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ABSTRACT 

 

In the last decades rapid advances in horizontal drilling and hydraulic fracturing 

technologies ensure production of commercial quantities of natural gas from many 

unconventional reservoirs. Reservoir management and development strategies for shale 

and tight gas plays have evolved from ad hoc approaches to more rigorous strategies that 

involve numerical optimization in presence of multiple economic and production 

objectives and constraints. Application of an automated integrated optimization 

framework for placement of horizontal wellbores and transverse hydraulic fracture 

stages along them has potential of increasing shale gas reserves and projects’ revenue 

even further.  

This dissertation introduces a novel integrated evolutionary-based optimization 

framework for placement of horizontal wellbores and hydraulic fracture stages that 

allows enhancing production from shale gas formations and provides a solid foundation 

for future field-scale application once better understanding of shale petrophysics and 

geomechanics is developed. The proposed optimization workflow is developed and 

tested in stages. First, we summarize what has been done in the subject field previously 

by scholars and identify what is missing. Second, we present assumptions for the shale 

gas simulation model that make our framework and the simulation model applicable. 

Third, we pre-screen several economic and petrophysical parameters in order to identify 

the most significant for the subsequent sensitivities analysis. Forth, we develop 

evolutionary-based optimization strategy for placement of hydraulic fracture stages 
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along a single horizontal wellbore. We investigate how sensitive the optimization results 

to changes in the key parameters pre-selected during pre-screening. Fifth, we enhance 

the framework to handle multiple horizontal producers, discuss the conditions when such 

approach is applicable, and extensively test this integrated workflow on a suite of 

simulation runs. Finally, we implement and apply multi-objective optimization approach 

(the improved non-dominated sorting genetic algorithm) to the problem of optimal HF 

stage placement in shale gas reservoirs and analyze the efficiency of our evolutionary-

based optimization scheme in presence of multiple conflicting or non-conflicting 

objectives. 

Based on our extensive testing and rigorous formulation of the optimization 

problem, we find that the chosen evolutionary framework is effective in calculating the 

optimal number of horizontal wells, the number of HF stages, their specific locations 

along the wells as well as their half-length. We also conclude that further computational 

efficiency can be achieved if minimum stage spacing and same chromosome elimination 

procedure are used. The multi-objective approach has been tested on conflicting and 

non-conflicting objectives and proved to compute the Pareto optimal front of solutions 

(or production scenarios) in computationally efficient manner. 
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NOMENCLATURE 

 

𝑏           Discount rate, %/100/year 

𝐶𝑝         Well penetration cost per grid block, $ 

𝐶𝑤         Base cost for drilling a horizontal well, $ 

𝐶𝑓          Hydraulic fracturing cost per stage, $ 

𝐶𝑓𝑏        Hydraulic fracturing base cost per stage, $  

𝐶𝑓𝑙        Hydraulic fracturing cost per unit of length, $/ft  

𝐶𝑝         Penetration cost of per drilled grid block 

𝑁𝐻𝐹      Number of hydraulic fracture stages  

𝐾          Total number of steps in simulation 

𝑘          Time index 

𝐿𝑤        Length of the horizontal portion of the producer in grid blocks 

𝑄𝑔
𝑘
      Gas production rate, mscf/day 

𝑄𝑤
𝑘
     Water production rate, stb/day 

𝑂         Operating cost of the producing well, $/day 

𝑟𝑔        Gas price, $/mscf 

𝑡𝑘       Year period, days 

𝑁𝑝𝑟𝑜𝑑  Production well index 

𝑢         Control variable vector 

𝑢∗      Optimal control variable vector 
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�̃�             Portion of a chromosome that encodes half-length of hydraulic fracture stage 

 𝑢⏞            Portion of a chromosome that encodes number of horizontal wellbores 

ℎ𝑙𝑚𝑎𝑥     Maximum feasible half-length, ft 

ℎ𝑙𝑚𝑖𝑛      Minimum feasible half-length, ft 

𝑛𝑙𝑚𝑎𝑥     Maximum feasible number of wells 

𝑛𝑙𝑚𝑖𝑛      Minimum feasible number of wells 

𝑥𝑙𝑒𝑛𝑔𝑡ℎ    Length of hydraulic fracture stage, ft  

∆𝑡𝑘          Time step for NPV calculation 



 

viii 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ...................................................................................................................... ii 

DEDICATION ..................................................................................................................iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

NOMENCLATURE ..........................................................................................................vi 

TABLE OF CONTENTS ............................................................................................... viii 

LIST OF FIGURES ............................................................................................................ x 

LIST OF TABLES ........................................................................................................... xv 

CHAPTER I  INTRODUCTION ....................................................................................... 1 

1.1 Background .............................................................................................................. 1 
1.2 Research Scope ........................................................................................................ 5 
1.3 Literature Review ..................................................................................................... 7 

1.3.1 Wellbore Placement .......................................................................................... 7 

1.3.2 HF Stage Design and Placement ..................................................................... 11 
1.3.3 Numerical Optimization Methods ................................................................... 14 
1.3.4 Multi-objective Optimization .......................................................................... 16 

1.4 Dissertation Outline................................................................................................ 17 

CHAPTER II SHALE GAS MODELING AND UNCERTAINTY 

ASSESSMENT ................................................................................................................ 19 

2.1 Introduction ............................................................................................................ 19 

2.2 Shale Gas Modeling ............................................................................................... 20 
2.2.1 Shale Fabric and Impact on HF Geometry ...................................................... 20 
2.2.2 Stress-Related HF Geometry in Shale Gas Simulation Model ........................ 23 

2.3 Shale Gas Models and Assessment of Uncertain Parameters ................................ 25 

2.3.1 Design of Experiments for Uncertainty Assessment ....................................... 26 
2.3.2 Shale Gas Model Description and NPV Response Function .......................... 28 
2.3.3 Full Factorial DoE for Anisotropic Shale Model ............................................ 31 

2.3.4 Full Factorial DoE for Isotropic Shale Model ................................................. 33 
2.4 Results, Observations and Conclusions ................................................................. 33 

CHAPTER III HF STAGE PLACEMENT OPTIMIZATION ........................................ 39 



 

ix 

 

3.1 Introduction ............................................................................................................ 39 
3.2 Evolutionary-Based Stochastic Optimization ........................................................ 39 

3.2.1 Genetic Algorithm with Strong Elitism ........................................................... 40 
3.2.2 Shale Gas Model and Single-Objective Function ........................................... 44 

3.3 Optimization with GA ............................................................................................ 48 
3.3.1 HF Stages Placement Optimization with Fixed Half-Length .......................... 50 
3.3.2 HF Stage Placement and Half-Length Optimization ....................................... 57 

3.4 HF Stage Placement Optimization in Presence of Uncertainty.............................. 65 
3.5 Conclusions ............................................................................................................ 74 

CHAPTER IV INTEGRATED EVOLUTIONARY-BASED OPTIMIZATION 

FRAMEWORK FOR HORIZONTAL WELL AND HF STAGE PLACEMENT .......... 75 

4.1 Introduction ............................................................................................................ 75 
4.2 Framework Assumptions........................................................................................ 75 
4.3 Novel Framework Structure and Implementation .................................................. 78 
4.4 Integrated Framework Testing ............................................................................... 81 

4.5 Results and Discussion ........................................................................................... 85 
4.6 Conclusions ............................................................................................................ 91 

CHAPTER V MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION 

FOR HF STAGE PLACEMENT ..................................................................................... 93 

5.1 Introduction ............................................................................................................ 93 

5.2 Approaches to MOO .............................................................................................. 93 

5.3 Application of NSGA-II to HF Placement Problem .............................................. 97 
5.4 NSGA-II Testing and Results .............................................................................. 101 
5.5 Conclusions and Observations ............................................................................. 105 

CHAPTER VI CONCLUSIONS AND RECOMMENDATIONS ................................ 107 

6.1 Conclusions .......................................................................................................... 107 

6.2 Future Research Directions .................................................................................. 111 

REFERENCES ............................................................................................................... 114 

APPENDIX A ................................................................................................................ 122 

APPENDIX B ................................................................................................................ 124 

 

  



 

x 

 

LIST OF FIGURES 

Page 

 

Figure 1.1. The U.S. natural gas production (in TCF) by the source, 1990-2040 

(adopted from http://www.eia.gov). ............................................................... 2 
 

Figure 1.2. Typical horizontal well placement, length, and spacing in a shale gas 

reservoir (e.g. the Bakken field), and stimulated reservoir volumes for 

each hydraulically fractured well. ................................................................... 4 
 

Figure 2.1. Aerial view of a portion of a shale reservoir with high stress 

anisotropy due to presence of clay. ............................................................... 22 
 

Figure 2.2. Aerial view of a portion of a shale reservoir with low stress anisotropy 

(isotropic stress distribution) due to high silica (sand or silt) volume. ......... 22 

 

Figure 2.3. Aerial view of a shale reservoir model with high stress anisotropy. 

One horizontal well has six transverse HF stages. ........................................ 24 

 

Figure 2.4. Aerial view of a shale reservoir model with isotropic stress. One 

horizontal well has six transverse HF stages. SRV and the main HF 

have the same permeability........................................................................... 25 

 

Figure 2.5. UA workflow for initial screening of economic and petrophysical 

parameters. .................................................................................................... 27 
 

Figure 2.6. Pressure depletion visualization after (a) 0 years, (b) 1 year, and (c) 5 

years for DoE run 1 for the anisotropic shale model. ................................... 32 
 

Figure 2.7 Chart showing change in NPV response (after 1 year of production) 

resulting from high and low values of each parameter considered in 

anisotropic scenario. ..................................................................................... 35 
 

Figure 2.8 Chart showing change in NPV response (after 5 years of production) 

resulting from high and low values of each parameter considered in 

anisotropic scenario. ..................................................................................... 36 
 

Figure 2.9 Chart showing change in NPV response (after 1 year of production) 

resulting from high and low values of each parameter considered in 

isotropic scenario. ......................................................................................... 37 



 

xi 

 

Figure 2.10 Chart showing change in NPV response (after 5 years of production) 

resulting from high and low values of each parameter considered in 

isotropic scenario. ......................................................................................... 38 
 

Figure 3.1. Evolutionary search strategy of GA illustrated for a function of two 

variables and one global maximum. ............................................................. 41 
 

Figure 3.2. Generalized structure of GA involves genetic operators: crossover, 

mutation, and elitism..................................................................................... 42 

 

Figure 3.3. GA uniform crossover mask applied to elite and current chromosome 

to obtain next generation chromosome. ........................................................ 43 

 

Figure 3.4. GA mutation operator changes random number of random genes in all 

chromosomes except the elite to ensure diversity. ....................................... 44 

 

Figure 3.5. 3D rendering of the shale gas simulation geomodel (DX property) 

with maximum half-length of HF stages. ..................................................... 45 
 

Figure 3.6. Close-up 3D rendering of LGR for the shale gas simulation geomodel 

(DX property) with maximum half-length of HF stages. ............................. 45 
 

Figure 3.7. 3D rendering of HF stages along a single horizontal wellbore at the 

beginning of production. ............................................................................... 46 

 

Figure 3.8. Detailed workflow for HF stages placement and half-length 

optimization problem with GA integrating MATLAB code and 

Eclipse simulation results. ............................................................................ 50 
 

Figure 3.9. Interpretation of GA’s chromosomes and generations for optimization 

of number of HF stages, their locations, and spacing given specific 

HF half-length. .............................................................................................. 51 
 

Figure 3.10. Stochastic optimization of HF stages placement with GA over 10 

generations with 30 chromosomes in each generation. ................................ 52 
 

Figure 3.11. Results of four test runs of GA over 10 generations with 30 

chromosomes in each generation juxtaposed with one GA test run 

over 30 generations with 60 chromosomes. Optimal number of stages 

and HF locations. .......................................................................................... 53 

 

Figure 3.12. Cross-plot of the highest discounted NPV values for four test runs 

versus running time (GA over 10 generations with 30 chromosomes 

in each generation). ....................................................................................... 54 



 

xii 

 

 

Figure 3.13. GA for optimization of number and locations of HFs. Evolution of 

chromosomes through 30 generations exhibits convergence by 

crossover and diversity by mutation. ............................................................ 55 

 

Figure 3.14. Highest NPV values after 20 years across 30 generations with 60 

chromosomes in GA test run. ....................................................................... 56 
 

Figure 3.15. Interpretation of GA’s chromosomes and generations for HF stage 

placement and half-length optimization problem. ........................................ 58 
 

Figure 3.16. Stochastic optimization of HF stage placement and half-length with 

GA over 10 generations with 30 chromosomes in each generation. ............ 59 
 

Figure 3.17. Optimal number and HF locations for GA over 10 generations with 

30 chromosomes in each generation. ............................................................ 61 
 

Figure 3.18. Cross-plot of the highest discounted NPV values for four test runs 

versus running time (GA over 10 generations with 30 chromosomes 

in each generation). ....................................................................................... 62 

 

Figure 3.19. Evolution of chromosomes through 30 generations exhibits 

convergence by crossover and diversity by mutation. .................................. 63 
 

Figure 3.20. Highest NPV values across 30 generations in GA test run. ......................... 64 
 

Figure 3.21. Optimal HF stages placement after 30 generations in GA test run. ............ 65 
 

Figure 3.22. Juxtaposition of optimal HF stage locations for an ensemble of 5 

geological realizations (each realization has varying matrix 

permeability +/-20% and +/- 50% from the base geomodel). ...................... 67 

 

Figure 3.23. Juxtaposition of optimal HF stage locations for an ensemble of 5 

geological realizations (well location is unchanged from model to 

model). .......................................................................................................... 68 
 

Figure 3.24. Effect of uncertainty in shale matrix permeability on optimal 

discounted NPV values. ................................................................................ 69 
 

Figure 3.25. Effect of uncertainty in shale matrix permeability: percent change in 

discounted NPV values from the optimized base value. .............................. 69 
 



 

xiii 

 

Figure 3.26. Juxtaposition of optimal HF stage locations for uncertain gas price 

varying from -50% to +50% from the base value (well location is 

unchanged from model to model). ................................................................ 72 
 

Figure 3.27. Effect of uncertainty in gas price on optimal discounted NPV values. ....... 73 
 

Figure 3.28. Effect of uncertainty in gas price: percent change in discounted NPV 

values from the optimized base value. .......................................................... 73 
 

Figure 4.1. Aerial view of homogeneous matrix permeability field with three 

horizontal wellbores with symmetrical transverse HF stages. ...................... 77 
 

Figure 4.2. Flowchart of the GA-based integrated framework for optimal 

placement of multiple horizontal wells and HF stages. ................................ 78 
 

Figure 4.3. GA chromosome encoding the number and length of horizontal wells 

as well as the number, spacing, and half-length of HF stages. ..................... 79 

 

Figure 4.4. Graphical interpretation of one iteration of the integrated optimization 

framework. .................................................................................................... 82 

 

Figure 4.5. Variability of HF half-lengths within the last generation. ............................. 83 

 

Figure 4.6. Variability of well numbers within the last generation. ................................. 83 

 

Figure 4.7. Evolution and convergence of HF half-length over 30 generation. ............... 84 

 

Figure 4.8. MATLAB output of monotonically increasing 5-year discounted 

NPVs over 30 generations with 60 chromosomes each. ............................... 85 

 

Figure 4.9. Summary plot of discounted NPVs from four test runs with varying 

minimal interval between HF stages. ............................................................ 88 
 

Figure 4.10. Summary plot of HF half-lengths from four test runs with varying 

minimal interval between HF stages. ............................................................ 89 
 

Figure 4.11. Cross-plot of running time, discounted NPVs, and simulator calls 

from four test runs with varying minimal interval between HF stages. ....... 90 
 

Figure 5.1. The Pareto Front of non-dominated Pareto optimal solutions for a 

generic MOO problem. ................................................................................. 95 
 

Figure 5.2. Scatter plot showing short- and long-term discounted NVPs generated 

by the simulation model. ............................................................................... 98 



 

xiv 

 

Figure 5.3. Scatter plot showing long-term discounted NVPs vs water production 

generated by the simulation model. .............................................................. 99 
 

Figure 5.4. NSGA-II improved scheme for producing new generations without an 

increase in evaluations of the objective function. ....................................... 100 
 

Figure 5.5. The Pareto front after the first generation of NSGA-II for non-

conflicting objectives. ................................................................................. 101 
 

Figure 5.6. The Pareto front after 30 generations of NSGA-II for non-conflicting 

objectives. ................................................................................................... 102 
 

Figure 5.7. NSGA-II results with optimal locations of HF stages and their half-

length after 30 generations of NSGA-II for non-conflicting 

objectives. ................................................................................................... 103 

 

Figure 5.8. The Pareto front (in red) after 20 generations of NSGA-II for 

conflicting objectives (long-term NPV and cumulative water 

production). ................................................................................................. 104 
 

Figure 5.9. NSGA-II results with optimal locations of HF stages and their half-

length after 20 generations of NSGA-II for conflicting objectives. ........... 105 

 

  



xv 

LIST OF TABLES 

Page 

Table 2.1 Shale gas reservoir properties used in the DoE simulation model. .................. 29 

Table 2.2 Economic parameters used in the DoE response model. ................................. 30 

Table 2.3 Parameter screening using stepwise regression statistical analysis 

(short-term discounted NPV for anisotropic model). ...................................... 34 

Table 2.4 Parameter screening using stepwise regression statistical analysis (long-

term discounted NPV for anisotropic model). ................................................. 36 

Table 3.1 Parameters for shale gas model and the NPV function (Ma, 2013). ................ 47 

Table 3.2 Rock matrix permeability values for ensemble of geologic realizations. ........ 66 

Table 3.3 Gas price values for optimization under uncertainty. ...................................... 70 

Table 4.1 Summary of integrated placement runs with varying minimum HFs 

spacing. ............................................................................................................ 86 

Table 4.2 Reservoir and economic parameters used for the test model. .......................... 87 

Table 5.1 Pseudo-code of NSGA-II (Deb, 2002). ............................................................ 96 

Table A.1 Two-level full factorial DoE for anisotropic horizontal stress model. .......... 122 

Table A.2 Two-level full factorial DoE for isotropic horizontal stress model. ............. 123 



 

1 

 

CHAPTER I  

INTRODUCTION 

 1.1 Background 

In recent years natural gas from unconventional reservoirs such as shale and tight sand 

has become a significant portion of the US domestic energy supply (Fig. 1.1). From the 

1970s, increasing gas prices and improvements in reservoir characterization and 

stimulation techniques attracted many operating companies to the plays that were 

previously considered sub-commercial due to their extremely low matrix permeability 

and fast decline rates. Further advances in drilling technology (including directional and 

horizontal wells), in manufacturing and design of hydraulic fracturing materials 

(including proppants and software for adequate modeling of hydraulic fractures), as well 

as in understanding of geomechanical rock properties and flow patterns have expanded 

the circle of natural gas producers on the market (Holditch, 2007). Nowadays, the 

industry experiences a need to merge rigorous shale reservoir characterization, 

completion results, and expert knowledge with fast and efficient numerical optimization 

techniques that can enhance unconventional natural gas reserves and increase the net 

present value (NPV) of the shale and tight gas projects. 
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Figure 1.1. The U.S. natural gas production (in TCF) by the source, 1990-2040 (EIA, 2013). 

