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ABSTRACT

In the first part of this dissertation, we study the light scattering properties of particles

with chiral structures. Special attention is paid to the dinoflagellates, known for their cir-

cular polarization effects and as a causative agent of the red tide. Based on experimental

observations and previous works, we build a helical plywood liquid crystal model for the

nucleus of dinoflagellates, and apply the Discrete Dipole Approximation (DDA) method

to investigate the light scattering properties of dinoflagellates. The backscattering signals

display strong sensitivity to the wavelength of the incident beam, and they are most promi-

nent when the wavelength matches the pitch of the chromatic helix. Our results indicates

a promising means to monitor and detect the specific species of dinoflagellates.

In the second part of the dissertation, we investigate the the problem of light scat-

tering when the incident light has finite coherence length. The conventional Lorenz-Mie

theory and DDA method are generalized to include a partially spatially coherent source.

The formalism is applied to atmospheric particles such as water droplets and hexagonal

ice crystals. Given that the solar source is partially coherent, our results have practical

implications in remote sensing. Using the same technique, we also study the effects of

incoherence on particle characterization using digital holographic microscopy. We show

that holography is rather robust against incoherence and demonstrate the possibility of

retrieving the coherence length of the illumination.
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scattering direction, and Θ is the scattering angle. . . . . . . . . . . . . . 55

5.2 Scattering of one plane wave component of the partially coherent beam,
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1. INTRODUCTION

This thesis is dedicated to two largely overlooked topics in the study of light scatter-

ings: the chiral structures of the scatterers and the incoherence of the incident light.

1.1 Chirality

Harmful algal blooms (HABs) have continuously been global issues, especially in

North America due to the red tides in the Gulf of Maine and Florida, presenting envi-

ronmental and economic risks to the human beings around the affected area [6, 7, 8]. The

causative agents of HABs, mostly marine plankton dinoflagellates such as Alexandrium

fundyense and Karenia brevis, have been extensively studied by biologists [9, 4, 5, 1, 10].

Highly ordered chromosomes inside the relatively oversized nuclei were observed (see

Fig. 4.1 in Chapter 4), and patterns like bands and arches were also shown in transmission

electron microscopy images (see Fig. 1.1). It was later demonstrated that these features in

chromosomes could be perfectly explained using the plywood model proposed by Bouli-

gand [9] (see Fig. 1.1). According to the model, the DNA molecules are arranged in such

a way that they form fibrils lying on parallel parallels that are perpendicular to the chro-

mosome’s axis, and the fibrils rotate along the axis in a helical way. In the light scattering

experiments conducted subsequently by Shapiro et al. using dinoflagellates [11, 12], large

circular polarization effects were observed and the chromosomes are believed to be re-

sponsible. As a result of breaking mirror symmetry, chiral particles like the chromosomes

of dinoflagellates have a particular property called circular intensity differential scattering

(CIDS) (see Section 2.5), which characterizes the ability of a particle to scatter left and

right circularly polarized light differently. Direct connection with the reduced Mueller ma-

trix element S14/S11 (Section 2.5) makes the measurement of CIDS accessible, ensuring

straightforward quantification of the chirality of a particle.

1
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DINOFLAGELLATE CHROMOSOMES in situ 

twigs rotates uniformly along the Z axis; the 
period of this rotation is equal to 2d. 

Some considerations may be added here 
concerning the actual diameters of the twigs. 
In the case of vitrified preparations, which 
are apparently the least aggregated, the di- 
ameter of  the poorly distinguishable chro- 
mosome fibrils seems to be around 2 to 3 
nm. This estimation is, however, question- 
able because, even in the best images, the 
transfer function revealed by optical dif- 
fraction does not clearly extend below 3 to 
4 nm. These latter values therefore set a 
reasonable upper limit for the diameter of 
individual twigs in the chromosome. 

The crenulation pattern can easily be ac- 
counted for, as already suggested by Bou- 
ligand et al. (1968), by a slight refinement 
of the above-described representation : each 
perpendicular section through the chro- 
mosome is not circular, but slightly ellip- 
tical (~ ~ 1.1) and the orientation of the 
ellipse rotates along the Z axis together with 
the nucleofilament direction. 

DISCUSSION 
The  Represen ta t ion  

The geometrical reconstruction presented 
here shows that the chromosome of  P. mi-  
cans is correctly represented by the plywood 
description of Bouligand and co-workers 
(Bouligand, 1965b; Bouligand and Puiseux- 
Dao, 1966; Bouligand et al., 1968; Livolant 
and Bouligand, 1978, 1980; Livolant et al., 
1978). As is shown in their original schemes, 
reproduced here as Fig. 23, the chromo- 
somes are made out of locally parallel nu- 
cleofilaments arranged perpendicularly to 
the chromosome axis. We stress that the 
"plywood description" is not a hypothetical 
model, but a necessary, though schematic, 
consequence of  the observed features. This 
fact is unambiguously demonstrated in this 
article, but a similar demonstration has pre- 
viously been given by Bouligand (1965a). 

It must also be noted that the works of 
Bouligand and his collaborators were based 
exclusively on a single, conventional in situ 

25 

FIG. 23. Bouligand's plywood representation ofdi- 
noflagellate chromosome ultrastructure. Reproduced 
from Bouligand et al. (1968, Fig. 8) with permission. 

preparation procedure, i.e., double fixation 
followed by Epon embedding. It is therefore 
remarkable that all our attempts to reduce 
the transformations suffered by the speci- 
mens during preparation, by PLT dehydra- 
tion, by cryosubstitution, or by vitrification, 
have confirmed Bouligand's representation. 

Proposed  Hel ica l  Mode l s  

Long before and long after the important 
contributions of Bouligand and colleagues, 
various teams proposed models for the 
packing of DNA in dinoflagellate chromo- 
somes (Giesbrecht, 1961, 1965; Grass6 et 
al., 1965; Haapala and Soyer, 1973; Oakley 
and Dodge, 1979; Spector et al., 1981; for 
reviews, see Raikov, 1982 and Livolant, 
1984a). They are based on the postulated 
existence of  helical DNA filaments, "an idea 

Figure 1.1: Left: the TEM images of cross-sections of P. micans (from [1]). Bars = 200
nm. Right: the Plywood model of Bouligand (from [1]). This figure is reprinted from
Journal of Ultrastructure and Molecular Structure Research, 97, 10-20, 1986, A. Gautier,
L. Michel-Salamin, E. Tosi-Couture, A. W. McDowall and J. Dubo-chet, “Electron mi-
croscopy of the chromosomes of dinoflagellates in situ: confirmation of bouligand’s liquid
crystal hypothesis”, Copyright 1986, with permission from Elsevier.

2



Despite considerable effort to model helical structures in biological particles [11, 12,

13, 14, 15, 16, 17, 18, 19], both analytically and numerically, the models used in previ-

ous works tended to be oversimplified, failing to achieve agreements with measurements.

Instead of using a thin helix as was widely adopted previously, we attempt to model the

chromosomes of dinoflagellates based on the Plywood model (see Fig. 4.2). Furthermore,

by representing the nucleus as a collection of identical chromosomes that are randomly

oriented and positioned, it also enables the study of interactions and correlations, which

were overlooked in previous works. Therefore, through implementing a more realistic de-

scription of the dinoflagellate, we expect to gain more insight of its optical properties and

make reliable predictions. In this dissertation, we will study the light scattering of both

a single chromosome and a nucleus, in hopes of detecting and categorizing each specific

specie of dinoflagellate (see Chapter 4).

1.2 Coherence

Numerous methods and techniques have been developed to study the problems of

light scattering, such as Lorenz-Mie theory [20], the discrete dipole approximation (DDA)

method [21, 22, 23], and the finite-different time-domain (FDTD) method [23]. However,

these theories failed to consider the effects of the finite coherence length of incident light.

The stochastic nature of the light source (such as a thermal source), and the randomness

of the medium (such as a turbulent fluid) through which the light passes , would render

any light beams partially coherent (see Fig. 1.2). On the basis of statistical theory, Wolf

et al. have long established [24, 25, 26] the foundation of optical coherence theory, which

becomes the language to describe light beams of arbitrary degree of coherence. Apart

from some limited applications of this theory to light scattering by [27, 28], general inves-

tigation of light scattering using partially coherent light has not been conducted. Recent

progress was made by van Dijk et al. [2] and Fischer et al. [29], who studied the effects of

3



Figure 1.2: Left: the intensity distribution of a coherent Gaussian beam. Right: the in-
tensity distribution of a partially coherent Gaussian beam simulated using the numerical
method described in Chapter 5.

transverse coherence length on the angular distribution of light scattered by a sphere. They

managed to show that the angular distribution of scattered light is smoothed out gradually

when reducing the coherence length (see Fig. 1.3). A critical drawback of this work was

that scalar a incident field was used, thus only the radiation intensity can be obtained. By

a using vector field, we extended the Loerenz-Mie theory and the DDA method to include

partially coherent incident fields, and compute all 16 Mueller matrix elements (see Chapter

5).

We then applied the developed formalism to the problem of particle characterization

using digital holographic microscopy (DHM), a technique to obtain the parameters of

a sphere by fitting the numerically simulated hologram to the experimentally measured

hologram (see Fig. 1.4). Based on the Lorenz-Mie theory, the DHM has proved to be

efficient and accurate to extract the parameters of a particle such as the radius, the refrac-

tive index, and the three-dimensional position [3, 30]. In this dissertation, we attempt to

4



Sec. 4.3.2 of [14]). It is seen that the scattered field be-
comes less diffuse as the parameter %# increases. If the
coherence length of the incident beam is comparable to or
is larger than the radius of the sphere (i.e., when %# > a),
secondary maxima occur. For %# ¼ 4a the radiant inten-
sity can hardly be distinguished from that generated by an
almost spectrally fully coherent beam with %# ¼ 100a.
The displayed scattering angle & is restricted to the range
00 ( & ( 900, because for larger values the curves essen-
tially coincide with the horizontal axis. In Fig. 3 the results
are shown on a logarithmic scale, for the full range of the
scattering angle, i.e., 00 ( & ( 1800. It is seen that in all
cases there is some backscattering, i.e., Jsð& ¼ 1800; !Þ>
0, with the largest amount occurring when %# ¼ a=4.

