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ABSTRACT

The work in this dissertation explores the limits of Chip-multiprocessors (CMPs)

with respect to shared-memory, multi-threaded benchmarks, which will help aid in

identifying microarchitectural bottlenecks. This, in turn, will lead to more e�cient

CMP design.

In the first part we introduce DotSim, a trace-driven toolkit designed to explore

the limits of instruction and thread-level scaling and identify microarchitectural bot-

tlenecks in multi-threaded applications. DotSim constructs an instruction-level Data

Flow Graph (DFG) from each thread in multi-threaded applications, adjusting for

inter-thread dependencies. The DFGs dynamically change depending on the mi-

croarchitectural constraints applied. Exploiting these DFGs allows for the easy ex-

traction of the performance upper bound. We perform a case study on modeling

the upper-bound performance limits of a processor microarchitecture modeled o� a

AMD Opteron.

In the second part, we conduct a limit study simultaneously analyzing the two

dominant forms of parallelism exploited by modern computer architectures: Instruc-

tion Level Parallelism (ILP) and Thread Level Parallelism (TLP). This study gives

insight into the upper bounds of performance that future architectures can achieve.

Furthermore, it identifies the bottlenecks of emerging workloads. To the best of our

knowledge, our work is the first study that combines the two forms of parallelism

into one study with modern applications. We evaluate the PARSEC multithreaded

benchmark suite using DotSim. We make several contributions describing the high-

level behavior of next-generation applications. For example, we show that these

applications contain up to a factor of 929X more ILP than what is currently being
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extracted from real machines. We then show the e�ects of breaking the applica-

tion into increasing numbers of threads (exploiting TLP), instruction window size,

realistic branch prediction, realistic memory latency, and thread dependencies on

exploitable ILP. Our examination shows that theses benchmarks di�er vastly from

one another. As a result, we expect that no single, homogeneous, micro-architecture

will work optimally for all, arguing for reconfigurable, heterogeneous designs.

In the third part of this thesis, we use our novel simulator DotSim to study the

benefits of prefetching shared memory within critical sections. In this chapter we

calculate the upper bound of performance under our given constraints. Our intent is

to provide motivation for new techniques to exploit the potential benefits of reducing

latency of shared memory among threads. We conduct an idealized workload char-

acterization study focusing on the data that is truly shared among threads, using

a simplified memory model. We explore the degree of shared memory criticality,

and characterize the benefits of being able to use latency reducing techniques to re-

duce execution time and increase ILP. We find that on average true sharing among

benchmarks is quite low compared to overall memory accesses on the critical path

and overall program. We also find that truly shared memory between threads does

not a�ect the critical path for the majority of benchmarks, and when it does the

impact is less than 1%. Therefore, we conclude that it is not worth exploring latency

reducing techniques of truly shared memory within critical sections.
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1. INTRODUCTION

Moore’s law [31], which states that the amount of transistors on integrated circuits

doubles in a given period, has been the underlying driver of computer advancement

for nearly half a century. For many decades, there has been an increase in perfor-

mance and decrease in power consumption per-transistor as device technology scaled.

This phenomenon is known as Dennard scaling [9]. In the last decade, however, the

power and performance increase dictated by Moore’s Law with Dennard scaling have

had diminishing returns. As a result, relying on Moore’s law to gain performance has

become more di�cult due to power constraints. Recently, this trend drove computer

architects to chip-multiprocessor (CMP) designs with ever increasing core counts to

better leverage these extra transistors. As core counts continue to increase, however,

power and performance are unable to proportionally match the previous pace of

improvement [12]. Future designs must compensate for ine�cient transistor scaling

with respect to energy and performance. A characterization analysis of future work-

loads is imperative in order to ensure that future designs achieve maximum returns

in performance with respect to power consumption.

The current industry approach to CMP architecture design is to replicate a single

core multiple times. These homogeneous CMPs are expected to be su�cient to

run current and near-future applications. This is an ine�ective approach to multi-

core design, however, as it is only motivated by reducing costs and design e�ort.

Bhadauria et al. showed that current processors are not su�cient for emerging

multi-threaded applications [3]. They concluded that current architectures should

increase the number of functional units on each core, reduce core size (using in-order

execution rather than Out-of-Order execution), and increase core count in order to
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improve performance and reduce power.

Typical processor architectures exploit two forms of parallelism in order to achieve

scaling performance with increasing transistor density: Instruction Level Parallelism

(ILP) and Thread Level Parallelism (TLP). ILP is exploited by architectures that

fetch and execute multiple instructions per cycle from a single instruction stream

or thread. Maximizing ILP often requires highly complex microarchitectural tech-

niques such as out-of-order (OoO) execution with large instruction windows. These

OoO engines consist of hardware managed pools of instructions searched to find

ready-to-execute instructions. As a result, ILP exploitation often comes at a high

cost in terms of power. Alternately, TLP is exploited by splitting a problem up

into multiple threads that can be run simultaneously on more than one processor.

Utilizing TLP in typical applications requires that the programmer specify how the

problem is partitioned among those threads and defines the exact communication

needed between the threads. Scaling performance with processor count requires that

TLP applications have a highly balanced load, otherwise overheads will quickly lead

to diminishing returns with increasing processor count.

While the processor designs of the 1990’s and early 2000’s predominantly relied

upon ILP exploitation to scale performance, the breakdown of Dennard scaling has

driven computer architects towards CMP designs. CMPs integrate many cores onto

one die, exploiting TLP to improve performance. TLP exploitation does not preclude

ILP exploitation, so having multiple cores on a single die opens up many di�erent

design combinations. It is unlikely that a single universal CMP design would be

optimal for all applications. A key design challenge lies in determining how to par-

tition chip resources in CMPs between ILP and TLP exploitation. At a high level,

chip resources can be spent two ways: increasing the size of each core (for greater

ILP exploitation), or by creating additional cores (for greater TLP exploitation).
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Understanding when to add cores or change core size is pivotal in optimal multi-core

design. The first step is to understand the trade-o�s in ILP and TLP in modern

applications. To the best of our knowledge there has been no such thorough study

in recent years that analyzes such trade-o�s in ILP and TLP in modern applica-

tions. This gap in knowledge is, in part due to the multi-core era being in its infancy

compared to other advancements in computer architecture. While there have been

many ILP studies done in the past [35, 44, 25, 16, 34, 2, 6], none of them attempt

to understand the relationship between ILP and TLP. Further, none have attempted

to answer the question, does TLP exploitation reduce ILP and to what degree.

The main focus of this work is the analysis of next-generation workloads along

the axes of ILP and TLP exploitation. The intent is to aid in making more informed

CMP architectural design decisions. Generally, increasing core size (by increasing

cache size, instruction window size, the number of functional units, etc.) results in

an increase in ILP extraction; while increasing core count results in an increase in

TLP extraction. However, for applications with imbalanced loads, a heterogeneous

CMP design composed of a few high ILP cores, and many of low ILP cores (for TLP

extraction) might achieve higher overall e�ciency. An example of this architecture

is shown in Figure 1.1. Our limit study is aimed at narrowing the design choices

available by giving guidelines on how future micro-architectures should be designed.

We begin by conducting a ground-up workload characterization analysis.

Current cycle-level simulation tools provide insight into application performance

on current microarchitectures. However, the limitations of cycle-level simulation

prevent exploration of application instruction and thread-level scaling properties

necessary to drive future transformational microarchitectural designs. There is a

pressing need for a simulator capable of studying the scaling of shared-memory,

multi-threaded benchmarks in the limit. Thus, we created DotSim in order to fulfill

3
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Figure 1.1: Example of a multi-core heterogeneous architecture.

the needs of identifying bottlenecks in architecture design.

DotSim is a trace-driven toolkit designed to explore the limits of instruction and

thread-level scaling and identify microarchitectural bottlenecks in multi-threaded

applications. DotSim constructs an instruction-level Data Flow Graph (DFG) from

each thread in multi-threaded applications, adjusting for inter-thread dependencies.

The DFGs dynamically change depending on the microarchitectural constraints ap-

plied. Exploiting these DFGs allows for the easy extraction of the performance upper

bound. DotSim is discussed thoroughly in Chapter 2.

In Chapter 3, we perform an ILP and TLP limit study on emerging multi-threaded

workloads. We use DotSim to construct an instruction-level Data Flow Graph (DFG)

from each thread in multi-threaded applications that includes inter-thread depen-

dencies. Using this simulator we evaluate ILP and TLP using the PARSEC shared

memory multiprocessor benchmark suite [4]. These experiments determine how TLP

extraction a�ects the ILP availability, how ILP is a�ected by window size, and the

a�ects of ILP on thread dependencies. We also study the critical path (CP) of each

benchmark with the goal of studying both the thread-level load balance and the

instruction-level parallelism of the CP segments, thus indicating how wide a core
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must be to achieve a given calculated performance.

We extend our limit study in Chapter 3 to explore the benefits of prefetching

shared memory within critical sections. We we use our novel simulator DotSim

to conduct an idealized workload characterization study, focusing on the data that

is truly shared among threads, using a simplified memory model. We explore the

degree of shared memory criticality, and characterize the benefits of being able to

use latency reducing techniques to reduce execution time and increase ILP. We find

that on average true sharing among benchmarks is quite low compared to overall

memory accesses on the critical path, and overall program. We also find that truly

shared memory between threads does not a�ect the critical path for the majority of

benchmarks and when it does the impact is less than 1%. Therefore, we conclude

that it is not worth exploring latency reducing techniques of truly shared memory

within critical sections.

1.1 Thesis Statement

This dissertation proposes microarchitecture design is far from optimal, and that

conducting a limit study will help aid in optimizing future chip design. By iden-

tifying bottlenecks in microarchitecture designs and determining an upper bound

limit on performance, computer architects can then make better informed design

decisions when it comes to building CMPs . In this thesis, we conduct a limit study

simultaneously analyzing the two dominant forms of parallelism exploited by mod-

ern computer architectures: Instruction Level Parallelism (ILP) and Thread Level

Parallelism (TLP). This study gives insights into the upper bounds of performance

that future architectures can achieve. Furthermore it identifies the bottlenecks of

emerging workloads. To the best of our knowledge, our work is the first study that

combines the two forms of parallelism into one study with modern applications. We
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evaluate the PARSEC multithreaded benchmark suite using our specialized trace-

driven simulator called DotSim.

1.2 Dissertation Contributions

The first contribution of this thesis, is our open source trace-driven simulator

DotSim. DotSim, is an abstract microarchitectural simulator that identifies bottle-

necks in multi-threaded programs. DotSim design and infrastructure, allows it to

excel in first-order modeling of novel microarchitectural approaches. Also, due to its

simplicity it can be used to validate other simulators by providing an upper bound

on performance.

We make the following contributions with DotSim:

1. We develop DotSim, an abstract microarchitectural simulator. DotSim uses

multi-threaded program traces as inputs and converts them into DFGs. These

DFGs enable the determination of the critical path and execution time of ap-

plications under arbitrary resource constraints.

2. DotSim excels at first-order modeling of many novel microarchitectural ap-

proaches, such as memory synchronization speculation. This modeling can be

in the form of higher levels of abstraction, allowing the exploration of novel

microarchitectural approaches without a particular concrete design for imple-

mentation. Thus saving time and e�ort in early design exploration.

3. Due to its simplicity DotSim can be used to validate other simulators, particu-

larly execution-driven simulators, by putting an upper bound on performance.

The second contribution of this thesis, we use DotSim to conduct a limit study

on multithreaded applications. This limit study conducts seven experiments explor-

ing the relationship of of ILP and TLP in next generation benchmarks. These experi-
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ments involve breaking the application into increasing numbers of threads (exploiting

TLP), observing the impact instruction window size, realistic branch prediction, re-

alistic memory latency, and thread dependencies on exploitable ILP with respect to

performance. We then provide recommendations on future architecture design based

on our results.

Our experiments explore the demands of these applications with respect to hard-

ware architectures, such as exploring the e�ects of realistic branch prediction and

memory latency. Analysis of these multi-threaded applications provide insight on

trade-o�s in multi-core designs. This work answers the following seven questions:

1. What is the upper bound on ILP? We provide quantitative data on how much

ILP headroom is available in modern applications in relation to how much is

currently extracted. We find that current architectures are far removed from

the ILP limits found using our methodology. For example, current machine

ILP can di�er by as much as 929x versus a processor with infinite resources.

2. What is the threading ine�ciency of each benchmark? We quantitatively ex-

plore workload imbalance in these applications. Understanding the load im-

balance will help identify bottlenecks in the microarchitectural design. With

increasing TLP the load imbalance increases, but we find the rate of the inef-

ficiency depends greatly on the complexity of the particular benchmark.

3. What is the impact on ILP as we scale cores? We quantify the actual trade-

o� in TLP and ILP for these applications. This will help determine whether

it is better to increase core size or to add more cores. We find, generally,

increasing TLP extraction does indeed a�ect ILP. The relation between the

two is however, highly dependent on the benchmark.

7



4. What is the impact on ILP when imposing instruction window size restrictions?

We examine how ILP increases with window size for these applications. We find

that there is large amount of ILP that is not being exploited within a 128 to 512

instruction distance. Often more than 10x the amount found in real machines.

The majority of ILP, however, is much further than 5000 instructions away

making it unlikely a traditional instruction window will be able to capture the

majority of ILP available.

5. What is the e�ect of thread dependencies on ILP? We attempt to quantify the

impact that high level thread dependencies have on performance reduction.

We find that all but one benchmark’s performance was significantly impacted

by thread dependencies. As core count increases, the performance reduction

caused by thread dependencies increases. Although, the performance reduction

occurs at di�erent rates dependent on the application.

6. What is the impact on ILP when imposing realistic memory system latency and

branch prediction accuracy restrictions? We examine how ILP is a�ected when

imposing realistic memory latency and branch prediction for these applications.

We find that there is on average a 31% reduction in ILP when adding realistic

memory latency model depending on the benchmark, and on average 67%

reduction when adding realistic branch prediction. Overall, branch prediction

is the stronger bottleneck than memory latency under these constraints. These

results provide motivation to put more e�ort into improving branch prediction,

despite the field being very mature.

7. What are the critical path’s thread composition characteristics? We attempt to

provide an understanding the critical path characteristics with the perspective

of gaining performance and reducing power. We find the composition of the

8



critical path to be interesting and potentially exploitable.

With respect to the experiments listed above we found that no benchmark reacted

in a similar manner for all seven questions. This suggests that an optimal multi-

core design (with respect to power and performance) is highly dependent on the

application running on it, arguing for a dynamic and heterogeneous design. Our

examinations concluded that the multithreaded benchmarks di�ered vastly from one

another. As a result, we expect no single, homogeneous, micro-architecture will work

optimally for all, arguing for reconfigurable, heterogeneous designs.

