solutions presented the angular flux is smooth and the 

interpretation of results is straightforward. For this smooth manufactured solution the 

DFCM technique exhibits second order accuracy for the scalar flux throughout the 

asymptotic regime. The CFCM and homogenization techniques show degraded order of 

convergence that are more near first order convergent than second order. Though CFCM 

is more accurate than homogenization, the difference is minimal. The computational 

efficiency for DFCM is dramatically better than the other methods. 

 



 

147 

 

 

For the real fixed source and eigenvalue test problems investigated using fine mesh 

reference solutions the convergence of the methods is less well behaved. At intermediate 

spatial meshes the CFCM and DFCM methods yield comparable behavior. Although the 

convergence is not second order, each is more accurate than homogenization in this 

regime. As the mesh is further refined all methods trend toward comparable accuracy 

and seem to eventually degrade to first order convergence. This behavior is apparently 

due to the underlying singularities in the reference solutions used to compute 

convergence. When the spatial mesh is sufficiently refined the errors due to singularities 

dominate those associated with the interface techniques and each method becomes 

equivalent. This conclusion is supported by noting that this behavior is far less 

pronounced for the convergence of the eigenvalue which is more global in nature. 

 

For the test problems investigated the CWMP interface residual treatment generally 

performs the best of the three residual treatments investigated. For very coarse meshes 

the behavior can be sporadic but with relatively moderate mesh refinement the CWMP 

technique becomes superior to the other treatments. 

 

The computational results provided in this dissertation demonstrate significant 

advancement with respect to computational transport on meshes exhibiting material 

interfaces that do not conform to mesh boundaries. In the absence of ray-effects and 

singularities, the DFCM method has been shown to be second-order convergent for the 
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scalar flux and significantly more computationally efficient than the current method of 

homogenization. This result is significant in practice for various reasons. From a 

practical perspective the increased computational efficiency may be viewed as providing 

more accurate solutions within a fixed time or providing a solution to a specific 

tolerance quicker relative to the homogenization treatment. Secondly, the proposed 

method is particularly relevant because it is a relatively minor modification to the 

approaches currently implemented in production codes. This means that inclusion of the 

DFCM method is straight-forward, relatively easy to implement, and provides 

significant computational advantage. Lastly, the DFCM technique described in this work 

is readily amenable to other aspects of computational transport of particular concern. 

The primary objective of concern involves the DFCM’s amenability to massively 

parallel architectures. Since the basic block orthogonal grid is maintained by this 

method, the currently implemented parallelization schemes may be readily applied. 

Additionally, the new cut-cell method should be an effective complement easily 

integrated into adaptive mesh refinement (AMR) schemes in use in production codes.  

 

5.2 Future work 

Though the cut-cell methods introduced in this work are essentially generic and have 

proven quite efficient, there remain several aspects of the general problem that have not 

been addressed by this work. 
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The most obvious opportunity for future work involves the application of the DFCM 

procedure to other geometries. Having been applied in RZ geometry in this work we 

note that we have already shown implementation in XY geometry via the starting 

direction flux procedure. However, the method should be readily applicable to 3-D, XYZ 

geometry as well. In XYZ geometry a mixed-cell will convert a brick element into two 

general polyhedral cut-cells. The resulting cut-cell mesh may be treated in the same 

manner described in this work. Implementation and testing in other geometries should be 

performed to validate this approach and document the computational results. 

  

A second area, and likely the most important work to be done, involves providing an 

effective source iteration acceleration scheme. We have not tackled this aspect of the 

problem in this work. There remain at least two obvious ways to approach this problem. 

The first involves deriving a consistent diffusion cut-cell discretization that may be used 

as a pre-conditioner to source iteration. The second involves acceleration via the more 

general Krylov solvers such as the generalized minimal residual (GMRES) algorithm. 

Though there is no reason to believe that either of these schemes will prove difficult to 

implement, this has not been proven at this time. 

 

The third area of concern involves the treatment of degenerative cut-cell meshes. 

Though specifically avoided in this work, in general there is a chance that the meshing 

procedure described in Section 3 will result in degenerative cut-cells that coincide with 
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orthogonal mesh vertices. In practice this effect will be seen when the vertices of a linear 

interface fall arbitrarily close relative to machine precision to the corner of a rectangular 

grid cell. Though treatment of such conditions should be specifically handled prior to 

implementation in production codes, there is no reason to believe the underlying 

performance of the method will be affected. We note that the likely best solution for 

such occurrences simply involves artificially sliding the interface to a cell corner, thus 

avoiding conditioning issues and clearly defining inflow/outflows for the sweeping 

procedure. 

 

The last area for future work that we wish to detail involves the actual mesh generation 

procedure. For this work we have generated simple meshes whereby the original 

geometry was exactly known, and we had complete control of how the domain was 

meshed. Considering various scenarios for the use of production codes, this criterion will 

in general not be true. For multi-physics calculations in particular, the radiation transport 

package will note specify the meshing procedures. For complicated mesh generation 

involving CAD models there are two distinct issues of concern. First one must consider 

the effect of meshing errors themselves. Although our new cut-cell methods provide 

second-order spatial discretization convergence, there is no guarantee that this 

convergence holds for the true geometry since the meshing procedure itself must be 

second-order. Furthermore we note that the mass preservation treatments employed in 

this work rely on exact knowledge of the underlying geometry although this information 
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may not be available in production mesh generation packages. Future work should 

examine popular mesh generation packages and confirm that they are adequate for the 

methods presented in this research. 
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APPENDIX A 

CUT-CELL TYPE DESCRIPTIONS 

 

The sweeping infrastructure used for solution of the SN equations requires numerical 

integration in space and along boundary faces as discussed in section 2.5. These 

integrations as well as the upwinding procedure associated with the LDGFEM equations 

themselves require specific accounting of the cut-cell infrastructure. In this section we 

present graphical depictions of the various cut-cell types. We also introduce the vertex 

and face number schemes used to uniquely define them in code. 

 

Ignoring cut-cells where the linear interface intersects a cell corner, there are two 

primary types of cut-cells. Cut-cells occurring when the linear cut intersects adjacent cell 

faces result in a combination of a quadrilateral and pentagonal element. The four distinct 

possibilities resulting from each of the four corners of the mixed-cell are given cell type 

numbers one through four. These cut-cell types are shown in Figure 41 below. 

 

Cut-cell types formed by a horizontal interface that intersects opposite sides of the 

mixed-cell result in cut-cells comprised of two non-orthogonal quadrilateral elements. 

These cut-cells are given cell type numbers five through seven. The corresponding cut-

cell types formed from a horizontal interface are given cell type numbers eight through 

ten. These cut-cell types are shown in Figure 42. 
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A numbering system was used in order to facilitate algorithmic procedures associated 

with sweeping and mapping inflows and outflows. Starting at the lower-left corner of the 

cut-cell, vertices are numbered sequentially in a counter-clockwise manner starting at 1. 

These numbers are indicated in red within the cut-cell type diagrams. Cell faces are 

numbered in the same way with face 1 being that face having outward unit normal 

directed purely left as indicated in the figures. These numbers are indicated in blue 

within the cut-cell type diagrams. The sub-element lying in the lower left corner is given 

the sub-cell number one, while the other sub-cell is given the designation two. These 

numbers appear in green within the cut-cell depictions. We conclude by noting that both 

face and vertex numbering is repeated for the vertices/faces shared along the linear 

interface as shown in the diagrams. 
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Figure 41. Visual depiction of quadrilateral/pentagon type cut-cells 
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Figure 42. Visual depiction of quadrilateral/quadrilateral type cut-cells 
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