SYMMETRIC PROJECTIONS OF THE ENTROPY REGION

A Dissertation
by
XINYI CAI

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Chair of Committee, Tie Liu
Committee Members, Shuguang Cui
Le Xie
Anxiao Jiang
Head of Department, Chanan Singh

December 2014

Major Subject: Electrical and Computer Engineering

Abstract

Entropy inequalities play a central role in proving converse coding theorems for network information theoretic problems. This thesis studies two new aspects of entropy inequalities. First, inequalities relating average joint entropies rather than entropies over individual subsets are studied. It is shown that the closures of the average entropy regions where the averages are over all subsets of the same size and all sliding windows of the same size respectively are identical, implying that averaging over sliding windows always suffices as far as unconstrained entropy inequalities are concerned. Second, the existence of non-Shannon type inequalities under partial symmetry is studied using the concepts of Shannon and non-Shannon groups. A complete classification of all permutation groups over four elements is established. With five random variables, it is shown that there are no non-Shannon type inequalities under cyclic symmetry.

ACKNOWLEDGEMENTS

I am using this opportunity to express my deepest gratitude to everyone who has helped me during my study at Texas A\&M University.

First of all, I would like to acknowledge with much appreciation to my advisor Dr. Tie Liu, who has been a tremendous mentor for me. I would like to thank him for teaching me the fundamental knowledge in this area and leading me into scientific research. His patience and encouragement has been a constant source of support. His advice on my career and life have also been priceless.

I would like to thank my committee members, Dr. Shuguang Cui, Dr. Le Xie and Dr. Anxiao Jiang, who taught me different knowledge during my study at Texas A\&M University. Their brilliant comments and precious suggestions at my defense have been very helpful.

Furthermore, I would like to extend my gratitude to my group mates, Shuo Li, Xiaopeng (Lucia) Sui, Amir Salimi, Jinjing Jiang, Shuo Shao, Jae Won Yoo and Jerry Huang. I have learned a lot from each one of them. They are all great work mates and friends who have helped me greatly when I was in need. I especially would like to thank Amir Salimi, without whom this thesis would not have been possible.

Texas A\&M is a wonderful place to study, and I would like to express my gratitude to all the professors and staffs here. Thanks for their guidance and support to make my three years here a very precious memory.

Finally, I would like to thank my family and best friends. Words cannot express how grateful I am to them all for all the sacrifices that they have made on my behalf. I am forever indebted to their love and support.

TABLE OF CONTENTS

Page

ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii

1. INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Organization 4
2. ON THE AVERAGE ENTROPY REGIONS 6
2.1 Group-Induced Symmetric Projections 7
2.2 The Total-Average Projection 9
2.3 The Sliding-Window-Average Projection 11
3. EXISTENCE OF NON-SHANNON TYPE INEQUALITIES UNDER PAR- TIAL SYMMETRY 15
3.1 Shannon and Non-Shannon Groups 15
3.2 The Subgroups of S_{4} 16
3.3 The Cyclic Group C_{5} 19
4. SUMMARY AND FUTURE DIRECTIONS 26
REFERENCES 28
APPENDIX A. APPENDIX FOR SHANNON AND NON-SHANNON GROUPS OF S_{4} 30
A. 1 Subgroup A 30
A. 2 Subgroup V_{4} 33
A. 3 Subgroup P_{1} 35
A. 4 Subgroup d . 37

LIST OF FIGURES

FIGURE

1.1 An illustration of the sliding windows of length α when the integers $1 \ldots n$ are circularly placed based on their natural order.
2.1 Proof of the inequalities in (2.10) by choosing S to be a sliding window and i and j to be just outside of S in the elemental inequality (2.7). 14
3.1 Hasse diagram of S_{4}. 24

LIST OF TABLES

TABLE

3.1 Elements of subgroups of S_{4}. 25

1. INTRODUCTION

1.1 Motivation

Entropy inequalities play a central role in proving converse coding theorems for network information-theoretic problems. An entropy inequality which has found many applications $[3,4]$ in network information theory is an inequality first proved by Han [1]. Let $\left(\mathrm{X}_{i}: i \in \mathcal{N}_{n}\right)$ be a collection of n jointly distributed discrete random variables, where $\mathcal{N}_{n}:=\{1, \ldots, n\}$. For any $\alpha \in \mathcal{N}_{n}$, let

$$
\begin{equation*}
\bar{h}_{\alpha}:=\frac{1}{\binom{n}{\alpha}} \sum_{S \subseteq \mathcal{N}_{n}:|S|=\alpha} H\left(\mathrm{X}_{S}\right) \tag{1.1}
\end{equation*}
$$

be the average joint entropy, where the average is over all subsets of \mathcal{N}_{n} of size α. Han's inequality [1] states that for any collection of n jointly distributed discrete random variables $\left(\mathrm{X}_{i}: i \in \mathcal{N}_{n}\right)$, we have

$$
\begin{equation*}
\frac{\bar{h}_{n}}{n} \leq \frac{\bar{h}_{n-1}}{n-1} \leq \cdots \leq \bar{h}_{1} \tag{1.2}
\end{equation*}
$$

i.e., the average joint entropy per element decreases monotonically with the size of the subsets.

Another entropy inequality, which bears striking similarity to Han's inequality, is the so called sliding-window inequality first discovered in [2]. As shown in Figure 1.1, consider placing the integers from \mathcal{N}_{n} clockwise on a circle according to their natural ordering. For any $i \in \mathcal{N}_{n}$ and $\alpha \in \mathcal{N}_{n}$, the sliding window $W_{i}^{(\alpha)}$ is defined as the set of α consecutive integers starting from i and going clockwise. (So there are a total
of n sliding windows for each $\alpha \in \mathcal{N}_{n}$.) For any $\alpha \in \mathcal{N}_{n}$, let

$$
\begin{equation*}
\bar{h}_{\alpha}:=\frac{1}{n} \sum_{i=1}^{n} H\left(\mathrm{X}_{W_{i}^{(\alpha)}}\right) \tag{1.3}
\end{equation*}
$$

be the average joint entropy, where the average is over all sliding windows of size α. The sliding-window inequality [2] states that for any collection of n jointly distributed discrete random variables $\left(\mathrm{X}_{i}: i \in \mathcal{N}_{n}\right)$, we have

$$
\begin{equation*}
\frac{\bar{h}_{n}}{n} \leq \frac{\bar{h}_{n-1}}{n-1} \leq \cdots \leq \bar{h}_{1} \tag{1.4}
\end{equation*}
$$

i.e., the average joint entropy per element decreases monotonically with the size of the sliding windows.

As noted in [2], the total averages (1.1) can be obtained from the sliding-window averages (1.3) via a further averaging over all permutations of \mathcal{N}_{n}. Therefore, if a (linear) entropy inequality holds for the sliding-window averages, it must also hold for the total averages. The sliding-window inequality (1.4), however, shows that averaging over sliding windows is both necessary and sufficient for achieving the monotonicity of the average entropy per element. A question that remains to be answered is whether the above sufficiency is an isolated coincidence or a universal truth that applies to all entropy inequalities.

A central concept for systematic studies of entropy inequalities is entropy region, which was first introduced by Yeung [5, Chapter13.1]. A length- $\left(2^{n}-1\right)$ vector $\boldsymbol{h}=\left(h_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$ is said to be entropic if

$$
\begin{equation*}
h_{S}=H\left(\mathrm{X}_{S}\right), \quad \forall \emptyset \neq S \subseteq \mathcal{N}_{n} \tag{1.5}
\end{equation*}
$$

The collection of all entropic vectors is called the entropy region (over n variables)
and is usually denoted by Γ_{n}^{*}. As discussed in [5, Chapter13.3], a length- $\left(2^{n}-1\right)$ vector $\boldsymbol{b}=\left(b_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$ identifies a valid entropy inequality

$$
\begin{equation*}
\sum_{\emptyset \neq S \subseteq \mathcal{N}_{n}} b_{S} H\left(X_{S}\right) \geq 0 \tag{1.6}
\end{equation*}
$$

if and only if $\boldsymbol{b}^{t} \boldsymbol{h} \geq 0$ is a valid inequality for every $\boldsymbol{h} \in \operatorname{cl}\left(\Gamma_{n}^{*}\right)$, the closure of Γ_{n}^{*}. In literature, this is known as the geometric view of entropy inequalities.