The third contribution we conduct an idealized workload characterization

study, focusing on the data that is truly shared among threads, using a simpli-

fied memory model. Here we quantify the amount of true sharing done by threads in

multi-threaded benchmarks, as well as perform impact analysis of reducing latency

of memory shared among threads.

We make the following contributions with our idealistic shared-memory workload

characterization analysis:

1. The show the amount of true sharing done among threads is trivial except for

one of six benchmark where sharing represented 20% of all memory accesses .

2. We show the truly shared memory between threads does not a�ect the critical

path. Therefore has on average, a minimal impact on execution time, with an

upper bound of increasing performance by less than <1%

3. We show that there is not an exploitable sharing patterns between benchmarks

to gain performance.
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2. DOTSIM: A TRACE-DRIVEN SIMULATION TOOL KIT

In this chapter, we introduce DotSim, a trace-driven simulation tool kit for

shared-memory, multi-threaded application analysis. DotSim is designed to explore

the relationship between ILP and TLP. Conducting such a study requires the use

of a specialized, trace-driven simulator. No existing simulator is capable of con-

ducting such a limit study utilizing modern multi-threaded applications exists. Fur-

ther, no simulator exists that can explore the bounds of scaling along several axes

while adding or removing arbitrary constraints. To accomplish this task, DotSim

constructs an instruction-level Data Flow Graph (DFG) from each thread in multi-

threaded applications. These DFGs are then stitched together at the application

level by recognizing and adjusting for inter-thread dependencies through memory

and via synchronization semantics.

2.1 Why DotSim

Most microarchitecture simulators are either execution driven or trace driven.

Execution driven simulators are typically cycle accurate (ie. they provide an ap-

proximation of performance in terms of the cycles it takes for a given application to

execute), which enables these simulators to model performance and behavior quite

accurately. This accuracy is driven by detailed, microarchitectural level modeling

of the many and varied structures of a microprocessor. Detailed, low-level mod-

eling comes, however, at a cost of simulator implementation complexity. Modeling

new microarchitectural features in an execution driven simulator often requires many

man-months of e�ort in implementation and tuning.

Trace-driven simulators, are fundamentally di�erent as they require pre-executed

dynamic instruction stream traces for o�-line analysis. Therefore, they rely on real
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machines or execution driven simulators to generate these traces. The benefit of

this approach is that these traces have control flow, thread synchronization lock

order, and memory disambiguation already known, dramatically reducing simula-

tor implementation complexity and simulation time. With the dynamic instruction

flow determined, the upper-bound performance can be determined via analysis un-

der the assumption of no resource constraints (eg. unlimited instruction window,

functional units, etc.), thus enabling easier identification of microarchitecture bottle-

necks. Additionally, the complexity of implementing new microarchitectural design

ideas is dramatically reduced. Recent work argues that complexity of many execu-

tion driven simulators mentioned above can often lead to hard-to-debug performance

bugs [33, 38]. Trace-driven simulators elide this complexity and thus may more easily

produce relatively accurate performance bounds estimates.

DotSim is designed with the goal of simulating processor microarchitectures with

varying degrees of abstraction. As conducting limit studies can be incredibly resource

and time intensive, we made DotSim as simple and resource light as possible. While

existing cycle-level simulation tools can provide insight into application performance

on current microarchitectures, the limitations of cycle-level simulation prevent explo-

ration of application instruction-level and thread-level scaling properties necessary to

drive future transformational microarchitectural designs. To the best of our knowl-

edge there is no existing simulator capable of studying the ILP and TLP scaling

limits of shared-memory, multi-threaded benchmarks. DotSim is such a tool with

this goal.

2.2 Related Work

DotSim, is rather unique in terms of its ability simulate with varying degrees of

fine-grain abstraction at the microarchitecture level. As a result of its varying degree
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of flexibility in simulation, it has the potential for broad use in conducting research.

Due to the broad spectrum DotSim touches on, we organize the related work in

three di�erent categories: abstract, trace-driven and detailed simulators. For each

subsection we compare and contrast past work to DotSim.

2.2.1 Abstract Simulators

Abstraction models are used to study future architectures which are currently

di�cult to implement in a detailed fashion. Abstraction models are often the first

step in exploring a new, non-trivial idea.

DotSim is most directly influenced by the study published by Hill et al. [19]. They

derived simple mathematical models to study multicore topologies and trade-o�s in

terms of ILP and TLP. Their study was done at the highest level of abstraction,

a pure mathematical model, and thus leaves many open questions. In many re-

spects, DotSim was designed to provide answers to the questions posed by Hill et

al., providing quantification of TLP and ILP tradeo�s.

Guz et al. [17], developed mathematical models to study the e�ects of caching

versus multi-threading. Their goal was to provide an in-depth understanding of

the memory wall problem. In a second paper, Guz et al. [18] continued work in

studying the limits of architecture by modeling the tradeo�s between Many-Core

machines and Many-Thread machines. DotSim, is designed for studying, identifying

and quantifying bottlenecks in multi-parallel applications including the two studies

conducted above. DotSim, will likely provide more accurate results, at a cost of

simulator complexity.

Esmaeilzadeh et al. [12] modeled multicore scaling limits as a factor of device

scaling in order to measuring speed up of parallel applications for the next five

transistor generations. Esmaeilzadeh et al. used a detailed performance model of
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upper-bound performance. DotSim, was designed to more directly calculate the

upper-bound performance limits, without requiring any mathematical modeling.

The abstract and mathematical models used in architecture exploration have the

benefit of being simple to implement and require little compute e�ort, however, these

benefits come at the cost of relatively low accuracy. DotSim, and other trace-driven

simulators, generally show higher accuracy, though the compute time and complexity

are also higher.

2.2.2 Trace-Driven Simulators

Very few simulators currently exist that have similar characteristics, methodology

and purpose like DotSim. MaxPar [23], developed in the mid 1980s, analyzes data

and instruction dependencies in parallel systems. MaxPar is designed to measure

inherent parallelism in applications, identifying microarchitectural bottlenecks, as

does DotSim. MaxPar, however, was not designed to execute current benchmarks

which include inter-thread dependencies. Rico et al. created a methodology to

handle flexible trace-driven multi-threaded simulations [38]. DotSim and Rico et al.’s

methodologies are similar in that they support parallel traces. However, Rico et al.’s

methodology is designed to reduce computation time, and focus on scheduling and

managing parallelism techniques with respect to hardware. Our simulator supports

research in scheduling and parallelism techniques. Finally, DotSim supports shared

memory multithreaded applications, specifically Pthreads which is not supported by

Rico et al.’s methodology.

Monichero et al. [30] proposed a novel methodology to emulate a simulator that

can support hundreds of cores. Their methodology is similar to ours as we will

describe in Section 2.4. Their methodology allows for these traces to emulate up

to 1000+ cores, by identifying traces via threads and then pinning them to new
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simulated cores.

2.2.3 Detailed Simulators

In this section we split detailed simulators into two categories, cycle-level execu-

tion driven simulators, and profiling tools. We view cycle-accurate execution driven

simulators [5, 45, 26, 39, 13], as complimentary to DotSim, in that they are often

the final step in microarchitectural modeling before implementation. DotSim was

designed to identify bottlenecks in multi-threaded microarchitectures and determine

the limits of performance under new and novel microarchitectural techniques at an

earlier stage in development. This task is very di�cult to perform with typical cycle-

level simulators (see Section 3.1). However, due to DotSim’s ability to change the

degree of hardware abstraction, DotSim can be the first step in identifying the po-

tential benefit of an idea, prior to using an execution driven-simulator. Often this

first order modeling may be su�cient in measuring the benefit of an idea. Further-

more, first order modeling may be the best solution to measure performance as it can

provide a reduction in noise such as no operating system interference, or unknown

bugs introduced accidentally due complexity of creating a detailed simulator [33].

The second category are profiling tools that use the underlying native machine

to gather statistics [32, 20, 27]. This often requires knowledge of the underlying

benchmarks, to insert code so they can be properly profiled. In DotSim, there is

no requirement to understand the inner working of the benchmark under test, thus

saving time and extra work. Most importantly, analysis of these benchmarks with

profiling tools is only limited to experimenting with the native machine conducting

the tests. DotSim is not restrictive as it can replicate a broad spectrum of computer

architecture.

14
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(d) DotSim trace language
for code in part (a).

Figure 2.1: Data-flow graphs (DFGs) for assembly fragment.

2.3 DotSim Overview

As discussed in Section 3.1, DotSim’s primary goal is to calculate the limits of

scaling in real multi-threaded applications. DotSim has a unique ability to explore

the bounds of scaling in shared-memory, multi-threaded applications along several

axes while adding or removing arbitrary constraints. DotSim constructs a data-flow

graph (DFG) from the dynamic instruction stream trace of the program’s execution.

This DFG is a directed, acyclic graph consisting of nodes, edges and edge weights,

15



where nodes represent instructions, edges represent dependencies and edge weights

represent the latency of dependency resolution. Using DFGs to conduct architecture

limit studies is not new. A similar approaches were taken by prior work [2, 23]. How-

ever, we add support for intra-thread dependencies through synchronization primi-

tives and through-memory dependencies.

To create a trace that can be used to generate a DFG, it must first be pre-

processed. The preprocessing translates a simple trace of the dynamic instruction

stream (ie. the instructions actually executed, in order of execution), into nodes (in-

structions), edges (dependencies) and edge weights (functional unit latencies). We

note that after preprocessing, the trace is e�ectively ISA independent, thus porting

any given ISA’s instruction stream trace only requires porting this preprocessing

component. During this preprocessing stage all dependencies among instructions

both intra-thread (through the register file and memory) and inter-thread (through

memory) are resolved. Identifying these dependencies prior to simulation allows

simulation to proceed more quickly. These preprocessed traces are then fed to the

DFG generation stage, where a dynamic Data Flow Graph (DFG) for each thread is

constructed.

In the remainder of this section, we discuss single threaded and multi-threaded

DFG generation and processing.

2.3.1 Single-Threaded DFGs

DotSim creates a DFG in which instructions (nodes) are interconnected via di-

rected, weighted edges (dependencies). The weight of each edge represents the la-

tency of the production and transmission of operand from producing the instruction

to the consuming instruction. The DFG is dynamically adjusted based on microar-

chitectural constraints given to DotSim. Each edge’s weight represents cycle time,
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therefore altering or removing constraints will change the shape of the DFG (height

and width). DFGs makes measuring performance metrics, such as ILP, trivial. The

height of the tree is the e�ective cycle count required to execute the program, given

the arbitrary resource constraints. These arbitrary resource constraints, such as issue

width or cache latency, can be changed individually or in concert, thus enabling the

identification of microarchitectural bottlenecks.

Figure 3.1a shows a simple assembly pseudo-code fragment with register data

dependencies highlighted with solid lines, and memory data dependencies shown with

dashed lines. In this example, the e�ective address of the store (st) and load (ld) alias

to the same memory location forming a true data dependence through memory. In

this example, we assume an ideal processor core model with infinite physical registers,

perfect branch prediction, perfect memory-address aliasing (addresses are known,

thus unrelated loads can move in front of stores). Further, we assume unlimited

hardware resources such an infinite instruction window, functional units, physical

registers, and single cycle memory latency. Figure 3.1b shows the corresponding

unconstrained DFG, as created by DotSim. The nodes represent instructions, and

the edges represent producer-consumer data dependencies among the instructions.

For the purpose of this limit study, all instructions are assumed to take one cycle,

thus the edge weights are all assumed to be 1 and are not shown. The maximum

height of this DFG, 3 cycles, represents the number of cycles this code fragment

would require for execution in an ideal machine.

Figure 2.1c, shows another DFG for the same code fragment shown in Figure 3.1a.

In this second example, the instruction window has been constrained to a width of

two instructions, producing the DFG shown. Note the height of the DFG has changed

to 4, and the overall max width is now two.

ILP Calculation: ILP is calculated from the generated DFG. Here we define the
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average ILP of a given single thread (ILP
ST _AV G

) to be the average number of in-

structions that can be executed under the given machine constraints. Equation(3.1),

is used to calculate ILP
ST _AV G

.

ILP
ST _AV G

= I
all

H
(2.1)

In this equation, I
all

is the total number of instructions in the DFG, and H is

the height of the DFG, representing cycle count of the ideal machine for simplicity.

Thus, for Figure 3.1b, which shows a DFG for the code in Figure 3.1a with unlimited

resources, the ILP
ST _AV G

is 7
3 = 2.33. Figure 2.1c shows another DFG for the same

code, however with a window size constraint of size 2. In this figure, the ILP
ST _AV G

is 7
4 = 1.75. The ILP

ST _AV G

is a�ected by imposing a window size constraint of 2,

therefore showing that under this simple constraint, window size is a bottleneck.

2.3.2 Multi-Threaded DFGs

Calculating ILP of shared memory multi-threaded applications using DFGs re-

quires identifying intra-thread dependencies. Intra-thread dependencies occur via

thread synchronization constructs as well as through store to load producer-consumer

relationships. We recognize these intra-thread dependencies in two ways. First, to

preserve correctness, true dependencies through memory caused by communicating

load-store pairs between threads are modeled as edges by DotSim. Second, DotSim

identifies and captures synchronization constructs (e.g. locks, barriers, etc.), and

models these constructs as dependencies between threads.

Figure 2.2a illustrates an example multi-threaded program fragment contain-

ing a mutex thread synchronization construct. In this example, the two paral-

lel functions, “write_funct()” and “read_funct()”, executessimultaneously in two

di�erent threads. Here “write_funct()” writes to parts of the shared array x[],
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removed.

Figure 2.2: Multi-threaded code fragment and associated DFG, with and without
thread synchronization constructs honored. Darkened nodes represent instructions
along the critical path.

while “read_funct()” reads the array. Access to the array is synchronized by the

pthreads_mutex_lock() to ensure correctness. Figure 2.2b shows the DFG for these

two threads with the thread synchronizing mutex lock in place.

In this example, the height of Thread 1’s DFG (H1) is two. Thread 2’s DFG

(H2) is four because it inherits Thread 1’s height after the mutex unlock (since it

has the greater H of the two at this synchronization point). As per Equation (3.1),

the ILP
ST _AV G

of Thread 1 is 2 (The total number of instructions in Thread 1, I
all1

is 4) and for Thread 2 is 1.5 (I
all2=6). These results are averaged across threads

to calculate the average ILP of multi-threaded (MT) application DFGs following

Equation (3.2).
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ILP
MT _AV G

=
q

N

1 (I
alln

/H
n

)
N

(2.2)

Here H
n

, is the height of thread n’s DFG, for threads 1 to N where N is the total

number of threads in the benchmark. I
alln

is the total number of instructions in a

given thread. For the DFG shown in Figure 2.2b, the ILP
MT _AV G

is 2+1.5
2 = 1.75.