We can summarize our results by saying that we have
studied the effects of spatial coherence of the incident
beam on the angular distribution of the intensity of the
field scattered by a small homogeneous sphere; and we
found that when the transverse spectral coherence length of
the incident beam is smaller than the radius of the scatterer,
the radiant intensity is rather diffuse and exhibits no sec-
ondary maxima. Our results may find useful application in,

for example, determining scattering effects in the atmo-
sphere and colloidal suspensions.
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FIG. 3 (color online). The normalized radiant intensity
Jð&; !Þ=Jsð00; !Þ of the scattered field for selected values of
the transverse spectral coherence length %#, plotted on a loga-

rithmic scale. The sphere radius a has been taken to be 4", and
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Figure 1.3: The angular intensity distribution of the scattered light by a sphere (from [2]).
The sphere has radius a = 4λ and refractive index n = 1.5. Here σµ denotes the spatial
coherence length. This figure is reprinted from Phys Rev Lett, 104, 173902, 2010, T. van
Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “ Effects of spatial coherence on the angular
distribution of radiant intensity generated by scattering on a sphere”, Copyright 2010, with
permission from American Physical Society.
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Fig. 2. Fitting to normalized holograms. (a) Normalized hologram B(ρ), numerical fit to
Eq. (3), and azimuthally averaged radial profile B(ρ) for a 1.43 µm diameter polystyrene
sphere in water at zp = 22.7 µm. All scale bars indicate 10 µm. Curves in the radial profile
are obtained from experimental data, discrete points were obtained from the fit. (b) Data for
a 1.45 µm diameter TiO2 sphere dispersed in immersion oil (nm = 1.515) at zp = 7.0 µm
(c) Data for a 4.5 µm diameter SiO2 sphere in water at zp = 38.8 µm.

4. Tracking and characterizing colloidal spheres

The image in Fig. 2(a) shows the normalized hologram, B(ρ), for a polystyrene sulfate sphere
dispersed in water at height zp = 22.7 µm above the focal plane. This sphere was obtained
from a commercial sample with a nominal diameter of 2a = 1.48 ± 0.03 µm (Bangs Labs,
Lot PS04N/6064). The camera’s electronic shutter was set for an exposure time of 0.25 msec
to minimize blurring due to Brownian motion [28]. After normalizing the raw 8-bit digitized
images, each pixel contains roughly 5 significant bits of information. The numerical fit to B(ρ)
faithfully reproduces not just the position of the interference fringes, but also their magnitudes.
The quality of the fit may be judged from the azimuthal average; the solid curve is an angular
average about the center of B(ρ), the dashed curves indicate the standard deviations of the
average, and the discrete points are obtained from the fit.

The fit value for the radius, a = 0.73±0.01 µm, falls in the sample’s specified range, which
reflected a lower bound of 0.69±0.07 µm obtained with a Beckman Z2 Coulter Counter and an

#88549 - $15.00 USD Received 12 Oct 2007; revised 9 Dec 2007; accepted 17 Dec 2007; published 20 Dec 2007
(C) 2007 OSA 24 December 2007 / Vol. 15,  No. 26 / OPTICS EXPRESS  18279

Figure 1.4: Fitting simulated hologram (right) to measured hologram (left) (from [3]). This
figure is reprinted from Opt Express, 15, 18275-82, 2007, S. H. Lee, Y. Roichman, G. R.
Yi, S. H. Kim, S. M. Yang, A. van Blaaderen, P. van Oostrum, and D. G. Grier, “Charac-
terizing and tracking single colloidal particles with video holographic microscopy”, Copy-
right 2007, with permission from American Optical Society.

investigate the effects of incoherence on particle characterization using DHM by replacing

the plane wave light beam with a partially coherent light beam (see Chapter 6). We also

studied the minimum degree of coherence required for the light beam before this method

breaks down.
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2. FORMALISM

The primary purpose of this chapter is to establish the terminology and notations we

are going to use to describe electromagnetic field and light scatterings. The formalism

introduced here will become the basic language for future chapters. Here, we adopt the

notaions used in van de Hulst [31], Bohren and Clothiaux [32] and Rybicki and Lightman

[33].

2.1 Scalar Description of Light: Radiance and Irradiance

Since most radiation from natural sources is highly incoherent due to multiple scat-

terings, a scalar description of light is not only a major simplification but also can be a

sufficiently accurate representation of theelectromagnetic field in most cases. Radiometry

uses scalar quantities to characterize the energy distribution of the radiation field. One

of the most important quantities is the radiance L
(
r, Ω̂, ν, t

)
that measures the radiation

strength at position r, direction Ω̂, frequency ν and time t. Consider a detector with sur-

face area A and normal direction n̂, that only collects radiation within solid angle ∆Ω

around direction Ω̂ and only responds to radiation in the frequency interval (ν, ν + ∆ν).

Then during time interval ∆t, the detector will receive radiation energy

∆E = L
(
r, Ω̂, ν, t

)
cos θA∆Ω∆ν∆t, (2.1)

where θ is the angle between direction n̂ and Ω̂. The radiance is an intrinsic quantity of the

radiation field that is independent of the detector. It can be shown [33] that the radiance

is invariant from the source to any points along any specific direction if no scattering or

absorption occurs during the path.

Another important quantity is irradiance which is defined as the energy flux passing
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through a unit area A with normal n̂. It can be expressed as an angular integral over a

hemisphere

F =

∫
2π

L
(
Ω̂
)

cos θdΩ, (2.2)

where θ is the angle between solid angle Ω̂ and surface normal n̂.

An interesting case is when the radiation field is isotropic, which means the radiance

is independent of direction Ω̂. Using Eq. (2.2), the irradiance or flux can be calculated

F = L

∫ 2π

0

∫ π/2

0

cos θ sin θdθdφ = πL. (2.3)

2.2 Vector Description of Light: Stokes Vector

In the previous section, electromagnetic radiation is assumed to be incoherent and

represented as scalar quantities. Due to the vector nature of the electromagnetic field, gen-

erally we have to consider the polarization of radiation. To conveniently describe a beam

of light, we first define a plane of reference in such a way that the direction of propagation

is on the plane of reference. Let r̂ be the unit vector perpendicular to the plane and l̂ be the

unit vector perpendicular both to the plane and direction of propagation. The handedness

of the system is chosen in the sense that r̂× l̂ is along the direction of propagation. Since

the electric field is transverse, it can be decomposed into two perpendicular components

E = El̂l + Err̂, (2.4)

It is more conventional to write it as a column vector

E =

 El

Er

 . (2.5)
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Since it is difficult to measure the phase of the electric field, it is more practical to use

the so-called Stokes vector I = (I,Q, U, V )T . Each component is defined below

I = 〈E∗l El + E∗rEr〉, (2.6)

Q = 〈E∗l El − E∗rEr〉, (2.7)

U = 〈E∗l Er + E∗rEl〉, (2.8)

V = i〈E∗l Er − E∗rEl〉, (2.9)

where asterisk denotes the complex conjugate and 〈 〉 denotes time average. It can be

shown that the sufficient and necessary condition that a 4-component vector (I,Q, U, V )T

is a Stokes vector is

I ≥ 0, (2.10)

I2 ≥ Q2 + U2 + V 2. (2.11)

Note that when the light beam is completely unpolarized, the Stokes vector is reduced to

I = (I, 0, 0, 0). For a completely polarized beam, the inequality in Eq. (2.11) becomes an

equality, i.e. I2 = Q2 +U2 +V 2. To more generally characterize the state of polarization,

we define the degree of polarization as

P =

√
Q2 + U2 + V 2

I
, (2.12)

which is bounded by 0 ≤ P ≤ 1, with 0 being completely unpolarized and 1 being

completely polarized. Based on Eq. (2.10), it is not difficult to notice that an arbitary

light beam characterized by Stokes vector I = (I,Q, U, V ) can be representated as a

superposition of one completely unpolarized and one completely polarized beam [32], i.

9



e. 

I

Q

U

V


=



Iu

0

0

0


+



Ip

Q

U

V


, (2.13)

where

Iu = I −
√
Q2 + U2 + V 2, (2.14)

Ip =
√
Q2 + U2 + V 2. (2.15)

As we will constantly encounter in Chapter. 4, the rotation of the plane of reference

introduces a corresponding transformation to the electric field. Suppose the plane of ref-

erence rotates around the direction of propagation by angle θ in the counterclockwise

direction, then unit vectors l̂ and r̂ are rotated according to

 l̂′

r̂′

 =

 cos θ sin θ

− sin θ cos θ


 l̂

r̂

 . (2.16)

Similarly, the electric field (El, Er)
T transforms as

 E ′l

E ′r

 =

 cos θ − sin θ

sin θ cos θ


 El

Er

 . (2.17)

Substituting Eq. (2.17) into Eq. (2.6 – 2.9), we obtain the transformation of Stokes vector

I′ = L(θ) · I, (2.18)
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where

L(θ) =



1 0 0 0

0 cos 2θ − sin 2θ 0

0 sin 2θ cos 2θ 0

0 0 0 1


. (2.19)

2.3 Single Particle Scattering: Amplitude Matrix and Mueller Matrix

Now we consider the scattering of a monochromatic plane wave by a single particle of

arbitrary shape and composition. The incident beam propagating along the +z direction is

described by the wave function

E(i) (z, ω) =

 E
(i)
l

E
(i)
r

 eikz. (2.20)

The scattered field in the far-field zone can be written as

E(s) (r, ω) =
exp (ik(r − z))

−ikr S · E(i) (z, ω) (2.21)

where

S =

 S2 S3

S4 S1

 (2.22)

is the scattering amplitude matrix and Si (i = 1, 2, 3, 4) are four complex amplitude

functions. It is worth noting that the scattering amplitude matrix S = S(k, r̂) is a function

of the wave number k and the scattering direction r̂ = r/r. We then compute the Stokes

vector for the scattered field by substituting Eq. (2.21) into Eq. (2.6 – 2.9). The result

reads

I(s) =
1

k2r2
M · I(i), (2.23)
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where the 4×4 matrix M is called Mueller matrix that connects the incident Stokes vector

and the scattered Stokes vector. All 16 Mueller matrix elements Mij can be obtained

explicitly in terms of the scattering amplitude matrix S [34]:

M11 =
(
|S1|2 + |S2|2 + |S3|2 + |S4|2

)
/2, (2.24)

M12 =
(
|S2|2 − |S1|2 + |S4|2 − |S3|2

)
/2, (2.25)

M13 = Re (S2S
∗
3 + S1S

∗
4) , (2.26)

M14 = Im (S2S
∗
3 − S1S

∗
4) , (2.27)

M21 =
(
|S2|2 − |S1|2 + |S3|2 − |S4|2

)
/2, (2.28)

M22 =
(
|S1|2 + |S2|2 − |S3|2 − |S4|2

)
/2, (2.29)

M23 = Re (S2S
∗
3 − S1S

∗
4) , (2.30)

M24 = Im (S2S
∗
3 + S1S

∗
4) , (2.31)

M31 = Re (S2S
∗
4 + S1S

∗
3) , (2.32)

M32 = Re (S2S
∗
4 − S1S

∗
3) , (2.33)

M33 = Re (S1S
∗
2 + S3S

∗
4) , (2.34)

