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ABSTRACT

This dissertation focuses on methodology to integrate multiplatform genomic

data with cancer applications. Such integration facilitates the discovery of biological

information crucial to the development of targeted treatments. We present iBAG

(integrative Bayesian Analysis of Genomics data), a two-step hierarchical Bayesian

model that uses the known biological relationships between genetic platforms to

integrate an arbitrary number of platforms in a single model. This method iden-

tifies genes important to a clinical outcome, such as survival, and the integration

approach also allows us to identify which platforms are modulating the important

gene effects. A glioblastoma multiforme (GBM) data set publicly available from

The Cancer Genome Atlas (TCGA) is analyzed with iBAG. We flag several genes

as important to survival time, and we include a discussion of these genes in a bio-

logical context. We then present a nonlinear formulation of iBAG, which increases

the flexibility of the model to accommodate nonlinear relationships among the data

platforms. The TCGA GBM data is again analyzed, and we carefully compare the

results from both the linear and nonlinear formulation. Next we present a pathway

iBAG model, piBAG, which includes gene pathway membership information and

utilizes hierarchical shrinkage to simultaneously select important genes and assign

pathway scores. The integration of multiple genomic platforms again allows us to

determine which platform is regulating each important gene, and it also provides

insight as to through which platform each pathway is taking effect. We apply this

method to a different subset of the TCGA GBM data. Finally, we present integra-

tive heatmaps, a novel visualization tool for illustrating integrated data. We use a

TCGA colorectal cancer data set to demonstrate the integrative heatmaps. Through
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the various simulation studies and data applications in this dissertation, we conclude

that the methods presented achieve their respective goals and outperform standard

methods. We demonstrate that our methods provide many advantages, including in-

creased estimation efficiency, increased power, lower false discovery rates, and deeper

biological insight into the genetic mechanics of cancer development and progression.
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1. INTRODUCTION

The American Cancer Society estimates there will be over 1.6 million new cancer

cases in the United States in 2015 (American Cancer Society, 2015a). Targeted ther-

apies are currently at the forefront of research efforts to prevent death and alleviate

suffering due to cancer development and growth. Whereas traditional chemother-

apy treatments kill healthy cells along with diseased cells, targeted therapies are

designed to affect precise molecular targets contributing to the survival and progres-

sion of cancerous cells (National Cancer Institute, 2015). However, before a targeted

treatment can be developed, we must first identify the appropriate target(s). Many

statistical methods have emerged that aim to find such targets. Some of them focus

on one type, or platform, of genetic data (such as gene expression), and some include

multiple data platforms in their analyses. Integrating multiple genomic platforms

has been shown to provide many advantages, such as increased statistical power and

decreased false discovery rates (Wang et al., 2013), as well as providing a clearer pic-

ture of the involved biological mechanisms. This dissertation focuses on integrative

Bayesian methods with the purpose of identifying the genetic entities significantly

related to cancer outcomes.

In Chapter 2 we present a brief overview of iBAG (integrative Bayesian Analysis

of Genomics data), an adaptation of the method originally proposed by Wang et al.

(2013). This two-step hierarchical model integrates an arbitrary number of genomic

data platforms and identifies not only the genes important to a clinical response,

but also the platform modulating the significant effects. We apply the method to a

subset of publicly available glioblastoma multiforme (GBM) data and identify several

potential prognostic markers. In Chapter 3 we provide a more in-depth presentation

1



of iBAG, including an expansive literature review, a thorough biological discussion

of the selected GBM markers, and a straightforward algorithm for ease of method

application.

We propose a nonlinear formulation of the iBAG model in Chapter 4. This for-

mulation allows for more flexible integration of the data platforms, without creating

any interpretation complications. We compare the linear and nonlinear methods

and their corresponding results when applied to the GBM data set. In Chapter 5

we present piBAG, a pathway iBAG model that maintains the integration and gene

selection properties of the general iBAG method, but also includes gene pathway

membership information. We formulate the piBAG model to borrow strength across

each pathway, which results in efficient estimation and also provides the framework

to estimate pathway scores. The pathway effects on the clinical outcome can be

ranked by these scores, allowing us to identify the important gene pathways as well

as the important individual genes. The pathway iBAG is applied to a different subset

of the GBM data, and we identify four potential prognostic markers.

In Chapter 5 we propose “integrative heatmaps,” a novel visualization tool for

illustrating the integration step in our iBAG models. We present three variations

of the integrative heatmap (IH): additive IHs, componentwise IHs, and platform-

specific IHs, and we discuss the unique objectives of each one. Finally, Chapter

6 contains a conclusion with an overarching view of the advantages offered by the

methods presented throughout the dissertation.
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2. HIERARCHICAL BAYESIAN METHODS FOR INTEGRATION OF

VARIOUS TYPES OF GENOMICS DATA∗

2.1 Introduction

The central dogma of molecular biology summarizes the steps involved in the

passage of genetic information at a molecular level: DNA is transcribed to messen-

ger RNA (mRNA), which is then translated to a protein, which carries out a specific

action in an organism. In addition there are also other alterations and interferences,

such as epigenetic factors, that can occur at the DNA and/or mRNA levels which

affect the ultimate expression of a given gene. In this paper we consider methylation

(which occurs at the DNA level and typically results in a silencing of the gene), copy

number (which describes an attribute at the DNA level that affects mRNA expres-

sion), and mRNA expression (which affects protein expression); these subsequently

affect a clinical phenotype (e.g. survival) (see Figure 2.1). In addition, it is believed

that the mechanism of cancer development is complex and involves multiple genes

(Kanu et al., 2009). It is known that genes interact and are related through certain

pathways, and in this paper we focus on genes from important signaling pathways

that are believed to affect cancer development processes (Memorial Sloan-Kettering

Cancer Center, 2012).

Current technologies allow us to obtain data from the above-mentioned platforms

(and many others) for each gene involved in the analysis. The Cancer Genome At-

las (TCGA) is a project that began in 2006 to gather comprehensive genomic data

using multiple platforms on over 20 types of cancer (The Cancer Genome Atlas,

∗ c©2012 IEEE. Reprinted, with permission, from Jennings, E. M., Morris, J. S., Carroll, R. J.,
Manyam, G. C., and Baladandayuthapani, V. (2012), “Hierarchical Bayesian methods for integra-
tion of various types of genomics data,” Genomic Signal Processing and Statistics, (GENSIPS),
2012 IEEE International Workshop, Dec. 2012.
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2012). The increasing availability of such data has motivated the development of

methods that seek to improve estimation and prediction regarding genomic effects

on cancer outcomes by integrating data from multiple platforms in a single analysis.

The incorporation of information from more than one platform has the potential

to increase power and lower false discovery rates in identifying markers related to

clinical outcomes for cancer patients; such improvements would deepen our under-

standing of how cancer develops and spreads, offering researchers valuable insight

regarding the development of drugs and procedures intended to prevent or inhibit

cancer development.

Figure 2.1: Schematic representation of the multiple molecular platforms and their
biological relationships. Reprinted with permission from Jennings et al. (2012).

Methods attempting to integrate multiple genomic platforms must face the chal-

lenges of high dimensionality and complex biological relationships both within and

between platforms. Tyekucheva et al. (2011) suggest a method that includes multiple

platforms as predictors in a logistic regression model and show that incorporating

4



multiple platforms yields more power to detect differentially expressed genes than

approaches that only use a single platform – but this approach does not take into

account the biological relationships among platforms. Recently, Wang et al. (2013)

proposed an integrative Bayesian analysis of genomics data (iBAG) framework that

models the biological relationships between two platforms. This approach involves a

global gene search, and uses variable selection via the Bayesian lasso-based shrinkage

priors to deal with the high dimensionality of the data.

In this paper, we introduce a generalized version of iBAG that integrates data

from an arbitrary (multiple) number of genomic platforms using a hierarchical model

that incorporates the biological relationships among them. We focus our analysis on

genes from the RTK/PI3K, P53, and RB signaling pathways and integrate mRNA,

methylation, and copy number data to predict survival in Glioblastoma Multiforme

(GBM) patients. In addition, we reduce dimension by regressing the clinical outcome

on latent scores of the platforms (see Section 2.2.1 for details). To improve effect

size estimation and to achieve sparsity, we use a Normal-Gamma (NG) prior for

the effects, which increases flexibility in the estimation as compared to the Laplace

prior of the Bayesian lasso (Griffin and Brown, 2010) (see Section 2.2.2 for further

discussion). Section 2.3 illustrates our methodology on a synthetic example; analysis

of GBM data is presented in Section 2.4; and conclusions are drawn in Section 2.5.

2.2 A Multivariate iBAG Model

Our construction of a multivariate iBAG model employs a two-component hi-

erarchical model where the first component can be considered as the mechanistic

model, and the second can be considered as the clinical model. In the first stage

mechanistic model, we partition each gene’s expression into the factors explained by

methylation, copy number, and other (unknown/unmeasured) causes using a prin-
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cipal component-based regression model. Subsequently, we include these factors as

predictors in the second stage clinical model, thus finding not only those genes whose

expression is directly related to clinical outcome, but also expression effects driven

by methylation, copy number, or other mechanisms. We explain the construction of

each of these components below.

2.2.1 Mechanistic model

Let n = number of patients, k = number of platforms being integrated, and

pj = number of genes from platform j. The mechanistic model for each gene can be

expressed as:

mRNAi = Mi + CNi + Oi,

where each of the terms are defined as follows:

• mRNAi is the level of gene expression for gene i (where i = 1, ...,max(pj); j =

1, ..., k) and is of dimension (n× 1).

• Mi is the part of genei expression that is attributed to methylation factors, and

is of dimension (n× 1).

• CNi is the part of genei expression that is attributed to changes in copy number,

and is of dimension (n× 1).

• Oi represents the “other” (remaining) part of the gene expression that is un-

explained, and is of dimension (n× 1).

Since the raw methylation and copy number data for any given gene can consist

of multiple (up to 40) values, to estimate each of the components Mi, CNi, and Oi,

we first carry out two principal component analyses (PCA) for genei: one each for

the methylation and copy number data. We then regress mRNAi on the methylation
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and copy number PC scores that account for ≥ 90% of the variation. We use these

estimated pieces and the corresponding residuals from this regression to estimate

the vectors Mi, CNi, and Oi respectively. This process is repeated for each gene

independently.

2.2.2 Clinical model

The clinical component of our construction models the effect of the mechanistic

parts of the genes (as estimated above) on a clinical outcome of interest (e.g. survival,

in our context) and can be written as:

Y = Mβ1 + CNβ2 + Oβ3 + ε

where Y denotes the clinical outcome, βi are the effects of platform i on Y , and ε

is the error term. The covariates in the model {M, CN, O} are the vectorized gene

effects attributed to methylation, copy number, and other sources respectively, and

are estimated from the mechanistic model. In essence, our clinical component jointly

(additively) models the effects of all the gene expressions and their components –

derived from different sources (methylation/copy number) – in a unified manner.

Our goal is to find a list of significant genes that affect the outcome via the

various mechanisms; hence efficient estimation of β = {β1,β2,β3} is of primary

interest. For estimation we could simply fit a least squares regression to estimate the

parameters. However, the number of predictors is large compared to the number of

samples, and, more importantly, we expect our solution to be very sparse since only

a few genes will be related to clinical response; hence least squares would overfit the

data and yield less accurate results as compared to approaches that induce sparsity

by shrinkage/penalization. We illustrate this fact in our simulation in Section 2.3.

Therefore, to estimate the parameters in the clinical model, we specify prior

distributions for each model parameter and sample from the posterior distribution
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using Markov Chain Monte Carlo (MCMC). Most notably, we assign a Normal-

Gamma (NG) prior distribution for βi. The two hyperparameters in the NG prior

provide increased flexibility in the estimated shrinkage relative to the Laplace prior

of the Bayesian lasso (Park and Casella, 2008) which has a single hyperparameter;

thus the NG prior leads to improved estimation (Griffin and Brown, 2010). Our

complete hierarchical clinical model can be written as:

Y = Normal(Xβ, σ2In),

β = Normal(0p̃, Dψ) where

Dψ = diag(ψ1,1, ..., ψ1,p1 , ..., ψk,1, ...ψk,pk),

ψi,j = Gamma(λi, 1/(2γ
2
i )),

σ2 = InverseGamma(a, b),

λi = Exponential(c),

γ−2i = Gamma(ã, b̃/(2λi)),

where p̃ =
∑k

i=1 pi is the total number of predictors in the model. With this formu-

lation, the complete conditionals for most parameters are available in closed form

– we can use Gibbs sampling to update all parameters except λi, which we update

using a Metropolis-Hastings random walk step.

2.2.3 Gene selection

Given the posterior samples from the MCMC, we determine which genes are sig-

nificantly related to clinical outcome using a method based on the median probability

model (Barbieri and Berger, 2004). First, we define a minimum effect size which

is driven by practical considerations. Since we are analyzing survival data, we use

accelerated failure time (AFT) models using log(survival) as the response; thus a

δ-fold or larger change in survival for a unit increase in a predictor corresponds to
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a βi,j outside the region (log(1-δ), log(1+δ)). Denote this region (δ∗−, δ
∗
+). (In our

following analyses, we use δ = 0.05 which corresponds to a 5% change in survival

time.) If S is the number of MCMC samples and β
(s)
i,j is the βi,j sample from itera-

tion s, then p+(xi,j) =
∑S

s=1 I(β
(s)
i,j > δ∗+)/S is the posterior probability that βi,j is

higher than the practical cutoff δ∗+. Similarly, p−(xi,j) =
∑S

s=1 I(β
(s)
i,j < δ∗−)/S is the

posterior probability that βi,j is lower than the practical cutoff δ∗−. We flag a gene

as “significant” if p+(xi,j) > 0.5 or if p−(xi,j) > 0.5.

2.3 Simulation

We investigate the shrinkage properties of our Bayesian penalized regression for-

mulation of the clinical model as compared to least squares regression through a

simulation. We simulate a training dataset with 90 predictors (k = 3 platforms with

p1 = p2 = p3 = 30 predictors from each), where 30 randomly selected βi,j’s are set ex-

actly to 0 and the other 60 are sampled from a Laplace(µ = 0, b = 1/7) distribution;

this reflects the effective sparsity we expect to see in our data. The other settings

for the simulated data are: n = 100, σ2 = 1, each X entry is from Normal(0, 1), and

Y = Normal(Xβ, σ2In). The test dataset used to assess performance is simulated

with the same settings as the training data, but n = 400. We apply our method

for estimating the parameters in the clinical model (using 10,000 iterations of the

Gibbs sampler with 500 for a burn-in period) and compare the results to that of least

squares regression in Table 2.1.

We see that our method better estimates σ2 (recall σ2 = 1). We also note that

the least squares regression yields coverage probabilities that are too high, while the

frequentist coverage probabilities of our Bayesian credible intervals are close to the

nominal levels. The MSE ratio is less than 1 for the training data but much greater

than 1 for the test data; this is consistent with the idea that in this high dimensional
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Table 2.1: Simulation results. The estimate of σ2 is the posterior mean for our
method. “CI” is Credible Interval for our method and Confidence Interval for least
squares. MSE Ratio is the Mean Squared Error from least squares divided by the
MSE from the respective method. Reprinted with permission from Jennings et al.
(2012).

Our Method Maximum Likelihood

σ̂2 0.9210287 0.1180878
95% CI Coverage 0.9667 1.00
90% CI Coverage 0.8778 0.9667

MSE Ratio (train data) 0.26536 1
MSE Ratio (test data) 9.538 1

setting with expected sparsity, least squares tends to overfit the training data, while

the Bayesian method performs shrinkage that leads to improved estimation on the

test data and is thus more applicable to the overall population. We also see excellent

shrinkage properties of our method in Figure 2.2; most least squares coefficient esti-

mates (which are the maximum likelihood estimates) are far from the true parameter

values, while the posterior means from our method shrink these estimates close to

the true values. The non-linear shrinkage and flexibility provided by the NG prior

facilitate more shrinkage near 0 without severe attenuation of the estimates for truly

large regression coefficients.

2.4 Integrative Analysis of GBM Data

GBM is one of the most common and most malignant brain tumors. Finding prog-

nostic biomarkers related to cancer development is an important issue, and GBM was

one of first cancers to be studied in TCGA. The data currently available contains in-

formation from multiple molecular platforms (genomic/epigenomic/transcriptomic)

as well clinical data on several hundred tumor samples (∼500). In our integrative

analysis we use 233 matched tumor samples that have been assayed by expression,
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Figure 2.2: Least squares estimates and posterior means from our method are plotted
against the true β values. The vertical lines show the shrinkage. Reprinted with
permission from Jennings et al. (2012).

methylation and copy number platforms as described below.

2.4.1 Description of data

We focus our analysis on data corresponding to 49 genes implicated in important

signaling pathways in GBM (RTK/PI3K, P53, and RB pathways (Memorial Sloan-

Kettering Cancer Center, 2012)), using the following structure:

1. OurSurvival (233 × 1), containing days of survival after diagnosis for each

patient.

2. OurMRNA (233×49), containing mRNA expression levels for each gene (columns)

for each patient (rows).
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3. OurMeth (233 × 176), containing data on the methylation markers (columns)

for each patient (rows). There can be multiple (ranging from 1-21) methylation

markers per gene, and the columns are ordered by gene.

4. OurCopyNumber (233×524), containing copy number data (columns) for each

patient (rows). Again, there are multiple (ranging from 1-43) values per gene,

and the columns are ordered by gene.

One gene has no methylation data, so we remove that column from the X matrix,

which essentially sets that effect to be 0. Any effect that may be due to methylation

for that gene would then be captured by the “other” predictor in the clinical model.

After standardizing the predictors and imputing the (few) missing values, we model

the data using an AFT model with log survival times as the outcome and apply our

method of estimating the parameters of the iBAG model.

2.4.2 Results using iBAG model

After applying our method to the GBM data, we then use the method discussed

in Section 2.2.3 to determine the significant markers using δ = 0.05 (corresponding

to a 5% change in survival time). Figures 2.3 and 2.4 show the posterior prob-

abilities of the effect (βi,j) being greater than δ∗+ and less than δ∗−, respectively.

We find 12 markers to be significant, 7 with positive effects on survival (more ex-

pression attributed to that platform, better prognosis) and 5 with negative effects

(more expression attributed to that platform, poorer prognosis). The 7 positive

markers include IRS1, RAF1, CCND1, MDM2, SRC, PDGFRB, and ERBB2. The

genes IRS1 and RAF1 were determined to be related to clinical outcome through

methylation effects, while expression of CCND1 and MDM2 were related to clini-

cal outcome through copy number. For the other 3, gene expression was related to

clinical outcome through some other unspecified mechanism. The 5 negative genes
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Figure 2.3: The posterior probability that βi,j > δ∗+ is plotted. We consider the
marker i, j to be significant if this probability is greater than 0.5. Reprinted with
permission from Jennings et al. (2012).

were ERBB3, KRAS, GRB2, MDM2, and FOXO1A. The first four were related to

clinical response through methylation, while the latter was through some mechanism

other than methylation or copy number. Note that one gene (MDM2) is found to

be significant on two different platforms. We have not only identified 11 genes as

having a significant effect on survival, but we have also determined which platform(s)

of those genes is (are) modulating the effect.