 

 

 

To achieve the short- and long-term goals of commercial gas production in a 

particular unconventional gas reservoir, in general it is necessary to find solutions to two 

main problems: how many horizontal producing wells to drill and how many hydraulic 

fracture (HF) stages to place. Then, these two inter-dependent problems can be further 

subdivided and specified: where the horizontal wells should be placed and where and 

how long HF stages along these wells should be. Optimal placement of multiple HF 

stages with non-even spacing in heterogeneous permeability field is a challenging 

problem by itself in terms of its numerical complexity, especially when automatic 

stochastic optimization algorithms are used. This optimization task attempts to achieve 

maximum revenue and/or production rate while minimizing operating costs and capital 
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investments that are subject to geological, design, and economic constraints. In addition 

to this, even for one horizontal well the number of parameters to be optimized can be so 

large that the search space becomes intractable with the most popular gradient-based 

optimization algorithms. Thus, without a good understanding of the parameter search 

space and uncertainties as well as a solid optimization approach, knowledge of 

experienced engineers and large suites of simulations will yield suboptimal and 

inefficient results.   

Another optimization task that is equally important to address for the best 

economic results is the placement of horizontal wells. A number of automatic 

optimization algorithms have been devised and applied to similar problems in 

conventional reservoir engineering and management. These algorithms have been 

developed to place vertical producers and injectors, horizontal and directional wells as 

well as multilateral wells. Well placement in a conventional reservoir, though similar in 

technical execution, is slightly different in unconventional plays. More specifically, 

because shale and tight sand reservoirs have extra low matrix permeability, we do not 

expect to see early boundary dominated flow and to produce effectively from the regions 

beyond stimulated reservoir volume (SRV). Therefore, it is essential to space the wells 

in the way that they produce the reservoir fairly uniformly, economically, and without 

significant interference with each other (Fig. 1.2). The best industry practices suggest 

that parallel arrangement of the stimulated producers is the preferred well placement 

strategy. This field observation helps reduce complexity of the optimization problem, 

because now it can be solved as a two-dimensional problem with well-defined 
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geometrical constraints. However, the presence of HF stages with variable half-length 

makes the problem of optimal placement of parallel horizontal wells a non-trivial 

numerical undertaking. 

 

 

 

 

Figure 1.2. Typical horizontal well placement, length, and spacing in a shale gas reservoir 
(e.g. the Bakken field), and stimulated reservoir volumes for each hydraulically fractured 

well. 

 

 

 

The major objectives of this dissertation are to explore conceptually, 

mathematically, and numerically the problem of optimal placement of horizontal wells 

and HF stages along them, to assess uncertainty of the key parameters and address such 

uncertainties and their effects with appropriate mathematical tools, and to develop an 

integrated optimization framework that can effectively handle multiple objectives for 

homogeneous matrix permeability maps. In order to assess profitability of a project and 
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the overall performance of the optimization workflow, we utilize the economic function 

NPV that is modified and adjusted for variable half-length of HF stages, number of the 

wells, and multiple short- and long-term objectives. We particularly focus on application 

of a genetic algorithm (GA) with strong elitism and its modifications to the optimization 

problem stated above. This research investigates the limits of GA’s applicability, 

computational efficiency, and the level of details (including those pertaining to 

economics, geology, production, reservoir management, numerical simulation, 

stimulation design) that the automated framework allows to handle. We introduce more 

complexity to the objective function as well as the statement of our optimization 

problem as we explore overall performance of the workflow.  

 

1.2 Research Scope 

Placement of multiple HF stages along horizontal wells in shale reservoirs has proved to 

be an effective strategy for production of commercial quantities of natural gas (Holditch, 

2007). However, depending on reservoir properties, optimal spacing, half-length, and 

number of HF stages may vary significantly and yield quite different economic results 

for different design configurations. In addition to this, non-optimal placement of several 

parallel wells might cause them to interfere with each other and lead to sub-commercial 

production rates. Thus, simultaneous optimization of HF stage parameters (such number, 

spacing, and half-length) and spacing and number of horizontal wellbores is essential for 

better project economics.  
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Currently, there exists no integrated optimization framework that allows to place 

wells and HF stages along them in a systematic way using the discounted NPV function 

as the major comparative basis for the production configurations. This dissertation 

pursues construction and implementation of such computationally efficient integrated 

optimization workflow as the main objective. Among specific objectives of the 

dissertations are: 

i. Discuss assumptions and applicability of the shale simulation model 

depending on actual shale reservoir properties and geomechanics; 

ii. Study sensitivities of the key shale model parameters and illustrate 

the impact of uncertainty in them on optimization results; 

iii. Formulate, implement, and test the optimization framework that 

effective for placement of HF stages along a single well and then 

extend it to fully integrated workflow that places traditional zipper-

fracs along multiple wellbores; 

iv. Develop the strategy to optimize the HF parameters in presence of 

multiple conflicting or non-conflicting objectives (economic or 

production).  

The deliverables of this research include full description of the assumptions that 

render our optimization strategies applicable, full disclosure of all algorithms used and 

implemented within the topic of this dissertation, and extensive test results with the 

source code.      
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1.3 Literature Review 

Simultaneous optimal placement of horizontal wells with HF stages along them in 

unconventional gas reservoirs is a unique problem that has not been addressed as an 

integral process. Nonetheless, the components of this complex problem has been 

addressed my academic and industry scholarship. This section provides a succinct 

overview of up-to-date research contributions in wellbore placement optimization 

(vertical and directional), HF stage design and placement in shale gas reservoirs, 

numerical optimization algorithms, and multi-objective optimization strategies. 

 

1.3.1 Wellbore Placement 

Wellbore placement, which is the key component of our novel optimization framework, 

has been extensively researched and successfully applied in industry. Most articles and 

papers on the subject deal with optimization of vertical infill producer wells and water 

injectors for waterflooding projects in conventional oil reservoirs. Though not directly 

related to horizontal well placement in unconventional gas reservoirs, this research can 

provide some valuable insight on suitable optimization methodology. In addition to this, 

recent trend in directional and horizontal drilling has launched a massive research wave 

in optimization of horizontal well placement.  

Bittencourt and Horne (1997) are among the first researchers to apply rigorous 

computer-aided optimization approaches to the problem of field development. In their 

work the authors elaborate on advantages and limitations of GA, polytope, and Tabu 

methods in the context of petroleum engineering and well placement for large projects. 
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The detailed analysis and test runs on field model demonstrate good performance of their 

hybrid GA in terms of improved NPV of the project and computational time. 

Guyaguler and Horne (2001) develop systematic way of placing vertical wells in 

conventional reservoirs with a hybrid genetic algorithm and utility theory approach 

under geologic uncertainty and risk attitude of the decision-making. Their key finding 

highlights the power of the GA framework that is capable to achieve satisfactory optimal 

solutions within reasonable computational time. 

Montes et al. (2001) investigate performance of genetic algorithms in vertical 

well placement optimization and outline their advantages and possible limitations. The 

authors perform sensitivity study of total oil production by varying key features of GA: 

population size, number of generations, seed, and specifics of genetic operators. The 

study affirms that GAs can be used for complex field cases; however, convergence and 

stability might be potential issues.  

Forouzanfar et al. (2010) depart from stochastic gradient-free methods and apply 

adjoin gradient algorithm to optimization of vertical well placement. The author propose 

two-stage approach: on the initial stage their method determines total injection and 

production rates for the reservoir lifetime and on the second stage it optimizes number, 

types, locations, and rates of wells. For practical purposes bottom hole pressure of each 

well is constrained nonlinearly and values of the NPV function and its gradient are used 

for the well elimination routine. 

Nakajima and Schiozer (2003) tackle the problem of horizontal well placement in 

conventional oil reservoirs with three methods: simulation, analytical, and fuzzy logic. 
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Their numerical simulation method is essentially a well elimination process that achieves 

highest NPV with the smallest number of wells at given spacing. Analytical method 

takes advantage of Babu and Odeh model of horizontal well performance. Fuzzy logic 

operates a set of rules and parameters in order to build a quality map of the reservoir 

without running excessive number of simulator runs. 

Yeten (2003) presents an optimization framework based on combination of a 

genetic algorithm, a hill climber, and an artificial neural network that allows to place 

horizontal wells with possible laterals in conventional oil reservoirs. His method 

assembles chromosomes for GA optimization out of the key well parameters: heel and 

toe locations, length, and inclination angles. To measure the efficiency of the 

optimization process, the author uses the NPV function that is sensitive to changes in 

well types, location, trajectories, and well control strategies. 

Similarly to the previous author, Ding (2008) considers the problem of complex 

horizontal well placement in highly heterogeneous conventional oil reservoirs. The study 

compares performance of two optimization strategies (GA and CMA-ES) for a number 

of objective functions. After sensitivity study the author concludes that evolutionary 

strategies are most suitable for non-linear problems such as well placement optimization 

and depending on chosen population size CMA-ES might yield more accurate solution. 

Emerick et al. (2009) take the idea of optimal horizontal well placement in conventional 

reservoirs to a new level by introducing Genocop III method (a variation of GA). The 

authors implement and describe the software tool capable of finding optimal number of 

wells by adjusting their trajectories, types (injector or producer), and lengths. They test 
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their framework on several field and synthetic cases and observe significant 

improvement of NPV in comparison to heuristic well placement approach.  

Following up on Yeten’s research, Abukhamsin (2009) investigates performance 

of continuous and binary versions of GA for multilateral well placement. He conducts 

sensitivities study on major GA parameters and concludes that continuous GA produces 

slightly higher values of the objective function. The author also focuses on geologic 

uncertainties associated with his real field example and impact of these uncertainties on 

the optimization results. 

Bouzarkauna et al. (2010) compare Emerick’s implementation of GA with 

Genocop III with CMA-ES for horizontal well placement problem. The authors 

investigate the effects of adaptive penalties with rejection on the method’s convergence 

within the feasible region. Computation efficiency of the method is then enhanced 

application of local meta-models that allow to substitute the objective function with a 

locally weighted regression. As a result of these improvements, the authors observe 

comparable NPV results for both CMA-ES implementations, but local meta-models help 

reduce the number of simulator call by up to 25%. 

Morales et al. (2010) apply GA and GA variation (Minimal Variation or 

MiniVar) to optimization of horizontal well placement in condensate reservoirs. The 

authors test both conventional implementation of GA and the MiniVar modification on a 

field model and find that for their formulation of the NPV objective function GA with 

MiniVar process gives higher cumulative condensate and gas production as well as 
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revenue. The authors also observe that intuitive placement of wells in such complex 

systems as gas condensate fields is a priori suboptimal and sometimes impossible. 

Lyons and Nasrabadi (2013) couple vertical well placement optimization with 

history matching in order to increase certainty of optimal well locations. They perform 

well placement with GA and history matching with EnKF and by alternating these two 

processes improve values of the objective function and reduce the CPU time. The 

authors compare their results for the PUNQ-S3 field with those by other researchers and 

conclude the validity of their simultaneous optimization and uncertainty reduction 

method. 

Now that the well placement literature is reviewed and the main contributions are 

identified, we turn to the subject of optimization of HF stage placement. 

 

1.3.2 HF Stage Design and Placement 

The problem of HF placement has become a prolific field of research in the last decade. 

Most of the scholarly effort concentrates on optimization of HF characteristics from the 

geomechanical point of view. Though geomechanical aspects of HF placement are very 

important to understand to unlock the full potential of a shale reservoir, there is a need 

for an efficient framework that can calculate locations, half-length, and number of HF 

stages in presence of necessary information. The following sub-section reviews research 

concerning optimization techniques in HF placement. 

Cipolla et al. (2010) lay the groundwork and discuss the most recent 

developments in reservoir modeling that help represent HF networks more realistically. 
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In their study the authors analyze how observed micro-seismic information from HF jobs 

can be transferred to a reservoir simulator in order to model production for an extended 

period of time. They also discuss that such details as gas desorption might not be always 

as significant as previously thought and others like Young’s modulus of overlooked 

might have a dramatic impact on ultimate gas recovery. The study proposes to model 

presence of HFs with single porosity and dual permeability model with LGR around 

HFs. 

Mayerhofer et al. (2010) elaborate on efficiency of multi-stage hydraulic 

fracturing process in shale gas reservoirs and discuss the concept of SRV. The key 

findings of their micro-seismic observation and numerical simulation are as follows. 

Natural fracture network, shale thickness, and stress field have significant impact on 

SRV and, thus, on HFs and horizontal well spacing. While these features are impossible 

to control while performing hydraulic fracturing jobs, they are important to include into 

an optimization method. The authors also observe maximum well performance with 

large SRVs and closely spaced HFs. However, economic feasibility of such design they 

leave as a subject for another study.   

In his thesis Holt (2011) investigates applicability of finite difference, SPSA 

(Simultaneous Perturbation Stochastic Approximation), and EnOpt algorithms to 

placement of HF stages in a shale reservoir with homogeneous permeability field. The 

author focuses on a number of optimization techniques that include optimization of 

fractures locations only as well as HF stages number and locations. In addition to this, 
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Holt conducts tests of a well placement technique with EnOpt and concludes that this 

algorithm is the most applicable to both well and HF stages placement problems. 

Wilson and Durlofsky (2012) address the problem of computational efficiency in 

HF stages placement and well placement by investigating surrogate models and general 

pattern search. The authors reduce simulation time by tuning surrogate reservoir models 

that incorporate fewer physical effects such as desorption and dual-porosity dual-

permeability concept. They substitute these detailed models with a single porosity 

equivalent that is “history matched” to reproduce the results of the full-physics models. 

Because the surrogates are faster, it is possible to apply a generalized search algorithm to 

obtain the optimal lengths, locations, and numbers of HF stages for a given number of 

wells. The researchers demonstrate the validity of the surrogate models by sensitivity 

study focused on possible fluctuations of gas prices. 

Gao et al. (2012) develop and test on a field case of a tight gas reservoir a 

completely automated framework for optimal design of non-uniformly spaced HF’s 

along a horizontal well. The authors take GA as a basis for their optimization and 

consider a number of effects such as stress shadowing and non-Darcy flow in order to 

maximize their definition of NPV. In addition to spacing, the study takes into 

consideration the effect of half-length variation when HFs are outer or inner (closer to 

heel and toe or toward the middle of the well). 

Yu and Sepehrnoori (2013) investigate optimal placement of uniformly spaced 

HF’s along two horizontal wellbores by response surface method (RSM). They use NPV 

as an objective function in their optimization scheme and incorporate in their evaluation 
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uncertainty in the key parameters: reservoir permeability, porosity, fracture spacing, 

fracture conductivity, gas desorption, and fracture half-length. The authors propose this 

approach in order to estimate optimal drainage area and guide engineers to avoid 

interference when placing additional wells and designing HF treatment plans. 

 

1.3.3 Numerical Optimization Methods 

At the basis of out integrated optimization framework, we place the optimization engine 

that is supposed to be computationally efficient and suitable for the discrete problem of 

interest. In this dissertation we focus of a gradient-free evolutionary stochastic algorithm 

(GA) that has all necessary properties: robustness, efficiency, and accuracy. In other 

words, this method obtains reasonable global optimal values for a number of similar 

problems in reasonable computational time. This subsection presents a variety of 

optimization algorithm based on their classification and properties. From this summary, 

the choice of GA as the primary optimization engine becomes clear.   

A “good” optimization algorithm (whether it is deterministic or stochastic) must 

be able to find the solution with necessary precision without being too sensitive to the 

quality of the input data (Nocedal and Wright, 2006). Deterministic algorithms converge 

to the same optimal point (whether it is global or local) if they start from the same initial 

point. To verify that the obtained optimal solution is the best approximation of the global 

optimum, it is essential to run deterministic methods from a number of different initial 

points. Stochastic algorithms, on the other hand, have a certain probability (even if it is 

very small) of selecting any point in the search domain. Therefore, such algorithm will 
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eventually encounter the global maximum (Reed and Marks II, 1999). For practical 

purposes though we select termination criteria in order to approximate the global 

maximum with a stochastic method in a finite number of iterations. 

In addition to deterministic and stochastic categories, optimization algorithms 

can be divided into gradient-based and gradient-free groups. Gradient-based methods 

require computation of a gradient of the objective function in each iteration to estimate 

the best direction of search and approximate the next step solution. Among the most 

popular gradient-based algorithms we can mention first–order optimization method 

called steepest ascent (or descent), conjugate gradient method, Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm, and the most fundamental Newton's method. All 

these methods require either the first or second order derivatives of the objective 

function. Gradient-free algorithms, on the other hand, do not require calculation of the 

gradient or Hessian which might be of advantage in optimization of complex non-

convex non-linear objective functions. This group of optimization methods is 

represented by genetic algorithms (GAs), covariance matrix adaptation – evolutionary 

strategy (CMA-ES), particle swarm optimization (PSO), etc. 

Stochastic evolutionary-based gradient-free algorithms such as genetic 

algorithms (Holland, 1975) are particularly appealing to solve the problems that have 

control vectors with a large number of dimensions. Evolutionary strategies are also 

effective for the problems for which input that can be easily formulated as binary values. 

GAs are flexible and can be easily modified to meet the needs of a specific problem as 

long as the control vector can be represented as 0’s and 1’s. GAs are global 
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maximization methods. Specifics of the stochastic GA that lies in the engine of our novel 

optimization framework are discussed in the upcoming chapters of this dissertation. 

 

1.3.4 Multi-objective Optimization 

Multi-objective optimization (MOO) is the next frontier of many engineering problems. 

It encompasses numerical optimization strategies that allow to evaluate solutions in 

presence of multiple objectives that can be conflicting or not. On many occasions 

engineers attempt to maximize performance or reliability while minimizing costs. In 

problems like these, it is instrumental to have algorithms that handle multiple objectives 

efficiently and economically. 

