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ABSTRACT

Entropy inequalities play a central role in proving converse coding theorems for

network information theoretic problems. This thesis studies two new aspects of en-

tropy inequalities. First, inequalities relating average joint entropies rather than

entropies over individual subsets are studied. It is shown that the closures of the

average entropy regions where the averages are over all subsets of the same size and

all sliding windows of the same size respectively are identical, implying that averag-

ing over sliding windows always suffices as far as unconstrained entropy inequalities

are concerned. Second, the existence of non-Shannon type inequalities under partial

symmetry is studied using the concepts of Shannon and non-Shannon groups. A com-

plete classification of all permutation groups over four elements is established. With

five random variables, it is shown that there are no non-Shannon type inequalities

under cyclic symmetry.
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1. INTRODUCTION

1.1 Motivation

Entropy inequalities play a central role in proving converse coding theorems for

network information-theoretic problems. An entropy inequality which has found

many applications [3, 4] in network information theory is an inequality first proved

by Han [1]. Let (Xi : i ∈ Nn) be a collection of n jointly distributed discrete random

variables, where Nn := {1, . . . , n}. For any α ∈ Nn, let

hα :=
1 n

α


∑

S⊆Nn:|S|=α

H(XS) (1.1)

be the average joint entropy, where the average is over all subsets of Nn of size α.

Han’s inequality [1] states that for any collection of n jointly distributed discrete

random variables (Xi : i ∈ Nn), we have

hn
n
≤ hn−1
n− 1

≤ · · · ≤ h1 (1.2)

i.e., the average joint entropy per element decreases monotonically with the size of

the subsets.

Another entropy inequality, which bears striking similarity to Han’s inequality, is

the so called sliding-window inequality first discovered in [2]. As shown in Figure 1.1,

consider placing the integers from Nn clockwise on a circle according to their natural

ordering. For any i ∈ Nn and α ∈ Nn, the sliding window W
(α)
i is defined as the set

of α consecutive integers starting from i and going clockwise. (So there are a total
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of n sliding windows for each α ∈ Nn.) For any α ∈ Nn, let

hα :=
1

n

n∑
i=1

H(X
W

(α)
i

) (1.3)

be the average joint entropy, where the average is over all sliding windows of size α.

The sliding-window inequality [2] states that for any collection of n jointly distributed

discrete random variables (Xi : i ∈ Nn), we have

hn
n
≤ hn−1
n− 1

≤ · · · ≤ h1 (1.4)

i.e., the average joint entropy per element decreases monotonically with the size of

the sliding windows.

As noted in [2], the total averages (1.1) can be obtained from the sliding-window

averages (1.3) via a further averaging over all permutations of Nn. Therefore, if a

(linear) entropy inequality holds for the sliding-window averages, it must also hold

for the total averages. The sliding-window inequality (1.4), however, shows that

averaging over sliding windows is both necessary and sufficient for achieving the

monotonicity of the average entropy per element. A question that remains to be

answered is whether the above sufficiency is an isolated coincidence or a universal

truth that applies to all entropy inequalities.

A central concept for systematic studies of entropy inequalities is entropy region,

which was first introduced by Yeung [5, Chapter13.1]. A length-(2n − 1) vector

h = (hS : ∅ 6= S ⊆ Nn) is said to be entropic if

hS = H(XS), ∀∅ 6= S ⊆ Nn. (1.5)

The collection of all entropic vectors is called the entropy region (over n variables)

2



and is usually denoted by Γ∗n. As discussed in [5, Chapter13.3], a length-(2n − 1)

vector b = (bS : ∅ 6= S ⊆ Nn) identifies a valid entropy inequality

∑
∅6=S⊆Nn

bSH(XS) ≥ 0 (1.6)

if and only if bth ≥ 0 is a valid inequality for every h ∈ cl(Γ∗n), the closure of Γ∗n. In

literature, this is known as the geometric view of entropy inequalities.

For n ≥ 4, the problem of characterizing cl(Γ∗n) is very challenging (and remains

open) due to the existence of the so-called non-Shannon type inequalities [6]. For-

tunately, the entropy inequalities that we consider here are concerned with average

joint entropies rather than entropies over individual subsets of Nn. Towards study-

ing inequalities for average joint entropies, we introduce the concepts of total-average

entropy region and sliding-window-average entropy region below.

A length-n vector h = (hα : α ∈ Nn) is said to be total-average entropic if

hα =
1 n

α


∑

S⊆Nn:|S|=α

H(XS), ∀α ∈ Nn (1.7)

for some collection of n jointly distributed discrete random variables (Xi : i ∈ Nn).

The collection of all total-average entropic vectors is called the total-average entropy

region. Mathematically, it is given by the total-average projection PT of Γ∗n.

Similarly, a length-n vector h = (hα : α ∈ Nn) is said to be sliding-window-

average entropic if

hα =
1

n

n∑
i=1

H(X
W

(α)
i

), ∀α ∈ Nn (1.8)

3



for some collection of n jointly distributed discrete random variables (Xi : i ∈ Nn).

The collection of all sliding-window-average entropic vectors is called the sliding-

window-average entropy region and is given by the sliding-window-average projection

PS of Γ∗n.

A main result of this thesis is to show that the closures of the above two average

entropy regions are, in fact, identical, which implies that averaging over sliding win-

dows always suffices as far as unconstrained entropy inequalities are concerned. As

an application of our result, the sliding-window inequality is immediately implied by

Han’s inequality.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we show that the

closures of the total-average entropy region and the sliding-window-average entropy

regions are identical. Our proof is based on the general concept of group-induced

symmetric projection. As a side result, we also show that there are no non-Shannon

type inequalities for average entropies. Note that this is in sharp contrast to entropies

over individual subsets of Nn, which admit an infinite collection of independent non-

Shannon type inequalities for n ≥ 4 [7].