The principles behind our method suggest that we should have increased power

due to incorporating additional information from the integrated platforms. To in-

vestigate this conjecture, we apply our estimation technique to the clinical model

using only the 49 mRNA expression values (without methylation or copy number) as

predictors. In this case only three genes are found to be significant; the expression

of genes SRC, PDGFRB, and ERBB2 are found to have positive effects on patient

13



Figure 2.4: The posterior probability that βi,j < δ∗− is plotted. We consider the
marker i, j to be significant if this probability is greater than 0.5. Reprinted with
permission from Jennings et al. (2012).

survival. These three genes are a subset of those identified when we applied our

complete model, which speaks to the consistency of our method and also suggests,

qualitatively, the idea that our method may have increased power in identifying these

important genes and their corresponding mechanisms. Of course, these genes and

principles need to be further validated in future studies.

2.5 Conclusion

In this article, we present a hierarchical Bayesian model that integrates data

from multiple genomic platforms, incorporating information about the platforms’

biological relationships in order to better identify genes that are critical to patient

survival and to additionally provide mechanistic information on the manner of their

effect. In summary, the key advantages of our method include: (1) multiple platforms

are integrated in a single model; (2) the biological relationships between platforms
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are taken into account by the model; (3) high dimensional data can be handled easily,

with shrinkage priors; (4) The NG prior on the predictors allows for flexible shrinkage

of the parameter estimates; (5) the model can be extended to incorporate more

platforms, as long as the underlying biological relationships are well-understood;

(6) we see increased power in identifying biomarkers; and (7) we have the ability

to not only identify genes significant to patient survival, but also gain mechanistic

information on the manner by which the gene expression is related to outcome.

Applying our methodology to a GBM dataset from TCGA, our method identified

several genes with effects that have a significant impact on survival time. In addition

we identified whether each gene was related to clinical outcome through methylation,

copy number, or some other mechanism. This is especially advantageous in inves-

tigating the biological mechanisms of cancer development and progression, and in

subsequent development of novel therapeutic strategies.

Although beyond the scope of this paper, two areas of future investigation might

include: (1) relaxing the parametric assumptions by using generalized additive mod-

els instead of linear models, or substituting specified parametric nonlinear models if

they are justified by the science; and (2) dynamic modeling, which would require dif-

ferent types of data and further modeling assumptions to capture complex patterns

of feedback loops both within and between platforms.
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3. BAYESIAN METHODS FOR EXPRESSION-BASED INTEGRATION OF

VARIOUS TYPES OF GENOMICS DATA∗

3.1 Introduction

The central dogma of molecular biology summarizes the steps involved in the

passage of genetic information at a molecular level: DNA is transcribed to messen-

ger RNA (mRNA), which is then translated to a protein, which carries out a specific

action in an organism. In addition, there are also other alterations and interferences,

such as epigenetic factors, that can occur at the DNA and/or mRNA levels which

affect the ultimate expression of a given gene. In this paper, we consider methylation

(which occurs at the DNA level and typically results in a silencing of the gene), copy

number (which describes an attribute at the DNA level that affects mRNA expres-

sion), and mRNA expression (which affects protein expression); these subsequently

affect a clinical phenotype (e.g., survival) (see Figure 3.1). In addition, it is believed

that the mechanism of cancer development is complex and involves multiple genes

(Kanu et al., 2009). It is known that genes interact and are related through certain

pathways, and in this paper, we focus on genes from important signaling pathways

that influence cancer progression and development (Memorial Sloan-Kettering Can-

cer Center, 2012).

Current technologies allow us to obtain data from the above-mentioned platforms

(and many others) for each gene involved in the investigations. The Cancer Genome

Atlas (TCGA) is a project that began in 2006 to gather comprehensive genomic data

using multiple platforms on over 20 types of cancer (The Cancer Genome Atlas,

∗ c©2013 Jennings et al.; licensee Springer. Reprinted, with permission, from Jennings, E. M.,
Morris, J. S., Carroll, R. J., Manyam, G. C., and Baladandayuthapani, V. (2013), “Bayesain
methods for expression-based integration of various types of genomics data,” European Association
for Signal Processing (EURASIP) Journal on Bioinformations and Systems Biology, 2013, 13.
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Figure 3.1: Platform relationships. Schematic representation of the multiple molec-
ular platforms and their biological relationships. Reprinted with permission from
Jennings et al. (2013).

2012). The increasing availability of such data has motivated the development of

methods that seek to improve estimation and prediction regarding genomic effects

on cancer outcomes by integrating data from multiple platforms in a single analysis.

The incorporation of information from more than one platform has the potential to

increase power and lower false discovery rates in identifying markers related to clinical

outcomes for cancer patients (Wang et al., 2013); such improvements would deepen

our understanding of how cancer develops and spreads, offering researchers valuable

insight regarding the development of drugs and procedures intended to prevent or

inhibit cancer development.

Some integration techniques consider different platforms sequentially and then

draw conclusions from the combination of results. For example, the TCGA Research

Network performed a large-scale study of ovarian cancer data, including specific plat-

forms such as gene mutations, copy number, mRNA expression, miRNA expression,

and DNA methylation. Within each platform, they compared normal and tumor
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cells to identify significant genes and combined the information obtained from dif-

ferent platforms to understand the deeper biology behind the cancer mechanisms,

including gene interactions. Using the prevalence of significant genes, they also

identified influential pathways, including the RB1 and PI3K/RAS pathways (Bell

et al., 2011). TCGA Research Network conducted a similar style study on Glioblas-

toma Multiforme (GBM) data and, among other things, discovered a previously

unknown link between MGMT methylation and the mutation spectra of mismatch

repair genes through the integration of mutation, methylation, and clinical treat-

ment data (McLendon et al., 2008). These methods provide insight into the roles

and interactions of genes as related to the development and outcome of the disease.

Another type of integrative method proposes incorporating multiple platforms

in a single model. Such approaches must face the challenges of high dimensional-

ity and complex biological relationships both within and between platforms. One

such approach is iCluster, proposed by Shen et al. (2009), which is a joint latent

variable model-based clustering method that integrates data from multiple genomic

platforms to cluster samples into subtypes. iCluster achieves reduced dimension of

the data, and it is shown to identify potentially novel subtypes of breast cancer and

lung cancer (Shen et al., 2009). However, this method does not directly model the

biological relationships among platforms; in addition, it is an unsupervised method,

while our approach is supervised. Tyekucheva et al. (2011) suggest a method that

includes multiple platforms as predictors in a logistic regression model (with pheno-

type as the response), and they show that incorporating multiple platforms yields

more power to detect differentially expressed genes than approaches that only use a

single platform (Tyekucheva et al., 2011). As with iCluster, this approach accounts

for dependence between platforms, but it does not directly take into account their

biological relationships.
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Another method, proposed by Lanckriet et al. (2004), first represents data from

each platform (such as primary protein sequence, protein-protein interaction, and

mRNA expression) via a kernel function and then combines the kernels in a classifi-

cation model (predicting, for example, protein type). It is shown that this method

outperforms methods based on a single kernel from any one data platform (Lanck-

riet et al., 2004). However, this method does not directly model the relationships

among the platforms, and kernel representations of the marker effects on the clinical

outcomes are not directly interpretable. Liu et al. (2007) suggest another approach

that integrates clinical covariates and multiple gene expressions (from a common

pathway) to predict a continuous outcome through a semiparametric model; the co-

variates are modeled parametrically, and the pathway effect is modeled through least

squares kernel machines (LSKM) (either parametrically or not). The covariate as well

as pathway effects can be estimated, and the pathway effect can be tested for sig-

nificance. The nonparametric LSKM regression allows for complicated interactions

between genes (Liu et al., 2007), but this method only incorporates a single genomic

platform (and accounts for its internal biological relationships). Recently, Wang et al.

(2013) proposed an integrative Bayesian analysis of genomics data (iBAG) frame-

work that models the biological relationships between two platforms. This approach

involves a global gene search and uses variable selection via the Bayesian lasso-based

shrinkage priors to deal with the high dimensionality of the data.

In this paper, we introduce a generalized version of iBAG that integrates data

from an arbitrary (multiple) number of genomic platforms using a hierarchical model

that incorporates the biological relationships among them. We focus our analysis on

genes from several important cancer signaling pathways and integrate mRNA, methy-

lation, and copy number data to predict survival in GBM patients. In addition, we

reduce dimension by regressing the clinical outcome on latent scores of the platforms
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(see Section 3.2.1 for details). To improve effect size estimation and to achieve spar-

sity, we use a Normal-Gamma (NG) prior for the effects, which increases flexibility

in the estimation as compared to the Laplace prior of the Bayesian lasso (Griffin and

Brown, 2010) (see Section 3.2.2 for further discussion). Section 3.3 illustrates our

methodology on a synthetic example; analysis of GBM data is presented in Section

3.4; and conclusions are drawn in Section 3.5.

3.2 A Multivariate iBAG Model

Our construction of a multivariate iBAG model employs a two-component hi-

erarchical model where the first component can be considered as the mechanistic

model and the second can be considered as the clinical model. In the first stage

mechanistic model, we partition each gene’s expression into the factors explained by

methylation, copy number, and other (unknown/unmeasured) causes using a prin-

cipal component-based regression model. Subsequently, we include these factors as

predictors in the second stage clinical model, thus finding not only those genes whose

expression is directly related to clinical outcome, but also expression effects driven

by methylation, copy number, or other mechanisms. We explain the construction of

each of these components below.

3.2.1 Mechanistic model

Let n = number of patients, J = number of platforms being integrated, and

pj = number of genes from platform j. The mechanistic model for each gene can be

expressed as:

mRNAi = Mi + CNi + Oi,

where each of the terms are defined as follows:

• mRNAi is the level of gene expression for gene i (where i = 1, ...,max(pj); j =

1, ..., J) and is of dimension (n× 1).
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• Mi is the part of genei expression that is attributed to methylation, and is of

dimension (n×1). Specifically, Mi is the product of some methylation predictor

and a fitted coefficient. Details are below.

• CNi is the part of genei expression that is attributed to changes in copy number,

and is of dimension (n× 1). Specific calculation is similar to Mi – see below.

• Oi represents the ‘other’ (remaining) part of the gene expression that is ex-

plained by something other than methylation or copy number, and is of dimen-

sion (n× 1).

Since the raw methylation and copy number data for any given gene can contain

multiple (up to 40 in our data) values from different markers within that gene, to

estimate each of the components Mi, CNi, and Oi, we first carry out two principal

component analyses (PCA) for genei: one each for the methylation and copy number

data, and in each case, we keep the number of principal components that retain

≥ 90% of the total variation. We then regress mRNAi on the methylation and copy

number PC scores. We use the estimated pieces and the corresponding residuals

from this regression to estimate the vectors Mi =
∑K

k=1X
M
i,kB

M
k (where XM

i,k is the

methylation value for gene i with K = 1 if there is only one methylation marker

for that gene, or the methylation score for principal component k for gene i if there

are multiple methylation markers for gene i, and BM
k is the vector of regression

coefficients), CNi =
∑R

r=1X
CN
i,r B

CN
r (where XCN

i,r is the copy number value for gene i

with R = 1 if there is only one copy number marker for that gene, or the copy number

score for principal component r for gene i if there are multiple copy number markers

for gene i, and BCN
r is the vector of regression coefficients), and Oi = residuals. This

process is repeated for each gene independently.
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3.2.2 Clinical model

The clinical model component of our construction relates the effect of the mech-

anistic parts of the genes (as estimated above) to a clinical outcome of interest (e.g.,

survival, in our context) and can be written as:

Y = Mβ1 + CNβ2 + Oβ3 + ε,

where Y denotes the clinical outcome, βj are the effects of platform j on Y , and

ε is the error term. The covariates in the model {M, CN, O} are the vectorized

gene expression effects attributed to methylation, copy number, and other sources,

respectively, and are estimated from the mechanistic model. In essence, our clinical

component jointly (additively) models the effects of all the gene expressions and

their components - derived from different sources (methylation/copy number) - in a

unified manner. When the clinical response is survival, we use an accelerated failure

time (AFT) model, taking Y to be log(survival) (Wei, 1992).

Our goal is to find a list of significant genes that affect the outcome via the

various mechanisms; hence, efficient estimation of β = {β1,β2,β3} is of primary

interest. One route would be to simply fit a least squares regression to estimate the

parameters. However, the number of predictors is large compared to the number of

samples, and, more importantly, we expect our solution to be very sparse since only

a few genes will be related to clinical response; hence, least squares would overfit the

data and yield less accurate results as compared to approaches that induce sparsity

by shrinkage/penalization. We illustrate this fact in our simulation in Section 3.3.

To induce shrinkage/penalization, we follow a Bayesian approach and specify par-

ticular prior distributions for each model parameter in the clinical model and sample

from the posterior distribution using Markov Chain Monte Carlo (MCMC). There

are several priors known to achieve sparsity and facilitate Bayesian variable selection,
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which we will discuss briefly. One option is to simply put vague Normal(0,∞) priors

on each regression coefficient. This is equivalent to doing least squares regression and

is impossible in cases where there are more variables than data points, because sin-

gular solutions arise. A natural extension is to place proper mean-zero Normal priors

on the coefficients, which is equivalent to ridge regression. Although accommodating

more predictors than data points and facilitating shrinkage, the type of shrinkage

is linear which is not desirable in the current settings. This linear shrinkage leads

to more shrinkage and thus greater bias for larger coefficients, while in this setting,

we desire the opposite: less shrinkage for large (significant) coefficients and greater

shrinkage for smaller (non-significant) ones. This type of non-linear shrinkage can

be accomplished by various priors. One is the ‘spike and slab’ prior consisting of

a mixture of a point mass at zero (the spike) and a Normal (the slab). Although

this can accommodate a large number of predictors and avoids linear shrinkage, the

shrinkage asymptotes to a constant which still results in attenuation of the truly

large effects, something we want to avoid. In addition, computational complications

and difficulties accompany the use of spike and slab priors. As we show below, all

but one of our complete conditional distributions are in closed form, so we can avoid

the computational difficulties associated with the spike and slab method, as well as

the attenuation of large effects, by utilizing continuous shrinkage priors.

A widely known method that places a continuous sparsity prior on the regression

coefficients is the Bayesian lasso (Park and Casella, 2008), which is incorporated

by assigning a double exponential (i.e., Laplace) prior to β. When posterior modes

are used as the coefficient estimates, this process yields the same solutions as Tib-

shirani’s lasso (Tibshirani, 1996). The Bayesian lasso has proven to perform well in

conducting adaptive shrinkage-induced sparsity, but the single hyperparameter for-

mulation does not allow for enough flexibility to estimate the true size of potentially
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large, non-zero effects. Instead, these effect estimates are shrunk toward zero along

with the smaller effects (Griffin and Brown, 2010). An alternate class of priors we

use and discuss is the Normal-Gamma (NG) prior distribution for β. Incorporating

this continuous prior not only provides shrinkage of the coefficients but the extra

hyperparameter in the NG prior construction facilitates more adaptability in the es-

timated shrinkage relative to the Bayesian lasso (Park and Casella, 2008) - with the

NG, the larger effects are shrunk less than the smaller effects (Griffin and Brown,

2012), thus leading to improved estimation (Griffin and Brown, 2010). In summary,

the NG prior is extremely advantageous in our situation, since it delivers the sparsity

we need, while leaving larger effects mostly unshrunk, thus aiding our estimation of

the important effects.

For our method, we assign a Normal-Gamma (NG) prior distribution for each βj.

Our complete hierarchical clinical model can be written as:

Y = Normal(Xβ, σ2In),

β = Normal(0p̃, Dψ)where Dψ = diag(ψ1,1, ..., ψ1,p1 , ..., ψJ,1, ...ψJ,pJ ),

ψj,i = Gamma(λj, 1/(2γ
2
j )),

σ2 = InverseGamma(a, b),

λj = Exponential(c),

γ−2j = Gamma(ã, b̃/(2λj)),

where p̃ =
∑J

j=1 pj is the total number of predictors in the model. (Note that the

double exponential prior of the Bayesian lasso would be constructed by assigning

βj,i|ψj,i ∼ Normal(0, ψj,i) and ψj,i ∼ Exponential(λj). The single parameter in the

exponential prior (λj) is the reason such a construction has limited flexibility as

compared to the NG prior which is parameterized by both λj and γj.) With the

NG formulation as given above, the complete conditionals for most parameters are
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available in closed form - we can use Gibbs sampling to update all parameters except

λj, which we update using a Metropolis-Hastings random walk step. More details

for drawing MCMC samples are available in Appendix A.

3.2.3 Gene selection

Given the posterior samples from the MCMC, we determine which genes are sig-

nificantly related to clinical outcome using a method based on the median probability

model (Barbieri and Berger, 2004). First, we define a minimum effect size which

is driven by practical considerations. Since we are analyzing survival data, we use

AFT models using log(survival) as the response; thus, a δ-fold or larger change in

survival for a unit increase in a predictor corresponds to a βj,i outside the region

(log(1-δ), log(1+δ)), where βj,i is the regression coefficient for platform j of gene

i. Denote this region (δ∗−, δ
∗
+). (In our following analyses, we use δ = 0.05 which

corresponds to a 5% change in survival time.) If S is the number of MCMC samples

and β
(s)
j,i is the βj,i sample from iteration s, then p+(xj,i) =

∑S
s=1 I(β

(s)
j,i > δ∗+)/S is

the posterior probability that βj,i is higher than the practical cutoff δ∗+. Similarly,

p−(xj,i) =
∑S

s=1 I(β
(s)
j,i < δ∗−)/S is the posterior probability that βj,i is lower than the

practical cutoff δ∗−. We flag a gene as ‘significant’ if p+(xj,i) > 0.5 or if p−(xj,i) > 0.5.

Algorithm 1 provides a concise summary of implementing the multivariate iBAG

model and conducting gene selection.

Algorithm 1: Method implementation.

Input: Raw data matrices, one for outcome (survival) and one for each platform

(mRNA, methylation, copy number) (Rows are patients, and columns are markers

arranged by gene.), number of patients n, number of platforms J , number of genes

in platform j pj, number of MCMC samples S, number of MCMC samples to use as

burn-in B, and practical effect size δ.
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Output: Prognostic markers with high posterior probability of having prespeci-

fied practical effect size.

Prepare data:

- Impute missing data (see Appendix A).

- For methylation and copy number platforms:

- For each gene i:

- Perform principal component analysis (PCA) on platform j. Keep the number

of components that account for ≥ 90% of the variation.

- Get PC scores associated with retained components. Call matrix of scores

M∗ for methylation and CN∗ for copy number, where the number of columns

is the number of score vectors.

- Repeat for any other platforms available upstream of mRNA.

Fit mechanistic model:

- For each gene i:

- Use least squares to regress response platform (mRNA) on M∗ and CN∗. (Note

that the modeled relationship should reflect the biological relationships between

platforms.)