M34 = Im (S2S
∗
1 + S4S

∗
3) , (2.35)

M41 = Im (S4S
∗
2 + S1S

∗
3) , (2.36)

M42 = Im (S4S
∗
2 − S1S

∗
3) , (2.37)

M43 = Im (S1S
∗
2 − S3S

∗
4) , (2.38)

M44 = Re (S1S
∗
2 − S3S

∗
4) . (2.39)

Since every light beam can be represented by a Stokes vector, and the Mueller matrix is the

one that transforms the incident Stokes vector to the scattered Stokes vector, the Mueller

matrix fully characterizes the optical properties of a particle for the elastic scattering.
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2.4 Properties of Mueller Matrices

In the previous section, the scattered field is assumed to be a spherical wave, which

is not aways true. When the incident field passes through a polarizer or retarder, the

scattered field will remain a plane wave. Therefore, the most general formula for electric

field transformation becomes

E′ = J · E, (2.40)

where J is usually called the Jones matrix. Consequently, the Stokes vector transformation

can be written as

I′ = M · I, (2.41)

where the Mueller matrix M is defined by matrix J . It can be shown that the Mueller

matrix M is related to the Jones matrix J by the following transformation [35]

M = U (J⊗ J∗) U−1, (2.42)

where “⊗” denotes the outer product of marices and the matrix U is given by

U =
1√
2



1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0


=
(
U−1

)†
. (2.43)

The electric field transformation equation Eq. (2.40) implies that both the incident field

and the scattered field are completely polarized, and for the most general cases this kind

of equation does not exist. However, the transformation of Stokes vector in Eq. (2.41) is

always well defined. Thus, there are two kinds of Mueller matrices: those can be derived
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from a Jones and those can not. Anderson and Barakat proved [35] that the sufficient and

necessary condition for a Mueller matrix M to be derivable from a Jones matrix is the

matrix F = U−1MU can be factorized in the form

F = J⊗ J∗, (2.44)

where J is a 4 × 4 matrix. Since there are 7 independent elements (plus one irrelevant

common phase factor) in the Jones matrix , there should exist 9 equalities between the

16 Mueller matrix elements [36]. One of the most interesting equalities is listed below

[37, 38]

Tr
(
MMT

)
=

4∑
i,j=1

M2
ij = 4M2

11. (2.45)

For the Mueller matrices that are not related to Jones matrices, all 16 Mueller matrix

elements are independent. However, due to the requirement that every realistic Stokes

vector must satisfy Eq. (2.10) and (2.11), the physically admissible Mueller matrices have

one constraint: for every Stokes I satisfying Eq. (2.10) and (2.11), the transformed Stokes

vector I′ = M · I also satisfies Eq. (2.10) and (2.11) [35]. This leads to a series of

inequalities satisfied by the Mueller matrix elements. Two of the most useful ones are [39]

4∑
i,j=1

M2
ij ≤ 4M2

11, (2.46)

|Mij| ≤ M11. (2.47)

These two inequalities can be used as criteria to test the correctness of experimental mea-

surements and numerical simulations.
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2.5 Mirror Symmetry and Chirality

In this section, we survey the effects of chirality on light scattering which is the topic

of Chapter 4. Suppose the scattering amplitude matrix of a particle is S, which means the

transformation of electric field goes as

 E ′l

E ′r

 =

 S2 S3

S4 S1


 El

Er

 . (2.48)

Now consider a particle that is the mirror image of the aforementioned particle with respect

to the scattering plane. It is easy to see it is basically the same scattering problem except

that the perpendicular coordinate basis changes sign:

r̂→ −r̂, (2.49)

which implies that Er → −Er. To make Eq. (2.48) invariant under such manipulation, we

obtain  E ′l

−E ′r

 =

 S2 −S3

−S4 S1


 El

−Er

 . (2.50)

Thus the scattering amplitude matrix of the mirror particle is given by [31]

S′ =

 S2 −S3

−S4 S1

 . (2.51)
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According to Eq. (2.24 – 2.39), the Mueller matrix for the mirror particle becomes



M11 M12 M13 M14

M12 M22 M23 M24

−M13 −M23 M33 M34

M14 M24 −M34 M44


, (2.52)

where Mij are the Mueller matrix elements of the original particle. We now consider a

collection of particles and their mirror particles. If the numbers of particles and mirror

particles are equal, then the off-diagonal Mueller matrix elements will cancel out. This

yields the Mueller matrix for the whole system



M11 M12 0 0

M21 M22 0 0

0 0 M33 M34

0 0 M43 M44


. (2.53)

If we also assume that the particles are orientation averaged, the above Mueller matrix can

further simplified to 

M11 M12 0 0

M12 M22 0 0

0 0 M33 M34

0 0 −M34 M44


. (2.54)

We now apply the theory to a collection of randomly oriented particles with handed-

ness. Since the mirror image of a left-handed particle is a right-handed, the Mueller matrix

will have off-diagonal elements unless the system has equal amounts of both handed par-

ticles. Thus, the off-diagonal Mueller elements become a measure of chirality of a system.
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Particularly, M14/M11 is closely related to the experimentally measurable quantity: the

so called circular intensity differential scattering (CIDS) [15], which measures the ability

to scatter left and right circularly polarized light differently. This can be demonstrated

by considering a randomly oriented particle or a collection of particles represented by the

following Mueller matrix



M11 M12 M13 M14

M12 M22 M23 M24

−M13 −M23 M33 M34

M14 M24 −M34 M44


. (2.55)

The particle is then illuminated by both right and left circularly polarized light beams of

the same intensity. The Stokes vectors of those two beams are given by



1

0

0

1


,



1

0

0

−1


, (2.56)

respectively. Then the measured intensities IR and IL for those two cases are given below

IR = M11 + M14, (2.57)

IL = M11 −M14. (2.58)

From Eq. (2.57) and (2.58) one can easily derive that

M14

M11

=
IR − IL
IR + IL

. (2.59)
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The above equation indicates that the chirality of a particle is directly related to how dif-

ferent it scatters right and left circularly polarized light.
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3. NUMERICAL METHODS

As we discussed in the previous chapter, the Mueller matrix captures the optical prop-

erties of a particle for the elastic scattering of electromagnetic beams. For the single

scattering problem, the Mueller matrix is usually derived from the scattering amplitude

matrix, which can be computed by solving the Maxwell equations. There are several ef-

fective methods available to achieve this, analytically or numerically, depending on the

size and composition of the particle. In Chapter 4, the Discrete Dipole Approximation

(DDA) method will be used to study the complex structure of the dinoflagelate nucleus. In

Chapters 5 and 6, most of particles investigated are homogenous spheres and the Lorenz-

Mie theory will be applied. In Chapter 5, the DDA method is also modified to include

partially coherent light beams. Here we give a brief survey of the numerical methods that

will be used in this dissertation.

3.1 Lorenz-Mie Theory

An analytical solution is available for the problem of light scattering by a homogenous

dielectric sphere of arbitrary size and refractive index. Due to the highly symmetric shape

of a sphere, the Maxwell equations can be solved exactly using the spherical coordinates.

Given the particle size, the refractive index of the sphere and the wavelength of the incident

light, the electromagnetic field at every location in space can be obtained. In this section,

the basic mathematics of the Lorenz-Mie theory will be provided [34].

It can be shown that in a homogenous medium, the time harmonic Maxwell equations

are reduced to two Helmholtz equations

∇2E + k2E = 0, ∇2H + k2H = 0, (3.1)
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where k is the wavenumber in that medium. The solutions of the above equations can be

written in terms of the so-called vector harmonic s M and N, which can be constructed

from a scalar function ψ:

M = ∇× (rψ) , (3.2)

N =
1

k
∇×M. (3.3)

Here the scalar function ψ also satisfies the Helmholtz equation

∇2ψ + k2ψ = 0. (3.4)

The above equation can be solved in spherical coordinates through separation of varaibles:

ψml (r, θ, φ) = eimφPm
l (cos θ) zl (kr) , (3.5)

where Pm
l is the associated Legendre function and zl is any spherical Bessel function. For

each ψml, there is a pair of vector harmonics

Mml = ∇× (rψml) , (3.6)

Nml =
1

k
∇×Mml. (3.7)

Then the electric field can be expressed as a series in terms of Mml and Nml

E =
∞∑
l=1

l∑
m=−l

(amlMml + bmlNml) . (3.8)

Now consider a linearly polarized incident field Einc = eikzx̂, where x̂ is a unit vector in
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the +x direction. The incident field can be written in terms of vector hormonics:

E(inc) =
∞∑
l=1

l∑
m=−l

(
a
(inc)
ml M

(1)
ml + b

(inc)
ml N

(1)
ml

)
, (3.9)

where the superscript “(1)” means that the above vector harmonics are derived from spher-

ical Bessel function of the first kind jl. It can shown that only m = ±1 componets exist

for above expansion and the exact values of the coefficients a(inc)
ml and b(inc)

ml can be found in

[34].

When the aforementioned plane wave is scattered by a sphere of radius a and refractive

index m, the electric field inside the sphere E(i) and scattered field outside the sphere E(s)

can be expressed in a similar manner

E(i) =
∞∑
l=1

l∑
m=−l

(
a
(i)
mlM

(1)
ml + b

(i)
mlN

(1)
ml

)
, (3.10)

E(s) =
∞∑
l=1

l∑
m=−l

(
a
(s)
mlM

(3)
ml + b

(s)
mlN

(3)
ml

)
, (3.11)

where the superscript “(3)” denotes that the vector harmonics are derived from spherical

Bessel function of the third kind h(1)l . The corresponding magnetic field in each region can

be computed from the equation

H =
c

ik
∇× E. (3.12)

Given the boundary condition that the tangential components of E and H must be continu-

ous across the boundary, the expansions coefficients A
(i)
ml, b

(i)
ml, A

(s)
ml and b(s)ml can be solved

from the following equations

(
E

(inc)
θ + E

(s)
θ

) ∣∣∣
r=a

= E
(i)
θ

∣∣∣
r=a

,
(
E

(inc)
φ + E

(s)
φ

) ∣∣∣
r=a

= E
(i)
φ

∣∣∣
r=a

, (3.13)(
H

(inc)
θ +H

(s)
θ

) ∣∣∣
r=a

= H
(i)
θ

∣∣∣
r=a

,
(
H

(inc)
φ +H

(s)
φ

) ∣∣∣
r=a

= H
(i)
φ

∣∣∣
r=a

, (3.14)
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where we used the fact that in spherical coordinates E = (Er, Eθ, Eφ) and H = (Hr, Hθ, Hφ).

With the internal field and scattered field known, we can write down the electric field in

the whole space

E(1) = E(i), r ≤ a, (3.15)

E(2) = E(inc) + E(s), r > a. (3.16)

It should be noted that all vectors computations so far are done in spherical coordinates.