Motivated by the concept of group-induced symmetric projection introduced in

Chapter 2, the existence of non-Shannon type inequality under partial symmetry is

discussed in Chapter 3. This naturally leads to a classification criterion for all per-

mutation groups. We present complete classification results on permutation groups

over n = 4 and cyclic groups C4 and C5.

Finally, in Chapter 4, we conclude the thesis with some remarks on possible future

directions.

4
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l

n

〈l + α− 1〉

W
(α)
l

2

α

W
(α)
1

Figure 1.1: An illustration of the sliding windows of length α when the integers
1 . . . n are circularly placed based on their natural order.
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2. ON THE AVERAGE ENTROPY REGIONS

The main result of this chapter is summarized in the following theorem.

Theorem 1. Let Γ∗n and Γn be the entropy region and the polymatroid region over

n variables, respectively, and let PT and PS be the total-average projection and the

sliding-window-average projection defined by the linear mappings:

hα =
1 n

α


∑

S⊆Nn:|S|=α

hS (2.1)

and

hα =
1

n

n∑
i=1

h
W

(α)
i

(2.2)

respectively. Then, for any integer n we have

cl(PTΓ∗n) = cl(PSΓ∗n) = PTΓn. (2.3)

As mentioned in the Introduction, the fact that the total-average entropy region

and the sliding-window-average entropy regions are identical implies that averaging

over sliding windows always suffices as far as unconstrained entropy inequalities are

concerned. The fact that both average entropy regions are identical to the total-

average projection of the polymatroid region implies that there are no non-Shannon

type inequalities for average entropies. Note that this is in sharp contrast to entropies

over individual subsets of Nn, which admit an infinite collection of independent non-

Shannon type inequalities for n ≥ 4 [7].
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The rest of the chapter is devoted to the proof of the above result. We shall begin

with the concept of group-induced symmetric projections.

2.1 Group-Induced Symmetric Projections

Let G be a group of permutations over Nn. Consider the group action on the

nonempty subsets of Nn induced by that on the elements of Nn:

g(S) = {g(a) : a ∈ S}

for any g ∈ G and ∅ 6= S ⊆ Nn. Then, the orbits of G forms a partition of all 2n− 1

nonempty subsets of Nn. For example, when G = Sn, the symmetry group over Nn,

two subsets S and S ′ are in the same orbit if and only if |S| = |S ′|.

Let O1, . . . , Om be the collection of all distinct orbits of G. For any length-(2n−1)

vector (hS : ∅ 6= S ⊆ Nn), the orbit averages can be defined as

hα :=
1

|Oα|
∑
S∈Oα

hS (2.4)

for any α ∈ Nm. We call the above projection from h = (hS : ∅ 6= S ⊆ Nn) to

h = (hα : α ∈ Nm) the projection induced by G and denote it by PG.

A set Θ of length-(2n−1) vectors h = (hS : ∅ 6= S ⊆ Nn) is said to be permutation

symmetric if hg ∈ Θ for any h ∈ Θ and g ∈ Sn, where hg := (hg(S) : ∅ 6= S ⊆ Nn).

We note here that both Γ∗n (and hence cl(Γ∗n)) and Γn are permutation symmetric

for any n ∈ N . The following result is a simple consequence of the well-known

Lagrange’s theorem for group actions [8, Chapter 7, Theorem 7.1]:

Lemma 1. For any convex, permutation symmetric set Θ of length-(2n− 1) vectors

h = (hS : ∅ 6= S ⊆ Nn) and any permutation group G over Nn, we have PGΘ = PGΘ′

7



where

Θ′ := {h ∈ Θ : hS = hS′ ∀S, S ′ in the same orbit of G}. (2.5)

Proof. Clearly, we have PGΘ ⊇ PGΘ′ since Θ ⊇ Θ′. To show the opposite inclusion,

let h = PGh for some h ∈ Θ. By assumption the set Θ is permutation symmetric,

so we have hg ∈ Θ for any g ∈ G. By the convexity of Θ, the group average

1
|G|
∑

g∈G hg ∈ Θ. Furthermore, for any k ∈ Nm and any S ∈ Ok, by the Lagrange’s

theorem [8, Chapter 7, Theorem 7.1] we have

1

|G|
∑
g∈G

hg(S) =
1

|Ok|
∑
S∈Ok

hS = hk. (2.6)

We thus conclude that 1
|G|
∑

g∈G hg ∈ Θ′ and PG

(
1
|G|
∑

g∈G hg

)
= h, i.e., h ∈ PGΘ′.

This completes the proof of the opposite inclusion PGΘ ⊆ PGΘ′.

For a given permutation group G, directly characterizing cl(PGΓ∗n) might be dif-

ficult. The following simple inner and outer bounds are readily available.

Lemma 2. For any permutation group G over n variables, we have

PGcl(Γ
∗
n) ⊆ cl(PGΓ∗n) ⊆ PGΓn.

Proof. The fact that PGcl(Γ
∗
n) ⊆ cl(PGΓ∗n) follows from standard topological argu-

ments [12]. The fact that cl(PGΓ∗n) ⊆ PGΓn follows from the fact that Γ∗n ⊆ Γn

so cl(PGΓ∗n) ⊆ cl(PGΓn) and that Γn is polyhedral [5, Chapter 14.1] so cl(PGΓn) =

PGΓn.

The polymatroid region Γn is polyhedral and fully characterized by the elemental

8



inequalities [5, Chapter 14.1]:

hS∪{i} + hS∪{j} − hS∪{i,j} − hS ≥ 0, ∀i 6= j ∈ Nn, S ⊆ Nn \ {i, j} (2.7)

hNn − hNn\{i} ≥ 0, ∀i ∈ Nn. (2.8)

Since Γn is convex and permutation symmetric, by By Lemma 1 the outer region

PGΓn can be obtained by setting hS = hα for any S ∈ Oα in the elemental inequalities.

