
  

 ROCK CLASSIFICATION IN ORGANIC SHALE BASED ON PETROPHYSICAL 

AND ELASTIC ROCK PROPERTIES CALCULATED FROM WELL LOGS 

 

 

A Thesis 

by 

ALVARO A. ARANIBAR FERNANDEZ  

 

 Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 

 

 Chair of Committee,  Zoya Heidari 
Committee Members, Walter B. Ayers 
 Michael Pope 
Head of Department, A. Daniel Hill 

 

December 2014 

 

Major Subject: Petroleum Engineering 

 

Copyright 2014 Alvaro A. Aranibar Fernandez



ii 

 

ABSTRACT 

 

This thesis introduces a rock classification technique for organic-rich shale that 

takes into account well-log-based estimates of compositional, petrophysical, and elastic 

properties. 

Well logs and laboratory core measurements were used to calculate depth-by-depth 

petrophysical and compositional properties of three wells in two organic-rich formations. 

Then, either acoustic well logs or effective medium theories helped estimate formation 

elastic properties. Estimates of total porosity, Total Organic Content (TOC), fluid 

saturation, volumetric concentrations of mineral constituents, and elastic properties 

facilitated identification of different rock classes, using an unsupervised artificial neural 

network. A good rock classification technique improves (a) petrophysical evaluation of 

organic-rich shale reservoirs, (b) fluid flow characterization, (c) detection of productive 

zones for fracturing jobs, and (d) prediction of hydraulic fracturing and stimulation 

effectiveness. 

Then, a rock classification method was then applied to the field examples from the 

Haynesville shale and Woodford shales for rock classification. The estimates of porosity, 

TOC, bulk modulus, shear modulus, and volumetric concentrations of minerals were 

obtained and then validated by comparing them to laboratory measurements. These 

calculated properties and well logs served as inputs to an artificial neural network to 

identify the different rock classes in both formations. Finally, the rock classes enabled 

identification of good candidate zones for fracture stimulation. 
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1. INTRODUCTION  

 

Projected hydrocarbon recovery from organic-shale reservoirs has increased, from 

2% to estimates of about 50%, over the past decade due to technological developments 

such as horizontal drilling and hydraulic fracturing (King 2010). The ability to unlock the 

hydrocarbon reserves in organic-shale reservoirs has transformed these formations into 

economical performers in the oil and gas industry. Hydrocarbon production from organic-

rich shale, however, due to their complex nature, remains challenging. Permeabilities in 

the nano-Darcy range and low porosity make hydraulic fracturing essential to achieve the 

best connection between the reservoir and the wellbore in these formations. An optimal 

completion design, which includes zone selection based on petrophysical, compositional, 

and elastic properties, results in an efficient and economical response of the formation to 

fracture stimulation. Oil companies can reduce completion costs by minimizing the 

number of fractures necessary to complete a well successfully. Therefore, the challenge 

of identifying the best intervals to complete has made petrophysical and compositional 

evaluation in organic-rich shale critical for the petroleum industry. 

Rock classification enhances fracture treatment design for successful field 

development in organic-rich formations. Mineral composition and elastic properties are 

important parameters to take into account when selecting the best candidate zones for 

fracture treatment. However, characterization of the rapid variation of petrophysical, 

compositional, and elastic properties in organic-rich shale remains challenging. Well logs 
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can be applied for the assessment of the properties of these formations at large depth 

intervals compared to core measurements. 

 

1.1 Background 

 

1.1.1 Multi-mineral analysis 

Petrophysical evaluation of organic-rich shale remains a major technical challenge 

in the petroleum industry due to heterogeneous lithology, complex pore structure, and 

insufficient procedures for performing laboratory measurements in unconventional 

reservoir core samples (Ramirez et al. 2011).  

Traditionally, empirical correlations have been the standard for compositional and 

petrophysical evaluation in organic-shale reservoirs; however, these techniques lack 

physical basis and are not always reliable for predicting the volumetric concentrations of 

minerals (Singh 2013). Furthermore, researchers validate well-log interpretation methods 

using laboratory core measurements. A study by Passey et al. (2010), describes the 

inconsistency of petrophysical properties measured by commercial laboratories. These 

uncertainties in the conventional calibration approach, in addition to the complexity of 

these reservoirs, carry over into in the well-log-based assessment of petrophysical 

properties, thus increasing the error in compositional and petrophysical estimates.  

Advances in well-log inversion techniques enable a comprehensive formation 

evaluation in organic-shale reservoirs. New techniques use non-linear inversion methods 

for joint interpretation of well logs to estimate TOC, water saturation, total porosity, and 
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volumetric concentrations of minerals (Heidari et al. 2012). An important advantage of 

these techniques is that they minimize the calibration effort against core measurements by 

using the well-log measurements to calibrate the outcomes.  

 

1.1.2 Assessment of elastic properties in organic-rich shale 

Elastic rock properties (e.g., Young’s Modulus and Poisson’s Ratio) provide 

information about the brittleness of a formation and its reaction to fracture treatment. 

Poisson’s Ratio and Young’s Modulus reflect the possibility of fracture initiation and the 

ability of the rock to maintain a fracture, respectively (Rickman et al. 2008). Gupta et al. 

(2012) and King (2010) also discuss the influence of Young’s Modulus and Poisson’s 

Ratio on the ability of the rock to be fractured. Both authors are in agreement with 

Rickman et al. (2008) on the possible increased fracture potential of rocks with high 

Young’s Modulus and low Poisson’s Ratio. Accounting for the elastic properties in 

organic-rich shale improves the reliability of rock classification and, thus, the assessment 

of economic viability of production sites.  

Researchers apply acoustic velocity measurements to estimate elastic properties of 

the rock.  However, the application of these measurements might not be reliable in the 

case of complex organic-rich shale (Jiang and Spikes 2013). Furthermore, compressional- 

and shear-wave velocity logs are affected by borehole conditions, as well as by abnormally 

high pore pressures in geopressured organic-rich shale (e.g., the Haynesville shale). 

Elevated pore pressures cause a slow-down in the first compressional arrival that does not 

represent the true elastic properties of the formation (Parker et al. 2009).  
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Montaut et al. (2013) explain the advantages of using effective medium theories 

for the assessment of elastic properties in organic- rich formations. These techniques take 

into account volumetric concentrations and shapes of different rock inclusions (i.e., 

minerals and pores); taking the mineral shapes into account gives a more accurate 

representation of the rock. Avseth et al. (2010) indicated that inclusion models such as the 

self-consistent approximation (SCA) and the differential effective medium (DEM) 

accurately approximate the rock as an elastic solid containing dry or fluid-filled inclusion 

that represents the pore space. Work by Guo et al. (2013) and Jiang and Spikes (2011) 

support that the SCA appropriately approximates bulk and shear moduli in organic-rich 

shale by taking into account multiple mineralogical phases, as well as their shapes and 

spatial distributions. An opposing idea describes that the elastic properties obtained from 

the SCA model might not be reliable in complex formations (Hornby et al. 1994). 

However, the authors reported that the SCA model, when combined with the Differential 

Effective Medium (DEM) model, improves estimates of elastic properties in complex 

formations because it starts by creating an interconnected porous media; then, inclusion 

are added to construct a model that represents the formation accurately (Hornby et al. 

1994). In this thesis I perform a comparison between five widely used models in industry 

to determine which one represents the formations studied in this thesis the best. 
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1.1.3 Rock classification 

Conventional rock classification techniques (Leverett 1941; Pittman 1992; 

Amaefule et al. 1993) are mainly dependent on porosity-permeability correlations 

obtained from core measurements. These techniques are applicable in carbonate and 

sandstone formations with a broad range of porosity and permeability, however, they are 

not reliable in organic- rich formations due to the narrower range of porosity and 

permeability and the significant uncertainty in laboratory measurements of these two 

properties (Sondergeld et al. 2010; Passey et al. 2010).On the other hand well-log based 

rock classification techniques have been shown useful as they provided continuous 

vertical measurements of the formation properties. The distinct responses of the well logs 

can be used for rock classification, these were define as electro facies (Serra and Abbott 

1980).  

A different approach to perform rock classification using well logs includes 

application of statistical methods (Ye et al. 1998; Lee and Datta-Gupta 2002; Silva et al. 

