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ABSTRACT

The 3D reconstruction of neurovascular network plays an important role in un-

derstanding the functions of the blood vessels in different brain regions. Many tech-

niques have been applied to acquire microscopic neurovascular data. The Knife-Edge

Scanning Microscope (KESM) is a physical sectioning microscopy instrument devel-

oped by the Brain Network Lab in Texas A&M University which enables imaging of

an entire mouse brain at sub-micrometer resolution. With the KESM image data,

we can trace the neurovascular structure of the whole mouse brain. For the large

neurovascular volume like the KESM data set, complicated tracing algorithm with

template matching process is not fast enough. Also, KESM imaging might involve

gaps and noise in data when acquiring the large volume of data. To solve these

issues, a novel automated neurovascular tracing and data analysis method with less

processing time and high accuracy is developed in this thesis.

First, an automated seed point selection algorithm was described in my approach.

The seed points on every outer boundary surface of the volume were selected as the

start points of tracing. Second, a vector-based tracing method was developed to

trace vascular network in 3D space. Third, the properties of the extracted vascular

network were analyzed. Finally, the accuracy of the tracing method was evaluated

using synthetic data. This approach is expected to help explore the entire vascular

network of KESM automatically without human assistance.
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1. INTRODUCTION

1.1 Motivation

The neurovascular system is a complex network. Understanding the neurovas-

cular architecture of brain is helpful to understand the function of the blood ves-

sels in different brain regions. To study the neurovascular architecture, many tech-

niques and tools have been developed to acquire microscopic neurovascular data.

The Knife-Edge Scanning Microscope (KESM) is a physical sectioning microscopy

instrument developed in Brain Network Lab at Texas A&M University. It enables

to scan through entire mouse brain tissues at sub-micrometer resolution. By using

KESM, we have obtained whole-brain scale neurovascular data from mouse brain

stained by India ink [2].

The next step after obtaining raw neurovascular data is to trace the vascular

geometric structure in order to reconstruct the vascular network for further analy-

sis. Since the KESM system offers large scale data set at high resolution, a high-

performance 3D vascular tracing method is required. For the large volume of 3D

neurovascular image, complicated tracing algorithm with template matching pro-

cess is not fast enough. Also, KESM imaging might involve gaps and noise in data

when acquiring the large volume of data. To achieve better performance, the tracing

strategy should be robust in data with gaps and noise. In addition, the volume of

vasculature data contains fine filament-like structures which should be traced to fully

reconstruct the microstructure of the brain.

1.2 Goal of the research

The goal of this research is to develop a fast and robust seed point selection and

vascular tracing method to reconstruct the neurovascular structure in the KESM

1



India ink data set. The tracing method would be able to trace efficiently fine vascular

structures that span a large volume with gaps and noise. Also, the research targets

towards analyzing the tracing result by collecting the length and the volume statistics

of the traced vascular structure.

1.3 Approach

In order to automatically trace the vasculature in a certain unit volume, a series

of steps are taken in the tracing method: image preprocessing, seed point selection,

vector-based vasculature tracing, bifurcation and curve detection, vascular network

exploration and data analysis. (1) Preprocessing is applied to the KESM India ink

data including stacking the 2-dimensional image sequence and thresholding the im-

ages. The 3-dimensional vascular volume file is created by stacking the 2-dimensional

image sequence. The image is converted to binary image using Otsu’s thresholding

method [13]. (2) Seed point selection is performed on each outer surface of the

vascular volume. The seed points are generated by selecting the centroids of vessel

cross sectional regions on the six outer surfaces of the cubic volume. Since the seed

points are used as the starting points for tracing, the initial tracing direction of each

seed point is given based on which surface the seed point is located. (3) A novel

vector-based vascular tracing method is applied by using a virtual flat box to ob-

serve the vessels and to determine the subsequent points on the medial axis of vessel.

The flat box is aligned based on the coordinates and initial tracing direction of each

seed point. The centroid of vessel cross sectional region on the predicting window of

the flat box is determined as the next point on the centerline. The vessel is traced

by estimating the centroids of vessel cross section while traversing the path of the

flat box. Also, the predicting window of the flat box can be dynamically expanded

to hold vessel cross sectional region with increasing radius. (4) Vessel bifurcation,

2



inner curve, and gaps are also handled in the approach to ensure the robustness

of the method. The flat box detects bifurcation point while tracing the vessel and

records the branch structure when bifurcation occurs. If a vessel with double turns

of different directions exists in the volume, the flat box tracing method detects the

position of the double turn and changes tracing directions to trace this kind of vessel.

Moreover, due to the imaging method of KESM system, there might be gaps between

image slices. The flat box tracing method skips over the small gaps while tracing. (5)

Vascular network exploration is performed based on the results from the processes

above. To explore the vascular network, breadth first search is applied to record the

vascular network architecture in the volume. The tracing process is repeated on X,

Y, Z axis directions to make sure there is no missed vessel. (6) The properties of

traced vascular are analyzed next. In the tracing process, the areas of vessel cross

sectional regions are recorded and the radius of the cross section is estimated based

on the area. The length of vessel is computed as the sum of the distance between

the two neighboring centerline points. The volume of the vessels are estimated at

the same time.

After vascular tracing is complete, the traced vascular structure is overlaid with

the original volume data using a visualization software (Paraview). The accuracy of

the tracing method as well as the processing time are quantitively analyzed.

1.4 Significance

This thesis presents a novel vector-based vascular tracing method with automated

seed point selection. The vascular tracing method reduces the processing time and

maintains high accuracy. The method can explore the entire vascular sub-network

automatically without human assistance. It can also trace different structures of

vessels in the KESM India ink data set that contains image gaps and noise. This

3



thesis is expected to contribute to the analysis of vascular network in larger brain

image data sets.

1.5 Outline of the thesis

This thesis is organized as follows. In chapter 2, background on the KESM system

and KESM India ink data set will be introduced. In addition, related work about

automatic seed point selection and tracing algorithms will be discussed. In chapter

3, I will explain the methodology of the thesis, including preprocessing, seed point

selection, tracing method, and data analysis. In chapter 4, experimental results and

quantitive analysis will be presented. Finally, in chapter 5, the discussion about the

experimental results, open issues, future works and conclusion will be presented.
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2. BACKGROUND AND RELATED WORK

Research about the microstructure of mouse plays an important role in neuro-

science as it helps infer the function of the brain and medical conditions. To explore

the neuronal and vascular structure of the brain, researchers have developed different

techniques and instruments to acquire brain image data. The Knife-Edge Scanning

Microscope (KESM) [9] is one of such instruments that was developed in the Brain

Networks Laboratory (BNL) at Texas A&M University to acquire high-resolution

large-scale brain image data. In the beginning of this chapter, I will briefly review

the technique of KESM. By using the KESM, we have acquired mouse brain data

stained with different methods, including vasculature data. The KESM data will

then be introduced. Once the whole volume brain data is obtained, the next step is

to extract the microstructures in the data and to reconstruct the vascular network

from the images. Different methods exist for tracing filament-like structures. I will

present this part in the related work.

2.1 Background

In this section, the KESM system and the data it collected are briefly introduced.