For the cases where we can further show that PGΓn ⊆ PGcl(Γ
∗
n), the inner

and outer bounds in Lemma 2 will match, leading to a precise characterization

of cl(PGΓ∗n). Since both PGΓn and PGcl(Γ
∗
n) are convex cones, to see whether

PGΓn ⊆ PGcl(Γ
∗
n), it suffices to see whether all the extreme rays of PGΓn are in

PGcl(Γ
∗
n).

2.2 The Total-Average Projection

When G = Sn, the symmetry group over Nn, two subsets S and S ′ are in the

same orbit if and only if |S| = |S ′|. We thus have

PT = PSn (2.9)

i.e., the total-average projection is precisely the group-induced symmetric projection

where the underlying group is Sn.

A precise characterization of the total-average projection of the polymatroid re-

gion is summarized in the following lemma.

Lemma 3. For any n ∈ N , the total-average projection of the polymatroid region

9



PTΓn is given by the set of length-n vectors (hα : α ∈ Nn) satisfying:

2hα − hα−1 − hα+1 ≥ 0, ∀α ∈ Nn−1 (2.10)

hn − hn−1 ≥ 0 (2.11)

where h0 := 0. Alternatively, PTΓn is the convex polyhedral cone generated by the

vectors {ri = (ri,1, . . . , ri,n) : i ∈ Nn}, where

ri,k =

 k, if k ≤ i

i, if k > i.
(2.12)

Proof. Fix n ∈ N . The polymatroid region Γn is the set of length-(2n − 1) vectors

h = (hS : ∅ 6= S ⊆ Nn) satisfying the elemental inequalities (2.7) and (2.8). The

polymatroid region Γn is convex and permutation symmetric. By Lemma 1, to obtain

the projection PTΓn, we can simply set hS = hα for any S ⊆ Nn such that |S| = α

in the elemental inequalities in (2.7) and (2.8). Removing the repeated inequalities,

we may conclude that PTΓn is given by the set of length-n vectors (hα : α ∈ Nn)

satisfying the inequalities in (2.10) and (2.11).

Denote the convex polyhedral cone generated by the set of vectors {ri : i ∈ Nn}

by C. It is straightforward to verify that for any i ∈ Nn, the vector ri satisfies every

inequality from (2.10) and (2.11). We therefore have C ⊆ PSΓn.

To prove the opposite inclusion, let h ∈ PSΓn. Since the set of vectors {ri : i ∈

Nn} spans the entireRn, we may write h =
∑n

i=1 airi for some real scalars a1, . . . , an.

It remains to show that any real scalars a1, . . . , an such that h =
∑n

i=1 airi satisfies

every inequality from (2.10) and (2.11) must satisfy ai ≥ 0 for all i ∈ Nn.

10



Note that by the definition of ri for i ∈ Nn, we can write hα explicitly as:

hα =
α∑
j=1

jaj +
n∑

j=α+1

αaj, ∀α ∈ Nn. (2.13)

By (2.10) and (2.11), we have

ai = 2hi − hi−1 − hi+1 ≥ 0, ∀i ∈ Nn−1 (2.14)

an = hn − hn−1 ≥ 0. (2.15)

This completes the proof that PTΓn ⊆ C and hence the entire lemma.

Note that the extreme rays {ri = (ri,1, . . . , ri,n) : i ∈ Nn} of PTΓn can all be

realized by a total-average projection of uniform matroids [13]. Since all matroids

are known to be entropic, we conclude that

PTΓn ⊆ PT cl(Γ
∗
n) (2.16)

and hence

cl(PTΓ∗n) = PTΓn. (2.17)

2.3 The Sliding-Window-Average Projection

When G = Cn, the cyclic group generated by the permutation (1 2 3 · · ·n), all

sliding windows of the same size form an orbit of G. However, not all orbits of Cn

are formed by sliding windows. For example, when n = 4, the cyclic group C4 has a

11



total of five orbits:

O1 = {{1}, {2}, {3}, {4}} (2.18)

O2 = {{1, 2}, {2, 3}, {3, 4}, {4, 1}} (2.19)

O3 = {{1, 3}, {2, 4}} (2.20)

O4 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 1}, {4, 1, 2}} (2.21)

O5 = {{1, 2, 3, 4}}. (2.22)

While the orbits O1, O2, O4 and O5 are formed by sliding windows of the same size,

the orbit O3 is not. Therefore, the sliding-window-average projection PS is given by

PS = P ′SPCn (2.23)

where P ′S is the projection that keeps only the orbits formed by sliding windows of

the same size.

Next, we show that the total-average projection of the polymatroid region is, in

fact, an outer bound to the sliding-window-average projection of the polymatroid

region.

Lemma 4. For any n ∈ N , we have

PSΓn ⊆ PTΓn. (2.24)

Proof. By Lemma 3, to show that PSΓn ⊆ PTΓn, it suffices to show that any h =

(hα : α ∈ Nn) ∈ PSΓn must satisfy all n inequalities in (2.10) and (2.11).

Let h = (hα : α ∈ Nn) ∈ PSΓn. Note that for any α ∈ N , hα is the orbit average

of the cyclic group Cn where the orbit is formed by the sliding windows of size α.

12



The inequality (2.11) can be proved by setting hNn = hn and hNn\{i} = hn−1 in the

elemental inequality (2.8). To prove the inequalities in (2.10), we note that for any

sliding window S of size |S| ≤ n− 2 and elements i and j just outside of S, the sets

S ∪{i}, S ∪{j} and S ∪{i, j} are once again sliding windows (of size |S|+ 1, |S|+ 1

and |S| + 2, respectively). With this simple fact, the inequalities in (2.10) can be

proved by setting S to be a sliding window and i and j to be just outside of S in the

elemental inequality (2.7). See Figure 2.1 for an illustration of this choice of S and

the elements i and j.