2002). These statistical methods, however, require the data to follow a multivariate-normal 

distribution to identify accurately distinct rock classes. Organic-rich shale because of their 

heterogeneity, normally do not follow a multivariate-normal distribution; therefore, the 

application of these models may not result in an accurate rock classification. A more 

suitable method for well-log-based rock classification combines self-organizing maps 

with discriminant analysis to give results with over 80% accuracy in carbonate reservoirs 

(Skalinski et al. 2005) 
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Researchers have developed newer techniques for rock classification in organic-

shale reservoirs since 2010; however, most of these approaches are strongly dependent on 

costly and hard-to-obtain core measurements (Gupta et al. 2012; Kale et al. 2010; Hammes 

et al. 2011; Marino et al. 2013). Furthermore, due to the complexity of organic-rich shale, 

hundreds of core samples can be required to detect the heterogeneity and capture variant 

rock features in the formation (e.g. porosity, elastic properties, and fluid saturation). For 

example, Gupta et al. (2012), classified 300 core samples from six different wells in the 

Woodford shale using Total Organic Content (TOC), porosity, and concentration of clay 

and quartz to classify rock types. A similar method for rock classification used 800 core 

samples in the Barnett shale (Kale et al. 2010). Yet another cumbersome core database 

from over 300 wells in the Haynesville shale was required to determine its lithofacies 

(Hammes and Frébourg 2012).  

Recently, well-log based techniques have been developed to perform rock 

classification in organic-shale reservoirs (Popielski et al. 2012; Gamero-Diaz et al. 2013; 

Potma et al. 2013). Well logs work well for rock classification in organic- rich formations 

because they provide physical measurements of the formation, with a high vertical 

sampling resolution, compared to core measurements. Furthermore, the application of well 

logs enables a timely rock classification. To reduce shoulder bed effect on well logs, 

statistical techniques, such as k-means cluster analysis and factor analysis on conventional 

well logs, combined with well-log inversion, contribute to rock classification (Popielski 

et al. 2012). Popielski et al. (2012) explored whether well logs prove effective to perform 

rock classification in organic-shale reservoirs, and whether the inversion would improve 
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the results by minimizing the shoulder bed effect. The authors classified rock types in the 

Barnett and the Haynesville shales based on bed-by-bed estimates of total porosity, 

volumetric concentrations of kerogen and minerals, and fluid saturations from nonlinear 

joint inversion of conventional well logs. This technique showed that well logs can be 

applied to perform rock classification in organic-rich shale. 

Gamero-Diaz et al. (2013) introduced a rock classification method that takes into 

account volumetric concentrations of minerals. The authors used a combination of core- 

and log-based mineralogical relationships to classify the following three primary groups: 

siliceous mudstone, carbonate-rich mudstone, and argillaceous mudstone. Further work 

determined the sub-classes based on the relative mineral concentration in these three 

groups. A unique relationship between lithofacies and elastic properties (bulk and shear 

moduli) was discovered within the Horn River Basin formation, and researchers applied 

this relationship to invert directly the lithofacies from acoustic logs (Potma 2013). None 

of the rock classifications performed in organic- rich formations include elastic properties, 

which are important factors to determine the capability of the rock to be fractured.  This 

factor must be considered when selecting production intervals in organic-shale reservoirs 

(Jarvie 2007; Mullen 2010; Britt and Schoeffler 2009). 

 

1.2 Statement of the problem 

 

Parameters conventionally used for sweet-spot selection, such as hydrocarbon 

content and porosity, are not sufficient in organic- rich formations. It is possible to have a 
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well with a good porosity and a high hydrocarbon content but minimal hydrocarbon 

production due to hydraulic fracture failure (Gupta et al. 2012). Since fracture stimulation 

is such an important part of the production and completion process in these reservoirs, 

rock mechanical properties and mineralogy must be taken into account when optimizing 

the well completion design. Furthermore, a brittle organic- rich formation is likely to be 

naturally fractured and respond in a positive manner to fracture stimulation, whereas a 

ductile formation might not be capable of maintaining a fracture. Hence, production from 

ductile formations is extremely challenging and uneconomical. 

Rock mechanical properties, Young’s Modulus and Poisson’s Ratio in particular, 

and the mineralogy of the formation provide valuable information regarding brittleness of 

the formation and its fracture treatment potential; therefore, these properties must be taken 

into account when determining production intervals.  

Rock classification proves powerful when selecting the best production intervals. 

This thesis introduces a well-log-based rock classification method for organic-rich shale 

reservoirs that takes into account well-log-based estimates of petrophysical, 

compositional, and elastic properties of the formation. The first part of the thesis applies 

well logs and core measurements in an integrated interpretation to estimate water 

saturation, porosity, and volumetric concentrations of minerals to field examples in two 

formations the Haynesville shale and one in the Woodford shale. Then, effective medium 

models facilitated the assessment of elastic properties in both formations. The results from 

five models used to estimate elastic properties were compared to core measurements to 

determine which model provides the most accurate results when compared to laboratory 
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tri-axial core measurements. Finally, well-log-based estimates of petrophysical, 

compositional, and elastic properties, as well as direct application of well logs, served as 

inputs for rock classification. 

 

1.3 Research objectives 

 

The main objective of this thesis is to develop a reliable petrophysical rock 

classification method in organic-rich shale using well logs. Implementing an efficient rock 

classification using well logs improves (a) petrophysical evaluation of organic shale 

reservoirs, (b) fluid flow characterization, (c) detection of productive zones for fracturing 

jobs, and (d) prediction of fracturing and stimulation performances. An advantage that 

well-log-based rock classification has over conventional core-based methods is the 

capability to provide faster evaluation. Moreover, this approach provides depth-by-depth 

petrophysical and compositional evaluation for the entire well, not just at selected 

intervals, as in core-based experiments. The depth-by-depth evaluation of the formation 

increases the efficiency during operations, especially when selecting intervals to fracture.   

The secondary objective of this thesis is to identify the most accurate effective 

medium method to estimate elastic properties in organic-rich shale using well logs. 

Assessment of elastic properties is an important step for successful rock classification 

because elastic properties impact the ability of the rock to start and maintain a fracture. To 

achieve this objective, five different models were applied to the three wells studied in this 

thesis to calculate bulk and shear modulus. Finally, this thesis compares laboratory 



 

10 

 

 

measurements of bulk and shear moduli to the results of the applied models to determine 

which one yields results with lowest relative error.  

 

1.4 Outline of the thesis 

 

Following this introductory section, Section 2 describes the method used in this 

research. Sections 3, 4, and 5 describe in detail how the method set forth  in Section 2 was 

applied to two wells in the Haynesville shale and to one well in the Woodford shale. 

Finally, Section 6 summarizes the main findings of this thesis and presents final 

conclusions and suggestion for future work.  
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2. METHOD 

 

2.1 Well-log interpretation 

 

First, core X-Ray Diffraction (XRD) measurements highlighted existing minerals 

in the formation to delineate the compositional model for the formation. The determined 

compositional model includes non-clay minerals, clay minerals, organic matter, and total 

pore space (Ambrose et al. 2010; Quirein et al. 2010).  Then, a joint inversion of the well 

logs determined compositional and petrophysical properties of the formation. The well 

logs used include photoelectric factor (PEF), bulk density, neutron porosity, 

compressional- and shear-wave slowness, and Elemental Capture Spectroscopy (ECS). 

TechLog (Mark of Schlumberger), a commercial multi-mineral solver, facilitated 

assessment of total porosity, water saturation, and volumetric/weight concentrations of 

minerals. Application of constraints based on XRD measurements and calculated 

volumetric concentration of kerogen minimized the non-uniqueness in the inversion 

process.  

 

2.2 Assessment of elastic properties 

 

Poisson’s Ratio and Young’s Modulus are two important mechanical properties to 

consider when developing an organic-rich shale where a fracturing job will most likely be 

necessary for economical production because they are chief indicators of a chosen zone’s 
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sustainability for fracture treatment. Poisson’s ratio corresponds to the ability of the matrix 

to fracture, and Young’s modulus reflects the capability of the matrix to keep the fracture 

open (Rickman et al. 2008).  To calculate Poisson’s Ratio and Young’s Modulus, 

researchers first estimate formation’s effective bulk and shear moduli.  

In this thesis, five models ranging from empirical rock-physics relationships to 

differential effective medium theories were applied to estimate bulk and shear moduli, as 

follows (a) empirical correlations based on acoustic-wave velocity measurements, (b) 

Backus Average, (c) SCA model, (d) DEM model, and (e) DEM-SCA combined method. 

Both the SCA and DEM models were applied using two different approaches, wet and 

dry, to make a total of seven distinct approaches. The inputs to these models include well 

logs, well-log-based calculated properties (e.g. volumetric concentrations of mineral 

components, porosity, and water saturation), the properties of the individual components 

of the matrix, and the geometric details of the shapes and spatial distributions of the 

components.  Finally, the reliability of each of the five models chosen for the assessment 

of elastic moduli was investigated. The following sub-sections explain in detail the 

application of each of the five models. 

 

2.2.1 Empirical correlations 

An industry-standard technique to estimate the effective bulk and shear moduli 

directly from well logs is the application of Vp and Vs through the empirical correlations 

given by 
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   (1) 

and 

   (2) 

  

where Vp is the compressional-wave velocity, Vs is the shear-wave velocity, μ is the shear 

modulus, K is the bulk modulus, and ρ is the bulk density of the saturated rock (Mavko et 

al. 2009). This model uses acoustic well logs (e.g. compressional- and shear-wave 

slowness) to determine the formation elastic properties. These approach do not provide 

the flexibility to model complex shales in terms of pore and grain shapes or compositions. 