- Let M be the linear combination of predicted coefficients and M∗, CN be the

linear combination of predicted coefficients and CN∗, and O be the residuals.

Standardize Mi’s, CNi’s, and Oi’s. There should be
∑J

j=1 pj of these predictors.

Log-transform survival responses and mean-center.

Fit clinical model:

- Draw S MCMC samples from the complete conditionals (see Appendix A), using

the first B samples as burn-in, to fit the AFT model and obtain S − B posterior

samples of regression coefficients βj,i.
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Marker selection:

- Given practical threshold δ, compute δ∗− = log(1− δ) and δ∗+ = log(1 + δ).

- For each marker:

- Calculate Pr(βj,i > δ∗+) and Pr(βj,i < δ∗−) using posterior samples.

- Flag marker if either calculated probability is greater than 0.5.

Return: Identified markers.

3.3 Simulation

We investigate the shrinkage properties of our Bayesian penalized regression for-

mulation of the clinical model as compared to least squares regression, Bayesan lasso,

frequentist lasso, and frequentist elastic net through a simulation. We simulate a

training dataset with 90 predictors (J = 3 platforms with p1 = p2 = p3 = 30 predic-

tors from each), where 30 randomly selected βj,i’s are set exactly to 0 and the other

60 are sampled from a Laplace(µ = 0, b = 1/7) distribution; this reflects the effective

sparsity we expect to see in our data. The other settings for the simulated data are

n = 100, σ2 = 1, each X entry is from Normal(0, 1), and Y = Normal(Xβ, σ2In).

The test dataset used to assess performance is simulated with the same settings as

the training data, but n = 400. We applied our method for estimating the parame-

ters in the clinical model, using 10,000 iterations of the Gibbs sampler with 500 for a

burn-in period. For both the frequentist lasso and elastic net, we ran the simulation

with two standard choices for the penalty parameter λ: (1) ‘1 SE’ where we used the

largest λ with cross validation error within one standard error of the minimum cross

validation error and (2) ‘min’ where we used the λ with minimum error (from cross

validation). For elastic net, we set the mixing parameter (that controls the mixture

of penalties) to 0.5. The results of our method are compared to those of the other

methods in Table 3.1.
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Table 3.1: Simulation results. Freq. EN means freqentist elastic net, which was run
with mixing parameter (for penalty mixture) 0.5. The estimate of σ2 is the posterior
mean for our method and the Bayesian lasso. For the others, it is the mean sum of
squared error. ‘CI’ is credible interval for Bayesian methods and confidence interval
for frequentist methods. Note that for the frequentist lasso and elastic net, it is
not possible to obtain standard errors for the coefficients set to 0, and therefore, we
cannot construct the CI’s. The penalty choice of ‘1 SE’ means we used the largest
parameter with error within one standard error of the minimum error, while ‘min’
means we used the parameter with minimum error (from cross validation). MSE
ratio is the mean squared error from least squares divided by the MSE from the
respective method. NA indicates not applicable. Reprinted with permission from
Jennings et al. (2013).

σ̂2 95% CI 90% CI MSE ratio MSE ratio
coverage coverage (train data) (test data)

Our method 0.9073 0.9778 0.8889 0.2827 9.4630

Maximum likelihood 0.1181 1.00 0.9667 1 1

Bayesian lasso 0.6407 0.9667 0.9111 0.3727 8.858

Freq. lasso (1 SE) 1.2020 NA NA 0.0983 8.1163

Freq. lasso (min) 0.6379 NA NA 0.1851 8.8374

Freq. EN (1 SE) 0.9278 NA NA 0.1273 8.4439

Freq. EN (min) 0.7012 NA NA 0.1684 8.7154

We see that our method gives a good estimate of σ2 (recall σ2 = 1). We also

note that the least squares regression yields coverage probabilities that are too high,

while the frequentist coverage probabilities of the Bayesian credible intervals are

close to the nominal levels. (Note that for the frequentist lasso and elastic net, it

is not possible to obtain standard errors for the coefficients set to 0, and therefore,

we cannot construct the CI’s.) For all methods (other than least squares), the MSE

ratio is less than 1 for the training data but much greater than 1 for the test data;

this is consistent with the idea that in this high dimensional setting with expected

sparsity, least squares tends to overfit the training data, while methods that perform

shrinkage lead to improved estimation on the test data and thus yield results more

applicable to the overall population. Considering that the MSE ratio is the mean
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squared error from least squares divided by the MSE from the respective method,

we see that our method has the best (largest) MSE ratio on test data, which for our

purposes is the most relevant comparison criterion.

We also see excellent shrinkage properties of our method in Figure 3.2; most least

squares coefficient estimates (which are the maximum likelihood estimates) are far

from the true parameter values, while the posterior means from our method shrink

these estimates closer to the true values. The non-linear shrinkage and flexibility

provided by the NG prior facilitate more shrinkage near 0 without severe attenuation

of the estimates for truly large regression coefficients.

Figure 3.2: Simulation results. Least squares estimates and posterior means from our
method are plotted against the true β values. The vertical lines denote the difference
between the estimates from each method thus indicating the shrinkage properties of
the NG prior. Reprinted with permission from Jennings et al. (2013).
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3.4 Integrative Analysis of GBM Data

GBM is one of the most common and most malignant brain tumors. The Amer-

ican Cancer Society estimates that in the year 2013, there will be 23,130 new cases

of brain and other nervous system cancers in the USA and that 14,080 Americans

will die from such cancers (American Cancer Society, 2013). GBM tumors make

up 17% of all primary brain tumors (American Brain Tumor Association, 2013),

and prognosis is typically very poor; a study with 7,259 patients, each diagnosed

with GBM from 2005 to 2008, found a median survival time of 14.6 months for

patients who received tumor-directed surgery and radiation therapy and a median

survival time of 2.9 months for patients who did not receive any radiation treatment

(Johnson and O’Neill, 2012). Treatment options include surgery, radiation, and/or

chemotherapy, but even for a patient receiving more than one of these treatments,

the outlook is dismal at best. Finding prognostic biomarkers related to cancer de-

velopment and patient survival is an important issue, and GBM was one of first

cancers to be studied in TCGA. The data currently available contains information

from multiple molecular platforms (genomic/epigenomic/transcriptomic) as well as

clinical data on several hundred tumor samples (approximately 500).

The availability of such extensive genomic data has prompted several studies

using the TCGA GBM data, and fortunately, there continue to be discoveries of

biomarkers that aid in predicting survival and identifying subtypes of GBM. One

such study conducted by Verhaak et al. (2010) combined gene expression data from

multiple types of microarray assays to classify tumors into four distinct subtypes

(each responding differently to therapy) and to discover which gene expression levels

had a significant impact on the classification. Other platforms were also used, such

as copy number and mutations, in separate analyses to test for associations with

30



subtype (Verhaak et al., 2010). Another study by Noushmehr et al. (2010) used

the available GBM DNA methylation data to identify a subgroup of GBM tumors

associated with a significantly longer survival time. In our integrative analysis, we use

163 matched tumor samples that have been assayed by expression, methylation, and

copy number platforms as described below. Each of these samples has an uncensored

survival time (in days), and our aim is to identify prognostic biomarkers.

3.4.1 Description of data

Our copy number data is level 2 data from the HG CGH 244A platform; it is the

normalized signal for copy number alterations of aggregated regions per probe. Our

methylation data is level 3 data from the HumanMethylation27K arrays; it is the

methylated sites along a gene (probe level data). Our expression data is level 3 data

(summarized per gene) from the Affymetrix profiled HT HG U133A platform (The

Cancer Genome Atlas Data Portal, 2013).

We focus our analysis on data corresponding to 49 genes implicated in important

signaling pathways in GBM (RTK/PI3K, P53, and RB pathways (Memorial Sloan-

Kettering Cancer Center, 2012)), using the following structure:

1. OurSurvival (163 × 1), containing days of survival after diagnosis for each

patient.

2. OurMRNA (163×49), containing mRNA expression levels for each gene (columns)

for each patient (rows).

3. OurMeth (163×176), containing data on the methylation markers (columns) for

each patient (rows). There can be multiple (ranging from 1 to 21) methylation

markers per gene, and the columns are ordered by gene.

4. OurCopyNumber (163×524), containing copy number data (columns) for each
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patient (rows). Again, there are multiple (ranging from 1 to 43) values per

gene, and the columns are ordered by gene.

One gene has no methylation data, so we remove that column from the X matrix,

which essentially sets Mi to be 0 for that gene. Any effect that may be due to

methylation for that gene would then be captured by the ‘other’ predictor in the

clinical model. After standardizing the predictors and imputing the (few) missing

values, we model the data using an AFT model with log survival times as the outcome

and apply our method of estimating the parameters of the iBAG model.

Figure 3.3: GBM data results. The posterior probabilities (based on MCMC samples)
that βj,i > δ∗+ is plotted, where βj,i is the clinical model regression coefficient for the
marker associated with platform j of gene i, and δ∗+ = log(1 + δ) is the transformed
upper practical cutoff. For our analysis, we use δ = 0.05, which corresponds to a
5% change in survival time, so the posterior probability shown here indicates the
probability that a one unit increase in the marker results in at least a 5% increase
in survival time. We consider the marker j, i to be significant if this probability is
greater than 0.5. Reprinted with permission from Jennings et al. (2013).
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Figure 3.4: GBM data results. The posterior probabilities (based on MCMC samples)
that βj,i < δ∗− is plotted, where βj,i is the clinical model regression coefficient for the
marker associated with platform j of gene i, and δ∗− = log(1− δ) is the transformed
lower practical cutoff. For our analysis, we use δ = 0.05, which corresponds to a
5% change in survival time, so the posterior probability shown here indicates the
probability that a one unit increase in the marker results in at least a 5% decrease
in survival time. We consider the marker j, i to be significant if this probability is
greater than 0.5. Reprinted with permission from Jennings et al. (2013).

3.4.2 Results using iBAG model

After applying our method to the GBM data, we then use the method discussed

in Section 3.2.3 to determine the significant markers using δ = 0.05 (corresponding

to a 5% change in survival time). Figures 3.3 and 3.4 show the posterior probabilities

of the effect (βj,i) being greater than δ∗+ and less than δ∗−, respectively. Figure 3.5

depicts the posterior means of the βj,i’s and also indicates which were flagged as

significant. We find 25 markers to be significant, 12 with positive effects on survival

(more expression attributed to that platform, better prognosis) and 13 with negative

effects (more expression attributed to that platform, poorer prognosis). The genes
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Figure 3.5: Regression coefficient posterior means. The estimates of the regression
coefficients in the clinical model (βj,i’s) are shown, where βj,i is the coefficient for
the marker associated with platform j of gene i; the estimates are computed as the
posterior means from our MCMC samples. The multiple platforms for each gene
are labeled by color, and solid plot markers indicate that the effect was found to be
significant, meaning that the posterior probability that a one unit increase in the
marker results in at least a 5% change in survival time is at least 0.5. Reprinted with
permission from Jennings et al. (2013).

with the 12 positive markers were PDGFRB, FGFR1, CCND2, PIK3R2, IRS1,

CDKN2C, TP53, PIK3CA, and PDGFRA. The genes PDGFRB, FGFR1, and

CCND2 were determined to be related to clinical outcome through methylation ef-

fects, while expressions of PIK3R2, IRS1, CDKN2C, and TP53 were related to clin-

ical outcome through copy number. For PIK3CA, PDGFRA, PDGFRB, CCND2,

and TP53, gene expression was related to clinical outcome through some other un-

specified mechanism. The genes with the 13 negative markers were IGF1R, FGFR2,

ARAF, GRB2, FGFR1, HRAS, MDM2, PDPK1, and RAF1. The first four were

related to clinical response through methylation, while FGFR1, HRAS, ARAF, and
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MDM2 were related through copy number, and PDPK1, IGF1R, FGFR2, RAF1, and

MDM2 were related through some mechanism other than methylation or copy num-

ber. Note that eight genes (IGF1R, PDGFRB, FGFR1, FGFR2, ARAF, CCND2,

MDM2, and TP53) are found to be significant on two or more different platforms. We

have not only identified 17 genes as having a significant effect on survival (Table 3.2),

but we have also determined which platform(s) of those genes is (are) modulating

the effect.

Table 3.2: Gene results. All 49 genes appearing in the data are listed. Italic genes
were identified by our method to have at least one significant marker. Reprinted
with permission from Jennings et al. (2013).

Gene names
AKT1 MLLT7 EGFR BRAF CCND2
AKT2 PIK3CG ERBB2 RAF1 CDK4
AKT3 PDPK1 ERBB3 GRB2 CDK6

PIK3CA IRS1 FGFR1 NF1 RB1
PIK3CB SRC FGFR2 CBL MDM2
PIK3CD GAB1 MET SPRY2 MDM4
PIK3R1 PTEN NRAS CDKN2A TP53
PIK3R2 IGF1R HRAS CDKN2C PIK3C2B
FOXO1A PDGFRA KRAS CDKN2B PIK3C2G
FOXO3A PDGFRB ARAF CCND1

3.4.3 Biological interpretation

There are a total of 17 genes found to affect the expression of glioblastoma tumors

significantly. Of these, nine genes are negatively affecting the survival and nine genes

are affecting the survival positively. The positive and negative prognostic markers

are reviewed within the context of glioblastoma biology in this section.

35



Negative prognostic markers : Fibroblast growth factor pathway signaling is as-

sociated with significant tumor enhancement in glioblastoma (Loilome et al., 2009).

Fibroblast growth factor receptors FGFR1 and FGFR2 play an oncogenic role in var-

ious tumor types and can be targeted by multiple small molecules in cancer therapy

(Katoh and Nakagama, 2013). FGFR1 expression can be regulated by methylation

level of the upstream CpG island (Goldstein et al., 2007). Hyper-methylation of

FGFR1 would provide positive effects by reducing the expression level of FGFR1

and thus appear to be affecting the survival in both ways. Insulin-like growth factor

receptor 1 (IGF1R) is a well-known target to treat GBM and has been found to be

associated with astrocytoma and meningioma as well (Carapancea et al., 2009). It

is also associated with anti-EGFR resistance in GBM and is a pan-cancer biomarker

connected with many different tumor types (Chakravarti et al., 2002; Hewish et al.,

2009). MDM2 is a well-known oncogene and inhibitor of the tumor suppressor TP53.

Previous studies in glioblastoma using expression and copy number platforms indi-

cated the abnormal over-expression and amplification of MDM2 (Ruano et al., 2006;

Yin et al., 2009). ARAF is a serine/threonine protein kinase of RAF family, known

to stabilize the hetero-dimerization of RAF proteins, BRAF and CRAF (Rebocho

and Marais, 2013). Its role and over-expression are observed in other tumors but

are not explored in the context of glioblastoma (Craig et al., 2013). Growth factor

receptor-bound protein 2 (GRB2) is involved in RAS signaling pathway and known

to be associated with EGFR (Lowenstein et al., 1992). GRB2 is an interacting part-

ner of EGFRvIII, a common mutated variant of EGFR in the molecular signaling of

EGFR-driven glioblastoma (Prigent et al., 1996; Kapoor and O’Rourke, 2010).

Positive prognostic markers : The tumor suppressor gene TP53 is a positive

prognostic marker as expected. The Cyclin-dependent kinase inhibitor CDKN2C,

a known tumor suppressor of glioblastoma, is also identified as a positive marker
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(Solomon et al., 2008). Platelet-derived growth factors (PDGF) receptors PDGFRA

and PDGFRB show positive survival effects, whose oncogenic role is well estab-

lished in the context of glioma (Suzuki et al., 2010; Nazarenko et al., 2012). These

PDGF receptors are the representative genes of the pro-neural subtype of glioblas-

toma (Verhaak et al., 2010; Jiang et al., 2011). Interestingly, the pro-neural subtype

of glioblastoma is enriched in oligodendroglioma and has higher survival rates com-

pared to other subtypes of glioblastoma (Cooper et al., 2010). The insulin receptor

substrate gene IRS1 is shown to be one of the representative candidates for mes-

enchymal subtype of GBM with poor survival (Brennan et al., 2009). The role of

IRS1 is not clear, given that we found it to be a positive marker in our analysis.

Overall, the positive markers are generally enriched in the pro-neural subtype of

glioblastoma, which was found to have prolonged survival (Verhaak et al., 2010).

3.5 Conclusions

In this article, we present a hierarchical Bayesian model that integrates data

from multiple genomic platforms, incorporating information about the platforms’

biological relationships in order to better identify genes that are critical to patient

survival and to additionally provide mechanistic information on the manner of their

effect. In summary, the key advantages of our method include (1) multiple platforms

are integrated in a single model; (2) the biological relationships between platforms

are taken into account by the model; (3) high dimensional data can be handled easily,

with shrinkage priors; (4) the NG prior on the predictors allows for flexible shrinkage

of the parameter estimates; (5) the model can be extended to incorporate more

platforms, as long as the underlying biological relationships are well understood; and

(6) we have the ability to not only identify genes significant to patient survival but

also gain mechanistic information on the manner by which the gene expression is
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related to outcome.

Applying our methodology to a GBM dataset from TCGA, our method identified

several genes with effects that have a significant impact on survival time. In addition,

we identified whether each gene was related to clinical outcome through methylation,

copy number, or some other mechanism. This is especially advantageous in inves-

tigating the biological mechanisms of cancer development and progression, and in

subsequent development of novel therapeutic strategies.

Although beyond the scope of this paper, two areas of future investigation might

include (1) relaxing the parametric assumptions by using generalized additive models

instead of linear models or substituting specified parametric non-linear models if they

are justified by the science, and (2) dynamic modeling, which would require different

types of data and further modeling assumptions to capture complex patterns of

feedback loops both within and between platforms.
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4. BAYESIAN MODELS FOR FLEXIBLE INTEGRATIVE ANALYSIS OF

MULTIPLATFORM GENOMICS DATA∗

4.1 Introduction

Traditional cancer treatments include surgery, chemotherapy, and radiation. Al-

though these treatments can be lifesaving, after a tumor is removed it is well known

that the cancer can relapse (Ikeda et al., 1993; Martini et al., 1995; Khuri et al.,

2001), and both chemotherapy and radiation treatments have terrible, sometimes

permanent, side effects, including nausea and vomiting, hair loss, mouth sores, nerve

damage, peeling skin, tinnitus, infertility, organ damage, and secondary cancer (Can-

cer.net, 2012; Michaelson and Oh, 2013). The allure of a treatment with lower

chances of relapse (thus increasing patient survival) and with reduced side effects

(thus improving patient quality of life) has motivated researchers to investigate the

development of therapeutic strategies that target the specific genetic causes of a

particular type of cancer. In particular, the availability of such therapies facilitates

the practice of personalized medicine; a patent’s genetic profile can be assayed, and

the patient’s treatment and dosages can be chosen to address the genetic abnormal-

ities specific to the observed profile. This approach offers the potential to increase

treatment efficacy and decrease incidence of negative side effects on the level of the

individual patient.