 Deb et al. (2002) offer the improved version of non-dominated sorting GA 

(NSGA-II) that manages two competing (or non-conflicting) objectives and has lower 

computational complexity in comparison to regular NSGA. The authors demonstrate 

high performance of the improved algorithm on a number of test functions and juxtapose 

the test results it with those from the regular NSGA. 

Konak at el. (2006) compare and contrast several MOO algorithms based on GA 

and discuss their advantages and shortcomings as well as possibility of making these 

algorithms parallel. The authors provide detailed pseudo-codes for all algorithms that 

become particularly handy in the last chapters in this dissertation. 

Following up on the development of Deb et al. (2002), Han et al. (2013) apply 

Pareto-based MOO algorithms to history matching problems in petroleum reservoir 

engineering. They set up problems with conflicting objectives and observe performance 
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of the MOO methods on synthetic test functions as well as a realistic field example. 

Success in application of NSGA-II for a number of functions including those pertinent to 

reservoir management gives us confidence in its application for optimal placement of HF 

stages in unconventional gas reservoirs in the upcoming chapters. 

 

1.4 Dissertation Outline 

This dissertation is structured in the way that takes the reader from the survey of the 

current scholarship regarding modeling of shale gas reservoirs and applications of 

numerical optimization framework for horizontal well and HFs placement to solutions of 

specific optimization problems. In Chapter II, we discuss strategies for numerical 

modelling of shale gas reservoirs that take into consideration rock fabric features. We 

consider how stress anisotropy can be represented in shale gas simulation models by 

means of stimulated reservoir volume and local grid refinement. In the same chapter we 

perform sensitivities analysis of the key petrophysical and economic parameters.  

In Chapter III, we state mathematically the problem of HS stage placement, 

define the objective function, and address implementation and testing of the specific 

optimization algorithm, GA. This chapter features multiple test runs that demonstrate 

GA’s performance on small and large domains. In addition to that, we fully develop the 

framework for optimization of HF locations, number, and half-length. 

In Chapter IV, we present complete and integrated framework for optimal 

placement of horizontal wells and HF stages along them. We also discuss all necessary 

assumptions that enable the reader to use this framework effectively. The chapter 
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contains wealth of detailed information about the inner structure of the framework as 

well as extensive test cases and results including those with varying minimal spacing 

between HF stages. 

In Chapter V, we shift our attention to MOO problems and present our 

implementation of NSGA-II for optimization of HF stage placement in presence of two 

objectives. We investigate two cases: one with non-conflicting objectives (short- and 

long-term discounted NPVs) and one with conflicting objectives (long-term discounted 

NPV and water production). At the end of the chapter we demonstrate Pareto fronts of 

optimal solutions for both MOO cases. 

Finally, in Chapter VI, we discuss major achievements of this dissertation, its 

impact, and propose some future venues that current research has opened. 
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CHAPTER II 

SHALE GAS MODELING AND UNCERTAINTY ASSESSMENT 

 

2.1 Introduction 

In this chapter, we discuss applicability of a numerical simulation model of a shale gas 

reservoir for experimental design, evaluation of the objective function, and ultimately 

calculation of optimal values for all variables in the control vector. Because of limited 

access to the field and lab data and proprietary nature of geomodels built in industry, we 

developed and tested a simulation shale gas model and history matched it against the 

Barnett field production data (Ma, 2013). This shale gas reservoir model designed with 

Schlumberger ECLIPSE™ 300 (E300) reservoir simulator, can be easily customized and 

suited for uncertainty assessment and subsequent optimization of placement of 

horizontal wellbores and transverse HF stages (version 2012.2). In this study, we take 

further steps and assess uncertainty in additional key parameters that were not previously 

addressed. The design of experiments that uses the shale gas simulation model to obtain 

the response of the natural system to changes of input parameters, allows to identify the 

“heavy hitters” among the parameters. Later the parameters that have the greatest impact 

on the model response are used to generate several realizations of the shale gas model 

and assess the performance of the optimization framework under uncertainty. 
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2.2 Shale Gas Modeling 

Development of a fit-for-purpose numerical simulation model of a shale gas reservoir 

that can be effectively used in production optimization is not a trivial problem due to 

geological, geochemical, and geomechanical complexities of shale formations. The 

following sections present to the reader current challenges in shale reservoir modeling 

and their possible solutions.  

 

2.2.1 Shale Fabric and Impact on HF Geometry 

One of the biggest challenges in characterization of shale formations is their 

compositional and geo-spatial variability. Geochemical composition of shales varies not 

only from one play to another, but also within one geological unit (King, 2010). This 

fact has a great impact on stimulation techniques as well as numerical modeling of fluid 

flow in a shale medium (Vishkai et al., 2014). Because it is possible to observe a change 

from mostly siliceous matrix composition to calcareous and argillaceous matrix 

composition even within one shale play, we have to make assumptions about shale 

composition for numerical simulation purposes that are both general and not completely 

detached from what can be observed in nature.  

For shales with predominantly siliceous matrix composition with high clay 

content (e.g. the Barnett shale formation), petrophysics experts observe high horizontal 

stress anisotropy (one principal horizontal stress direction is significantly larger than 

another). Stress anisotropy is related to closure stress which is determined by presence of 

significant amount of certain clays (Waters et al., 2011). Schematic Fig. 2.1 illustrates 
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this scenario. Here the horizontal stress perpendicular to the horizontal wellbore σHmax is 

much larger than σHmin and, thus, we expect to see a long HF oriented perpendicular to 

the minimum horizontal stress direction. Although the main HF has high (or infinite) 

conductivity, adjacent to it SRV is not going to have significant aerial extent and 

conductivity. Savitski et al. (2013) became aware of the problem of varying HF 

geometry due to horizontal stress anisotropy and rock fabric composition, and proposed 

to model HFs explicitly when it is critical for economic decisions.   

For shale formations with predominantly siliceous matrix composition with low 

clay content, the log interpretation usually shows low horizontal stress anisotropy and, 

thus, lower closure stress. In this scenario both horizontal principal stresses (σHmax and 

σHmin) are comparable and we expect to see a wide and diverse network of fractures 

caused by either breaking of the shale fabric or re-activation of pre-existing natural 

fractures. Cipolla et al. (2009) discussed this and above-mentioned situations and 

proposed that they should be distinguished into different cases and treated separately. 

Schematic Fig. 2.2 shows this scenario. Two horizontal principal stresses are similar; 

and as a result, we observed aerially extensive SRV with relatively high conductivity 

without pronounced main HF.  
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Figure 2.1. Aerial view of a portion of a shale reservoir with high stress anisotropy due to 
presence of clay. 

 

 

 

 

 

Figure 2.2. Aerial view of a portion of a shale reservoir with low stress anisotropy 
(isotropic stress distribution) due to high silica (sand or silt) volume. 
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Of course, mineralogy of shales is not confined to silica-dominated. Shales with 

significant content of carbonates may also exhibit high or low closure stresses. For the 

purposes of this dissertation, we only consider silica-based shale fabric with two distinct 

features: high and low stress anisotropy. Now that we have established that rock fabric 

composition has a great impact on the geometry of HFs, let us discuss the implications 

of these two stress-related scenarios on shale gas simulation models. 

   

2.2.2 Stress-Related HF Geometry in Shale Gas Simulation Model 

Awareness of stress-related anisotropy that affects propagation and geometry of HF 

changes the way we represent HF stage and SRV for simulation purposes. More 

specifically, for the scenario of high horizontal stress anisotropy HF stages are modelled 

as illustrated on Fig. 2.3. Successive magnification of the grid reveals explicit modelling 

of HF stages with SRV grid blocks and logarithmic LGR. Because the horizontal stress 

anisotropy is significant and it is difficult to re-activate sealed natural fractures in the 

direction of the minimal horizontal stress, we represent the HF stage as a high (or 

infinitely) conductive main HF created by LGR with 0.4 feet wide central block and low 

permeability SRV. This is an idealized and yet representative model of the high stress 

anisotropy scenario (Ma, 2013).   
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Figure 2.3. Aerial view of a shale reservoir model with high stress anisotropy. One 
horizontal well has six transverse HF stages. 

 

 

 

A simulation model that approximates behavior of the system as shown in Fig. 

2.2, should account for re-activation of multitude of natural fractures and creation of a 

diverse highly-permeable network of fractures. Fig. 2.4 demonstrates the successive 

magnification of a grid for isotropic horizontal stress model. Here high permeability 

SRV is used to represent a large fracture network while keeping LGR. Note that in this 

case, there is no explicit high (or infinite) conductivity central portion of HF stage.  
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Figure 2.4. Aerial view of a shale reservoir model with isotropic stress. One horizontal 
well has six transverse HF stages. SRV and the main HF have the same permeability. 

 

 

 

2.3 Shale Gas Models and Assessment of Uncertain Parameters 

Before we explore automated optimization strategies for placement of HF stages, it is 

essential to assess uncertainty in some key parameters used in both types of shale gas 

models. This uncertainty analysis helps identify those that significantly influence the 

response (or the value of the objective function) of the system. Ideally, the uncertainty 

assessment should be done as an outer loop of the overall optimization framework, so 

that optimal locations of HF stages and wellbores are considered in the context of 

uncertain geological and economic parameters. This approach, however, requires 
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prohibitively large computational capacities currently unavailable in the academic 

environment. Therefore, uncertainty assessment (at least its parameter screening part) is 

decoupled from the optimization framework and executed on a fixed production design 

(in other words, we use a simulation model with one horizontal wellbore with predefined 

number of HF stages with specified half-length and locations).  

 The following sub-sections present the overview of a popular UA technique, 

design of experiment (DoE), with a specific application to modeling fluid flow in a shale 

gas reservoir. First, we discuss the shale gas model and the key parameters analyzed in 

UA. Then, we present full factorial design for anisotropic and isotropic models of a shale 

reservoir. Finally, we statistically analyze the results of both DoE’s and make 

recommendations for generating ensembles of realizations for further optimization. 

 

2.3.1 Design of Experiments for Uncertainty Assessment 

Though reasonable ranges of values for the key petrophysical and economic parameters 

(such as gas prices, cost of hydraulic fracturing jobs, rock matrix permeability, SRV 

permeability, etc.) are known with certain confidence and documented in literature, it is 

difficult to define them precisely for a particular shale model. This happens because 

economic parameters tend to change due to improvement in technology or availability of 

materials (e.g. reduction or increase in cost of horizontal drilling or hydraulic fracturing, 

availability of certain proppants and their cost). Gas prices can also be affected by 

attractiveness of other sources of energy or production techniques (e.g. situations when 

hydraulic fracturing might not be acceptable stimulation strategy in some sensitive 



 

27 

 

geographical areas or when influx of cheaper gas from conventional gas reservoirs 

makes shale gas less attractive and, thus, more expensive resource). Though historical 

shale gas prices and operating costs are known, any projections of these trends into the 

future are inherently uncertain. Shale petrophysical properties and HF stage design 

parameters can also be uncertain. Rock matrix permeability, HF conductivity, and SVR 

permeability often fall into laboratory measured ranges; however, the precise values are 

rarely if ever known. To assess the impact of uncertainty in the key economic and 

petrophysical parameters on the response of the simulated shale gas system, we propose 

the initial screening of the parameters set with full factorial 2-level DoE. Schematic Fig. 

2.5 shows the UA screening workflow for both anisotropic and isotropic horizontal 

stress scenarios.  

 

 

 

 

Figure 2.5. UA workflow for initial screening of economic and petrophysical parameters. 
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To screen a set of parameters for significance and choose descriptive models of 

complex system behavior, scientists usually devise an experimental design with a 

number of cases or test runs that provide system responses. These responses can then be 

used to analyze how changes in the key parameters influence the responses. One of the 

most systematic and thorough ways to asses uncertainty is full factorial DoE. Each 

parameter takes two, three, or more values from a certain reasonable range (usually 

measured in labs or surveyed from literature) and depending on how many values each 

parameter takes, DoE can be two-level (high and low values), three-level (high, medium, 

and low values), or mixed-level (combination of parameters with different levels). For 

our study, we select two-level full factorial DoE and obtain NPV responses for each 

arrangement of the parameters. 

 

2.3.2 Shale Gas Model Description and NPV Response Function 

In order to screen the uncertain model parameters and identify the most significant ones, 

for both isotropic and anisotropic scenarios we use a shale gas simulation model with the 

core parameters as defined in the Table 2.1 (Ma et al., 2013). 
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Table 2.1 Shale gas reservoir properties used in the DoE simulation model (Ma et al., 

2013). 

 

Parameters Values Unit 

Model width 1420 ft 

Model length 2000 ft 

Model thickness 200 ft 

Initial reservoir pressure 3000 psi 

Reservoir temperature 150 
o
F 

Rock density 161 lbs/ft
3
 

Producing bottom hole pressure 500 psi 

Wellbore length 1400 ft 

Production period duration 5 years 

Matrix porosity 6 % 

Total gas content 70 % 

Langmuir pressure 650 psi 

Langmuir volume 0.096 mscf/ton 

Hydraulic fracture height 200 ft 

Hydraulic fracture half-length 260 ft 

Number of hydraulic fractures 16 stages 

 

 

 

 

Production design is kept the same for all runs: one horizontal wellbore with 

sixteen (16) transverse HF stages. The HF stages are spaced uniformly. In addition to the 

model parameters, we use several fixed economic parameters to obtain the NPV function 

responses for each run. These parameters are summarized in Table 2.2 (Schweitzer, 

2009; Bruner, 2011). 
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Table 2.2 Economic parameters used in the DoE response model (Schweitzer, 2009; 

Bruner, 2011). 

 

Parameters Values Unit 

Discount rate 12.5 % 

Drilling base cost per well (vertical part) 2,000,000 $ 

Drilling cost per grid block (horizontal part) 6,000 $ 

Daily operating expenses per well 60 $ 

 

To perform a statistical study and screen out the least significant parameters from 

the set that was chosen for the UA, we define the response function (NPV) that 

combines economic, petrophysical, and HF design parameters. The NPV function 

defined for one horizontal producer with fixed number of transverse HF stages in Eq.2.1 

(Holt, 2011) provides necessary response values:  

𝑁𝑃𝑉 =∑
(Qg

k ∙ rg − Qw
k ∙ rw − O) ∙ ∆t

k

(1 + b)t
k 365⁄

𝐾

𝑘=1

− (Cw + NHFCf + LwCp).                  (2.1) 

In this expression, 𝑘 is time index, 𝐾 is the total number of time periods simulated 

[days], Qg
k
 is gas production rate during time period 𝑘 [mscf/day], rg is gas price 

[$/mscf], Qw
k
 is water production rate during time period 𝑘 [bbl/day], rw is cost of 

water disposal [$/bbl], O is operational cost of the well per day [$/day], ∆tk is duration 

of the kth time period [days], b is a discount rate [%/100/year], Cw is base cost of 

drilling the vertical part of the producer well [$], NHF is the number of HF stages, Cf is 

hydraulic fracturing cost per stage [$], Lw is the length of the horizontal portion of the 

producer in grid blocks, and Cp is well penetration cost per grid block [$].   
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2.3.3 Full Factorial DoE for Anisotropic Shale Model 

This section provides the reader with comprehensive setup of the two-level full factorial 

DoE for the scenario when the shale reservoir has high horizontal stress anisotropy 

(which is the most prevalent way to model shale reservoirs and will be the focus for the 

rest of this dissertation). Here, we are interested in investigating effects of high and low 

values of HF stage permeability, SRV permeability, shale rock matrix permeability, gas 

price, and cost of hydraulic fracturing. Two-level full factorial DoE for five (5) 

parameters yields 32 test runs that are listed in the Table A.1 (Appendix A).  

For fluid flow visualization purposes, we provide a series of pressure maps for 

one DoE run (Fig. 2.6). At the onset of production (Fig. 2.6(a)), only HF stages are 

flowing gas and water into the wellbore. As production time progresses (Fig. 2.6(b-c)), 

the reservoir pressure is quickly depleted due to relatively low SRV permeability 

(caused by stress anisotropy) and extra-tight rock fabric permeability. 
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(a) 

 

(b) 

 

(c) 

Figure 2.6. Pressure depletion visualization after (a) 0 years, (b) 1 year, and (c) 5 years for 
DoE run 1 for the anisotropic shale model. 
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2.3.4 Full Factorial DoE for Isotropic Shale Model 

For isotropic scenario, we eliminate the variable for HF permeability because now it is 

modelled with higher SRV permeability (while LGR is still preserved, it does not have 

the central grid block with infinite conductivity, but rather that of SRV). Table A.2 

(Appendix A) gives specific values for assessed parameters and all cases for the DoE.  

 

2.4 Results, Observations and Conclusions 

In this section, we analyze the results obtained from suites of simulation run for both 

anisotropic and isotropic models using tornado charts in addition to rigorous statistical 

tools available in the software R (2013). Let us now look at the results from anisotropic 

model runs and screen the most significant explanatory variables (or parameters). 

Appendix B provides detailed R code and the dataset that produced the linear 

regression model in Table 2.3. This model combines four of the explanatory variables 

and it was selected from a set of possible models using stepwise regression and Akaike 

information criterion (see Appendix B for details). The chosen model has the highest 

adjusted R
2
 and AIC from all models analyzed (Akaike, 1974). From the Table 2.3 we 

observe that HF permeability has been eliminated as it is the least important variable. 

Meanwhile, matrix permeability (km), price of gas (pg), and hydraulic fracturing cost 

(hcost) have the highest significance codes. Simply put, the asterisks notation means that 

more of them explanatory variable has, the more unlikely that the NPV has no 

relationship with this variable and, thus, the more it is significant in explaining NPV 

responses.   
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Table 2.3 Parameter screening using stepwise regression statistical analysis (short-term 

discounted NPV for anisotropic model). 

 

 

 

 

 

Calculation of percent change in NPV values due change in explanatory variable 

resented on semi-tornado chart in Fig. 2.7 corroborates the findings of the statistical 

analysis. Here as well, in short-term production (after 1 year) gas price and matrix 

permeability are the most significant parameters. Permeability of HFs, which are usually 

treated as infinite conductive small grid blocks, for simulation purposes is also 

demonstrated insignificant. 
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Figure 2.7 Chart showing change in NPV response (after 1 year of production) resulting 
from high and low values of each parameter considered in anisotropic scenario. 