 

2.2.2 Backus Average 

The Backus Average model was introduced to describe rock elastic moduli in 

layered media (Backus 1962). The Backus Average model is useful in layered formations 

where the rock mechanical behavior is transversely isotropic because it estimates the 

vertical and horizontal elastic moduli by taking into account volumetric concentrations of 

each rock constituent. For comparison reasons, this thesis only considers the vertical 

outputs for bulk and shear moduli. This model calculates the vertical properties by 

performing a weighted average using the volumetric concentrations of minerals and the 

individual mineral properties. 
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2.2.3 Self-Consistent Approximation (SCA) 

The SCA is an inclusion-based model that represents the matrix grains and pores 

as idealized shapes. The model assumes that isolated mineral grains and pore inclusions 

with various aspect ratios in the rock are imbedded in an infinite background matrix of 

unknown properties (Mavko et al. 2009). The effective bulk and shear moduli of the rock 

are calculated by solving the coupled equations 

   (3) 

and 

 * *
1

( )Q 0,N i
i i SCi

X  


    (4) 

where N is the total number of rock components, i refers to each of the individual rock 

components, Xi is the volumetric concentration of the rock component i, Ki and μi are bulk 

and shear moduli of the rock component i, respectively, and K*
sc and μ*

sc are the effective 

bulk and shear moduli of the rock, respectively. The factors P*
i and Q *i correspond to the 

shape geometry of the rock component i (Berryman 1995).  

This thesis research applied the SCA model using two different approaches. The 

first approach, which will be referred to as the “Wet SCA model,” includes both fluids 

and minerals as inclusions of the rock when solving for K*
sc and μ*

sc. In the second 

approach, referred to herein as the “Dry SCA model,” the SCA calculates dry bulk 

modulus of the formation by including only the minerals into the model when solving for 

K*
sc and μ*

sc. Then, to estimate the properties of the saturated rock, it is necessary to take 

into account the effect of the fluids. The Gassmann fluid substitution method (Gassmann 

* *
1

( ) 0,N i
i i SCi

X K K P


 
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1951; Biot 1956) served this purpose. The Gassmann fluid substitution uses the following 

equations to transform the dry moduli into saturated moduli: 

 
( )

dry fsat

m sat m dry m f

K KK
K K K K K K

 
  

 

  (5) 

and  

   (6) 

where Ksat is the saturated bulk modulus, Kdry is the dry bulk modulus (calculated K*), Km 

is the matrix bulk modulus, Kf is the pore-filling fluid bulk modulus, ϕ is the porosity and 

μsat is the saturated shear modulus. Both Km and Kf were calculated from the properties of 

the individual components of the matrix. 

The SCA model assumes that the mineral inclusion are idealized inclusion shapes. 

Furthermore, it assumes that the formation is isotropic, linear, and elastic. 

 

2.2.4 Differential Effective Medium (DEM) 

The DEM is an inclusion-based model that incrementally adds the mineral 

inclusions to a host matrix. This process assumes that each new mineral inclusion added 

to the model will displace the host matrix. This method not only takes into account the 

shapes of the added minerals and the final volume concentrations of the constituents, but 

also the order in which they are added.  

The DEM method calculates the effective bulk and shear moduli K*
sc and μ*

sc by 

solving a system of coupled ordinary differential equations (Norris 1989; Zimmerman 

1991b; Mavko et al. 2009; Berryman et al. 1992) given by 

,sat dry  , 
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   (7) 

and 

 * * (*i)(1 ) ( ) ( )Q ( ),i
dy y y
dy

         (8) 

where y is the volumetric concentration of the rock component i, Ki and μi are bulk and 

shear moduli for the rock component i, respectively, and K* and μ* are the effective bulk 

and shear moduli of the rock, respectively. The factors Pi
* and Qi

*correspond to the shape 

geometry of the rock component i (Berryman 1995).  

 Similar to the SCA model, the DEM model was used in two different approaches in 

this thesis. As a first approach, the “Wet DEM model,” the fluids in the formation, along 

with the different minerals, were considered as inclusions in the matrix to calculate the 

elastic properties of the saturated rock. Then, as a second approach, the “Dry DEM 

model,” the properties of the dry matrix were calculated using the DEM model. Then, 

using Gassmann’s fluid substitution (Gassmann 1951), the saturated bulk and shear 

moduli are calculated. Similarly to the SCA model, the DEM model assumes idealized 

ellipsoidal inclusion shapes and an isotropic, linear, and elastic formation. In the DEM 

model the process of incrementally adding inclusions to the matrix is a thought experiment 

and should not be taken to provide an accurate description of the true evolution of rock 

porosity (Mavko et al. 2009). 

 

 

 

* * (*i)(1 ) ( ) ( ) ( ),i
dy K y K K P y
dy

    
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2.2.5 SCA-DEM combination 

Finally, a combined SCA and DEM model, introduced by Hornby et al. (1994), 

was investigated for the assessment of elastic moduli. This model first creates a host 

material that includes a host mineral and porosity using Equations 3 and 4 from the SCA 

model. Then, to calculate the effective bulk and shear moduli of the rock, small volumes 

of the host matrix are removed and replaced by the other components of the matrix using 

Equations 7 and 8 from DEM model. As in the stand-alone DEM model, the order in 

which the minerals are replaced will have an impact in the final result. Finally, the matrix, 

including all the components, is built. Gassmann’s substitution (Gassmann 1951) 

incorporates the water and hydrocarbon saturations to obtain the bulk and shear moduli of 

the saturated rock. Since this model is a combination of the SCA and the DEM models the 

assumptions of ellipsoidal inclusion shapes and an isotropic, linear, and elastic formation 

remain for this model. 

 

2.2.6 Young’s Modulus and Poison’s Ratio 

From the previously calculated bulk and shear moduli, Young’s Modulus “E” and 

Poisson’s Ratio “ν” can be calculates using Equations 9 and 10, respectively, as follows:  

 

                                                        (9) 

and 

                                              (10) 
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3
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K
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where K and μ are the calculated bulk and shear moduli, respectively. Young’s Modulus 

“E” and Poisson’s Ratio “ν” are correlated with the ability of a formation to start and 

maintain a fracture.  

 

2.3 Brittleness index 

 

The brittleness index determines the more likely intervals of the formation to 

successfully fracture based on Young’s Modulus and Poisson’s Ratio. Knowing this 

variable can be useful when determining which intervals to complete with a horizontal 

well, since a brittle rock is more likely to successfully fracture than a ductile rock (Gupta 

et al. 2012; Jarvie et al. 2007; Rickman et al. 2008). The rock brittleness is calculated 

using the previously calculated Young’s Modulus and Poisson’s Ratio with a model 

introduced by Rickman et al. (2008). One of the advantages of using well-log-based 

calculation of elastic properties over core measurements is that it is more common to have 

well logs across the entire interval of interest as well as the bounding rock layers (Rickman 

et al. 2008) 

The effect of Young’s Modulus and Poisson’s Ratio on the brittleness is not 

similar; therefore they are unitized using their maximum and minimum values by the 

following equations:  
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   (11) 

and 

   (12) 

where Emax and Emin are the maximum and the minimum Young’s Moduli, respectively, 

and ʋmax and ʋmin are the maximum and the minimum Poisson’s Ratios, respectively. EBritt 

and ʋBritt are the unitized Young’s Modulus and Poisson’s Ratio, respectively. Finally, the 

brittleness index is calculated via 

  , (13) 

where BrittIndex is the brittleness index expressed as a percent. Brittleness index is distinct 

to each well; therefore it is necessary to be careful when comparing two different wells. 

A 60% brittleness index in one well can be distinct from a 60% brittleness index in a 

different well, depending on the variation of the parameters in each well. 

 

2.4 Rock classification 

 

An unsupervised artificial neural network determined the different rock classes in 

the formations studied in this thesis. An unsupervised neural network creates a Self-

Organizing Map (SOM), also known as Kohonen map, to classify the input data into 

different clusters or categories.  The SOM takes the input data and classifies it under a 

chosen number of neurons equal to the desired number of clusters (Kohonen 1989). Each 

min
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of these neurons competes for each individual input data point; the neuron that resembles 

that input the most wins and the data point is moved closer to the winning neuron. After 

multiple iterations, the neural network SOM stabilizes with each neuron at the center of 

its cluster (Saggaf et al. 2001). Then, to finally classify the data points into categories, the 

unsupervised neural network requires a cluster analysis algorithm. In this thesis, the fuzzy 

clustering algorithm was used. Fuzzy clustering allows the different data points to belong 

to more than one cluster with different levels of membership. This process allows data 

points on the edge of two clusters to belong to both of them instead of forcing them to 

belong to one cluster or the other; the algorithm assigns a level of belonging between 0 

and 1 to the data point and assigns it to the cluster with the highest level of belonging. 