To develop such a targeted treatment, it is first necessary to understand the

mechanics of cancer development and progression on a molecular level. In general,

within a cell, DNA is transcribed to messenger RNA (mRNA); mRNA is then trans-

∗Reprinted, with permission, from “Bayesian models for flexible integrative analysis of multiplat-
form genomics data,” McGuffey, E. J., Morris, J. S., Manyam, G. C., Carroll, R. J., and Bal-
adandayuthapani, V., in Integrating Omics Data, eds. Tseng, G. C., Ghosh, D., and Zhou, X. J.
Copyright c©2015 Cambridge University Press.
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lated into a protein, and a specific action is carried out by the protein. The segments

of mRNA that code for different proteins are known as genes, and cancer is believed

to involve a complex interaction of these genes. In addition to the direct DNA to

mRNA to protein process, there are many different genetic alterations and interfer-

ences, such as methylation, copy number, and loss of heterozygosity (LOH), that

have the potential to affect gene expression (the abundance of mRNA) and thus

eventually impact clinical outcomes that manifest as symptoms of disease develop-

ment (see Figure 4.1). The discovery of which genes are significantly associated with

patient-specific outcomes and understanding the biological mechanisms associated

with such genes’ expression are critical to developing targeted therapies.

Figure 4.1: Schematic of the multiple molecular platforms and their biological rela-
tionships. Reprinted with permission from McGuffey et al. (2015).

Owing to rapid technological advances combined with decreasing costs, multiplat-

form data sets are becoming increasingly available on matched samples. Such data

sets provide measurements from multiple platforms (mRNA, protein, methylation,

copy number, genotype, etc.) on each patient involved in the study. (We note that

when we use the term platform in this chapter, we are referring to a biological entity

or the molecular characteristic such as methylation, copy number, or expression.)

Although previous analyses generally studied the effect of a single platform on a
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clinical outcome, these comprehensive data sets have motivated the development of

statistical models that integrate data from several platforms, facilitating a deeper

and more complete understanding of the genetic causes of cancer development and

progression and offering the potential to increase power and lower false discovery

rates (Wang et al., 2013). Statistical methods attempting to achieve this goal face

several analytic challenges: high dimensionality, complex correlation structures, and

unclear (biological) interpretations.

1. High dimensionality arises when the number of predictors or variables (usually

on the order of thousands) is greater than the number of patients or samples

(usually on the order of a few hundred); this is common when modeling genomic

data. It is well known that only a few of these variables play an active role in

disease modulation. Thus, effective strategies need to be developed to address

these challenges, especially by inducing shrinkage and sparsity.

2. The issue of complex correlation structures refers to the correlations between

genes (within a platform) as well as the correlations between platforms that

arise due to their complex biological relationships. A model that accounts for

these biological relationships should produce more accurate and efficient effect

estimates.

3. Last, interpretations can become complex, especially depending on the tech-

nique employed to handle high dimensionality. Even if the method provides

clear interpretations, it is important that there is a straightforward scientific

translation. If the results are to be useful in developing targeted therapies, esti-

mates from an integrative model should offer direct insight into the mechanics

and the genes related to the clinical outcome.
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Many models have been developed recently that face these challenges and inte-

grate data from multiple platforms. The Cancer Genome Atlas (TCGA) has per-

formed large-scale studies on ovarian cancer and glioblastoma multiforme (GBM), a

brain tumor, in which they analyzed data from multiple platforms such as gene mu-

tations, microRNA expression, and mRNA expression. TCGA researchers began by

analyzing each platform separately and then combined the platform results to draw

integrated conclusions. The ovarian cancer study identified influential gene path-

ways and made new discoveries regarding gene interactions, while the GBM study

discovered a previously unknown link between MGMT methylation and the muta-

tion spectra of mismatch repair genes (McLendon et al., 2008; Bell et al., 2011).

By combining the information gained from multiple platforms, instead of focusing

on only one type of data, researchers were able to make novel discoveries and gain

important insights into the genetic factors of these cancers.

Other methods integrate multiple platforms directly by incorporating them all

into a single model. Tyekucheva et al. (2011) proposed integrating data from multi-

ple platforms as predictors in a single logistic model. Their method identifies signif-

icant gene sets, and they show that their integrative approach has more power than

approaches using a single platform of data (Tyekucheva et al., 2011). Lanckriet et

al.’s (2004) integrative method, in which data from each genomic platform are first

represented as kernel functions and then all the kernels are included in a classifica-

tion model, was also shown to have more power than an analogous single-platform

approach. Another approach that integrates multiple genomic platforms into a sin-

gle model was proposed by Shen et al. (2009). Their approach, iCluster, uses joint

latent variable models to cluster samples into tumor subtypes. Through applications

to breast and lung cancer data, iCluster identified potential novel tumor subtypes

(Shen et al., 2009). Verhaak et al. (2010) performed an analysis on the GBM data
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from TCGA in which they combined gene expression data from multiple types of mi-

croarray assays to classify tumors into four distinct subtypes and to identify which

genes have significant influence on the classification. Because the subtypes respond

differently to treatments, this classification information is valuable in making treat-

ment decisions (Verhaak et al., 2010). These and other integrative methods improve

our understanding of the genetic causes and mechanics of cancer, and they allow us

to make increasingly informed prognosis and treatment decisions.

The integrative Bayesian analysis of genomics data (iBAG) model we present in

this chapter was originally proposed by Wang et al. (2013) and was later generalized

by Jennings et al. (2013). It is a two-step Bayesian hierarchical model that integrates

data from an arbitrary number of platforms while taking into account the biological

relationships between DNA characteristics (such as methylation and copy number)

and RNA-level entities (such as gene expression). In Section 4.2, we present the

model details (both for the linear case and with a novel nonlinear extension), and we

explain how each of the challenges described is overcome. In Section 4.3, we illustrate

the method on a publicly available GBM data set, and we offer a discussion in Section

4.4.

4.2 iBAG Models

The basic construction of the iBAG model consists of two components: a mech-

anistic model that attempts to capture mechanistic information by partitioning the

gene expression into components explained by different upstream platforms, and a

clinical model that subsequently incorporates these components to model the effects

on a clinical outcome of interest. Through the joint estimation of these components,

we not only identify the genes significantly related to the clinical outcome, but we

also gain insight into the biological mechanisms modulating these effects based on
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the information from the upstream platforms. (Note that throughout this chap-

ter, when we refer to modulation by one or more platforms, we mean regulation by

that platform or by the interaction across platforms that regulate at different levels.

This is not to be confused with the term modulation as it is used regarding dynamic

conditions in network data.) We present the linear construction first for ease of expo-

sition (Section 4.2.1) and subsequently propose a more flexible non-linear extension

in Section 4.2.2.

First we present the notation common to both the linear and non-linear formula-

tions. Let n be the number of patients, J the number of platforms being integrated,

and pj the number of genes from platform j, and then define the following terms:

• Variable mRNAg is the level of gene expression for gene g (where g = 1, ...,

max(pj); j = 1, ..., J) and is of dimension (n× 1).

• Variable Xjg is the part of gene g expression that is attributed to upstream

platform j and is of dimension (n× 1). Specifically, Xjg is the product of some

platform-specific jth predictor and a fitted coefficient. Details are expounded

later in the chapter.

• Og represents the “other” (remaining) part of the gene expression that is ex-

plained by something other than the J − 1 upstream platforms and is of di-

mension (n× 1).

• The covariates Xj and O are the vectorized gene expression effects attributed to

platform j (j = 1, ..., J − 1) and other sources, respectively, and are estimated

from the mechanistic model. Each Xj is of dimension (n × pj), and O is of

dimension (n×max(pj)).

• Y denotes the clinical outcome and is of dimension (n × 1); it is assumed
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continuous for now.

• Parameter βj is the vector of effects of platform j on Y and is of dimension

(pj × 1).

• Parameter ε is the error term and is of dimension (n× 1).

4.2.1 Linear case

The linear iBAG model is as follows:

mRNAg =
∑J−1

j=1 Xjg + Og (4.1)

Y =
∑J−1

j=1 Xjβj + OβJ + ε (4.2)

where Equation 4.1 is the mechanistic model and Equation 4.2 is the clinical model.

4.2.1.1 Mechanistic model

The mechanistic model takes into account the biological relationships between

platforms by modeling gene expression as it is affected by each of an arbitrary number

of upstream platforms known to influence gene expression. Each of the terms in the

mechanistic model is defined as follows.

In the linear case, estimation of the components Xjg and Og is done via least

squares regression, and a separate regression is fit for each gene. The mRNA expres-

sion is typically summarized for each gene, but the number of raw data values from

the other platforms associated with each gene can vary greatly owing to multiple

measurements within each gene, that is, different probes mapped to specific genomic

locations within the gene. For example, in the data we use in Section 4.3, the number

of methylation values per gene ranges from 1 to 8, and the number of copy number

values per gene ranges from 1 to 16. Thus, to prevent complications due to high di-

mensionality, and to match to specific genes, for each gene, we begin by performing

separate principal component analyses (PCAs) on each of the upstream platforms.
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For each upstream platform, we retain the principal components that account for at

least 90% of the variation, and then regress mRNAg on the corresponding PC scores.

For gene g, our estimate of Xjg is the linear combination of PC scores from platform

j and the corresponding coefficient estimates; specifically,

Xjg =
∑K

k=1RjgkBjgk (4.3)

where Rjgk is the raw data value from platform j for gene g with K = 1 if there is

only a single raw data value or the kth PC score from platform j for gene g if there

are multiple markers, and where Bjgk is the vector of regression coefficients. Ojg is

then estimated as the residuals from the least squares regression.

After these steps have been carried out for each gene, we have partitioned each

gene into J pieces: j − 1 Xjgs that represent the part of gene g expression explained

by upstream platform j and 1 Og that represents the part of gene g expression not

explained by any of the included upstream platforms. We carry forward the Xjgs

and Ogs into the clinical model.

4.2.1.2 Clinical model

This component models the effect that each of the pieces estimated in the mecha-

nistic model has on a (continuous) clinical outcome. Each of the terms in the clinical

model (Equation 4.2) are defined as follows.

Our main goal is accurate and efficient estimation of the effects βj. If a βjg, the

coefficient associated with platform j of gene g, is flagged as “significant,” then this

reveals several aspects: (1) gene i is related to the clinical outcome, (2) platform j

is modulating the expression, and (3) a unit increase of gene g expression attributed

to platform j is associated with a βjg change in the clinical outcome. To achieve the

expected sparsity in the βs (and combat high dimensionality), we employ a Bayesian

hierarchical setup, including a sparsity-inducing prior on the βjs. As stated previ-
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ously, it is also important to preserve the estimates of the truly large or important βs,

so we must choose a prior that allows for flexible shrinkage. Two popular choices of

shrinkage priors are the spike and slab prior and the Laplace prior. The spike and slab

is a mixture of a “spike” at 0 and a Gaussian “slab” distribution. It does facilitate

shrinkage, but the shrinkage asymptotes to a constant, resulting in large effects being

shrunk just as much as small effects. In our scenario, we want to avoid this because

we believe the large effects are the ones that are truly important, whereas the effects

close to zero are not of interest. The Laplace prior (or the normal-exponential prior)

results in the Bayesian lasso formulation (Park and Casella, 2008). The shrinkage

offered by the Bayesian lasso is more flexible than that offered by many other priors,

including spike and slab; however the single hyperparameter in the Laplace prior

limits its flexibility, and the estimates of large effects are shrunk toward zero along

with the smaller effects (Griffin and Brown, 2010).

To induce sparsity but still allow for accurate estimation of truly large, nonzero

effects, we choose to employ the normal-gamma prior, which provides more adaptive

shrinkage than the lasso prior through its two hyperparameters (Griffin and Brown,

2010). Our complete hierarchy (based on a formulation by Griffin and Brown (2010))

is as follows:

Y = Normal(Xβ, σ2In)

β = Normal(0p̃, Dψ) where Dψ = diag(ψ11, ..., ψ1p1 , ..., ψJ1, ..., ψJpJ )

ψjg = Gamma(λj, 1/(2γ
2
j ))

σ2 = InverseGamma(a, b)

λj = Exponential(c)

γ−2j = Gamma(ã, b̃/(2λj))

where p̃ =
∑J

j=1 pj is the total number of predictors in the model. All of the complete
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conditional distributions are in closed form, except for that of λj, so we estimate the

parameters via Gibbs sampling, with a random walk Metropolis-Hastings update

step for the λjs. (See Appendix B for complete conditionals.)

4.2.1.3 Marker selection

After we obtain MCMC samples, we can obtain point estimates of the parameters

in the clinical model (in particular, β) by simply taking the mean of our posterior

samples. We also need to identify which markers (gene-platform combinations) to

flag as significantly related to the clinical outcome. We use a method based on

the median probability model (Barbieri and Berger, 2004), and we flag important

markers through these steps:

1. Based on practical considerations, define a minimum effect size δ that is of

interest. Further define (δ−, δ+) as the region such that you want to flag markers

whose effects are outside that region, that is, less than δ− or greater than δ+.

2. Given S MCMC samples and β
(s)
jg is the βjg sample from iteration s, cal-

culate the following posterior probabilities: p+(xjg) =
∑S

s=1 I(β
(s)
jg > δ+)/S,

the posterior probability that βjg is greater than the practical cutoff δ+, and

p−(xjg) =
∑S

s=1 I(β
(s)
jg < δ−)/S, the posterior probability that βjg is smaller

than the practical cutoff δ−.

3. Flag a marker as significant if either p+(βjg) or p−(βjg) is greater than 0.5.

4.2.2 Nonlinear extensions

Previous publications (Wang et al., 2013; Jennings et al., 2013) have been lim-

ited to linear iBAG models, whereas here we introduce a nonlinear version of the

model. In the linear iBAG case, we assume that the predictors in the mechanistic

model (Equation 4.1) are linearly related to the gene expression. Depending on the
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upstream platforms included in the analysis and the available information (or lack

thereof) regarding how those platforms affect gene expression, such an assumption

may not be reasonable. In that case, for each gene, we still begin by performing

PCA on each platform’s raw values, but a more flexible modeling technique for esti-

mating the pieces of the mechanistic model might be necessary to accommodate the

additional flexibility.

To achieve this flexibility in the mechanistic model, we propose using generalized

additive models (GAM), a class of models proposed by Hastie and Tibshirani in

1986 that replaces the linear Xβ in the generalized linear model formulation for

exponential family responses with a sum of smooth functions (Hastie and Tibshirani,

1986). The specific formulation for our non-linear mechanistic model is as follows:

g{E(mRNAg)} = b0 +
∑J

j=1

∑Kj

k=1fjgk(Rjgk) (4.4)

where g(·) is a specified link function, fjgk(·) is a smooth function, and Rjgk is the

kth PC score for platform j of gene g (or the raw values for platform j of gene g if

k = 1).

The choices we must make are what to use as the g(·) and f(·) functions. The

g(·) function is a link function chosen based on the exponential family chosen for the

outcome; in our case, we have continuous mRNA values as the response, so we model

them as normal with g(·) as the identity funcion. As for the smooth function f(·),

we require a good fit to the data, but one that does not overfit. We propose using

penalized regression splines, which fit the data closely but include a penalty for too

much “wiggliness” as the fit becomes closer to an interpolation. We implement this

model using Wood’s R package mgcv and take advantage of the option of automatic

smoothness selection for the penalty parameter using generalized cross-validation

(GCV) (Wood, 2014). Figure 4.2 illustrates the fit from GAM for IGF1R, one of

the genes we use in our analysis in Section 4.3. This particular gene only has one
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value for each of two platforms (methylation and copy number), so there were only

two smooth functions needed (f(R1,18,1) and f(R2,18,1)), both of which are shown.

(a) Methylation data. (b) Copy number data.

Figure 4.2: For gene IGF1R the fitted smooth curves for the methylation data
(f(R1,18,1)) and for the copy number data (f(R1,18,1)) are plotted. The dots are
the partial residuals, that is, the residuals that would have arisen from not includ-
ing the predictor of interest (methylation for panel (a) and copy number for panel
(b)) but keeping the other estimates fixed. The hash marks on the x-axis are the
data values, and the error bounds extend 2 standard deviations above and below the
smooth estimate. Reprinted with permission from McGuffey et al. (2015).

After fitting the nonlinear mechanistic model using GAM, we estimate each Xjg

as
∑Kj

k=1 f̂jgk(Rjgk) and the Ois as the residuals. We carry these forth into the clinical

model, which is the same hierarchical Bayesian model presented in the linear case.

The estimation of parameters in the clinical model progresses as previously discussed

in the linear case, with the normal-gamma prior facilitating adaptive shrinkage. In

general, two potential disadvantages of using nonparametric smooth functions as the

f(·) functions are (1) a lack of parsimony and (2) possible difficulties in obtaining a

straightforward scientific interpretation of the parameter estimates. For some scenar-
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ios, this can be problematic, but our goal in this step is simply to partition the gene

expression (as accurately as possible) into pieces explained by the different upstream

platforms; we are not concerned about parsimony or precise interpretations until the

clinical model (Equation 4.2). Because the estimates from the smooth functions give

us the partitioned pieces we need, while the lack of parametric assumptions pro-

vides the flexibility for producing a closer fit to the data, we can use them without

reservation.

4.3 Illustrations

We apply our method to a publicly available GBM data set from TCGA. TCGA

is an organization that began in 2006 with the goal of compiling and analyzing com-

prehensive genomic data sets for different types of cancer. Thus far, they provide

data on more than 20 types of cancer, with GBM being one of the first that they

studied (The Cancer Genome Atlas, 2012). The American Cancer Society estimates

that in 2014, there will be 23,380 new cases of brain and nervous system cancers,

with 14,320 American fatalities from such cancers (American Cancer Society, 2014).

GBM is one of the most common and lethal brain tumors, primarily affecting people

between 45 and 70 years of age (American Association of Neurological Surgeons,

2012). Without radiation treatment, a person with GBM usually lives less than 3

months; even with radiation treatment, the typical survival time is under 15 months

(Johnson and O’Neill, 2012). Our goal is to apply our method to identify prog-

nostic biomarkers related to GBM development and patient survival, which could

potentially be used in developing a targeted therapy.

4.3.1 Data description

We consider a subset of the available TCGA GBM data, consisting of mRNA

expression, two upstream platforms known to affect gene expression (methylation
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and copy number), and uncensored survival time (in days) for 163 patients. Our

copy number data are level 2 data from the HG CGH 244A platform; they are the

normalized signal for copy number alterations of aggregated regions per probe. Our

methylation data are level 3 data from the HumanMethylation27K arrays; they are

the methylated sites along a gene (probe-level data). Our expression data are level 3

data (summarized per gene) from the Affymetrix profiled HT HG U133A platform

(The Cancer Genome Atlas Data Portal, 2013). Because our clinical response is

survival time, we use an accelerated failure time (AFT) model, taking Y (in Equation

4.2) to be log(survival) (Wei, 1992). We focus our analysis on 49 genes from three

signaling pathways important to GBM: RTK/PI3K, P53, and RB (Memorial Sloan-

Kettering Cancer Center, 2012). One gene has no methylation data, so we remove

its corresponding column in the X matrix; any effect due to methylation would then

be captured by the “other” predictor in the clinical model.