For $n \geq 4$, the problem of characterizing $\operatorname{cl}\left(\Gamma_{n}^{*}\right)$ is very challenging (and remains open) due to the existence of the so-called non-Shannon type inequalities [6]. Fortunately, the entropy inequalities that we consider here are concerned with average joint entropies rather than entropies over individual subsets of \mathcal{N}_{n}. Towards studying inequalities for average joint entropies, we introduce the concepts of total-average entropy region and sliding-window-average entropy region below.

A length- n vector $\overline{\boldsymbol{h}}=\left(\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{n}\right)$ is said to be total-average entropic if

$$
\begin{equation*}
\bar{h}_{\alpha}=\frac{1}{\binom{n}{\alpha}} \sum_{S \subseteq \mathcal{N}_{n}:|S|=\alpha} H\left(\mathrm{X}_{S}\right), \quad \forall \alpha \in \mathcal{N}_{n} \tag{1.7}
\end{equation*}
$$

for some collection of n jointly distributed discrete random variables ($\mathrm{X}_{i}: i \in \mathcal{N}_{n}$). The collection of all total-average entropic vectors is called the total-average entropy region. Mathematically, it is given by the total-average projection P_{T} of Γ_{n}^{*}.

Similarly, a length- n vector $\overline{\boldsymbol{h}}=\left(\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{n}\right)$ is said to be sliding-windowaverage entropic if

$$
\begin{equation*}
\bar{h}_{\alpha}=\frac{1}{n} \sum_{i=1}^{n} H\left(\mathrm{X}_{W_{i}^{(\alpha)}}\right), \quad \forall \alpha \in \mathcal{N}_{n} \tag{1.8}
\end{equation*}
$$

for some collection of n jointly distributed discrete random variables $\left(\mathrm{X}_{i}: i \in \mathcal{N}_{n}\right)$. The collection of all sliding-window-average entropic vectors is called the sliding-window-average entropy region and is given by the sliding-window-average projection P_{S} of Γ_{n}^{*}.

A main result of this thesis is to show that the closures of the above two average entropy regions are, in fact, identical, which implies that averaging over sliding windows always suffices as far as unconstrained entropy inequalities are concerned. As an application of our result, the sliding-window inequality is immediately implied by Han's inequality.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we show that the closures of the total-average entropy region and the sliding-window-average entropy regions are identical. Our proof is based on the general concept of group-induced symmetric projection. As a side result, we also show that there are no non-Shannon type inequalities for average entropies. Note that this is in sharp contrast to entropies over individual subsets of \mathcal{N}_{n}, which admit an infinite collection of independent nonShannon type inequalities for $n \geq 4[7]$.

Motivated by the concept of group-induced symmetric projection introduced in Chapter 2, the existence of non-Shannon type inequality under partial symmetry is discussed in Chapter 3. This naturally leads to a classification criterion for all permutation groups. We present complete classification results on permutation groups over $n=4$ and cyclic groups C_{4} and C_{5}.

Finally, in Chapter 4, we conclude the thesis with some remarks on possible future directions.

Figure 1.1: An illustration of the sliding windows of length α when the integers $1 \ldots n$ are circularly placed based on their natural order.

2. ON THE AVERAGE ENTROPY REGIONS

The main result of this chapter is summarized in the following theorem.
Theorem 1. Let Γ_{n}^{*} and Γ_{n} be the entropy region and the polymatroid region over n variables, respectively, and let P_{T} and P_{S} be the total-average projection and the sliding-window-average projection defined by the linear mappings:

$$
\begin{equation*}
\bar{h}_{\alpha}=\frac{1}{\binom{n}{\alpha}} \sum_{S \subseteq \mathcal{N}_{n}:|S|=\alpha} h_{S} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{h}_{\alpha}=\frac{1}{n} \sum_{i=1}^{n} h_{W_{i}^{(\alpha)}} \tag{2.2}
\end{equation*}
$$

respectively. Then, for any integer n we have

$$
\begin{equation*}
c l\left(P_{T} \Gamma_{n}^{*}\right)=c l\left(P_{S} \Gamma_{n}^{*}\right)=P_{T} \Gamma_{n} \tag{2.3}
\end{equation*}
$$

As mentioned in the Introduction, the fact that the total-average entropy region and the sliding-window-average entropy regions are identical implies that averaging over sliding windows always suffices as far as unconstrained entropy inequalities are concerned. The fact that both average entropy regions are identical to the totalaverage projection of the polymatroid region implies that there are no non-Shannon type inequalities for average entropies. Note that this is in sharp contrast to entropies over individual subsets of \mathcal{N}_{n}, which admit an infinite collection of independent nonShannon type inequalities for $n \geq 4$ [7].

The rest of the chapter is devoted to the proof of the above result. We shall begin with the concept of group-induced symmetric projections.

2.1 Group-Induced Symmetric Projections

Let G be a group of permutations over \mathcal{N}_{n}. Consider the group action on the nonempty subsets of \mathcal{N}_{n} induced by that on the elements of \mathcal{N}_{n} :

$$
g(S)=\{g(a): a \in S\}
$$

for any $g \in G$ and $\emptyset \neq S \subseteq \mathcal{N}_{n}$. Then, the orbits of G forms a partition of all $2^{n}-1$ nonempty subsets of \mathcal{N}_{n}. For example, when $G=S_{n}$, the symmetry group over \mathcal{N}_{n}, two subsets S and S^{\prime} are in the same orbit if and only if $|S|=\left|S^{\prime}\right|$.

Let O_{1}, \ldots, O_{m} be the collection of all distinct orbits of G. For any length- $\left(2^{n}-1\right)$ vector ($h_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}$), the orbit averages can be defined as

$$
\begin{equation*}
\bar{h}_{\alpha}:=\frac{1}{\left|O_{\alpha}\right|} \sum_{S \in O_{\alpha}} h_{S} \tag{2.4}
\end{equation*}
$$

for any $\alpha \in \mathcal{N}_{m}$. We call the above projection from $\boldsymbol{h}=\left(h_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$ to $\overline{\boldsymbol{h}}=\left(\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{m}\right)$ the projection induced by G and denote it by P_{G}.

A set Θ of length- $\left(2^{n}-1\right)$ vectors $\boldsymbol{h}=\left(h_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$ is said to be permutation symmetric if $\boldsymbol{h}_{g} \in \Theta$ for any $\boldsymbol{h} \in \Theta$ and $g \in S_{n}$, where $\boldsymbol{h}_{g}:=\left(h_{g(S)}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$. We note here that both Γ_{n}^{*} (and hence $c l\left(\Gamma_{n}^{*}\right)$) and Γ_{n} are permutation symmetric for any $n \in \mathcal{N}$. The following result is a simple consequence of the well-known Lagrange's theorem for group actions [8, Chapter 7, Theorem 7.1]:

Lemma 1. For any convex, permutation symmetric set Θ of length- $\left(2^{n}-1\right)$ vectors $\boldsymbol{h}=\left(h_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$ and any permutation group G over \mathcal{N}_{n}, we have $P_{G} \Theta=P_{G} \Theta^{\prime}$
where

$$
\begin{equation*}
\Theta^{\prime}:=\left\{\boldsymbol{h} \in \Theta: h_{S}=h_{S^{\prime}} \forall S, S^{\prime} \text { in the same orbit of } G\right\} . \tag{2.5}
\end{equation*}
$$

Proof. Clearly, we have $P_{G} \Theta \supseteq P_{G} \Theta^{\prime}$ since $\Theta \supseteq \Theta^{\prime}$. To show the opposite inclusion, let $\overline{\boldsymbol{h}}=P_{G} \boldsymbol{h}$ for some $\boldsymbol{h} \in \Theta$. By assumption the set Θ is permutation symmetric, so we have $\boldsymbol{h}_{g} \in \Theta$ for any $g \in G$. By the convexity of Θ, the group average $\frac{1}{|G|} \sum_{g \in G} \boldsymbol{h}_{g} \in \Theta$. Furthermore, for any $k \in \mathcal{N}_{m}$ and any $S \in O_{k}$, by the Lagrange's theorem [8, Chapter 7, Theorem 7.1] we have

$$
\begin{equation*}
\frac{1}{|G|} \sum_{g \in G} h_{g(S)}=\frac{1}{\left|O_{k}\right|} \sum_{S \in O_{k}} h_{S}=\bar{h}_{k} . \tag{2.6}
\end{equation*}
$$

We thus conclude that $\frac{1}{|G|} \sum_{g \in G} \boldsymbol{h}_{g} \in \Theta^{\prime}$ and $P_{G}\left(\frac{1}{|G|} \sum_{g \in G} \boldsymbol{h}_{g}\right)=\overline{\boldsymbol{h}}$, i.e., $\overline{\boldsymbol{h}} \in P_{G} \Theta^{\prime}$. This completes the proof of the opposite inclusion $P_{G} \Theta \subseteq P_{G} \Theta^{\prime}$.