Multi-threaded benchmarks bring additional complexity when measuring perfor-

mance, since all threads depend on each other. Prior work shows that metrics such

as average ILP often do not provide a full picture of application performance and

scaling [14]. To address these di�culties, we introduce a critical path (CP) ILP

metric. Figure 2.2b illustrates DotSim’s CP metric. In the figure, a subset of nodes

are highlighted grey, these are nodes that lie on the application’s height defining

critical path. Note, that the figure shows portions of both threads have an impact

on the lower-bound limits on execution time. Thus, both threads determine the

overall height (H
max

) of this simplified multi-threaded example. Here, speeding up

execution in Thread 2 would not lead to a significant performance increase, due to

Thread 1 acquiring the mutex lock first. Although Thread 2 has a higher height

after the lock, it inherits the height of 2 from Thread 1 after the release of the mu-

tex. Thus both Thread 1 and Thread 2 have an impact on the overall H
max

of the

program. Instructions from Thread 2 prior to the lock and instructions from Thread

1 after the lock form the critical path (CP) of the application. We formally define

the program’s CP as the dependency chain of thread segments through the program

that determines the H
max

, ie. the execution time of the program. Much insight can

be extracted from per-thread ILP as well as the critical path ILP. For the DFG in

Figure 2.2b, the number of instructions on the CP is 7, and the CP takes 4 cycles to

execute, therefore we define the ILP
MT _CP

=1.75 under the given constraints. More
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formally ILP
MT _CP

is calculated as shown in Equation (3.3).

ILP
MT _CP

=
q

k

1 I
kn

H
max

(2.3)

In this equation, I
kn

is the segment of instructions that are under the height (H
max

)

defining segments of each thread in the DFG.

We note that creating a CP metric is a challenging and somewhat fraught ques-

tion, with several possible derivations. After careful study and consideration, we

chose the current CP metric because it provides more insight than the alternative

approaches. Specifically, the current metric captures the average dynamic ILP width

of the CP segment in question. Therefore, giving the required width of a core, in

order to achieve the performance shown.

A unique feature of DotSim is its ability to explore the limits of TLP by remov-

ing all inter-thread synchronization constructs from the code (e.g. Locks, Barriers,

etc.), while preserving true inter-thread data dependencies through the memory sys-

tem to ensure correctness. This feature allows the researcher to explore the ideal

performance limit that techniques such as lock and barrier speculation/elision might

yield [36, 28]. Figure 2.2c illustrates this feature. In the figure, a DFG is recon-

structed from the code in Figure 2.2a after the removal of inter-thread synchro-

nization constructs. Note, correctness is ensured by continuing to enforce direct,

producer/consumer relationships between threads through memory (store-to-load

communication between threads). This can be compared against the DFG with

synchronization constructs intact (Figure 2.2b) to explore the speedup that thread

synchronization speculation could achieve in the limit. For the DFG in Figure 2.2c,

the number of instructions on the CP is 6, and the CP takes 3 cycles to execute,

therefore we derive ILP
MT _CP

=2, under the given constraints after removing syn-
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chronization constructs.

2.4 DotSim Implementation

DotSim is implemented in five stages, where the first four stages need only be

performed once for a given dynamic instruction stream trace. A single dynamic

instruction stream trace is required for each examined number of threads, N
min

. In

our implementation, each stage is a separate linux process and thus may be chained

together simultaneously with unix pipes, or may be run serially. Figure 2.3 shows

all five stages, from Trace Generation to DFG Processing. In this section we first

describe the DotSim trace file format. We then describe the four Preprocessing

Stages, explaining in detail the goal and responsibility of each stage. The DFG

Processing stage is later examined in detail.

2.4.1 DotSim Trace Language Format

In order to simplify and speed up subsequent DFG processing, we developed

a concise trace syntax for expressing the relationships and dependencies between

instructions. While it would be possible to directly generate a DFG from an unpro-

cessed dynamic instruction stream, this approach would require a significant redesign

of the DFG generation code in order to support new ISAs. Further, implementing our

own trace language allows us to o�oad several one-time tasks in trace preprocessing,

reducing the complexity of the DFG Processing stage, as we will show.

DotSim’s trace language syntax is loosely inspired by the Dot language [10]. In

the DotSim trace language each line represents either a node (instruction) or an edge

(dependency). Instruction node lines have the following syntax:

ThreadId-InstrNum|InstrClass|EffAddr

Where ThreadId is the application thread id, InstrNum is the sequential instruction

number within that thread, InstrClass is the instruction class (eg. “S” for store,
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or “A” for integer arithmetic), and EffAddr is the e�ective address (only used for

load and store instructions).

Edges in the DotSim trace language take the following form:

ThreadId1-InstrNum1|InstrClass1 >

ThreadId2-InstrNum2|InstrClass2

Representing instruction ThreadId2-InstrNum2|InstrClass2 being dependent upon

an operand from ThreadId1-InstrNum1|InstrClass1, either through the register file

or through memory. Note that edge lines must come sequentially after the node line

for the dependent instruction in the trace file.

Figure 2.1d shows the DotSim trace language code for the instruction stream in

Figure 3.1a.

2.4.2 Preprocessing Stages

The four Preprocessing Stages collectively make up the Front End of the DotSim

toolkit. Typically, the first three stages are executed simultaneously, using linux

named pipes to chain the output of one stage to the input of another. Using pipes is

not mandatory, instead it is done to improve simulator execution time by reducing

the required number of accesses to hard drive storage. We note that since DotSim is

a composed of a modular set of individual programs, one for each stage, it is trivial

to replace one or more stages with user defined components.

2.4.2.1 Trace Generation

DotSim’s first stage, Trace Generation, consists of a dynamic instruction stream

trace capture from either a binary instrumentation tool or an architectural-level sim-

ulator. In the initial DotSim implementation, the Trace Generation stage was built

leveraging gem5’s [5] simple-atomic, functional simulation model for the Alpha ISA.

In generating dynamic instruction stream traces from gem5, several challenges had
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Figure 2.3: The 5 stages of DotSim. Note Memory Management stage is optional.

to be overcome. To reconstruct dependencies within and between threads correctly,

DotSim requires the identification of each instruction’s linux thread id. Since gem5

had no mechanism to identify thread ids, the linux kernel was modified to write out

a “thread_id” file identifying the relationship between thread id and cpu id over

time. Similarly, generating traces from a full system simulator like gem5 brings an

unwanted side e�ect; linux kernel code spills into the dynamic stream. Since linux

kernel code is not representative of the ILP and TLP of the application being exam-

ined, particularly with the Alpha ISA where kernel code tends to be dominated by

serialized PAL microcode, it is desirable to remove this code from the trace. Kernel
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code has a distinct program code (PC) range addresses, thus, we filter the traces to

exclude PC addresses in their range.

2.4.2.2 Trace Smoothing

The TraceSmoothing stage is responsible for two tasks: rewriting traces in terms

of thread ids, and identifying synchronization constructs between threads and an-

notating them in the trace. As previously discussed, the TraceGeneration stage

outputs traces in terms of cpu id, without distinguishing between threads. This

stage rewrites the traces in terms of thread id using the “thread_id.txt” file which

tracks the relationship between cpu id and thread id. In order to identify Pthread

synchronization constructs, this stage calls a one-time script. This script disassem-

bles the benchmark binaries and identifies the location of each Pthread function call.

Identifying Pthread Function calls is made easier by compiling each benchmark with

the “-g” flag for debug information inclusion, which labels all function calls. While

in the general case identifying Pthread functions is automated, we found that for a

subset of benchmarks (bodytrack, vips, x264, ferret, raytrace, facesim), the Pthread

functions are used indirectly (ie. they are wrapped in other library functions or

C++ classes). As a result, for these benchmarks the synchronization constructs

were manually identified within the application binaries. Once identified, these syn-

chronization construct function calls are stored in a “sync_construct.txt” file for use

by the TraceSmoothing stage.

As the TraceSmoothing stage executes, the “thread_id” and “sync_construct”

files are read and used to rewrite the trace to indicate the proper thread id and

annotate the location of synchronization constructs. We note that the code associ-

ated with each synchronization construct function call code is replaced with a single

DotSim syntax line that identifies what type of synchronization construct function
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was used (eg. lock, barrier, condition variable, etc.) as well as what corresponding

variables were used (lock id, barrier id, etc.).

2.4.2.3 DotSim Trace Language Conversion

The third stage converts the dynamic instruction traces into the DotSim trace

language. This stage requires extensive knowledge of the ISA in order to identify all

instruction types and dependency edges. Dependency edges can be control flow de-

pendencies, register dependencies, memory dependencies and thread synchronization

dependencies. All ISA instructions are stored in this stage, so they can be properly

parsed and classified for dependency analysis as well as instruction classification. Un-

wanted instructions such as no-ops and cache hints, can be removed from the traces

at this stage as well other instructions that do not involve registers or memory as

operands. When identifying memory and store dependencies, this stage recognizes

memory accesses across all threads, including load locks and store conditionals (in

RISC ISAs) and standard load and store instructions.

2.4.2.4 Memory Footprint Optimization

DFG generation memory management can become problematic when creating

a DFG via naive dependency analysis, since it is impossible to determine when a

instruction will be dependent on a previous instruction. The simplest approach

would be to hold all instructions which generate operands in memory inside the

DFG generator as the DFG is processed. However, as the number of instructions

goes to billions, this approach will quickly run out of memory. Fortunately, there are

a limited number of registers; therefore, anytime an output register is rewritten, the

previous instruction which wrote that register will no longer be needed. When this

occurs the Memory Footprint Optimization stage inserts a delete node instruction

into the trace, because it is impossible for any other instructions to dependent on it.
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While this approach works well for registers, of which are typically limited in

number, it does not work well for producer-consumer relationships through load and

store instructions. Memory is not limited to just a few state elements but extends to

a maximum of 248 physical locations, making it impossible for the machine running

the DFG generator to hold in its memory. Therefore, another mechanism must be

found to delete operand producing store instructions when they are no longer used.

Unfortunately, there is no way of knowing when a store is no longer needed in real

time. As a result, the fourth stage is done after the first 3 stages have been completed

and a trace has been stored to hard disk. This stage reads the trace in reverse order,

“bottom-up”, to identify when a store is no longer referenced by any further load

instruction and insert delete node instruction. Figure 2.4 shows an example DotSim

language segment where a load instruction last reads a given memory address. When

parsing up from the bottom, when a memory address is first referenced by a load,

that will be the last time it will be encountered in the forward direction. Therefore

ensuring the store can be removed safely. Similarly, each time a store instruction to a

given address is encountered in reverse order, the next load instruction to that address

represents the last reference to that memory operand (prior to being overwritten by

the next store). Thus after this load operation a delete can be inserted.

2.4.3 DFG Processing

Section 2.3 discusses DFG Generation at a high level, in this subsection we outline

a few further details. After the preprocessing stages, a DotSim trace language file is

generated and stored for further processing in the DFG Processing stage. Note, it is

possible to skip the first four stages (the front-end) if one to were to write manually

or use a script to generate DotSim traces. DotSim generates DFGs dynamically

based on arbitrary resource constraints, or lack thereof. Traces only need to be
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Figure 2.4: Memory footprint optimization using the bottom-up approach to locate
the last touch to a given memory address.

generated once for each of the examined numbers of threads (N
min

). Once the

DFG is created, the height becomes the time in cycles to execute the program. As

explained in Section 2.3, the critical path is also calculated. With the critical path,

DotSim measures which threads are part of the CP as well as a breakdown of what

type of instructions make up the CP. In the following section, we will discuss the

micro-architectural features of DotSim, and why it is perfect for first order modeling

of novel ideas.

2.5 Features

DotSim’s main goal is to conduct limit studies on the execution of multi-threaded

benchmarks in future processor architectures. DotSim has a varying degree of ab-

stract modeling for microarchitecture behavior. In this section we enumerate the

current features of DotSim as well as explain why DotSim is a useful tool for first or-

der modeling of novel microarchitectural ideas. Currently DotSim supports both an

abstracted Out-of-Order (OoO) and in-order machine. An initial goal was to under-

stand the trade o�s of TLP and ILP in multi-threaded applications. We leave it to
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future work to implement additional constraints, to more accurately model current

machines. In this section we enumerate and describe current available microarchi-

tecture constraints that can be imposed in DotSim, then show why DotSim is a good

simulator for implementing first order microarchitecture models.

2.5.1 Current Microarchitectural Features

1. DotSim supports an abstract instruction window of arbitrary size for OoO ex-

ecution with support for arbitrary issue widths.

2. DotSim supports modeling arbitrary, per-instruction-class execution times.

3. Multi-level cache modeling is supported with arbitrary shared and private levels.

Users have the ability to change cache replacement policy, cache sizes, latency,

and type of cache (direct, set- or fully-associative).

4. A synthetic Branch Prediction model based on arbitrary miss per thousand in-

structions (MPKI) rates is supported. This model can be easily extended to

model a realistic branch predictor. As DotSim language provides enough in-

formation for a detailed branch predictor, although wrong-path instructions are

not modeled.

5. Arbitrarily enabling or disabling thread synchronization semantics is supported.

This will allow measuring limits of the upper bound of thread level speculation,

as well as studying the trades o� of ILP and TLP scaling.

6. DotSim provides a detailed analysis and statistics of the program’s multi-threaded

critical path (CP). It can output which threads are on the CP and the time spent

per thread, as well as what type of instructions make up the cp.
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Figure 2.5: Comparing The ILP Limits Of An AMD Opteron 6167 Using DotSim

2.5.2 First Order Modeling On DotSim

DotSim models processor the microarchitecture in terms of it e�ects on the DFG

of a program. Thus, one does not think of implementing hardware levels as one

would in a typical execution driven simulator (or real hardware). Instead, users

must consider how machine constraints e�ect the DFG. Therefore, the actual details

of implementation are not required when implementing hardware level behavior. As

a result of not requiring detailed layout of microarchitectural features, the complexity

of implementing a novel idea in DotSim is greatly reduced. Thus, DotSim is ideal for

first order modeling of novel microarchitectural approaches. In many cases first order

modeling is su�cient enough to determine if an idea should be further investigated

or dropped [33].
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2.6 Case Study: The AMD Opteron 6167

In this section we perform a case study examining the ILP exploitable by a current

microprocessor, an AMD Opteron 6176, versus the ILP bounds predicted by DotSim

with a similar configuration. In this experiment, we configure DotSim to constrain

cache, branch prediction, instruction window, and issue width to be that of the AMD

Opteron 6176 processor, as well as respecting inter-thread synchronization construct

semantics. We compare DotSim’s predicted ILP limit to actual IPC results from the

AMD Opteron 6176 (measured via the processor’s built-in performance counters) to

explore the closeness the ILP bounds.