After standardizing the predictors and imputing the few missing values, we

apply our method and obtain 10,000 MCMC samples, with 500 used as burn-in.

In determining whether to flag a marker as “significant,” we choose our practical

minimum effect size to correspond to a 5% change in survival time, resulting in

(δ−, δ+) = (log(0.95), log(1.05)). As discussed in Section 4.2, we flag a marker as

significant if p+(βjg) > 0.5 or if p−(βjg) > 0.5.

4.3.2 Results

Using the linear formulation of our method, we identify 21 significant prognos-

tic markers, 12 of them positive markers (more gene expression explained by that

platform, better prognosis) and 9 of them negative markers (more gene expression

explained by that platform, worse prognosis). Figures 4.3a and 4.4a show the poste-

rior probabilities of βjg being less than δ− and greater than δ+, respectively. Figure
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4.5a shows the posterior means of each βjg as well as which markers were flagged

as significant. The genes with the 12 positive markers were PDGFRB, FGFR1,

CCND2, PIK3R2, IRS1, CDKN2C, TP53, PIK3CA, and PDGFRA. In the follow-

ing results details, the percentage given after the gene name is the percentage of

that gene expression explained by the flagged platform under the linear formula-

tion (see Appendix B for calculation details). Genes PDGFRB (0.2%), FGFR1

(2.0%), and CCND2 (6.0%) were determined to be related to patient survival through

methylation effects, whereas expression of PIK3R2 (7.6%), IRS1 (4.8%), CDKN2C

(19.7%), and TP53 (16.0%) was related to patient survival through copy number.

For PIK3CA (70.0%), PDGFRA (44.5%), PDGFRB (98.5%), CCND2 (81.2%), and

TP53 (83.1%), gene expression was related to patient survival through some other

unspecified mechanism. The genes with the nine negative markers were IGF1R,

FGFR2, ARAF, GRB2, FGFR1, and MDM2. IGF1R (0.3%), FGFR2 (6.1%), ARAF

(0.1%), and GRB2 (0.4%) were related to clinical response through methylation,

whereas FGFR1 (8.8%), ARAF (2.8%), and MDM2 (81.4%) were related through

copy number, and IGF1R (84.9%) and MDM2 (18.4%) were related through some

mechanism other than methylation or copy number. Note that seven genes (IGF1R,

PDGFRB, FGFR1, ARAF, CCND2, MDM2, and TP53 ) are found to be significant

on two different platforms. Our method has not only identified 14 genes as having a

significant effect on survival, but it has also determined which platform(s) of those

genes is (are) modulating the effect. In addition, we can use the posterior means

of the effects to gain more specific insight; a one-unit increase in gene g expression

attributed to platform j is estimated to result in a {exp(β̂jg)− 1} × 100% change in

survival time.
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(a) Linear formulation.

(b) Nonlinear formulation.

Figure 4.3: The posterior probabilities (based on MCMC samples) that βjg < δ−.
Reprinted with permission from McGuffey et al. (2015).
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(a) Linear formulation.

(b) Nonlinear formulation.

Figure 4.4: The posterior probabilities (based on MCMC samples) that βjg > δ+.
Reprinted with permission from McGuffey et al. (2015).
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(a) Linear formulation.

(b) Nonlinear formulation.

Figure 4.5: The estimates (posterior means) of the regression coefficients in the
clinical model (βjgs) are shown, with the multiple platforms for each gene labeled
by color. Solid plot markers indicate that the effect was found to be significant.
Reprinted with permission from McGuffey et al. (2015).
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Using the nonlinear formulation of our method, we see some of the same mark-

ers flagged, but there are also some differences: we identify 23 significant prog-

nostic markers, 12 positive markers, and 11 negative markers. Figures 4.3b and

4.4b show the posterior probabilities of βjg being less than δ− and greater than

δ+, respectively. Figure 4.5b shows the posterior means of each βjg as well as

which markers were flagged as significant. The genes with the 12 positive mark-

ers were PIK3R2, FGFR1, CCND2, IRS1, ERBB2, CDKN2C, TP53, PDGFRA,

PDGFRB, and NF1. In the following results details, the percentage given after the

gene name is the percent of that gene expression explained by the flagged platform

under the nonlinear formulation (see Appendix B for calculation details). Genes

PIK3R2 (2.9%), FGFR1 (3.7%), and CCND2 (8.9%) were determined to be re-

lated to clinical outcome through methylation effects, whereas expression of PIK3R2

(9.8%), IRS1 (4.8%), ERBB2 (8.0%), CDKN2C (46.1%), and TP53 (20.3%) was

related to clinical outcome through copy number. For PDGFRA (44.5%), PDGFRB

(96.3%), NF1 (40.0%), and TP53 (70.7%), gene expression was related to clinical

outcome through some other unspecified mechanism. The genes with the 11 neg-

ative markers were IGF1R, PDGFRA, ARAF, GRB2, CDKN2B, FGFR1, HRAS,

SPRY2, and MDM2. IGF1R (<0.1%), PDGFRA (19.6%), ARAF (0.2%), GRB2

(0.3%), and CDKN2B (6.7%) were related to clinical response through methylation,

whereas IGFR1 (23.8%), FGFR1 (19.3%), HRAS (13.9%), GRB2 (23.7%), SPRY2

(16.1%), and MDM2 (86.9%) were related through copy number. Note that six genes

(PIK3R2, FGFR1, TP53, PDGFRA, IGR1R, and GRB2 ) are found to be significant

on two different platforms.

Fourteen markers are flagged identically (same gene, same platform, same sign)

by both the linear and nonlinear model formulations. Differences between the re-

sults in moving from the linear formulation to the nonlinear formulation include the

57



following. First, PIK3CA and FGFR2 are no longer flagged, whereas ERBB2, NF1,

CDKN2B, HRAS, and SPRY2 appear as significant. In four instances, a gene goes

from being flagged on two platforms to only being flagged on one: (1) instead of

being identified on methylation and “other” platforms, PDGFRB is only identified

on other platforms; (2) instead of being flagged on methylation and other platforms,

CCND2 is only flagged on methylation effects; (3) ARAF goes from being flagged on

both methylation and copy number to only methylation; and (4) MDM2 goes from

being flagged on both copy number and other platforms to only on copy number. In

addition, three genes go from being flagged on one platform to being identified as

significant on two: (1) PIK3R2 is still flagged on copy number, but it is also flagged

on methylation effects; (2) PDGFRA is still flagged as a positive marker modulated

by other platforms, but it becomes flagged as a negative marker on methylation in

addition; and (3) GRB2 is flagged on copy number effects, in addition to maintain-

ing significance on methylation effects. Finally, we see IGF1R still flagged on two

platforms, but one of them changes; instead of being flagged on both methylation

and other effects, IGF1R is flagged on methylation and copy number effects. Tables

4.1 and 4.2 display the markers flagged as important negative and positive prognostic

markers, respectively, and they also provide a comparison of results from the linear

versus nonlinear formulations.

Because, in the case of our data, we have no compelling reason to believe that

the relationship between methylation, copy number, and gene expression is truly

linear, we consider the results from the nonlinear formulation to be more accurate.

That there are differences in the results at all speaks to the fact that we must be

careful not to make unfounded assumptions on the specific structure of the biological

relationships modeled in the mechanistic model. With a more flexible partitioning

of gene expression, we see two genes no longer found to be significant, whereas five
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Table 4.1: Results: Negative markers. All 49 genes appearing in the data are listed,
along with the three platforms (M,CN,O). Genes are bolded if they were found to
have a significant negative prognostic marker on any platform by either the linear
or nonlinear formulation. Italic platforms indicate that the platform was flagged
by the linear formulation, and underlined platforms indicate that the platform was
flagged by the nonlinear formulation. Reprinted with permission from McGuffey
et al. (2015).

AKT1 (M,CN,O) IGF1R (M ,CN,O) CBL (M,CN,O)
AKT2 (M,CN,O) PDGFRA (M,CN,O) SPRY2 (M,CN,O)
AKT3 (M,CN,O) PDGFRB (M,CN,O) CDKN2A (M,CN,O)

PIK3CA (M,CN,O) EGFR (M,CN,O) CDKN2C (M,CN,O)
PIK3CB (M,CN,O) ERBB2 (M,CN,O) CDKN2B (M,CN,O)
PIK3CD (M,CN,O) ERBB3 (M,CN,O) CCND1 (M,CN,O)
PIK3R1 (M,CN,O) FGFR1 (M,CN ,O) CCND2 (M,CN,O)
PIK3R2 (M,CN,O) FGFR2 (M,CN,O) CDK4 (M,CN,O)

FOXO1A (M,CN,O) MET (M,CN,O) CDK6 (M,CN,O)
FOXO3A (M,CN,O) NRAS (M,CN,O) RB1 (M,CN,O)
MLLT7 (M,CN,O) HRAS (M,CN,O) MDM2 (M,CN ,O)
PIK3CG (M,CN,O) KRAS (M,CN,O) MDM4 (M,CN,O)
PDPK1 (M,CN,O) ARAF (M ,CN,O) TP53 (M,CN,O)

IRS1 (M,CN,O) BRAF (M,CN,O) PIK3C2B (M,CN,O)
SRC (M,CN,O) RAF1 (M,CN,O) PIK3C2G (CN,O)

GAB1 (M,CN,O) GRB2 (M ,CN,O)
PTEN (M,CN,O) NF1 (M,CN,O)

previously unidentified genes were flagged. Also, we see differences in results on

one platform for eight other genes; the difference in partitioning in the mechanistic

model appears to have had a direct effect on which platform(s) was (were) identified

as significant, reinforcing the importance of accuracy in that first step.

4.4 Discussion

We have proposed a two-step, hierarchical Bayesian model to integrate different

types of genomic data in a single model with the goal of identifying genetic mark-

ers significant to a clinical outcome. In addition, we have presented two different
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Table 4.2: Results: Positive markers. All 49 genes appearing in the data are listed,
along with the three platforms (M,CN,O). Genes are bolded if they were found to
have a significant positive prognostic marker on any platform by either the linear
or nonlinear formulation. Italic platforms indicate that the platform was flagged
by the linear formulation, and underlined platforms indicate that the platform was
flagged by the nonlinear formulation. Reprinted with permission from McGuffey
et al. (2015).

AKT1 (M,CN,O) IGF1R (M,CN,O) CBL (M,CN,O)
AKT2 (M,CN,O) PDGFRA (M,CN,O) SPRY2 (M,CN,O)
AKT3 (M,CN,O) PDGFRB (M,CN,O) CDKN2A (M,CN,O)

PIK3CA (M,CN,O) EGFR (M,CN,O) CDKN2C (M,CN ,O)
PIK3CB (M,CN,O) ERBB2 (M,CN,O) CDKN2B (M,CN,O)
PIK3CD (M,CN,O) ERBB3 (M,CN,O) CCND1 (M,CN,O)
PIK3R1 (M,CN,O) FGFR1 (M ,CN,O) CCND2 (M ,CN,O)
PIK3R2 (M,CN ,O) FGFR2 (M,CN,O) CDK4 (M,CN,O)
FOXO1A (M,CN,O) MET (M,CN,O) CDK6 (M,CN,O)
FOXO3A (M,CN,O) NRAS (M,CN,O) RB1 (M,CN,O)
MLLT7 (M,CN,O) HRAS (M,CN,O) MDM2 (M,CN,O)
PIK3CG (M,CN,O) KRAS (M,CN,O) MDM4 (M,CN,O)
PDPK1 (M,CN,O) ARAF (M,CN,O) TP53 (M,CN ,O)
IRS1 (M,CN ,O) BRAF (M,CN,O) PIK3C2B (M,CN,O)
SRC (M,CN,O) RAF1 (M,CN,O) PIK3C2G (CN,O)

GAB1 (M,CN,O) GRB2 (M,CN,O)
PTEN (M,CN,O) NF1 (M,CN,O)

formulations of the first step of the model (the mechanistic model) that facilitate

more or less flexibility of gene expression partitioning, depending on the amount and

nature of prior knowledge regarding the structure of biological relationships among

data platforms. After applying our method to a TCGA brain tumor data set, we

identify 21 significant prognostic markers on 14 genes using the linear formulation

and 23 significant prognostic markers on 17 genes using the nonlinear formulation.

Advantages of our method are numerous. (1) Our model flexibly incorporates

multiple types of genetic data in a single model. (2) We utilize principal components
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and a normal-gamma prior on the effects to effectively induce flexible shrinkage

and combat high dimensionality. (3) Our model accounts for the known biological

relationships between DNA characteristics and RNA-level entities, which allows us

not only to identify which genes are significant to the clinical outcome but also

to obtain the mechanistic information of which platform(s) is (are) modulating the

effect. This information is critical to developing targeted cancer therapies. (4) Our

effect estimates have a direct interpretation. (5) Our method can be applied to gain

insight regarding any type of cancer, as long as an appropriate data set is available

and the biological relationships among the platforms are understood.

Note that we currently use two steps (mechanistic and clinical models), but ad-

ditional layers could be constructed to incorporate other platforms, such as protein

expression data. For example, protein expression would be regressed on mRNA

expression, with an additional step of mRNA regressed on platforms such as copy

number, miRNA, mutation status, and so on. When the data are available, incor-

porating this additional step would give the potential of obtaining even more insight

into the mechanics of what exactly is driving the clinical phenotype expression.
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5. PIBAG: HIERARCHICAL PATHWAY SHRINKAGE IN INTEGRATIVE

GENOMICS

5.1 Introduction

Targeted cancer therapies are a class of cancer treatments that target the specific

molecular cause(s) of a type of cancer, with the general goal of preventing cancer

growth or possibly eliminating the cancer altogether, depending on factors such as

the cancer stage and metastasis level. Targeted treatments often are administered

as a pill or intravenously, and they typically have reduced and less severe side effects

as compared to traditional treatment options such as chemotherapy and radiation.

Many targeted drugs are currently available. For example, gefitinib targets EGFR

to treat advanced non-small cell lung cancer; sunitinib is a multi-targeted kinase

inhibitor that treats advanced kidney cancer and some gastrointestinal stromal tu-

mors; and trastuzumab is used to treat metastatic breast cancer in cases where the

protein HER2/neu is overexpressed (American Cancer Society, 2015b; National Can-

cer Institute, 2015). Still other drugs are being tested in clinical trials, and research

into other targets is ongoing.

Identifying effective targets, that is, the specific genes and genetic mechanisms

that are involved in cancer development and progression, provides a first step in the

development of such treatment options. The search for targeted cancer treatments,

as well as the increased availability of high-throughput genetic data, has led to a

surge in genetic analyses in recent years. Some of these genetic analyses focus on

a specific genomic data platform, such as gene expression, protein expression, or

DNA mutations, and look for the entities (genes, proteins, etc.) involved in cancer

development and progression. For example, Welsh et al. (2001) analyzed the levels of
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expression of about 9,000 genes in the context of prostate cancer. They first filtered

the genes by intersample variability and then assigned each gene a score based on

the difference between tumor and normal expression means, the ratio of tumor and

normal expression means, and the results of a t-test comparing expression in the

tumor and normal samples. This approach was chosen so that high scoring genes

had large and consistent differences in expression between tumor and normal samples,

making them prime candidates as potential therapy targets. Some of the top ranked

genes included FASN (which codes a known tumor marker), PSA, MIC-1, and hepsin,

and validation of differential expression for most of the top genes was included as

part of the study (Welsh et al., 2001). In anther case, Bardelli et al. (2003) conducted

a mutational analysis on 138 genes from three of the nine major groups of genes that

code protein kinases. They identified seven recurrently mutated genes that appear

to be involved in colorectal tumor growth, and they concluded that at least 30% of

colorectal tumors have at least one mutation in the tyrosine kinome (Bardelli et al.,

2003). Although this study is exploratory and its findings require further validation,

the results are especially encouraging considering the success of the drug imatinib,

a tyrosine kinase inhibitor which targets mutant kinases to treat chronic myeloid

leukaemia and gastrointestinal stromal tumors (Sawyers, 2003, 2004).

Other investigative methods consider multiple genomic platforms; these are com-

monly called integrative methods and have been shown to have increased power and

lower false discovery rates as compared to single platform analyses (Wang et al.,

2013). For example Verhaak et al. (2010) analyzed DNA copy number, gene ex-

pression, and gene mutations in an integrative analysis of glioblastoma multiforme

(GBM), a type of brain tumor. A cluster analysis on the gene expression of 1,740

genes identified four novel subtypes of GBM, which proceeded to validate on an in-

dependent data set. Signature genes associated with each subtype were identified
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using ClaNC (Dabney, 2006), and the remaining data platforms were then included

to find distinguishing genetic characteristics of each subype; the genes PDGFRA,

IDH1, EGFR, and NF1 were found to be particularly involved. A significant dif-

ference in therapy response among the subypes indicated that patients may benefit

by being treated differently depending on their classification (Verhaak et al., 2010).

The genes found to be important could become potential targets for subtype-specific

targeted therapies. Another type of integrative method includes the multiple data

platforms in a single model. For example, the iBAG (integrative Bayesain Analysis of

Genomics data) method originally proposed by Wang et al. (2013) and later adapted

by Jennings et al. (2013) and McGuffey et al. (2015) integrates data platforms by

modeling their known biological relationships. In a typical analysis, gene expression

is partitioned into components explained by upstream platforms, and then those

components are related to a clinical outcome. Important genes are flagged, but the

integration technique also provides additional mechanistic information as to which

data platforms are regulating the effects. The iBAG approach was also applied to a

GBM dataset and identified several potential genetic targets.

Although finding individual genes that are involved in cancer outcomes is hugely

beneficial, there is also value in identifying gene pathways involved in cancer devel-

opment and progression, as well as the corresponding mechanistic information. The

discovery of important pathways can facilitate the design of pathway-level medica-

tions. Such drugs have the potential to more easily treat a larger portion of cancer

patients, considering that, even within the same cancer type, the specific genes in-

volved can differ, and would in turn require different gene-targeted medications,

while the differing genes are often members of the same pathway and have similar

overal pathway effects (Vogelstein and Kinzler, 2004; National Human Genome Re-

search Institute, 2015). A common way to identify significant pathways is to first
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construct a list of genes found to be important to a cancer outcome and then con-

duct a separate pathway analysis to determine which pathway(s) are overactive. One

popular pathway analysis is Ingenuity Pathway Analysis (IPA). IPA takes a gene list

(obtained by the researcher) as input and assesses the association of the input gene

list with certain pathways by considering the number of overlapping genes. Specifi-

cally, for each pathway of interest, IPA computes a one-sided Fisher’s exact test of

membership in the input gene list versus membership in the pathway and reports a

p-value (or Benjamini-Hochberg corrected p-value) indicating whether the pathway

is overexpressed in your gene list (Ingenuity Systems, 2015). One major factor in

the p-value calculations is the reference gene set, which is the total number of genes

considered for the Fisher’s exact test. Ideally, one would use the initial list of genes

included in his or her analysis. This can be manually input to IPA, or one can

choose the reference set as the Ingenuity knowledge base or one of a few gene lists

comprising common expression arrays. Regardless, the IPA manual warns against

strict interpretations of the provided p-values (Ingenuity Systems, 2015). Thus, in-

stead of using the p-values to select statistically significantly overexpressed pathways,

they are typically used to rank the association of the input gene list with various

pathways.