For a given permutation group G, directly characterizing $\operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right)$ might be difficult. The following simple inner and outer bounds are readily available.

Lemma 2. For any permutation group G over n variables, we have

$$
P_{G} c l\left(\Gamma_{n}^{*}\right) \subseteq \operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right) \subseteq P_{G} \Gamma_{n} .
$$

Proof. The fact that $P_{G} c l\left(\Gamma_{n}^{*}\right) \subseteq \operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right)$ follows from standard topological arguments [12]. The fact that $\operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right) \subseteq P_{G} \Gamma_{n}$ follows from the fact that $\Gamma_{n}^{*} \subseteq \Gamma_{n}$ so $\operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right) \subseteq \operatorname{cl}\left(P_{G} \Gamma_{n}\right)$ and that Γ_{n} is polyhedral [5, Chapter 14.1] so $\operatorname{cl}\left(P_{G} \Gamma_{n}\right)=$ $P_{G} \Gamma_{n}$.

The polymatroid region Γ_{n} is polyhedral and fully characterized by the elemental
inequalities [5, Chapter 14.1]:

$$
\begin{gather*}
h_{S \cup\{i\}}+h_{S \cup\{j\}}-h_{S \cup\{i, j\}}-h_{S} \geq 0, \quad \forall i \neq j \in \mathcal{N}_{n}, S \subseteq \mathcal{N}_{n} \backslash\{i, j\} \tag{2.7}\\
h_{\mathcal{N}_{n}}-h_{\mathcal{N}_{n} \backslash\{i\}} \geq 0, \quad \forall i \in \mathcal{N}_{n} \tag{2.8}
\end{gather*}
$$

Since Γ_{n} is convex and permutation symmetric, by By Lemma 1 the outer region $P_{G} \Gamma_{n}$ can be obtained by setting $h_{S}=\bar{h}_{\alpha}$ for any $S \in O_{\alpha}$ in the elemental inequalities.

For the cases where we can further show that $P_{G} \Gamma_{n} \subseteq P_{G} c l\left(\Gamma_{n}^{*}\right)$, the inner and outer bounds in Lemma 2 will match, leading to a precise characterization of $\operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right)$. Since both $P_{G} \Gamma_{n}$ and $P_{G} c l\left(\Gamma_{n}^{*}\right)$ are convex cones, to see whether $P_{G} \Gamma_{n} \subseteq P_{G} c l\left(\Gamma_{n}^{*}\right)$, it suffices to see whether all the extreme rays of $P_{G} \Gamma_{n}$ are in $P_{G} c l\left(\Gamma_{n}^{*}\right)$.

2.2 The Total-Average Projection

When $G=S_{n}$, the symmetry group over \mathcal{N}_{n}, two subsets S and S^{\prime} are in the same orbit if and only if $|S|=\left|S^{\prime}\right|$. We thus have

$$
\begin{equation*}
P_{T}=P_{S_{n}} \tag{2.9}
\end{equation*}
$$

i.e., the total-average projection is precisely the group-induced symmetric projection where the underlying group is S_{n}.

A precise characterization of the total-average projection of the polymatroid region is summarized in the following lemma.

Lemma 3. For any $n \in \mathcal{N}$, the total-average projection of the polymatroid region
$P_{T} \Gamma_{n}$ is given by the set of length-n vectors $\left(\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{n}\right)$ satisfying:

$$
\begin{align*}
2 \bar{h}_{\alpha}-\bar{h}_{\alpha-1}-\bar{h}_{\alpha+1} & \geq 0, \quad \forall \alpha \in \mathcal{N}_{n-1} \tag{2.10}\\
\bar{h}_{n}-\bar{h}_{n-1} & \geq 0 \tag{2.11}
\end{align*}
$$

where $\bar{h}_{0}:=0$. Alternatively, $P_{T} \Gamma_{n}$ is the convex polyhedral cone generated by the vectors $\left\{\boldsymbol{r}_{i}=\left(r_{i, 1}, \ldots, r_{i, n}\right): i \in \mathcal{N}_{n}\right\}$, where

$$
r_{i, k}=\left\{\begin{align*}
k, & \text { if } k \leq i \tag{2.12}\\
i, & \text { if } k>i
\end{align*}\right.
$$

Proof. Fix $n \in \mathcal{N}$. The polymatroid region Γ_{n} is the set of length- $\left(2^{n}-1\right)$ vectors $\boldsymbol{h}=\left(h_{S}: \emptyset \neq S \subseteq \mathcal{N}_{n}\right)$ satisfying the elemental inequalities (2.7) and (2.8). The polymatroid region Γ_{n} is convex and permutation symmetric. By Lemma 1, to obtain the projection $P_{T} \Gamma_{n}$, we can simply set $h_{S}=\bar{h}_{\alpha}$ for any $S \subseteq \mathcal{N}_{n}$ such that $|S|=\alpha$ in the elemental inequalities in (2.7) and (2.8). Removing the repeated inequalities, we may conclude that $P_{T} \Gamma_{n}$ is given by the set of length- n vectors ($\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{n}$) satisfying the inequalities in (2.10) and (2.11).

Denote the convex polyhedral cone generated by the set of vectors $\left\{\boldsymbol{r}_{i}: i \in \mathcal{N}_{n}\right\}$ by C. It is straightforward to verify that for any $i \in \mathcal{N}_{n}$, the vector \boldsymbol{r}_{i} satisfies every inequality from (2.10) and (2.11). We therefore have $C \subseteq P_{S} \Gamma_{n}$.

To prove the opposite inclusion, let $\overline{\boldsymbol{h}} \in P_{S} \Gamma_{n}$. Since the set of vectors $\left\{\boldsymbol{r}_{i}: i \in\right.$ $\left.\mathcal{N}_{n}\right\}$ spans the entire \mathcal{R}^{n}, we may write $\overline{\boldsymbol{h}}=\sum_{i=1}^{n} a_{i} \boldsymbol{r}_{i}$ for some real scalars a_{1}, \ldots, a_{n}. It remains to show that any real scalars a_{1}, \ldots, a_{n} such that $\overline{\boldsymbol{h}}=\sum_{i=1}^{n} a_{i} \boldsymbol{r}_{i}$ satisfies every inequality from (2.10) and (2.11) must satisfy $a_{i} \geq 0$ for all $i \in \mathcal{N}_{n}$.

Note that by the definition of \boldsymbol{r}_{i} for $i \in \mathcal{N}_{n}$, we can write \bar{h}_{α} explicitly as:

$$
\begin{equation*}
\bar{h}_{\alpha}=\sum_{j=1}^{\alpha} j a_{j}+\sum_{j=\alpha+1}^{n} \alpha a_{j}, \quad \forall \alpha \in \mathcal{N}_{n} . \tag{2.13}
\end{equation*}
$$

By (2.10) and (2.11), we have

$$
\begin{align*}
& a_{i}=2 \bar{h}_{i}-\bar{h}_{i-1}-\bar{h}_{i+1} \geq 0, \quad \forall i \in \mathcal{N}_{n-1} \tag{2.14}\\
& a_{n}=\bar{h}_{n}-\bar{h}_{n-1} \geq 0 \tag{2.15}
\end{align*}
$$

This completes the proof that $P_{T} \Gamma_{n} \subseteq C$ and hence the entire lemma.
Note that the extreme rays $\left\{\boldsymbol{r}_{i}=\left(r_{i, 1}, \ldots, r_{i, n}\right): i \in \mathcal{N}_{n}\right\}$ of $P_{T} \Gamma_{n}$ can all be realized by a total-average projection of uniform matroids [13]. Since all matroids are known to be entropic, we conclude that

$$
\begin{equation*}
P_{T} \Gamma_{n} \subseteq P_{T} c l\left(\Gamma_{n}^{*}\right) \tag{2.16}
\end{equation*}
$$

and hence

$$
\begin{equation*}
c l\left(P_{T} \Gamma_{n}^{*}\right)=P_{T} \Gamma_{n} . \tag{2.17}
\end{equation*}
$$

2.3 The Sliding-Window-Average Projection

When $G=C_{n}$, the cyclic group generated by the permutation (123 $3 \cdots n$), all sliding windows of the same size form an orbit of G. However, not all orbits of C_{n} are formed by sliding windows. For example, when $n=4$, the cyclic group C_{4} has a
total of five orbits:

$$
\begin{align*}
& O_{1}=\{\{1\},\{2\},\{3\},\{4\}\} \tag{2.18}\\
& O_{2}=\{\{1,2\},\{2,3\},\{3,4\},\{4,1\}\} \tag{2.19}\\
& O_{3}=\{\{1,3\},\{2,4\}\} \tag{2.20}\\
& O_{4}=\{\{1,2,3\},\{2,3,4\},\{3,4,1\},\{4,1,2\}\} \tag{2.21}\\
& O_{5}=\{\{1,2,3,4\}\} . \tag{2.22}
\end{align*}
$$

While the orbits O_{1}, O_{2}, O_{4} and O_{5} are formed by sliding windows of the same size, the orbit O_{3} is not. Therefore, the sliding-window-average projection P_{S} is given by

$$
\begin{equation*}
P_{S}=P_{S}^{\prime} P_{C_{n}} \tag{2.23}
\end{equation*}
$$

where P_{S}^{\prime} is the projection that keeps only the orbits formed by sliding windows of the same size.