 

If we consider long-term production (5 years) in anisotropic model, we observe 

that the same explanatory variables are significant (Table 2.4). The visual representation 

of percent change in NPV response due to change in the parameters (Fig. 2.8) also 

illustrate the significance of matrix permeability, price of gas, and cost of hydraulic 

fracturing.  Permeability of SRV is slightly less significant than the three parameters 

mentioned above. These observations are important for the upcoming study of 

optimization of HF stage placement under uncertainty in Chapter III. More specifically, 

we are going to focus on assessment of robustness of optimization results (HF stage 

locations and number) as matrix permeability and gas price range within +50% and -

50% from the base values.  
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Table 2.4 Parameter screening using stepwise regression statistical analysis (long-term 

discounted NPV for anisotropic model). 

 

 

 

 

 

 

Figure 2.8 Chart showing change in NPV response (after 5 years of production) resulting 
from high and low values of each parameter considered in anisotropic scenario. 
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Appendix B provides R code and statistical summaries for models fitted for NPV 

responses after one (1) and five (5) years of production in isotropic models. Similarly to 

anisotropic runs, we observes that the same three explanatory variables (matrix 

permeability, cost of hydraulic fracturing, and gas price) are the most significant 

parameters that influence NPV responses. Figs. 2.9 and 2.10 are the visual aid to see the 

relative impact of change in the uncertain parameters on the percent changes in the 

response values. 

 

 

 

 

Figure 2.9 Chart showing change in NPV response (after 1 year of production) resulting 
from high and low values of each parameter considered in isotropic scenario. 
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Figure 2.10 Chart showing change in NPV response (after 5 years of production) resulting 
from high and low values of each parameter considered in isotropic scenario. 

 

 

 

In conclusion of the chapter, we emphasize that even though there are conceptual 

differences between simulation models corresponding to anisotropic and isotropic shale 

gas systems, they are fairly similar in their response to change in the key parameters. We 

observed that both anisotropic and isotropic simulation models were significantly 

affected by uncertainty in matrix permeability values, changing cost of hydraulic 

fracturing, and fluctuations of gas prices. Therefore, in the subsequent chapters for the 

purposes of optimization and UA we will focus exclusively on anisotropic models and 

investigate the effects of uncertainty in matrix permeability and gas prices on optimal 

placement of HF stages. 
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CHAPTER III 

HF STAGE PLACEMENT OPTIMIZATION 

3.1 Introduction 

In this chapter, we discuss implementation and application of the evolutionary-based 

stochastic optimization algorithm to the problem of optimal placement of HF stages. 

First, we introduce the derivative-free evolutionary algorithm (GA) with strong elitism 

and discuss its relevance and efficiency in solving discrete optimization problems. We 

also observe how the objective function changes as the set of optimization parameters 

changes (as we develop the workflow to optimize fixed HF half-length to variable half-

length). Second, we apply the algorithm to HF stage placement and test it extensively on 

a shale gas simulation model. In this chapter, we particularly interested in 

implementation of single-objective long-term NPV optimization workflow (in 

comparison to multi-objective optimization framework in the subsequent Chapter V). 

Last, we test the robustness of the optimization results in presence of uncertainty in the 

key petrophysical and economic parameters: rock matrix permeability and gas price. 

 

3.2 Evolutionary-Based Stochastic Optimization 

Nowadays, reservoir simulation and production optimization experts rely primarily on 

heuristic methods when it comes to optimization of the number of HF stages and their 

spacing.  Often the problem is excessively constrained due to difficulty with assessment 

of too many parameters that are optimized in non-systematic manner. To address these 

challenges and assist the engineers in making the decisions, we propose a framework 
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that helps search the parameters domain in systematic fashion and customize the search 

criteria based on the economic and/or production objectives. This goal is impossible to 

achieve without a reliable optimization algorithm that can be used efficiently as the 

engine in the heart of the optimization workflow. Below we elaborate on relevance of 

stochastic gradient-free evolutionary optimization algorithms for the discrete problems 

of finding most profitable HF stage spacing, number, and half-length. 

 

3.2.1 Genetic Algorithm with Strong Elitism 

Genetic Algorithm (GA) is one of the most popular stochastic derivative-free 

optimization methods that mimics natural selection and evolution (Holland, 1975). GA 

constructs the initial generation of chromosomes randomly or by some probabilistic rule 

and then evolves these chromosomes based on the information obtained from the 

previous generation. Each chromosome is used as an input vector to evaluate the 

objective (or fitness) function. GA has many advantages in comparison to other gradient-

free and gradient-based algorithms that make it attractive for our optimization 

framework. GA makes no assumptions about convexity, linearity, or continuity of the 

objective function. This property of GA is extremely valuable in the case of the complex 

objective function that might include both discrete and continuous input parameters. GA 

is perfectly suited for integer programming and continuous problems because the control 

vector can be represented as an array of 0’s and 1’s and easily manipulated even for a 

very large number of dimensions. Although the algorithm does not guarantee 

convergence to the global maximum in finite time, each next solution is expected to be 
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as good as or better than one in the previous step (if the best chromosome or elite is 

passed to the next generation consistently, thus, GA with strong elitism). Finally, as the 

dimensions of the problem increase (the size of the control vector), GA’s ability to 

randomly sample a wide portion of the domain becomes particularly critical (Fig 3.1). 

 

 

 

 

Figure 3.1. Evolutionary search strategy of GA illustrated for a function of two variables 
and one global maximum.  

 

 

 

Although GA has many modifications and formulations depending on the nature 

of the problem of interest, most GA implementations use crossover, mutation, and 

elitism as genetic operators to evolve chromosome from generation to generation. Fig. 

3.2 demonstrates the most generalized structure of GA that might use the maximum 

number of generations or variance inside one generation as the termination criteria. 
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Figure 3.2. Generalized structure of GA involves genetic operators: crossover, mutation, 
and elitism. 

 

 

 

Genetic operators are essential parts of the algorithm that determine how fast it 

will converge and how thoroughly it will search the input vector domain. Crossover 

operator can be implemented with one point, two points, multiple points, or a uniform 

mask. First three types choose one, two, or several points to cut and then splice two 

parental chromosomes in order to obtain the new one. The last type is similar to 

multiple-point crossover with the exception that the precise locations of crossover points 

are unknown in advance and generated from the uniform distribution. Uniform mask 

crossover is illustrated in Fig. 3.3. 
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Figure 3.3. GA uniform crossover mask applied to elite and current chromosome to obtain 
next generation chromosome. 

 

 

 

Another important genetic operator is mutation (Fig. 3.4). Unlike crossover that 

ensures convergence toward the current improved solution, mutation introduces random 

gene perturbations to the main search trend to keep diversity within current generation 

and keep exploring the domain. Fig. 3.4 illustrates another feature of GA with strong 

elitism that does not allow the optimal solution to degenerate from generation to 

generation. Passing the elite chromosome to the next generation without mutation 

guarantees that the next generation will improve the optimal solution or at least remain 

as good as the previous one. 

 

0 1 1 0 0 1

1 0 0 1 0 0

0 0 1 1 1 1

0 0 0 1 1 0

UNIFORM CROSSOVER MASK

ELITE

CURRENT CHROMOSOME

NEXT GENERATION CHILD
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Figure 3.4. GA mutation operator changes random number of random genes in all 
chromosomes except the elite to ensure diversity. 

 

 

 

Values of the objective function serve as quantitative measure of chromosomal 

performance within generation. Chromosomes and the fitness function acquire meaning 

depending on the problem. For example, in our application chromosomes refer to 

arrangements of HF stages, their spacing along the horizontal wellbore as well as half-

length of the HF stages and the fitness function is the long-term discounted NPV.   

 

3.2.2 Shale Gas Model and Single-Objective Function  

To test the performance of GA, we use the anisotropic shale gas simulation model with 

some fixed averaged values for the key economic and reservoir parameters surveyed 

from literature (Table 3.1). Figs. 3.5-3.7 give the reader visual aid in geometry and 

possible spacing of HF stages. They also illustrate specific implementation of LGR to 

accommodate fluid flow into HFs. 

1 0 0 1 0 0 1 0 0 1 0 0

0 0 1 1 1 1 0 1 1 1 0 1

0 0 0 1 1 0 0 0 1 1 1 0

GENERATION N (after mutation)

ELITE

CHROMOSOME 1

CHROMOSOME 2

ELITE

CHROMOSOME 1

CHROMOSOME 2

GENERATION N (before mutation)
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Figure 3.5. 3D rendering of the shale gas simulation geomodel (DX property) with 
maximum half-length of HF stages. 

 

 

 

 

 

Figure 3.6. Close-up 3D rendering of LGR for the shale gas simulation geomodel (DX 
property) with maximum half-length of HF stages. 
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Figure 3.7. 3D rendering of HF stages along a single horizontal wellbore at the beginning 
of production. 
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Table 3.1 Parameters for shale gas model and the NPV function (Ma, 2013). 

 

Parameters Values Unit 

Model width 1420 ft 

Model length 2000 ft 

Model thickness 200 ft 

Initial reservoir pressure 3000 psi 

Reservoir temperature 150 
o
F 

Rock density 161 lbs/ft
3
 

Producing bottom hole pressure 500 psi 

Wellbore length 1400 ft 

Production period duration 5 years 

Matrix porosity 6 % 

Total gas content 70 % 

Langmuir pressure 650 psi 

Langmuir volume 0.096 mscf/ton 

Hydraulic fracture height 200 ft 

Hydraulic fracture half-length 260 or variable ft 

SRV permeability 0.08 md 

Drilling base cost per well (vertical part) 2,000,000 $ 

Drilling cost per grid block (horizontal part) 6,000 $ 

Daily operating expenses per well 60 $ 

Gas price 3.2 $/mscf 

Base cost per HF stage 75,000 $ 

Cost per length of HF stage 2,000 $/ft 

Discount rate 12.5 % 
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Though the discounted NPV objective function is defined similarly to that in Eq. 

2.1, the expression is customized to account for increasing cost of HF stage with 

increasing half-length. Thus, the final form of the objective function which is optimized 

by GA for a single horizontal wellbore follows:    

𝑁𝑃𝑉 =∑
(Qg

k ∙ rg − Qw
k ∙ rw − O) ∙ ∆t

k

(1 + b)t
k 365⁄

𝐾

𝑘=1

− (Cw + NHF(𝐶𝑓𝑏 + 𝐶𝑓𝑙𝑥𝑙𝑒𝑛𝑔𝑡ℎ) + LwCp).                                (3.1) 

Here, 𝑘 is time index, 𝐾 is the total number of time periods simulated [days], Qg
k
 is gas 

production rate during time period 𝑘 [mscf/day], rg is gas price [$/mscf], Qw
k
 is water 

production rate during time period 𝑘 [bbl/day], rw is cost of water disposal [$/bbl], O is 

operational cost of the well per day [$/day], ∆tk is duration of the kth time period [days], 

b is a discount rate [%/100/year], Cw is base cost of drilling the vertical part of the 

producer well [$], NHF is the number of HF stages, 𝐶𝑓𝑏 is hydraulic fracturing base cost 

per stage [$], 𝐶𝑓𝑙 is the cost of HF stages per unit of length [$/ft], 𝑥𝑙𝑒𝑛𝑔𝑡ℎ is length of HF 

stage [feet], Lw is horizontal portion of the producer in grid blocks, and Cp is well 

penetration cost per grid block [$]. 

 

3.3 Optimization with GA 

As we mentioned above, GA comes in variety of implementations  and modifications 

depending on the problem. For the discrete problem of placing HF stages along a single 

horizontal wellbore and optimizing their half-length, binary GA is a suitable option. 
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Thus, the optimization problem that GA solves can be described mathematically as 

follows: 

                                               𝑢∗  =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑢∈𝑈

𝑁𝑃𝑉 (𝑢),                                                (3.2) 

In Eq. 3.2,  𝑢∗ is the vector containing optimal or nearly optimal locations of HF stages 

as well as their half-length. We make an assumption that all HF stages have the same 

half-length for the homogeneous matrix permeability map which is consistent with 

current understanding and simulation practices.  

For the purposes of testing GA and its running time, we also do not impose 

excessive constraints on the optimization problem. For example, in this chapter we do 

not always use specification of the minimal interval between HF stages. Though it is 

common in industry to space HF stages no closer than 50-150 feet between each other, 

in this chapter, we deliberately allow the algorithm to space HF stages according to 

changes in the NPV objective function and each gridblock penetrated by the well can be 

a potential place for a HF stage (King, 2010). In this way, we can observe if the 

algorithm spaces the HF stages fairly uniformly which is an expected outcome for 

homogeneous matrix permeability. For HF placement optimization under parameter 

uncertainty ath the end of this chapter, however, we will use minimal spacing between 

stages of at lest 40 feet in order to speed up the computation. 

Schematic Fig 3.8 presents detailed optimization workflow with the GA engine. 

The framework connects in seamless fashion ECLIPSE™ 300 simulator with (version 

2012.2) with optimization code written in MATLAB. 
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Figure 3.8. Detailed workflow for HF stages placement and half-length optimization 
problem with GA integrating MATLAB code and Eclipse simulation results. 

 

 

 

3.3.1 HF Stages Placement Optimization with Fixed Half-Length  

This section provides test cases for HF number and spacing optimization with fixed half-

length. In addition to analyzing the optimal results, we are interested in efficient 

computational performance, thus, number of simulator calls and running time are 

provided for later comparison with coupled half-length optimization test cases for the 

same shale gas model.  
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Fig. 3.9 gives graphical aid to understand how GA encodes HF locations, 

number, and spacing. Each column corresponds to one possible arrangement of HF 

stages along a horizontal wellbore. For the test cases in this chapter, we do not introduce 

minimal interval between stages and, therefore, each grid block penetrated by the well is 

a potential location for HF stage. The number of columns refers to the number of 

individual chromosomes within generation. Color code provides visual interpretation of 

spacing and intensity of HF placement. 

 

 

 

 

Figure 3.9. Interpretation of GA’s chromosomes and generations for optimization of 
number of HF stages, their locations, and spacing given specific HF half-length. 

 

 

 

Because GA test runs with large number of generations and chromosomes within 

generation are computationally demanding, below we provide smaller GA test runs that 
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optimize number and locations of HF stages for a given fixed HF half-length (e.g. 13 

grid blocks or 260 feet). The line plot in Fig. 3.10 presents the results of the four runs. 

We observe that due to stochastic nature of selection of the initial population as well as 

application of mutation and crossover genetic operators, optimized long-term NPVs are 

different. Yet, they converge toward some global maximum value. 

 

 

 

 

Figure 3.10. Stochastic optimization of HF stages placement with GA over 10 generations 
with 30 chromosomes in each generation. 

 

 

 

Schematic Fig. 3.11 provides visual comparison between spacing and optimal 

numbers of HFs from the four test cases and a larger test run for the same shale gas 

model. Here, the reader may observe that the longer GA evolves, the more uniform and 

wider spacing becomes. For a fixed HF half-length, GA tries to reduce the number of 

stages and increase spacing between them to avoid interference between the stages. 

Except for the Run 4, smaller GA runs do not start from “good” initial populations of 
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chromosomes (their best NPVs in the first generation are below $-800000) and, thus, 

take more computational time to evolve to better values of the objective function. 

 

Figure 3.11. Results of four test runs of GA over 10 generations with 30 chromosomes in 
each generation juxtaposed with one GA test run over 30 generations with 60 

chromosomes. Optimal number of stages and HF locations. 

 

 

 

Scatter plot in Fig. 3.12 provides relationship between running times and 

optimized NPVs for all four test runs. The cost of poor initial population is not only 

lower optimized NPV value, but also higher running time. This is true because Runs 1, 

2, and 3 have more HF stages (19, 12, and 21 correspondingly), and, thus, require LGRs 

in larger number of grid blocks. That drives the computational cost up and overall 

performance down. 
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Figure 3.12. Cross-plot of the highest discounted NPV values for four test runs versus 
running time (GA over 10 generations with 30 chromosomes in each generation). 

 

 

 

Above we provided one GA test run with the higher number of generations and 

chromosomes within generation (30 generations and 60 chromosomes) and observed 

better optimized results. Let us now investigate this run in more detail and see the 

evidence that longer evolution time can offset the negative effect of poor initial 

population. Fig. 3.13 gives snapshots of evolution after the 1
st
, 10

th
, 20

th
, and 30

th
 

generations. One can see that after the 10
th

 generation the situation with HF stage 

spacing only slightly better than in the four small test runs (the best NPV value at this 

point is about $410000 only due to the higher number of chromosomes within each 

generation). Nevertheless, as we let GA evolve three times longer than in previous short 

test cases, uniform spacing pattern of HF stages becomes more apparent.  
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Figure 3.13. GA for optimization of number and locations of HFs. Evolution of 
chromosomes through 30 generations exhibits convergence by crossover and diversity 

by mutation. 

 

 

 

The NPV summary plot in Fig. 3.14 illustrates that the values monotonically 

increase with small plateau periods well beyond the 15
th

 generation. After the 20
th

 

generation though, GA stabilizes and only increases once due to successful mutation in 

some of the chromosomes. From simulator call statistics we observe that elimination of 

the same chromosomes saved 16 simulator calls. This is a very modest saving of 
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computational time due to an aggressive mutation strategy that our GA implementation 

has adopted. 

 

 

 

 

Figure 3.14. Highest NPV values after 20 years across 30 generations with 60 
chromosomes in GA test run. 

 

 

 

Now that we have tested GA for optimization of HF stage number and spacing, 

let us add another degree of freedom to the optimization problem and optimize HF half-

length. Because we are dealing with homogeneous matrix permeability field, all HF 

stages are assumed to have the same half-length. 
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3.3.2 HF Stage Placement and Half-Length Optimization  

In this subsection we investigate coupling between HF stage number and spacing 

optimization and HF half-length optimization. Let HF half-length change from zero 

(meaning no HF stage in the gridblock) to maximum physically feasible value for the 

particular model or reservoir (for example, 33 gridblocks or 660 feet). Then, the 

constrained optimization problem can be written mathematically as follows: 

                                               {

𝑚𝑎𝑥𝑁𝑃𝑉(𝑢)
𝑠. 𝑡. �̃�𝑖 ≤ ℎ𝑙𝑚𝑎𝑥
�̃�𝑖 ≥ ℎ𝑙𝑚𝑖𝑛
 𝑖 = 1,2, … , 𝑛.