The method we will present in this paper provides, among other things, a pathway

score for each pathway involved in the analysis, and these scores can then be used

to rank the pathways by their relevance to the clinical outcome. The scores are

estimated as parameters in the model, which provides two distinct advantages. First,

there is no extra step to obtain pathway rankings; the gene and pathway level results

are obtained simultaneously. Second, and more importantly, the pathway scores are

related to the magnitudes of the effects within a pathway, as well as the number of

important effects present in the pathway. Any approach that simply takes a gene
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list as input is not accounting for the size of the effects. Also, our approach only

considers the genes included in the model, so the scores are inherently based on the

correct reference set.

In this paper, we present a pathway iBAG (piBAG) method that achieves three

goals in a single model:

1. Integration: We integrate an arbitrary number of genomic platforms into a

single model in a way based on their known biological relationships.

2. Gene selection: We flag the genes statistically and practically related to a clin-

ical outcome, as well as provide mechanistic information as to which platform

is regulating the effect. The mechanistic information is available because of the

integration method.

3. Pathway ranking: We simultaneously assign each gene pathway a score for each

platform, indicating the strength of the pathway’s effect on the clinical outcome

through that platform and providing a natural way to rank the pathways.

In Section 5.2 we present the pathway iBAG model and describe the estimation

and selection procedures. We demonstrate the advantages of our method through a

simulation study in Section 5.3, and we apply our method to a GBM data set from

The Cancer Genome Atlas (TCGA) in Section 5.4. We conclude with a discussion

of the method and its results in Section 5.5.

5.2 Methods

Our pathway iBAG model is a two-step hierarchical Bayesian model, based on the

iBAG model first proposed by Wang et al. (2013) and later adapted by Jennings et al.

(2013) and McGuffey et al. (2015). The first step, the mechanistic model, partitions

gene expression into the components explained by upstream platforms by modeling
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the biological relationships among the genetic platforms. The second step, the clinical

model, then relates these partitioned components to a clinical outcome and identifies

which genes are significantly involved and which platforms are modulating the effect

of those genes.

5.2.1 Mechanistic model

The first step in the pathway iBAG model is the mechanistic model, and it is the

step where we integrate the multiple platforms by regressing mRNA on upstream

platforms known to affect gene expression. We use the nonlinear formulation of

the original iBAG mechanistic model, proposed by McGuffey et al. (2015), which

facilitates more flexible modeling of the potentially nonlinear relationship between

mRNA and its upstream platforms. Evidence of such nonlinear relationships for

one of the genes flagged in our data application, gene ATP2BI, is shown in Figure

5.1. The mechanistic model is fit independently for each gene, and it partitions each

gene’s expression into the components explained by each upstream platform and a

component due to effects from other sources not included in the analysis.

Let there be i = 1, ..., n samples, p = 1, ..., P data platforms, k = 1, ..., K gene

pathways, and g = 1, ..., Gk genes in pathway k, with G =
∑K

k=1Gk being the total

number of genes in the analysis. Note that an index of kg denotes a unique gene. (We

only consider genes with a single pathway membership. Extensions to genes with

multiple pathway memberships is discussed in Section 5.5.) Let mRNAkg denote the

(n × 1) vector of gene expression values for gene kg. Gene expression is typically

summarized at the gene level, i.e., one value per gene, but other platforms may be

summarized on the probe level, with multiple values per gene. If there are multiple

values for gene kg on platform p, we perform a principal component analysis (PCA)

and retain the Jpkg scores accounting for at least 90% of the variation; call them
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Figure 5.1: The mechanistic model fit for gene ATP2BI, which is later flagged in our
data application, is plotted. There are four predictors: two PC scores for methyla-
tion and four for copy number. Raw predictor values are on the x-axes, the solid
line is the predicted fit, and the dashed lines are the error bounds extending two
standard deviations above and below the estimated curve. The partial residuals –
the residuals that would arise by leaving out the predictor of interest and keeping
the other estimates fixed – are also shown as points on each plot. Although some
of the predictors appear to have a relatively linear relationship, some have a clear
nonlinear pattern which is captured effectively by the penalized splines.

Rpkg1, Rpkg2, ..., RpkgJpkg . Note that each PCA could result in a different number of

scores being retained; hence we index J by pkg. If there is only one value for gene kg

on platform p, denote its (n×1) raw data vector Rpkg1, with Jpkg = 1. The following

mechanistic model is fit independently for each gene:

mRNAkg =
∑(p−1)

p=1

∑Jpkg
j=1 fpkgj(Rpkgj) + φkg (5.1)

where fpkgj(·) is a penalized regression spline and φkg ∼ Normal(0, σ2
φkg

). With
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this formulation, each R vector corresponding to a particular gene is included as a

predictor for that gene’s expression, and the penalized regression splines allow us to

obtain a close fit to the data without overfitting, by penalizing too much “wiggliness”

in the fit.

After fitting the model, we use the estimates to calculate the partitioned compo-

nents, specifically:

Xpkg =
∑Jpkg

j=1 f̂pkgj(Rpkgj), for p = 1, ..., P − 1 (5.2)

XPkg = ψ̂kg. (5.3)

This is repeated for each gene, and we obtain Xpkg for each platform (p = 1, ..., P )

and each gene (k = 1, ..., K and g = 1, ..., Gk). For p = 1, ..., P − 1 we interpret Xpkg

as the part of gene kg expression explained by platform p, and XPkg is the part of

gene kg expression explained by something other than the platforms included in the

analysis.

By integrating the data platforms in a way that accounts for the biological rela-

tionships among them, we are (1) harnessing the available biological information to

de-noise the gene expression data and carry forward clearer signals, and (2) provid-

ing more precise biological interpretations of the effects significantly related to the

clinical outcome. For example, if a certain gene’s component explained by methyla-

tion is then flagged as important in the clinical model, we know not only that the

gene has a significant effect, but that methylation is modulating that gene’s effect.

As such, an understanding of the biological relationships among the data platforms

is necessary to appropriately construct the mechanistic model. For example, DNA

methylation and DNA copy number are known to affect gene expression, so if these

are the platforms in a data set we would regress mRNA on methylation and copy

number. Other platforms known to affect gene expression, such as microRNAs and
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mutations, could also be included as predictors of mRNA. However, if we had an-

other platform that was not upstream of gene expression, say protein expression,

the mechanistic model can still accommodate this. Gene expression can first be re-

gressed on its upstream platforms, and then those partitioned pieces can become the

predictors for protein expression. So a final partitioned piece might be interpreted

as the component of protein expression explained by the part of gene X’s expression

that is regulated by methylation. (If such an effect were then flagged as having a

negative effect on survival time, it would be potentially useful to study altering the

methylation of gene X so that less of the protein would be expressed.)

After fitting the mechanistic model, we subsequently carry forward each of the

partitioned pieces (the Xpkgs) to the second step in the piBAG model.

5.2.2 Clinical model

Our model’s second step is the clinical model, and it is here that we relate the

clinical outcome to the partitioned pieces estimated from the mechanistic model. Let

Y be the (n× 1) vector of mean-centered continuous clinical outcome values, and let

Xp = {Xp11, ..., Xp1G1 , Xp21, ..., Xp2G2 , ..., XpK1, ..., XpKGK
} for p = 1, ..., P . In other

words, we form a matrix for each platform whose columns are all the partitioned

pieces corresponding to that platform, one column per gene, so that each Xp has

dimension (n × G). Call X = {X1, X2, ..., XP}, and then the clinical model is as

follows:

Y = X1β1 +X2β2 + ...+XPβP + V (5.4)

= Xβ + V (5.5)

where each βp is the (G × 1) coefficient vector, β = {βT
1 ,β

T
2 , ...,β

T
P}T, and V ∼

Normal(0, τ 2) is the error term.

Our primary objective is efficient estimation of the β effects. In this genomic

70



setting, it is common to encounter the situation where the number of predictors is

greater than the number of samples, and we also believe that the solution will be

sparse, with most of the genes not strongly related to the clinical outcome. Thus,

an ordinary least squares estimate would not be appropriate: if there are more

predictors than samples, the solution would not be unique, and if there are more

samples than predictors, least squares would overfit at best. A popular estimation

choice for scenarios similar to ours is Tibshirani’s lasso (Tibshirani, 1996), a penalized

regression approach that sets some coefficients to exactly zero and provides estimates

of the non-zero effects. The frequentist lasso has been shown to perform well is many

situations, but it does have two drawbacks worth noting. First, the lasso can select

at most n non-zero predictors. This is not a major concern for our particular setting,

since we already expect a sparse solution. Second, and more importantly, there is

not a way to obtain standard error estimates, and thus confidence statements, for

the effects set to zero (Kyung et al., 2010).

A natural solution is to implement the Bayesian lasso (Park and Casella, 2008)

which provides standard errors for all estimates through Monte Carlo averages of

posterior samples. In fact, the Bayesian lasso was used in Wang et al.’s original

proposal of iBAG model (Wang et al., 2013). While the shrinkage induced by the

Bayesian lasso does promote the desired sparsity, putting a normal-gamma (NG)

prior on the β effects, as opposed to the Laplace prior of the Bayesain lasso, provides

increased flexibility in the shrinkage and improved efficiency in estimation (Griffin

and Brown, 2010). Ideally, the truly smaller effects would be shrunk even closer to

zero, while the truly larger effects would be shrunk less, or not at all, and remain

essentially intact. The two hyperparameters of the NG prior, as opposed to the single

hyperparameter of the Laplace prior, provide the increased flexibility necessary to

achieve that goal. The NG prior has been used in recent adaptations of iBAG
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(Jennings et al., 2013; McGuffey et al., 2015), and we will use it in the pathway

iBAG model as well.

The complete hierarchy for the pathway iBAG clinical model is shown below:

Y ∼ Normal(Xβ, τ 2In) (5.6)

τ 2 ∼ InvGamma(a, b) (5.7)

β ∼ Normal(0, Dσ2) where Dσ2 = (5.8)

diag(σ2
111, ..., σ

2
11G1

, σ2
121, ..., σ

2
12G2

, ..., σ2
1K1, ..., σ

2
1KGK

, ..., σ2
P11, ..., σ

2
PKGK

)

(i.e., βpkg ∼ Normal(0, σ2
pkg)) (5.9)

σ2
pkg ∼ Gamma(α, 1/(2ξ2pk)) (5.10)

ξ−2pk ∼ Gamma(ã, b̃/(2λ)) (5.11)

α ∼ Exp(c̃) (5.12)

λ ∼ Exp(d̃). (5.13)

In the normal component of the NG priors assigned to the βs, each βpkg has its

own variance parameter (see Equation 5.9). The larger the σ2
pkg is estimated to be,

the larger the βpkg is “allowed” to be, so generally larger σ2 values correspond to

a larger β magnitude. The ξ2 parameter is indexed by platform and pathway (pk)

only, so the σ2 values associated with the effects of pathway k through platform p are

shrunk to a common mean (see Equation 5.10). This translates to the corresponding

effect estimates being shrunk toward a similar magnitude, i.e., a β will be shrunk

more if many other βs in the same pathway (acting through the same platform) are

also small. Vice versa, a β will be shrunk less if its fellow pathway βs are also large.

Hence, we are borrowing strength within the pathways, which leads to improved

efficiency of estimation. There is a unique ξ2 parameter for each pathway/platform

combination, and they are all shrunk toward a single common mean (see Equation

5.11). Simlarly to the relationship between the βs and σ2s, a larger ξ2 value allows
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larger σ2 values for that pk index, which in turn allows larger β effect sizes for that

pk index. This facilitates the use of the ξ2pk estimate (or equivalently, ξ−2pk , as written

above) as a score for the relative size of the effect that pathway k has on the clinical

outcome through platform p. If the clinical outcome is survival time, this can even

be interpreted as a prognostic pathway score.

All the complete conditional distributions are in closed form except for that of

λ, so a Gibbs sampler can be implemented with a single Metropolis-Hastings update

step. Note that it is very important to standardize each X column before doing

estimation. Otherwise, the priors on the βs will not be on the correct scale. The

complete conditional distributions and our choices for hyperparameters and initial

values can be found in Appendix C.

5.2.3 Selection and summary

To select important genes, any appropriate selection procedure based on posterior

samples can be implemented, but here we present two options: one based on the me-

dian probability model and one based on controlling the false discovery rate (FDR).

The choice of the selection method can be determined by the user’s objective.

The first option, based on the median probability model (Barbieri and Berger,

2004), proceeds as follows.

1. Choose a minimum effect size that is of practical interest, and define (δ−, δ+)

as the region of β effect sizes you do not want to flag as important. Depending

on the nature of the clinical response, this region may not be symmetric.

2. Let S be the number of MCMC samples and β
(s)
pkg be the posterior sample of

βpkg from iteration s. For each βpkg, calculate the posterior probability that

βpkg is greater than δ+ and the posterior probability that βpkg is less than

δ−. In particular, calculate p+(βpkg) =
∑S

s=1 I(β
(s)
pkg > δ+)/S and p−(βpkg) =
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∑S
s=1 I(β

(s)
pkg < δ−)/S.

3. Flag gene kg as significant through platform p if p+(βpkg) > 0.5 or p−(βpkg) >

0.5.

The second option is a Bayesian adaptation of Benjamini and Hochberg’s proce-

dure (Benjamini and Hochberg, 1995) presented by Muller et al. (2006). It controls

the average local FDR and is implemented as follows.

1. Define αFDR as the upper bound for the average local FDR.

2. Sort the posterior probabilities p+(·) in descending order.

3. Compute the cumulative average of these sorted probabilities.

4. Flag the effects with cumulative average greater than 1− αFDR.

5. Repeat steps 2-4 for posterior probabilities p−(·).

To identify the pathways related to the clinical response, we focus on the ξ2pk

parameters in the clinical model. After much investigation, we believe that the

posterior estimates of these parameters are most informative when considered as a

pathway score and used to rank the pathways by prognostic relevance, as opposed to

making a binary selection decision. Also, ξ2pk summarizes pathway k’s effect through

platform p, so a separate ranking of pathway importance can be obtained within

each platform. As seen in the simulation and data application, these rankings do

differ across platforms; this information is helpful in understanding which platforms

are the mechanisms for each pathway effect.
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5.3 Simulation

To assess the performance of the clinical model, we simulate a data set with

realistic settings, described in Section 5.3.1, apply several models, and compare the

results. We will see that the pathway iBAG has the best performance.

5.3.1 Settings

We begin by simulating each value in the predictor matrix X from a standard

normal distribution. We use P = 2 platforms, K = 6 pathways, G1 = 5 genes in

pathway 1, G2 = 10 genes in pathway 2, G3 = 20 genes in pathway 3, G4 = 50

genes in pathway 4, G5 = 85 genes in pathway 5, and G6 = 130 genes in pathway

6. This results in G = 300 genes in total, so we have G × P = 600 predictors in

the clinical model. We restrict the number of samples simulated to n = 500, so that

we are assessing performance in the setting of more predictors than samples. Also,

we choose the number of genes in each pathway to vary dramatically because that

reflects what can be seen in the biological pathways. We will show that the estimates

of pathway importance are not solely based on pathway size, but instead are based

on the strength of their gene effects.

After simulating the (500× 600) predictor matrix, we set the values for the true

βpkg coefficients. There are P ×K = 12 platform/pathway combinations, and 6 are

chosen to be important while 6 are chosen as unimportant. In particular, pathway 6

is assigned as important through platform 2 but unimportant through pathway 1. To

set the true β values, we first sample G6 = 130 values from a Laplace(µ = 0, b = 2)

distribution, and another 130 values from a mixture of 50 zeros and 80 values from a

Laplace(µ = 0, b = 1/5) distribution. The Laplace distribution with scale parameter

2 is much less peaked at its mean (0), and it has much thicker tails, resulting in larger

values being sampled overall, but still some smaller effects present. The βs for the
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important platform/pathway combinations are then chosen as subsets of these 130

values. On the other hand, the Laplace distribution with scale parameter 1/5 is very

peaked at 0 and has thin tails, resulting in primarily small, but not identically 0,

values being sampled from it. We assign the βs in the unimportant platform/pathway

combinations as subsets of the mixture distribution, so that we simulate the existence

of some genes not related to the clinical outcome at all as well as (most) genes being

only slightly related. The βs are nested to allow for direct comparison of shrinkage

properties in pathways of varying size.

Once obtaining the true β values, we set τ 2 = 4 and simulate the clinical response

vector Y = Xβ + Normal(0, τ 2). We then supply the simulated X matrix and Y

vector to the pathway iBAG model, and perform 5500 iterations of the Gibbs sampler,

500 of which are used as burn-in. Note that the only parameters we set are the β

effects and overall variance τ 2, and we do not simulate directly from our hierarchy

of priors. Thus, we do not intend to give our method undue advantage through

the simulation settings; instead, we hope to simulate under settings likely to be

encountered in real data sets.

In addition to applying the pathway iBAG model presented in this paper, we also

apply 3 other variations. First, we consider the pathway iBAG model without any

pathway information, that is, we set the number of pathways to one and consider no

pathway distinctions among genes. Second, we include pathway membership infor-

mation, but do not do integration of multiple data platforms. To achieve this, we use

the previously simulated X matrix and sum the two platform components to recover

the unpartitioned mRNA value for each gene. Then we apply our method using

each gene’s single recovered value as the predictors, as opposed to the partitioned

components. For this setting, we do not know the true effect values, but we do know

which genes should be flagged – we base that on whether either of the gene’s two

76



partitioned components show significance through that platform. The last variation

we apply also uses the recovered mRNA values (no integration) as predictors and in

addition does not include gene pathway membership information.

5.3.2 Results

Table 5.1 shows performance assessment summaries for each of the four model

variants applied to the simulated data set. Overall, we see the pathway iBAG model

(with integration and using pathway information) is the superior model, indicated by

higher credible interval coverage, tighter credible intervals, lower mean squared error,

higher sensitivity and specificity, and lower false discovery rates and false negative

rates (FNRs). We discuss the results in more detail below.

For this simulation study, we call the effect “important” if |βpkg| > 0.5. This

designation is used when assessing CI widths for important and unimportant βs

and also for the selection procedures. Recall that the non-integrative methods use

the recovered mRNA values as predictors, and we do not set those corresponding β

values explicitly. Thus, we cannot compare some of the assessments directly for the

integrative versus non-integrative methods. This is why the coverage probabilities

and the CI widths when separated by β importance have values of “NA” for the non-

integrative methods – we do not know those true β values. As can be seen in Table

5.1, the integrative pathway model has the highest CI coverage and the lowest average

CI widths, with the integrative non-pathway model having the second smallest CI

widths, and the non-integrative methods coming in last with very similar widths. As

expected, borrowing strength within the platform/pathway combinations leads to

tighter bands for the estimates. Also, as an expected effect of the induced shrinkage,

we see the CI widths for the unimportant βs are smaller than for the important βs in

the integrative methods. The mean squared error (MSE) is the predictive error based
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Table 5.1: Pathway iBAG simulation results. “Avg.” abbreviates average, and “imp.”
abbreviates important. The β CIs are pointwise 90% credible intervals, and MSE
is predictive mean squared error. FDR is false discovery rate, and FNR is false
negative rate. Selection option 1 is based on the median probability model, and
selection option 2 controls average local FDR. Both are described in Section 5.2.3.