Next, we show that the total-average projection of the polymatroid region is, in fact, an outer bound to the sliding-window-average projection of the polymatroid region.

Lemma 4. For any $n \in \mathcal{N}$, we have

$$
\begin{equation*}
P_{S} \Gamma_{n} \subseteq P_{T} \Gamma_{n} \tag{2.24}
\end{equation*}
$$

Proof. By Lemma 3, to show that $P_{S} \Gamma_{n} \subseteq P_{T} \Gamma_{n}$, it suffices to show that any $\overline{\boldsymbol{h}}=$ $\left(\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{n}\right) \in P_{S} \Gamma_{n}$ must satisfy all n inequalities in (2.10) and (2.11).

Let $\overline{\boldsymbol{h}}=\left(\bar{h}_{\alpha}: \alpha \in \mathcal{N}_{n}\right) \in P_{S} \Gamma_{n}$. Note that for any $\alpha \in \mathcal{N}, \bar{h}_{\alpha}$ is the orbit average of the cyclic group C_{n} where the orbit is formed by the sliding windows of size α.

The inequality (2.11) can be proved by setting $h_{\mathcal{N}_{n}}=\bar{h}_{n}$ and $h_{\mathcal{N}_{n} \backslash\{i\}}=\bar{h}_{n-1}$ in the elemental inequality (2.8). To prove the inequalities in (2.10), we note that for any sliding window S of size $|S| \leq n-2$ and elements i and j just outside of S, the sets $S \cup\{i\}, S \cup\{j\}$ and $S \cup\{i, j\}$ are once again sliding windows (of size $|S|+1,|S|+1$ and $|S|+2$, respectively). With this simple fact, the inequalities in (2.10) can be proved by setting S to be a sliding window and i and j to be just outside of S in the elemental inequality (2.7). See Figure 2.1 for an illustration of this choice of S and the elements i and j.

Note that the extreme rays $\left\{\boldsymbol{r}_{i}=\left(r_{i, 1}, \ldots, r_{i, n}\right): i \in \mathcal{N}_{n}\right\}$ of $P_{T} \Gamma_{n}$ can all be realized by a sliding-window-average projection of uniform matroids [13] as well. Since all matroids are known to be entropic, we conclude that

$$
\begin{equation*}
P_{T} \Gamma_{n} \subseteq P_{S} c l\left(\Gamma_{n}^{*}\right) \tag{2.25}
\end{equation*}
$$

and hence

$$
\begin{equation*}
c l\left(P_{S} \Gamma_{n}^{*}\right)=P_{T} \Gamma_{n} . \tag{2.26}
\end{equation*}
$$

Combining (2.24) and (2.26) completes the proof of Theorem 1.

Figure 2.1: Proof of the inequalities in (2.10) by choosing S to be a sliding window and i and j to be just outside of S in the elemental inequality (2.7).

3. EXISTENCE OF NON-SHANNON TYPE INEQUALITIES UNDER PARTIAL SYMMETRY

3.1 Shannon and Non-Shannon Groups

As discussed in Chapter 2, when $G=S_{n}$ (the largest permutation group over \mathcal{N}_{n}), we have

$$
\begin{equation*}
P_{G} c l\left(\Gamma_{n}^{*}\right)=P_{G} \Gamma_{n} \tag{3.1}
\end{equation*}
$$

implying that there are no non-Shannon type inequalities under total symmetry. On the other hand, when $G=\{(1)\}$ (the smallest permutation group over \mathcal{N}_{n}), we have

$$
\begin{equation*}
P_{G} c l\left(\Gamma_{n}^{*}\right) \subsetneq P_{G} \Gamma_{n} \tag{3.2}
\end{equation*}
$$

for $n \geq 4$ due to the existence of non-Shannon type inequalities [6] (when there is no symmetry at all). Between S_{n} and the identity group $\{(1)\}$, there are many proper subgroups of S_{n} that represent various types of partial symmetry. Our goal in this chapter is to examine the existence of non-Shannon type inequalities under partial symmetry.

Towards this goal, we introduce the following key definition of Shannon and nonShannon groups for permutation groups.

Definition 1. Let G be a group of permutations over \mathcal{N}_{n}. We say that G is Shannon if

$$
\begin{equation*}
P_{G} c l\left(\Gamma_{n}^{*}\right)=P_{G} \Gamma_{n} \tag{3.3}
\end{equation*}
$$

and non-Shannon if

$$
\begin{equation*}
P_{G} c l\left(\Gamma_{n}^{*}\right) \subsetneq P_{G} \Gamma_{n} . \tag{3.4}
\end{equation*}
$$

As discussed in Chapter 2, when G is a Shannon group, we have

$$
\begin{equation*}
\operatorname{cl}\left(P_{G} \Gamma_{n}^{*}\right)=P_{G} \Gamma_{n} \tag{3.5}
\end{equation*}
$$

implying that there are no non-Shannon type inequalities for the orbit averages induced by G.

The following simple fact is useful for classifying the proper subgroups of S_{n} into Shannon and non-Shannon groups.

Fact 1. All supergroups of a Shannon group is Shannon. Conversely, all subgroups of a non-Shannon group is non-Shannon.

3.2 The Subgroups of S_{4}

There are 30 subgroups of S_{4}, as listed in Table 3.1 and also depicted in Figure 3.1 as in the style of a Hasse diagram. We have the following results on the classification of subgroups of S_{4} into Shannon and non-Shannon groups.

Theorem 2. For symmetry group S_{4}, its subgroups $V 4, P 1, P 2, P 3, P 4, d, d^{\prime}$ and $d^{\prime \prime}$ are Shannon; its subgroups A, B and C are non-Shannon.

Since the subgroup $V 4$ is Shannon, its supergroups $D, D^{\prime}, D^{\prime \prime}, A 4$ and S_{4} are all Shannon. Similarly, since the subgroups $P 1, P 2, P 3$ and $P 4$, their supergroups $H 1, H 2, H 3$ and $H 4$ are also Shannon. Conversely, since the subgroups A, B and C are non-Shannon, their subgroups $a 1, a 2, b 1, b 2, c 1, c 2, V 1, V 2, V 3$ and $\{(1)\}$
are all non-Shannon. Therefore, Theorem 2 provides a complete classification of the subgroups of S_{4} into Shannon and non-Shannon groups.