                                                              (3.3) 

In Eq. 3.3, �̃�𝑖 refers to the portion of a chromosome that encodes HF stage half-length, 

ℎ𝑙𝑚𝑎𝑥 is maximum feasible half-length, ℎ𝑙𝑚𝑖𝑛 is minimum feasible half-length. Portion 

of the chromosome that contains information about half-length is binary like the rest of 

the genes. This binary number, however, is then converted to decimal in order to 

construct proper length SRV and LGR in the simulator data file. Half-length is treated no 

different than the rest of the chromosome for crossover, mutation, and elitism purposes 

(Fig. 3.15). Unlike other genes though, this portion is controlled for maximum decimal 

value. In other words, if after crossover or mutation we obtain a binary number that 

converts into a value higher than feasible maximum, it is set to the maximum value. As 

it is evident from Eq. 3.1, the grows of the HF half-length is controlled primarily by 

economic considerations. The longer HF stages become, the more expensive they 

become in linear fashion. Linear increase in cost of HF stage length is one of the 

assumptions that we make in order to have a systematic way to study performance of the 

simulated system. In reality, nevertheless, linear increase per foot of length might not be 
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true depending on petrophysical and geomechanical properties of a particular shale 

formation. 

 

 

 

 

Figure 3.15. Interpretation of GA’s chromosomes and generations for HF stage placement 
and half-length optimization problem. 

 

 

 

  Because simultaneous optimization of number, spacing, and half-length of HF 

stages is a resource consuming process, we provide some test results of GA optimization 

with a smaller number of chromosomes within generation and fewer generations. The 

reason of rapid increase of computational cost is that each additional gridblock added to 

HF half-length requires LGR and as GA searches through the solution space and tries 

various half-lengths, the overall simulation time increases rapidly (e.g. for GA with 10 
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generations and 30 chromosomes the total simulation time is between 5.8 and 6.4 hours, 

while for GA with 30 generations and 60 chromosomes it goes beyond 30 hours). 

Test runs summary plot (Fig. 3.16) provides the discounted NPV values for four 

runs. We observe that all test runs increase monotonically toward the global maximum. 

All runs reach optimal HF half-length of 33 griblocks (or 660 feet) within the first 

generation. This can be easily explained by the small binary domain that corresponds to 

HF half-length. Six binary digits (Fig. 3.15) encode HF half-length. This give 64 

possible binary strings. In addition to that, not all strings are acceptable because that 

exceed the maximum allowed half-length. Thus, we expect that the entire domain 

corresponding to half-length would be search within about two generations (given 30 

chromosomes within generation).  

 

 

 

 

Figure 3.16. Stochastic optimization of HF stage placement and half-length with GA over 
10 generations with 30 chromosomes in each generation. 
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Schematic Fig. 3.17 juxtaposes optimal results (stage locations and spacing) 

from the test runs mentioned above. This visually effective comparison provides the 

evidence of stochastic nature of GA in selection of locations and of its efficiency even if 

the algorithm has been run for a small number of generations and small number of 

chromosomes. The algorithm is powerful enough to space HFs roughly uniformly after 

sampling 300 values of the objective function in multi-dimensional space that contains 

an excess of 7.7e
25

 possible binary strings as the control vector input and comparable 

number of NPV solutions. From the optimal HF locations in all four runs, we observe 

that several HF locations are the same. These HF stages would be considered the 

stongest candidates for stimulation experts.  

Scatter plot in Fig. 3.18 gives a visual measure of computational time versus 

discounted long-term NPV obtained. Runs that take more simulation time evaluate more 

production arrangements with longer HF half-length and/or more HF stages. In these 

cases the model grid has more gridblocks with LGR and, thus, becomes more 

computationally demanding. 
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Figure 3.17. Optimal number and HF locations for GA over 10 generations with 30 
chromosomes in each generation. 
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Figure 3.18. Cross-plot of the highest discounted NPV values for four test runs versus 
running time (GA over 10 generations with 30 chromosomes in each generation). 

 

 

 

Above we saw that the optimal number of HF stages when minimal spacing is 

one gridblock is between 26 and 29. Below we provide a larger test run and evolution of 

the optimal solution (Fig. 3.19). GA searches the optimal solution of the number and 

spacing of HF stages as well as their half-length using 60 chromosomes and 30 

generations for the same shale gas model. From four snapshots of the 1
st
, 10

th
, 20

th
, and 

30
th

 generations, the reader can observe convergence to the global optimum from initial 

randomness. Preservation of elite chromosomes and crossover ensure monotonical 

increase of the NPV values (Fig. 3.20) while random gene mutation fine-tunes the 

locations. 
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Figure 3.19. Evolution of chromosomes through 30 generations exhibits convergence by 
crossover and diversity by mutation. 

 

 

 

With same genes elimination procedure, we expect the test run to perform no 

more than 1800 simulator calls. Fig. 3.20 shows that GA requested 1770 Eclipse 

simulator calls which is saving of 30 calls and comparable to a half of one generation. 

The same plot demonstrates that after about 10 generations the NPVs plateau and stay 

stable even though GA continues to mutate genes and perturb the control vector. 
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Figure 3.20. Highest NPV values across 30 generations in GA test run. 

 

 

 

Evolution of best half-lengths across 30 generations shows that GA finds the 

optimal half-length (the maximum of 33 grid blocks or 660 feet) within the first 

generation. The subsequent Fig. 3.21 demonstrates the optimized HF spacing after 

longer evolution. Here, we have 25 HF stages almost uniformly distributed across the 

length of the horizontal wellbore. Similarly to the previous subsection, we did not 

introduce any additional constraint in the form of minimal interval between the HF 

stages and GA was able to obtain reasonable spacing. This observation emphasizes 

universality and flexibility of our GA implementation.  
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Figure 3.21. Optimal HF stages placement after 30 generations in GA test run. 

 

 

 

.As we mentioned above, in our optimization framework with GA engine we 

assume equal half-length for all HF stages. It is important to note that the framework can 

be easily enhanced to accommodate different half-lengths for each HF stage. This can be 

accomplished by encoding individual half-lengths in binary sequences corresponding to 

the HF stages. However, this enhancement comes at great computational price, because 

for each gene encoding HF stage location we have several additional genes with binary 

half-length. The dimensionality of such problem will increase dramatically and 

computational time might require code parallelization and high-performance 

computational resources. 

 

3.4 HF Stage Placement Optimization in Presence of Uncertainty   

After we developed and tested the framework for HF stage placement, we answer the 

question of sensitivity of the optimization results to changes in the most significant 

explanatory variables. In Chapter II we performed screening of uncertain parameters of 

the shale gas simulation model and concluded that gas price and rock matrix 
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permeability had measurable effect on percent change in long-term discounted NPV. 

Now let us extend the production period to twenty years and apply the optimization 

framework to an ensemble of five (5) geologic realizations. The only parameter that we 

vary at this point is matrix permeability. Table 3.2 lists all values of matrix permeability 

that we use for five realizations. 

 

 

 

Table 3.2 Rock matrix permeability values for ensemble of geologic realizations. 

 

Realization Percent deviation from base case Matrix permeability 

1 0 0.00015 md 

2 20% 0.00018 md 

3 50% 0.0003 md 

4 -20% 0.00012 md 

5 -50% 0.000075 md 

 

 

 

We provide the summary of the optimized results (HF stage locations) for the ensemble 

of five realizations in Fig. 3.22. Here we use minimum spacing between HF stages of 40 

feet. Thus, on the plots below (Figs. 3.22-3.23) even though some HF stages are placed 

next to each other, they are in fact separated by at least 40 feet.  

Both plots illustrate that the number of HF stages is not significantly affected by 

a broad range of uncertainty in matrix permeability (from -50% to +50% from the base 

value of 0.00015 md). We consistently obtain around 18 HF stages of the same half-

length (660 feet). We also observe that the locations of the stages are also fairly 
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consistent. Though, as expected we see that the tighter matrix leads to the more densely 

spaced HFs. 

Fig. 3.24 shows the effect of uncertainty in matrix permeability on optimal NPV 

values. The reader can observe that the band formed by the lines is reasonably narrow. In 

other word, an error in matrix permeability measurement (even if it comes from the wide 

range from -50% to +50%) is not likely to affect the economics of the project on the long 

run. 

 

 

 

 

Figure 3.22. Juxtaposition of optimal HF stage locations for an ensemble of 5 geological 
realizations (each realization has varying matrix permeability +/-20% and +/- 50% from the 

base geomodel). 
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Figure 3.23. Juxtaposition of optimal HF stage locations for an ensemble of 5 geological 
realizations (well location is unchanged from model to model). 
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Figure 3.24. Effect of uncertainty in shale matrix permeability on optimal discounted NPV 
values. 

 

 

 

 

Figure 3.25. Effect of uncertainty in shale matrix permeability: percent change in 
discounted NPV values from the optimized base value. 
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Fig. 3.25 quantifies the small effect of uncertainty in matrix permeability. 

Uncertainty in permeability between -50% to +50% from the base value translates into 

the range of NPVs between -5% to 5% from the base optimized NPV value. 

Rock matrix permeability is not the only significant parameters that influence the 

response of the system. Gas price is another uncertain variable that can affect 

optimization results and project economics. To keep consistent ranges, let us vary gas 

prices also within -50% to +50% range from the base value of 3.20 $/mscf (Table 3.3).  

  

 

 

Table 3.3 Gas price values for optimization under uncertainty. 

 

Realization Percent deviation from base case Gas price 

1 0 3.20 $/mscf 

2 20% 3.84 $/mscf 

3 50% 4.80 $/mscf 

4 -20% 2.56 $/mscf 

5 -50% 1.60 $/mscf 

 

 

 

The optimization results from these five runs reveal magnitude of the impact of 

gas price uncertainty. Schematic Fig. 3.26 shows startling difference is the optimal 

numbers of HF stages and their locations for same models run with different prices, 

ceteris paribus
1
. When the gas price is reduced by 20%, the optimization framework 

counter-balances the change in price by increased production from more HF stages (20 

HF stages in comparison to 17 HF stages in the base case). However, as the price 

                                                 

1
 Ceteris paribus is Latin for “everything else being equal or kept constant” 



 

71 

 

continues to fall and is a half of the base value, placing more HF stages consumes too 

much initial capital and the framework dramatically reduces the number of broadly-

spaced stages to fourteen (14).   

The NPV line plots in Fig.3.27 demonstrate the collapse of the project’s revenue 

when the gas price drops to 50%. After twenty (20) years of production, the discounted 

revenue is only about a half of million dollars. The reader can observe the breadth of the 

uncertainty band in comparison to one in Fig. 3.24.  

The percent change chart in Fig. 3.28 illustrates quantitatively and graphically 

that 50% reduction or increase in gas price from the base value causes almost 100% 

change (reduction or increase respectively) from the base optimized NPV value. Thus, 

the gas price and its change literally “makes or breaks” the economics of a shale gas 

project.  
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Figure 3.26. Juxtaposition of optimal HF stage locations for uncertain gas price varying 
from -50% to +50% from the base value (well location is unchanged from model to model). 
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Figure 3.27. Effect of uncertainty in gas price on optimal discounted NPV values. 

 

 

 

 

Figure 3.28. Effect of uncertainty in gas price: percent change in discounted NPV values 
from the optimized base value. 
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3.5 Conclusions 

In this chapter, in one large brushstroke we presented a wealth of material that followed 

up on uncertainty study in Chapter II as well as laid down the groundwork for the 

upcoming Chapter IV about the integrated optimization framework for simultaneous 

horizontal wellbore and HF stage placement. Solid understanding and implementation of 

the GA optimization engine is instrumental in development of the integrated workflow 

and evolutionary-based MOO in Chapter V.     
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CHAPTER IV 

INTEGRATED EVOLUTIONARY-BASED OPTIMIZATION FRAMEWORK FOR 

HORIZONTAL WELL AND HF STAGE PLACEMENT 

4.1 Introduction 

In this chapter, we present and test the integrated optimization framework that evaluates 

optimal number and length of horizontal wellbores as well as number, spacing, and half-

length of HF stages along them. This workflow builds up on the GA optimization engine 

described and tested in the previous chapter. First, we discuss the assumptions which are 

necessary to satisfy before the integrated framework can be successfully applied. 

Second, the reader gets insight into conceptual and algorithmic implementation of the 

integrated optimization scheme.  At the end of the chapter, we test and discuss the results 

of optimization on a large synthetic shale gas model.  

 

4.2 Framework Assumptions 

To apply our framework, we assume homogeneous extra-low matrix permeability field. 

This assumption allows us to partition the shale gas reservoir into several smaller 

reservoirs each of which can be drained with one horizontal well without significant 

interference from other wells. Then we apply the optimization engine to the smaller 

reservoir and obtain the total optimized discounted NPV for the entire play by 

multiplying the NPV for the smaller reservoir by the number of horizontal wells. In 

addition to this, we assume symmetry in size, well length, HF stages locations and 

number in all smaller reservoir partitions.  
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There are several reasons that make our assumptions valid. First, although any 

given shale rock fabric does have spatial variance in its geochemical properties, it is 

uncommon to see high matrix permeability contrasts in shale formations. In additional to 

this observation, shale matrix permeability is usually orders of magnitude smaller than 

permeability of SRV. Thus, rock matrix permeability can be modeled with one value and 

kept fairly homogenous within a continuous shale interval. Second, symmetry is HF 

stage locations and numbers is also taken from current industry practices such as 

traditional zipper fracturing (Jacobs, 2014) and simultaneous fracturing (Mutalik and 

Gibson, 2008). Fig. 4.1 demonstrates symmetrical placement of HF stages for a shale 

play developed with three horizontal wells. Last, our framework allows to obtain good 

estimates of the discounted NPV for the entire field in addition to the number of 

horizontal producers and HF spacing and intensity within reasonable computational 

time.  
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Figure 4.1. Aerial view of homogeneous matrix permeability field with three horizontal 
wellbores with symmetrical transverse HF stages. 

 

 

 

Partition of the large reservoir into smaller ones and performing optimization for 

this smaller problem In fact, the attempt to use our shale gas model with several wells 

and multiple HF stages with varying half-length caused rapid increase in the number of 

grid blocks due to LGR. To avoid the computational problems and to build the 

optimization framework that calculates optimal number of wells, HF stages, and their 

half-length, we devised a conceptually new workflow that provides answers to all our 

questions (given that the main assumptions are satisfied) and yet can be performed with 

available tools and within reasonable computational time.    
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4.3 Novel Framework Structure and Implementation 

Conceptually and structurally, the integrated framework is similar to the GA 

optimization workflow provided in Chapter III (Fig. 4.2). Moreover, GA with strong 

elitism that previously demonstrated good performance is used without changes in our 

integrated framework as the optimization engine.   

 

 

 

 

Figure 4.2. Flowchart of the GA-based integrated framework for optimal placement of 
multiple horizontal wells and HF stages. 
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The main difference between the flowcharts (and the corresponding MATLAB 

programs) lies in the definition of the chromosomes and the information that they 

encode. Like GA chromosomes in Chapter III, the integrated optimization workflow 

uses fully binary arrays to specify the number of horizontal wells, spacing and the 

number of HF stages, as well as their half-length (Fig. 4.3). As the reader can see, there 

are no genes that encode the length of horizontal producers explicitly. Nevertheless, the 

framework gives answer to how long the wells should be by providing the distance 

between the first and the last HF stages. 

 

 

 

 

Figure 4.3. GA chromosome encoding the number and length of horizontal wells as well 
as the number, spacing, and half-length of HF stages. 

 

 

 

Now let us step inside one iteration (or generation in the GA terminology) of the 

framework and observe graphically how the optimization algorithm works and what 



 

80 

 

output the user can obtain. Fig. 4.4 provides a detailed visual description of the inner 

working of the integrated workflow that solves constrained optimization problem 

defined in Eq. 4.1.  

                                        

{
  
 

  
 

𝑚𝑎𝑥𝑁𝑃𝑉(𝑢)
𝑠. 𝑡. �̃�𝑖 ≤ ℎ𝑙𝑚𝑎𝑥
       �̃�𝑖 ≥ ℎ𝑙𝑚𝑖𝑛
        𝑢⏞𝑖 ≤ 𝑛𝑙𝑚𝑎𝑥
        𝑢⏞𝑖 ≥ 𝑛𝑙𝑚𝑖𝑛

            𝑖 = 1,2, … , 𝑛.

                                                              (4.1) 

Here, 𝑢⏞𝑖 refers to the portion of a chromosome that encodes the number of horizontal 

producer wells, 𝑛𝑙𝑚𝑎𝑥 is maximum feasible number of wells, 𝑛𝑙𝑚𝑖𝑛 is minimum feasible 

number of wells. 

The M chromosomes obtained from the genetic manipulations with the previous 

generation represent M number of production plans (or well and HF stage arrangements) 

for the five-year period. Depending on the number of horizontal wells encoded in a 

current chromosome (let us say, five), the framework partitions the entire reservoir into 

smaller sections (also five) and creates a simulation model with a single horizontal well 

with appropriate maximum and minimum half-lengths for its HF stages and the proper 

distance to the border of the model that also accounts for SRV. After that this smaller 

part of the reservoir is assigned proper SRV and LGR to each HF stage and evaluated for 

five-year discounted NPV (Eq. 4.2) using ECLIPSE production output. This discounted 

NPV value for the smaller reservoir is then multiplied by the number of the partition, P, 

(in this case, five).  
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𝑁𝑃𝑉 =∑(∑
(Qg

k ∙ rg − Qw
k ∙ rw − O) ∙ ∆t

k

(1 + b)t
k 365⁄

𝐾

𝑘=1

𝑃

𝑝=1

− (Cw + NHF(𝐶𝑓𝑏 + 𝐶𝑓𝑙𝑥𝑙𝑒𝑛𝑔𝑡ℎ) + LwCp)).                        (4.2) 

Once the entire generation is evaluated, its NPV values are compared and the 

elite chromosome is selected. Consequently, the genetic operators of crossover and 

mutation are applied to obtain the (n+1)
st
 generation. Because the portions of the 

chromosome that encode HF half-length and the number of wells are smaller than the 

portion corresponding to HF stage locations and they are constrained more strictly, their 

domain is searched quickly. Thus, these parts of the chromosomes converge toward their 

optimal values fairly early in the GA evolution. The reader will observe this fact in the 

results section of this chapter. 

 

4.4 Integrated Framework Testing  

Figs. 4.5 and 4.6 demonstrate how the number of wells and HF stage half-length change 

dynamically in order to accommodate the boundaries of the system. The plots show 

numbers of wells and corresponding HF stage half-lengths within one generation. More 

horizontal wells necessitate shorter HF stages, while fewer wells require longer stages. 
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Figure 4.4. Graphical interpretation of one iteration of the integrated optimization 
framework. 
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Figure 4.5. Variability of HF half-lengths within the last generation. 