Method PI I P neither
Integration Yes Yes No No
Pathway Information Yes No Yes No
β CI coverage 0.9333 0.8900 NA NA
Avg. β CI width 0.7198 0.8446 4.7695 4.8035
Avg. imp. β CI width 0.8259 0.9569 NA NA
Avg. unimp. β CI width 0.6375 0.7576 NA NA
MSE 30.18 50.21 2138.76 2154.70
Selection option 1:
Gene/platform sensitivity 0.939 0.901 NA NA
Gene/platform specificity 0.973 0.92 NA NA
Gene/platform FDR 0.035 0.103 NA NA
Gene/platform FNR 0.061 0.099 NA NA
Gene sensitivity 0.976 0.943 0.633 0.649
Gene specificity 0.885 0.891 0.582 0.600
Gene FDR 0.032 0.025 0.129 0.122
Gene FNR 0.024 0.057 0.367 0.351
Selection option 2:
Gene/platform sensitivity 0.962 0.924 NA NA
Gene/platform specificity 0.902 0.867 NA NA
Gene/platform FDR 0.116 0.157 NA NA
Gene/platform FNR 0.038 0.076 NA NA
Gene sensitivity 0.996 0.963 0.200 0.208
Gene specificity 0.655 0.745 0.982 0.982
Gene FDR 0.072 0.056 0.020 0.019
Gene FNR 0.004 0.037 0.800 0.792

on a test set generated with the same fixed settings as discussed in Section 5.3.1. Our

primary objective for the pathway iBAG is not prediction; rather, we aim to select

genes, assign pathway scores, and provide the mechanistic information regarding the

platforms modulating the effects. Thus we include MSE as another way to assess
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performance, but it does not carry as much weight as the other results. In any case,

we do see that the integrative pathway method provides the best prediction, with the

integrative non-pathway method coming in second with an approximate two thirds

increase in MSE. Again, the non-integrative methods come in last, and again their

results are quite similar to each other. From the assessments discussed so far, we see

evidence that the integrative pathway model facilitates the most efficient estimation.

Selection options 1 and 2 are described in Section 5.2.3. We set our practical re-

gion of importance as (δ−, δ+) = (−0.5, 0.5), and for option 2 we set αFDR = 0.1. For

the integrative methods, we know the true βpkg values, and we can consider whether

each effect (one per gene/platform combination) should be flagged and whether it

was flagged. For both selection options, the integrative pathway model exhibits in-

creased sensitivity and specificity and decreased FDR and FNR, as compared to the

integrative non-pathway method. To calculate these quantities at the gene level and

allow a comparison to the non-integrative methods, we consider the true βpkg values

used in the integrative methods, and each gene is designated as “should be flagged” if

either of its corresponding gene/platform effects is important. Looking at the gene-

level assessment, we see the integrative methods performing similarly, with the path-

way model getting slightly better sensitivity and FNR scores and the non-pathway

model getting slightly better specificity and FDR scores. The non-integrative meth-

ods also perform similarly to each other, with a very slight advantage going to the

non-pathway version. From the gene level comparisons we can conclude that the

integrative versions provide a clear advantage as far as power, considering the dis-

mal sensitivity rates and false negative rates of the non-integrative methods. Then

looking at the gene/platform level comparisons, we see that the integrative pathway

model outperforms the non-pathway version for both selection options.
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Figure 5.2: Pointwise credible intervals for β, σ2, and ξ2 parameters in the piBAG
model. The 90% credible bands are shown, and in the β plot, “x” indicates the
posterior mean and “o” marks the true value.
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Figure 5.2 plots the 90% pointwise credible intervals constructed from posterior

samples of the piBAG model (i.e., with integration and pathway information) for the

β, σ2, and ξ2 parameters. These plots illustrate the important property discussed in

Section 5.2.2: a larger βpkg magnitude corresponds to a larger σpkg value, which in

turn corresponds to a larger ξ2pk value.

The pathway score estimates are the posterior medians of the ξ2 parameters.

We can rank these to find which pathways are most related to the clinical outcome

and through which platform the pathway is taking effect. The setting where such a

comparison is most informative is the integrative pathway model, and Figure 5.3 plots

the scores with the important platform/pathway combinations in blue. (The x and y

axes are identical, that is, the ξ2pk estimate is both the x and y coordinate.) As the plot

illustrates, piBAG correctly distinguishes between the important and unimportant

platform/pathway combinations. We can also sort these scores within platform;

for example, it is clear that through platform 1, pathway 3 is the most important,

followed by pathway 2 and then pathway 1. This is consistent with our simulation

settings, considering that all three of those pathways were simulated as important

through platform 1, and pathway 3 had significantly more genes that pathways 1 and

2. In the integrative version without pathway information, the ξ2 scores cannot say

anything about pathways, but they can still rank the platforms. In our simulation,

the scores from the integrative version without pathway information rank platform

2 (ξ̂221 = 16.64) as more important than platform 1 (ξ̂211 = 0.93). Although we did

not explicitly set platform importance, this seems reasonable considering platform

2 had the largest three pathways as important, and platform 1 had the smallest

three as important. Finally, we can consider the ξ2 scores from the non-integrative

version that still included pathway membership information. This method provides

a single score per pathway, which should indicate which pathways contribute more
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to the clinical outcome. Again, since we did not explicitly assign each pathway

an importance measure, we cannot say if the estimated ranking is precisely correct.

However, the highest score is for pathway 3, which is found by the integrative pathway

method to be the most related pathway (through platform 1). The consistency goes

further: although we do not mean to suggest the scores have any formal additivity

property, if we sum each pathway’s two scores obtained by the integrative pathway

method and then rank the pathways based on those, we obtain the exact same

ranking as produced by the non-integrative pathway method.

Figure 5.3: Plotted estimates of ξ2 parameters. A large ξ2pk is interpreted as pathway
k having an important clinical effect through platform p. Truly important plat-
form/pathway combinations are plotted in blue, and each value is labeled in grey.
The x-axis and y-axis coordinates are both the estimated ξ2 value.
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Through the simulation study, we demonstrate the advantages of the full piBAG

model, particularly the increased efficiency in estimation and power in selection. The

pathway scores also provide valuable mechanistic information, specifically a ranking

of which pathways have the strongest effect on the clinical outcome and through

which platform(s) those effects are modulated. It is also worth noting that including

pathway information can be beneficial even in an analysis with a single predictive

data platform; from Table 5.1 we saw that the gene selection is quite similar for

the non-integrative methods, regardless of including pathway information, but by

including the pathway memberships, we are able to procure additional mechanistic

information as to which pathways are most clinically relevant.

5.4 Data Application

We apply our pathway iBAG method to a glioblastoma multiforme (GBM) data

set made publicly available by The Cancer Genome Atlas (TCGA). TCGA is a

project started in 2006 with the goal of compiling comprehensive multiplatform data

sets for many different cancer types (The Cancer Genome Atlas, 2012). GBM is a

very deadly brain tumor, and it was one of the first types of cancer to be studied

by the TCGA. We focus our analysis on a subset of the available data, as described

below.

5.4.1 Data description

The genomic data platforms we include in our analysis are mRNA expression,

DNA methylation, and DNA copy number. The mRNA data is level 3 data from the

Affymetrix profiled HT HG U133A platform and is summarized at the gene level.

Our methylation data is level 3 data from Human Methylation27K arrays and is

summarized at the probe level; it quantifies DNA methylation at multiple sites per

gene. The copy number data is level 2 data from the HG CGH 244A platform and
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is also on the probe level; it is the normalized signal for copy number alterations of

aggregated regions per probe, and we use the log2 ratios of matched normal-tumor

samples to quantify copy number changes (The Cancer Genome Atlas Data Portal,

2013). The clinical response we consider is uncensored survival time, measured in

days from diagnosis, for 163 patients. Since we are modeling survival times, we

implement an accelerated failure time model by using log(survival) as the Y vector

in the clinical model (Equation 5.4) (Wei, 1992). We include 157 genes from 10

signaling pathways, each with a unique pathway membership, and the number of

genes per pathway ranges from 9 to 37.

We impute the few missing values in the methylation and copy number data

subsets and then apply piBAG using 10,500 MCMC iterations, 500 of which are

used as a burn-in period. Our primary interest is the full piBAG model, but we

also run the method without gene pathway information (achieved by setting K = 1

pathway, as in the simulation study) for comparison.

5.4.2 Results

After fitting the model, we have two types of results: gene selection and pathway

scores. For flagging important genes, we choose to apply selection option 1, the

method based on the median probability model. We set our practical importance

threshold to correspond to a change in survival time of at least 5%, which translates

to (δ−, δ+) = (log(0.95), log(1.05)), and apply our selection procedure. Posterior

probabilities that βpkg > δ+ and that βpkg < δ− are plotted in Figures 5.4 and 5.5,

respectively. The gene/platform combinations with either probability greater than

0.5 are flagged as important.

Four genes are selected as clinically important. The genes FABP2 and CCNG1

are found to have positive effects on survival time through a platform other than
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Figure 5.4: GBM application results: posterior probabilites from piBAG method
that βpkg > δ+. The dashed line is at probability 0.5.

methylation or copy number, meaning more expression explained by “other” effects

is associated with longer survival times. Genes RASA2 and ATP2B1 are found to

have negative effects on survival time, with both genes’ effects regulated by copy

number changes; more gene expression explained by copy number is related to a

worse prognosis. Although survival data can be quite noisy, our piBAG model has

still found several potential prognostic genes, and based on the low error rates in

the simulation study, we can be confident that these discoveries are real signal. The

posterior means for all the βpkgs are shown in Figure 5.6, and the means for the

flagged effects are designated by a solid dot.
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Figure 5.5: GBM application results: posterior probabilites from piBAG method
that βpkg < δ−. The dashed line is at probability 0.5.

Figure 5.6: GBM application results: βpkg posterior means from piBAG method.
The solid dots represent the effects found to have a significant effect on survival
time.
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To rank the pathways, we summarize the pathway scores in Tables 5.2, 5.3,

and 5.4. Each table summarizes the pathway scores within a different regulating

platform - methylation, copy number, or something other than methylation and copy

number, respectively. The PPAR signaling pathway is found to be most clinically

important on all platforms, but other than that the rankings change from platform

to platform. As far as the genes flagged as important, FABP2 is in the PPAR

signaling pathway, CCNG1 is in the P53 signaling pathway, RASA2 is in the MAPK

signaling pathway, and ATP2B1 is in the calcium signaling pathway. Three of these

pathways (PPAR, P53, and calcium) are ranked as highly important through the

platform corresponding to their flagged gene, but the MAPK signaling pathway has

the second lowest ranking through copy number, the platform on which its gene

is flagged. This is further evidence that although it is harder, it is certainly not

impossible for a gene in an unimportant (or less important) pathway to be flagged

on its own strong effect.

Table 5.2: Pathway rankings, from high to low, within the methylation platform
for the GBM data application. The pathway score is the ξ2pk estimate, that is, the
posterior median. A larger score indicates a stronger effect from that pathway on
the clinical outcome.

Signaling Pathway Score Number of Genes
ξ211 PPAR 0.0365 15
ξ213 Calcium 0.0259 9
ξ219 JAK-STAT 0.0237 9
ξ218 Toll-like receptor 0.0235 9
ξ214 Chemokine 0.0218 9
ξ217 TGF beta 0.0215 18
ξ215 P53 0.0204 15
ξ21,10 Insulin 0.0200 11

ξ216 WNT 0.0165 25
ξ212 MAPK 0.0138 37
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Table 5.3: Pathway rankings, from high to low, within the copy number platform
for the GBM data application. The pathway score is the ξ2pk estimate, that is, the
posterior median. A larger score indicates a stronger effect from that pathway on
the clinical outcome. The bold pathways contain a flagged effect.

Signaling Pathway Score Number of Genes
ξ221 PPAR 0.0418 15
ξ223 Calcium 0.0295 9
ξ228 Toll-like receptor 0.0251 9
ξ229 JAK-STAT 0.0243 9
ξ224 Chemokine 0.0234 9
ξ22,10 Insulin 0.0225 11

ξ225 P53 0.0191 15
ξ227 TGF beta 0.0185 18
ξ222 MAPK 0.0174 37
ξ226 WNT 0.0152 25

Table 5.4: Pathway rankings, from high to low, for a regulating platform other than
methylation or copy number for the GBM data application. The pathway score is the
ξ2pk estimate, that is, the posterior median. A larger score indicates a stronger effect
from that pathway on the clinical outcome. The bold pathways contain a flagged
effect.

Signaling Pathway Score Number of Genes
ξ231 PPAR 0.0589 15
ξ23,10 Insulin 0.0270 11

ξ235 P53 0.0251 15
ξ233 Calcium 0.0250 9
ξ234 Chemokine 0.0240 9
ξ238 Toll-like receptor 0.0218 9
ξ239 JAK-STAT 0.0216 9
ξ237 TGF beta 0.0194 18
ξ236 WNT 0.0173 25
ξ232 MAPK 0.0149 37

When we apply the method without incorporating pathway information, only two

88



genes are flagged; increased CCNG1 expression, explained by something other than

methylation or copy number, is found to have a negative effect on survival time, and

increased RASA2 expression, explained by copy number, is found to have positive

effects on survival time. Both of these genes were flagged through these platforms in

the full pathway iBAG, but the full piBAG also flagged two other genes, as discussed

above. The higher power of the full pathway iBAG is consistent with the tighter

credible interval bands of the full pathway model.

5.5 Discussion

We have presented the pathway iBAG model, or piBAG, a hierarchical two-step

Baysian model that integrates multiple genomic data platforms by modeling their

biological relationships and identifies clinically important genes and pathways. The

flagged genes are not only found to be important, but we also provide the mechanistic

information of which data platform is driving the important effects. The pathways

are ranked by clinical relevance within each platform via a pathway score, estimated

as a parameter in the model. The biological insight provided by piBAG is critical to

the development and improvement of targeted cancer treatments.

The model design facilitates highly flexible shrinkage and the borrowing of

strength among platform/pathway combinations, both of which contribute to effi-

cient parameter estimation and an increase in power as compared to non-integrative

and non-pathway models. We have demonstrated these advantages through a simu-

lation study. The simulation results present a strong case for data integration, but

even without multiplatform data, we showed that incorporating pathway member-

ship information leads to a gain of mechanistic information without a substantial

loss of selection power. We also analyzed a TCGA GBM data set and identified four

potential prognostic biomarkers, two with a positive effect on survival and two with
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a negative effect. The pathway rankings obtained from the GBM application also

provide insight as to the more heavily involved gene pathways. In particular, we

found the PPAR signaling pathway to be the most important, as related to survival

time, through every platform. Additional evidence of the improved power offered by

piBAG was provided through a comparison of the GBM application without using

pathway information; this method only found two of the four genes flagged by the

full pathway iBAG model.

There are two natural extensions to the piBAG model presented here. First,

the inclusion of other genomic data platforms is certainly of interest. We discussed

how to include protein expression data in section 5.2.1. Another popular platform is

microRNA (miRNA). MicroRNAs are known to affect gene expression, and with a

list of the miRNAs known to target a particular gene, miRNA data can be included

as another predictor, or as multiple predictors, in the mechanistic model. Then,

depending on the researcher’s purpose, the miRNA effect could be carried forward as

a single partitioned piece, or as multiple pieces. The second extension is the inclusion

of genes with multiple pathway memberships. We have not implemented this yet, but

we propose introducing the parameter ψkg, which takes an integer value to indicate

which pathway membership should be considered for each MCMC iteration. There

should only be one ψ parameter per gene, so if, for example, a certain gene could be

gene 5 in pathway 1 or gene 8 in pathway 3, we would require ψ15 = ψ38. Then we

could replace Equations 5.8 and 5.9 with

βpkg|ψkg = k ∼ Normal(0, σ2
pkg) (5.14)

ψkg ∼ Multinomial(πkg) (5.15)

πkg ∼ Dirichlet(akg) (5.16)

where the length of akg is the number of potential pathways for that gene, and

90



its entries are either all ones or weighted by the number of genes in the pathway.

This formulation would allow a gene to have a unique membership for each MCMC

iteration, but jump between its possible pathways based on the sampled parameter.
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6. INTEGRATIVE HEATMAPS

6.1 Introduction

Data sets with measurements on multiple genomic platforms, such as messenger

RNA (mRNA) expression and DNA methylation, for each patient are becoming more

widely available. It has been shown that integrating these multiple data platforms

into a single analysis provides the advantages of increased power, lower false discovery

rates, and more in-depth biological understanding (Wang et al., 2013; McGuffey

et al., 2015). One such way of integrating these genomic data platforms is to regress

mRNA expression on upstream platforms that are known to affect mRNA expression,

essentially partitioning the mRNA expression into the components explained by the

various upstream platforms (McGuffey et al., 2015).

A concise, effective way to illustrate the integration of the platforms is necessary

to provide a better grasp of the integration results and to understand the underlying

structure of the platform components. To achieve these goals, we present integrative

heatmaps (IHs), a novel visualization tool for integrated genomic data.

6.2 Methods

First we briefly present the integration method referenced in Section 6.1, in the

context of the data platforms to be used in our application. Say we have raw data

values, summarized at the gene level, for mRNA expression, DNA methylation, and

DNA copy number. Let mRNAg, R
(M)
g , and R

(C)
g denote the vectors of mRNA,

methylation, and copy number values for gene g, respectively. Then to integrate

these platforms, we fit the following model independently for each gene:

mRNAg = b0 + f (M)
g (R(M)

g ) + f (C)
g (R(C)

g ) + ε (6.1)

where b0 is an intercept term, ε ∼ Normal(0, σ2), and f
(·)
g (·) is a penalized regression
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spline. We then calculate the fitted pieces as Mg = f̂
(M)
g (R

(M)
g ), Cg = f̂

(C)
g (R

(C)
g ),

and Og = the residuals. We interpret Mg as the part of gene g expression explained

by methylation, Cg as the part of gene g expression explained by copy number, and

Og as the part of gene g expression explained by something “other” than methylation

or copy number. (Although not discussed in this note, this partitioning is useful for

model building, and can also be extended to incorporate an arbitrary number of plat-

forms, including protein expression, as long as the underlying biological relationships

among the platforms are understood (Jennings et al., 2013; McGuffey et al., 2015).)

Traditional heatmaps depict a matrix of data through color, with different colors

and intensities representing a certain range of data values. Rows and columns may be

clustered, depending on the user’s objective. Our integrative heatmaps also illustrate

the data through color intensities and have clustering options, but the matrix of

data to be depicted is grouped by platform. Specifically, we will work with the

matrices mRNA = {mRNA1, ...,mRNAG}, M = {M1, ...,MG}, C = {C1, ..., CG},

and O = {O1, ..., OG} where G is the total number of genes in the analysis.