Note that the extreme rays {ri = (ri,1, . . . , ri,n) : i ∈ Nn} of PTΓn can all be

realized by a sliding-window-average projection of uniform matroids [13] as well.

Since all matroids are known to be entropic, we conclude that

PTΓn ⊆ PScl(Γ
∗
n) (2.25)

and hence

cl(PSΓ∗n) = PTΓn. (2.26)

Combining (2.24) and (2.26) completes the proof of Theorem 1.

13



S

i

j

Figure 2.1: Proof of the inequalities in (2.10) by choosing S to be a sliding window
and i and j to be just outside of S in the elemental inequality (2.7).
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3. EXISTENCE OF NON-SHANNON TYPE INEQUALITIES UNDER

PARTIAL SYMMETRY

3.1 Shannon and Non-Shannon Groups

As discussed in Chapter 2, when G = Sn (the largest permutation group over

Nn), we have

PGcl(Γ
∗
n) = PGΓn (3.1)

implying that there are no non-Shannon type inequalities under total symmetry. On

the other hand, when G = {(1)} (the smallest permutation group over Nn), we have

PGcl(Γ
∗
n) ( PGΓn (3.2)

for n ≥ 4 due to the existence of non-Shannon type inequalities [6] (when there is no

symmetry at all). Between Sn and the identity group {(1)}, there are many proper

subgroups of Sn that represent various types of partial symmetry. Our goal in this

chapter is to examine the existence of non-Shannon type inequalities under partial

symmetry.

Towards this goal, we introduce the following key definition of Shannon and non-

Shannon groups for permutation groups.

Definition 1. Let G be a group of permutations over Nn. We say that G is Shannon

if

PGcl(Γ
∗
n) = PGΓn (3.3)

15



and non-Shannon if

PGcl(Γ
∗
n) ( PGΓn. (3.4)

As discussed in Chapter 2, when G is a Shannon group, we have

cl(PGΓ∗n) = PGΓn (3.5)

implying that there are no non-Shannon type inequalities for the orbit averages

induced by G.

The following simple fact is useful for classifying the proper subgroups of Sn into

Shannon and non-Shannon groups.

Fact 1. All supergroups of a Shannon group is Shannon. Conversely, all subgroups

of a non-Shannon group is non-Shannon.

3.2 The Subgroups of S4

There are 30 subgroups of S4, as listed in Table 3.1 and also depicted in Figure 3.1

as in the style of a Hasse diagram. We have the following results on the classification

of subgroups of S4 into Shannon and non-Shannon groups.

Theorem 2. For symmetry group S4, its subgroups V 4, P1, P2, P3, P4, d, d′ and

d′′ are Shannon; its subgroups A, B and C are non-Shannon.

Since the subgroup V 4 is Shannon, its supergroups D, D′, D′′, A4 and S4 are

all Shannon. Similarly, since the subgroups P1, P2, P3 and P4, their supergroups

H1, H2, H3 and H4 are also Shannon. Conversely, since the subgroups A, B and

C are non-Shannon, their subgroups a1, a2, b1, b2, c1, c2, V 1, V 2, V 3 and {(1)}
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are all non-Shannon. Therefore, Theorem 2 provides a complete classification of the

subgroups of S4 into Shannon and non-Shannon groups.

To show that the subgroups V 4, P1, P2, P3, P4, d, d′ and d′′ are Shannon, we use

the fact that the linear rank space Ln is an inner bound to the entropy region Γ∗n [9].

For n = 4, the linear rank space L4 is completely characterized by the Shannon type

inequalities and the Ingleton inequalities [10]:

h{1,2} + h{1,3} + h{2,3} + h{1,4} + h{2,4} − h{1} − h{2} − h{3,4} − h{1,2,3} − h{1,2,4} ≥ 0

(3.6)

h{1,3} + h{1,2} + h{2,3} + h{1,4} + h{3,4} − h{1} − h{3} − h{2,4} − h{1,2,3} − h{1,3,4} ≥ 0

(3.7)

h{1,4} + h{1,2} + h{2,4} + h{1,3} + h{3,4} − h{1} − h{4} − h{2,3} − h{1,2,4} − h{1,3,4} ≥ 0

(3.8)

h{2,3} + h{1,2} + h{1,3} + h{2,4} + h{3,4} − h{2} − h{3} − h{1,4} − h{1,2,3} − h{2,3,4} ≥ 0

(3.9)

h{2,4} + h{1,2} + h{2,3} + h{1,4} + h{3,4} − h{2} − h{4} − h{1,3} − h{1,2,4} − h{2,3,4} ≥ 0

(3.10)

h{3,4} + h{1,3} + h{1,4} + h{2,3} + h{2,4} − h{3} − h{4} − h{1,2} − h{1,3,4} − h{2,3,4} ≥ 0

(3.11)

(3.12)

We use the commercial software Polymake [11] to compute the extreme rays of the

polyhedral cones PGL4 and PGΓ4 for G = V 4, P1, d. For each one of these three cases,

the results are given by two identical sets of vectors, implying that PGL4 = PGΓ4 and

hence PGcl(Γ
∗
4) = PGΓ4 in these cases. By symmetry, the cases for G = P2, P3, P4
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follow from that for G = P1 and the cases for G = d′, d′′ follow from that for G = d.