This thesis applies two separate rock classifications with two forms of input; the 

first one uses well logs as inputs, whereas the second one uses well-log-based estimates 

of petrophysical, compositional, and elastic properties as inputs. The artificial neural 

network ultimately defines the rock classes as a final output. 
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3. ASSESSMENT OF PETROPHYSICAL AND  

COMPOSITIONAL PROPERTIES 

 

This section describes how I applied the method described in Section 2.1 to three 

field examples including two wells in the Haynesville shale and one well in the Woodford 

shale. The petrophysical evaluation contributed to calculate the volumetric concentrations 

of minerals, TOC concentration (wt. %), porosity, and water and hydrocarbon saturations 

in each field example. Core measurements served to validate and calibrate the 

petrophysical models.  

 

3.1 Introduction 

 

A well-log interpretation was performed on field datasets acquired from three 

different wells. The first well (Well No. 1) is located in the Eastern region of the 

Haynesville shale, the second well (Well No. 2) is located in the Western region of the 

Haynesville shale, and the third well (Well No. 3) is located in the Woodford shale in 

Oklahoma. For the rest of this thesis, these wells will be referred to as follows: Well No.1, 

Well No. 2, and Well No. 3, respectively. 

The joint well-log interpretation included photoelectric factor (PEF), apparent 

resistivity, neutron porosity, bulk density, and Elemental Capture Spectroscopy (ECS) 

well logs, and core measurements to estimate petrophysical and compositional properties 

of the formation. XRD measurements served as the basis for determining the matrix 
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components. Grouping minerals with similar properties together minimized the number of 

unknown parameters, and, consequently, the non-uniqueness of the results. The matrix 

mineral components consisted of clay minerals, non-clay minerals, organic content, gas, 

and water. The organic matter was calculated as TOC weight concentration and then 

converted into volumetric concentration of kerogen by taking into account the organic 

maturity of the formation (Passey et al. 1990; Quirein et al. 2010). To further decrease the 

non-uniqueness of the results from the joint inversion of well logs, the following two 

constraints refined the well-log inversion (1) a pre- calculated volumetric concentration of 

kerogen and (2) a correlation of weight concentrations between different minerals based 

on XRD measurements. The resulting outputs of the joint inversion included estimates of 

porosity, fluid saturations, and volumetric concentrations of clay and non-clay minerals in 

all three wells studied. 

 

3.2 An introduction to geology of the Haynesville shale and Woodford shales 

 

3.2.1 The Haynesville shale 

The upper Jurassic organic-rich Haynesville shale is currently one of the most 

productive shale-gas plays in the United States (Hammes et al. 2011). It extends through 

part of northeast Texas and northwest Louisiana and is surrounded by the Bossier 

formation from above and Smackover limestone from below. The Haynesville shale is 

composed of clay, organic matter, siliceous silt, and carbonates. Although the carbonate 

fraction is mainly calcite, in certain layers, calcite is replaced by dolomite, resulting in 
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dolomite being the dominant carbonate mineral. The porosity in this formation ranges 

from 8% - 12% and TOC varies from 1% - 8.5% (Hammes et al. 2011). The carbonate-

rich facies contain TOC concentrations (wt.%) of under 2%. Organic matter is 

predominantly type II/III kerogen, with an average thermal maturity of 1.25% Ro (vitrinite 

reflectance). Development of the Haynesville shale challenges operators because of its 

highly laminated nature and heterogeneity of reservoir properties.  

 

3.2.2 The Woodford shale 

The upper Devonian Woodford shale is located in Oklahoma in the Anadarko 

basin. It extends from Dewey County to the southwest into Caddo County and northwest 

into Blaine and Dewey counties. Most of the Anadarko play lies in Canadian County, 

Oklahoma, hence the name Woodford shale.  

The Woodford shale contains abundant marine organic matter and biogenic silica 

(Comer 2008; Kvale and Coffrey 2010). The true vertical depth ranges from 10,500 ft. 

(3,200 m), in the north east to 15,400 ft. (4,694 m) in the south west, with shales ranging 

from 100-300 ft. (30.5-91.5 m). The gas or condensate window in the Woodford shale 

occurs between 1.1 and 1.4 vitrine reflectance (Cardott 2010). The porosity ranges from 

2% - 10%, and the TOC varies from 0% - 14% (Gupta et al. 2012). The Woodford shale 

features a complex structural geology and mineralogy, which makes horizontal drilling a 

slow process that wears out bits quickly. 
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3.3 Compositional and petrophysical model 

 

This research applied Core X-Ray Diffraction (XRD) to define the minerals 

present in the different formations and determine the compositional models. The following 

two procedures reduced the number of unknowns in the model: (1) minerals with similar 

physical properties (e.g. illite-smectite, mixed-layer clay, and pure illite) were grouped as 

one unknown, (2) minerals with less than 2.5% volumetric concentration were removed 

from the model because the challenge on accurately estimating mineral concentrations that 

low using multi-mineral inversion. The final minerals in the compositional model included 

non-clay minerals (calcite, dolomite, feldspar, quartz, and pyrite), clay minerals (chlorite 

and illite), kerogen, and liquids (gas and water) (Figure 1). The same compositional model 

was applied for all three wells.  

 

  

Figure 1: Assumed compositional model used for the well-log interpretation. 
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To minimize the non-uniqueness of the model, this research applied constraints 

based on linear correlations between minerals’ XRD measurements. The applied 

constrains were distinct for each well. 

The cross-plot between the volumetric concentration of plagioclase and quartz 

allowed for a linear correlation to be determined between these minerals that then served 

a constraint to the multi-mineral inversion. This correlation was found in both of the 

Haynesville shale wells. Figures 2 and 3 show the results from the cross-plot and the 

regressions used as constraints in the multi-mineral analysis in Well No. 1 and Well No. 

2, respectively. 

 

 

 

Figure 2: Correlation between the core XRD volumetric concentration of quartz and 
plagioclase in the Haynesville shale (Well No. 1). 
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Figure 3: Correlation between the core XRD volumetric concentration of quartz and 
plagioclase in the Haynesville shale (Well No. 2). 

 

 

A linear correlation between illite and chlorite occurred in both Well No.2 and 

Well No.3. Figure 4 and 5 show, respectively, the results of the cross-plot and the 

regressions applied as constraints in the model. In the case of Well No. 3, four data points 

followed a different linear correlation. These four points belonged to an interval composed 

of over 50% volumetric concentration of illite vs. the 20% volumetric concentration of 

illite in the rest of the well interval. 
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Figure 4: Correlation between the core XRD volumetric concentration of chlorite and 

illite in the Haynesville shale well (Well No. 2). 

 

 

 

Figure 5: Correlation between the core XRD volumetric concentration of chlorite and 

illite in the Woodford shale well (Well No. 3). 
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3.4 Total Organic Content (TOC) calculation 

 

A depth-by-depth TOC concentration (wt.%) was calculated for each well in this 

study. For both wells in the Haynesville shale Passey’s Method (Passey et al. 1990) was 

used. On the other hand three different methods were used to estimate the TOC 

concentration (wt.%) in the Woodford shale (Well No. 3), because the conventional 

Passey’s method may not be reliable due to the presence of high maturity kerogen in this 

well. The methods used in the Woodford shale well were (a) Passey’s Method, (b) Density 

Correlation method, and (c) Uranium Correlation method. 

 

3.4.1 Passey’s method 

This research applied Passey’s method to calculate the TOC concentration (wt.%) 

in the Haynesville shale wells and as the first method to calculate the TOC concentration 

(wt.%) in the Woodford shale well. First, ∆logR was calculated using the compressional 

slowness and the deep resistivity logs by applying the formula  

 logR log 0.02 (  ),baseline
baseline

R t t
R

 
     

 
  (14) 

where R is the deep resistivity and ∆t is the compressional-wave slowness. Rbaseline is the 

baseline of deep resistivity log measurements and ∆tbaseline is the baseline of 

compressional-wave slowness measurements. These baselines are determined in a non-

source rock with minimal organic richness interval where both well-log curves overlap 

with. An overview of the Passey’s method is shown in Figure 6.  
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Then, Equation 15 was used to calculate the-depth by-depth TOC,  

,                           (15) 

where LOM is the level of organic metamorphism. C is called Passey’s correction 

multiplier, it can be determined from core data. For both Well No. 1 and Well No. 2 in the 

Haynesville shale, this constant was assumed to be 1. On the other hand, because the 

kerogen in Well No. 3 in the Woodford shale is over mature, core measurements 

determined this constant to be 3.  

 

 

 

Figure 6: Field example of the ∆logR method. Tracks from left to right include, Track 1: 
Depth, Track 2: Compressional slowness, Track 3: Apparent deep resistivity, and Track 
4: Separation between the two curves (the gray shaded area) is the ∆logR. 