We present three variations of the integrative heatmap (IH), each achieving a

distinctly different purpose. For our application, we use a subset of publicly avail-

able colorectal cancer (CRC) data from The Cancer Genome Atlas (TCGA). Our

heatmaps are especially useful for comparing structures between sample groups; here

we use four CRC subtypes based on the classification of Guinney et al. (2015). If

a user did not have sample classes of interest, the IHs could accommodate this by

simply considering all samples to be of the same class, and the results would still

be useful to compare structures accross platforms. We also restrict ourselves to 423

genes that have been previously filtered and determined to be useful in characteriz-

ing the CRC subtypes. The user supplies the raw data matrices and thus may filter
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genes (or not) however he or she chooses.

6.2.1 Additive integrative heatmaps

In the additive IH, the priorities are (1) to visualize the additivity of the par-

titioned components and (2) to compare the structure within each sample class for

each platform on a common scale. The matrix of data values that is plotted is

{mRNA,M,C,O}, with clear platform distinctions. The rows are clustered using

the entire matrix. The columns are ordered based on clustering of the matrix mRNA;

the columns of mRNA are clustered within sample class, and that order is repeated

for the columns of M , C, and O to maintain additivity.

The common color scale for all platforms and the clustering approach allows us

to quickly see how the mRNA expression values are (additively) partitioned into the

different components. Including all the platforms also facilitates easy identification

of which platform(s) stand(s) out as a driving force for which sample class. The

additive heatmap for our CRC example is shown in Figure 6.1a.

6.2.2 Componentwise heatmaps

The goal for the componentwise IH is to “zoom in” on a component of the additive

IH (mRNA, M , C, or O) and investigate the differences in structure between the

sample classes for that particular component. To achieve this goal, we plot the

chosen component matrix, but allow a new color scheme suited to the range of values

observed for that component. This makes the underlying structure more evident,

especially for the components with a smaller range of values. We also calculate new

column clustering within each sample class, whereas the row ordering remains the

same as in the additive IH to facilitate the comparison of important genes across

componentwise IHs. The componentwise IH for each component in our example can

be seen in Figure 6.1b-6.1e.
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(a) Additive integrative heatmap.

(b) Componentwise IH for mRNA. (c) Componentwise IH for M .

(d) Componentwise IH for C. (e) Componentwise IH for O.

Figure 6.1: Integrative heatmaps. (a) Additive IH for TCCGA CRC data. (b)-(e)
Componentwise IHs for mRNA, methylation, copy number, and other platforms,
respectively. The row (gene) order is held constant for all heatmaps. “CMS” is the
label for sample subtype.
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6.2.3 Platform-specific integrative heatmaps

The platform-specific IHs are constructed in the same manner as the componen-

twise IHs (new color scheme; same row ordering as additive heatmap; new column

clustering within sample classes), but they plot the raw data values, as opposed to

the partitioned components. This facilitates comparisons of the information present

in each raw data platform to the structure seen in the corresponding partitioned

piece. For example, the platform-specific IH for methylation depicts the varying

levels of methylation, whereas the componentwise IH illustrates the varying levels of

gene expression explained by methylation. The platform-specific IHs for the TCGA

CRC data are shown in Figure 6.2.

6.3 Results

In the additive IH (Figure 6.1a) we see clear structural differences between sample

classes in the mRNA matrix. For example, we see that class 1 is distinguished from

the other classes by low expression of the bottom third genes. It is also evident that

the low levels of expression of these genes is explained by methyation and something

other than methylation or copy number (the M and O pieces, respectively). The

additivity property is demonstrated nicely by this same group of genes; the bright

green and red intensities in the mRNA matrix are decomposed into the slightly less

intense colors of the M and O pieces and the even darker C piece. The varying color

intensities depict the amount of each gene’s expression that is explained by each

platform, with duller intensities indicating that less expression can be attributed to

that platform. Although the common color scheme makes the additivity clear, it

makes some of the structure in the M and C pieces appear only faintly. However, we

can utilize the componentwise IHs to further investigate and compare the differences

between sample classes.
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(a) Platform-specific IH for mRNA. (b) Platform-specific IH for methylation.

(c) Platform-specific IH for copy number.

Figure 6.2: Platform-specific integrative heatmaps for TCGA CRC data. (a)
Platform-specific IH for mRNA. This is identical to the componentwise IH for mRNA
because both use the raw data. (b)-(c) Platform-specific IHs for (raw) methylation
and (raw) copy number, respectively. The row (gene) order is held constant for all
heatmaps. “CMS” is the label for sample subtype.
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The M componentwise IH (Figure 6.1c) provides a sharper illustration of the

structure in the M piece, the part of gene expression explained by methylation. The

low levels of expression explained by methylation characterizing class 1 in the bottom

third of the genes that we observed in the additive IH is now even brighter, and we

also see structures that were not clear in the additive IH. For example, higher levels

of expression explained by methylation in the bottom third genes (shown as red)

are now seen to characterize class 2, and similarly appear to characterize class 4

through the top two thirds of the genes. Not as much information appears in the

componentwise heatmap for the C piece (Figure 6.1d), but it does become clear that

a lack of gene expression explaination by copy number, shown in black, characterizes

many of the class 1 samples.

It is logical to wonder whether the same structures would be present in the raw

platform data. The partitioning step can be thought of as a de-noising of the raw

platform values, and as such it is common for the structure seen in the componen-

twise IHs to be different, and often clearer, than that of the platform-specific IHs.

This can be seen in the platform-specific IHs shown in Figure 6.2. Specifically, in the

platform-specific IH of the raw methylation data, we do not see clear class distinc-

tions from the groups of genes discussed in the componentwise IH summary – the

information in the raw data values is different than that in the partitioned pieces.

It is worth noting, however, that in class 1 most of the methylation values for the

bottom third of the genes are high (red). Because increased methylation typically

results in lower gene expression, this is consistent with the previous finding that low

levels of gene expression explained by methylation in this group of genes character-

izes class 1. If the rows (genes) in the platform-specific IH were to be re-clustered,

some structural differences between classes may become apparent, but they would

be driven by different groups of genes than seen earlier. Thus, both the component-
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wise and platform-specific IHs can contribute something distinctly meaningful to the

biological understanding and interpretations of an integrative analysis.

6.4 Discussion

In the additive IH, the color intensities allow us to see how each gene’s expression

is decomposed into the pieces explained by each upstream platform. We can also

identify several structural characteristics that characterize certain sample classes.

When we use the componentwise IHs to zoom in on each partitioned piece, even more

structural distinctions among the classes become evident. Then the platform-specific

IHs allow us to make deeper biological connections by incorporating the information

from the raw platform values, and we are able to compare the differences in structure

between the raw values and the partitioned components.

In our example, the patterns seen in the partitioned components are much clearer

than those in the raw values. This speaks to the advantages offered by integrating

multiple platforms via the method described in Section 6.2. Although not discussed

here, this method has general usefulness and independent value for model-building

(see Wang et al. (2013); Jennings et al. (2013); McGuffey et al. (2015)), as it provides

a cleaner signal than that available from the raw data. In this example, we considered

the platforms of gene expression, methylation, and copy number, but other platforms

such as protein expression and microRNA can also be accommodated (McGuffey

et al., 2015).

The dendrograms produced by our IH code can also be used as input for MD

Anderson Cancer Center’s next-generation clustered heatmap application (MD An-

derson Cancer Center, 2015). These next-generation heatmaps allow the user to

zoom in on different parts of the heatmap and to display other information related

to each gene and sample, such as gene pathway membership and clinical informa-
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tion for each patient. This is an excellent tool for exploratory data analysis for

high-dimensional data.

100



7. CONCLUSION

In this dissertation, we presented several statistical methods to analyze multi-

platform genomic data, as well as a novel illustration tool useful for visualizing the

integration of the data platforms, all with applications to cancer research. In Chap-

ters 2-4, we presented a linear and a nonlinear formulation of iBAG, a hierarchical

two-step Bayesian model that integrates multiple data types by modeling the known

biological relationships among them, and flags genes important to a clinical out-

come. The NG prior on the effects facilitates flexible shrinkage and induces sparsity,

resulting in improved estimation efficiency and increased power to identify significant

genes. Whereas we integrate three platforms as predictors in our data applications,

we proposed natural extensions to incorporate miRNA and protein expression as

predictor platforms; as long as the biological relationships among the platforms are

understood, essentially any platform could be accommodated. Beyond identifying

important genes, the structure of the data integration also provides mechanistic in-

formation regarding through which platform the gene expression is related to the

clinical outcome. We applied iBAG to a glioblastoma multiforme (GBM) data set

from The Cancer Genome Atlas (TCGA), using survival time as the clinical response,

and identified several potential prognostic genes, some of them not previously impli-

cated in GBM progression.

We presented piBAG, a pathway iBAG model, in Chapter 5. This method is

also a two-step hierarchical Bayesian model, with similar integration and gene se-

lection properties as the non-pathway iBAG model, but piBAG also incorporates

gene pathway membership information. The model design borrows strength within

each pathway to aid in estimation efficiency, and the results of the method include
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flagging important genes and their driving platforms, as before, but also a list of

pathways ranked by their importance to the clinical outcome through each platform.

The piBAG method shares many of the advantages of the regular iBAG model dis-

cussed above, such as data integration, flexible shrinkage, efficient estimation, and

high power to detect significant genes. However the additional information gained

by implementing piBAG, specifically the pathway scores and a ranking of pathway

clinical relevance, which are estimated simultaneously with the gene effects, sets this

method apart. We demonstrated in a simulation study that the ideal scenario is

to integrate multiple data platforms and fit piBAG; however, we also showed that

fitting the pathway iBAG model to a single platform predictor provides the advan-

tage of additional pathway-level results without losing power or accuracy on the

gene level. Using a new subset of the TCGA GBM data, with survival time as the

clinical outcome, we applied piBAG and identified four potential prognostic mark-

ers, as well as pathway rankings. We also compared the results to an application of

the method without pathway information and thus provided more evidence of the

increased power available through the pathway iBAG method.

Finally, in Chapter 6 we presented integrative heatmaps (IHs), a visualization

tool to illustrate genomic data integration and provide insight into the genetic dif-

ferences between cancer subtypes. The additive IH provides a big picture view and

clearly portrays the partitioning of gene expression into the components explained

by various upstream platforms. We then zoom in on each of the components in the

componentwise IHs, allowing a more detailed view of where and how that particular

partitioned piece differs between samples of differing subtype. The platform-specific

IHs depict the raw data platforms, as opposed to the partitioned components, and

facilitate a comparison of the information contained in the raw versus partitioned

data. We showed these variations as applied to a colorectal cancer data set avail-
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able from the TCGA repository, and we interpreted each of the three variations to

demonstrate how they achieve their respective goals.

All of the methods presented in this dissertation provide information that is

critical to the development of targeted cancer therapies. A final important note

is that although the majority of the applications in this dissertation focus on a

glioblastoma multiforme (GBM) data set, the proposed methods are not cancer-

specific; they can be applied to any cancer type as long as the appropriate data is

available.
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APPENDIX A

CHAPTER 3 SUPPLEMENT

A.1 Data Imputation

Since the percentage of missing data is so low (∼ 5% for methylation and ∼

0.1% for copy number), we choose to do imputation using the following algorithm

for both the methylation data and the copy number data: (1) For each marker,

replace any NA’s with the mean of the other patients. Call this resulting matrix

Temp. (2) Use Temp to calculate a correlation matrix between markers. (3) For

each marker with missing value(s), regress it on the three markers which it is most

highly positively correlated with (using the Temp matrix for the predictors to avoid

further complications from missing data). (4) Substitute this predicted value for the

missing value in the original matrix.

A.2 Complete Conditionals

β|rest ∼ Normal{(XTX + σ2D−1τ )−1XTY, σ2(XTX + σ2D−1τ )−1}

σ2|rest ∼ Inv.Gamma(a = a+ n/2, b = b+ {(Y −Xβ)T(Y −Xβ)}/2)

ψj,i|rest ∼ Gen.Inv.Gaussian(a = γ−2j , b = β2
j,i, p = λj − 1/2),where

V = Gen.Inv.Gaussian(a, b, p) has density

(a/b)p/2vp−1 exp{−(av + b/v)/2}/{2Kp(
√
ab)}, where Kp(·) is a

modified Bessel function of the second kind.

λj|rest ∼ (1/λj)
ã exp{−b̃γ−2j /(2λj)− cλj} ×

(
pj∏
i=1

ψ
λj
j,i

)
/[{Γ(λj)}pj(2γ2j )pjλj ]

γ−2j |rest ∼ Gamma(a = pjλj + ã, b = (b̃/λj +

pj∑
i=1

ψj,i)/2)

In the Metropolis-Hastings update step, the proposed value is λ∗j = exp(σ2
λz)λj
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where z ∼ Normal(0, 1) and the tuning parameter σ2
λ is chosen to result in an accep-

tance rate between 20% and 30%. The acceptance probability is then

min

1,
π(λ∗j)

π(λj)

(
Γ(λj)

Γ(λ∗j)

)pj (
(2γ2j )

−pj
pj∏
i=1

ψj,i

)λ∗j−λj (
λ∗j
λj

)
where π(λj) = (1/λj)

ã exp{−b̃γ−2j /(2λj)− cλj}, the prior for λj.

A.3 Initial Values and Hyperparameters

The initial values and hyperparameters are chosen as follows:

• The hyperparameters for σ2 are a = b = 0.001, so as to be uninformative.

• The hyperparameter for λj is c = 1 (Griffin and Brown, 2010).

• The hyperparamters for γ−2j are ã = 2 and b̃ = the mean of the least squares

β̂2
j,i (Griffin and Brown, 2010).

• The initial β is the estimate from the frequentist lasso with a single shrinkage

parameter.

• The initial σ2 is the mean sum of squares from the frequentist lasso.

• Each initial λj, ψj,i, and γ−2j is set to 1.
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APPENDIX B

CHAPTER 4 SUPPLEMENT

B.1 Complete Conditionals

β|rest ∼ Normal{(XTX + σ2D−1ψ )−1XTY, σ2(XTX + σ2D−1ψ )−1}

σ2|rest ∼ Inv.Gamma(a = a+ n/2, b = b+ {(Y −Xβ)T(Y −Xβ)}/2)

ψjg|rest ∼ Gen.Inv.Gaussian(a = γ−2j , b = β2
jg, p = λj − 1/2),where

V = Gen.Inv.Gaussian(a, b, p) has density

(a/b)p/2vp−1 exp{−(av + b/v)/2}/{2Kp(
√
ab)},where Kp(·)

is a modified Bessel function of the second kind.

λj|rest ∼ (1/λj)
ã exp{−b̃γ−2j /(2λj)− cλj}

(
pj∏
g=1

ψ
λj
jg

)
/[{Γ(λj)}pj(2γ2j )pjλj ]

γ−2j |rest ∼ Gamma(a = pjλj + ã, b = (b̃/λj +

pj∑
i=1

ψjg)/2)

In the Metropolis-Hastings update step, the proposed value is λ∗j = exp(σ2
λz)λj,

where z ∼ Normal(0, 1) and the tuning parameter σ2
λ is chosen to result in an accep-

tance rate between 20% and 30%. The acceptance probability is then

min

1,
π(λ∗j)

π(λj)

(
Γ(λj)

Γ(λ∗j)

)pj (
(2γ2j )

−pj
pj∏
g=1

ψjg

)λ∗j−λj (
λ∗j
λj

) ,

where π(λj) = (1/λj)
ã exp{−b̃γ−2j /(2λj)− cλj}, the prior for λj.

B.2 Partitioning Explained Variation

Regardless of linear or nonlinear formulation, after estimating the mechanistic

model (for one gene), we have

y = b̂0 +M + CN +O (B.1)
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where y is the gene expression. We carry forward M,CN,O and disregard b̂0 as a

kind of mean centering. The sums of squares that we use to calculate proportions of

explained variances are as follows:

SST =
n∑
i=1

(y∗i )
2 (B.2)

SSM =
n∑
i=1

(Mi)
2 (B.3)

SSCN =
n∑
i=1

(CNi)
2 (B.4)

SSE = SST − SSM − SSCN (B.5)

where y∗ = y − b̂0. Then the proportion of variance explained by methylation

is SSM/SST ; the proportion explained by copy number is SSCN/SST ; and

the proportion explained by something other than methylation or copy number is

SSE/SST .

Note that this formulation holds for b̂0 = ȳ, which occurs when, in the mechanistic

model,
∫
fjgk(Rjgk) = 0 for all j, g, and k. This is accomplished in the linear case

by centering each Rjgk prior to fitting the model. For the nonlinear case, this is a

common identifiability assumption that is used in most GAM packages.
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APPENDIX C

CHAPTER 5 SUPPLEMENT

C.1 Complete Conditional Distributions

β|rest ∼ Normal{(XTX + τ 2D−1σ2 )−1XTY, τ 2(XTX + τ 2D−1σ2 )−1}

τ 2|rest ∼ Inv.Gamma(a = a+ n/2, b = b+ {(Y −Xβ)T(Y −Xβ)}/2)

σ2
pkg|rest ∼ Gen.Inv.Gaussian(a = ξ−2pk , b = β2

pkg, p = α− 1/2), where

V = Gen.Inv.Gaussian(a, b, p) has density

(a/b)p/2vp−1 exp{−(av + b/v)/2}/{2Kp(
√
ab)},where Kp(·)

is a modified Bessel function of the second kind.

ξ2pk|rest ∼ Gamma(Gkα + ã, [b̃/λ+

Gk∑
g=1

σ2
pkg]/2)

α|rest ∼ exp(−c̃α)[Γ(α)]−PG(1/2)αPG
P∏
p=1

K∏
k=1

Gk∏
g=1

(ξ−2pk σ
2
pkg)

α =: p0(α)

λ|rest ∼ Gen.Inv.Gaussian(a = 2d̃, b = b̃
P∑
p=1

K∑
k=1

ξ−2pk , p = 1− PKã)

In the Metropolis-Hastings update step, the proposed value is α∗ = exp(σ2
αz)α,

where z ∼ Normal(0, 1) and the tuning parameter σ2
α is chosen to result in an

acceptance rate between 30% and 40%. The acceptance probability is then

min

{
1,

p0(α
∗)

p0(α)

(
α∗

α

)}
where p0(α) is the complete conditional of α as defined above.

C.2 Hyperparameters and Starting Values

The hyperparameters for τ 2 are a = 1, b = 2 in the simulation study and a = 0.1,

b = 2.2 in the data application. These are set to be minimally informative while

placing enough mass away from zero so that τ 2 does not get “stuck” at 0 in the
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MCMC chain. The remaining hyperparameters ã, b̃, c̃, and d̃ are set to 1.

All βpkg parameters have a starting value of 0, and all other parameters updated

in the Gibbs sampler (τ 2, σ2
pkgs, ξ

−2
pk s, α, and λ) start at 1. Trace plots show that all

parameters mix well and converge quickly.
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