2.1.1 Knife-Edge Scanning Microscope

The KESM was initially designed as a brain tissue scanner by Bruce H. Mc-

Cormick at BNL. It is a unique instrument that combines physical sectioning and

imaging so that brain tissues can be scanned at whole-brain scale as well as in sub-

micrometer resolution. The structure of the instrument is shown in Figure 2.1.

As shown in the figure, the air-bearing stage is controlled to provide ultra-precise

mechanical movement in three-axises with 20 nm precision in x and y axises, and
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Figure 2.1: A photo of the Knife-Edge Scanning Microscope (KESM). (1) high speed
line-scan camera, (2) microscope objective, (3) diamond knife and light collimator,
(4) water immersion specimen tank, (5) air-bearing three-axes precision stage, (6)
white-light illuminator, (7) water pump (in the back), (8) computer server installed
with image acquisition and stage controller boards, (9) granite base, and (10) granite
bridge. Adapted from [1].

25 nm in z axis [12], which provides solid registration for KESM imaging. One of

the key features in KESM is the custom knife-collimator assembly. It is specially

made to serve a dual role: a white-light collimator and a diamond microtome. The

diamond knife is rigidly mounted to a massive granite bridge over the three-axis

stage. On the other side, a microscope objective is held over the stage. Through

the microscope, a high-speed line-scan camera can image the brain tissues at sub-

micrometer resolution. A closeup of KESM is shown in Figure 2.2.

The operational principle of KESM is to simultaneously section and image tissue

blocks. Details are shown in Figure 2.3. A brain tissue, embedded in hard polymer
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Figure 2.2: Close-up of KESM

resin block, is fixed on the specimen tank immersed under water. The microscope

objective and diamond knife are held in place and adjusted to align. Instead of

moving the diamond knife, the specimen tank is controlled by the stage to move

agains the knife (direction of green arrow), generating a very thin (about 1µ m)

piece of tissue at the tip of the knife where distortion can be minimized. Meanwhile,

the white-light illumination source provides light through the diamond knife (light

path highlighted by white arrow), illuminating the tissue piece on the knife tip. When

perfectly aligned, the camera scans the tissue piece through microscope objective and

transfers the image signal to the computer server.

Due to limitation of the field of view and width of the knife, the whole tissue

block cannot be sectioned in one sweep. Stair-step sectioning [8] was developed to

overcome this limitation. The basic idea is to section part of tissue block in a pre-

defined order such that the block can be fully sectioned and the tissue block does

not bump into the objective. With this technique, imaging time for a 1cm3 cube at

0.6µm× 0.7µm× 1.0µm is about 100 hours [4].
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Figure 2.3: Imaging principle

2.1.2 KESM data

By using KESM, we have successfully acquired image data from the mouse brain.

To be specific, we obtained mouse brain data stained in Golgi (neuronal morphology)

and India ink (vasculature) in 2008 and reported in [4, 5]. In addition, mouse brain

stained in Nissl, which reveals the distribution of cell body, was acquired in 2010 [3].

These data provide insights into the brain microstructure at the system-level. The

data are also processed and visualized so that they can be accessed online through

the KESM Brain Atlas [5].

In my work, I mainly focus on India ink data, which shows the vascular network

of the mouse brain. Figure 2.4 shows the vasculature data set.

The data shown below was processed to show a three-dimensional view. The

KESM data is basically a large 3D image stack consisting of 2D images. The three-

dimensional visualization methods help us better explore the KESM data.
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(a) Raw data volume(bar = 1.44 mm) (b) Initial thresholding of (a)

(c) Sagittal view. (d) Coronal view.

(e) Horizontal view. (f) Close-up (1.5 mm-wide block).

Figure 2.4: Different visualization of KESM vasculature data. (a) A raw data block
in a sagittal view. (b) is generated from (a) where the data block was lightly thresh-
olded. The boundary of the raw data and the content starts to appear. (c)-(e) are
fully thresholded version of (a) but in different views( sagittal, coronal, and horizon-
tal). The whole brain shape can be seen. (f) Intricate details within a 1.5 mm-wide
block. Adapted from [4].
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2.2 Related work

After obtaining the image data across the whole brain, it is necessary to extract

the complete microstructure of the data and reconstruct the vascular network from

the raw data. Different techniques have been developed to trace the structure of the

vasculature data. Most of the methods include seed point selection as the first step

toward tracing. In this section, I will review the related works on seed point selection

and tracing.

2.2.1 Automatic seed point selection

For tracking tasks in medical image processing, seed points are defined as the

initial position for tracking. Given the seed point within the boundary of vasculature,

we can extract the structure by region growing based on some predefined criteria [15].

In the simplest form, the seed point requires manual selection to choose the proper

position. However, to make the tracking automatic we can develop an automated

seed point selection algorithm to determine seed point.

Xiao et al.[18] determined seed points based on the idea of gradient and Hessian

matrix. Before selecting the seed points, they tried to suppress the background and

highlight vascular structure in the image by using ridge enhancement. Next, the

seed points were determined as the local maximum points in the gray level of the

image within the boundary of the vasculature. A local maximum point’s intensity

was brighter than other points in the local area. Its gradient should be equal to

zero and its Hessian matrix should be negative. Since there were still a lot of noise

with low intensity values in the image, the extracted seed points were refined by an

intensity threshold, where points with lower intensity values were discarded.

Shan et al.[17] developed an automatic seed point selection method for region

growing algorithm in breast ultrasound image segmentation. First, they used speckle
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reduction method to reduce noise and preserve edges. They then iteratively selected

thresholds based on the histogram and breast lesion’s spatial characteristics. They

deleted the boundary-connected region and ranked the remaining region. The re-

maining region was scored by considering the area, variance, and distance to the

center. The region with the highest score was chosen to be the lesion. Finally, they

calculated the center of the region as the seed point. They also considered the cases

where the lesion shape was irregular.

Zhang et al.[19] proposed a seed point selection method in extracting neurite

structures in microscopy images of neurons. The method consists of two steps. In

the first step, the initial points are detected by searching the local maxima. Instead

of searching all the points, they only focus on a set of grid lines. Pixels on the lines

are processed by a low-pass filter to remove high-frequency components and to ensure

the correctness of local maxima. However, there is a possibility that redundant points

are selected due to noise and image artifacts in the first step. In the second step,

candidate points are selected by the criteria of signal-to-noise ratio. Points whose

intensity values are greater than a threshold are considered reliable. The method

ensures the completeness of the seed points while one issue is that redundant points

are generated. Additional steps are required to take care of the redundant tracing.

In summary, seed point selection methods in the related work are developed for

different data sets which is not suitable for KESM vascular data set. The data set

obtained from KESM brain atlas in this research is already preprocessed. Thus,

the vessel cross sectional region in the data set has clear boundary. In addition,

the method of finding local maximum point might result in redundant seed points

which needs to be removed before using them in the next vascular tracing step. Also,

the computation of gradient and Hessian matrix in finding local maxima method is

relatively time consuming.
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2.2.2 Tracing algorithms

Han et al.[7] developed a Maximum Intensity Projection (MIP) based 3D vector

tracing algorithm. First in 2D tracing, they implemented a moving window method

to select the fiber direction. They also include “Cubic Tangential Trace Spline” in

the tracing method to make it robust to branching. Then, making use of available

2D tracing method, the algorithm extended the approach into a 3D tracing method.