As will be shown in Chapter (6), the hologram is more convenient to calculate in Cartesian

coordinates. This can be converted through a transformation


Ex

Ey

Ez

 =


sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0




Er

Eθ

Eφ

 . (3.17)

Although we are able to get the exact field at any location, in most cases only the

scattered field in the far-field zone will be relevant. Using the assumption kr � 1 and

asymptotic expression of h(1)l , scattering amplitude matrix can be obtained [34]

S(θ) =

 S2(θ) 0

0 S1(θ)

 , (3.18)

where

S1(θ) =
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn) , (3.19)

S2(θ) =
∑
n

2n+ 1

n(n+ 1)
(anτn + bnπn) . (3.20)
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The definition of an, bn, πn and τn can be found in [31]. The Mueller matrix then follows

M =



1
2

(
|S2|2 + |S1|2

)
1
2

(
|S2|2 − |S1|2

)
0 0

1
2

(
|S2|2 − |S1|2

)
1
2

(
|S2|2 + |S1|2

)
0 0

0 0 1
2

(S∗2S1 + S∗1S2)
i
2

(S∗2S1 − S∗1S2)

0 0 − i
2

(S∗2S1 − S∗1S2)
1
2

(S∗2S1 + S∗1S2)


(3.21)

For numerical evaluation, we chose the Mie code based on the IDL code used by Grier

et al. [3].

3.2 Discrete Dipole Approximation Method

The Lorenz-Mie theory is obviously limited to homogenous spheres. For particles

of arbitrary shapes and dielectric functions, alternative techniques are demanded and the

discrete dipole approximation (DDA) is a suitable choice that meets such requirements.

Inspired by the observation that the dielectric properties of a macroscopic particle originate

from the polarizability of each atom, Purcell and Pennypacker [40] proposed the numerical

method by approximating the particle with a collection of polarizable dipoles. Each dipole

not only responds to the incident light, but also interacts with other dipoles through dipole-

dipole coupling. This method was then improved and refined by Draine et al. [22], and

Yurkin et al. [23]. Here we briefly review the fundamentals of the DDA methods.

Suppose a particle is represented by N dipoles on a cubic lattice with spacing d, and

the location of each dipole is denoted by rj (j = 1, ..., N). The polarizability αj of dipole

at location rj is connected with the dielectric function of the particle through the Clausius-

Mossotti relation

αj =
3d3

4π

εj − 1

εj + 2
. (3.22)

The electric field Ej at location rj is contributed both by the incident wave E
(inc)
j =
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E0 exp(ik · rj), and the radiations from other dipoles with dipole moments Pk (k 6= j),

which in turn are induced by the local electric field Ek. Therefore, we have the following

self-consistent equations [22]:

Ej = E
(inc)
j −

∑
k 6=j

Ajk ·Pk, (3.23)

Pj = αjEj. (3.24)

Here Ajk is a 3× 3 matrix defined by [22]

Ajk =
exp (ikrjk)

rjk

[
k2 (r̂jkr̂jk − 13) +

ikrjk − 1

r2jk
(3r̂jkr̂jk − 13)

]
, j 6= k, (3.25)

where rjk = |rj − rk|, r̂jk = (rj − rk)/rjk and 13 denotes the 3× 3 identity matrix.

After eliminating Ej , Eq. (3.23) and (3.24) can be put in a compact form

N∑
k=1

Ajk ·Pk = E
(inc)
j , (3.26)

where Ajj = α−1j [22]. The polarization Pj can be obtained by numerically solving the

above linear algebraic equation. Once Pj is known, the scattered field can be written as

E(s)(r) =
k2 exp(ikr)

r

N∑
j=1

exp (−ikn̂ · rj) (n̂n̂− 13) ·Pj, (3.27)

where unit vector n̂ = r/r indicates the scattering direction. By considering two cases of

incident fields with orthogonal polarization directions, the scattering amplitude matrix S

can be obtained. In Chapter 6, the incident field in Eq. (3.26) will be modified in order

to study partially coherent light sources. For numerical simulation, we use the DDSCAT

software package developed by Draine et al. [22].
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4. DETECTION OF DINOFLAGELLATES BY THE LIGHT SCATTERING

PROPERTIES OF THE CHIRAL STRUCTURE OF THEIR CHROMOSOMES∗

One of the most prominent properties of dinoflagellates is their large sized and highly

chromosome-laden nucleus, which contains dozens of cylindrically shaped chromosomes.

With such high chromatic concentration, these chromosomes condense into ordered he-

lical structures and were acclaimed to be responsible for the large circular polarization

effects observed in the light scattering from dinoflagellates. In previous research, a thin

helix model of a chromosome was used to compare the Discrete Dipole Approximation

(DDA) and the analytical Born approximation calculations. However, for such a sim-

plified model only modest qualitative agreements with experimental measurements were

achieved. Moreover, only one chromosome in one nucleus was simulated, overlooking the

effects of interactions between chromosomes. In this work, we adopt the helical plywood

liquid crystal model with a capsule shape, in which parallel fibrils lie in planes perpendic-

ular to the helix axis and the orientations of these fibrils twist at a constant angle between

two neighboring layers. The ADDA code is applied to calculate the 16 Mueller matrix

elements of light scattering from a single chromosome and from the nucleus, which is

composed of a collection of randomly positioned and randomly orientated chromosomes.

Special attention is paid to the S14 Mueller matrix element, which describes the ability

of differentiating left and right circularly polarized light. Our results show that large S14

back scattering signals from the dinoflagellate nucleus results from the underlying helical

structures of its chromosomes. These signals are sensitive to the light wavelength and

pitch of the chromatic helix, the latter of which is species specific. Therefore, detecting

∗This chapter is reprinted from Journal of Quantitative Spectroscopy & Radiative Transfer, 130, 24-33,
2014, J. P. Liu and G. W. Kattawar, “Detection of dinoflagellates by the light scattering properties of the
chiral structure of their chromosomes”, Copyright 2014, with permission from Elsevier.
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back scatterings S14 signal could be a promising method to monitor dinoflagellates such

as K. brevis, the causal agent of the Florida red tide.

4.1 Introduction

Algal bloom, particularly harmful algal blooms (HABs), is becoming an increasingly

global issue, imposing huge economic and health threats on human beings around the

aquatic environments when blooms take place [6, 7, 8]. Notable ones in North America are

blooms in the Gulf of Maine and Florida red tide, caused by Alexandrium fundyense and

Karenia brevis (formerly known as Gymnodinium breve and Ptychodiscus brevis), both of

which are dinoflagellates. One of the key features of dinoflagellates is their more ordered

chromosomes compared with other genera. Previous transmission electron microscopy

(TEM) observations showed bands, arches and crenulation in chromosomes of Prococen-

trum micans and K. brevis [4, 5, 1]. It was later confirmed [1, 10] that the chromatic

materials inside the nucleus of P. micans condensed into ordered helical liquid crystals, a

hypothesis proposed by Bouligand in 1968 [9]. Electron microscopy images of dinoflagel-

late chromosomes in situ showed that the double-stranded DNA modules coil into parallel

fibrils pointing perpendicular to the chromosomes main axis and rotate along the main

axis. This cholesteric structure was considered to be responsible for the observed large

circular polarization effect in the light scattering from dinoflagellates [11, 12]. The circu-

lar intensity differentially scattering (CIDS), which describes the ability to differentially

scatter left and right circularly polarized light, is encoded in the S14 Mueller matrix ele-

ment. Due to lack of mirror symmetry with respect to the scattering plane, a non-vanishing

S14 signal is expected from light scattering of helical structures [31]. They reported that

both dinoflagellates with helically structured chromosomes (P. micans and C. cohnii) and

those without (G. polyedra) could produce S14 signals, but those with helical structures

produce larger S14 than those without. It was also shown by Shapiro et al. that C. cohnii
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gives smaller S14 signals when the chromosomes structures were destroyed [12]. All these

results led Shapiro et al. to conclude that the helical structures of chromosomes are ulti-

mately responsible for the highest S14 signals, while smaller signals could be attributed to

the cylindrically shaped chromosomes in oblique orientations.

Paralleling those experimental explorations were theoretical endeavors carried out by

C. Bustamante et.al, who managed to model typical helical structures in biology using a

thin helical wire with uniaxial polarizability, and analytically formulated the CIDS (es-

sentially S14 Mueller matrix element) to the first Born approximation [13]. This formal-

ism was then applied to calculate the CIDS of membranes from the bacterium Spirillum

serpens and qualitative agreement was obtained when compared with experimental mea-

surements using X-rays [14]. Further generalizations of this method include extension to

general polarizability, scatterings of randomly orientated biological particles and scatter-

ings of an arbitrary collection of particles with scalar polarizability (or refractive index)

[15, 16, 41]. Some conclusions made by Bustamante et.al are worthwhile noting: (1) CIDS

or S14 was shown to be more sensitive to the shape and internal chiral structures of scat-

terers than S11 [13], (2) CIDS could exist for scatterers consisting of a group of particles

with a spherically symmetric refractive index [41], (3) CIDS has its largest value when the

wavelength matches the pitch (chiral parameter) of the helical structure [41].

Following these works, Singham et al. [17] developed the coupled dipole approxima-

tion method to calculate the CIDS from a one dimensional helical crystal modeled by a

thin helix. It proved to be a convenient numerical tool to study the CIDS from helical scat-

terers from both oriented and orientation averaged cases. The results showed that CIDS

weakly depends on the length of helix so long as it is much larger than the wavelength,

while the thickness of the helix is of significant importance. Since only the S14 Mueller

matrix element had been calculated using both the first Born approximation and coupled

dipole approximation method, Shapiro et al. [18, 19] complemented previous works by
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calculating all 16 Mueller matrix elements utilizing both methods, and good agreement

between those two methods was obtained when applied to helices. However, the coupled

dipole approximation was confirmed to be more useful when compared with experimental

measurements of Muller matrix elements of Eledone cirrhosa, even though only a few

qualitative features of S11, S12 and S14 were consistent.

To sum up, all previous theoretical studies of biological helical structures used simi-

lar thin helix wire models. While it is a simple and abstract model that characterizes the

universal chiral structures of microbiological particles, it lacks some specific features that

are unique to each case. For instance, the chromosomes of dinoflagellates have rich fibril

patterns which appeared in TEM micrographs, and the thicknesses and distances between

these fibrils have observable impact on the birefringence of the chromosomes. Therefore,

it is understandable that only modest qualitative agreement could be achieved between nu-

merical simulations and experimental measurements. Moreover, usually only one single

helix was considered in the calculations, totally obscuring the interactions between two

helical structures, which is not sufficient in the case of light scattering from the nucleus

of K. brevis where dozens of cylindrically shaped chromosomes are packed into one nu-

cleus. Thus we expect a more realistic model could achieve the goal of better quantitative

agreements with experiments and making reliable, observable predictions.