 

 

 

 

Figure 4.6. Variability of well numbers within the last generation. 
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In Fig. 4.7 we present the evolution of HF stage half-length over thirty (30) 

generations. The framework starts from about 660 feet and evolves to fewer horizontal 

wells with HF stages of almost 1000 feet. 

Similarly to the workflow in the previous chapter, the integrated optimization 

framework uses the same-chromosome elimination process to save on computational 

time. The monotonically increasing graph in Fig. 4.8 provides the evolution of the 

discounted NPV values toward the global maximum. Here, the code outputs running 

time of about 31 hours with saving of 38 simulator calls (30 × 60 − 1762 = 38 calls).  

 

 

 

 

Figure 4.7. Evolution and convergence of HF half-length over 30 generation. 
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Figure 4.8. MATLAB output of monotonically increasing 5-year discounted NPVs over 30 
generations with 60 chromosomes each. 

 

 

 

4.5 Results and Discussion 

The previously mentioned test example showed computational intensity of searching the 

domain with over 90 dimensions. On standard PC platform (Intel(R) Zeon(R) CPU 

W3540 @2.93GHz RAM 24.0 GB) it took about one and a half days of uninterrupted 

simulator calling. Though interesting for comparative purposes, the case with each grid 

block as a potential place location of HF stage is not realistic. Our powerful GA with 

strong elitism will eventually find that uniform spacing is optimal for unconstraint 

problem, but we can specify minimum spacing between stages to cut on unnecessary 

simulator calls that evaluate production scenarios unacceptable due to the high density of 
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stages. To demonstrate how we can achieve a reasonable trade-off between minimum 

HF stage spacing and computational (or running) time, we devise a series of numerical 

experiments with increasing minimum HF stage spacing (Table 4.1). Four test runs 

encompass intervals from 20 to 80 feet with increment of 20 feet. In addition to 

discounted NPV values, we also record and compare optimal HF half-length, number of 

horizontal wells to drain the reservoir, the number of ECLIPSE simulator calls and the 

overall computational time for each run. The production period is set to five years which 

can be considered fairly long-term for an unconventional project.   

 

 

 

Table 4.1 Summary of integrated placement runs with varying minimum HFs spacing. 

 

Minimum HF 
interval 

Running 
time 

Simulator 
calls Max NPV Wells 

HF half-
length 

feet hours # $ # feet 

20 feet 32.24 1790 31934651.8 5 980.0 

40 feet 23.63 1739 31934651.8 5 980.0 

60 feet 20.86 1702 32660630.1 6 807.3 

80 feet 15.15 1608 29774351.0 8 605.0 

 

 

 

Table 4.2 summarizes reservoir geometric and petrophysical properties, initial 

conditions at the beginning of the production period and its duration, parameters 

pertaining to hydraulic fracturing outcomes, and the key economic parameters that are 

similar to those defined in Chapter III. Here, the model has larger width that enables 

partitioning the reservoir into smaller portions and assembling the ECLIPSE data file 
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and production specification for the smaller model. We specify maximum allowable 

number of wells as twenty (20) and maximum allowable HF half-length as 1000 feet. 

   

 

 

Table 4.2 Reservoir and economic parameters used for the test model. 

 

Parameters Values Unit 

Model width 10,000 ft 

Model length 2,000 ft 

Model thickness 200 ft 

Initial reservoir pressure 3000 psi 

Reservoir temperature 150 
o
F 

Rock density 161 lbs/ft
3
 

Producing bottom hole pressure 500 psi 

Production period duration 5 years 

Matrix porosity 6 % 

Matrix permeability 0.00015 md 

Langmuir pressure 650 psi 

Langmuir volume 0.096 mscf/ton 

Hydraulic fracture height 200 ft 

Hydraulic fracture half-length 260 or variable ft 

SRV permeability 0.08 md 

Drilling base cost per well (vertical part) 2,000,000 $ 

Drilling cost per grid block (horizontal part) 6,000 $ 

Daily operating expenses per well 60 $ 

Gas price 3.2 $/mscf 

Base cost per HF stage 75,000 $ 

Cost per length of HF stage 2,000 $/ft 

Discount rate 12.5 % 

 

 



 

88 

 

 

Fig. 4.9 presents the evolution across thirty (30) generations of the discounted 

NPV values for all four test runs. The reader can observe that minimum spacing of 40 

and 60 feet produce higher discounted NPV values. The case with 20 feet minimum 

spacing (in other words, each grid block can be a potential place for HF stage) achieves 

results similar to 40 and 60 feet, but it takes more computational time and takes more 

generations to approach higher NPV values. Large minimum HF spacing (of at least 80 

feet) leads to sub-optimal NPV values and requires many wells to drain the reservoir of 

interest (eight wellbores in comparison to 5 or 6 in other cases).  

 

 

 

 

Figure 4.9. Summary plot of discounted NPVs from four test runs with varying minimal 
interval between HF stages. 
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Fig. 4.10 shows how a change in minimum HF spacing affects HF stage half-

length which is related to the number of horizontal wells that can achieve higher NPV 

values. The line corresponding to 60 feet minimum spacing (this number is close to the 

industry widely accepted minimum spacing) achieves optimal half-length almost 

immediately (Thompson et al., 2011).   

 

 

 

 

Figure 4.10. Summary plot of HF half-lengths from four test runs with varying minimal 
interval between HF stages. 

 

 

 

Fig. 4.11 is the composite plot that summarizes the effect of minimum stage 

spacing for the same shale gas model. The graph is loaded with information, but the gist 

of it is highlighted in red: our integrated framework allows to determine the production 

scenario that gives the highest discounted NPV values while keeping computational time 
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and simulator calls at necessary minimum (we only call ECLIPSE when we have a new 

chromosome, same chromosomes that could occur due to crossover are automatically 

identified and assigned values based on one evaluation). Minimum HF stage spacing of 

60 feet gives us the highest NPV and is an optimum if we consider minimum spacing as 

an optimization variable. 

 

 

 

 
 

Figure 4.11. Cross-plot of running time, discounted NPVs, and simulator calls from four 
test runs with varying minimal interval between HF stages. 
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4.6 Conclusions 

In this chapter, we presented our novel integrated optimization framework that provides 

answers to a multitude of economic and production questions if the main assumptions 

are satisfied. First, we devised a computationally efficient workflow that takes advantage 

of symmetry and reduces optimization of multiple well placement in a large geomodel to 

a smaller and more manageable problem. Second, our framework honors geometric 

constraints of the shale model, length and spacing of horizontal producers, spacing and 

half-length of HF stages. Last, the workflow is fully controlled by the objective function 

which is customizable depending on the user’s needs. In this way, for example, we can 

provide the answer to the question what minimum HF stage spacing yields the highest 

NPV values. The reader can also appreciate the amount of technical information that the 

integrated framework outputs. Not only does it provide the number of horizontal 

producers with corresponding number of HF stages and their specific locations and half-

length, but also spacing between the wells, computational time, and simulator calls. 

Based on this wealth of information, the engineer can make decision and adjustments to 

their modeling plan. 

Until now, we familiarized the reader with our optimization framework and 

emphasized that it provided solution to single objective optimization problem. The long-

term discounted NPV function defined from the beginning of this dissertation is one of 

many objectives that the gas operators could be interested in. The upcoming Chapter V 

takes the discussion to the new level and investigates how our optimization workflow 
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can be adjusted to solve  multi-objective problems in which objectives could be 

conflicting or not.        
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CHAPTER V 

MULTI-OBJECTIVE EVOLUTIONARY OPTIMIZATION FOR HF STAGE 

PLACEMENT 

5.1 Introduction 

In recent years, academic scholarship has started to respond to the industrial interest in 

multi-objective optimization (MOO). MOO allows weighing different production 

strategies in presence of multiple production and economic goals (or objectives) that can 

be conflicting or not. MOO addresses this interest and offers a set of algorithms that 

gives quantitative and qualitative measures of “goodness” of the optimal solutions. 

This chapter explores the most recent scholarship on MOO and focuses on one 

method that is considered one of the fastest and most efficient in construction of the 

Pareto front of the optimal solutions. First, we introduce the key terminology of MOO 

and the most popular algorithms with their advantages and drawbacks. Then, we 

elaborate on specifics of the improved non-dominated sorting genetic algorithm (NSGA-

II) and its application to our problem of optimal HF stage placement in unconventional 

gas reservoirs. After laying down this groundwork, we present NSGA-II test runs and 

results. In conclusion of this chapter, we discuss applicability and efficiency of the 

algorithm as well as its benefits for future commercial application.    

 

5.2 Approaches to MOO 

MOO problems are common in most engineering disciplines including petroleum 

engineering. Sometimes the objectives can be mutually conflicting. One example is 
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when we try to maximize performance of a system and minimize operating and capital 

costs. However, the conflict between the objectives is not required to apply MOO 

techniques. In fact, objectives might include temporal component that can be valuable to 

investigate, particularly in case of quickly declining production from shale gas 

reservoirs. While optimizing the locations, intensity, and half-length of HF stages, we 

might be interested in impact of our production strategy on short- and long-term revenue 

or discounted NPV.    

As Konak et al. (2005) point out that there are two main approaches to MOO 

problems. The first one is to create an aggregate objective function that combines 

expressions of two or more objectives. In this case, we have to address respective 

weights for each objective and scaling among them (Marler and Arora, 2004). Though 

powerful on their own right, these methods are sensitive to smallest perturbation in 

weights and might give drastically different solutions depending on the problem (Das 

and Dennis, 1997). The second approach avoids the weighting problem altogether and 

finds the entire set of optimal solutions or a representative subset called the Pareto 

optimal set. One of the characteristics of points inside the Pareto optimal set is that they 

are all non-dominated with respect to each other and each solution gains in one objective 

by sacrificing in another (Sreekanth et al., 2012). Fig 5.1 illustrates how the Pareto front 

of optimal solutions is defined for MOO problem with two objectives, J1 and J2. In this 

maximization problem the solution points in black are completely dominated by the red 

solution points on the Pareto front. All solutions can be ranked based on their relative 



 

95 

 

non-dominance. All solution points in Rank i are non-dominated by each other, 

dominated by solutions in Rank i-1, and dominate solutions in Rank i+1. 

 

 

 

 

Figure 5.1. The Pareto Front of non-dominated Pareto optimal solutions for a generic 
MOO problem. 

  

 

 

Though MOO provides means to assess the solutions with respect to different 

objectives, it is computationally costly. The first approach (the aggregate function 

strategy) requires weights sampling and evaluation of the results based on them. The 

second approach can also be computationally consuming. More specifically, Deb et al. 

(2002) focus on NSGA, address the problem of its complexity, and bring it from O(MN
3
) 

to O(MN
2
), where M is the number of objectives (in our case two) and N is the size of 
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the GA population. The authors speed up performance of the algorithm by bringing into 

the picture elitism and avoiding the sharing parameter. The essence of the NSGA-II is 

summarized in the following pseudo-code which will be adopted into our optimization 

framework and presented in the flowchart in the next section (Table 5.1).  

 

 

 

Table 5.1 Pseudo-code of NSGA-II (Deb, 2002).   

 

fast_nsgaII(P) 

for every 𝑝 ∈ 𝑃, 𝑆𝑝 = ∅, 𝑛𝑝 = 0  

      for every 𝑞 ∈ 𝑃,  

          if p dominates q, 𝑆𝑝 = 𝑆𝑝 ∪ {𝑞},                   % add q to set dominated by p 

               else if q dominates p, 𝑛𝑝 = 𝑛𝑝 + 1;         % increment counter of p 

          if 𝑛𝑝 = 0, 𝑝𝑟𝑎𝑛𝑘 = 1, 𝐹1 = 𝐹1 ∪ {𝑝};             % p belongs to the first front 

𝑖 = 1;                                                                             % start the front counter 

while 𝐹𝑖 ≠ 0, 𝑄 = ∅                                                    % Q is for storing the next front 

        for every 𝑝 ∈ 𝐹𝑖 

            for every 𝑞 ∈ 𝑆𝑝,  𝑛𝑞 = 𝑛𝑞 − 1,  

                if 𝑛𝑞 = 0, 𝑞𝑟𝑎𝑛𝑘 = 𝑖 + 1, 𝑄 = 𝑄 ∪ {𝑞} ;  % q belongs to the next front 

𝑖 = 𝑖 + 1,  

𝐹𝑖 = 𝑄. 

 

 

 

In this pseudo-code, for each solution we calculate the domination counter np, 

which represents the number of solutions dominated by the solution p, and the set Sp of 

the solutions dominated by p. Based on this improved scheme the entire non-dominating 
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sorting requires O(MN
2
) comparisons instead of O(MN

3
) required by the old NSGA 

formulation. As for other parameters, prank is the rank of the solution and Fi is the i
th

 

front. Now that we have rigorously defined NSGA-II and its computational advantages, 

let us formulate MOO problem with application to HF stage placement along single 

horizontal wellbore. 

 

5.3 Application of NSGA-II to HF Placement Problem  

Park et al. (2013) use the idea of NSGA-II for Pareto-based history matching workflow 

which is designed to minimize misfit in presence of two conflicting objectives (water cut 

and water saturation changes). Though particularly suitable for conflicting cases, NSGA-

II is powerful enough to be applied to non-conflicting objectives as well. In our case, we 

focus of two objectives that do not necessarily conflict: short- and long-term discounted 

NPVs. Depending on the company size, the operator might be interested in quantitative 

assessment of profitability of the project after a short production period and making the 

decision about lease re-selling, continuing to produce, or re-fracturing. Fig. 5.2 shows 

the MOO case in which two objectives (long- and short-term NPVs) are positively 

correlated. Strong positive correlation is obvious from the positive slope of the fitted 

linear regression and the high R
2
 value.  

To demonstrate the full potential of the implemented NSGA-II though, we can 

devise a synthetic case similar to that in the previous chapter that has conflicting 

objectives. Fig. 5.3 brings water production into the picture. Ultimately, we would like 

to balance between low water production and high gas rate that translates into the high 
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discounted NPV. Unlike conventional oil reservoir models, our shale gas simulation 

model does not have much movable water due to extremely tight rock matrix. This 

circumstance, nonetheless, does not prevent us from the MOO analysis of the results. 

From the fitted linear regression we observe negative correlation between discounted 

NPV and water production (note that minus sign in water production is due to 

conversion from maximization problem to minimization, in other words we are 

minimizing water production by maximizing its negative value). 

 

 

 

 

Figure 5.2. Scatter plot showing short- and long-term discounted NVPs generated by the 
simulation model. 

 

 



 

99 

 

 

Figure 5.3. Scatter plot showing long-term discounted NVPs vs water production 
generated by the simulation model. 

 

 

 

Now that we have discussed the two MOO cases with conflicting and non-

conflicting objectives, let us specify the expressions for each objective. For the first case 

(with data demonstrated on Fig. 5.2) with non-conflicting objectives, we use the 

expression of the discounted NPV from Eq. 3.1. J1(u) sums and discounts NPV in the 

long term (5 years) and J2(u) does so in the short term (1 year). The for second case with 

conflicting objectives, J1(u) is exactly the same as Eq. 3.1 summed and discounted for 5 

years. J2(u), however, is cumulative water production in barrels. 

In each MOO case we are interested in construction of the Pareto front of optimal 

solutions. NSGA-II offers fast and computational efficient procedure to achieve this 

result. Fig. 5.4 demonstrates how NSGA-II manipulates chromosomes made out of the 

input vectors in order to obtain improving results and yet keeping the number of the 
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simulator calls at minimum. More specifically, NSGA-II retains chromosomes that 

correspond to the parents, uses them to generate the children, and then combines both 

sets for consequent sorting. The sorting is then performed as outlined in Table 5.1 and 

all chromosomes are assigned to ranks. The highest rank (or Rank 1) corresponds to the 

set on non-dominated solutions or the Pareto front. All other ranks are dominated by the 

Pareto front, but inside them the solutions do not dominate each other. After sorting, 

NSGA-II retains half of the chromosomes that correspond to the highest ranks and 

discards the rest. This procedure allows for fast search of the Pareto front members. 

 

 

 

 

Figure 5.4. NSGA-II improved scheme for producing new generations without an increase 
in evaluations of the objective function. 
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5.4 NSGA-II Testing and Results 

This section presents two above-mentioned MOO test cases and the results. Fig. 5.5 

illustrates NSGA-II performance after the first generation for the case of non-conflicting 

objectives (short- and log-term discounted NPVs). The Pareto front is clearly defined 

and color coded in MATLAB code. We also outline a couple of subsequent ranks for 

illustration purposes. 

 

 

 

 

Figure 5.5. The Pareto front after the first generation of NSGA-II for non-conflicting 
objectives. 
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Fig. 5.6 shows the final plot after 30 generations and summarizes all 1800 

solution points (only non-negative solutions are plotted). Here the Pareto front has only 

one solution point which dominates solutions in all other ranks. Fig. 5.7 offers specific 

chromosomes (or arrangements of HF stages and their half-length) that produce the best 

solutions in the last generation including the Pareto front solution. 

 

 

 

 

Figure 5.6. The Pareto front after 30 generations of NSGA-II for non-conflicting objectives. 
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Figure 5.7. NSGA-II results with optimal locations of HF stages and their half-length after 
30 generations of NSGA-II for non-conflicting objectives. 

 

 

 

Now that we discussed the non-conflicting case, let us consider the results of the 

test run with conflicting objectives (water production and long-term discounted NPV). 

Fig. 5.8 shows the cross-plot of solutions for our MOO problem with the Pareto front in 

red. The Pareto front in this case forms broad range in comparison to the non-conflicting 

case. This result is expected because there are many solutions that satisfy lower 

cumulative water production and higher discounted NPV.   
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Figure 5.8. The Pareto front (in red) after 20 generations of NSGA-II for conflicting 
objectives (long-term NPV and cumulative water production). 

 

 

 

The evolution of the Pareto front can be observed in Fig. 5.9. Since this is the last 

generation, we see that many solution points ended up on the Pareto front (compare 

Figs. 5.8 and 5.9). If we allow NSGA-II to evolve further, we would see refinement of 

the Pareto front trend, but it would still remain broad encompassing a range of solutions 

from lower water production and lower NPV to higher cumulative water production and 

higher NPV. Depending on the operator’s priorities, the engineer could choose any of 

the solutions (or production plans) from the Pareto front. If high water cut is a 

considerable objective, then the optimization offers production scenario with fewer HF 

stages to reduce undesirable expenses associated with water disposal. However, the 

trade-off in this case would be lower cumulative gas production and, thus, the revenue 

for the entire project.   
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Figure 5.9. NSGA-II results with optimal locations of HF stages and their half-length after 
20 generations of NSGA-II for conflicting objectives. 