To show that the subgroups $V 4, P 1, P 2, P 3, P 4, d, d^{\prime}$ and $d^{\prime \prime}$ are Shannon, we use the fact that the linear rank space \mathcal{L}_{n} is an inner bound to the entropy region Γ_{n}^{*} [9]. For $n=4$, the linear rank space \mathcal{L}_{4} is completely characterized by the Shannon type inequalities and the Ingleton inequalities [10]:

$$
\begin{array}{r}
h_{\{1,2\}}+h_{\{1,3\}}+h_{\{2,3\}}+h_{\{1,4\}}+h_{\{2,4\}}-h_{\{1\}}-h_{\{2\}}-h_{\{3,4\}}-h_{\{1,2,3\}}-h_{\{1,2,4\}} \geq 0 \tag{3.6}\\
h_{\{1,3\}}+h_{\{1,2\}}+h_{\{2,3\}}+h_{\{1,4\}}+h_{\{3,4\}}-h_{\{1\}}-h_{\{3\}}-h_{\{2,4\}}-h_{\{1,2,3\}}-h_{\{1,3,4\}} \geq 0 \\
\\
h_{\{1,4\}}+h_{\{1,2\}}+h_{\{2,4\}}+h_{\{1,3\}}+h_{\{3,4\}}-h_{\{1\}}-h_{\{4\}}-h_{\{2,3\}}-h_{\{1,2,4\}}-h_{\{1,3,4\}} \geq 0 \\
\\
h_{\{2,3\}}+h_{\{1,2\}}+h_{\{1,3\}}+h_{\{2,4\}}+h_{\{3,4\}}-h_{\{2\}}-h_{\{3\}}-h_{\{1,4\}}-h_{\{1,2,3\}}-h_{\{2,3,4\}} \geq 0
\end{array}
$$

$$
\begin{equation*}
h_{\{2,4\}}+h_{\{1,2\}}+h_{\{2,3\}}+h_{\{1,4\}}+h_{\{3,4\}}-h_{\{2\}}-h_{\{4\}}-h_{\{1,3\}}-h_{\{1,2,4\}}-h_{\{2,3,4\}} \geq 0 \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
h_{\{3,4\}}+h_{\{1,3\}}+h_{\{1,4\}}+h_{\{2,3\}}+h_{\{2,4\}}-h_{\{3\}}-h_{\{4\}}-h_{\{1,2\}}-h_{\{1,3,4\}}-h_{\{2,3,4\}} \geq 0 \tag{3.11}
\end{equation*}
$$

We use the commercial software Polymake [11] to compute the extreme rays of the polyhedral cones $P_{G} \mathcal{L}_{4}$ and $P_{G} \Gamma_{4}$ for $G=V 4, P 1, d$. For each one of these three cases, the results are given by two identical sets of vectors, implying that $P_{G} \mathcal{L}_{4}=P_{G} \Gamma_{4}$ and hence $P_{G} c l\left(\Gamma_{4}^{*}\right)=P_{G} \Gamma_{4}$ in these cases. By symmetry, the cases for $G=P 2, P 3, P 4$
follow from that for $G=P 1$ and the cases for $G=d^{\prime}, d^{\prime \prime}$ follow from that for $G=d$.
To show that the subgroups A, B and C are non-Shannon, we first use Polymake to compute the extreme rays of the polyhedral cone $P_{G} \Gamma_{4}$ for $G=A$. We then add the well-known Yeung-Zhang non-Shannon type inequalities [5, Chapter 15, Theorem 15.7], [6]:

$$
\begin{align*}
-2 h_{\{1\}}-2 h_{\{2\}}+ & 3 h_{\{1,2\}}-h_{\{3\}}-h_{\{3,4\}}+3 h_{\{1,3\}}+3 h_{\{2,3\}} \\
& +h_{\{1,4\}}+h_{\{2,4\}}-4 h_{\{1,2,3\}}-h_{\{1,2,4\}} \geq 0 \tag{3.13}\\
-2 h_{\{1\}}-2 h_{\{3\}}+ & 3 h_{\{1,3\}}-h_{\{2\}}-h_{\{2,4\}}+3 h_{\{1,2\}}+3 h_{\{2,3\}} \\
& +h_{\{1,4\}}+h_{\{3,4\}}-4 h_{\{1,2,3\}}-h_{\{1,3,4\}} \geq 0 \tag{3.14}\\
-2 h_{\{1\}}-2 h_{\{4\}}+ & 3 h_{\{1,4\}}-h_{\{2\}}-h_{\{2,3\}}+3 h_{\{1,2\}}+3 h_{\{2,4\}} \\
& +h_{\{1,3\}}+h_{\{3,4\}}-4 h_{\{1,2,4\}}-h_{\{1,3,4\}} \geq 0 \tag{3.15}\\
-2 h_{\{2\}}-2 h_{\{3\}}+ & 3 h_{\{2,3\}}-h_{\{1\}}-h_{\{1,4\}}+3 h_{\{1,2\}}+3 h_{\{1,3\}} \\
& +h_{\{2,4\}}+h_{\{3,4\}}-4 h_{\{1,2,3\}}-h_{\{2,3,4\}} \geq 0 \tag{3.16}\\
-2 h_{\{2\}}-2 h_{\{4\}}+ & 3 h_{\{2,4\}}-h_{\{1\}}-h_{\{1,3\}}+3 h_{\{1,2\}}+3 h_{\{1,4\}} \\
& +h_{\{2,3\}}+h_{\{3,4\}}-4 h_{\{1,2,4\}}-h_{\{2,3,4\}} \geq 0 \tag{3.17}\\
-2 h_{\{3\}}-2 h_{\{4\}}+ & 3 h_{\{3,4\}}-h_{\{1\}}-h_{\{1,2\}}+3 h_{\{1,3\}}+3 h_{\{1,4\}} \\
& +h_{\{2,3\}}+h_{\{2,4\}}-4 h_{\{1,3,4\}}-h_{\{2,3,4\}} \geq 0 \tag{3.18}
\end{align*}
$$

to the Shannon type inequalities to form a new outer region Γ_{4}^{\prime} to the entropy region Γ_{4}^{*}. We again use Polymake to compute the extreme rays of the polyhedral cone $P_{G} \Gamma_{4}^{\prime}$ for $G=A$. The result gives a different set of extreme rays than those of $P_{G} \Gamma_{4}$ for $G=A$. This shows that the subgroup A is non-Shannon. By symmetry, the cases for $G=B, C$ follow from that for $G=A$.

The details of the computation are deferred to the Appendix.

3.3 The Cyclic Group C_{5}

The cyclic group C_{4} generated by the permutation (1 $\left.\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ is the subgroup in the Hasse diagram (3.1) and was shown to be Shannon from the previous discussion.

The orbits of the cyclic group C_{5} generated by the permutation (12345) are given by:

$$
\begin{align*}
& O_{1}=\{\{1\},\{2\},\{3\},\{4\},\{5\}\} \tag{3.19}\\
& O_{2}=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\}\} \tag{3.20}\\
& O_{3}=\{\{1,3\},\{2,4\},\{3,5\},\{4,1\},\{5,2\}\} \tag{3.21}\\
& O_{4}=\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,1\},\{5,1,2\}\} \tag{3.22}\\
& O_{5}=\{\{1,2,4\},\{2,3,5\},\{3,4,1\},\{4,5,2\},\{5,1,3\}\} \tag{3.23}\\
& O_{6}=\{\{1,2,3,4\},\{2,3,4,5\},\{3,4,5,1\},\{4,5,1,2\},\{5,1,2,3\}\} \tag{3.24}\\
& O_{7}=\{\{1,2,3,4,5\}\} . \tag{3.25}
\end{align*}
$$

Setting $h_{S}=\bar{h}_{k}$ for any $S \in O_{k}$ and $k \in \mathcal{N}_{7}$ in the elemental inequalities (2.7) and (2.8), the projection of the polymatroid region $P_{C_{5}} \Gamma_{5}$ is given by the set of vectors
$\left(\bar{h}_{k}: k \in \mathcal{N}_{7}\right)$ satisfying the following 17 inequalities:

$$
\begin{align*}
2 \bar{h}_{1}-\bar{h}_{2} & \geq 0 \tag{3.26}\\
2 \bar{h}_{1}-\bar{h}_{3} & \geq 0 \tag{3.27}\\
2 \bar{h}_{2}-\bar{h}_{1}-\bar{h}_{4} & \geq 0 \tag{3.28}\\
2 \bar{h}_{3}-\bar{h}_{1}-\bar{h}_{4} & \geq 0 \tag{3.29}\\
\bar{h}_{2}+\bar{h}_{3}-\bar{h}_{1}-\bar{h}_{4} & \geq 0 \tag{3.30}\\
2 \bar{h}_{2}-\bar{h}_{1}-\bar{h}_{5} & \geq 0 \tag{3.31}\\
2 \bar{h}_{3}-\bar{h}_{1}-\bar{h}_{5} & \geq 0 \tag{3.32}\\
\bar{h}_{2}+\bar{h}_{3}-\bar{h}_{1}-\bar{h}_{5} & \geq 0 \tag{3.33}\\
2 \bar{h}_{4}-\bar{h}_{3}-\bar{h}_{6} & \geq 0 \tag{3.34}\\
2 \bar{h}_{5}-\bar{h}_{3}-\bar{h}_{6} & \geq 0 \tag{3.35}\\
\bar{h}_{4}+\bar{h}_{5}-\bar{h}_{3}-\bar{h}_{6} & \geq 0 \tag{3.36}\\
2 \bar{h}_{4}-\bar{h}_{3}-\bar{h}_{4} & \geq 0 \tag{3.37}\\
2 \bar{h}_{5}-\bar{h}_{3}-\bar{h}_{4} & \geq 0 \tag{3.38}\\
\bar{h}_{4}+\bar{h}_{5}-\bar{h}_{3}-\bar{h}_{4} & \geq 0 \tag{3.39}\\
2 \bar{h}_{6}-\bar{h}_{6}-\bar{h}_{4}-\bar{h}_{7} & \geq 0 \tag{3.40}\\
2 \bar{h}_{6}-\bar{h}_{6}-\bar{h}_{5}-\bar{h}_{7} & \geq 0 \tag{3.41}\\
\bar{h}_{7}-\bar{h}_{6} & \geq 0 . \tag{3.42}
\end{align*}
$$