   2.297 0.1688logR 10 LOMTOC C  
  

∆logR 
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3.4.2 Density correlation method 

The density correlation method, the second method applied to Well No. 3 in the 

Woodford shale, begins with the creation of a cross-plot between the core bulk density 

and the core TOC wt. %. Then, a linear regression to correlate these two properties the 

best given by Equation 16 was found between the two properties.  

   (16) 

where ρ is the core bulk density. Figure 7 shows the cross-plot of bulk density vs. core 

TOC wt. % and the linear regression equation used to calculate TOC concentration (wt.%) 

in Well No. 3. 

 

 

 

Figure 7: Core TOC vs. core bulk density cross-plot and linear regression used to find 

the correlation between both properties. 
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3.4.3 Uranium correlation method 

The uranium correlation method served as the third method to calculate TOC in 

Well No. 3. A cross-plot between core TOC wt. % vs. uranium parts per million (ppm), 

obtained from the spectral gamma ray log, was generated. Then, as in the density method, 

a linear correlation occurred between these two properties. From this regression, the TOC 

was obtained in the well given by 

   0.1485   1.1087TOC U   . (17) 

Figure 8 shows the cross-plot of the core TOC vs. uranium ppm and the linear 

regression used. 

 

 

 

Figure 8: Core TOC vs. uranium concentration from spectral gamma ray cross-plot and 

linear regression used to find the correlation between both properties. 
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3.4.4 TOC method selection in the Woodford shale 

Following the calculations of TOC concentration (wt.%) in Well No.3 using three 

distinct methods, this research compared the results against TOC concentration (wt.%) 

core measurement (Figure 9).  

 

Figure 9: Comparison of Passey’s, density, and uranium TOC models against core 

measurements. 
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This comparison revealed that the output from the Density Correlation method 

provides the most accurate results when the calculated TOC was compared to TOC 

obtained from laboratory core measurements with relative error under 9%. Therefore, this 

method takes precedence for the rest of this thesis. 

 Finally, after calculating the TOC concentration (wt.%) and validating it with core 

measurements in all three wells, the volumetric concentration of kerogen was calculated 

from the weight concentration of TOC. The volumetric concentration of kerogen served 

as a constraint in the multi-mineral analysis. 

 

3.5 Multi-mineral analysis 

 

Well-log inputs for the multi-mineral model, included conventional quad-combo 

and ECS logs. These well logs include Caliper, Gamma Ray (GR), apparent resistivity, 

bulk density, neutron porosity photoelectric factor (PEF), Compressional- and Shear- 

wave velocities, and ECS (Figure 10). The objective of this inversion was to obtain the 

volumetric concentrations minerals, the total porosity, and water saturation.  

The model proved to be underdetermined; therefore, the solution given by the 

inversion was non-unique. To make the model evenly determined and reduce the non-

uniqueness of the solution, two different sets of constraints were applied to the inversion 

model. First, the previously described plagioclase-quartz and the chlorite-illite constraints 

were applied to the each of the wells to which they applied. Then, the previously calculated 

volumetric concentration of kerogen was applied as a constraint for the inversion model. 
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Figure 10: Example of the conventional quad-combo logs used in the three wells in this 
study.  Tracks from left to right include, Track 1: Depth, Track 2: Gamma ray and caliper, 
Track 3: Apparent resistivity, and Track 4: Neutron porosity and bulk density, Track 5: 
Photoelectric factor, and Track 6: Shear- and compressional-wave slowness. 
 
 

 

To calculate water saturations the multi-mineral analysis used the Dual Water 

model. This model was selected because the formations studied in this thesis contains clay 

bound water and this model accounts for effect of clay-bound water in the formation 



 

35 

 

 

(Clavier et al. 1984).  Tables 1 and 2 summarize the assumed Archie’s parameters and 

fluid and formation properties used for well-log interpretation. 

 

 

 

 

 

 

 

Table 1: Summary of assumed Archie’s parameters and fluid and formation properties in the 
Haynesville shale. 

Variable Value Units 
Winsauer factor in Archie’s equation, a 1.00 ( ) 
Archie’s porosity exponent, m 2.40 ( ) 
Archie’s saturation exponent, n 2.00 ( ) 
Connate-water salt concentration 200 kppm, NaCl 
In situ water density 1.05 g/cm3 
In situ gas density 0.19 g/cm3 
In situ kerogen density 1.3 g/cm3 
Formation temperature 132 °C 

Table 2: Summary of assumed Archie’s parameters and fluid and formation properties in the 
Woodford shale. 

Variable Value Units 

Winsauer factor in Archie’s equation, a 1.00 ( ) 

Archie’s porosity exponent, m 1.67 ( ) 

Archie’s saturation exponent, n 2.15 ( ) 

Connate-water salt concentration 160 kppm NaCl 

In situ water density 1.0 g/cm3 

In situ gas density 0.1 g/cm3 

In situ kerogen density 1.3 g/cm3 

Formation temperature 105 °C 
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3.6 Results 

 

 This section presents the results from the multi-mineral analysis applied to the 

three wells. The multi-mineral analysis calculated TOC concentration (wt.%), water 

saturation, total porosity, and volumetric concentrations of minerals. The results for the 

two Haynesville shale wells (Well No.1 and Well No.2), and the Woodford shale (Well 

No.3) appear in Figures 11, 12, and 13, respectively. Core data was also plotted along the 

results to validate each of the models. A comparison of the XRD core data (Track 11) and 

the outcomes of the multi-mineral inversion (Track 10) shows that the models accurately 

represent the mineralogy of the formation in all three cases. Furthermore, the estimates of 

TOC concentration (wt.%), water saturation, and total porosity (Tracks 7, 8, and 9, 

respectively) were plotted along core measurements for validation. The calculated average 

relative errors between core measurements and multi-mineral model outputs of TOC 

concentration (wt.%), water saturation, and total porosity in all three wells. The relative 

errors in estimates of TOC concentration (wt.%), water saturation, and total porosity were 

10%, 9%, and 7%, respectively in Well No. 1, 10%, 9%, and 9%, respectively in Well No. 

2, and 8%, 9%, and 10%, respectively, in Well No. 3 
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Figure 11: Conventional well logs and estimates of petrophysical and compositional 
properties in Well No. 1. Tracks from left to right include, Track 1: Depth; Tracks 2-6: 
Caliper gamma ray, apparent resistivity, neutron porosity (in water-filled limestone 
porosity units), bulk density, PEF, and shear- and compressional-wave slowness; Track 7-
9: well-log-based estimates of water saturation and porosity, TOC, compared to the 
corresponding core measurements (blue, black, and red dots); Track 10: Volumetric 
concentrations of minerals calculated using well logs; Track 11: XRD core measurements. 
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Figure 12: Conventional well logs and estimates of petrophysical and compositional 
properties in Well No. 2. Tracks from left to right include, Track 1: depth; Tracks 2-6: 
Caliper gamma ray, apparent resistivity, neutron porosity (in water-filled limestone 
porosity units), bulk density, PEF, and shear- and compressional-wave slowness; Track 7-
9: Well-log-based estimates of water saturation and porosity, TOC, compared to the 
corresponding core measurements (blue, black, and red dots); Track 10: Volumetric 
concentrations of minerals calculated using well logs; Track 11: XRD core measurements. 
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Figure 13: Conventional well logs and estimates of petrophysical and compositional 
properties in Well No. 3. Tracks from left to right include, Track 1: Depth; Tracks 2-6: 
Caliper gamma ray, apparent resistivity, neutron porosity (in water-filled limestone 
porosity units), bulk density, PEF, and shear- and compressional-wave slowness; Track 
7-9: Well-log-based estimates of water saturation and porosity, TOC, compared to the 
corresponding core measurements (blue, black, and red dots); Track 10: Volumetric 
concentrations of minerals calculated using well logs; Track 11: XRD core 
measurements. 
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4. ASSESSMENT OF ELASTIC PROPERTIES 

 

This section describes the application of the method set forth in Section 2.2 to all 

three wells. Calculated bulk and shear moduli were used to determine Young’s Modulus 

and Poisson’s ration, which subsequently were used to determine the depth-by-depth 

brittleness index in the three wells. 

 

4.1 Assessment of well-log-based bulk and shear moduli 

 

After developing the compositional and petrophysical model, and validating it with 

core measurements, the depth-by-depth effective bulk and shear moduli of the rock was 

approximated using: (a) empirical correlations based on acoustic-wave velocity 

measurements, (b) Backus Average, (c) SCA model, (d) DEM model, and (e) DEM-SCA 

combined method, each of these methods uses different properties as inputs. The empirical 

equations use the compressional- and shear- wave slowness measured by the quad-combo 

logging tools as input. The Backus Average, on the other hand, uses as inputs the 

volumetric concentrations of minerals and the individual mineral bulk and shear moduli 

of these minerals. The Rock Physics Handbook by Mavko et al. (2009) provided the 

individual mineral bulk and shear values, and the multi-mineral analysis described in 

Section 4 provided the volumetric concentrations of minerals. Finally, the SCA, DEM, 

and SCA-DEM combination, denominated inclusion-based models, use as inputs the 
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individual minerals bulk and shear moduli, the volumetric concentrations of minerals, and 

the geometric details of the shapes and spatial distributions of the mineral components. 