First, at each seed point they determined the three local axis length by boundary

detection. After obtaining the three local axis lengths, a local volume was generated.

The local MIP along the longest axis length had little information about vessel

direction. Therefore, only the two other MIPs were used to determine fiber direction

[6]. A multi-scale filter applying the Hessian matrix was used for fiber direction

detection in the 2D image. When maximum intensity of the next segment was less

than a threshold or the next candidate point came across previous trace results, the

tracing terminated [7]. An overview of the method is shown in Figure 2.5

Figure 2.5: Overview of the tracing steps. (a) Direction detection in y+ axis. (b)
Caculating three local axis lengths to adjust trace point. (c) Based on medium
axix length, local volume is estimated. (d) Local MIP and 2D tracing results. (e)
Evaluation and adjustment on 3D vessel directio using the Hessian matrix. Adapted
from [6]
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Palagyi et al.[14] extracted the centerline of vasculature in medical images using a

fast 3D curve-thinning algorithm. The curve-thinning method was an iterative object

reduction method preserving line-end points which can directly produce one-voxel-

wide centerlines. In the curve-thinning algorithm, one iteration was decomposed into

six sub-iterations aligned with the six main orthogonal directions in 3D. In each sub-

iteration, there were two phases: (1) the border points of the actual type that were

“simple”1 and not line-end were marked potential deletable, (2) in the re-checking

step, the potential point was deleted if it remained simple and not line-end after

removing some previous visited points.

Mayerich et al.[10] presented a predictor-corrector algorithm to trace filament

structures in volume data. They extracted the centerline of filaments by determining

the path in a particle called tracer. To predict next estimated tracer position, they

sampled a series of vectors that laid within a solid angle of the previous vector.

For each vector, cross-sectional image orthogonal to the vector was taken. Then

they chose the vector with the cross-sectional image that most closely matched the

contrast of template to be the next tracing direction.

In summary, Han et al.’s method is not efficient enough for tracing large vascular

volume. In the method, two 2D MIPs are processed with complicated computation in

each iteration. The processing time of a 128×128×128 volume was about 200 seconds

[4]. Palagyi et al.’s method cannot trace the vessel with small gaps in vascular data

like KESM. Mayerich et al.’s method involves template matching process which is

time consuming when tracing large vascular volume. Thus, a novel vascular tracing

with high efficiency and accuracy is necessary. Also, in all case, seed point selection

was done manually.

1A voxel is called a simple point if its deletion does not alter the topology of the structure.

13



3. METHODS

In this chapter, the methodology of this thesis is described. There are mainly

eight steps for conducting the experiment: preprocessing, seed point selection, au-

tomated vector tracing, bifurcation detection, vessel curve detection, avoiding gaps,

vascular network exploration, and data analysis. Each step is discussed in detail in

the following sections.

3.1 Preprocessing of the KESM India ink data

The vascular data in this research was obtained from the KESM brain atlas [5].

The raw images of the KESM India ink data were acquired from the coronal slice

of a mouse brain perfused with India ink to label the vascular network [11]. The

vascular image from the KESM brain atlas is preprocessed from the raw image with

image inversion and Gamma correction to increase the image quality [5].

3.1.1 Stacking image sequence to 3D volume file

In order to perform vector tracing in 3D, we need to create a 3D vasculature

data set using the images downloaded from the KESM brain atlas. In the mouse

brain image sequence, we cropped the area with the same coordinates for every slice

then stacked the cropped 2D image sequence to a small 3D volume file. Figure 3.1

illustrates an example of stacked 3D India ink vascular volume file.
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Figure 3.1: Stacked 3D vascular volume data set

3.1.2 Deciding the image threshold

In seed point selection and automated vector tracing, an image threshold is needed

to segment the vessel cross sectional region and the background based on the intensity

value of the pixels. To obtain the image threshold, Otsu’s thresholding method was

applied [13]. Otsu’s method automatically searches for the optimal threshold that

minimizes the intra-class variance of the thresholded black and white pixels. Since

the vascular image data is bimodal, after computing the gray level histogram of the

image Otsu’s method finds a value of threshold which lies between the two peaks of

histogram such that variance of both classes are minimized. Based on the optimal

threshold obtained by the Otsu’s method, the image is converted to binary image.

Figure 3.2 shows an original vessel cross sectional image and the binary image after

thresholding. In this image, the result of image threshold is 129.
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(a) (b)

Figure 3.2: Deciding the image threshold. (a) The original vessel cross sectional
image. (b) The image after thresholding.

3.2 Seed point selection

Once the 3-dimensional vasculature volume is generated, the six outer surfaces of

the volume data cube are obtained. On each surface, we define the centroid of each

vessel cross sectional region as the seed point for tracing within the volume. The

surface image of the vascular volume is viewed as a 2-dimensional image represented

by x and y coordinates.

3.2.1 Vessel cross sectional region detection

To calculate the centroid of vessel cross sectional region, the connected compo-

nent labeling algorithm is applied [16]. The algorithm scans all the pixels in the

surface image and groups the connected pixels with intensity value greater than the

threshold obtained by Otsu’s method in section 3.1.2 to detect the vessel cross sec-

tional regions. Connected component refers to the pixels within the boundary of one

vessel. There are mainly two steps in the algorithm. Firstly, the algorithm scans the

eight neighboring pixels around one pixel and record the connected pixels. Secondly,

after scanning all the pixels in a image, the algorithm groups the connected pixels.
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These connected pixel groups represent the vessel cross sectional regions. Figure

3.3 shows the vessel cross sectional regions detected by the connected component

labeling algorithm.

(a) (b)

Figure 3.3: The vessel cross sectional region detection. (a) The original vessel cross
sectional image. (b) The pink regions mark the detected vessel cross sectional regions.

3.2.2 Centroid detection

After grouping the pixels to determine the vessel cross sectional regions, the next

step is to find the centroids of all the regions as seed points. In the KESM India

ink data, most of the cross sectional regions are circular or ellipsoidal. To find the

centroid of the vessel cross sectional region, a minimum rectangular window bounding

the region is used. It is determined by the two coordinates in the group, which are

(Xmin, Ymin) and (Xmax, Ymax).

For the most circular cross sectional regions, the seed point can be considered

as the center of the minimum rectangular window, i.e. ((Xmin + Xmax)/2, (Ymin +

Ymax)/2). However, there are also some cross sectional regions that have an irregular

shape. For the irregular shaped cross sectional regions, it is necessary to avoid
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selecting a point outside of the vessel boundary as the seed point. Therefore, the

coordinate of the seed point is selected by the following rules:

1. The x axis coordinate of the seed point is selected as the center of the left and

the right boundary of the region as in the common case, i.e. Xseedpoint = ((Xmin +

Xmax)/2).

2. Given the x axis coordinate of seed point Xseedpoint, the pixels with the same

x coordinate, x = Xseedpoint, are scanned from top to bottom in the rectangular

window. Then the connected pixels greater than the image threshold are grouped

into vertical line segments. The middle point of the longest connected line segment

is selected as the seed point.