To show that the subgroups A, B and C are non-Shannon, we first use Polymake

to compute the extreme rays of the polyhedral cone PGΓ4 for G = A. We then add

the well-known Yeung-Zhang non-Shannon type inequalities [5, Chapter 15, Theorem

15.7], [6]:

−2h{1} − 2h{2} + 3h{1,2} − h{3} − h{3,4} + 3h{1,3} + 3h{2,3}

+h{1,4} + h{2,4} − 4h{1,2,3} − h{1,2,4} ≥ 0 (3.13)

−2h{1} − 2h{3} + 3h{1,3} − h{2} − h{2,4} + 3h{1,2} + 3h{2,3}

+h{1,4} + h{3,4} − 4h{1,2,3} − h{1,3,4} ≥ 0 (3.14)

−2h{1} − 2h{4} + 3h{1,4} − h{2} − h{2,3} + 3h{1,2} + 3h{2,4}

+h{1,3} + h{3,4} − 4h{1,2,4} − h{1,3,4} ≥ 0 (3.15)

−2h{2} − 2h{3} + 3h{2,3} − h{1} − h{1,4} + 3h{1,2} + 3h{1,3}

+h{2,4} + h{3,4} − 4h{1,2,3} − h{2,3,4} ≥ 0 (3.16)

−2h{2} − 2h{4} + 3h{2,4} − h{1} − h{1,3} + 3h{1,2} + 3h{1,4}

+h{2,3} + h{3,4} − 4h{1,2,4} − h{2,3,4} ≥ 0 (3.17)

−2h{3} − 2h{4} + 3h{3,4} − h{1} − h{1,2} + 3h{1,3} + 3h{1,4}

+h{2,3} + h{2,4} − 4h{1,3,4} − h{2,3,4} ≥ 0 (3.18)

to the Shannon type inequalities to form a new outer region Γ′4 to the entropy region

Γ∗4. We again use Polymake to compute the extreme rays of the polyhedral cone

PGΓ′4 for G = A. The result gives a different set of extreme rays than those of PGΓ4

for G = A. This shows that the subgroup A is non-Shannon. By symmetry, the

cases for G = B,C follow from that for G = A.

The details of the computation are deferred to the Appendix.
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3.3 The Cyclic Group C5

The cyclic group C4 generated by the permutation (1 2 3 4) is the subgroup in

the Hasse diagram (3.1) and was shown to be Shannon from the previous discussion.

The orbits of the cyclic group C5 generated by the permutation (1 2 3 4 5) are

given by:

O1 = {{1}, {2}, {3}, {4}, {5}} (3.19)

O2 = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}} (3.20)

O3 = {{1, 3}, {2, 4}, {3, 5}, {4, 1}, {5, 2}} (3.21)

O4 = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}} (3.22)

O5 = {{1, 2, 4}, {2, 3, 5}, {3, 4, 1}, {4, 5, 2}, {5, 1, 3}} (3.23)

O6 = {{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 1}, {4, 5, 1, 2}, {5, 1, 2, 3}} (3.24)

O7 = {{1, 2, 3, 4, 5}}. (3.25)

Setting hS = hk for any S ∈ Ok and k ∈ N7 in the elemental inequalities (2.7) and

(2.8), the projection of the polymatroid region PC5Γ5 is given by the set of vectors

19



(hk : k ∈ N7) satisfying the following 17 inequalities:

2h1 − h2 ≥ 0 (3.26)

2h1 − h3 ≥ 0 (3.27)

2h2 − h1 − h4 ≥ 0 (3.28)

2h3 − h1 − h4 ≥ 0 (3.29)

h2 + h3 − h1 − h4 ≥ 0 (3.30)

2h2 − h1 − h5 ≥ 0 (3.31)

2h3 − h1 − h5 ≥ 0 (3.32)

h2 + h3 − h1 − h5 ≥ 0 (3.33)

2h4 − h3 − h6 ≥ 0 (3.34)

2h5 − h3 − h6 ≥ 0 (3.35)

h4 + h5 − h3 − h6 ≥ 0 (3.36)

2h4 − h3 − h4 ≥ 0 (3.37)

2h5 − h3 − h4 ≥ 0 (3.38)

h4 + h5 − h3 − h4 ≥ 0 (3.39)

2h6 − h6 − h4 − h7 ≥ 0 (3.40)

2h6 − h6 − h5 − h7 ≥ 0 (3.41)

h7 − h6 ≥ 0. (3.42)

20



Using Polymake [11], the extreme rays of PC5Γ5 can be computed as:

r1 = (1, 1, 1, 1, 1, 1, 1) (3.43)

r2 = (1, 2, 2, 2, 2, 2, 2) (3.44)

r3 = (1, 2, 2, 3, 3, 3, 3) (3.45)

r4 = (1, 2, 2, 3, 3, 4, 4) (3.46)

r5 = (1, 2, 2, 3, 3, 4, 5) (3.47)

r6 = (2, 3, 4, 4, 4, 4, 4) (3.48)

r7 = (2, 4, 3, 4, 4, 4, 4) (3.49)

r8 = (2, 4, 4, 5, 6, 6, 6) (3.50)

r9 = (2, 4, 4, 6, 5, 6, 6). (3.51)

Theorem 3. The cyclic group C5 is Shannon.

Proof. To show that the cyclic group C5 is Shannon, it suffices to show that all nine

extreme rays of PC5Γ5 are in PC5cl(Γ
∗
5). It is clear that the extreme rays ri, i ∈ N5,

can be realized by a cyclic projection of uniform matroids [13] and are hence in

PC5cl(Γ
∗
5). So we only need to show that ri, i = 6, 7, 8, 9, are in PC5cl(Γ

∗
5).

To show that r7 ∈ PC5cl(Γ
∗
5), let Ui, i ∈ N4, be four independent uniform variables
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over a finite field F and

X1 := (U1,U2 + U3) (3.52)

X2 := (U2,U3 + U4) (3.53)

X3 := (U3,U1) (3.54)

X4 := (U4,U2 + U3) (3.55)

X5 := (U4 + U1,U3 + U4). (3.56)

It is straightforward to verify that

H(XS) =



2 log |F|, for S ∈ O1

4 log |F|, for S ∈ O2

3 log |F|, for S ∈ O3

4 log |F|, for S ∈ O4

4 log |F|, for S ∈ O5

4 log |F|, for S ∈ O6

4 log |F|, for S ∈ O7

(3.57)

completing the proof that r7 ∈ PC5cl(Γ
∗
5).