We use the eight PARSEC benchmarks that our simulation infrastructure sup-

ports. To save space in the graph and text, the benchmark names are abbreviated

to their first two letters. The abbreviations are as follows: BL - Blackscholes, BO

- Bodytrack, CA - Canneal, DE - Dedup, FE - Ferret, FL - Fluidanimate, VI -

Vips, and X2 - X264. In each case the sim-small input set is used for both DotSim

as well as on the real hardware.

For this study, we use the minimum number of parallel threads possible for each

benchmark, N
min

=2, meaning there will be at minimum 2 threads spawned for each

benchmark 1. We limited the thread count to minimize the noise introduced due to

our simplified cache memory model (which models neither coherence latency nor in-

terconnect delay). Here we focus on average ILP (ILP
MT _AV G

), calculated according

to Equation (3.2), as our primary figure of interest due to limited metrics available

with the built-in AMD Opteron 6167 performance counters.

Figure 2.5 shows the resulting ILP
MT _AV G

for each benchmark. In the figure we
1Note that, when configured as Nmin=2, the PARSEC benchmarks will spawn a variable number

of threads greater than or equal to that number. In particular, BL, BO, CA, and FL each spawn
2 threads, while DE, FE, VI, and X2 spawn 12, 10, 4 and 6 threads respectively.

31



see that the ILP bounds and the measured IPC are closest for CA, this is unsurprising

as the performance of CA is known to be severely restricted by cache size [4], which

we model in our study. At the other end of the spectrum, BL, shows the widest

gap between the ILP bounds and the actual exploited IPC. BL is known to be

embarrassingly parallel. As a result its performance is most sensitive to functional

unit latency and functional unit hardware hazards, which are not currently modeled

in DotSim. Thus BL which consists predominantly of floating point computations,

is throttled on real hardware with a limited number of floating point units.

Generally we see that DotSim models the maximum upper bound ILP to within

3x the measured IPC on the real machine. Thus the majority of ILP is restricted by

the components that DotSim does model, (e.g. control flow, cache, issue width and

instruction window) In contrast, using a perfect ideal machine with no constraints

and removing inter-thread synchronization constructs yields, on average, 220x greater

ILP versus the real AMD Opteron 6167. We speculate, that the remaining di�erence

between the ILP bound and actual IPC measured is due DotSim not modeling cache

coherency, wrong path execution modeling, reorder bu�er size constraints, instruction

latency, and functional unit latency and hardware hazards.

2.7 Limitations and Future Work

Though DotSim is quite flexible and capable of representing many microarchi-

tectural features, it does have its limitations. DotSim’s original goal was to identify

ILP and TLP bottlenecks at the microarchitectural level, as a result it should be

as simple as possible. In this section we list DotSim’s limitations as a result of this

design decision, as well as the most important features that should be implemented

in future work.
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2.7.1 Limitations

DotSim calculates the majority of its metrics after generating a DFG, therefore

it is important that all dependencies are determined. This requires all operand pro-

ducing instructions be held (specifically stores), until they no longer are dependent

on. This can require intensive simulator memory requirements, depending on the

benchmark and input size. So ideally a machine with a large amount of RAM is

often required to run DotSim, depending on input size and benchmark. One way to

alleviate this heavy memory requirement is to focus on the region of interest of each

benchmark, thereby reducing trace sizes, thus reducing total memory requirements.

Another issue is traces must be stored on a hard drive, so computation time can be

bottlenecked by hard drive access time. This may be alleviated by using flash storage

or running the trace files from a RAM drive. Further, as simulation speed can be

limited by storage-system bandwidth, it is not recommended to run more than one

simulation per hard drive. One way to alleviate the storage system sensitivity would

be to skip the Memory Footprint Optimization stage and directly pass the traces

via unix pipes directly to the DFG Processing stage. This approach, however, would

mean that all the stages would have to be run for each configuration tested. Further,

it might cause an even larger runtime memory footprint for the final DFG Processing

stage, as last-touch stores would not be deleted.

2.7.2 Future Work

As it stands, the current release of DotSim fully supports Alpha ISA, utilizing a

lightly hacked version of the gem5 simulator as a Trace Generation stage. DotSim

preprocessing is thus currently limited to Alpha ISA, using gem5 [5] to generate

traces. For future work we plan to implement support for x86 gem5 traces. This

would require changes only to the preprocessing stages provided in the toolkit. We
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currently have eight PARSEC Benchmarks, compiled for the Alpha ISA [15], execut-

ing without errors. As explained in Section 2.4, it is possible to use any benchmark,

or other means of generating traces, as long as it is properly preprocessed to fit

DotSim’s trace language syntax. In future work we plan to expand the benchmarks

supported to the full set of PARSEC 3.0 benchmarks on the x86 ISA.

Another important component of future work is to fully model an OoO engine,

including implementing details such as a reorder bu�er, load store queue, MSHR

support and functional unit pipelines latencies. This would provide a significant

increase in the cycle accuracy of DotSim, however it would come with substantial

overheads in simulation time and require a slight revamp of the memory management

system.

2.8 Summary

This chapter introduces DotSim, a trace-driven tool kit that is designed to ex-

plore the limits of instruction- and thread-level scaling and identify microarchitec-

tural bottlenecks in multi-threaded applications. DotSim creates an instruction-level

DFG from each thread in multi-threaded applications adjusting for inter-thread de-

pendencies. The DFGs dynamically change depending on the microarchitectural

constraints applied. In this paper, we show a case study that DotSim models the

maximum upper bound ILP to within 3x the measured IPC on the real AMD Opteron

6176.

34



3. ILP AND TLP IN SHARED MEMORY APPLICATIONS: A LIMIT STUDY

With the breakdown of Dennard scaling, future processor designs will be at the

mercy of power limits as Chip Multi-Processor (CMP) designs scale out to many-

cores. It is critical, therefore, that future CMPs be optimally designed in terms of

performance e�ciency with respect to power. A characterization analysis of future

workloads is imperative to ensure maximum returns of performance per Watt con-

sumed. Hence, a detailed analysis of emerging workloads is necessary to understand

their characteristics with respect to hardware in terms of power and performance

tradeo�s. In this chapter, we conduct a limit study simultaneously analyzing the

two dominant forms of parallelism exploited by modern computer architectures: In-

struction Level Parallelism (ILP) and Thread Level Parallelism (TLP). This study

gives insights into the upper bounds of performance that future architectures can

achieve. Furthermore it identifies the bottlenecks of emerging workloads. To the

best of our knowledge, our work is the first study that combines the two forms of

parallelism into one study with modern applications. We evaluate the PARSEC

multithreaded benchmark suite using a specialized trace-driven simulator. We make

several contributions describing the high-level behavior of next-generation applica-

tions. For example, we show these applications contain up to a factor of 929X more

ILP than what is currently being extracted from real machines. We then show the

e�ects of breaking the application into increasing numbers of threads (exploiting

TLP), instruction window size, realistic branch prediction, realistic memory latency,

and thread dependencies on exploitable ILP. Our examination shows that theses

benchmarks di�ered vastly from one another. As a result, we expect no single, ho-

mogeneous, micro-architecture will work optimally for all, arguing for reconfigurable,
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heterogeneous designs.

3.1 Motivation

There have been many ILP limit studies to date[35, 44, 25, 16, 34, 2, 6]. These

studies, however, often contradict each other, by making inconsistent assumptions

with respect to ideal hardware capabilities, compiler capabilities and lacking con-

sistency in the types of benchmarks used. In addition, these studies are almost

exclusively more than 20 years old. Since then, the applications used in general

purpose computing have evolved significantly to now work on much larger data sets

with new and more complex algorithms. As such the applications in the prior studies

are now largely outdated. Furthermore, we are aware of no study that has focused

on the interaction between ILP and TLP. The purpose of our study is to understand

the degree in which TLP extraction a�ects ILP availability. Understanding these

trade-o�s is important because exploiting TLP and ILP require di�erent approaches

to processor design. Exploiting TLP requires multiple-cores, while exploiting ILP

requires larger cores. As it becomes more di�cult to exploit the additional tran-

sistors gained by Moore’s law, it is imperative to put these transistors to the best

possible use with respect to performance and power e�ciency. Analyzing the upper

bound limits allows insight to the remaining parallelism. Understanding the trade-

o�s between ILP and TLP will help give insight on the optimal core counts and core

makeup for a specific application with respect to power and performance.

3.2 Experimental Description

This section first discusses how our ILP and TLP limit study is conducted. We

then go over the benefits of a trace-driven approach to study the limits of ILP in

multi-threaded applications. Finally we cover our methodology for calculating the

upper bound limits of benchmarks.
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3.2.1 Limit Study

To measure the upper bound ILP limits found in shared-memory multi-threaded

applications, we begin by assuming an ideal processor core model. This ideal model

consists of infinite physical registers, perfect branch prediction, perfect memory-

address aliasing (addresses are known, thus unrelated loads can move in front of

stores). This model also includes unlimited hardware resources (unlimited instruc-

tion window, functional units, and single cycle memory latency). Furthermore, to

explore the limits of TLP we remove all inter-thread synchronization constructs from

the code (e.g. Locks, Barriers, etc.), while preserving true inter-thread data depen-

dencies to ensure correctness. ILP and performance limits were then modeled via

analysis of the application’s true data dependencies (either through the register file

or memory). From this starting point we then begin adding constraints, such as

restricting window size and enforcing synchronization constructs. We then examine

how the application’s performance and ILP are a�ected by these constraints versus

an ideal machine. Constraints are changed one by one or in combination of a few.

This helps identify bottlenecks in the benchmarks under test. What sets our study

apart from other studies is our ability to directly observe the tradeo�s in ILP and

TLP in this class of parallel applications. As we increase/decrease the amount of

TLP (by increasing/decreasing the number of threads) we are able to observe how

this impacts ILP.

3.2.2 Trace-Driven Approach

Previous TLP studies were analytically performed with simple assumptions of

application scaling [12, 19]. Analyzing benchmark traces that are generated from

an execution-driven simulator (which simulates real machine behavior) can provide

much more accurate bounds on performance. Our trace-driven approach allows us to
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capture the actual dynamic instruction stream of multi-threaded benchmarks. These

dynamic instruction streams have perfect branch prediction, memory-addresses are

disambiguated, along with perfect memory (zero latency). A trace driven approach

provides accuracy that an analytical approach cannot replicate. An analytical ap-

proach usually involves simplification to model real behavior. We chose to use exe-

cution traces rather than static code analysis since static code lacks memory disam-

biguation and control flow information.

Prior to feeding these traces into our trace-driven simulator, the traces are pre-

processed once to work out all dependencies among instructions both intra-thread

(through the register file and memory) and inter-thread (through memory). These

traces are then fed into our trace-driven simulator, which then constructs a dynamic

Data Flow Graph (DFG) for each thread, stitching together those threads with the

dependencies between threads through memory. Figure 3.1 illustrates the process for

a single thread. Figure 3.1a shows a simple assembly pseudo-code fragment with reg-

ister data dependencies highlighted with solid lines, and memory data dependencies

shown with dashed lines. In this example, the e�ective address of the store (st) and

load (ld) alias to the same memory location forming a true data dependence through

memory. Note that the branch instruction as well as the instructions on the branch

not taken path are grayed out in the figure to represent the wrong path instructions.

In our limit study we assume perfect branch prediction, therefore these instructions

are not used in the DFG construction.

Figure 3.1b shows the corresponding DFG, that would typically be created with

our simulator. The nodes represent instructions, and the edges represent producer-

consumer data dependencies among the instructions. For the purpose of this limit

study, all instructions are assumed to take one cycle. The maximum height of the

DFG represents the number of cycles that this code fragment would take to execute
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(a) Assembly fragment with de-
pendencies highlighted. Wrong-
path and control flow instruc-
tions grayed.

����

��� �� ���

���

��

(b) Data-flow graph (DFG) for
code in part (a).

Figure 3.1: Data-flow graph (DFG) for assembly fragment.

in an ideal machine. In the example, the height of the DFG is three, thus with

infinite resources and one cycle per instruction the code would take three cycles to

execute.

3.2.2.1 Calculating Single-Threaded Average ILP

Using the DFG it becomes easy to extract ILP of the program. Here we define

ILP
ST _AV G

of a given single thread (ST) to be the average (AVG) number of in-

structions that can be executed in each cycle under the given machine constraints.

Equation(3.1), is used to calculate ILP
ST _AV G

.

ILP
ST _AV G

= I
all

H
(3.1)

In this equation, I
all

is the total number of instructions in the DFG, and H is the

height of the DFG, representing cycle count of the ideal machine. For the DFG

shown in Figure 3.1b, the ILP
ST _AV G

is 6
3 = 2.
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3.2.2.2 Calculating Multi-Threaded Average ILP

Extending this model to multiple threads in shared memory applications requires

additional modeling of the dependencies between threads. Dependencies between

threads are examined in two ways. First, to ensure correctness, the DFG genera-

tor models the true dependencies through memory caused by stores in one thread

feeding to loads of the same address in another thread. Second, we also can model

the dependencies in between threads caused by synchronization constructs inserted

by the programmer in the code (e.g. locks, barriers, etc.). Figure 4.5b illustrates

this process by showing a simplified parallel code fragment containing thread syn-

chronization via a barrier. For this example, we assume two threads execute the

“worker_thread” function simultaneously, each performing writes to parts of the

shared array x[]. Later these threads read the array x[], after being synchronized by

the pthreads_barrier_wait() to ensure correctness. Figure 3.2b shows the DFG for

these two threads with the thread synchronizing barrier in place. In this example,

the height Thread 1’s DFG (H1) is six because it inherits Thread 2’s height at the

barrier (since it has the greater H of the two at this synchronization point). Here,

H2 is five. As per Equation(3.1), the ILP
ST _AV G

of Thread 1 is 1.33 (The total

number of instructions in Thread 1, I1 is 8) and for Thread 2 is 2 (I2=10). These

results are averaged across threads to calculate the average ILP of multi-threaded

(MT) application DFGs following Equation (3.2).

ILP
MT _AV G

=
q

N

1 (I
alln

/H
n

)
N

(3.2)

Here H
n

, is the height of thread n’s DFG, for threads 1 to N where N is the total

number of threads in the benchmark. I
n

is the total number of instructions in a

given thread. For the DFG shown in Figure 3.2b, the ILP
MT _AV G

is 1.33+2
2 = 1.665.
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concurrent threads. Both
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(c) DFG for code in
part (a) with thread syn-
chronization constructs
removed.