Using Polymake [11], the extreme rays of $P_{C_{5}} \Gamma_{5}$ can be computed as:

$$
\begin{align*}
& \boldsymbol{r}_{1}=(1,1,1,1,1,1,1) \tag{3.43}\\
& \boldsymbol{r}_{2}=(1,2,2,2,2,2,2) \tag{3.44}\\
& \boldsymbol{r}_{3}=(1,2,2,3,3,3,3) \tag{3.45}\\
& \boldsymbol{r}_{4}=(1,2,2,3,3,4,4) \tag{3.46}\\
& \boldsymbol{r}_{5}=(1,2,2,3,3,4,5) \tag{3.47}\\
& \boldsymbol{r}_{6}=(2,3,4,4,4,4,4) \tag{3.48}\\
& \boldsymbol{r}_{7}=(2,4,3,4,4,4,4) \tag{3.49}\\
& \boldsymbol{r}_{8}=(2,4,4,5,6,6,6) \tag{3.50}\\
& \boldsymbol{r}_{9}=(2,4,4,6,5,6,6) . \tag{3.51}
\end{align*}
$$

Theorem 3. The cyclic group C_{5} is Shannon.

Proof. To show that the cyclic group C_{5} is Shannon, it suffices to show that all nine extreme rays of $P_{C_{5}} \Gamma_{5}$ are in $P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$. It is clear that the extreme rays $\boldsymbol{r}_{i}, i \in \mathcal{N}_{5}$, can be realized by a cyclic projection of uniform matroids [13] and are hence in $P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$. So we only need to show that $\boldsymbol{r}_{i}, i=6,7,8,9$, are in $P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$.

To show that $\boldsymbol{r}_{7} \in P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$, let $\mathrm{U}_{i}, i \in \mathcal{N}_{4}$, be four independent uniform variables
over a finite field \mathbb{F} and

$$
\begin{align*}
& \mathrm{X}_{1}:=\left(\mathrm{U}_{1}, \mathrm{U}_{2}+\mathrm{U}_{3}\right) \tag{3.52}\\
& \mathrm{X}_{2}:=\left(\mathrm{U}_{2}, \mathrm{U}_{3}+\mathrm{U}_{4}\right) \tag{3.53}\\
& \mathrm{X}_{3}:=\left(\mathrm{U}_{3}, \mathrm{U}_{1}\right) \tag{3.54}\\
& \mathrm{X}_{4}:=\left(\mathrm{U}_{4}, \mathrm{U}_{2}+\mathrm{U}_{3}\right) \tag{3.55}\\
& \mathrm{X}_{5}:=\left(\mathrm{U}_{4}+\mathrm{U}_{1}, \mathrm{U}_{3}+\mathrm{U}_{4}\right) . \tag{3.56}
\end{align*}
$$

It is straightforward to verify that

$$
H\left(\mathrm{X}_{S}\right)= \begin{cases}2 \log |\mathbb{F}|, & \text { for } S \in O_{1} \tag{3.57}\\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{2} \\ 3 \log |\mathbb{F}|, & \text { for } S \in O_{3} \\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{4} \\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{5} \\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{6} \\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{7}\end{cases}
$$

completing the proof that $\boldsymbol{r}_{7} \in P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$.
To show that $\boldsymbol{r}_{9} \in P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$, let $\mathrm{U}_{i}, i \in \mathcal{N}_{6}$, be six independent uniform variables
over a finite field \mathbb{F} and

$$
\begin{align*}
& \mathrm{X}_{1}=\left(\mathrm{U}_{1}, \mathrm{U}_{6}\right) \tag{3.58}\\
& \mathrm{X}_{2}=\left(\mathrm{U}_{2}, \mathrm{U}_{4}+\mathrm{U}_{5}\right) \tag{3.59}\\
& \mathrm{X}_{3}=\left(\mathrm{U}_{3}, \mathrm{U}_{5}+\mathrm{U}_{6}\right) \tag{3.60}\\
& \mathrm{X}_{4}=\left(\mathrm{U}_{4}, \mathrm{U}_{1}+\mathrm{U}_{5}\right) \tag{3.61}\\
& \mathrm{X}_{5}=\left(\mathrm{U}_{2}+\mathrm{U}_{3}, \mathrm{U}_{3}+\mathrm{U}_{5}\right) \tag{3.62}
\end{align*}
$$

It is straightforward to verify that

$$
H\left(\mathrm{X}_{S}\right)= \begin{cases}2 \log |\mathbb{F}|, & \text { for } S \in O_{1} \tag{3.63}\\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{2} \\ 4 \log |\mathbb{F}|, & \text { for } S \in O_{3} \\ 6 \log |\mathbb{F}|, & \text { for } S \in O_{4} \\ 5 \log |\mathbb{F}|, & \text { for } S \in O_{5} \\ 6 \log |\mathbb{F}|, & \text { for } S \in O_{6} \\ 6 \log |\mathbb{F}|, & \text { for } S \in O_{7}\end{cases}
$$

completing the proof that $\boldsymbol{r}_{9} \in P_{C_{5}} c l\left(\Gamma_{5}^{*}\right)$.
By symmetry, the cases for \boldsymbol{r}_{6} and \boldsymbol{r}_{8} follows from that for \boldsymbol{r}_{7} and \boldsymbol{r}_{9}, respectively. We have thus completed the proof of the theorem.

Figure 3.1: Hasse diagram of S_{4}.

Table 3.1: Elements of subgroups of S_{4}

label	elements	order	isomorphic to
A4	$\begin{gathered} \{\mathrm{e},(12)(34),(13)(24),(14)(23),(123),(124), \ldots \\ (132),(134),(142),(143),(234),(243)\} \end{gathered}$	12	A4
V4	$\{\mathrm{e},(12)(34),(13)(24),(14)(23)\}$	4	V4
v1, v2, v3	$\{\mathrm{e},(12)(34)\},\{\mathrm{e},(13)(24)\},\{\mathrm{e},(14)(23)\}$	2, 2, 2	Z2
P1	$\{\mathrm{e},(123),(132)\}$	3	Z3
P2	\{e, (124), (142) $\}$	3	Z3
P3	\{e, (134), (143) $\}$	3	Z3
P4	$\{\mathrm{e},(234),(243)\}$	3	Z3
D	$\begin{gathered} \{\mathrm{e},(12),(12)(34),(13)(24), \\ (14)(23),(34),(1324),(1423)\} \end{gathered}$	8	D4
d	\{e, (12)(34), (1324), (1423) \}	4	Z4
D'	$\begin{gathered} \{\mathrm{e},(13),(12)(34),(13)(24), \\ (14)(23),(24),(1234),(1432)\} \end{gathered}$	8	D4
d'	\{e, (13)(24), (1234), (1423) \}	4	Z4
D"	$\begin{gathered} \{\mathrm{e},(14),(12)(34),(13)(24), \\ (14)(23),(23),(1243),(1342)\} \end{gathered}$	8	D4
d"	$\{\mathrm{e},(14)(23),(1243),(1342)\}$	4	Z4
H1	$\{\mathrm{e},(12),(13),(23),(123),(132)\}$	6	S3
H2	$\{\mathrm{e},(12),(14),(24),(124),(142)\}$	6	S3
H3	$\{\mathrm{e},(13),(14),(34),(134),(143)\}$	6	S3
H4	$\{\mathrm{e},(23),(24),(34),(234),(243)\}$	6	S3
A	$\{\mathrm{e},(12),(12)(34),(34)\}$	4	V4
a1, a2	$\{\mathrm{e},(12)\},\{\mathrm{e},(34)\}$	2, 2	Z2
B	\{e, (13), (13)(24), (24)\}	4	V4
b1, b2	$\{\mathrm{e},(13)\},\{\mathrm{e},(24)\}$	2, 2	Z2
C	$\{\mathrm{e},(14),(14)(23),(23)\}$	4	V4
c1, c2	$\{\mathrm{e},(14)\},\{\mathrm{e},(23)\}$	2, 2	Z2