The geometric shapes  and the aspect ratios for each rock constituent for the 

inclusion-based models were set based on the observations of core Scanning Electron 

Microscope (SEM) images and previous geologic studies on the Haynesville shale (Curtis 

et al. 2010; Hammes et al. 2011). For stiffer rock components (e.g., quartz), spherical 

shapes were used. On the other hand, penny-crack shapes were assigned to the softer 

components (e.g., illite). The reservoir fluids were assumed to be present in penny-cracks 

or oval-shaped pores. All the minerals and fluid had only one assigned shape and aspect 

ratio with the exception of calcite which, after looking at the SEM images, it was 

determined that two shapes and aspect ratios were required to represent accurately the 

presence of calcite in these formations. Tables 3 and 4 summarize the shapes and aspect 

ratios selected for each of the individual minerals. 

 

 

 

 

 

Table 3: Mineral Inclusion Aspect Ratios 
Calcite Chlorite Dolomite Illite Kerogen  Feldspar Pyrite Quartz 
1/0.01 0.1 1 0.1 0.01 1 1 1 

Table 4: Mineral Inclusion Geometrical Shapes 
Calcite Chlorite Dolomite Illite Kerogen  Feldspar Pyrite Quartz 

Sphere/Penny 
Crack Sphere Sphere Penny 

Crack 
Penny 
Crack Sphere Penny 

Crack Sphere 
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4.2 Laboratory measurements 

 

After estimating bulk and shear moduli using the selected models in all three wells, 

this research process carried out laboratory experiments to calculate mechanical 

properties. Core samples for tri-axial measurements were available in the both of the 

Haynesville shale wells. The tri-axial measurements were carried out using the GCTS Tri-

axial System RTX-1500 shown (Figure 14) at the Rock Mechanics Laboratory in the 

Harold Vance Department of Petroleum Engineering at Texas A&M University. This 

system has an axial load capacity of 1500 kN, and a hydrostatic pressure capacity of 137 

MPa; the hydrostatic pressure was provided by hydraulic oil DTE-25. The pore and 

overburden pressures in the Haynesville shale range from 65 - 70 MPa and 80 - 90 MPa, 

respectively.   

Two different experimental procedures were performed under drained conditions 

and room temperature on core samples drilled perpendicularly to the vertical axis of 

symmetry in the Haynesville shale. This research, used a tri-axial rock system to calculate 

the bulk modulus. In this experiment, core plugs were loaded hydrostatically from an 

initial confining pressure of 5 MPa to 45 MPa, at a constant rate of 0.75 MPa/min. This 

pressure induced a volumetric change in the samples. Then, to determine bulk modulus, 

the slope that represents the rate of change of the confining pressure with respect to the 

volumetric strain was used, and is given by 
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   (18) 

where K is the bulk modulus, σ’c is the confining hydrostatic pressure, and εν is the 

volumetric strain. 

 

 

 

Figure 14: Tri-axial system used to measure bulk and shear moduli in the laboratory. 
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A second set of experiments calculated shear modulus. For this case, the core 

samples were loaded under tri-axial conditions. Then, the samples were loaded uniaxially 

at a constant strain rate of 0.5 %/min, while the confining pressure was held constant. In 

this case, a constant hydrostatic pressure corresponding to the integrated pressure with 

depth and density was used. The core plugs were loaded up to a maximum axial strain of 

0.25 mm/mm. From this experiment, the Young’s Modulus measurement can be expressed 

by  

 
'

,d

a

SE






  (19) 

where E is Young’s Modulus, Sd is the deviatory stress, and εa is the axial strain. Finally, 

the obtained Young’s Modulus was combined with the previously calculated bulk 

modulus and used to estimate shear modulus using the following expression: 

 3 .
9

KE
K E

 


  (20) 

where μ is Poisson’s Ratio, E is Young’s Modulus, and K is the previously calculated bulk 

modulus 

The laboratory measurements of bulk and shear moduli were used to determine the 

accuracy of the different models to estimate elastic properties. The comparison allowed 

the selection of the most accurate model to estimate bulk and shear moduli in the 

formations studied. 

 

 

 

, 
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4.3 Model comparison against core measurements 

 

 The estimates of bulk and shear moduli of both wells in the Haynesville shale 

(Well No.1 and Well No. 2) were compared against laboratory measurements to determine 

the most accurate model to estimate elastic properties in this formation. The shear modulus 

results of all seven approaches were compared to the laboratory shear modulus 

calculations. Table 5 shows the relative error calculation between the calculated shear 

modulus and the laboratory core measurements in Well No.1 and Well No.2.  

 

 

Table 5. Relative errors of the shear modulus estimates from different models compared to core 
measurements in Well No. 1 and Well No. 2 

Model Model results vs. core 
measurements relative error (%) 

 Well No.1 Well No.2 

Backus Average  shear modulus 64.8 33.7 

Sonic logs empirical equations shear modulus 35.7 21.4 

Wet Self-Consistent Approximation shear modulus   8.5 7.0 

Dry Self-Consistent Approximation shear modulus 14.5 7.4 

Wet Differential Effective Medium shear modulus 28.3 15.4 

Dry Differential Effective Medium shear modulus 22.8 12.6 

SCA-DEM combination shear modulus 12.6 8.0 

 

 

Table 5 shows that the inclusion-based models have an outcome relative error at 

least 10% lower than the empirical equations and the Backus Average, when compared to 
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shear moduli core measurements. Empirical equations and the Backus Average show 

relative errors of up to 35% and 64%, respectively, when comparing them to shear 

modulus core measurements. Of the three inclusion-based models, the Wet SCA 

approximation shows the least relative error when estimating shear moduli, with average 

relative error of 8.5% and 7% in Well No. 1 and Well No. 2, respectively. 

On the other hand, only the results from the SCA, DEM, and SCA-DEM 

combination models were compared to the core measurement because these models have 

the ability to estimate the dry bulk modulus of the rock and, since the laboratory 

experiments were performed under flushed conditions, comparison to dry properties was 

the most appropriate.  Table 6 shows the relative error calculation between the calculated 

bulk modulus and the calculated bulk modulus from laboratory measurements.  

 

 

 

 

The results appearing in Table 6 show that, out of the three models compared 

against core measurements, the bulk modulus calculated using the SCA model yields the 

Table 6.  Relative errors of the bulk modulus estimates from different models compared to core 
measurements in Well No. 1 and Well No. 2 

Model Model results vs. core 
measurements relative error (%) 

 Well No.1 Well No.2 

Self-Consistent Approximation dry bulk modulus   9.8 12.4 

Differential Effective Medium dry bulk modulus 11.7 17.2 

SCA-DEM combination  dry bulk modulus 13.3 15.3 
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smallest relative error of 9.8% in Well No.1 and 12.4% in Well No. 2. The comparison of 

the different approached to the laboratory core measurements determined the Wet SCA to 

be the most accurate model to estimate bulk and shear modulus in Well No.1 and Well 

No. 2. 

The dataset from the Woodford shale (Well No.3) lacked core measurements of 

elastic properties; therefore the most accurate model to estimate elastic properties could 

not be determined. The bulk and shear moduli results from all seven approaches for both 

formations were compared to identify if they follow the same trend in both formations. 

The Dry SCA model was selected as the baseline model from this comparison.  

Tables 7 and 8 show the results of the comparison for the bulk and shear moduli, 

respectively. 

 

 

 

Table 7:  Comparison of the bulk modulus results from different models to the dry self-consistent 
approximation bulk modulus in the three wells from the Haynesville shale and Woodford shales 

Model Model results vs. low-frequency SCA (%) 

 Well No.1 Well No.2 Well No.3 

Backus Average bulk  36.3 51.2 23.5 

Sonic logs empirical equations  18.6 22.4 23.0 

Wet Self-Consistent Approximation  14.0   9.0   9.3 

Wet Differential Effective Medium  18.5 18.9 19.5 

Dry Differential Effective Medium  12.4   7.7 17.4 

SCA-DEM combination 11.1   9.3 16.2 
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The results from inclusion-based models are comparable to the selected baseline 

model; these models had a variability of up to 20% when compared to the baseline model. 

On the other hand, the results from the Backus Average and the empirical equations yield 

greater errors with results straying up to 52% from the baseline model. Because Well No. 

3 lacked elastic bulk and shear measurements to compare the different models against this 

research used the Wet SCA model to calculate elastic properties in Well No. 3. 

Using Equations 9 and 10, the results from the Wet SCA were used to calculate 

the Young’s Modulus and Poisson’s Ratio in each well.  Finally, the Young’s Modulus 

and Poisson’s Ratio facilitated the calculation of the brittleness index of the formation. 