4.2 Models and Methods

Here we present our models for both a single cell of a dinoflagellate and its chromo-

somes based on Bouligands liquid crystal model [9]. The Amsterdam Discrete Dipole

Approximation (ADDA) code [23] is used to calculate all 16 Mueller matrix elements.

4.2.1 Model of a Cell

We focus on dinoflagellates P. micans and K. brevis in the following study because of

their ordered chromosome structures and the relevance of K. brevis to the infamous Florida
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Figure 4.1: (a) Transmission electron microscopy of a longitudinal section of K. brevis
taken from [4]. The bar is 1 µm. (b) A model of the nucleus, where the chromosomes are
modeled by capsules of the same size that are randomly positioned and oriented within a
fixed space without touching each other. (c) The TEM image of a separated nucleus of K.
brevis taken from [5]. The bar here is 1 µm. (d) The TEM image of a nucleus of P. micans
from [1]. The bar is 1 µm.
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red tide. The K. brevis has a complex celular structure (Fig. 4.1), which is composed of

two regions, epicone (left part of Fig. 4.1. (a)) and hypocone (right part of Fig. 4.1. (a))

connected by the narrow theca ridge, covered by a cell covering (theca) made of four mem-

branes [4]. The diameter of the cell is about 20-40 µm, and the nucleus measures about

6-9 µm, locating at the hypocone [4]. Apart from those, there are also dozens of irregular

choloplasts scattered around in both epicone and hypocone. For the time being, we only

consider the effect of the nucleus. The reasons for such simplification are: (1) it is diffi-

cult to model the whole cell due to the complexity of cellular structure of dinoflagellates,

which is beyond our computational power to simulate at the present time, (2) all previous

research lead to the conclusion that the nucleus and underlying chromosome structure are

the key players in explaining the observed large circular polarization effect. In our sim-

plified model, the nucleus is a collection of randomly positioned and randomly oriented

capsules confined in a finite space. We also make sure that no capsules intersect each other

when generating the dipoles. The internal helical structure will be discussed in the next

subsection of chromosome model (Fig. 4.2. (b)). Due to limitation of computational time

and memory available, a smaller nucleus with diameter 4.0 µm and up to 20 chromosomes

in one nucleus are used in our calculations (Fig. 4.1. (b)). The parameters of each chro-

mosome are: diameter 0.5 µm (100 dipoles), height 1.0 µm (200 dipoles). Since no direct

measurement of the refractive index can be found in literature to our knowledge and our

model works for general refractive index, we choose the value 1.2 + 0.01i with respect to

ocean water without loss of generality. In all calculations below, the light wavelengths are

measured in ocean water.

4.2.2 Model of a Chromosome

As was discussed in the introduction section, the chromosomes of P. micans have been

studied extensively [1, 10], and the well confirmed model is the Bouligands cholesteric
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Figure 4.2: (a) The liquid crystal model of dinoflagellate chromosome, where different
colors indicate different orientations of fibrils in each layer. The diameter of the chromo-
some is 1 µm (480 dipoles), and its length is 2 µm (960 dipoles). In each layer, there are
up to 20 fibrils, and each fibril has a diameter of 21 nm (10 dipoles). A total of 8 turns
are considered and the twist angle we used is 45◦. (b) A simplified model of (a), where
the color scheme has the same meaning. The parameters are: chromosome diameter and
length are 0.5 µm (100 dipoles) and 1 µm (200 dipoles), respectively, up to 5 fibrils in
each layer, fibril diameter 50 nm (10 dipoles), twist angle 45◦ and 2 turns.
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liquid crystal model [9]. As shown in Fig. 4.2, the chromosome has ordered helical

structure composed of layers perpendicular to the chromosome axis, with thin fibrils lying

in parallel in each layer and rotating along the axis. For P. micans, the measured diameter

of the chromosome is about 1 µm, and the length varies from several µm to 20 µm (Fig.

4.1. (d)). Another key parameter is the pitch of helix, or the length along the axis of the

chromosome over which the fibrils finish one periodic rotation. The mean value is about

250 nm, which is almost twice as large as that of K. brevis as can be seen in Fig. 4.1. The

fibrils are shown to be about several nanometers in diameter, which is so small that these

fine structures cannot be detected in usual scatterings of visible or even ultraviolet light.

Therefore, only much larger scale structures should be considered. In our model, each

fibril has at least 10 dipoles, which is about 21 nm in diameter for a chromosome with

diameter 1.0 µm (Fig. 4.2. (a)). With that being settled, the number of layers in one pitch

has an upper limit to guarantee that two layers do not touch other. 8 layers are used in our

model, which corresponds to 45◦ of twist angle between two layers. Finally, the length of

P.micans chromosome is chosen to be 2 µm, with an aspect ratio of 2 and about 8 turns of

helical periodicities in total, a choice that will be justified below (see Fig. 4.4).

The chromosome structure of K. brevis could not be found in such detail as that of P.

micans in the literature, nevertheless the TEM image (Fig. 4.1. (c)) of separated K. brevis

nucleus clearly shares the same band feature as that of P. micans (Fig. 4.1. (d)), which is

a strong indication that the liquid crystal model is also applicable to K. brevis [9]. Under

this assumption, the chromosomes of K. brevis could also be described by the model pro-

posed in Fig. 4.2. (a). A factor of 1/2 is multiplied on all extensive parameters such as

length and diameters due to the smaller size. Bearing in mind that a total number of 480

× 480× 960 dipoles are used to model a single chromosome, it is almost computationally

impossible to model a full sized nucleus with 20 randomly oriented chromosomes inside,

which means 20 times more dipoles are required. A compromised solution is a simplified
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model with less layers of fibrils, and with larger pitch in order to maintain the same length

of chromosome. Therefore, when calculating the scatterings of a collection of chromo-

somes, the model Fig. 4.2. (b), where fewer numbers of dipoles (100 × 100 × 200) and

fewer numbers of turns of the helix (2) are used to facilitate the simulations of 20 chro-

mosomes at once, will be used. However, one issue follows, i.e. the pitch is altered from

the experimental value, which means the model Fig. 4.2. (b) does not serve as a faithful

representation of the actual nucleus and one can only expect qualitative predictions.

4.3 Results of Single Chromosome Scattering

4.3.1 Light propagating along the chromosome axis

This case is of special interest because CIDS from a helix was believed to have its

largest value when light propagates along the helical axis, a result by Bustamante et al.

[13] that will be confirmed in the next subsection. We specifically investigated the wave-

length dependence of the normalized S14 Mueller matrix element by varying the wave-

length of the scattered light from 200 nm to 500 nm. The results given in Fig. 4.3 show

that S14 strongly depends on the wavelength of the incident light, with nearly vanishing

values obtained when the wavelength is larger than the pitch, while significant signals ap-

pears if the wavelength is about the same order of the pitch. In particular, the largest S14

backscattering appears when the wavelength exactly matches the pitch, in which case it is

in the ultraviolet region, a result that is well known [13, 41]. It is worth noting that Mueller

matrix elements S22, S33, and S44 show similar behavior as S14, with large backscattering

peaks appearing when the wavelength is the same as pitch.

We further considered the situation when the number of turns (or the number of helical

periodicities) is changed from 8 to 12 in order to justify our choice of 8 turns of the helix

and the aspect ratio. No critical differences were observed between all Muller matrix

elements calculated, although the forward scattering intensity increases reasonably as the
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Figure 4.3: The Mueller matrix elements calculated using model (Fig. 4.2. (a)), where
the light propagates along the chromosome axis (z-direction). The wavelength takes value
from 0.20, 0.25, 0.30, and 0.50 µm. The chromosome has diameter 1.0 µm, length 2.0
µm and pitch 0.25 µm. The refractive index used is 1.2 + 0.01i, and the scattering plane
is yz-plane.
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length of the chromosome increases. Therefore, conclusions made from chromosomes

of aspect ratio 2 are applicable to larger aspect ratio chromosomes (about 10) that are

generally found in real cases.

4.3.2 Light scattering from oriented chromosomes

We also calculated the Mueller matrix from scattering of oriented chromosomes, where

the incident light and the axis of the chromosomes form an angle of 0◦ to 90◦. Two wave-

lengths are considered: 0.25 µm and 0.50 µm. With a pitch of 0.25 µm, the chromosome

produces a large backscattering signal only when the light propagates roughly along its

axis (when the inclination angle is smaller than 30◦) and the wavelength matches its pitch

(see Fig. 4.4 and Fig. 4.5). Therefore, it is reasonable to conclude that when large S14

signals show up from scattering from a collection of randomly orientated chromosomes,

it is highly plausible that one or two chromosomes are aligned approximately along the

direction of the light. With that being said, S14 as large as 0.8 could be evidence of the

existence of underlying helical structures, a conjecture subject to further examination in

the preceding sections. The result (Fig. 4.5) also indicates weak orientation dependence

of backscattering when the incident wavelength is much larger than the pitch.

4.3.3 Light scattering from orientation averaged chromosomes

Another interesting question to ask is whether we can still get strong backscattering S14

signals when the orientation of chromosomes is averaged. In Fig. 4.6 the Mueller matrix

elements are calculated for wavelengths from 0.20 µm to 0.50 µm. At a wavelength of

0.25 µm, which is the same as the pitch, we find large backscattering signals from Mueller

matrix elements S14, S41, S22, S33, and S44, and the angular dependence of these matrix

elements deviate markedly from Rayleigh scattering when the scattering angle is larger

than 135◦. In particular, S14 can have values as large as 0.70, which is comparable to the

largest value obtained when the chromosome is fixed and the light propagates along the
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Figure 4.4: The Mueller matrix elements calculated using model (Fig. 4.2. (a)) when the
wavelength is 0.25 µm. The orientation of the chromosome is defined by Euler angles α,
β and γ, with α and γ fixed to be 0, and β taking values 0◦, 15◦, 30◦, 45◦, and 60◦. The
chromosome has diameter 1.0 µm, length 2.0 µm and pitch 0.25 µm. The refractive index
used is 1.2 + 0.01i, and the scattering plane is yz-plane.
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Figure 4.5: Same as Fig. 4.4, except that the wavelength is 0.50 µm.
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axis (Fig. 4.3. (a)). This can be explained as follows. The normalized S14 is defined as

S14(θ) =

∫
M14(α, β, γ, θ)dΩ∫
M11(α, β, γ, θ)dΩ

, (4.1)

where M11 and M14 are Muller matrix elements before normalization, and α, β, γ are

Euler angles. Remember that M14 is non-vanishing only when the scattering angle θ is

close to 180◦, and that Mueller matrix elements weakly depend on Euler angles α and γ.