Figure 3.4 shows the seed point detection process with regular and irregular

shapes.

(a) (b)

Figure 3.4: Seed point detection in vessel cross sections with ellipsoided (a) and
irregular (b) shapes.

Figure 3.5 shows the seed points selected on one of the volume surfaces.
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(a) (b)

Figure 3.5: Centroid detection. (a) Original vessel cross sectional image. (b) The
pink dots mark the centroids of the cross sectional region. These centroids are
selected as seed points.

Each seed point is also given an initial tracing direction based on which surface of

the cubic volume it is located. The initial tracing directions are illustrated in Figure

3.6.

3.3 Vector tracing method

The vector tracing method starts from a set of seed points and traces the medial

axes of the vasculature from the initial points recursively until predefined termination

criteria are satisfied. Instead of exploring every pixel in the whole volume, the

vector tracing method only explores the pixels close to the vascular structure and

analyzes local image properties. Therefore, the vector tracing method is particularly

appropriate when processing speed is an important factor. In data sets like the

KESM india ink data set, we can make use of vector tracing to achieve high-speed

processing.
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Figure 3.6: The initial tracing directions of seed points. The initial tracing directions
of seed points on the bottom and top surface (1, 2) are z+ and z- respectively. The
initial tracing directions of seed points on the back and front surface (3, 4) are x+
and x- respectively. The initial direction of seed points on the left and right surface
(5, 6) are y+ and y- respectively.

3.3.1 The moving flat box tracing method

The vector-based tracing method in this thesis applies a moving virtual flat box

region which is defined as “moving flat box”. The basic idea of the algorithm is

to trace the medial axis of the tube-like vessel by estimating the centroids of cross

section while traversing the path of the moving flat box.

The height of the moving flat box is the step size in tracing, while the width and

length of the moving flat box are initially set empirically. The height of the box is

much smaller than the width or the length, thus it is “flat” like a pizza box. At the

beginning of tracing, the two surfaces of the moving flat box that intersected with

the vascular are square. The tracing of a vessel starts from the seed point. The

initial position of the moving flat box is determined by the seed point. The moving
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flat box is placed in order to let the seed point be the center of one of the square

surfaces of the flat box (origin window). The position of the predicting window of

the flat box is based on the initial tracing direction as shown in Figure 3.7.

Figure 3.7: Placing the flat box for tracing. The Si surface of the flat box is placed
based on the position of the seed point. The predicting window is on the opposite
surface Si+1 along the tracing direction. The centroid of the cross section in the
predicting window is determined to be the next candidate point in the centerline.
The distance between Si and Si+1 is the tracing step.

Given the tracing direction, the vessel cross sectional regions on the predicting

window of the flat box can be determined. With the connected component labeling

method discussed in section 3.2.1, the centroids of the vessel cross section regions

on the predicting window can be found. By connecting the seed point and the next

candidate centerline point, a vector ~v is generated. The vector ~v represents the

moving trajectory of vessel at the current position of the flat box as shown in Figure

3.8.
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Figure 3.8: The tracing vectors. The tracing vector Vi is obtained by connecting the
candidate centerline points on Si and Si+1.

The flat box is placed based on the predicted centerline points recursively to

trace the whole structure of a vessel. While tracing, the boundary of the vessel cross

sections and the detected centerline points are recorded.

3.3.2 Dynamic flat box

Considering the complicated structure of the KESM India ink data, the size of

the moving flat box in the algorithm should be determined dynamically to ensure the

accuracy of tracing. In certain cases, for example the vasculature inflects significantly

at a point or the diameter of the vasculature is greater than the width of the flat box

, the flat box might not capture a complete cross section of the vasculature. In such

cases, a fixed-size flat box cannot guarantee the prediction of the next centroid of

the vascular cross section. This section describes the implementation of the dynamic

adjustment of the flat box size.

The dynamic flat box expands in four directions based on whether the vasculature

intersects the boundary of the flat box. The four directions the box can expand are

up, down, left and right corresponding to the four edges of square surface in the
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flat box. If the vasculature intersects an edge in the flat box, then the flat box

expands a certain length towards the corresponding direction. Figure 3.9 shows how

the dynamic flat box expands to adjust the predicting window size. The expansion

repeats until there is no intersection between the observed vessel and the flat box.

Figure 3.9: The expanding direction of the dynamic flat box.

Note that in the dynamic flat box expanding rules the predicting window of the

flat box might contain more than one group of white pixels that belong to a different

vessel than the one currently being traced, especially when the volume is packed with

many vessels. Since the next candidate centroid should be located in the same vessel

with the previous centroid, the expanding process terminates when one complete

vessel cross section is found on the predicting window of the flat box. At this time,

even though there are vessels intersecting the predicting window boundary, only the

complete vessel cross section is considered.

When there are more than one complete cross sectional regions on the predicting

window, the next candidate region is determined to be the one closest to the previous
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identified point on the centerline. In order to calculate the distance between the

identified point on Sn and candidate cross sectional regions on Sn+1, first I compute

the centroids of candidate cross sectional regions. Then the distances between these

centroids and the identified point on Sn are computed. The distance of the points

is computed in 2-dimensional coordinate space. The cross sectional region with the

minimum distance is selected as the next candidate cross sectional region and the

centroid of which becomes the next candidate point on the centerline of the vessel.

In the expanding process, if the the edge of the flat box reaches the the edge of the

volume, the flat box stops expanding.

The vector ~v is generated the same way in the section 3.3.1 once the next can-

didate point on the centerline is determined by the dynamically expanding flat box.

Also, the area of the selected cross sectional region is recorded for further data anal-

ysis.

3.3.3 Flat box exploratory directions

The moving flat box exploratory directions include x+, x-, y+, y-, z+ and z-

axis directions. The initial tracing directions are determined based on the location

of the seed points.

If the moving flat box only traces in one direction, there might be vessels in the

volume that cannot be traced. In this case, using a flat box with another tracing

direction can ensure that vessel is traced as shown in Figure 3.10. Thus, when the

moving flat box cannot capture vascular data, using the moving flat box with a

different moving direction on x, y or z axis directions to trace can make sure there

is no missed vessels in the volume.
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Figure 3.10: The flat box traced from different directions to ensure no vessel is
missed. If the vessel cannot be traced by tracing in direction 1, it can be traced by
another tracing direction. In this case, using a flat box with tracing direction 2 can
solve the problem.

3.3.4 Bifurcation detection

Bifurcation of vasculature is common in the India ink data set. Thus, there

would be significant improvement on the accuracy of tracing if the bifurcation can be

handled correctly. This section discusses the method of detecting vessel bifurcations.

Typical bifurcations are shown in Figure 3.12a.

In the process of tracing with the moving flat box, the area of each vessel cross

section is recorded. The radius of the vasculature at each step can be estimated by

the corresponding cross section area. By studying the India ink data set, I found that

most of the time the bifurcations are located at the part of the vessel with sudden

increase in diameter, which means there is a relatively large vessel cross section at

the bifurcation point as shown in Figure 3.11. If the vessel radius keeps increasing

as flat box moving along the vessel and then decreased at a certain point, then it is

likely that bifurcation occurred at that part of the vessel.
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(a) (b) (c)

Figure 3.11: The change of the vessel cross sectional regions at a bifurcation point.
The regions highlighted with red lines in (a), (b) and (c) show a vessel splitting into
two which is a bifurcation.