Figure 3.2: Multi-threaded code fragment and associated DFG, with and without
thread synchronization constructs honored. Darkened nodes represent instructions
along the critical path.
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3.2.2.3 Calculating Multi-Threaded Critical Path ILP

ILP
MT _AV G

calculates the program’s ILP under the assumption that the appli-

cation scales ideally with thread count. Unfortunately applications do not typically

scale perfectly, hence we introduce a new ILP metric in this section which gives at-

tempts to provide a more useful estimation of the e�ective ILP for multi-threaded

applications. Figure 3.2 illustrates the issue. In Figure 3.2b, although H1 (the H of

Thread 1) sets the lower-bound limit on execution time for this example, we note that

Thread 1 alone does not determine the overall height (H
max

) of this multi-threaded

program. Here, speeding up execution in Thread 1 would not lead to a significant

performance increase. Because, although Thread 1 has a higher H after the barrier,

it inherits the H of four from Thread 2 at the barrier. Thus both Thread 1 and

Thread 2 have an impact on the overall H
max

of the program. Instructions from

Thread 2 prior to the barrier and instructions from Thread 1 after the barrier form

the critical path (CP) of the application. We define the program’s CP (indicated

by the darkened circles in Figure 4.5b) as the dependency chain of thread segments

through the program that determines the H
max

, ie. the execution time of the pro-

gram in the limit. Much insight can be extracted from per-thread ILP as well as

the critical path ILP. In this example, the number of instructions on the CP is 11,

and the CP takes six cycles to execute, therefore we define the ILP
MT _CP

=1.83

instructions/cycle for this code. To calculate ILP
MT _CP

, equation(3.3) is used.

ILP
MT _CP

=
q

k

1 I
kn

H
max

(3.3)

In this equation, I
kn

is the segment of instructions that are under the height (H
max

)

defining segments of each thread in the DFG.

Further insight can be gained on the limits of ILP and TLP scaling when thread
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synchronization semantics are removed. This approach allows an exploration of lim-

its of cross-synchronization boundary speculation. Figure 3.2c shows the DFG for

the code fragment when all thread synchronization semantics are removed. In this

case, correctness is ensured by continuing to enforce direct producer/consumer rela-

tionships between threads through memory. As the figure shows the overall H
max

is

reduced to five because two, now non-critical, instructions in Thread 2 are removed

from the program’s CP. The new CP has I
CP

=10 and an ILP
CP

=2 due to the in-

creased e�ciency of the resultant code path. We denote this measure of the ILP

of the critical path without synchronization semantics as ILP
MT _CP _NS

. Note that

here we are again measuring the dependency chain of thread segments, not solely

the dependency chain of instructions themselves. Thus, there are two instructions

at H = 3 in Thread 2 that are counted as critical, despite the fact that one of them

is not directly on the critical path connected to Thread 1.

Defining a CP metric, is a di�cult and somewhat fraught question, with several

possible derivations. Ultimately, we chose the current CP metric because we felt it

provided more insight than the alternative approaches. In particular, the current

metric captures the average dynamic ILP width of the CP segment in question, thus

indicating how wide a core must be to achieve the performance shown. Alternate

approaches would not show the true ILP width of the CP and thus provides less

useful information about the desired width of the machine needed to execute it.

3.2.2.4 Threading Ine�ciency

While ILP
MT _CP

provides information about the width of the machine needed

to achieve a given performance on multi-threaded applications, it does not give a

full picture of the relative balance between threads. Here we introduce a new term,

called threading ine�ciency (TI). TI is a measure of the relative imbalance between
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the CP (in terms of instruction count) versus the average thread. TI is calculated

according to Equation (3.4).

TI = I
CP

Iall
N

(3.4)

In this formula, I
CP

is the total number of instructions in the CP and I
all

is the total

number of instructions in all threads.

Analyzing the TI, particularly as thread count increases, provides insight into the

overheads of scaling out to many cores. The CP is the longest path in the execution

of a program, therefore the maximum speed up of a program is limited by its CP.

When TI is greater than 1, the CP is greater than the average thread length, it

indicates the workload is uneven. For example, a TI of 10 means the CP is 10 times

larger than the average thread length, which we would interpret as the application

being highly imbalanced.

2

3.3 Evaluation

In this section we first discuss some details of the methodology of our study and

then present our results.

3.3.1 Methodology

To conduct the work presented here, we generated dynamic instruction stream

traces using the gem5 Simulator [5] and the PARSEC Benchmark Suite [4] compiled

for the Alpha ISA [15]. All the PARSEC benchmarks that our simulation infras-

tructure supports are presented. To save space in the graphs, the benchmark names

are abbreviated to their first two letters. The abbreviations are as follows: BL -

Blackscholes, BO - Bodytrack, CA - Canneal, DE - Dedup, FE - Ferret, FL -
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Fluidanimate, VI - Vips, and X2 - X264.

Once traces were generated, we pre-process them by identifying data, instruction,

and thread dependencies, similar to the example given above Figure 3.2. An indi-

vidual trace set was generated for each of the examined numbers of threads (N
min

).

These traces are then fed into our o�-line analysis tools which create a dynamic DFG.

For this chapter our tools dynamically generate di�erent DFGs dependent upon win-

dow size and the presence or absence of thread synchronization semantics, as shown

in Figure 3.2.

One issue with a trace-driven approach, were traces are generated once and then

analyzed o�-line, is lock acquisition order may change under di�erent execution con-

straints, particularly in benchmarks which utilize fine grained locking. In the set of

PARSEC benchmarks which we are able to execute in this infrastructure, this only

applies to Canneal. In our prior work we found this e�ect to cause a relatively minor

impact in the measured performance, generally <10%.

Due to time constraints, small input sizes are used for all figures. Only instruc-

tions in the Region of Interest (ROI) were examined. In order to ensure that the

integrity of this idealized limit study was not e�ected by input size we selected a few

benchmarks to run using small, medium and large input sizes. After studying the

results closely we found that the behavioral trends extracted from small input were

mirrored in the medium and large inputs as well. We also ran the native input on

real machines, and found the trends remained the same.
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Figure 3.3: ILP Limits
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3.3.2 ILP and TLP Limit Study Results

Our limit study explores seven important questions as described in Section 3. We

answer these questions by evaluating PARSEC benchmarks in our limit study. We

believe answering and analyzing the following questions will help provide insight into

what future architectures should look like for next-generation workloads.

3.3.2.1 What is the Upper Bound on ILP?

Determining the upper bound on ILP available in multi-threaded benchmarks

helps quantify its availability for exploitation. If there is a plethora of ILP being left

on the table, then this will be clear motivation to develop better techniques to exploit

ILP. To answer this question we simulated our traces with unlimited resources and

no thread synchronization semantics however data and register dependencies are still

preserved. Although these benchmarks do have single threaded versions, we found

that they behaved significantly di�erent from the multi-threaded versions. There are

many algorithmic transformations that are tied to the sequential versus the parallel

versions of the code. We therefore felt the serial versions were not similar enough

to provide useful results. To have a consistent baseline, we start at the minimum

number of parallel threads possible for each benchmark, N
min

=2, meaning there will

be at minimum 2 threads spawned for each benchmark. 1 We calculate the upper

bound ILP (ILP
MT _AV G

) using the equation(3.2).

Figure 3.3a shows the resulting ILP
MT _AV G

for each benchmark. Here the

whiskers show the standard deviation (SD) of ILP among threads. The ILP
MT _AV G

varies from 29-929 Instructions/Cycle with an average across the benchmarks of 200.

As shown by the whiskers, FE, DE , VI and X2 show a noticeable variance in the
1Note that, when configured as Nmin=2, the PARSEC benchmarks will spawn a variable number

of threads greater than or equal to that number. In particular, BL, BO, CA, and FL each spawn
2 threads, while DE, FE, VI, and X2 spawn 12, 10, 4 and 6 threads respectively.

47



ILP di�erence among threads, while the other benchmarks show little variance.

The first observation we derive from this data is that there is significant vari-

ance in ILP between benchmarks. For DE and BO (lowest and highest respectively),

the ILP varied by a factor of 32x. DE finds and removes redundancies from data

streams with a technique called deduplication. The application has heavy commu-

nication among threads. Despite having several parallel stages, each stage is highly

dependent on the previous stage thus restricting ILP. BO processes images/videos

and keeps track of a human body. Its has high ILP because the frame input is

fixed and all processing is dependent on that frame. The input does not alter, and

therefore, can be parallelized very e�ectively (the highest of all benchmarks).

For comparison, we ran these benchmarks on real machines, with N
min

=2, using

the native input set. We then measured the ILP
MT _AV G

; results are shown on

Figure 3.3b. This yielded our second observation, not only do some of these

benchmarks fare poorly (CA) in real machines in terms of ILP, they are orders of

magnitudes less than what could theoretically be achieved. There is no doubt, a

great deal of ILP is left on the table in these applications. This argues that greater

e�ort should be spent in finding ways to exploit ILP in next-generation hardware.

These results are motivation to push for more research in aggressive speculation to

maximize ILP gains.

3.3.2.2 What is the Threading Ine�ciency of Each Benchmark?

Figure 3.4 shows the TI, as defined by Equation 3.4, for all benchmarks from

N
min

= 2-64. For the case of X2 and VI , we were unable to generate values of N
min

greater than 2 due to infrastructure problems, so they will be left out of the analysis

in this and the following questions. This experiment uses the same configuration

as discussed in Section 3.3.2.1. From Figure 3.4 we notice two distinct groups of
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Figure 3.4: Threading ine�ciency (TI) of PARSEC benchmarks for N
min

= 2
through 64.

behaviors. In the first group, containing CA, BL, and FL , TI increases slowly

with thread count and TI never exceeds 2x. BL shows the best TI, approximately 1

for all N
min

. BL represents an embarrassingly parallel program, as it remains well

balanced as threads increase. In BL, the problem space is evenly partitioned among

the cores and there is very little interaction among the threads until the program

completes [4].

The second group consists of FE , DE , and BO . In these benchmarks TI in-

creases dramatically with thread count. The underlying parallel algorithms in this

group involve a great deal of inter-thread dependencies at a high level. This increase

still occurs despite removing all thread synchronization overhead (inter-thread data

dependencies are always respected to ensure correctness). Bienia et. al. found these

benchmarks to be the only ones using the Pthread condition synchronization func-

tion in our study [4]. Pthread condition variables are used by a thread to suspend or

wake up other threads for the purpose of synchronizing data. These results indicate
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that, despite ignoring the condition thread synchronization semantics, overheads of

coordinating parallelization remain high for these applications. The parallel threads

generated by this group also spawned various types of worker threads that had di�er-

ent types of jobs to do. These threads relied on prior stages of thread pools to reach

a certain checkpoint before executing. This leads to our third observation, there

is a dramatic increase in TI for benchmarks that require threads to heavily depend

on each other (a good rule of thumb is when a parallel program uses a significant

number of Pthread condition instructions). In other words the more complex the

parallel algorithm is, the more di�cult it is to scale. While this observation may be

thought of as “intuitive”, what we add is the quantification of scaling overhead. Fur-

thermore, we find that depending on the complexity of the benchmark, the penalty

of scaling can be amplified. It should be emphasized that the degree of ine�ciency

varies among benchmark. FE had the worst TI (44), and BL had the best (1).

Knowing the TI of each benchmark is not enough to to optimize your returns on

hardware, rather it is a combination of resources available with respect to CP, ILP,

and cycle time. Threading ine�ciency is a useful metric, which we will use to help

interpret data we present in the questions below.

3.3.2.3 What is the Impact on ILP as Core Count Scales?

In this experiment we study the e�ects of the CP’s ILP (ILP
MT _CP

), as we

increase TLP (by adding more threads). Here we ran benchmarks setting N
min

to

2 through 64, simulating ideal cores. We again ignored all thread synchronization

semantics, thus following the discussion for extracting ILP
MT _CP _NS

described at

the end of Section 3.2.2.3 , and illustrated in Figure 3.2c. Figure 3.5 shows the ILP of

the CP for the varying N
min

. Showing the ILP of the CP gives a much more accurate

understanding of the tradeo�s between ILP and TLP caused by ine�ciencies in multi-
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Figure 3.5: Normalized ILP of the CP without synchronization semantics, N
min

=4
through 64 (ILP

MT _CP _NS

). Normalized against CP ILP for N
min

=2.

threaded load balancing. The CP takes into account all threads of a program. It is

typical for a benchmark to spawn additional threads as it continues to execute. For

some benchmarks such as FE, setting N
min

=64 will yield a CP which touches on

as many as 258 threads (many of these threads are short-lived). It is important to

understand that an increase in ILP does not necessarily indicate it is better for the

overall program in terms of performance and speedup. One must take into account

the CP’s instruction count and the application’s TI to understand the presented CP

ILP values.

From Figure 3.5 we see CA, FL and BL are the only benchmarks that only show

a small loss in ILP as N
min

increases. Furthermore, in FL, the ILP actually increases

forN
min

=32 and 64. It is worth noting that these are the simplest of all benchmarks,

in terms of parallelism model (they are data-parallel). For these benchmarks it

would make sense to keep core sizes the same as cores are added to compensate for

the increase in TLP. DE and FE see ILP reductions of 27% and 45% respectively
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as you scale out to 64 cores. For these applications, a good tradeo� that conserves

power as N
min

increases is to reduce the size of the cores. BO is the most interesting

as the CP ILP is best at 2 and 64, it shows less ILP for intermediate N
min

. Thus

the optimal ILP for BO is found at 64 cores. For this benchmark, it makes sense to

maximize the size of all cores for N
min

=64 cores, however, note that this benchmark

has among the worst TI (Figure 3.4). This brings us to our fourth observation,

as you increase the number of cores, the optimal core size to optimize performance

with respect to power varies greatly with application (it should match ILP trends).

Creating extra overhead due to scaling often gives additional ILP, but that does not

speak to whether it is beneficial or not, in order to properly process this, the TI must

be taken into account (shown in Figure 3.4).

3.3.2.4 What is the Impact of Instruction Window Size Restrictions?

In this experiment, we vary the simulated instruction window size. This exper-

iment explores the search distance required to achieve significant ILP gains. The

results should also help inform design decisions with respect to die area and power.

Figure 3.6a shows the ILP
MT _CP _NS

with window size constraints placed on each

benchmark, for N
min

=2. From the results, it is clear that window size heavily im-

pacts ILP. As the figure shows, an instruction window size of 128 restricts max ILP

to roughly 7-18 depending on the benchmark. Compared to the results for an infinite

window (Figure 3.3a) this reflects a loss in ILP available of 4-59x. When using a

5000 window size the applications gain more than half the ILP that we see in an

infinite window for CA, BL and FL.