To show that r9 ∈ PC5cl(Γ
∗
5), let Ui, i ∈ N6, be six independent uniform variables
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over a finite field F and

X1 = (U1,U6) (3.58)

X2 = (U2,U4 + U5) (3.59)

X3 = (U3,U5 + U6) (3.60)

X4 = (U4,U1 + U5) (3.61)

X5 = (U2 + U3,U3 + U5). (3.62)

It is straightforward to verify that

H(XS) =



2 log |F|, for S ∈ O1

4 log |F|, for S ∈ O2

4 log |F|, for S ∈ O3

6 log |F|, for S ∈ O4

5 log |F|, for S ∈ O5

6 log |F|, for S ∈ O6

6 log |F|, for S ∈ O7

(3.63)

completing the proof that r9 ∈ PC5cl(Γ
∗
5).

By symmetry, the cases for r6 and r8 follows from that for r7 and r9, respectively.

We have thus completed the proof of the theorem.
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Figure 3.1: Hasse diagram of S4.
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Table 3.1: Elements of subgroups of S4

label elements order isomorphic to

A4
{e,(12)(34),(13)(24),(14)(23),(123),(124),. . .

(132),(134),(142),(143),(234),(243)} 12 A4

V4 {e, (12)(34), (13)(24),(14)(23)} 4 V4
v1, v2, v3 {e, (12)(34)}, {e, (13)(24)}, {e, (14)(23)} 2, 2, 2 Z2
P1 {e, (123), (132)} 3 Z3
P2 {e, (124), (142)} 3 Z3
P3 {e, (134), (143)} 3 Z3
P4 {e, (234), (243)} 3 Z3

D
{e, (12), (12)(34), (13)(24),

(14)(23), (34), (1324), (1423)} 8 D4

d {e, (12)(34), (1324), (1423)} 4 Z4

D’
{e, (13), (12)(34), (13)(24),

(14)(23), (24), (1234), (1432)} 8 D4

d’ {e, (13)(24), (1234), (1423)} 4 Z4

D”
{e, (14), (12)(34), (13)(24),

(14)(23), (23), (1243), (1342)} 8 D4

d” {e, (14)(23), (1243), (1342)} 4 Z4
H1 {e, (12), (13), (23), (123), (132)} 6 S3
H2 {e, (12), (14), (24), (124), (142)} 6 S3
H3 {e, (13), (14), (34), (134), (143)} 6 S3
H4 {e, (23), (24), (34), (234), (243)} 6 S3
A {e, (12), (12)(34), (34)} 4 V4
a1, a2 {e, (12)}, {e, (34)} 2, 2 Z2
B {e, (13), (13)(24), (24)} 4 V4
b1, b2 {e, (13)}, {e, (24)} 2, 2 Z2
C {e, (14), (14)(23), (23)} 4 V4
c1, c2 {e, (14)}, {e, (23)} 2, 2 Z2
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4. SUMMARY AND FUTURE DIRECTIONS

Entropy inequalities play a central role in proving converse coding theorems for

network information theoretic problems. This thesis studied two new aspects of

entropy inequalities. First, inequalities relating average joint entropies rather than

entropies over individual subsets were studied. Motivated by the curious fact that

the monotonicity of average joint entropy per element holds when the averaging is

over both all subsets of the size [1] and the sliding window of the same size [2], it was

shown that the closures of the average entropy regions where the averages are over

all subsets of the same size and all sliding windows of the same size respectively are

identical. This implies that that averaging over sliding windows always suffices as far

as unconstrained entropy inequalities are concerned. Therefore, the aforementioned

fact on the monotonicity of average joint entropy per element is a universal truth

rather than an isolated curious observation.

Second, the existence of non-Shannon type inequalities [6] was one of the most

significant discoveries in information theory during the last twenty years. Under

total symmetry, however, it was known that all non-Shannon type inequalities are

implied by Shannon type inequalities [5]. Mathematically, the total symmetry can be

represented using the symmetry groups Sn. In the second part of this thesis, the ex-

istence of non-Shannon type inequalities under partial symmetry was studied, where

the partial symmetry was represented using the subgroups of Sn. This naturally

led to the notion of Shannon and non-Shannon groups, based on which a complete

classification of all permutation groups over four elements was established. With

five random variables, it was shown that there are no non-Shannon type inequalities

under cyclic symmetry.
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There are several directions that one may consider exploring in the future. Per-

haps the most straightforward extension is to consider the cyclic groups Cn for n ≥ 6.

It is our belief that the cyclic group Cn is Shannon for any n ∈ N . Note that even

though the cases where n = 4 and 5 have been resolved in this thesis, the techniques

that we used rely on a “brute-force” calculation of the extreme rays of PCnΓn and

have a complexity that grows exponentially with n. A new representation which can

further expose the structure of PCnΓn may be needed in order to make progress.

Another direction of interest is to understand which partial symmetry is par-

ticularly relevant to engineering and whether non-Shannon type inequalities exist

under those partial symmetry. The modern development of distributed storage sys-

tems provides several examples [14,15] where there is symmetry built into the design

principles and requirements.

Finally, note that with symmetry not only non-Shannon type inequalities may

completely disappear (dominated by the Shannon type inequalities), the number

of independent Shannon type inequalities may also be substantially reduced. For

example, without any symmetry the total number of independent Shannon type

inequalities (elemental inequalities in (2.7) and (2.8)) over n variables is

n+

 n

2

 2n−2.

By comparison, under total symmetry the total number of independent Shannon

type inequalities (the inequalities in (2.10) and (2.11)) over n variables is only n.