Let us focus on the case when the scattering angle is 180◦ and we have

S14(180◦) =

∫
M14(β, 180◦) sin βdβ∫
M11(β, 180◦) sin βdβ

. (4.2)

Also notice in Fig. 4.4, M11 at small β (less than 15◦) is several orders larger than M11 at

large β. Thus the denominator can be approximated by M11(0, 180◦) sin β0∆β, where β0

and ∆β are some small angles. The same argument works for the numerator and similar

result can be obtained: M14(0, 180◦) sin β0∆β. Therefore, we get

S14(180◦) ≈ M14(0, 180◦)

M11(0, 180◦)
, (4.3)

where the right hand side is S14 when the chromosome is fixed. This is a rather rough

estimation, but it gives some sense why S14 remains so large even after orientation averag-

ing. The implication of this result is that large backscattering S14 (and possibly S22, S44)

signals may be detected from a solution of dinoflagellates.

However, as the wavelength approaches 0.50 µm, almost all 16 Mueller matrix el-

ements approach the Rayleigh-Gans limit, with vanishing right upper block matrix ele-

ments. This is conceivable because 0.50 µm is much larger than the helical parameter

(0.25 µm here), and the chromosome restore the mirror symmetry with respect to the scat-

tering plane at the scale of wavelength, in the sense that the light wave can no longer feel
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Figure 4.6: Mueller matrix elements from a single chromosome calculated using model
(Fig. 4.2. (a)) when the wavelength takes values 0.20 µm, 0.25 µm, 0.30 µm and 0.50
µm, and in all cases the orientation of the chromosomes is averaged. The chromosome
has diameter 1.0 µm, length 2.0 µm and pitch 0.25 µm. The refractive index used is
1.2 + 0.01i.

39



the influence of the chirality of the chromosome structure.

4.4 Results of Nucleus Scattering

4.4.1 Light Scattering from a Single Immobilized Dinoflagellate

As was discussed in the second section, a simplified chromosome model will be used

when attempting to simulate a full sized K. brevis nucleus with dozens of chromosomes

inside. Even though the result is qualitative, it still gives insight on what to expect from

full scale simulations. In Fig. 4.7 and Fig. 4.8, we calculated the Mueller matrix elements

from an immobilized nucleus of K. brevis. To appreciate how the helical structure of chro-

mosomes affect back scattering, we compare the results of two cases: one with constant

twist angle between two layers and the other with random twist angle, which means one

has ordered liquid crystal structure while the other does not. Therefore two nuclei share

the same shape when looking at the positions and orientations of all 20 chromosomes,

while the underlying chromosome structures are totally different. Fig. 4.7 shows that even

though the Mueller matrix elements have almost the same forward scattering (or small

angle scattering) patterns, which is mainly determined by the size and shape of chromo-

somes, the back scatterings for two cases differ dramatically, with the random twist case

showing negligible S14, S22, S33 and S44 signals around 180◦ scattering angle, and the

constant twist case showing high backward scattering peaks. It is worth noting that S11 is

much less sensitive to the internal structure of chromosomes than S14 is. With these results

at hand, we can thereby conclude that the largest back scattering S14 signal is contributed

by the internal helical structure, while the rest by the shape.

The same calculation was also performed in Fig. 4.8 but with varying wavelength. The

chromosomes in our fictional nucleus have pitch 0.5 µm, and the Mueller matrix elements

produce prominent backscattering signals when the wavelength is about the same order as

the pitch. This result is totally in accordance with previous results of a single chromosome,
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Figure 4.7: Mueller matrix elements from a fixed dinoflagellate calculated using the nu-
cleus model (Fig. 4.1. (b)) and the simplified chromosome model (Fig. 4.2. (b)). The red
line is the case when the twist angle is 45◦, while the blue line is the one with random twist
angle in each layer. In both cases, the light wavelength is 0.5 µm, which matches the pitch
of the helical structure. The nucleus has diameter 4.0 µm. The chromosome has diameter
0.5 µm, length 1.0 µm and pitch 0.5 µm. The refractive index used is 1.2 + 0.01i and the
scattering plane is yz-plane.
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Figure 4.8: Mueller matrix elements from a fixed dinoflagellate calculated using the nu-
cleus model (Fig. 4.1. (b)) and the simplified chromosome model (Fig. 4.2. (b)). Three
different wavelengths are considered, 0.25, 0.50 and 1.0 µm. The nucleus has diameter
4.0 µm. The chromosome has diameter 0.5 µm, length 1.0 µm and pitch 0.5 µm. The
refractive index used is 1.2 + 0.01i and the scattering plane is yz plane.
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because there are always chromosomes in the nucleus lying roughly along the incident

light and thus producing large S14 signals.

4.4.2 Light Scattering from a Suspension of Dinoflagellates

In order to simulate light scattering from a suspension of dinoflagellates, one needs to

average the orientation of one single nucleus. For the time being, it is beyond our compu-

tational power due to the large number of dipoles and CPU hours required. Nevertheless,

the Mueller matrix from an orientation averaged single chromosome should bear some re-

semblance to the Mueller matrix from a suspension of dinoflagellates. This approximation

could even be accurate when chromosomes in the nucleus are far away from each other.

In Fig. 4.9 we calculated the Mueller matrix elements from an orientations averaged chro-

mosome based on the model in Fig. 4.2. (b) at various wavelengths. At each wavelength,

a high positive lobe exists for S14 and its positions changes continuously from 45◦ to 180◦

as wavelength varies from 0.3 µm to 1.0 µm. The peak increases as wavelength increases

from 0.3 µm, peaking around 0.1 at wavelength 0.7 µm, and decreases quickly to zero as

wavelength further increases.

The largest backscattering signal of S14 is produced when the wavelength is about 0.8

µm, with a value of only 0.07 around 180◦ scattering angle, which is significantly smaller

compared with the fixed nucleus case. But we can still safely say non-vanishing back

scattering S14 signals from a suspension still persist. Note the differences between Fig.

4.6 and Fig. 4.9, where the distinct results stem from the fact that the model in Fig. 4.2.

(b) is a highly simplified version of model in Fig. 4.2. (a) with much fewer layers and

fibrils being used, and the sizes (0.5 µm and 1.0 µm diameters) and the diameter to pitch

ratios (4 and 1, respectively) are also different.
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Figure 4.9: Mueller matrix elements from a single orientation averaged chromosome cal-
culated using model (Fig. 4.2. (b)) when the wavelength is 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9 µm. The chromosome has diameter 0.5 µm, length 1.0 µm and pitch 0.5 µm. The
refractive index used is 1.2 + 0.01i.
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Figure 4.10: Mueller matrix elements from a fixed dinoflagellate calculated using the
nucleus model (Fig. 4.1. (b)) and the simplified chromosome model (Fig. 4.2. (b)).
The red line is the exact solution using ADDA, while the blue line is the result that all
chromosomes are treated independently (Born approximation). In both cases, the light
wavelength is 0.5 µm, which matches the pitch of the helical structure. The nucleus has
diameter 4.0 µm. The chromosome has diameter 0.5 µm, length 1.0 µm and pitch 0.5
µm. The refractive index used is 1.2 + 0.01i and the scattering plane is yz-plane.
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4.4.3 Effects of Coherence and Interactions

As we can see from Fig. 4.1, the nucleus of K. brevis is highly packed with chromo-

somes, which means the effects of interaction between chromosomes cannot be neglected

and it is worthwhile to separate the effect of the intrinsic chirality of chromosomes and the

effect of coherence and interactions. We approached it by calculating the Muller matrix

elements as if each chromosome is independent, i.e. the Born approximation. A total of

10 random chromosomes are considered in one nucleus and the result is shown in Fig.

4.10, which is compared with the DDA exact solution. The result shows that significant

non-vanishing S14 signals even in the Born approximation order, while those large high

peaks can only result from the interactions and coherence effects.

4.5 Conclusions

We have developed a method to study light scattering from a dinoflagellate nucleus

based on the liquid crystal model of chromosomes and using the ADDA code. The ad-

vantage of the liquid crystal model over the thin helix wire model used previously is its

ability to account for more fine details of the chromosome structure, such as DNA fibrils.

Our method is able to calculate all 16 Mueller matrix elements of light scattering from a

single chromosome, an immobilized dinoflagellate nucleus and a suspension of dinoflagel-

late nuclei. The results of a single chromosome obtained agree with previous conclusions

made by Shapiro et al. and Bustamante Shapiro et al. (see introduction section). For the

scattering of a dinoflagellate nucleus, which has never been calculated before, our simu-

lation shows that large backscattering can be obtained if the light wavelength matches the

chiral parameter (pitch) of the chromosome. We further show that the largest peaks of S14

are contributed by the helical structures of chromosomes inside the nucleus.

Therefore our method provides a plausible way to detect red tide, whose causal agent is

dinoflagellates, by measuring back scattering Mueller matrix elements such as S14 that are
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more sensitive to internal helical structures of chromosomes than to the shapes of cellular

structures. In order to produce large signals, the wavelength of incident light used should

be close to the pitch of chromosomes (about 250 nm for P. micans and 120 nm for K.

brevis), which means the best probing light is in the ultraviolet region.
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5. SCATTERING OF PARTIALLY COHERENT ELECTROMAGNETIC BEAMS BY

WATER DROPLETS AND ICE CRYSTALS∗

The conventional Lorenz-Mie theory is generalized for a case when the light source is

partially spatially coherent. The influence of the degree of coherence of the incident field

on the generalized Mueller matrix and the spectral degree of coherence of the scattered

light is analytically studied by using the vector field instead of the scalar field to extend

previous results on the angular intensity distribution. The results are compared with the

Mueller matrix obtained from the Discrete Dipole Approximation (DDA) method, which

is an average over an ensemble of stochastic incident beams. Special attention is paid to the

Mueller matrix elements in the backward direction, and the results show some Mueller ma-

trix elements, such as P22, depend monotonically on the coherence length of the incident

beam. Therefore, detecting back scattering Mueller matrix elements may be a promising

method to measure the degree of coherence. The new formalism is applied to cases of large

spherical droplets in water clouds and hexagonal ice crystals in cirrus clouds. The corona

and glory phenomena due to spheres and halos associated with hexagonal ice crystals are

found to disappear if the incident light tends to be highly incoherent.