 

 

 

5.5 Conclusions and Observations 

In this chapter we demonstrated with specific examples of conflicting and non-

conflicting MOO problems that our framework is flexible enough to be applied in 

seamless fashion to the problem of HF stage placement in presence of multiple 

objectives. We showed that these objectives can be of economic (short- and long-term 

NPV) or production (cumulative water production) nature. The framework handles 

objectives computationally effectively and produces the Pareto optimal solutions without 

requiring the user to assign weights to each objective which can be confusing and time 

consuming. 
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The user has flexibility of defining their own objectives in separate MATLAB 

module and applying our workflow to obtain optimal results for them. Also from the 

MATLAB code standpoint there is no problem of defining more than two objective and 

turn the problem in truly multi-objective task. However, visualization of the Pareto front 

could be tricky for three or more objectives. The user would still be able to see cross-

plots only of pairs of objectives. 

This concludes the description of implementation and testing of our novel 

optimization framework that is now applicable to multiple objectives. Let us now 

summarize the achievements and accomplishments of this dissertation and outline the 

future research venues.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

In this final chapter, we review the main contributions of this dissertation to the current 

discourse about production and design optimization in unconventional gas assets. Here 

we summarize specific solutions and implementations that resulted from this research as 

well as possible future research directions that this dissertation has opened. 

 

6.1 Conclusions 

In this dissertation, a novel integrated optimization framework for simultaneous 

horizontal wellbore and HF stage placement has been developed and tested on a 

synthetic shale gas simulation model that was built based on the Barnett shale properties. 

Along the way toward the final implementation of the framework, we investigated, 

implemented, and analyzed the following: 

i. We described the influence of shale rock fabric composition and horizontal stress 

anisotropy on shale gas modeling and representation of hydraulic fractures for 

simulation purposes. Specifically, we considered two scenarios (high and low 

stress anisotropy), emphasized that anisotropic case required high conductivity 

central HF and lower permeability SRV, and discussed the impact of choosing 

one or the other scenario for simulation. 

ii. We performed initial screening of economic and petrophysical parameters with 

two different tools and found that price of gas and matrix permeability were the 

most significant explanatory variables in fitted regression. 
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iii. We implemented GA with strong elitism and applied it to the problem of optimal 

HF stage placement with fixed half-length (half-length was not a variable for 

optimization). 

iv. Once we observed that for homogeneous matrix permeability the results were 

close to uniform HF stage spacing, we proceeded with HF half-length 

optimization. In this section we adjusted the objective function to accommodate 

variable half-length and used primarily economic optimization control (though 

we did specify maximum feasible HF half-length as a geometric constraint). 

v. Implemented optimization workflow for a single well was coupled with 

uncertainty assessment. We chose gas price and matrix permeability as the main 

uncertain parameters and investigated sensitivity of the discounted NPV function 

response. We found that while matrix permeability did have an impact on the 

revenue, it was completely overshadowed by the effect of uncertainty in gas 

price. Gas price change from -50% to +50% from the base value led to 

discounted NPV values from, what can be interpreted as, complete collapse of 

the shale gas project to revenue “bonanza.” We also saw that optimization results 

(number and locations of HF stages) were slightly affected by uncertainty in 

matrix permeability, while similar change in gas price necessitated drastically 

different production plans, ceteris paribus.  

vi. Next we took advantage of symmetry and homogenous matrix permeability (as 

well as the ability to incorporate natural fractures into the simulation model as a 

part of dual permeability system without explicit definition with discrete fracture 
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network) and built computationally efficient evolutionary-based optimization 

framework that optimizes number of horizontal producers, number and locations 

of HF stages as well as their half-length. We observed that continuous and 

integer variables (such as HF half-length and number of wellbores) can be 

effectively represented as binary arrays and included into GA chromosomes. 

After that, chromosomes could be easily manipulated with genetic operators. 

vii. We added to our framework a capability of finding the optimal solution set, the 

Pareto optimal set, in presence of multiple objectives. Our evolutionary-based 

framework (coupled with NSGA-II) proved to be effective for problems with 

non-conflicting objectives (such as long- and short-term revenue) and competing 

ones (such as long-term revenue and cumulative water production).   

Our implementation of the integrated optimization framework has certain advantages 

over those built or proposed before: 

i. Our workflow has one point control which is the objective function (or multiple 

functions in case of MOO). Thus, the user can easily re-define the function, its 

parameters, constraints, or values and the workflow will work flawlessly without 

any additional changes in code. Because the GA engine is decoupled from the 

specification of the problem, it will work as long as it is supplied with fully 

binary arrays. 

ii. The optimization framework is computationally efficient. It evaluates only 

dissimilar chromosomes due to our same-chromosome elimination process. In 

some cases computation saving can be considerable. For instance, Table 4.1 



 

110 

 

shows that in one run our algorithm eliminated almost 200 unnecessary simulator 

calls caused by rapid convergence of chromosomes. 

iii. Our implementation of MOO solves for both conflicting and non-conflicting 

objectives and requires absolute minimum of simulator calls. It also can easily be 

extended to three or more objectives, as objectives are defined separately and can 

be imported on demand. 

iv. Our framework offer fast procedure for selecting optimal number of wells and 

HF stage spacing and half-length provided that the main assumptions were 

satisfied.  

Now let us finish this overview with the main outputs that our integrated optimization 

framework provides: 

i. The number of horizontal wellbores with appropriate spacing (minimum distance 

to the borders of the model can be modified by the user); 

ii. The length of the horizontal section of the well (measured from the first to the 

last HF stage); 

iii. The optimal half-length of HF stage that is constrained by minimum and 

maximum feasible half-length as well as the number of the horizontal well; 

iv. Specific locations of HF stages; 

v. The optimal number of HF stages (which is the same for each horizontal well 

based on symmetry and traditional zipper frac assumptions); 

vi. Evolution of the discounted NPV across the generations; 

vii. Evolution of the optimal HF stage placement; 
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viii. Overall computational time and the number of simulator calls; 

ix. The MOO output also includes the Pareto optimal set.  

 

6.2 Future Research Directions 

This dissertation addressed many aspects of shale gas modeling, optimization of 

horizontal wellbore and HF placement as well as MOO applied to unconventional gas 

reservoirs. Many of these topics can be extended further and might include the following 

directions: 

i. Integration of geomechanical data (such as Young’s modulus and Poisson’s 

ratio) into the shale gas geomodel and using integrated optimization framework 

for these systems with spatially variable properties. This will necessitate major 

change of assumptions. We would not be able to use symmetry of HF locations 

from well to well like we did in this dissertation. We would also need to optimize 

half-length for each HF stage individually which would immediately reflect on 

computational time. All of this can be achieved with our integrated framework by 

extending the GA chromosomes, but we would need to obtain commercial (not 

academic) license of the simulator and gain access to supercomputer (because 

computational time on current workstation would go to weeks). Jahandideh and 

Jafarpour (2014) are already making steps in this direction by modeling two 

wells and simulated geomechanical indices, though they prefer gradient-based 

optimization methods that could yield sub-optimal results for complex non-

convex functions. 
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ii. Another direction is addition of spatial flexibility in wellbore placement. It has 

been brought to our attention shale gas operators are interested in optimizing not 

only aerial well placement (all parallel to each other in roughly one layer), but 

also stacking of horizontal wells in several layers. From the simulation 

standpoint this can be easily achieved by extending GA chromosomes (and, this, 

computational time) to accommodate three-dimensional well distribution. 

However, modeling of stacked wells without proper geomechanics might be an 

absolutely abstract exercise. In this dissertation we assumed that HF stages are 

fully penetrating from the top to the bottom of the reservoir, and because we are 

dealing with one homogeneous layer, this assumption is valid. In case of multiple 

layers, vertical variability of properties might be significant and influences the 

shape of HFs. Stresses also tend to change due to compositional changes in shale 

fabric. Thus, stacking of horizontal producers with HF stages along them requires 

careful petrophysical and geomechnical modeling before optimization can be 

performed. This is yet another new challenging area of research. 

iii. Further investigation can be done by incorporating HF design into our 

optimization framework. This only reason why it was not included into this 

dissertation is coupling and computational challenges. Software products that 

model individual HFs provide output with geometry of the HF (in our case we 

modeled it with LGR and SRV in our grid) that could be imported into the model 

and used for optimization. However, the drawback of this approach is rapid 

increase of computational time and waste of resources. Optimization algorithms 
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require many calls of the simulator (in order of thousands) and for each call (that 

could be just an intermediate solution) and for each well HF software would 

design 5 - 40 different stages with based on geomechanical properties and 

proppant material available. This by itself becomes a computationally prohibitive 

problem. Possible solution could be to optimize the locations of HF stages with 

fast optimization engine (such as GA) and, once strong candidates for locations 

are identified, optimize the actual geometry and design of HF stages. In other 

words, it is possible to make it sequential optimization rather than simultaneous.   

iv. Another important and interesting research venue that this dissertation opens is 

temporal design optimization. For our integrated framework we assumed that 

hydraulic fracturing is performed prior to any production and, thus, the 

production design does not change with time. We can produce for five or twenty 

years and the number of wells and the number of HF stages would remain the 

same. Now, what if we could add more wells as we produce from old ones and 

re-fracture or re-stimulate old wells? These temporal changes might give us yet 

another degree of freedom in search of optimal production plan. However, this 

optimization problem cannot be possibly solved without proper and carefully 

chosen constraints. Additional degrees of freedom increase dimensions in control 

vector and, thus, computational time. Again, to pursue this direction one might 

need to change computational platform to supercomputer. 
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APPENDIX A 

Table A.1 Two-level full factorial DoE for anisotropic horizontal stress model. 

 

 

 

 

FULL FACTORIAL EXPERIMENTAL DESIGN FOR ANISOTROPIC MODEL

PARAMETERS

CASE/VALUE HF perm SRV perm Matrix perm Gas price HF cost

low 1000 md 0.0001 md 0.00001 md $3/MCF $100,000

high 100000 md 0.001 md 0.001 md $6/MCF $300,000

1 low low low low low

2 low low low low high

3 low low low high low

4 low low low high high

5 low low high low low

6 low low high low high

7 low low high high low

8 low low high high high

9 low high low low low

10 low high low low high

11 low high low high low

12 low high low high high

13 low high high low low

14 low high high low high

15 low high high high low

16 low high high high high

17 high high high low low

18 high high high low high

19 high high high high low

20 high high high high high

21 high high low low low

22 high high low low high

23 high high low high low

24 high high low high high

25 high low high low low

26 high low high low high

27 high low high high low

28 high low high high high

29 high low low low low

30 high low low low high

31 high low low high low

32 high low low high high
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Table A.2 Two-level full factorial DoE for isotropic horizontal stress model. 

 

 

 

 

 

  

FULL FACTORIAL EXPERIMENTAL DESIGN FOR ISOTROPIC MODEL

PARAMETERS

CASE/VALUE SRV perm Matrix perm Gas price HF cost

low 50 md 0.00001 md $3/MCF $100,000

high 200 md 0.001 md $6/MCF $300,000

1 low low low low

2 low low low high

3 low low high low

4 low low high high

5 low high low low

6 low high low high

7 low high high low

8 low high high high

9 low low low low

10 low low low high

11 low low high low

12 low low high high

13 low high low low

14 low high low high

15 low high high low

16 low high high high
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APPENDIX B 

PARAMETER SCREENING FOR UNCERTAINTY ASSESSMENT 

Statistical Analysis of Anisotropic DoE Results 

Below we provide the detailed R (2013) code that was used for parameter screening as a 

part of UA. The suite of simulation results (short-term discounted NPV, y1npv, and 

long-term discounted NPV, npv) with corresponding values of matrix permeability (km), 

HF permeability (khf), SRV permeability (ksrv), price of gas (pg), and cost of hydraulic 

fracturing (hcost) are loaded into the statistical environment and analyzed for 

significance with stepwise regression and Akaike information criterion (Akaike, 1974). 

Each step of the statistical analysis is commented below: 

> ani <- read.csv("doe_results.csv") 
> ani 
 

% Load and summarize the dataset 

 
          npv       y1npv    khf  ksrv    km pg  hcost 
1  -1035692.9 -2341634.62   1000 1e-04 1e-05  3 100000 
2  -3435692.9 -4741634.62   1000 1e-04 1e-05  3 300000 
3   1359755.0 -1391377.51   1000 1e-04 1e-05  6 100000 
4  -1040245.0 -3791377.51   1000 1e-04 1e-05  6 300000 
5   2848962.1   206089.43   1000 1e-04 1e-03  3 100000 
6    448962.1 -2193910.57   1000 1e-04 1e-03  3 300000 
7   9129266.8  3704190.29   1000 1e-04 1e-03  6 100000 
8   6729266.8  1304190.29   1000 1e-04 1e-03  6 300000 
9    172727.5 -1625913.95   1000 1e-03 1e-05  3 100000 
10 -2227272.5 -4025913.95   1000 1e-03 1e-05  3 300000 
11  3776691.3    40125.27   1000 1e-03 1e-05  6 100000 
12  1376691.3 -2359874.73   1000 1e-03 1e-05  6 300000 
13  3113823.9   534671.44   1000 1e-03 1e-03  3 100000 
14   713823.9 -1865328.56   1000 1e-03 1e-03  3 300000 
15  9658994.9  4361360.25   1000 1e-03 1e-03  6 100000 
16  7258994.9  1961360.25   1000 1e-03 1e-03  6 300000 
17  3159252.2   605035.09 100000 1e-03 1e-03  3 100000 
18   759252.2 -1794964.91 100000 1e-03 1e-03  3 300000 
19  9749993.1  4502226.99 100000 1e-03 1e-03  6 100000 
20  7349993.1  2102226.99 100000 1e-03 1e-03  6 300000 
21   192603.5 -1596785.99 100000 1e-03 1e-05  3 100000 
22 -2207396.5 -3996785.99 100000 1e-03 1e-05  3 300000 
23  3816472.0    98408.07 100000 1e-03 1e-05  6 100000 
24  1416472.0 -2301591.93 100000 1e-03 1e-05  6 300000 
25  2894927.1   286057.96 100000 1e-04 1e-03  3 100000 
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26   494927.1 -2113942.04 100000 1e-04 1e-03  3 300000 
27  9221350.4  3864280.94 100000 1e-04 1e-03  6 100000 
28  6821350.4  1464280.94 100000 1e-04 1e-03  6 300000 
29 -1023886.4 -2323035.36 100000 1e-04 1e-05  3 100000 
30 -3423886.4 -4723035.36 100000 1e-04 1e-05  3 300000 
31  1383382.8 -1354164.10 100000 1e-04 1e-05  6 100000 
32 -1016617.2 -3754164.10 100000 1e-04 1e-05  6 300000 
 
> fit1 <- lm(y1npv ~ khf*ksrv*km+pg*hcost, data=ani) 
> fit1 
 

%  Fit and summarize linear model with interactions between petrophysical properties 

and economic parameters 

 
Call: 
lm(formula = y1npv ~ khf * ksrv * km + pg * hcost, data = ani) 
 
Coefficients: 
(Intercept)          khf         ksrv           km           pg        
hcost   
 -4.590e+06    2.544e-01    1.199e+09    3.924e+09    8.367e+05   -
1.200e+01   
   khf:ksrv       khf:km      ksrv:km     pg:hcost  khf:ksrv:km   
  1.807e+02    9.742e+02   -6.514e+11   -3.125e-11   -3.425e+05   
 
>  require(MASS) 
Loading required package: MASS 
> step<-stepAIC(fit1, direction="both") 

 

% Perform stepwise regression, go through models and select model with the highest 

AIC value 

 
Start:  AIC=874.7 
y1npv ~ khf * ksrv * km + pg * hcost 
 
              Df Sum of Sq        RSS   AIC 
- pg:hcost     1         0 1.1959e+13 872.7 
- khf:ksrv:km  1 456425619 1.1960e+13 872.7 
<none>                     1.1959e+13 874.7 
 
Step:  AIC=872.7 
y1npv ~ khf + ksrv + km + pg + hcost + khf:ksrv + khf:km + ksrv:km +  
    khf:ksrv:km 
 
              Df  Sum of Sq        RSS    AIC 
- khf:ksrv:km  1 4.5643e+08 1.1960e+13 870.70 
<none>                      1.1959e+13 872.70 
+ pg:hcost     1 0.0000e+00 1.1959e+13 874.70 
- hcost        1 4.6080e+13 5.8039e+13 921.25 
- pg           1 5.0404e+13 6.2363e+13 923.54 
 
Step:  AIC=870.7 
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y1npv ~ khf + ksrv + km + pg + hcost + khf:ksrv + khf:km + ksrv:km 
 
              Df  Sum of Sq        RSS    AIC 
- khf:ksrv     1 9.5863e+05 1.1960e+13 868.70 
- khf:km       1 1.1863e+10 1.1972e+13 868.73 
- ksrv:km      1 7.1006e+11 1.2670e+13 870.54 
<none>                      1.1960e+13 870.70 
+ khf:ksrv:km  1 4.5643e+08 1.1959e+13 872.70 
+ pg:hcost     1 0.0000e+00 1.1960e+13 872.70 
- hcost        1 4.6080e+13 5.8040e+13 919.25 
- pg           1 5.0404e+13 6.2364e+13 921.54 
 
Step:  AIC=868.7 
y1npv ~ khf + ksrv + km + pg + hcost + khf:km + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- khf:km    1 1.1863e+10 1.1972e+13 866.73 
- ksrv:km   1 7.1006e+11 1.2670e+13 868.54 
<none>                   1.1960e+13 868.70 
+ khf:ksrv  1 9.5863e+05 1.1960e+13 870.70 
+ pg:hcost  1 0.0000e+00 1.1960e+13 870.70 
- hcost     1 4.6080e+13 5.8040e+13 917.25 
- pg        1 5.0404e+13 6.2364e+13 919.54 
 
Step:  AIC=866.73 
y1npv ~ khf + ksrv + km + pg + hcost + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- khf       1 4.4181e+10 1.2016e+13 864.85 
- ksrv:km   1 7.1006e+11 1.2682e+13 866.57 
<none>                   1.1972e+13 866.73 
+ khf:km    1 1.1863e+10 1.1960e+13 868.70 
+ khf:ksrv  1 9.5863e+05 1.1972e+13 868.73 
+ pg:hcost  1 0.0000e+00 1.1972e+13 868.73 
- hcost     1 4.6080e+13 5.8052e+13 915.25 
- pg        1 5.0404e+13 6.2375e+13 917.55 
 