Looking at instruction window sizes of 128 and 512 (a 4x increase in size), we

see slightly above 2x the returns in ILP for BL, CA and FL. As noted previously

these are the simplest benchmarks in terms of parallelism model (all 3 are using
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data-parallel algorithms [4]). Diminishing returns set in for ILP as window sizes

increase from 512 to 1024 and finally to 5000. For the rest of the benchmarks the

bulk of the ILP is found beyond instruction windows of size 5000. These benchmarks

are much more complex, and as a result this additional ILP is likely from di�erent

phases of the parallel algorithm. They also have di�erent parallel stages, which have

significant instruction parallelism relative to each other. Our fifth observation is

that we see that ILP is being heavily restricted by window size.

In half the benchmarks, most of the ILP can be mined from within a distance of

5000 instructions ( BL, CA, FL), while in the other half ( X2, VI, FE, DE, BO),

the ILP is found much further than a distance of 5000 instructions away, making it

more di�cult to capture using a traditional instruction window. Improving perfor-

mance in the first group might involve increasing the instruction window, while the

second group would require much more aggressive speculation techniques. We spec-

ulate near ILP (<5000 windows) is likely to include what is traditionally considered

to be Data-level Parallelism (loop bodies etc.) while far ILP is more likely to come

from di�erent program phases and related phenomena ILP as mentioned prior.

In Figure 3.6b we show the change in ILP
MT _CP _NS

comparing N
min

of 2 and

64. We find the ILP of the CP changes as you increase N
min

. In some benchmarks

the increase in TLP takes away from the ILP when imposing window constraints.

For BL, it makes little di�erence, while for FE, FL and BO we notice an increase

in ILP as we increase TLP. However for CA and DE we notice ILP is reduced.

Therefore depending on the benchmark, increasing TLP does not necessarily decrease

the amount of ILP when using window size constraints. When we do observe an

increase in ILP it is worth noting that this at a cost of an increase in threading

ine�ciency.

54



0%#

100%#

200%#

300%#

400%#

500%#

600%#

BL# BO# CA# DE# FE# FL#

In
cr
ea
se
(in
(C
yc
le
(C
ou

nt
( 2#

4#

8#

16#

32#

64#

(a) Impact of thread synchronization semantics on H.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

2# 4# 8# 16# 32# 64#

In
cr
ea
se
(In

(T
I((

BA# BO# CA# DE# FE# FL#

(b) Impact of thread synchronization semantics on TI.

Figure 3.7: Impact of thread synchronization semantics.
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3.3.2.5 How do Thread Synchronization Semantics E�ect ILP?

Thread synchronization semantics (i.e. locks, barriers and condition variables) are

inserted by programmers to synchronize data access between threads, with the goal

of removing races and ensuring correctness. Often theses semantics are implemented

very conservatively, sacrificing program performance to reduce programming time

and complexity. For example, a programmer may insert a lock to synchronize all

accesses to an array even when di�erent threads are not actually working on the

same elements of that array, and hence there is no actual data dependence between

threads accessing the array. Furthermore, there are often independent instructions

beyond a synchronization semantic that could be executed in parallel while waiting

on the synchronization semantic. In this section, we explore the potential benefit of

speculation beyond synchronization semantics on the ILP of the CP. Thus, here we

move from measuring ILP
MT _CP _NS

to ILP
MT _CP

as illustrated in Figure 3.2b.

Intuitively, we expect that removing the thread synchronization semantics im-

posed by the programmer will reduce H, the DFG height (ie. the estimated cy-

cle count). Here we quantify the actual impact on performance by focusing on

the changes in H of each benchmark. When simulating without synchronization

primitives, we still honor the true data dependencies between threads, therefore ap-

plications behave as if an idealized, fine-grain synchronization was used. For this

experiment, we compared H for each benchmark at each N
min

with thread syn-

chronization semantics enabled against a parallel run with thread synchronization

semantics ignored (as was done in all experiments to this point in the chapter). A

large increase in H with thread synchronization semantics enabled would provide

motivation for revisiting TLP exploitation techniques as well as motivation for cre-

ating new techniques to speculate past thread synchronization semantics as discussed
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in Section 3.4.3.

Figure 3.7a shows the increase in H with thread synchronization semantics en-

abled versus with thread synchronization semantics disabled. Figure 3.7b shows in-

crease in TI due to thread synchronization semantics. BL, being an embarrassingly

parallel program, shows no e�ect from thread synchronization semantics. CA is an

interesting case, as it contains the finest-grain synchronization of all the applications,

using load locks and store conditional instructions directly to create atomic locks.

It also uses high level barriers to synchronize all the threads. CA at 64 threads,

shows an 80% slow down when enabling thread synchronization semantics. In this

case it is the use of these barriers that inhibits performance. FE has the biggest

increase in cycle time at N
min

= 4 (slowing down nearly as much at 80%), which is

interesting since it is a pipelined parallel algorithm (multiple stages in the program

applications, where some stages are parallel), spawning many more than the mini-

mum N threads for each case. FL does not see any performance impact from thread

synchronization semantics until N
min

=32-64. DE , another pipeline parallel bench-

mark, has very minimal slowdown when enabling thread synchronization semantics,

along with BL it stands to benefit the least. BO is particularly interesting as it has

an significant impact on cycle time due to thread synchronization semantics. This

leads to our sixth observation, there is su�cient motivation to develop new and

aggressive thread dependency speculation techniques, particularly for N
min

Ø 32. Its

worth noting, although intuitive, almost every benchmark experiences a significant

increase in threading ine�ciency due to synchronization semantics.
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3.3.2.6 What is the Impact on ILP of Realistic Memory System Latency and

Branch Prediction Accuracy?

To explore the impact of realistic constraints on memory system latency and

branch prediction accuracy we perform four experiments. In the first two experiments

we add realistic branch prediction (Br) modeling di�erent prediction accuracies. In

the third experiment we add realistic memory latency using a cache simulator (MS).

Finally, for the last experiment we add both MS and Br simultaneously. For these

experiments we set N
min

=64, with thread dependencies enabled, using a 128 instruc-

tion window. For branch prediction simulations we implement a realistic model of 6.5

branch misses per thousand instructions (MPKI), which represents current typical

branch predictor performance [22]. we add realistic memory latency using a cache

simulator (MS). For our realistic memory system we implemented simple cache hi-

erarchy, modeling private L1 and L2 caches and a shared L3 last-level cache. The
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sizes of each cache are 256KB, 512KB, and 2MBs respectively. The three levels of

the cache have an access delay of 1, 10, 30 respectively, a L3 cache miss results in a

150 cycle delay. Here we chose 2MB of L3 cache since we are using the small input

set of PARSEC the memory footprint is likely smaller than native input sets. How-

ever, the trends should remain the same for larger input sets when using a larger

last level cache. Figure 3.8 shows our results for these experiments. The results

show that there is an average 31% reduction in ILP
MT _CP

when adding memory

system model delay, and an average 67% reduction when adding a realistic branch

misprediction rate of 6.5 MPKI (Br 6.5). BL and FL have very little ILP
MT _CP

degradation when implementing a realistic memory system. Interestingly, CA has

the worst cache ILP
MT _CP

performance, being reduced by 92%. The results for

CA, are consistent with Bienia et .al’s [4] work, where CA is known to be severely

restricted by cache size. Generally, with the exception of CA, we find that branch

misprediction has a nearly uniform, and drastic impact on the ILP available. To fur-

ther explore this impact, we improved the MPKI by a factor of 2, (from 6.5 to 3.25)

shown as Br 3.25 in the figure. Improving MPKI by a factor of 2 results in an ILP

improvement of 14%-51% depending on the application. Our seventh observation,

is branch prediction is the stronger bottleneck of the two under these constraints.

These results provide motivation to continue expending resources to improve branch

prediction, despite it being a mature field of research [21, 22, 40]. In our last exper-

iment, we add both Br (6.5 MPKI) and MS constraints simultaneously. The results

in Figure 3.8 show the combination tends to follow the most constrained of either Br

or MS depending on the benchmark.
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3.3.2.7 What are the Defining Characteristics of the Critical Path?

Finally, we examine the characteristics of the critical path (CP) for each bench-

mark. In this experiment, we utilize a configuration that most realistically resembles

a forward looking chip-multiprocessor, 64 cores, with a 128 instruction window using

a realistic memory latency and branch prediction (6.5 MPKI), as well as thread syn-

chronization semantics enabled. We recorded what threads were on the critical path,

as well as how much of the CP was made up of each thread. We then filtered the

results and removed any thread on the CP that made up less than 1/(Total Threads

on the CP) when N
min

= 64 (some threads spawn more than others as explained in

Section 3.3.2.1). Since the CP is the longest path from start to end of execution,

it makes sense to speed up the CP by using the highest performing cores available.

By characterizing the CP, we can determine the practicality and or di�culty of CP

thread migration for the sake of acceleration. Figure 3.9 shows this data along two

axes.

Figure 3.9a shows the number of threads that make up the CP of each benchmark.

The bars in Figure 3.9b show the average time a thread spends on the CP, while the

whiskers on each bar show one SD of thread time on the CP. Using these two graphs,

we are able to highlight a few observations. BL has two threads on the CP, each

containing 50% of the CP. FE had 34 threads on the CP that we considered critical;

interestingly, it spawned a total of 258 threads. Out of the 34 critical threads in FE

one thread dominated the CP by occupying 62% of the time. In BO, there were 6

threads on the CP, with one thread dominating, occupying 77% of the time. Thus we

feel it would be beneficial to have one or two bigger cores, to execute the dominant

threads on the CP for both benchmarks. The other benchmarks had many threads

making up their CP. For these applications, it is likely still advantageous to have a
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few larger cores to execute the CP and migrate threads to those cores on the CP

when they become critical, this is particularly true for applications with poor TI.

This follows into our eight observation, there exists a potential for performance

gain by creating larger cores and migrating threads to that core when they are on

the CP. This approach, however, will require research to explore techniques that can

identify thread criticality in real time [11, 42].

3.3.2.8 Summary Of Observations

In this section, we explore the limits and trade-o�s between ILP and TLP in

modern, shared-memory multi-threaded applications. Here, we summarize our ob-

servations from the experiments conducted. Current architecture designs are far from

achieving even a fraction of the ILP that is available in these applications. Clearly,

there remains a huge headroom for improvement with respect to ILP exploitation.

This suggests for more creative techniques to maximize ILP while maintaining power

requirements. Although traditionally ILP extraction has been viewed as extremely

power intensive, recent commercial processor designs indicate that this may be pos-

sible. In particular, comparing Intel’s Haswell versus Ivy Bridge processors, through

a concerted e�ort to reduce power, Intel has managed to reduce power consumption

by 50% while slightly increasing ILP extraction for two processors in the same 22nm

process technology [1]. Even within a distance of 128 instructions, there remains a

substantial amount of ILP that is not being mined by current architectures. Within

a 5000 instruction window the simplest data-parallel programs can extract nearly

half the upper bound of ILP calculated in this chapter. In more complex bench-

marks, such as those that use parallel-pipeline algorithms, a majority of the ILP is

much further away and likely impossible to capture using a traditional instruction

window. Therefore there is a good motivation to increase window size, as well as to
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find innovative ways to capture ILP that is much further away using a much more

aggressive speculation techniques. In order to explore the impact of realistic design

constraints on ILP we added simple branch prediction and memory system models,

and found that branch prediction is more important of the two with respect to ILP

under these constraints. Despite branch prediction cost overhead and the maturity

of this field, it may be worthwhile to expend resources to improve branch predictors,

potentially even over increasing cache size [21, 22, 40].

We find that increasing TLP does e�ect ILP, but the trade-o�s are not con-

sistent among all benchmarks. The trade-o�s depends on the benchmark, a good

rule of thumb for parallel algorithms: the simpler the parallel algorithm the less

likely TLP will negatively e�ect ILP. Therefore as core counts increase, core size

should be dependent upon the application. From a practical viewpoint, this argues

for heterogeneous architectures (only powering up core size appropriate for the given

application) or dynamic architectures. We find that thread synchronization seman-

tics can greatly impact program performance, although the amount depends on the

application. There is as much as a 6x slowdown due to these semantics. The over-

head of thread synchronization semantics on performance become quite noticeable

as programs scale to larger numbers of cores. Therefore, there should be more e�ort

in trying to speculate beyond synchronization semantics.

As cores continue to scale the more likely there will be an increase in load imbal-

ance. This increased load imbalance puts pressure on certain threads causing them

to become more critical than others. This argues for heterogeneous designs which

map threads to high performance cores when those threads become critical. Since

we find the critical path often migrates from thread to thread many times during the

application’s runtime, we find that there is a critical need to identify critical threads

during runtime, to enable performance critical thread migration. Generally in our
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results we find that no two benchmarks reacted the same across all our tests, thus the

optimal design for each benchmark is di�erent, when factoring in limited resources

and power constraints. This also argues for heterogeneous designs which dynamically

powers up the appropriate sized cores for e�cient execution of each benchmark.

3.4 Related Work

In the following section, we discuss related work that pertains to our limit study.

We start by examining past limit studies, and end on a survey of related toolsets

that are similar in terms of measuring ILP and TLP.

3.4.1 Past ILP Limit Studies

Historically, many researchers have published ILP limit studies [35, 44, 25, 16,

34, 2, 6], however since the majority of these studies date back several decades,

there have been numerous technology advances in the computer architecture field

since their publication. Most importantly, none of them have covered the trade-o�s

and limits between ILP and TLP. In the following subsection, we highlight some

significant limit studies.

Wall et al. [44] published one of the first studies of ILP limits with respect to

register renaming, branch prediction, loop unrolling, and window size. The chapter

concluded that with ideal techniques that are currently available to exploit ILP,

parallelism rarely exceeds 5-7. A study by Butler et al. [6] conducted around the

same time showed parallelism to be around 17 for the SPEC Suite. Their chapter

showed that with optimal hardware design, machines can achieve realistic parallelism

of 2-5. A limit study by Austin et al. [2] involved creating single-threaded DFGs

similar to our methodology using SPEC benchmarks. They showed ILP ranges from

13 to 23. Austin et al. concluded a very large instruction window is needed to

capture the majority of the parallelism. Lam et al. [25] demonstrated that control
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flow is a bottleneck in exploiting ILP, our branch prediction experiments reinforce

this finding. The authors concluded that, to increase ILP, restrictions on control flow

must be eased. Three novel techniques were introduced that helped alleviate control

flow, increasing ILP to its full potential: speculative execution, control dependence

analysis, and executing various paths in program execution simultaneously. The

studies conducted by Wall, Butler, Austin and Lam et al. are the foundation of

our limit study, as we seek to replicate their research in a multi-threaded era, where

applications now include inter-thread dependencies. The findings in these papers

are inconsistent with each other. The ILP limits found in Austin et al.’s were most

similar to our finding and coincidentally had a very similar methodology to us. Their

and our work both show parallelism to be several orders of magnitude greater than

what was found in the other papers. We speculate that the reason why we found the

upper bound to be orders of magnitude higher than most work previous is because

modern programs are much larger, more complex and operate on much more data

allowing for more data-parallel ILP extraction.