Let ri be the radius of vessel cross section on slice Si. Let di be the difference

between two consecutive radius of vessel cross sections in the sequence while moving

the flat box, i.e. di = ri+1 − ri. As the flat box moves along the medial axis of

the vessel, the sequence of di is computed. With two thresholds to compare with

di, the two indexes of slices are determined where the vessel radius begins to in-

crease and decrease respectively. Let Sstart be the slice where the radius begins to

increase and Send the slice where the radius begins to decrease. Then the slice where

the bifurcation point is located is computed as the medial slice of Sstart and Send:

Sbifurcation = (Sstart + Send)/2. The bifurcation point pbifurcation is then determined

by the nearest determined centerline point with the slice Sbifurcation.

The bifurcation point is inserted into a queue containing possible bifurcation

points of the current vessel. If a sub-vessel can be traced from this predicted bi-

furcation point, the sub-vessel is recorded to connect with the main vessel from the

bifurcation point.

Next, the centroid of the sub-vessel cross section region needs to be identified

in order to connect with the bifurcation point. Given the bifurcation point and the
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flat box bounding the cross section at that point, I place the flat box to capture

the vascular cross section on the slice of Send. Thus, on that slice the bifurcation

cross section should be captured as shown in Figure 3.12b. The square window of

the predicting window of the flat box keeps expanding on the slice until it holds two

bifurcation cross sectional regions. The cross sectional region without the detected

point on the original main vessel is the sub-vessel cross sectional region. The centroid

of the sub-vessel cross sectional region is then computed in a similar way as the

predicting centroid in the main vessel.

(a) (b)

Figure 3.12: Bifurcation detection in tracing. (a) The vessel splits to two branches
at the bifurcation point Pk. (b) The flat box is placed at the bifurcation point to
predict the start point of sub-vessel centerline.

In certain cases, the square window of the flat box might contain more than two

groups of white pixels i.e., two objects. The sub-vessel group is determined by the

minimum distance of the bifurcation point and each group, where the distance of
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bifurcation point pbifurcation and group gi is defined as.

Distancei = min
√

(x− xi)2 + (y − yi)2, pbifurcation = (x, y), ∀(xi, yi) ∈ gi

Besides the group that contains the identified point on the centerline, the group

with the minimum Distancei is selected as the sub-vessel cross section. Similarly, the

centroid of the sub-vessel cross section is determined as the first detected centerline

point on the sub-vessel.

After the bifurcation detection process, the relation between the bifurcation point

and the first centerline point on the sub-vessel is determined. Then the flat box can

start from the initial point on the sub-vessel to trace the whole sub-vessel.

3.3.5 Vessel curve detection

In the process of tracing, there is a special case where vessel curve detection is

necessary. The vessel curve in this section means the am abrupt direction change

along the vessel which often appear as a letter “U”. An example of vessel curve is

shown in Figure 3.13a. In the India ink data, it is hard to trace the vessel curve with

the moving flat box while tracing in a single direction. In order to trace the entire

vasculature, we need to take care of vessel curves.

To be specific, if we place a flat box from the initial point, the flat box would

stop tracing when it reaches the edge of the turn. The flat box assumes that there is

no vessel structure in the initial tracing direction and the rest of the vessel structure

would be missed by exploring in only one direction. Likely, tracing from the seed

point on the other end of the vessel would lead to the same problem as shown in

Figure 3.13b, where the dashed part never gets traced. Thus, it is necessary to figure

out a way to deal with this kind of curve in the vasculature.

One way to solve the problem is backtracking and changing the flat box tracing
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(a)

(b)

Figure 3.13: Vessel curve detection. (a) The vessel curve is an abrupt change of
direction along the vessel. (b) The seed points P 1

seedpoint, P
2
seedpoint with the initial

tracing direction can only trace part of the vessel curve. To solve the issue, the
tracing direction of the flat box has to be changed while tracing the curve.

direction afterwards. When the flat box reaches the apparent end of a vessel, it is

necessary to check if there is a U-turn. To check this, a seed point is inserted at

certain steps from the end of the vessel and a different initial direction is given based

on the previous trend of vessel as shown in Figure 3.14. The changed direction is

determined based on the following rules:

1. If the flat box moves along the z-axis, then check the moving direction in x-axis.
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The changed direction should be consistent with the direction of the previous

vessel in x-axis.

2. If the flat box moves along the x-axis, then check the moving direction in y-axis.

The changed direction should be consistent with the direction of the previous

vessel in y-axis.

3. If the flat box moves along the y-axis, then check the moving direction in z-axis.

The changed direction should be consistent with the direction of the previous

vessel in z-axis.

Figure 3.14: Insert seed point to trace vessel curve.

The only concern with the backtracking method is that it might trace back the

already processed part of the same vessel. By using the changed direction rules above,

we can avoid the issue of tracing back the already processed part. An integrated

tracing result for the vessel is generated by connecting each part of the tracing result

along the vessel curve.
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3.3.6 Avoiding gaps

Due to the issues like imaging errors and staining artifacts in the KESM system,

there might be some gaps between the vascular slices in the volume data set. In a

volume with gaps, the moving flat box might terminate tracing when it reaches the

slice where the gaps exist. This would result in incomplete tracing. To overcome this

problem, the tracing method should avoid terminating at the gaps while traversing

the moving flat box.

Let Rv1
end be the last vessel cross section region before the gap. In the tracing

method, the moving flat box checks if there is a gap between slices when the pre-

dicting window cannot capture any vessel pixel. In such case, the predicting window

on the moving flat box moves a conservative step (about 2 voxels) further along

the tracing direction to check whether there is any vessel pixels. If one vessel cross

section can be captured by the predicting window of the moving flat box, the ves-

sel cross section region is recorded as Rv2
start. If more than one vessel cross sections

are captured, the vessel cross section with the minimum distance to the previously

identified centerline point is considered as Rv2
start. The distance between a point and

a connected group region is computed as the distance between the point and the

centroid of the group in 2-dimensional space. After that, the similarity of the two

parts of the vessel should be ensured so that it would not connect points in different

vessels. The similarity of vessels is estimated by the radius of cross section regions

Rv1
end and Rv2

start. If the radius difference between region Rv1
end and Rv2

start is under a

predefined threshold, it is decided to be similar. By connecting the two centroids of

Rv1
end and Rv2

start over the gap, the tracing ignores small gaps in vascular volume.
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3.3.7 Termination criteria

The vector tracing method must terminate under certain criteria so that the

time consumption is limited and the correctness of tracing result is guaranteed. The

tracing method terminates under the following conditions:

1. If the next candidate point predicted by the moving flat box reaches the bound-

ary of the volume and the previously traced point on the centerline does not

lie on the edge of the volume.

2. The moving flat box reaches the end of the vessel and there is no possible

bifurcation points, vessel curves and volume gaps left to be traced for the

vessel.