5.1 Introduction

In the conventional theories of light scattering, such as Lorenz-Mie theory [20], Dis-

crete Dipole Approximation (DDA) [21, 23], and Finite-Difference Time-Domain (FDTD)

method [42], the incident light is generally assumed to be fully coherent in both space and

time. However, the assumption is not always justified. In reality, light acquires some de-

gree of incoherence due to light source fluctuations or to interactions with random media

∗This chapter is reprinted from Journal of Quantitative Spectroscopy & Radiative Transfer, 134, 74-84,
2014, J. P. Liu, L. Bi, P. Yang, and G. W. Kattawar, “Scattering of partially coherent electromagnetic beams
by water droplets and ice crystals”, Copyright 2014, with permission from Elsevier.
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such as a turbulent atmosphere. Although the general framework of optical coherence the-

ory has long been well established [24, 25, 26], scarcely any attention has been paid to

the effect of coherence on light scattering by deterministic media. The influence of spatial

coherence on scattering by a particle was partially investigated by Cabaret et al. [27] and

Greffe [28]. The extinction cross section of rotationally invariant scatterers was found not

to depend on the transverse (or spatial) coherence length, but the extinction cross section

of anisotropic scatterers did depend on the state of coherence of the illuminating field. Fur-

ther research on the topic was conducted by van Dijk [2] and Fischer [29], who studied the

effects of spatial coherence on the angular distribution of radiant intensity scattered by a

sphere. By using the angular spectrum representation of a random field [24] and half wave

expansion of the scattering amplitude, the intensity of a scattered field was analytically

obtained. The angular distribution of radiant intensity depends strongly on the degree of

coherence, but the extinguished power does not. Sukhov [43] numerically studied the ef-

fect of spatial coherence by a random medium on the properties of scattered fields, and the

DDA method was used to demonstrate that the statistical properties of the scattered light

from an inhomogeneous medium were altered due to coherence effects.

Previous theories have been limited to the study of the scattered field intensity, which

does not fully describe a scatterer with respect to light scattering. A common generaliza-

tion is to study the Mueller matrix, which relates the Stokes vector of the incident beam

to the Stokes vector of the scattered beam. For a large class of light beams such as the so-

called Gaussian Schell-model beam, the Mueller matrix for a sphere is derived analytically

by extending the Lorenz-Mie theory. We developed a DDA code [21] by modifying the

source field to incorporate incoherence, and the Mueller matrix was obtained by averaging

over an ensemble of stochastic incident fields. In addition, we investigated the spectral

degree of coherence of the scattered light. As applications of the formalism developed, we

performed the computation of light scattering by water droplets and hexagonal ice crystals,
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which are the major scatterers inside atmospheric clouds. The coherence effects of spher-

ical water droplets were studied by modifying the Lorenz-Mie theory. With the Invariant

Imbedding T-matrix method (see [44] and references cited therein), we were able to study

the coherence effects on halos of large hexagonal ice crystals.

5.2 Scattering of Partially Coherent Light by a Sphere

We consider the scattering of electromagnetic beams of an arbitrary state of spatial

coherence by a homogenous sphere on the basis of a generalization of previous results in

[2, 29]. Note that the procedure is quite similar to that used by Lahiri and Wolf [45], where

the refraction and reflection of partially coherent electromagnetic beams were considered.

5.2.1 Theory of Coherence

We use some of the important results from the coherence theory of electromagnetic

beams [26]. The stochastic nature of incoherent monochromatic light is represented by an

ensemble of random fields {E(r, ω)}, where ω is the frequency, and for each realization,

the field component is transverse to the direction of propagation. By choosing a plane of

reference, each random field can be expressed as

 El(r, ω)

Er(r, ω)

 , (5.1)

where subscripts “r” and “l” denote the perpendicular and parallel components, respec-

tively.

Following the same formalism used by Wolf [26], the second-order correlation prop-

erties of the stochastic field are fully characterized by the cross-spectral density matrix
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(CSDM) defined by

(5.2)

W(r1, r2, ω) = 〈E∗(r1, ω) · ET (r2, ω)〉

=

 〈E∗l (r1, ω)El(r2, ω)〉 〈E∗l (r1, ω)Er(r2, ω)〉

〈E∗r (r1, ω)El(r2, ω)〉 〈E∗r (r1, ω)Er(r2, ω)〉

 ,

where superscript “ ∗ ” denotes the complex conjugate, “T” denotes the transpose of a

matrix and 〈 〉 means the ensemble average. From the CSDM, the spectral density can

be derived at point r and at frequency ω

S(r, ω) = TrW(r, r, ω), (5.3)

which can be interpreted as a contribution to the intensity at point r from the field com-

ponent of frequency ω. The spatial degree of coherence of the random field is defined by

[26]

η(r1, r2, ω) =
TrW(r1, r2, ω)√
S(r1, ω)

√
S(r2, ω)

, (5.4)

which unifies both polarization and coherence. Note that 0 ≤ |η(r1, r2, ω)|≤ 1, with 0

representing complete incoherence and 1 representing complete coherence.

5.2.2 Incident Light

Incoherent beams can be represented by an ensemble of random fields and are realized

using the angular spectrum representation [24]. A partially coherent beam propagating in

the +z direction can be expressed as

E(i)(r, ω) =

∫
|u′

⊥|≤1
e(i)(u′⊥, ω) exp(ikû′ · r)d2u′⊥, (5.5)
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where the coefficient e(i)(u′⊥, ω) is a two-component random vector defined by

e(i)(u′⊥, ω) =

 e
(i)
l (u′⊥, ω)

e
(i)
r (u′⊥, ω)

 , (5.6)

k = ω/c is the wavenumber, û′ is the direction of propagation of each plane wave com-

ponent, u′⊥ = (u′x, u
′
y) is the projection of û′ onto the z = 0 plane, and the unit vector û′

points into the z > 0 half space, i.e. u′z =
√

1− |u′⊥|2. The scattering plane is chosen as

the reference plane.

The incident field is uniquely defined by the source at the z = 0 plane, which is

characterized by the CSDM

W(i)(ρ1,ρ2, ω) = 〈E(i)∗(ρ1, ω) · E(i)T (ρ2, ω)〉, (5.7)

where ρ1 and ρ2 are 2D vectors in the z = 0 plane. Using Eq. (5.5), we have

W(i)(ρ1,ρ2, ω) =

∫
d2u′⊥d

2u′′⊥W̃(i)(u′⊥,u
′′
⊥, ω) exp (−ik (u′⊥ · ρ1 − u′′⊥ · ρ2)) , (5.8)

where the angular correlation matrix W̃(i)(u′⊥,u
′′
⊥, ω) = 〈e(i)∗(u′⊥) · e(i)T (u′′⊥)〉 is defined

as a four-dimensional Fourier transformation of the CSDM at the z = 0 plane, i.e.

W̃(i)(u′⊥,u
′′
⊥, ω) =

(
k

2π

)2 ∫
d2ρ1d

2ρ2W
(i)(ρ1,ρ2, ω) exp (ik (u′⊥ · ρ1 − u′′⊥ · ρ2)) .

(5.9)

We consider a widely used class of partially coherent beams, the so-called Gaussian

Schell-model beams, which have the following CSDM elements

W
(i)
lm(ρ1,ρ2, ω) = alamblm exp

(
−ρ2

1 + ρ2
2

4σ2
S

)
exp

(
−(ρ1 − ρ2)

2

2σ2
µ

)
, (5.10)
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where l,m = 1, 2. The independently chosen parameter σS can be interpreted as the width

of the beam, and σµ as the coherence length. The remaining parameters in Eq. (A.9) have

the following constraints [26]

bij = 1 when i = j, (5.11)

|bij| ≤ 1 when i 6= j, (5.12)

bij = b∗ji, (5.13)

ai ≥ 0. (5.14)

By substituting Eq. (A.9) into Eq. (5.9) and performing the four dimensional integration,

one can obtain the angular correlation matrix [2]

(5.15)
W̃(i)(u′⊥,u

′′
⊥, ω)

= alamblm

(
k2σµσeff

2π

)2

exp

{
−k

2

2

[
(u′⊥ − u′′⊥)

2
σ2
S + (u′⊥ + u′′⊥)

2 σ
2
eff

4

]}
,

where σeff is defined through
1

σ2
eff

=
1

σ2
µ

+
1

4σ2
S

. (5.16)

In order to obtain the Mueller matrix, knowledge of the Stokes vector of the incident

beam is required. According to the definition, the Stokes vector is closely related to the

2× 2 polarization matrix [26]

(5.17)

W(r, r, ω) = 〈E∗(r, ω) · ET (r, ω)〉

=

 〈E∗l (r, ω)El(r, ω)〉 〈E∗l (r, ω)Er(r, ω)〉

〈E∗r (r, ω)El(r, ω)〉 〈E∗r (r, ω)Er(r, ω)〉

 .
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From Eq. (5.17), we can get the incident Stokes vector I(i)(r, ω) at point r

I(i)(r, ω) =



W
(i)
ll (r, r, ω) + W

(i)
rr (r, r, ω)

W
(i)
ll (r, r, ω)−W

(i)
rr (r, r, ω)

W
(i)
rl (r, r, ω) + W

(i)
lr (r, r, ω)

i
(
W

(i)
rl (r, r, ω)−W

(i)
lr (r, r, ω)

)


. (5.18)

However, such a Stokes vector is spatially dependent and would make the Mueller matrix

ill defined. One solution is to define the Stokes vector of the incident beam at the z = 0

plane and let the width of the beam go to infinity. From Eq. (A.9), we immediately have

the Gaussian Schell-model beam

W
(i)
lm(ρ,ρ, ω) = alamblm, (5.19)

which is a constant 2× 2 matrix. Analogously, the angular correlation matrix in the same

limit can written as

W̃
(i)
lm(u′⊥,u

′′
⊥, ω) = alamblm

k2σ2
µ

2π
exp

{
−1

2
k2σ2

µ|u′⊥|2
}
δ2 (u′⊥ − u′′⊥) . (5.20)

Thus, under this condition, we can generalize the Mueller matrix to the case of incoherent

beam scattering.

5.2.3 Scattered Light

In the previous section, the incident field amplitude is defined with reference to the

main scattering plane, which is defined with respect to the whole incoherent beam. How-

ever, for each plane wave component of the incident beam, the scattering plane is different

from the main scattering plane because the wave vector is different from that of the inci-

dent beam. Therefore, each plane wave component must experience a series of coordinate
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Figure 5.1: The geometry of Mie scattering, where û′ is the incident direction, û is the
scattering direction, and Θ is the scattering angle.

rotations in order to be placed in the fixed scattering plane.