4. SUMMARY AND FUTURE DIRECTIONS

Entropy inequalities play a central role in proving converse coding theorems for network information theoretic problems. This thesis studied two new aspects of entropy inequalities. First, inequalities relating average joint entropies rather than entropies over individual subsets were studied. Motivated by the curious fact that the monotonicity of average joint entropy per element holds when the averaging is over both all subsets of the size [1] and the sliding window of the same size [2], it was shown that the closures of the average entropy regions where the averages are over all subsets of the same size and all sliding windows of the same size respectively are identical. This implies that that averaging over sliding windows always suffices as far as unconstrained entropy inequalities are concerned. Therefore, the aforementioned fact on the monotonicity of average joint entropy per element is a universal truth rather than an isolated curious observation.

Second, the existence of non-Shannon type inequalities [6] was one of the most significant discoveries in information theory during the last twenty years. Under total symmetry, however, it was known that all non-Shannon type inequalities are implied by Shannon type inequalities [5]. Mathematically, the total symmetry can be represented using the symmetry groups S_{n}. In the second part of this thesis, the existence of non-Shannon type inequalities under partial symmetry was studied, where the partial symmetry was represented using the subgroups of S_{n}. This naturally led to the notion of Shannon and non-Shannon groups, based on which a complete classification of all permutation groups over four elements was established. With five random variables, it was shown that there are no non-Shannon type inequalities under cyclic symmetry.

There are several directions that one may consider exploring in the future. Perhaps the most straightforward extension is to consider the cyclic groups C_{n} for $n \geq 6$. It is our belief that the cyclic group C_{n} is Shannon for any $n \in \mathcal{N}$. Note that even though the cases where $n=4$ and 5 have been resolved in this thesis, the techniques that we used rely on a "brute-force" calculation of the extreme rays of $P_{C_{n}} \Gamma_{n}$ and have a complexity that grows exponentially with n. A new representation which can further expose the structure of $P_{C_{n}} \Gamma_{n}$ may be needed in order to make progress.

Another direction of interest is to understand which partial symmetry is particularly relevant to engineering and whether non-Shannon type inequalities exist under those partial symmetry. The modern development of distributed storage systems provides several examples $[14,15]$ where there is symmetry built into the design principles and requirements.

Finally, note that with symmetry not only non-Shannon type inequalities may completely disappear (dominated by the Shannon type inequalities), the number of independent Shannon type inequalities may also be substantially reduced. For example, without any symmetry the total number of independent Shannon type inequalities (elemental inequalities in (2.7) and (2.8)) over n variables is

$$
n+\binom{n}{2} 2^{n-2}
$$

By comparison, under total symmetry the total number of independent Shannon type inequalities (the inequalities in (2.10) and (2.11)) over n variables is only n. Therefore, partial symmetry can potentially provide huge advantages when a computational approach is utilized for characterizing the fundamental limits of complex information systems [16].

REFERENCES

[1] T. S. Han, "Nonnegative entropy measures of multivariate symmetric correlations," Inf. Control, vol. 36, no. 2, pp. 133-156, Feb. 1978.
[2] J. Jiang, N. Marukala, T. Liu, "Symmetrical multilevel diversity coding and subset entropy inequalities," IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 84-103, Jan. 2014.
[3] J. R. Roche, R. W. Yeung, and K. P. Hau, "Symmetrical Multilevel Diversity Coding," IEEE Trans. Inf. Theory, vol. 43, pp.1059-1064, May 1997.
[4] R. W. Yeung, Z. Zhang, "On symmetrical multilevel diversity coding," IEEE Trans. Inf. Theory, vol. 45, pp. 609-621, Mar. 1999.
[5] R. W. Yeung, Information Theory and Network Coding. New York: Springer Verlag, 2008.
[6] Z. Zhang, R. W. Yeung, "On Characterization of entropy function via information inequalities," IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1440-1452, Jul. 1998.
[7] F. Matus, "Infinitely many information inequalities," IEEE International Symposium on Inf. Theory, pp. 2101-2105, Jun. 2007.
[8] J. A. Gallian, Contemporary Abstract Algebra. Lexington, Mass.: D.C. Heath and Company, 1986.
[9] D. Hammer, A. E. Romashchenko, A. Shen, N. K. Vereshchagin, "Inequalities for Shannon entropy and Kolmogorov complexity," Journal of Computer and Systems Sciences, vol. 60, pp. 442-464, Apr. 2000.
[10] A. W. Ingleton, "Representation of matroids," in Combinatorial Mathematics and its Applications, D. J. A. Welsh, pp. 149-167, Academic Press, London, 1971.
[11] E. Gawrilow, M. Joswig, "Polymake: a framework for analyzing covex polytopes," http://www.polymake.org, 2000.
[12] R. T. Rockafellar, Covex Analysis. Princeton University, 1970.
[13] D. J. A. Welsh, Matroid Theory. Academic Press, London, 1976.
[14] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, K. Ramchandran, "Network coding for distributed storage systems," IEEE International Symposium on Inf. Theory, vol. 56, no. 9, pp. 4539-4551, Sep. 2010.
[15] A. G. Dimakis, K. Ramchandran, Y. Wu, C. Suh, "A survey on network codes for distributed storage," Proceeding of the IEEE, vol. 99, no. 3, pp. 476-489, Mar. 2011.
[16] C. Tian, "Characterization rate region of the $(4,3,3)$ exact-repair regenerating codes," JSAC on Communication Methodologies for the Next-Generation Storage Systems, vol. 32, no. 5, pp. 967-975, May 2014.

APPENDIX A

APPENDIX FOR SHANNON AND NON-SHANNON GROUPS OF S_{4}

A. 1 Subgroup A

Shannon-type Inequalities:
$\$$ inequalities $=$ new Matrix $<$ Rational $>([[0,0,0,-1,0,0,0,0,0],[0,1,1,0,-1,0,0$, 0,0$],[0,0,2,0,0,-1,0,0,0],[0,-1,0,1,1,, 0,,-1,0,0],[0,-1,0,0,2,0,0,-1,0],[0$,
 $0,1,1,-1],[0,0,0,0,0,-1,0,2,-1],[0,0,0,0,0,0,0,-1,1],[0,0,0,0,0,0,-1,0,1]]) ;$ polytope $>\$$ p $=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$$ p $->$ VERTICES;

0	1	0	1	1	0	1	1	1
0	1	1	1	2	2	2	2	2
0	1	1	$3 / 2$	$3 / 2$	2	2	2	2
0	1	$1 / 2$	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
0	1	1	2	$3 / 2$	$3 / 2$	2	2	2
0	1	2	2	2	2	2	2	2
0	1	1	2	2	1	2	2	2
0	1	$1 / 2$	2	$3 / 2$	1	2	2	2
0	1	1	2	$3 / 2$	2	2	2	2
0	1	1	2	2	2	2	2	2
0	1	2	2	3	4	4	4	4
0	0	1	0	1	1	1	1	1
0	1	1	2	2	2	3	3	3
1	0	0	0	0	0	0	0	0
0	0	1	0	1	2	1	2	2
0	1	0	2	1	0	2	1	2

Shannon-type Inequalities+ Ingleton Inequality:
\$inequalities=new Matrix $<$ Rational $>([[0,2,0,-1,0,0,0,0,0],[0,1,1,0,-1,0,0$, 0,0$],[0,0,2,0,0,-1,0,0,0],[0,-1,0,1,1, ~, 0,,-1,0,0],[0,-1,0,0,2,0,0,-1,0],[0$,
 ,-1, $0,1,1,-1],[0,0,0,0,0,-1,0,2,-1],[0,0,0,0,0,0,0,-1,1],[0,0,0,0,0,0,-1,0$,1],[0,-2,0,1,4,-1,-2,0,0]]);
polytope $>\$$ p=new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$$ p $->$ VERTICES;