Step:  AIC=864.85 
y1npv ~ ksrv + km + pg + hcost + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- ksrv:km   1 7.1006e+11 1.2726e+13 864.69 
<none>                   1.2016e+13 864.85 
+ khf       1 4.4181e+10 1.1972e+13 866.73 
+ pg:hcost  1 0.0000e+00 1.2016e+13 866.85 
- hcost     1 4.6080e+13 5.8096e+13 913.28 
- pg        1 5.0404e+13 6.2420e+13 915.57 
 
Step:  AIC=864.69 
y1npv ~ ksrv + km + pg + hcost 
 
           Df  Sum of Sq        RSS    AIC 
<none>                   1.2726e+13 864.69 
+ ksrv:km   1 7.1006e+11 1.2016e+13 864.85 
+ khf       1 4.4181e+10 1.2682e+13 866.57 
+ pg:hcost  1 0.0000e+00 1.2726e+13 866.69 
- ksrv      1 4.9121e+12 1.7638e+13 873.13 
- hcost     1 4.6080e+13 5.8806e+13 911.66 
- pg        1 5.0404e+13 6.3130e+13 913.94 
- km        1 1.0195e+14 1.1467e+14 933.04 
> step$anova 
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% Perform anova test 

 
Stepwise Model Path  
Analysis of Deviance Table 
 
Initial Model: 
y1npv ~ khf * ksrv * km + pg * hcost 
 
Final Model: 
y1npv ~ ksrv + km + pg + hcost 
 
 
           Step Df     Deviance Resid. Df   Resid. Dev      AIC 
1                                      21 1.195947e+13 874.6979 
2    - pg:hcost  1 1.953125e-03        22 1.195947e+13 872.6979 
3 - khf:ksrv:km  1 4.564256e+08        23 1.195993e+13 870.6991 
4    - khf:ksrv  1 9.586326e+05        24 1.195993e+13 868.6991 
5      - khf:km  1 1.186309e+10        25 1.197179e+13 866.7308 
6         - khf  1 4.418072e+10        26 1.201597e+13 864.8487 
7     - ksrv:km  1 7.100565e+11        27 1.272603e+13 864.6859 
 
> newfit1 <- lm(y1npv ~ ksrv+km+pg+hcost, data=ani) 
> anova(newfit1) 
 
Analysis of Variance Table 
 
Response: y1npv 
          Df     Sum Sq    Mean Sq F value    Pr(>F)     
ksrv       1 4.9121e+12 4.9121e+12  10.422   0.00326 **  
km         1 1.0195e+14 1.0195e+14 216.294 2.073e-14 *** 
pg         1 5.0404e+13 5.0404e+13 106.938 6.880e-11 *** 
hcost      1 4.6080e+13 4.6080e+13  97.765 1.808e-10 *** 
Residuals 27 1.2726e+13 4.7133e+11                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> fit2 <- lm(npv ~ khf*ksrv*km+pg*hcost, data=ani) 
> fit2 
 
Call: 
lm(formula = npv ~ khf * ksrv * km + pg * hcost, data = ani) 
 
Coefficients: 
(Intercept)          khf         ksrv           km           pg        
hcost   
 -5.982e+06    1.600e-01    2.030e+09    6.044e+09    1.574e+06   -
1.200e+01   
   khf:ksrv       khf:km      ksrv:km     pg:hcost  khf:ksrv:km   
  1.374e+02    5.381e+02   -1.588e+12    2.083e-11   -1.465e+05   
 
> step<-stepAIC(fit2, direction="both") 
Start:  AIC=898.35 
npv ~ khf * ksrv * km + pg * hcost 
 
              Df Sum of Sq        RSS    AIC 
- pg:hcost     1         0 2.5045e+13 896.35 
- khf:ksrv:km  1  83492127 2.5045e+13 896.35 
<none>                     2.5045e+13 898.35 
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Step:  AIC=896.35 
npv ~ khf + ksrv + km + pg + hcost + khf:ksrv + khf:km + ksrv:km +  
    khf:ksrv:km 
 
              Df  Sum of Sq        RSS    AIC 
- khf:ksrv:km  1 8.3492e+07 2.5045e+13 894.35 
<none>                      2.5045e+13 896.35 
+ pg:hcost     1 0.0000e+00 2.5045e+13 898.35 
- hcost        1 4.6080e+13 7.1125e+13 927.75 
- pg           1 1.7835e+14 2.0340e+14 961.37 
 
Step:  AIC=894.35 
npv ~ khf + ksrv + km + pg + hcost + khf:ksrv + khf:km + ksrv:km 
 
              Df  Sum of Sq        RSS    AIC 
- khf:ksrv     1 6.3848e+07 2.5046e+13 892.35 
- khf:km       1 4.0223e+09 2.5049e+13 892.36 
<none>                      2.5045e+13 894.35 
+ khf:ksrv:km  1 8.3492e+07 2.5045e+13 896.35 
+ pg:hcost     1 0.0000e+00 2.5045e+13 896.35 
- ksrv:km      1 4.0433e+12 2.9089e+13 897.14 
- hcost        1 4.6080e+13 7.1125e+13 925.75 
- pg           1 1.7835e+14 2.0340e+14 959.37 
 
Step:  AIC=892.35 
npv ~ khf + ksrv + km + pg + hcost + khf:km + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- khf:km    1 4.0223e+09 2.5050e+13 890.36 
<none>                   2.5046e+13 892.35 
+ khf:ksrv  1 6.3848e+07 2.5045e+13 894.35 
+ pg:hcost  1 0.0000e+00 2.5046e+13 894.35 
- ksrv:km   1 4.0433e+12 2.9089e+13 895.14 
- hcost     1 4.6080e+13 7.1126e+13 923.75 
- pg        1 1.7835e+14 2.0340e+14 957.37 
 
Step:  AIC=890.36 
npv ~ khf + ksrv + km + pg + hcost + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- khf       1 1.7072e+10 2.5067e+13 888.38 
<none>                   2.5050e+13 890.36 
+ khf:km    1 4.0223e+09 2.5046e+13 892.35 
+ khf:ksrv  1 6.3848e+07 2.5049e+13 892.36 
+ pg:hcost  1 0.0000e+00 2.5050e+13 892.36 
- ksrv:km   1 4.0433e+12 2.9093e+13 893.14 
- hcost     1 4.6080e+13 7.1130e+13 921.75 
- pg        1 1.7835e+14 2.0340e+14 955.37 
 
Step:  AIC=888.38 
npv ~ ksrv + km + pg + hcost + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
<none>                   2.5067e+13 888.38 
+ khf       1 1.7072e+10 2.5050e+13 890.36 
+ pg:hcost  1 0.0000e+00 2.5067e+13 890.38 
- ksrv:km   1 4.0433e+12 2.9110e+13 891.16 
- hcost     1 4.6080e+13 7.1147e+13 919.76 
- pg        1 1.7835e+14 2.0342e+14 953.38 
> step$anova 
Stepwise Model Path  
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Analysis of Deviance Table 
 
Initial Model: 
npv ~ khf * ksrv * km + pg * hcost 
 
Final Model: 
npv ~ ksrv + km + pg + hcost + ksrv:km 
 
 
           Step Df     Deviance Resid. Df   Resid. Dev      AIC 
1                                      21 2.504535e+13 898.3512 
2    - pg:hcost  1 7.812500e-03        22 2.504535e+13 896.3512 
3 - khf:ksrv:km  1 8.349213e+07        23 2.504544e+13 894.3513 
4    - khf:ksrv  1 6.384772e+07        24 2.504550e+13 892.3513 
5      - khf:km  1 4.022333e+09        25 2.504952e+13 890.3565 
6         - khf  1 1.707240e+10        26 2.506660e+13 888.3783 
 
> newfit2 <- lm(npv ~ ksrv+km+pg+hcost, data=ani) 
> anova(newfit2) 
Analysis of Variance Table 
 
Response: npv 
          Df     Sum Sq    Mean Sq  F value    Pr(>F)     
ksrv       1 9.8180e+12 9.8180e+12   9.1064  0.005502 **  
km         1 2.1151e+14 2.1151e+14 196.1761 6.681e-14 *** 
pg         1 1.7835e+14 1.7835e+14 165.4248 4.995e-13 *** 
hcost      1 4.6080e+13 4.6080e+13  42.7401 5.199e-07 *** 
Residuals 27 2.9110e+13 1.0781e+12                        
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
> summary(newfit1) 
 
Call: 
lm(formula = y1npv ~ ksrv + km + pg + hcost, data = ani) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-942821 -501230  109958  586573  743052  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.392e+06  4.935e+05  -8.899 1.63e-09 *** 
ksrv         8.707e+08  2.697e+08   3.228  0.00326 **  
km           3.606e+09  2.452e+08  14.707 2.07e-14 *** 
pg           8.367e+05  8.091e+04  10.341 6.88e-11 *** 
hcost       -1.200e+01  1.214e+00  -9.888 1.81e-10 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 686500 on 27 degrees of freedom 
Multiple R-squared:  0.9411,    Adjusted R-squared:  0.9324  
F-statistic: 107.9 on 4 and 27 DF,  p-value: 3.414e-16 
 
> summary(newfit2) 
 
Call: 
lm(formula = npv ~ ksrv + km + pg + hcost, data = ani) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
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-1527420  -657759   171839   832788  1192361  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -5.531e+06  7.464e+05  -7.411 5.69e-08 *** 
ksrv         1.231e+09  4.079e+08   3.018   0.0055 **  
km           5.194e+09  3.708e+08  14.006 6.68e-14 *** 
pg           1.574e+06  1.224e+05  12.862 5.00e-13 *** 
hcost       -1.200e+01  1.836e+00  -6.538 5.20e-07 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 1038000 on 27 degrees of freedom 
Multiple R-squared:  0.9387,    Adjusted R-squared:  0.9296  
F-statistic: 103.4 on 4 and 27 DF,  p-value: 5.844e-16 
 
 

Statistical Analysis of Isotropic DoE Results 

 
> iso <- read.csv("iso.csv") 
> iso 
   ksrv    km pg  hcost        npv       npv1 
1    50 1e-05  3 100000   689791.6 -1113713.1 
2    50 1e-05  3 300000 -1710208.4 -3513713.1 
3    50 1e-05  6 100000  4810283.2  1064124.7 
4    50 1e-05  6 300000  2410283.2 -1335875.3 
5    50 1e-03  3 100000  3858054.1  1500437.2 
6    50 1e-03  3 300000  1458054.1  -899562.8 
7    50 1e-03  6 100000 11146799.6  6292429.0 
8    50 1e-03  6 300000  8746799.6  3892429.0 
9   200 1e-05  3 100000   704675.2 -1085210.0 
10  200 1e-05  3 300000 -1695324.8 -3485210.0 
11  200 1e-05  6 100000  4840051.0  1121132.6 
12  200 1e-05  6 300000  2440051.0 -1278867.4 
13  200 1e-03  3 100000  3886776.5  1572599.8 
14  200 1e-03  3 300000  1486776.5  -827400.2 
15  200 1e-03  6 100000 11204245.0  6436755.3 
16  200 1e-03  6 300000  8804245.0  4036755.3 
 
> fit3 <- lm(npv1 ~ ksrv*km+pg*hcost, data=iso) 
> fit3 
 
Call: 
lm(formula = npv1 ~ ksrv * km + pg * hcost, data = iso) 
 
Coefficients: 
(Intercept)         ksrv           km           pg        hcost      
ksrv:km     pg:hcost   
 -4.144e+06    2.806e+02    3.939e+09    1.170e+06   -1.200e+01    
4.410e+05   -1.250e-10   
 
>  step<-stepAIC(fit3, direction="both") 
Start:  AIC=442.76 
npv1 ~ ksrv * km + pg * hcost 
 
           Df  Sum of Sq        RSS    AIC 
- pg:hcost  1          0 6.9514e+12 440.76 
- ksrv:km   1 4288798509 6.9557e+12 440.77 
<none>                   6.9514e+12 442.76 
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Step:  AIC=440.76 
npv1 ~ ksrv + km + pg + hcost + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- ksrv:km   1 4.2888e+09 6.9557e+12 438.77 
<none>                   6.9514e+12 440.76 
+ pg:hcost  1 0.0000e+00 6.9514e+12 442.76 
- hcost     1 2.3040e+13 2.9991e+13 462.15 
- pg        1 4.9283e+13 5.6234e+13 472.21 
 
Step:  AIC=438.77 
npv1 ~ ksrv + km + pg + hcost 
 
           Df  Sum of Sq        RSS    AIC 
- ksrv      1 2.2801e+10 6.9785e+12 436.82 
<none>                   6.9557e+12 438.77 
+ ksrv:km   1 4.2888e+09 6.9514e+12 440.76 
+ pg:hcost  1 0.0000e+00 6.9557e+12 440.77 
- hcost     1 2.3040e+13 2.9996e+13 460.15 
- pg        1 4.9283e+13 5.6238e+13 470.21 
- km        1 6.2536e+13 6.9491e+13 473.59 
 
Step:  AIC=436.82 
npv1 ~ km + pg + hcost 
 
           Df  Sum of Sq        RSS    AIC 
<none>                   6.9785e+12 436.82 
+ ksrv      1 2.2801e+10 6.9557e+12 438.77 
+ pg:hcost  1 0.0000e+00 6.9785e+12 438.82 
- hcost     1 2.3040e+13 3.0019e+13 458.16 
- pg        1 4.9283e+13 5.6261e+13 468.22 
- km        1 6.2536e+13 6.9514e+13 471.60 
> step$anova 
Stepwise Model Path  
Analysis of Deviance Table 
 
Initial Model: 
npv1 ~ ksrv * km + pg * hcost 
 
Final Model: 
npv1 ~ km + pg + hcost 
 
 
        Step Df     Deviance Resid. Df   Resid. Dev      AIC 
1                                    9 6.951419e+12 442.7581 
2 - pg:hcost  1 1.953125e-03        10 6.951419e+12 440.7581 
3  - ksrv:km  1 4.288799e+09        11 6.955708e+12 438.7679 
4     - ksrv  1 2.280096e+10        12 6.978509e+12 436.8203 
> newfit3 <- lm(npv1 ~ km+pg+hcost, data=iso) 
> summary(newfit3) 
 
Call: 
lm(formula = npv1 ~ km + pg + hcost, data = iso) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-695077 -644744  -18041  651870  731159  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
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(Intercept) -4.108e+06  7.394e+05  -5.557 0.000124 *** 
km           3.994e+09  3.851e+08  10.370 2.42e-07 *** 
pg           1.170e+06  1.271e+05   9.206 8.69e-07 *** 
hcost       -1.200e+01  1.906e+00  -6.294 3.98e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 762600 on 12 degrees of freedom 
Multiple R-squared:  0.9508,    Adjusted R-squared:  0.9385  
F-statistic:  77.3 on 3 and 12 DF,  p-value: 4.071e-08 
 
> fit4 <- lm(npv ~ ksrv*km+pg*hcost, data=iso) 
> fit4 
 
Call: 
lm(formula = npv ~ ksrv * km + pg * hcost, data = iso) 
 
Coefficients: 
(Intercept)         ksrv           km           pg        hcost      
ksrv:km     pg:hcost   
 -4.679e+06    1.474e+02    4.793e+09    1.905e+06   -1.200e+01    
1.398e+05   -7.917e-10   
 
>  step<-stepAIC(fit4, direction="both") 
Start:  AIC=448.71 
npv ~ ksrv * km + pg * hcost 
 
           Df Sum of Sq        RSS    AIC 
- pg:hcost  1         0 1.0082e+13 446.71 
- ksrv:km   1 430904263 1.0083e+13 446.71 
<none>                  1.0082e+13 448.71 
 
Step:  AIC=446.71 
npv ~ ksrv + km + pg + hcost + ksrv:km 
 
           Df  Sum of Sq        RSS    AIC 
- ksrv:km   1 4.3090e+08 1.0083e+13 444.71 
<none>                   1.0082e+13 446.71 
+ pg:hcost  1 0.0000e+00 1.0082e+13 448.71 
- hcost     1 2.3040e+13 3.3122e+13 463.74 
- pg        1 1.3067e+14 1.4075e+14 486.89 
 
Step:  AIC=444.71 
npv ~ ksrv + km + pg + hcost 
 
           Df  Sum of Sq        RSS    AIC 
- ksrv      1 4.2784e+09 1.0087e+13 442.71 
<none>                   1.0083e+13 444.71 
+ ksrv:km   1 4.3090e+08 1.0082e+13 446.71 
+ pg:hcost  1 0.0000e+00 1.0083e+13 446.71 
- hcost     1 2.3040e+13 3.3123e+13 461.74 
- km        1 9.0736e+13 1.0082e+14 479.55 
- pg        1 1.3067e+14 1.4075e+14 484.89 
 
Step:  AIC=442.71 
npv ~ km + pg + hcost 
 
           Df  Sum of Sq        RSS    AIC 
<none>                   1.0087e+13 442.71 
+ ksrv      1 4.2784e+09 1.0083e+13 444.71 
+ pg:hcost  1 0.0000e+00 1.0087e+13 444.71 



 

133 

 

- hcost     1 2.3040e+13 3.3127e+13 459.74 
- km        1 9.0736e+13 1.0082e+14 477.55 
- pg        1 1.3067e+14 1.4076e+14 482.89 
> step$anova 
Stepwise Model Path  
Analysis of Deviance Table 
 
Initial Model: 
npv ~ ksrv * km + pg * hcost 
 
Final Model: 
npv ~ km + pg + hcost 
 
 
        Step Df   Deviance Resid. Df   Resid. Dev      AIC 
1                                  9 1.008225e+13 448.7073 
2 - pg:hcost  1          0        10 1.008225e+13 446.7073 
3  - ksrv:km  1  430904263        11 1.008268e+13 444.7080 
4     - ksrv  1 4278420007        12 1.008696e+13 442.7148 
> newfit4 <- lm(npv ~ km+pg+hcost, data=iso) 
> summary(newfit4) 
 
Call: 
lm(formula = npv ~ km + pg + hcost, data = iso) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-808677 -786613   -6919  790072  822516  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.660e+06  8.889e+05  -5.242 0.000207 *** 
km           4.811e+09  4.630e+08  10.390 2.37e-07 *** 
pg           1.905e+06  1.528e+05  12.468 3.15e-08 *** 
hcost       -1.200e+01  2.292e+00  -5.235 0.000209 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 916800 on 12 degrees of freedom 
Multiple R-squared:  0.9604,    Adjusted R-squared:  0.9505  
F-statistic: 96.93 on 3 and 12 DF,  p-value: 1.117e-08 