 

 

 

 

Table 8:  Comparison of the shear modulus results from different models to the dry self-consistent 
approximation shear modulus in the three wells from the Haynesville shale and Woodford shales 

Model Model results vs. low-frequency SCA (%)  

 Well No.1 Well No.2 Well  No.3 

Backus Average   52.7 51.0 23.7 

Sonic logs empirical equations  35.3 23.7 22.1 

Wet Self-Consistent Approximation  7.1 3.8   4.4 

Wet Differential Effective Medium  19.4 18.9   9.7 

Dry Differential Effective Medium  14.9 15.5   6.4 

SCA-DEM combination  13.0 7.2   5.1 
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4.4 Brittleness index 

 

Calculating a rock brittleness index using well-log-based estimates of elastic 

properties helps determine the relative brittleness of the formation. The brittleness index 

is a function of two important measures of fracture effectiveness (a) fracture initiation 

potential in a rock (Young’s Modulus) and (b) the capability of the rock to maintain a 

fracture (Poisson’s Ratio) (Rickman et al. 2008). High values of Young’s Modulus and 

low values of Poisson’s Ratio indicate a brittle rock that enables successful hydraulic 

fracturing. Using the Young’s Modulus and Poisson’s Ratio results from Section 5.3 the 

brittleness index for all three wells was calculated. 

Figure 14 shows the cross-plots of the brittleness index vs. Young’s Modulus and 

Poisson’s Ratio in (a) Haynesville shale (Well No.1), (b) Haynesville shale (Well No.2), 

and (c) Woodford shale (Well No.3).  Figure 14, shows that the increase in Poisson’s 

Ratio has a negative effect on the brittleness index and an increase in Young’s Modulus 

has a positive effect on the brittleness of the formation. Therefore, intervals containing 

high Young’s Modulus and low Poisson’s Ratio should be targeted for hydraulic fracture 

completion.  

The brittleness of the formation is also dependent on the mineralogy of the 

formation. Figure 15 shows the impact on the brittleness index of the volumetric 

concentrations of quartz and illite in (a) Haynesville shale (Well No.1), (b) Haynesville 

shale (Well No.2), and (c) Woodford shale (Well No.3). 
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Figure 15: Brittleness index vs. Poisson’s Ratio and Young’s Modulus cross-plots in: 
(a) Haynesville shale well (Well No. 1), (b) Haynesville shale well (Well No. 2), and (c) 
Woodford shale well (Well No.3). 

A 

C 
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Figure 16: Brittleness index vs. volumetric concentration of quartz and illite cross-plots 
in: (a) Haynesville shale well (Well No. 1), (b) Haynesville shale well (Well No. 2), and 
(c) Woodford shale well (Well No.3). 
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Figure 15 displays that higher quartz concentration results in an increase in the 

formation brittleness, whereas an increase in illite concentration causes a reduction in the 

formation brittleness. Therefore, intervals containing elevated volumetric concentration 

of quartz are more likely to fracture successfully. The impact of calcite and dolomite 

concentrations on the brittleness in these formations was moderate, similar to their impact 

on brittleness that other researchers have found in the Woodford and the Barnett shales 

(Gupta et al. 2012; Jarvie et al. 2007; Rickman et al. 2008). 

 

4.5 Discussion 

 

Figures 17, 18, and 19 show the results of the calculated elastic properties, bulk 

modulus, shear modulus, Young’s Modulus, Poisson’s Ratio, and brittleness index, along 

with the conventional well logs and the calculated petrophysical properties, used in Well 

No. 1, Well No. 2, and Well No. 3, respectively.   

On each of these well-log plots, Tracks 9 and 10 show the results of the estimates 

of bulk and shear moduli calculated using the Wet SCA model along with the results from 

the laboratory experiments. Track 11 shows the results of Young’s Modulus displayed in 

purple and Poisson’s, displayed in green. Finally, track 12 displays the relative brittleness 

index. The results from this section show the mechanical heterogeneity in all three wells. 

It can be observed that the brittleness of the formation changes abruptly by moving 

vertically a couple of feet. This vertical heterogeneity in the formation is the reason why 

it is important to include elastic properties when performing a rock classification. 
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Figure 17: Conventional well logs and estimates of rock elastic properties in Well No 1. 
Tracks from left to right include, Track 1: Depth; Tracks 2-6: Caliper gamma ray, apparent 
resistivity, neutron porosity (in water-filled limestone porosity units), bulk density, PEF, 
and shear- and compressional-wave slowness; Track 7: Well-log-based estimate of 
porosity, Track 8: Volumetric concentrations of minerals calculated using well logs; 
Tracks 9-11: Well-log-based estimate of bulk modulus, shear modulus, Young’s Modulus 
and Poisson’s Ratio. Track 12: Calculated brittleness index. 
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Figure 18: Conventional well logs and estimates of rock elastic properties in Well No 2. 
Tracks from left to right include, Track 1: Depth; Tracks 2-6: Caliper gamma ray, apparent 
resistivity, neutron porosity (in water-filled limestone porosity units), bulk density, PEF, 
and shear- and compressional-wave slowness; Track 7: well-log-based estimate of 
porosity, Track 8: Volumetric concentrations of minerals calculated using well logs; 
Tracks 9-11: Well-log-based estimate of bulk modulus, shear modulus, Young’s Modulus 
and Poisson’s Ratio. Track 12: Calculated brittleness index. 
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Figure 19: Conventional well logs and estimates of rock elastic properties in Well No. 3. 
Tracks from left to right include, Track 1: Depth; Tracks 2-6: Caliper gamma ray, apparent 
resistivity, neutron porosity (in water-filled limestone porosity units), bulk density, PEF, 
and shear- and compressional-wave slowness; Track 7: Well-log-based estimate of 
porosity, Track 8: Volumetric concentrations of minerals calculated using well logs; 
Tracks 9-11: Well-log-based estimate of bulk modulus, shear modulus, Young’s Modulus 
and Poisson’s Ratio. Track 12: Calculated brittleness index 
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5. ROCK CLASSIFICATION 

 

This research accomplished an automatic rock classification by applying an 

unsupervised artificial neural network with inputs of (a) well logs including: resistivity, 

bulk density, neutron porosity, PEF, and compressional slowness and (b) well-log-based 

estimates: of volumetric concentration of quartz, illite, calcite, and dolomite, total 

porosity, brittleness index, and TOC concentration (wt.%).  

Four rock classes were identified and used in the rock classification for wells in 

both the Haynesville shale (Well No.1 and Well No.2) and the Woodford shale (Well No. 

3). For Well No.1 and Well No.2 the number of rock classes was determined based on the 

previous field studies (Hammes et al. 2011). For Well No. 3, this research based its 

approach on a study of the Woodford shale by Gupta et al. (2012) to determine the number 

of rock classes in this formation.  

After applying an unsupervised artificial neural network to classify the roc, 

selecting which rock class should be identified as the most favorable rock for production 

can be challenging. A balance between advantageous mechanical properties, high TOC, 

and high porosity must be achieved. It would not be correct to select a brittle rock if the 

rock does not have any TOC concentration (wt.%), or the other way around. Figures 20, 

21, and 22 show the identified rock classes for the wells evaluated in this research. Track 

10 shows the rock classification results from well logs as inputs to the unsupervised neural 

network, and Track 11 shows the rock classification results of well-log-based calculated 
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properties of petrophysical, compositional, and elastic properties as inputs to the neural 

network.  

 

Figure 20: Rock classification in Well No. 1. Tracks from left to right include, Track 1: 
Depth; Tracks 2-6: Caliper gamma ray, apparent resistivity, neutron porosity (in water-
filled limestone porosity units), bulk density, PEF, and shear- and compressional-wave 
slowness; Tracks 7:  Well-log-based estimate of porosity, Track 8: Calculated brittleness 
index, Track 9: Volumetric concentrations of minerals calculated using well logs; Track 
10: Rock classification using well logs as input; Track 11: Rock classification using 
calculated properties as input. 
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Figure 21: Rock classification in Well No. 2. Tracks from left to right include, Track 1: 
Depth; Tracks 2-6: Caliper gamma ray, apparent resistivity, neutron porosity (in water-
filled limestone porosity units), bulk density, PEF, and shear- and compressional-wave 
slowness; Tracks 7:  Well-log-based estimate of porosity, Track 8: Calculated brittleness 
index, Track 9: Volumetric concentrations of minerals calculated using well logs; Track 
10: Rock classification using well logs as input; Track 11: Rock classification using 
calculated properties as input. 
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Figure 22: Rock classification in Well No. 3. Tracks from left to right include, Track 1: 
Depth; Tracks 2-6: Caliper gamma ray, apparent resistivity, neutron porosity (in water-
filled limestone porosity units), bulk density, PEF, and shear- and compressional-wave 
slowness; Tracks 7:  Well-log-based estimate of porosity, Track 8: Calculated brittleness 
index, Track 9: Volumetric concentrations of minerals calculated using well logs; Track 
10: Rock classification using well logs as input; Track 11: Rock classification using 
calculated properties as input. 
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Figures 23, 24, and 25 show the distribution of the unitized properties of Rock 

Class 1, Rock Class 2, Rock Class 3, and Rock Class 4 in Well No. 1, Well No. 2, and 

Well No. 3, respectively. Rock Class 1 (green) was identified as the most favorable for 

hydraulic fracturing, on the hand Rock Class 4 (red) was identified as the least favorable 

rock for hydraulic fracturing. 