Posti� et al. [35] examined ILP in SPEC95 benchmarks. Their approach to find

additional ILP was unique compared to previous methods published prior; which

involved removing disruptions in the instruction stream caused by the stack pointer.

They showed that there is plenty of ILP in an application; however, it is spread out

quite expansively. They also concluded that compilers must be involved in mining

ILP. This work di�ers from ours, as Posti� et al.’s work involved modifications to

the traces, removing compiler-added code. In contrast we removed only operating

system code from our traces. Gonzalez et al. [16] argued that there was a lack of

e�ort to increase ILP by trying to solve the data dependency problem, showing it is

a major bottleneck. The solution proposed was to create data speculation techniques

to predict values of data dependencies. The study showed that additional ILP could
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be exploited by removing pseudo data dependencies and substituting their values

with values generated with a prediction algorithm. The paper demonstrated that

significant improvements can be achieved by predicting arithmetic data values when

using an infinite window. In their work, they noted that speculation techniques

would greatly benefit large/infinite instruction windows. Our work agrees with both

Gonzales et al. and Posti� et al. [16, 35] findings that ILP is spread out across an

application. We show that the majority of ILP can be captured using window sizes

greater than 5000 in a few of the benchmarks.

Pai et al. [34] is one of the newer limit studies. The researchers aimed at

exploring DLP, since at that time, Single instruction, multiple data (SIMD) had

become quite popular. The authors looked into how much DLP is available in a

program; as they pointed out, previous studies had not distinguished between TLP

and DLP. They found that there is a high degree of available DLP in applications.

In our work, we do not directly distinguish between DLP and ILP; we speculate that

the majority of ILP captured in our experiments using a window <5000 are a result

of DLP.

The most recent study was done by McFarlin et al. [29] in 2013, and is a loosely

based limit study that attempts to calculate the upper bounds the OoO Engine

performance. Their research focused on the OoO scheduler, and was split into two

parts. The first part involves reworking scheduling order of instructions with respect

to functional units and operands. Secondly, they looked at scheduling improvements

based on hardware speculation support. Based on their study they came up with

recommendations on what is needed to have an optimal OoO Engine, such as the

need to optimize instructions scheduling statically. They also found that the critical

path is highly dependent on load and branch instructions, and addressing these issues

can greatly increase performance. In our work, we do not study the impact an OoO
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Engine with respect to ILP, as we assume in all our experiments that functional units

are an unlimited resource.

We note that many of the past limit studies covered above are somewhat out-

dated; benchmarks have evolved, and they have been designed to take advantage

of TLP. These previous studies workloads used much smaller data sets and di�er-

ent/comparatively less complex algorithms. Further, no previous study examined

the relation between TLP and ILP, thread synchronization e�ects and thread load

balancing in multi-threaded applications with respect to the critical path. There

is a dearth of studies regarding trade-o�s and limits on current benchmarks when

it comes to ILP and TLP. These studies need to be updated to reflect behavior of

future applications. This is our motivation for pursuing the work in this chapter.

3.4.2 Past TLP Limit Studies

One of the most influential modern studies on the trade-o�s of TLP and ILP

was written by Hill et al. [19], where Ahmdal’s Law was applied to various multicore

topologies. Hill et al. developed theoretical mathematical models to determine what

type of topology would work best in running multi-threaded applications. Various

combinations of dynamic, asymmetric, and symmetric topologies were examined.

The work was done at a high level and was designed to stimulate thought rather

than provide concrete evidence on the best topologies to utilize when considering

multi-threaded applications. In this chapter, we aimed to provide some answers

to the questions proposed in Hill et al.’s paper. Esmaeilzadeh et al. [12] modeled

multicore scaling limits factoring in single, multi-core, and device scaling for the

purpose of measuring speed for parallel applications in the next five generations of

technology. Esmaeilzadeh et al. used simplified models and did not fully elaborate

on TLP and ILP trade-o�s, which is the main focus of this chapter. Our work
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di�ers from theirs as they derived their results and conclusions based on a number of

simplified assumptions (the authors modeled characteristics of benchmarks derived

from other papers). Our work is distinctive in that we try to reflect real workloads as

close as possible using real benchmark traces as the basis of our limit study. In other

words instead of modeling their characteristics, we used empirical data to reach our

conclusions.

3.4.3 TLP Speculation Techniques

In Section 3.3.2.5 we showed there is significant performance to be gained by

removing thread synchronization semantics in the majority of benchmarks analyzed.

These results give motivation to revisit old techniques to speculate beyond synchro-

nization primitives as well as motivation to create new techniques. In this section

we go over a few techniques in the past that are designed to speculate beyond syn-

chronization primitives gain performance.

Thread Level Speculation (TLS) was introduced in the mid 90s by Ste�an et

al. [41]. TLS is a technique that generates automatic parallelization of single threaded

programs starting at the compiler level. Speculative threads are generated based on

the compiler "guessing" whether blocks of codes are independent. These threads

are executed at runtime speculatively. Martinez et al. [28], extended TLS to work

with parallel applications. The authors argued that many thread synchronization

primitives were placed in non-optimal positions in code. Thus, forcing independent

code to be dependent due to the constrictions of thread synchronization primitives.

Martinez et al.’s work introduced the ability to speculate beyond barriers, locks and

flags.

Another TLP speculation technique is Speculative Lock Elision (SPE), developed

by Rajwar et al. [36]. SPE detects whether a critical section is truly critical at
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runtime. If a critical section is determined to have false inter-thread dependencies the

locks are removed and the critical section is executed. Thus, this allows threads not

to wait to acquire a lock, therefore reducing execution time of the parallel application.

This Thesis adds to previous work done by showing the upper bound of per-

formance when removing all thread synchronization primitives. The results shown

in Section 3.3.2.5 provide motivation to revisit these previous techniques as well as

create new ones.

3.4.4 Trace-Driven Tool Sets

To the best of our knowledge, we have built the first simulator that is able to

analyze thread and instruction dependencies for benchmarks of current and emerging

workloads. There exist a few simulators, however, that share the some of the same

characteristics. MaxPar [23] is a simulator developed in 1985 that analyzes data and

instruction dependencies in parallel systems. The overall goal of the simulator was

to measure the inherent parallelism in parallel applications. Since then, there have

been many changes such as underlying ISA, compilers, etc. Our simulator is similar

to MaxPar, except to accommodate the benchmarks of today and it can handle inter-

thread dependencies. Tasksim [38] is a hybrid simulator that combines both traces

and real-time execution of multi-threaded applications. This hybrid system has the

ability to generate a single trace and use that trace to run N threads, thus saving

time generating traces for given number of cores. The drawback to this simulator

is that it does not support many popular parallel languages. They support three

languages, with the most notable being OpenMP 3.0. Our simulator is di�erent in

that for each set of N threads, you must re-run the traces. Our simulator bypasses

high level languages (HLL) and runs at the assembly level; as a result our simulator

places no restrictions on HLL or threading model.
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3.5 Summary

In this chapter, we conducted a limit study on next-generation multi-threaded

benchmarks. We found that there remains a significant amount of ILP in these

benchmarks which has yet to be mined. Compared to real machines as much as

929x more ILP is available. We found the upper bound on ILP averaged around

200 instructions/cycle for all benchmarks, far exceeding current high-performance

processor cores. Much of this ILP, however, is much further than 5000 instructions

away. The plethora of ILP found should be motivation for the computer architecture

community to revisit old techniques as well attempt to create new techniques to

extract this ILP. As TLP increases, there is often a trade o� in ILP, and it can

decrease as much as 45%, depending on the complexity of the parallel algorithm.

We also found that thread dependencies had a detrimental e�ect on cycle time,

increasing it as much 9x. Adding realistic branch prediction, and realistic memory

latency resulted in ILP degradation of 67% and 31% on average respectively. From

this study it is clear that there are large performance improvements to be had when

it comes to next-generation parallel workloads. In particular, the results of this

study argue that research into more aggressive thread synchronization speculation

techniques can have a significant performance impact. They also argue that research

into run-time critical path identification will be critical to the success of asymmetric

multi-core designs. From the all the experiments that we conducted, there were no

two benchmarks that reacted the same way to all our tests, leading us to believe that

the optimal design for each benchmark is di�erent, with respect to performance and

power.
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4. SHARED-MEMORY CHARACTERIZATION ANALYSIS

One important unanswered question we can can solve using our novel simulator

DotSim is: what is the potential benefit of applying latency reducing techniques to

shared memory in critical sections with respect to execution time and ILP? To the

best of our knowledge there has yet been a study done answering this question using

shared memory multi-threaded applications. We conduct this study using our novel

simulator DotSim, and the PARSEC benchmark suite.

In this chapter, we conduct an idealized workload characterization study, focus-

ing on the truly shared loads between threads in multi-threaded benchmarks. We

define truly shared loads to be when a load is directly dependent on a store from

another thread. This workload characterization study is designed to answer what

performance benefit is there into using latency reducing techniques such as prefetch-

ing shared memory within a critical section. We do this by calculating the degree

of criticality of truly shared loads between threads by speeding up accesses to them

and observing the e�ects on execution time, critical path and ILP.

This chapter is a direct contrasts from the work done in Section 3.3.2.5 were

we ignored thread synchronization primitives (but respected memory consistency).

We showed in Section 3.3.2.5, that removing thread synchronization primitives re-

sulted in a significant increase on the upper bound of performance. In this workload

characterization study we perform several experiments using DotSim:

1. We quantify the amount of sharing done between threads, with respect to the

overall program and the critical path.

2. Provide a visual view of sharing between threads, in attempt to see if their is

exists an exploitable pattern to gain performance and reduce power.
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3. We drastically speed up and slow down the latency of truly shared memory

between threads and observe changes in ILP and execution time.

4. We add Miss Status Handle Registers (MSHRs) to our cache model that was

introduced in Section 3.3.2.6. We observe the impact on ILP, CP and execution

time, repeating the experiments above.

In our study we find that on average, true sharing among benchmarks is insignif-

icant compared to all memory access except for one benchmark. We also find that

truly shared memory does not a�ect the critical path under our given constraints.

Therefore on average there is minimal impact on execution time, and the maximum

impact on the upper bound of performance improvements on execution time and ILP

is < 1%. However, it is worth noting that these results are highly dependent on the

benchmarks, of which we used PARSEC benchmark suite. These results are unclear

across all shared-memory multi-threaded applications.

4.1 Motivation

There has been much work performed in attempting to exploit critical sections

of parallel code [7, 43, 8, 24, 37, 28, 11, 42, 36]. These techniques include allocating

additional computing resources, speculating beyond critical sections, lock prediction,

and reducing coherency related tra�c. Our work in Section 3.3.2.5, showed there

is up to 80% performance improvement possible speculating beyond critical section.

However, this experiment did not quantify the impact that truly shared memory

has on ILP and execution time. We think it is worth pursuing quantifying the

degree of criticality of truly shared memory. This will provide an upper bound

on performance that possibly could motivate potential latency reducing techniques

such as prefetching shared data to improve multi-threaded application performance.

These potentially latency reducing techniques could lead to reduction in the length
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of the critical path, and possibly increase in ILP. To the best out our knowledge no

such study has been recently done. Trancoso et al. [43] produced a very similar study

using a distributed memory system configuration with Splash 2 benchmarks using an

in-order machine that is very sensitive to memory latency. Additionally, their study

did not focus on conducting a limit study on the upper bound of performance like

we determine in this chapter.

4.2 Methodology

In this section we discuss the methodology of conducting a shared-memory work-

load characterization study on multi-threaded applications. First, we generated dy-

namic instruction stream traces using the gem5 Simulator [5] and the PARSEC

Benchmark Suite [4] compiled for the Alpha ISA [15]. All the PARSEC benchmarks

that our simulation infrastructure supports are presented.

Once traces were generated, we pre-process them by identifying memory depen-

dencies inter and intra thread, as discussed in previous chapters. An individual trace

set was generated for N
min

=64. These traces were then fed into our o�-line analysis

tools which we used to conduct our workload characterization study. We continue

to use the small input size to generate traces. We also stick to focusing on only

instructions in the Region of Interest (ROI). In order to ensure that the integrity

of this workload characterization study was not e�ected by input size we selected

a few benchmarks to run using small, medium and large input sizes. The results

were nearly identical for all input sizes. In the subsection below we discuss how the

workload characterization study was conducted.

4.2.1 Workload Characterization Study

The objective of our experiments is to measure the amount of true sharing done

and to measure the degree of criticality of truly shared memory. We define true
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sharing to be when a load is directly dependent on a store from another thread. In

order to do this we counted the number of loads from one thread that depended on

a store from another thread. We kept track of this information with respect to the

CP (as discussed in Chapter 3) as well as the overall program. In addition we kept

track of which threads shared with other threads using a matrix. Finally, we also

kept track of overall memory accesses (L1, L2, L3, and DRAM ) with respect to the

benchmark as a whole and its CP.

In order to determine the degree of criticality of truly shared memory we sped

up and slowed down memory accesses 150X and 10X respectively then compared it

to our baseline configuration. A slow down of 10X represents a worst case scenario

for a cache coherency penalty. We used DotSim to simulate these experiments using

our cache simulator discussed in Section 3.3.2.6. For our realistic memory system we

implemented simple cache hierarchy, modeling private L1 and L2 caches and a shared

L3 last-level cache. The sizes of each cache are 256KB, 512KB, and 64MBs respec-

tively. The three levels of the cache have an access delay of 1, 10, 30 respectively, a

L3 cache miss results in a 150 cycle delay. We modeled any load that required access

to a store in another thread of having an access delay of 150 to represent coherency

tra�c. We measured the degree of criticality by observing the e�ects on execution

time as we changed access time to truly shared memory from 1 cycle (speed up of

150X), and 1500 cycles (slow down of 10X) with a baseline latency of 150 cycles.

In our DotSim setup, we enabled thread synchronization primitives, enabled branch

prediction, and a 128 instruction window with an issue width of 4. We then repeat

the experiments adding the e�ects of Miss Handle Status Registers (MSHRs) to our

cache model with a maximum 8 outstanding misses for each level of cache.
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4.3 Evaluation

In our workload characterization study we answer the following questions in this

section:

1. How much of memory tra�c is made up of truly shared loads between threads?

2. What is the degree of criticality of truly shared loads?

3. What is the impact on ILP and execution time when adding Miss Status Handle

Registers (MSHRs) to our cache model?