In the first condition, if part of the vessel lies on the boundary surface of the

volume, the tracing would not terminate when the predicted centerline point reaches

the boundary of the volume. The moving flat box continues tracing the vessel on the

boundary if the vessel does not extend outside of the volume as shown in Figure 3.15a.

However, if the previous trace trends towards the outside of the volume boundary,

then the flat box would terminate tracing as shown in Figure 3.15b.

In the second condition, bifurcation points, vessel curves and volume gaps dis-

cussed in sections 3.3.4-3.3.6 are taken into account. When the second condition is

satisfied, an integrated structure of the vessel has been traced.
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(a) (b)

Figure 3.15: Vessel tracing termination criteria. (a) The process continues tracing
the vessel when it reaches the boundary in this case. (b) If the vessel trends towards
the outside of the volume, the tracing of this vessel will terminate. The other vessel
branch in the image on the boundary surface is traced from another seed point.

3.3.8 Vascular network exploration

Vascular network exploration utilizes the tracing steps described in sections 3.3.1-

3.3.7. This section illustrates how the moving flat box explores the vascular network

within the volume.

The process of exploration consists of the following steps:

1. Starting from each seed point, the moving flat box traces a vessel by keeping

a list of predicted centerline points. The key structure of a vessel can be

represented by the list of centerline points.

2. In tracing the main vessel, the possible child vessels are explored by breadth

first search. Possible bifurcation points of a vessel are inserted into a queue for

further exploration.

33



3. At the end of tracing for a vessel, curves and gaps are checked to trace an

integrated vessel. Since the curves and gaps in the vessel are the extensions of

the main vessel, the predicted points are concatenated to the end of the main

vessel centerline.

4. The moving flat box traces from each point in the queue to trace the bifurca-

tions. The coordinates of the validated child vessels are documented in a new

list and the bifurcation relation is documented as well.

5. Remove the point from the queue once it is checked. The exploration terminates

when the queue is empty.

Vascular network exploration can also be performed by depth first search with a

stack rather than a queue.

The centerline points of the vasculature are recorded while exploring the network.

The tracing result of an integrated vessel is recorded as a list of points in the volume.

The vascular network contains multiple lists of points where each list represents a

vessel. The tracing result is rendered by connecting the two neighboring points in a

list using vtk format and rendered in the software Paraview, a visualization program.

3.4 Data analysis

This section presents the analysis of the traced vasculature. Three properties,

radius, length, and volume of vessel, are analyzed to demonstrate how much vascular

structure is extracted in the tracing process.

First, the radius of the vessel is estimated by the area of the cross section. In

each iteration i of the tracing process, the area of vessel cross section is the total

number of pixels within the region. Based on the equation Si = π× r2i , the radius ri

of the cross section can be estimated.
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Second, the length of the vessel is the sum of the distance between the two

neighboring centerline points. Since the step length of moving flat box is relatively

small compared to the length of the vessel, the length of the two neighboring points

(x1, y1, z1) and (x2, y2, z2) on the centerline is computed as straight-line distance

between the two points. li =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Finally, the volume of the vessel is approximately computed as the sum of vessel

volume between the consecutive vessel cross sections in the tracing process. The

volume of each vessel segment is estimated as the multiplication of the vessel cross

section area and the step length, i.e. Vvi = Si × lstep.
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4. RESULTS AND ANALYSIS

In the previous chapter, the method of the automated vasculature tracing was

explained. In this chapter, the results and analysis of the method will be presented.

In the first part of this chapter, the results of seed point selection are presented. First,

the accuracy of the automated seed point selection method is compared to manual

method of seed point selection. Next, the results of vascular tracing performed on the

sub-networks of the KESM India ink data set are presented. Finally, the accuracy

of the method is evaluated using synthetic data and the efficiency of the method

evaluated based on the processing time of the tracing method in the sub-networks

of the KESM India ink data.

4.1 Results of seed point selection

As discussed earlier, the seed points should be selected on the six surfaces of the

vascular volume in order to trace vessels within the volume. The seed point selection

method was tested on a sample sub-network of 100× 100× 200 voxel volume and a

sample sub-network of 200× 200× 200 voxel volume from the KESM India ink data

set. The seed points which are the centroids of vascular cross sectional regions on the

six surfaces of the volume are computed and the initial tracing directions are assigned

for each seed point based on the orientation of the surface where the seed points are

located. The results of the 100×100×200 voxel volume and the 200×200×200 voxel

volume are shown in Figure 4.1 and Figure 4.2 .The selected seed point coordinates

were marked in 3D and superimposed on the original KESM volume data using the

software Paraview. In the figures, the gray tube-like structures are the vessels and

the pink dots represent the selected seed points.

36



(a) (b)

(c) (d)

Figure 4.1: Seed point selection result of a 100 × 100 × 200 voxel volume. (a) The
3D view of seed points on the six surfaces of the volume. (b) The view of (a) along
the x- axis. (c) The view of (a) along the y- axis. (d) The view of (a) along the z-
axis.
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(a) (b)

(c) (d)

Figure 4.2: Seed point selection result of a 200 × 200 × 200 voxel volume. (a) The
3D view of seed points on the six surfaces of the volume. (b) The view of (a) along
the x- axis. (c) The view of (a) along the y- axis. (d) The view of (a) along the z-
axis.

To measure the seed point selection performance, the precision(p), recall(r), and

F-measure(F) were calculated. Let n1 be the true number of seed point, n2 be the
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number of all selected seed points, and n3 be the number of correctly selected seed

points. The precision, recall and F-measure of seed point selection are derived as:

p = n3/n2

r = n3/n1

F =
2pr

p+ r

In the experiment on the 100 × 100 × 200 voxel volume, precision, recall, and

F-measure of seed point selection were 0.889, 1, and 0.941, respectively. In the

experiment on the 200× 200× 200 voxel volume, precision, recall, and F-measure of

seed point selection were 0.978, 0.875, and 0.923, respectively.

4.2 Results of vascular tracing

In this section, both the sample volume of the KESM India ink data and the

synthetic data are tested to evaluate the vascular tracing method. In the first part,

the experiment on the KESM data is presented. In the following part, the results of

two sample synthetic data as well as the comparison between the ground truth and

tracing result are presented.

4.2.1 Experiment on KESM data

The KESM sample sub-networks of the 100 × 100 × 200 voxel volume and the

200× 200× 200 voxel volume discussed in section 4.1 were tested in this experiment.

The seed points on the six surfaces of the volume were the seed point selection results

described in the previous section. Figure 4.3 and Figure 4.4 present the 3-dimensional

view of tracing results overlaid with the original vascular volume data. In the figure,

the white curves within the vasculature represent the tracing results.
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(a) (b)

(c)

Figure 4.3: The vascular tracing result of KESM 100× 100× 200 voxel volume. (a)
View along the x- axis. (b) View along the y- axis. (c) View along the z- axis.

The tracing result shows the vessels in the volume are fully explored. The ex-

tracted vascular structures are also within the boundary of the vessels. In addition,

bifurcations and inner vessel curve structures in the volume are traced.