Therefore, partial symmetry can potentially provide huge advantages when a com-

putational approach is utilized for characterizing the fundamental limits of complex

information systems [16].
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APPENDIX A

APPENDIX FOR SHANNON AND NON-SHANNON GROUPS OF S4

A.1 Subgroup A

Shannon-type Inequalities:

$inequalities=new Matrix<Rational>([[0 ,2 ,0 ,-1 ,0 ,0 ,0 ,0, 0],[0, 1 ,1 ,0 ,-1, 0 ,0

,0 ,0],[0, 0, 2, 0, 0, -1 ,0 ,0 ,0],[0 ,-1 ,0 ,1 ,1, ,0, ,-1, 0, 0],[0, -1 ,0 ,0 ,2 ,0 ,0, -1, 0],[0,

0, -1, 0 ,2 ,0 ,-1, 0 ,0],[0 ,0 ,-1 ,0 ,1 ,1 ,0 ,-1, 0],[0, 0 ,0 ,-1, 0 ,0 ,2 ,0 ,-1],[0, 0, 0 ,0 ,-1,

0, 1, 1, -1],[0, 0, 0 ,0 ,0 ,-1, 0, 2, -1],[0 ,0 ,0 ,0, 0 ,0 ,0 ,-1, 1],[0 ,0 ,0 ,0 ,0, 0, -1, 0 ,1]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);
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polytope > print $p− >VERTICES;

0 1 0 1 1 0 1 1 1

0 1 1 1 2 2 2 2 2

0 1 1 3/2 3/2 2 2 2 2

0 1 1/2 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 1 1 2 3/2 3/2 2 2 2

0 1 2 2 2 2 2 2 2

0 1 1 2 2 1 2 2 2

0 1 1/2 2 3/2 1 2 2 2

0 1 1 2 3/2 2 2 2 2

0 1 1 2 2 2 2 2 2

0 1 2 2 3 4 4 4 4

0 0 1 0 1 1 1 1 1

0 1 1 2 2 2 3 3 3

1 0 0 0 0 0 0 0 0

0 0 1 0 1 2 1 2 2

0 1 0 2 1 0 2 1 2

Shannon-type Inequalities+ Ingleton Inequality:

$inequalities=new Matrix<Rational>([[0 ,2 ,0 ,-1 ,0 ,0 ,0 ,0, 0],[0, 1 ,1 ,0 ,-1, 0 ,0

,0 ,0],[0, 0, 2, 0, 0, -1 ,0 ,0 ,0],[0 ,-1 ,0 ,1 ,1, ,0, ,-1, 0, 0],[0, -1 ,0 ,0 ,2 ,0 ,0, -1, 0],[0,

0, -1, 0 ,2 ,0 ,-1, 0 ,0],[0 ,0 ,-1 ,0 ,1 ,1 ,0 ,-1, 0],[0, 0 ,0 ,-1, 0 ,0 ,2 ,0 ,-1],[0, 0, 0 ,0

,-1, 0, 1, 1, -1],[0, 0, 0 ,0 ,0 ,-1, 0, 2, -1],[0 ,0 ,0 ,0, 0 ,0 ,0 ,-1, 1],[0 ,0 ,0 ,0 ,0, 0, -1, 0

,1],[0,-2,0,1,4,-1,-2,0,0]]);
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polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);

polytope > print $p− >VERTICES;

0 1 0 1 1 0 1 1 1

0 1 1 1 2 2 2 2 2

0 1 1/2 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1

0 1 1 2 3/2 3/2 2 2 2

0 1 2 2 2 2 2 2 2

0 1 1 2 2 1 2 2 2

0 1 1/2 2 3/2 1 2 2 2

0 1 1 2 3/2 2 2 2 2

0 1 1 2 2 2 2 2 2

0 1 2 2 3 4 4 4 4

0 0 1 0 1 1 1 1 1

0 1 1 2 2 2 3 3 3

1 0 0 0 0 0 0 0 0

0 0 1 0 1 2 1 2 2

0 1 0 2 1 0 2 1 2

Shannon-type Inequalities+ YZ Inequality:

$inequalities=new Matrix<Rational>([[0 ,2 ,0 ,-1 ,0 ,0 ,0 ,0, 0],[0, 1 ,1 ,0 ,-1, 0 ,0

,0 ,0],[0, 0, 2, 0, 0, -1 ,0 ,0 ,0],[0 ,-1 ,0 ,1 ,1, ,0, ,-1, 0, 0],[0, -1 ,0 ,0 ,2 ,0 ,0, -1, 0],[0,

0, -1, 0 ,2 ,0 ,-1, 0 ,0],[0 ,0 ,-1 ,0 ,1 ,1 ,0 ,-1, 0],[0, 0 ,0 ,-1, 0 ,0 ,2 ,0 ,-1],[0, 0, 0 ,0

,-1, 0, 1, 1, -1],[0, 0, 0 ,0 ,0 ,-1, 0, 2, -1],[0 ,0 ,0 ,0, 0 ,0 ,0 ,-1, 1],[0 ,0 ,0 ,0 ,0, 0, -1, 0

,1],[0, -1, -4, -1, 8, 3, 0, -5, 0],[0, -4, -1, 3, 8, -1, -5, 0, 0],[0, -3, -2, 3, 6, 1, -4, -1, 0],[0,

32



-2, -3, 1, 6, 3, -1, -4, 0]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);

polytope > print $p− >VERTICES;

0 1 0 1 1 0 1 1 1

0 1 1 1 2 2 2 2 2

0 1 3/4 5/4 5/4 3/2 3/2 3/2 3/2

0 1 1 5/3 3/2 2 2 2 2

0 1 1 1 1 1 1 1 1

0 1 1 2 3/2 5/3 2 2 2

0 1 2 2 2 2 2 2 2

0 1 4/3 2 5/3 5/3 2 2 2

0 1 1 2 2 1 2 2 2

0 1 1 2 3/2 2 2 2 2

0 1 1 2 2 2 2 2 2

0 0 1 0 1 1 1 1 1

0 1 1/2 2 3/2 1 2 2 2

0 1 1 2 2 2 3 3 3

0 1 2 2 3 4 4 4 4

1 0 0 0 0 0 0 0 0

0 0 1 0 1 2 1 2 2

0 1 0 2 1 0 2 1 2

A.2 Subgroup V4

Shannon-type Inequalities:

$inequalities=new Matrix<Rational>([[0, 0, 0, 0, 0, -1, 1],[0, 2, -1, 0, 0, 0, 0],[0,
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2, 0, -1, 0, 0, 0],[0, 2, 0, 0, -1, 0, 0],[0, -1, 1, 1, 0, -1, 0],[0, -1, 0, 1, 1, -1, 0],[0, -1, 1,

0, 1, -1, 0],[0, 0, -1, 0, 0, 2, -1],[0, 0, 0, -1, 0, 2, -1],[0, 0, 0, 0, -1, 2, -1]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);

polytope > print $p− >VERTICES;

0 1 2 2 1 2 2

0 1 1 1 1 1 1

0 1 2 1 2 2 2

0 1 1 2 2 2 2

0 1 2 2 2 3 3

0 1 2 2 2 2 2

1 0 0 0 0 0 0

0 1 2 2 2 3 4

Shannon-type Inequalities+ Ingleton Inequality:

$inequalities=new Matrix<Rational>([[0, 0, 0, 0, 0, -1, 1],[0, 2, -1, 0, 0, 0, 0],[0,

2, 0, -1, 0, 0, 0],[0, 2, 0, 0, -1, 0, 0],[0, -1, 1, 1, 0, -1, 0],[0, -1, 0, 1, 1, -1, 0],[0, -1, 1,

0, 1, -1, 0],[0, 0, -1, 0, 0, 2, -1],[0, 0, 0, -1, 0, 2, -1],[0, 0, 0, 0, -1, 2, -1],[0, -2, 0, 2, 2,

-2, 0]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);
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polytope > print $p− >VERTICES;

0 1 2 2 1 2 2

0 1 1 1 1 1 1

0 1 2 1 2 2 2

0 1 1 2 2 2 2

0 1 2 2 2 3 3

0 1 2 2 2 2 2

1 0 0 0 0 0 0

0 1 2 2 2 3 4

A.3 Subgroup P1

Shannon-type Inequalities

$inequalities=new Matrix<Rational>([[0, 0, 0, 0, 0, 0, -1, 1],[0, 0, 0, 0, 0, -1, 0,

1],[0, 2, 0, -1, 0, 0, 0, 0],[0, 1, 1, 0, -1, 0, 0, 0],[0, -1, 0, 2, 0, -1, 0, 0],[0, -1, 0, 1, 1, 0,

-1, 0],[0, 0, -1, 0, 2, 0, -1, 0],[0, 0, 0, -1, 0, 1, 1, -1],[0, 0, 0, 0, -1, 0, 2, -1]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);
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polytope > print $p− >VERTICES;

0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 1 2 2 2 2 2

0 1 2 2 2 2 2 2

0 1 2 2 3 3 3 3

0 1 3 2 3 3 3 3

0 1 1 2 2 3 3 3

0 1 0 2 1 2 2 2

1 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1

0 1 0 2 1 3 2 3

Shannon-type Inequalities+ Ingleton Inequality:

$inequalities=new Matrix<Rational>([[0, 0, 0, 0, 0, 0, -1, 1],[0, 0, 0, 0, 0, -1, 0,

1],[0, 2, 0, -1, 0, 0, 0, 0],[0, 1, 1, 0, -1, 0, 0, 0],[0, -1, 0, 2, 0, -1, 0, 0],[0, -1, 0, 1, 1, 0,

-1, 0],[0, 0, -1, 0, 2, 0, -1, 0],[0, 0, 0, -1, 0, 1, 1, -1],[0, 0, 0, 0, -1, 0, 2, -1],[0, -2, 0, 3,

1, -1, -1, 0],[0, -1, -1, 1, 3, 0, -2, 0]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);
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polytope > print $p− >VERTICES;

0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1

0 1 1 2 2 2 2 2

0 1 2 2 2 2 2 2

0 1 2 2 3 3 3 3

0 1 3 2 3 3 3 3

0 1 1 2 2 3 3 3

0 1 0 2 1 2 2 2

1 0 0 0 0 0 0 0

0 0 1 0 1 0 1 1

0 1 0 2 1 3 2 3

A.4 Subgroup d

Shannon-type Inequalities:

$inequalities=new Matrix<Rational>([[0, 0, 0, 0, -1, 1],[0, 2, -1, 0, 0, 0],[0, 2, 0,

-1, 0, 0],[0, -1, 1, 1, -1, 0],[0, -1, 0, 2, -1, 0],[0, 0, -1, 0, 2, -1],[0, 0, 0, -1, 2, -1]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);
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polytope > print $p− >VERTICES;

0 1 1 1 1 1

0 1 2 3/2 2 2

0 1 1 2 2 2

0 1 2 2 3 3

0 1 2 2 2 2

1 0 0 0 0 0

0 1 2 2 3 4

Shannon-type Inequalities+ Ingleton Inequality:

$inequalities=new Matrix<Rational>([[0, 0, 0, 0, -1, 1],[0, 2, -1, 0, 0, 0],[0, 2, 0,

-1, 0, 0],[0, -1, 1, 1, -1, 0],[0, -1, 0, 2, -1, 0],[0, 0, -1, 0, 2, -1],[0, 0, 0, -1, 2, -1],[0, -2,

0, 4, -2, 0],[0, -2, 2, 2, -2, 0]]);

polytope > $p=new Polytope<Rational>(INEQUALITIES=>$inequalities);

polytope > print $p− >VERTICES;

0 1 1 1 1 1

0 1 2 3/2 2 2

0 1 1 2 2 2

0 1 2 2 3 3

0 1 2 2 2 2

1 0 0 0 0 0

0 1 2 2 3 4

38