0	1	0	1	1	0	1	1	1
0	1	1	1	2	2	2	2	2
0	1	$1 / 2$	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1
0	1	1	2	$3 / 2$	$3 / 2$	2	2	2
0	1	2	2	2	2	2	2	2
0	1	1	2	2	1	2	2	2
0	1	$1 / 2$	2	$3 / 2$	1	2	2	2
0	1	1	2	$3 / 2$	2	2	2	2
0	1	1	2	2	2	2	2	2
0	1	2	2	3	4	4	4	4
0	0	1	0	1	1	1	1	1
0	1	1	2	2	2	3	3	3
1	0	0	0	0	0	0	0	0
0	0	1	0	1	2	1	2	2
0	1	0	2	1	0	2	1	2

Shannon-type Inequalities+ YZ Inequality:
\$inequalities=new Matrix $<$ Rational $>([[0,0,0,-1,0,0,0,0,0],[0,1,1,0,-1,0,0$, 0,0$],[0,0,2,0,0,-1,0,0,0],[0,-1,0,1,1, ~, 0,,-1,0,0],[0,-1,0,0,2,0,0,-1,0],[0$,
 ,-1, $0,1,1,-1],[0,0,0,0,0,-1,0,2,-1],[0,0,0,0,0,0,0,-1,1],[0,0,0,0,0,0,-1,0$, 1], $[0,-1,-4,-1,8,3,0,-5,0],[0,-4,-1,3,8,-1,-5,0,0],[0,-3,-2,3,6,1,-4,-1,0],[0$,
$-2,-3,1,6,3,-1,-4,0]])$;
polytope $>\$$ p $=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$$ p $->$ VERTICES;

0	1	0	1	1	0	1	1	1
0	1	1	1	2	2	2	2	2
0	1	$3 / 4$	$5 / 4$	$5 / 4$	$3 / 2$	$3 / 2$	$3 / 2$	$3 / 2$
0	1	1	$5 / 3$	$3 / 2$	2	2	2	2
0	1	1	1	1	1	1	1	1
0	1	1	2	$3 / 2$	$5 / 3$	2	2	2
0	1	2	2	2	2	2	2	2
0	1	$4 / 3$	2	$5 / 3$	$5 / 3$	2	2	2
0	1	1	2	2	1	2	2	2
0	1	1	2	$3 / 2$	2	2	2	2
0	1	1	2	2	2	2	2	2
0	0	1	0	1	1	1	1	1
0	1	$1 / 2$	2	$3 / 2$	1	2	2	2
0	1	1	2	2	2	3	3	3
0	1	2	2	3	4	4	4	4
1	0	0	0	0	0	0	0	0
0	0	1	0	1	2	1	2	2
0	1	0	2	1	0	2	1	2

A. 2 Subgroup V_{4}

Shannon-type Inequalities:
$\$$ inequalities $=$ new Matrix $<$ Rational $>([[0,0,0,0,0,-1,1],[0,2,-1,0,0,0,0],[0$,
$2,0,-1,0,0,0],[0,2,0,0,-1,0,0],[0,-1,1,1,0,-1,0],[0,-1,0,1,1,-1,0],[0,-1,1$, $0,1,-1,0],[0,0,-1,0,0,2,-1],[0,0,0,-1,0,2,-1],[0,0,0,0,-1,2,-1]])$; polytope $>\$ \mathrm{p}=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities); polytope $>$ print $\$$ p $->$ VERTICES;

$$
\begin{array}{lllllll}
0 & 1 & 2 & 2 & 1 & 2 & 2 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 2 & 2 & 2 \\
0 & 1 & 1 & 2 & 2 & 2 & 2 \\
0 & 1 & 2 & 2 & 2 & 3 & 3 \\
0 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 2 & 2 & 3 & 4
\end{array}
$$

Shannon-type Inequalities+ Ingleton Inequality:
\$inequalities=new Matrix $<$ Rational $>([[0,0,0,0,0,-1,1],[0,2,-1,0,0,0,0],[0$, $2,0,-1,0,0,0],[0,2,0,0,-1,0,0],[0,-1,1,1,0,-1,0],[0,-1,0,1,1,-1,0],[0,-1,1$, $0,1,-1,0],[0,0,-1,0,0,2,-1],[0,0,0,-1,0,2,-1],[0,0,0,0,-1,2,-1],[0,-2,0,2,2$, $-2,0]]$);
polytope $>\$$ p $=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$$ p $->$ VERTICES;

$$
\begin{array}{lllllll}
0 & 1 & 2 & 2 & 1 & 2 & 2 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 & 2 & 2 & 2 \\
0 & 1 & 1 & 2 & 2 & 2 & 2 \\
0 & 1 & 2 & 2 & 2 & 3 & 3 \\
0 & 1 & 2 & 2 & 2 & 2 & 2 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 2 & 2 & 3 & 4
\end{array}
$$

A. 3 Subgroup P_{1}

Shannon-type Inequalities
$\$$ inequalities $=$ new Matrix $<$ Rational $>([[0,0,0,0,0,0,-1,1],[0,0,0,0,0,-1,0$, $1],[0,2,0,-1,0,0,0,0],[0,1,1,0,-1,0,0,0],[0,-1,0,2,0,-1,0,0],[0,-1,0,1,1,0$, $-1,0],[0,0,-1,0,2,0,-1,0],[0,0,0,-1,0,1,1,-1],[0,0,0,0,-1,0,2,-1]]) ;$
polytope $>\$$ p $=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$ \mathrm{p}->$ VERTICES;

0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	2	2	2	2	2
0	1	2	2	2	2	2	2
0	1	2	2	3	3	3	3
0	1	3	2	3	3	3	3
0	1	1	2	2	3	3	3
0	1	0	2	1	2	2	2
1	0	0	0	0	0	0	0
0	0	1	0	1	0	1	1
0	1	0	2	1	3	2	3

Shannon-type Inequalities+ Ingleton Inequality:
$\$$ inequalities $=$ new Matrix $<$ Rational $>([[0,0,0,0,0,0,-1,1],[0,0,0,0,0,-1,0$, $1],[0,2,0,-1,0,0,0,0],[0,1,1,0,-1,0,0,0],[0,-1,0,2,0,-1,0,0],[0,-1,0,1,1,0$, $-1,0],[0,0,-1,0,2,0,-1,0],[0,0,0,-1,0,1,1,-1],[0,0,0,0,-1,0,2,-1],[0,-2,0,3$, $1,-1,-1,0],[0,-1,-1,1,3,0,-2,0]])$;
polytope $>\$$ p $=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$$ p $->$ VERTICES;

0	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	2	2	2	2	2
0	1	2	2	2	2	2	2
0	1	2	2	3	3	3	3
0	1	3	2	3	3	3	3
0	1	1	2	2	3	3	3
0	1	0	2	1	2	2	2
1	0	0	0	0	0	0	0
0	0	1	0	1	0	1	1
0	1	0	2	1	3	2	3

A. 4 Subgroup d

Shannon-type Inequalities:
\$inequalities=new Matrix $<$ Rational $>([[0,0,0,0,-1,1],[0,2,-1,0,0,0],[0,2,0$,
$-1,0,0],[0,-1,1,1,-1,0],[0,-1,0,2,-1,0],[0,0,-1,0,2,-1],[0,0,0,-1,2,-1]]) ;$
polytope $>\$ \mathrm{p}=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$ \mathrm{p}->$ VERTICES;

0	1	1	1	1	1
0	1	2	$3 / 2$	2	2
0	1	1	2	2	2
0	1	2	2	3	3
0	1	2	2	2	2
1	0	0	0	0	0
0	1	2	2	3	4

Shannon-type Inequalities+ Ingleton Inequality:
$\$$ inequalities $=$ new Matrix $<$ Rational $>([[0,0,0,0,-1,1],[0,2,-1,0,0,0],[0,2,0$,
$-1,0,0],[0,-1,1,1,-1,0],[0,-1,0,2,-1,0],[0,0,-1,0,2,-1],[0,0,0,-1,2,-1],[0,-2$,
$0,4,-2,0],[0,-2,2,2,-2,0]]) ;$
polytope $>\$ \mathrm{p}=$ new Polytope $<$ Rational $>$ (INEQUALITIES $=>$ \$inequalities);
polytope $>$ print $\$$ p $->$ VERTICES;

0	1	1	1	1	1
0	1	2	$3 / 2$	2	2
0	1	1	2	2	2
0	1	2	2	3	3
0	1	2	2	2	2
1	0	0	0	0	0
0	1	2	2	3	4