 

 

Figure 23: Distribution of the unitized rock properties in the identified Rock Classes in 
Well No. 1. 

 

0

0.5

1

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity

Rock Class 3 Rock Class 4 

Rock Class 2 Rock Class 1 

0

0.5

1

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity

0

0.5

1

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity

0

0.5

1

Volumetric
Concentration

Illite

Volumetric
Concentration

Quartz

TOC

Brittleness

Volumetric
Concentration

Carbonates

Porosity



 

61 

 

 

Rock Class 1 was selected as the most favorable rock because it contains high 

porosity, high volumetric concentration of quartz, and a high brittleness index compared 

to the other rock classes. On the other hand Rock Class 4 contains the lowest porosity out 

of the four rock classes and a high volumetric concentration of carbonates. 

 

Figure 24: Distribution of the unitized rock properties in the identified Rock Classes in 
Well No. 2. 
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Rock Class 2 (blue) and Rock Class 3 (yellow) are the intermediate rock classes. 

Rock Class 2 was selected as more favorable for production than rock class 3 because it 

contains higher porosity and lower volumetric concentration of Illite compared to Rock 

Class 2. 

 

Figure 25: Distribution of the unitized rock properties in the identified Rock Classes in 
Well No. 3. 
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consistent, except in limited depth intervals. Not enough core measurements were 

available to prove the reliability of one of these approaches over the other one. However, 

having well logs as inputs to rock classification instead of calculated properties can 

provide more reliable rock classes, because of less uncertainty associated with the 

assumptions made for well-log interpretation and the estimation of elastic properties. The 

use of well logs can perform a faster classification that the use of calculated petrophysical, 

compositional, and elastic properties because neither the construction of a model nor 

calibration using core are required. 

This research compared the identified rock classes in Well No. 1 and their 

corresponding thin-section images to lithofacies that were previously described in the 

Haynesville shale (Hammes and Frébourg 2012). Rock class 1 is the most organic-rich 

rock type and, therefore, corresponds to unlaminated peloidal siliceous facies. 

An examination the thin-section images of this facies, revealed that the organic 

matter is randomly dispersed in the matrix among siliciclastic and carbonate grains. 

Furthermore, a comparison of the thin-section images showed that bioturbated siliceous 

facies is represented by Rock Class 2. The main characteristic of this facies is the apparent 

laminations of burrows and fine-grained siliceous grains, organics, carbonate, and clay. 

Rock Class 3 contains laminated peloidal siliceous facies, with a range of TOC between 

2%-4% and a high brittleness index. The characteristics of this facies, observed from thin-

section images, are organic laminae, sponge spicules, broken shells of bivalves, 

echinoderm fragments, peloids, and pellets (Hammes and Frébourg 2012). The organic-
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poor facies corresponds to Rock Class 4, with the lowest TOC among all the facies. Figure 

26 shows thin-section examples of each of the classes. 

 

 

Figure 26: Comparison of the identified rock classes to core thin-section images at 
corresponding depth.  
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6. SUMMARY AND CONCLUSIONS 

 

This section summarizes the main contributions of this work, provides the 

conclusions, and introduces recommendations for future work. The research outcomes 

fulfill the established objectives of this thesis. 

 

6.1 Summary 

 

The main objective of this thesis was to develop a well-log-based rock 

classification for organic shale reservoirs. First, this research jointly interpreted well logs 

and core measurements to develop a compositional and petrophysical model. This model 

was validated and calibrated using core measurements, and later applied to estimate the 

volumetric concentration of the minerals in the formation, the total porosity, and the water 

and hydrocarbon saturations using multi-mineral analysis. 

 Then, a study of distinct models to estimate the formation elastic properties was 

performed using seven different methods, which included (a) empirical correlations based 

on acoustic-wave velocity measurements, (b) Backus Average, (c) two approaches of the 

Self-Consistent Approximation (wet and dry), (d) two approaches of the Differential 

Effective Medium (wet and dry), and (e) DEM-SCA combined method. This research then 

compared the bulk and shear moduli of these models to tri-axial laboratory measurements. 

From this comparison, the Self-Consistent Approximation was proved to be the most 
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reliable model to estimate bulk and shear moduli in the two wells in the Haynesville shale, 

because it had the lowest relative error when compared to core measurements.  

Using Young’ Modulus and Poisson’s Ratio, the brittleness index was calculated. 

The estimated depth-by-depth brittleness index is a depth-by-depth visual tool which is 

used to determine best candidate zones for hydraulic fracture treatment.  

Finally, I used an unsupervised neural network to determine the rock classes the 

three wells studied. The inputs to the unsupervised neural network included (a) well-logs 

and (b) well-log-based estimates of compositional, petrophysical and elastic properties. 

 

6.2 Conclusions 

 

The petrophysical models built for the Haynesville shale and Woodford shales 

were calibrated and validated using core measurements. The estimates of TOC 

concentration (wt.%), water saturation, and total porosity showed errors of under 10% 

when compared to core measurements in all wells. 

The estimates of volumetric concentrations of minerals, TOC concentration 

(wt.%), and total porosity were then used to estimate elastic properties of the formation 

using seven different approaches. Inclusion-based models showed up to 40% lower error 

than empirical equations and Backus Average when compared to shear modulus 

laboratory calculations. The Self-Consistent Approximation stood out as the most accurate 

inclusion-based model to estimate elastic properties in the formations studied; it showed 

errors of under 8.5% and 12.4% when estimating shear and bulk moduli, respectively. 
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Therefore, the Self-Consistent Approximation model can be used to properly estimate 

elastic properties in the studied organic-rich formations. The research completed for this 

thesis based the identified rock classes on formation-calculated compositional, 

petrophysical, and elastic properties. The incorporation of elastic properties in the rock 

classification helped identify the formation intervals capable of fracturing and maintaining 

a fracture. The rock class recognized as the most favorable for production in all wells 

studied contained total porosity of over 8%, brittleness over 48%, and the highest TOC 

concentration (wt.%) in the target intervals. The identified rock classes in Well No. 1 and 

their corresponding thin-section images, were compared to the identified lithofacies in the 

Haynesville shale (Hammes and Frébourg 2012) to validate the results. 

An advantage of the introduced rock classification method over conventional core 

rock classification methods is its minimal dependency on core measurements, which 

makes it a faster tool for characterizing rock classes in organic-rich formations. Rock 

classification using both input datasets resulted in similar rock classes, leading to the 

conclusion that direct application of well logs can be effectively used for rock 

classification. Direct application of well logs reduces uncertainties associated with (a) the 

assumptions made for petrophysical and compositional evaluation on organic-rich 

formations and (b) the assumed rock physics models such as resistivity-porosity-saturation 

models and effective medium theories. 
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6.3 Recommendations for future work 

 

 The approach described in this thesis to estimate elastic properties is based on two 

fundamental assumptions. The first assumption considers that pore grains are treated as 

idealized ellipsoidal shapes. In reality, however, the shapes of the mineral grains are 

complex and non-uniform. Applying a variable grain aspect ratio could be used as an 

approach to take into account the inconsistency of the shapes when estimating bulk and 

shear moduli when using inclusion-based models. A comprehensive study on multiple 

high resolution Scanning Electron Microscope (SEM) images would provide a better 

understanding of individual shapes of the mineral inclusion minerals.  

The second assumption considers that the formation is isotropic. Understanding 

the anisotropy of the Young’s Moduli and Poisson’s Ratios of shales is important for 

determining the change of in-situ stress of the formation. Apart from considering the 

mechanical or elastic properties in developing the petrophysical model, the formation 

stress profile plays an important role in the optimization of completion designs. The 

assumption of isotropy is commonly used for the estimation of in-situ stress because of 

challenges in anisotropic logging measurements. Development of dipole sonic 

measurements and stress models that account for anisotropy can improve the prediction 

of stress magnitudes. Taking into account stress models can further improve the 

identification optimal zones for economic fracture treatment & production design in 

organic-rich formations. 
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The rock classes in this thesis where categorized as favorable or not favorable 

based on petrophysical properties only. To have a more complete understanding of which 

rock class is the best one for hydraulic fracturing, it would be valuable to analyze the 

production data of each well studied. Comparing the rock classes with the depths where 

the lateral wells were landed and the hydrocarbon production of each of the wells will 

improve the best rock class selection. 
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