The geometric statistics were collected in the tracing process. The ground truth
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(a) (b)

(c)

Figure 4.4: The vascular tracing result of KESM 200× 200× 200 voxel volume. (a)
View along the x- axis. (b) View along the y- axis. (c) View along the z- axis.

of total vasculature volume was computed as the number of voxels within the vas-

culature. In the 100× 100× 200 volume, the total volume of traced vasculature was

62590 voxels and the ground truth of total vasculature volume was 69653 voxels. The

total length of traced vasculature was 1565 voxels . In the 200× 200× 200 volume,
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the volume of traced vasculature was 252291 voxels and the ground truth of total

vasculature volume was 281292 voxels. The total length of traced vasculature was

5922 voxels.

Tracing result also shows that there are some redundant traces along some vessel

segments. This is caused by tracing from seed points on both ends of the vessel.

To reduce duplicated tracing results, redundant seed points need to be eliminated.

However, removing some seed points may cause missed vessel to be traced, thus there

is a trade-off .

4.2.2 Experiment on synthetic data

To quantitively evaluate the tracing method, synthetic vascular data was gen-

erated from a known ground truth. The process of generating synthetic data is a

simple simulation of generating tube-like structure. The tube-like vessel structure is

simplified into a series of truncated generalized cones. In order to make sure there

is no gap at the connections of the truncated generalized cones, each point extends

at a certain degree to overlap with neighboring cones as shown in Figure 4.5.

Figure 4.5: Synthetic data generation is simplified into a series of truncated gener-
alized cones.
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The process of generating the synthetic data is as follows. First, given some

control points a linear bezier curve passing the control points can be obtained. Let

the curve be the centerline of the vessel. At each point of the curve, a randomized

radius ri within a small range is assigned to the point pi. The radius at each centerline

point within the range of the two caps of the cone is computed by linear interpolation.

The tube-like vessel is plotted in in 3-dimensional space by marking all the points

within the vessel boundary. The vessel boundary is determined by the radius relative

to the centerline point. Therefore we need to find all the points whose distances to

the centerline are less than the radius. The criteria of determining a point within

the boundary of a vessel is illustrated in Figure 4.6. If point v is between the caps

of the truncated generalized cone, the equation can be derived as:

0 < (~v − ~p) · (~q − ~p) < ||~q − ~p|| (4.1)

where the points ~p and ~q are the center of the caps. The distance of the point v to

the centerline of the truncated generalized cones is given by:

Figure 4.6: Deciding if a point ~v is within the truncated generalized cones. ~p and ~q
are the centeroids of the caps.
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r~v = ||(~v − ~p)− ~d · (~q − ~p)/||~q − ~p|||| (4.2)

where ~d = (~v− ~p) · (~q− ~p). r~v should be less than or equal to the interpolated radius

at ~v if it is located within the boundary of the vessel.

The resulting structures are then converted to volume data and the centerlines

are regarded as the ground truth to be validated against. Figure 4.8 shows the two

sample synthetic data generated by this method. The ground truth of centerline is

marked in pink lines in the volume.

4.2.3 Synthetic test 1

In synthetic test 1, the tracing algorithm was tested on a synthetic vascular

volume of 100 × 100 × 100. The seed point of the volume (60, 60, 0) was given at

the beginning of tracing. The volume contains 11 distinct vessels and 5 bifurcation

points. The topology of the synthetic vasculature is illustrated in Figure 4.7. The

tracing result is plotted in 3-dimensional space as shown in Figure 4.9.

Figure 4.7: The topology of the vascular network in synthetic test 1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Synthetic data with ground truth. (a) (c) (e) are the x,y,z axis view of
synthetic data 1. (b) (d) (f) are the x,y,z axis view of synthetic data 2. The pink
curves represent the ground truth.
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(a) (b)

(c)

Figure 4.9: Vascular tracing result of the synthetic data 1. (a) View along the x-
axis. (b) View along the y- axis. (c) View along the z- axis.

The overlay of tracing results and the original volume shows that the structure of

the vascular network was extracted correctly. Also, given one seed point the branches

of the main vessels have been traced completely.

The geometric statistics collected in the tracing process shows that the total vol-
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ume of traced vasculature was 10826 voxels and the total length of traced vasculature

was 261 voxels. In the synthetic data 1, the total volume of ground truth was 11812

voxels and the total length of the ground truth was 271 voxels. The statistics also

show that most of the vascular network was traced.

4.2.4 Synthetic test 2

The volume in synthetic test 2 was a 100× 100× 100 cube. Tracing starts from

the seed point (60, 60, 0) using my tracing method. The topology of the vascular

network in the synthetic data set is shown in Figure 4.10. In the network, there are

some vessel curves as described in the methods chapter. Also, the volume contains

bifurcation points. Vessel 5 and vessel 6, vessel 8 and vessel 9 described in topology

are vessel curves, while the intersections of vessel 2 and vessel 3, vessel 4 and vessel

5, vessel 7 and vessel 8 are the bifurcation points that need to be detected.

Figure 4.10: The topology of the vascular network in synthetic test 2.
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(a) (b)

(c)

Figure 4.11: Vascular tracing result of the synthetic data 2. (a) View along the x-
axis. (b) View along the y- axis. (c) View along z- axis.

The extracted centerlines are shown in Figure 4.11. Both the vessel curves and

the bifurcations are traced correctly in the volume.

The geometric statistics collected in the tracing process shows that the total vol-

ume of traced vasculature was 9156 voxels and the total length of traced vasculature
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was 220 voxels. In the synthetic data 2, the total volume of ground truth was 9239

voxels and the total length of the ground truth was 248 voxels. The statistics show

that most of the vascular network was traced in this experiment. The deviation

between the tracing result and the ground truth may be due to the fact that the

estimates assume a circular cross sectional area while the actual shape could be oval.

4.2.5 Validation

From the results above, we can see that the vascular network is fully traced. To

evaluate the detailed difference between the ground truth and my tracing results,

quantitive measurements at the voxel level were performed on the synthetic data

sets.

In the two synthetic test cases, the data were divided into 10 pieces of vascular

segments to validate my tracing method. Two measurements were used to evaluate

the difference between ground truth and the results of the tracing method. The

quantitive measurements were based on Han’s validation method [7]. The first mea-

surement is the length difference φ. Suppose R represents the ground truth and A

represents my tracing method’s results. The length difference is computed as:

φ = |1− LR/LA| (4.3)

where LR and LA are the length in the ground truth and the vascular segments

extracted by my tracing method, respectively. The second measurement is the cen-

terline deviation ϕ which is derived as:

ϕ = Vox(lR, lA)/LA (4.4)

where Vox(lR, lA) is the voxel-wise distance between lR and lA, where lR is the
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ground truth centerline and lA is the extracted centerline by my tracing method.

These two measurements are collected from the two synthetic test cases.

Table 4.1 shows the difference between my tracing result and the ground truth

in synthetic test 1 and 2. The results show high similarity between the centerline

ground truth and my tracing results.

Table 4.1: The mean (µ) and standard deviation (σ) of length difference (φ) and
centerline deviation (ϕ) relative to the ground truth of the synthetic data sets.