4. What are possible sharing patterns that could potentially be exploited with re-

spect to power and performance?

We believe that answers these questions will either argue against or for latency

reducing techniques for truly shared loads as well as possible hints into exploiting

memory tra�c in terms of optimizing power and performance.

4.3.1 How Much of Memory Tra�c is Made Up of Truly Shared Loads Between

Threads?

In this experiment, we keep track of all loads within the overall program and CP.

We keep track of all loads by gathering statistics on what level of cache hierarchy

does each loads hit. What is unique about this experiment is we count the number

of loads that are truly shared. We define truly shared loads to be when a load is

directly dependent on a store from another thread. Truly shared loads are what

thread synchronization primitives are designed to to preserve in terms of memory

ordering and consistency. In the case of truly-shared memory we count it as shared

load, and do not count this towards hitting any other level of the memory hierarchy.
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Figure 4.1 shows the breakdown of memory tra�c. For Blackscholes we see there

is no sharing, we find this to be consistent with previous work which has shown

there is no sharing between threads [4]. On average, for all benchmarks there is

5% memory tra�c related to truly shared loads among threads. Accesses to L3 and

DRAM accesses are insignificant for all benchmarks. Its worth nothing that this is

a result of truly shared loads not counting towards hitting L3 and DRAM (such as

L3 and DRAM). Bodytrack has the most truly shared loads. Overall, truly shared

loads make up nearly 20% of memory accesses of Bodytrack, but its critical path

only makes up 7% of truly shared loads. This implies that sharing among threads

is not likely a bottleneck on the critical path. We are unsurprised by the amount

of shared between threads in Bodytrack as we noted in Section 3.2.2.4, that there

was a high degree of thread synchronization primitives, which is likely correlated

to prevent threads from overriding each other’s critical section and preserving data

memory consistency.

4.3.2 What is the Degree of Criticality of Truly Shared Loads?

On average the number of truly shared loads represents a small portion of the

overall program and CP. However, what is pivotal is how critical truly shared memory

is even if it makes up a small portion of memory tra�c. If indeed it is critical, then

that would provide enough motivation to attempt to reduce latency of these accesses

in hopes of increasing execution time and ILP. In this experiment, we slow down truly

shared loads by 10X. We then observe the impact on execution time and CP ILP.

The degree of criticality is determined by the impact of speeding up and slow down

truly shared memory has on CP ILP and execution time. We first measure the degree

of criticality using our setups discussed in Section 4.2 without using MSHRs. We find

that the e�ects on CP ILP and execution time for speeding up as well as slow down
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Figure 4.1: Breakdown of memory accesses of the CP and overall program.

was insignificant (<1%) for all benchmarks. We find this somewhat unsurprising

as on average, truly shared memory makes up 5% of all memory accesses.

We hypothesize that the lack of criticality of truly shared memory could be possi-

bly due to the lack of additional details in our modeling of the cache memory system.

We then add MSHRs, to reduce the amount of outstanding misses that could be pos-

sible in each level of cache to eight. Thus, this addition reduces the amount of ILP

possible, as we attempt to make our configuration more dependent on the memory

system. We then extend our experiments from Chapter 3 in Section 3.3.2.6, where

we observe the impact on performance adding a realistic memory system. In Fig-

ure 4.2 we see the impact of adding MSHRs to the memory we system. We note that

Canneal (which was previously identified as the most sensitive to adding a memory

system) has the worst impact when it comes to ILP. Bodytrack has the worst im-

pact when it comes to execution time. On average adding MSHRs impacts ILP and

execution times by 12%, were all benchmarks were a�ected except for Blackscholes
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Figure 4.2: Changes in ILP
MT _CP

and execution time when adding MSHRs normal-
ized without MSHRs.

which is heavily dependent on floating point calculations and not memory.

Using our cache model incorporating MSHRs, we then repeat slowing down and

speeding up truly shared loads. We then measure the degree of criticality. We show

the results in Figure 4.3. The degree of criticality of these truly shared loads, are still

insignificant, having an upper bound performance benefits of 1% (much higher than

without MSHRs were benefits were <1%). We can conclude from these results based

on our constraints and benchmarks that we tested, truly shared loads are not critical

and have very minor e�ects on ILP and execution time. These results support the

performance gains we saw in Section 3.3.2.6 were we removed thread synchronization

primitives and saw significant gains in performance. We believe the results here show

that truly shared loads are not the performance critical part of of an application.

78



!1.5%&

!1.0%&

!0.5%&

0.0%&

0.5%&

1.0%&

1.5%&

Bla
cks
ch
ole
s&

Bo
dy
tra
ck&

Ca
nn
ea
l&

De
du
p&

Fe
rre
t&

Flu
ida
nim

ate
&

av
era
ge
&

Sped&Up&150X&

Slowed&Down&10X&

Figure 4.3: Changes in ILP
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and execution time when speeding up and slowing
down by a 150X using MSHRs in our cache model normalized against our default
latency model.

4.3.3 What are possible sharing patterns that could potentially be exploited in

terms of power and performance?

In our final experiment, we provide a graphical visual representations of truly

shared memory between threads using a heat map. We use a matrix to count the

number of stores supplied to one thread that is consumed by a load in another

thread. Columns represents the thread providing the store, were the row represents

the thread requiring a store for its dependent load. Columns and rows are ordered in

terms of Thread ID, where Thread IDs are assigned chronologically and are allocated

during thread spawning phase. Thread 0 is always the main thread, which often

spawns all the other threads (not in all cases). Figure 4.4 and Figure 4.5 show

all six heat maps for all benchmarks. We note that despite setting N
min

=64 as

stated in Section 3.3.2.1, benchmarks often spawn more than 64. Therefore the heat

maps are not all the same size. These heat maps represent the frequency of thread
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communications via the store-load producer consumer relationship. Red represents

the lowest value, while yellow represents the midpoint threshold and green represents

the highest values thorough the colored matrix.

For Blackscholes we see no sharing as expected. For Bodytrack we see that

the main thread (Thread 0) does the most sharing. Thread 0 seems to be the

producers while a lot of the other threads consume o� of it. It would be ideal to place

Thread 0 to be the middle core in the CMP design, therefore reducing the distance

when communicating to other cores, This would reduce latency communications and

power consumption. Canneal, has an interesting sharing diagonal pattern where each

thread, shares with the thread directly next to it, in a tightly producer-consumer

relationship. In the case of Canneal, threads should be placed next each other via

spawn order, since each thread often blocks the thread before it. For Dedup there is a

very obvious pattern, threads tend to share with neighbor threads in square clusters

(note the yellow squares on each corner of the map). This means that thread should

be placed in order by when they spawn, much like our suggestions for Canneal.

Fluidanimate has a very similar pattern to that of Canneal. Finally, Ferret also has

a pronounced pattern of small sections of thread sharing between ordered threads,

as well as Thread 2 producing data that is required by a lot of other threads that

are spread out. This implies that Thread 2 should be placed in such a way that all

other threads can reach it the quickest.

From these heat maps we can conclude that random thread scheduling and place-

ment is non optimal. Thread scheduling is important, which should be used as an

advantage to shorten communication distance and reduce latency. Optimizing thread

scheduling moving communicating pairs of threads which includes thread placement

with CPU cores and mapping cache lines in the last level cache (possibly optimizing

via page coloring) to match the thread core location.
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(a) Blackscholes

(b) Bodytrack

(c) Canneal

(d) Dedup

Figure 4.4: Heat maps representing thread to thread communications.
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(a) Fluidanimate

(b) Ferret

Figure 4.5: Heat maps continued.

4.3.4 Inaccuracies In Our Studies

Other studies discussed in the related work section have found performance im-

provements in coherence protocol optimizations. We speculate that the di�erences

in our study and previous studies is that we do not model interconnection networks,

bus and coherency tra�c which when combined could possible increase the degree

of criticality of truly shared memory. Therefore, future work would involve adding a

more realistic interconnection network, and produce synthetic coherency tra�c from

our traces. However, we emphasize the goal of this study was to provide a upper

bound on shared memory.
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4.4 Related Work

Transcoso and Torrellas performed a very similar study using a subset of Splash

benchmarks, where they sped up critical sections by prefetching shared data, and

other variants and tweaks designed to reduce latency time [43]. They found impres-

sive performance improvements with their techniques sometimes achieving greater

than 50% reduction in execution time. However, their methodology was much di�er-

ent than ours, specifically since they used an in-order machine which is very sensitive

to memory latency changes in terms of instructions per cycle (IPC). This indicates

that perhaps out-of-order machines greatly reduce the impact of shared memory

prefetching.

Demetriades [8] et al. published a paper on predicting coherence communica-

tions, thus resulting in reduced latency misses. They created a way to predict co-

herency communication thereby, improving average latency times in directory pro-

tocols. They tested Splash-2 and PARSEC benchmarks. A few of their benchmarks

were identical to ours, however their results do not match ours. The reasoning is

we used a simplified modeled, were do not model coherency tra�c, protocols or any

interconnection networking details. These additional details are likely making our

results inconsistent. Another reason for the discrepancy is we focused on true shar-

ing of data between threads, but they focused on the overall critical section. There

have been many other coherency prediction mechanisms that attempt to reduce the

amount of latency required to communicate/exchange shared data [24, 37]. Many

of the studies were done either using Distributed Shared Memory (DSM) which has

orders of magnitude greater latency than our configuration of studying CMPs. Many

of these studies also used an interconnection network with latency having to factor

in bus contention. Therefore, comparing to our somewhat oracle study to be much
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di�erent as well as a using di�erent benchmarks.

Cheng et al. proposed varying interconnect wires that have di�erent latency,

bandwidth and energy properties. They proposed that coherency communications on

the interconnection networks be transferred via reduced latency wires that have much

lower bandwidth [7]. There results show performance improvements of 11.2%. There

work is an alternative way to try to reduce the amount of sharing communication done

via computing nodes. However, the work done in this paper varies vastly di�erent

than what we have done here. As the amount of realism and detail implemented

in their simulations is much greater than ours, as we previously discussed in this

section.

All these papers covered here attempt to reduce the amount of coherency latency

done with the requirements of sharing data among cores. They often show very

realistic ways of trying to improve performance. The results shown in these paper

is di�erent from our methodology as we have implemented a much simpler model,

measuring the performance benefits of truly shared data. Ultimately, what we can

conclude from our study is that the critical path of the benchmarks under test are

definitely not bottlenecked by truly shared loads among threads.

4.5 Summary

In this chapter we present a workload characterization study on sharing between

threads in multi-threaded applications. Overall, we show that the amount of true

sharing among threads is quite low, aside from one benchmark (Bodytrack). These

results supports our previous results of removing thread synchronization primitives

resulted in significant performance improvement. Most importantly we show that

the upper bound of performance on degree of criticality of true sharing is < 1%, and

even then its only impactful on two benchmarks. Thus we conclude based on these
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results focusing on latency reducing techniques to prefetch truly shared data is not

justified but focusing on the overall critical section is.
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5. CONCLUSIONS

In this dissertation, we made three contributions. (1) We develop DotSim, a trace-

driven tool kit that is designed to explore the limits of instruction- and thread-level

scaling and identify microarchitectural bottlenecks in multi-threaded applications.

DotSim excels at first-order modeling of many novel microarchitectural approaches.

DotSim is also ideal for validating other simulators with less abstraction. (2) We used

DotSim to conduct a limit study on next-generation multi-threaded benchmarks. We

found that there remains a significant amount of ILP in these benchmarks which has

yet to be mined. Compared to real machines as much as 929x more ILP is available.

We found the upper bound on ILP averaged around 200 instructions/cycle for all

benchmarks, far exceeding current high-performance processor cores. Much of this

ILP, however, is much further than 5000 instructions away. The plethora of ILP

found should be motivation for the computer architecture community to revisit old

techniques as well attempt to create new techniques to extract this ILP. It should be

noted the calculating the upper bound on ILP is dependent on compiler optimization

and underlying ISA. Compiling with optimization is likely to reduce the amount of

ILP versus un-optmized code as optimized code is more e�cient in reducing the

amount of instruction (such as dead block elimination). The underlying ISA may

also have an a�ect on ILP due to the varying amount of registers ISA’s have. As

a reduced amount of registers likely forces register values to spill into memory thus

serializing instructions (adding inter-thread store to load dependencies) thus reducing

the amount of ILP compared to an ISA with more registers. As TLP increases, there

is often a trade o� in ILP, and it can decrease as much as 45%, depending on the

complexity of the parallel algorithm. We also found that thread dependencies had a
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detrimental e�ect on cycle time, increasing it as much 9x. Adding realistic branch

prediction, and realistic memory latency resulted in ILP degradation of 67% and 31%

on average respectively. From the all the experiments that we conducted, there were

no two benchmarks that reacted the same way to all our tests, leading us to believe

that the optimal design for each benchmark is di�erent, with respect to performance

and power as we show with Table 5.1.

Finally (3) we present a workload characterization study on sharing between

threads in multi-threaded applications. Overall, we show that the amount of true

sharing among threads is quite low. We conclude that based on the results of our

study, focusing on latency reducing techniques to prefetch truly shared data is not

justified. Lastly in the study we show that random pin of cores to threads is not an

ideal solutions, as there are exploitable memory sharing patterns.

5.1 Future Work

This dissertation covered a high level view of studying the limits of next genera-

tion multi-threaded benchmarks with respect to micro-architecture design. The goal

of future work should be to add layers of details in micro-architectural design, remov-

ing the layers of abstractions we have provided in DotSim. Example of additional

micro-architecture details are to model an interconnection network, realistic branch

predictors, and Out-of-Order execution engine. Once additional micro-architectural

details have been added the experiments conducted here at the very least should

be repeated. DotSim’s front end should also be changed to accept X86 ISA. Lastly

experiments should be conducted that involve speeding up threads that make up

critical path, which we identified in Chapter 3’s final experiment, observing impact

on execution time and ILP.
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Benchmark Max
ILP

Increasing
TLP

Threading
Ine�ciency

Enabling
Thread
Seman-
tics

Optimal
Instruc-
tion
Window

Cache or
Branch
Predictor

Blackscholes 326 Flat Linear No
E�ect

5K BP

Bodytrack 929 Increases Super Lin-
ear

Huge Ef-
fect

NA BP

Canneal 75 Decreases Linear Huge Ef-
fect

1024 Cache

Dedup 29 Decreases Super Lin-
ear

No
E�ect

128 BP

Ferret 31 Decreases Super Lin-
ear

Huge Ef-
fect

512 BP

Fluidanimate 77 Increases Linear E�ect on
N>32

5K BP

Vips 88 NA NA NA 512 NA
X264 100 NA NA NA 512 NA

Table 5.1: Summary of results for each benchmark.
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