φ ϕ

µ σ µ σ

Synthetic test 1 0.0494 0.0416 0.6753 0.1863

Synthetic test 2 0.0573 0.0308 0.7632 0.0837

4.3 Tracing speed

In order to perform tracing in very large vascular data sets, the tracing method

has to be fast. The implementation of my tracing method was optimized to achieve

high efficiency. The speed of the tracing method was tested on sub-networks of

the KESM India ink data set with different sizes. The processing times of vascular

tracing on the three volumes were 24.164, 49.291, and 112.599 seconds for the total

traced vessel length of 2936, 6756, and 16702 voxels, respectively. The experiments

were performed on a PC with Intel Core 2 (2.13 GHz) processor and 4 GB of memory

under Windows 7 operating system in Debug mode of Microsoft Visual Studio 2010.

In Han’s method [7], the processing times of vascular tracing were 177, 194, and

1665 seconds for the length of 1214, 1334, and 13700 voxels, respectively. Since
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Han’s method was tested on a different machine (a PC with Intel Pentium 4 (2.4

GHz) processor, 512MB of memory under Windows XP operating system in Debug

mode of Microsoft Visual Studio 2005).

According to publicly available performance benchmark data, the performance

of the machine that tested my tracing method is three times better than the perfor-

mance of Han’s machine. The performance benchmark used here is wPrime v1.55

(32M) which measures time taken to calculate square roots of numbers from 1 to

33554431. In the performance benchmark, the time to calculate the square roots

in my machine is approximately three times faster than in Han’s machine. Vascular

tracing is mainly mathematical calculation, therefore, to be fair, the processing times

of vascular tracing in Han’s results are scaled (i.e. divide by three) in comparison

with the processing times of my tracing method(Figure 4.12).

Figure 4.12: Speed comparison between my tracing method and Han’s method.

Figure 4.12 shows that the processing time of my flat box tracing method scales

linearly in general. In large volume the vasculature structure could be complicated
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which leads to longer processing time while tracing. However, the flat box tracing

method improved the speed of processing relatively small vascular volume signifi-

cantly. Figure 4.12 also shows that shorter execution time was needed in processing

the same number of voxels in the flat box tracing method compared to Han’s method.

In Han’s method, six surfaces of the MIP cubes were processed in order to predict

the vessel direction in 3D. However, in the flat box method, only the top and the

bottom surfaces of the flat box are processed to trace the centerline of vessel, and

furthermore it does not require expensive computation of the Hessian. All these fac-

tors lead to shorter execution time. The comparison shows that the execution time

of the flat box method increases slower than the execution time of Han’s method

as the number of traced voxels grow. Thus, in conclusion, the tracing method pro-

posed in this thesis shows a significant improvement in processing speed over existing

methods.
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5. DISCUSSION

This thesis presented a novel vascular tracing algorithm for the KESM India

ink data set. In this chapter, contribution, open issues, and future works will be

discussed.

5.1 Contribution

The vascular tracing method combines automated seed point selection with vector-

based vascular tracing which reduces the processing time than the related work. The

seed point selection method extracted the vessel cross sectional centroid efficiently

on every surface of volume without human assistance. Also, the tracing method ex-

plores the entire network of vascular volume with high accuracy in the KESM India

ink data set. Since the tracing conducted in each volume is fast without time con-

suming template matching and computation, the method can be applied to large and

high-resolution vascular data sets like those of the KESM. In addition, the vector

tracing method deals with image gaps in the data set which can cause some tracing

methods like the vessel thinning method to fail to completely trace the network.

Finally, the data analysis step collects geometric statistics such as vessel length and

volume while tracing. In summary, the proposed tracing method performs well on

the KESM India ink data, and possibly on other similar data sets.

5.2 Open issues and future work

In this thesis, an automated vascular tracing and data analysis methods were

demonstrated. There are several open issues: (1) Duplicated tracing results due

to seed points at the two ends of the vessel, (2) limitation on the volume size in

the tracing method, (3) alternative bifurcation cases and parameters that need to
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be manually selected for bifurcation detection, and (4) irregular smoothness of the

tracing results.

5.2.1 Duplication of the tracing result

Before tracing the vasculature, seed points on the six surfaces of the volume were

generated. However, while tracing the vascular volume, the same part of vessel might

be traced multiple times if multiple seed points on different surfaces lead to the same

vessel. As a result, duplicated tracing results with different tracing directions can

exist for a single vessel and the processing time increases as a result. Tracing from

all the seed points on every surfaces of volume would reduce missed vessels, but the

redundant seed points can cause the duplicated tracing issue at the same time.

To solve this issue, future work could include checking whether the same voxel

is visited while tracing the vessel. If the same part of volume is already traced, the

current tracing process should be terminated. This way, redundant tracing results

would be eliminated. The tracing result will be more clear for studying the vascular

architecture.

5.2.2 Limitation on the volume size

The size of the volume tested by the tracing method is limited. If the volume

size is too large, there might be vessels within the volume that are not connected

to the surface. Since the vascular tracing method starts from the seed points which

are selected only on the surfaces of the volume, it is possible that the method misses

vessels in the center of the volume. Thus, the size of volume tested by the tracing

method should be limited to ensure all the vessels in the volume are traced.

Thus, a large vascular volume needs to be divided into multiple relatively small

volumes to perform the tracing. Then, the traced network of each small volume can

be merged to form the complete network of the large volume. Vascular tracing in
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the sub-volumes can be conducted in parallel to reduce the processing time when

tracing large vascular volumes like the entire mouse brain data from the KESM.

5.2.3 Bifurcation dection

Bifurcation of vasculature described in the methods chapter is the most common

bifurcation case observed in the KESM data. There might be other bifurcation cases

in the vascular volume. To make sure all the bifurcations are detected, a study of

alternative bifurcation cases is necessary.

In addition, bifurcation detection is based on the difference of radius of vessel

cross sections in each step in the tracing process. The threshold of difference is

chosen empirically. In the future, I will develop a more precise method with adaptive

threshold to detect the bifurcations. An adaptive threshold to detect bifurcation

might increase the accuracy and decrease the number of missed vessels during tracing.

However, extra computation time may be needed.

5.2.4 Smoothing of the tracing result

The vector-based vascular tracing described in this thesis does not guarantee

smoothness of the tracing result. It connects the extracted centerline points by linear

interpolation, however, the centerline of the vessel is a curve. To smooth the tracing

result, post-processing of the tracing result is needed. In the future, developing a

smoothing algorithm with correct control points on the centerline would guarantee

the smoothness of the tracing result and improve the accuracy of tracing.
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6. CONCLUSION

The main goal of this research was to develop a fully automated vascular tracing

method with shorter processing time to trace vascular networks in the mouse brain

KESM India ink data set. The new vascular tracing algorithm was combined with

automated seed point selection method to explore completely the vascular network in

the volume data. After tracing, I also analyzed the detailed properties such as length

and volume of extracted vessels. This thesis presented a robust, highly accurate, and

fast vascular tracing method that can be applied to the KESM system. The accuracy

of the tracing method was validated against synthetic vascular data. The processing

time was tested on different sub-networks of the KESM data set which demonstrated

that the algorithm is more efficient than previous approaches. The vascular tracing

method proposed in this thesis is expected to help trace and analyze large vascular

data sets like the KESM data set.
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