Due to the rotational symmetry of homogenous spheres and the incident beam about

the axis, the scattering direction can be chosen to be

û = (sin θ, 0, cos θ), (5.21)

which implies the main scattering plane coincides with the meridian plane that contains

vector û (see Fig. 5.2). Now consider the plane wave component e(i)(u′⊥, ω) exp(ikû′ ·

r), where the amplitude is defined with reference to the meridian plane of û. First, we

transform the reference plane to the meridian plane of û′, which can be done through a
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Figure 5.2: Scattering of one plane wave component of the partially coherent beam, where
û′ is the incident direction, û is the scattering direction, and Θ is the scattering angle. i1 is
the angle between the meridian plane containing û′ and the scattering plane, and i2 is the
angle between the meridian plane containing û and the scattering plane.
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rotation about the z axis, i.e.

 e
(i)
l

e
(i)
r

→
 cosφ′ − sinφ′

sinφ′ cosφ′


 e

(i)
l

e
(i)
r

 , (5.22)

or in a more compact form e(i) → R(φ′)e(i), where the fact is used that the unit vector

û′ has a spherical coordinate (θ′, φ′). Second, we consider the scattering of a plane wave

from direction û′ into direction û. Since in the Lorenz-Mie scattering the change of am-

plitude is defined with respect to the scattering plane, the incident field amplitude has to

be transformed from the meridian plane to scattering plane by a counterclockwise rotation

about vector û′ with an angle i1 (see Fig. 5.2), which is the angle between the meridian

plane of û′ and the scattering plane spanned by vectors û′ and û. Thus, the amplitude of

the incident field can be written as

R(i1)R(φ′)e(i). (5.23)

By applying the results of the Lorenz-Mie theory, we obtain the scattered field in the

scattering plane of û′ and û

S(Θ)R(i1)R(φ′)e(i), (5.24)

where Θ is the angle between û′ and û, and S(Θ) is the scattering amplitude matrix of

Lorenz-Mie scattering, which is given by [31]

S(Θ) =

 S2(Θ) 0

0 S1(Θ)

 (5.25)

Third, the scattered field has to be expressed with respect to the main scattering plane, and

is obtained by a clockwise rotation about vector û with an angle π − i2, where i2 is the

57



angle between the scattering plane spanned by vector û′ and û. The resulting scattered

field reads

R−1(π − i2)S(Θ)R(i1)R(φ′)e(i), (5.26)

which is equivalent to

−R(i2)S(Θ)R(i1)R(φ′)e(i) (5.27)

after using the relation R−1(π − i2) = −R(i2).

Note that the above argument only works when φ′ < π or (û × û′) · ẑ > 0. When

(û× û′) · ẑ < 0, the scattered field in the main scattering plane is given by

R−1(i2)S(Θ)R(π − i1)R(φ′)e(i) = −R(−i2)S(Θ)R(−i1)R(φ′)e(i), (5.28)

which is essentially the same as Eq. (5.27) except that the signs of sin i1 and sin i2 are

reversed. Therefore, after obtaining cos i1 and cos i2 from spherical trigonometry, namely

cos i1 =
cos θ − cos θ′ cos Θ

sin θ′ sin Θ
, (5.29)

cos i2 =
cos θ′ − cos θ cos Θ

sin θ sin Θ
, (5.30)

sin i1 and sin i2 are given by

sin i1 =
(û× û′) · ẑ
|(û× û′) · ẑ|

√
1− cos2 i1, (5.31)

sin i2 =
(û× û′) · ẑ
|(û× û′) · ẑ|

√
1− cos2 i2, (5.32)

where cos Θ = û′ · û.
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We obtain the total scattered field referenced to the main scattering plane

E(s) (rû, ω) =
exp(ikr)

ikr

∫
A (û, û′) · e(i) (û′⊥, ω) d2u′⊥, (5.33)

where the 2× 2 matrix A(û, û′) is defined by

A (û, û′) = −R(i2)S(Θ)R(i1)R(φ′). (5.34)

5.2.4 Mueller Matrix

Once the scattered field is obtained, we can calculate the CSDM

(5.35)W(s)(r1û1, r2û2, ω) =
exp(−ik(r1 − r2))

k2r1r2

∫
d2û′⊥d

2û′′⊥A∗(û1, û
′)

· W̃(i) (û′⊥, û
′′
⊥, ω) ·AT (û2, û

′′) ,

with the definition of the angular correlation matrix of the incident field given by

W̃(i) (û′⊥, û
′′
⊥, ω) = 〈e(i)∗ (û′⊥, ω) · e(i)T (û′′⊥, ω)〉. (5.36)

Taking the limit that the width of the Gaussian Schell-model beam goes to infinity, which

implies that Eq. (5.20) holds, we obtain

W(s)(r1û1, r2û2, ω) =
exp(−ik(r1 − r2))

k2r1r2

k2σ2
µ

2π

∫
d2û′⊥A∗(û1, û

′) ·W(i)(z = 0)

·AT (û2, û
′)× exp

{
−1

2
k2σ2

µ |û′⊥|2
}
, (5.37)
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where W(i)(z = 0) is the polarization matrix of the incident beam defined at the z = 0

plane. From Eq. (5.38), we have the polarization matrix at point rû

W(s)(rû1, rû2, ω) =
1

k2r2
k2σ2

µ

2π

∫
d2û′⊥A∗(û, û′) ·W(i)(z = 0) ·AT (û, û′)

× exp

{
−1

2
k2σ2

µ |û′⊥|2
}
. (5.38)

Using the relation between the Stokes vector and the polarization matrix (Eq. (5.18)), and

the definition of the Mueller matrix

I(s) (û) =
1

k2r2
P (û) · I(i)(ẑ), (5.39)

we get the 4× 4 Mueller matrix P(û), given by

P(û) =
k2σ2

µ

2π

∫
d2û′⊥ exp

{
−1

2
k2σ2

µ |û′⊥|2
}

M (û, û′) . (5.40)

Here, the 4×4 matrix M(û, û′) is the Mueller matrix defined from the effective amplitude

matrix A(û, û′). Some selected matrix elements of M(û, û′) are listed below

(5.41a)M11 =
(
|A1|2 + |A2|2 + |A3|2 + |A4|2

)
/2,

(5.41b)M12 =
(
|A2|2 − |A1|2 + |A4|2 − |A2|2

)
/2,

(5.41c)M22 =
(
|A1|2 + |A2|2 − |A3|2 − |A4|2

)
/2,

(5.41d)M33 = Re (A1A
∗
2 + A3A

∗
4) ,

(5.41e)M43 = Im (A1A
∗
2 − A3A

∗
4) ,

(5.41f)M44 = Re (A1A
∗
2 − A3A

∗
4) ,

where A1 = A22, A2 = A11, A3 = A12, and A4 = A21. Substituting Eq. (5.34) into Eq.

(5.41), we find the relation between the matrix and the Mueller matrix of a sphere in the

fully coherent case P(0)
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(5.42a)M11 = P
(0)
11 ,

(5.42b)M12 = P
(0)
11 cos (2 (i1 + φ′)) ,

(5.42c)M22 = P
(0)
11 cos 2i2 cos (2 (i1 + φ′))−P

(0)
33 sin 2i2 sin (2 (i1 + φ′)) ,

(5.42d)M33 = −P
(0)
11 sin 2i2 sin (2 (i1 + φ′)) + P

(0)
33 cos 2i2 cos (2 (i1 + φ′)) ,

(5.42e)M43 = P
(0)
43 cos (2 (i1 + φ′)) ,

(5.42f)M44 = P
(0)
44 .

Together with Eq. (5.40), we can calculate the Mueller matrix of a sphere when the inci-

dent light has an arbitrary degree of coherence.

5.2.5 Spectral Degree of Coherence

Once the CSDM is obtained, we can study the spectral degree of coherence of the scat-

tered field. According to the definition in Eq. (A.4), the degree of coherence η(s)(r1û1, r2û2, ω)

between two directions in the far field zone can be written as

η(s)(r1û1, r2û2, ω) =
TrW(s)(r1û1, r2û2, ω)√

S(s)(r1û1, ω)
√
S(s)(r1û2, ω)

. (5.43)

We consider a special case where the incident beam is completely unpolarized, i.e. the

CSDM at z = 0 takes the form

W
(i)
lm(z = 0) = Iδlm, l,m = 1, 2. (5.44)

Therefore, the CSDM of the scattered field is given by

(5.45)
W(s)(r1û1, r2û2, ω) = I

exp(−ik(r1 − r2))
k2r1r2

k2σ2
µ

2π

∫
d2û′⊥A∗(û1, û

′)

·AT (û2, û
′)× exp

{
−1

2
k2σ2

µ |û′⊥|2
}
,

from which one can obtain the spectral density at point rû by

S(s)(rû, ω) = I
2

k2r2
k2σ2

µ

2π

∫
d2û′⊥P

(0)
11 (û · û′) exp

{
−1

2
k2σ2

µ |û′⊥|2
}
. (5.46)
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Here P
(0)
11 has the same meaning as in the previous section, and the numerical results of

the spectral degree of coherence will be presented in section 5.4.

5.2.6 Water Droplets and Ice Crystals

We apply the developed formalism to randomly oriented ice crystals. In general, the

scattering amplitude matrix in Eq. (5.25) is no longer diagonal but is given by

S =

 S2 S3

S4 S1

 (5.47)

Following the same procedure as in section 5.2.4, one can derive similar results to Eq.

(5.40) and (5.42), with Eq. (5.42) modified to be

(5.48a)M11 = P
(0)
11 ,

(5.48b)M12 = P
(0)
11 cos (2 (i1 + φ′)) + P

(0)
13 sin (2 (i1 + φ′)) ,

(5.48c)
M22 =

(
P

(0)
11 cos 2i2 −P

(0)
32 sin 2i2

)
cos (2 (i1 + φ′))

−
(
P

(0)
33 sin 2i2 + P

(0)
23 cos 2i2

)
sin (2 (i1 + φ′)) ,

(5.48d)
M33 = −

(
P

(0)
22 sin 2i2 + P

(0)
32 cos 2i2

)
sin (2 (i1 + φ′))

+
(
P

(0)
33 cos 2i2 + P

(0)
23 sin 2i2

)
cos (2 (i1 + φ′)) ,

(5.48e)M43 = P
(0)
43 cos (2 (i1 + φ′))−P

(0)
42 sin (2 (i1 + φ′)) ,

(5.48f)M44 = P
(0)
44 .

After orientation averaging, P(0) becomes block-diagonal, which means the Mueller ma-

trix elements P
(0)
13 , P

(0)
23 , P

(0)
32 , and P

(0)
42 in the previous equation vanish. Therefore, we get

the same formalism as for the sphere, except that P(0) is the orientation averaged Mueller

matrix in the fully coherent case.

As an application, we studied the coherence effects on light scattering by spherical

water droplets and hexagonal ice crystals. Here, the coherent Mueller matrix for an ice
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crystal was obtained by using the invariant imbedding T-matrix method [44]. The numer-

ical results are presented in section 5.4.

5.3 DDA Simulation

We present a general numerical method to calculate the Mueller matrix of a particle

of arbitrary shape and refractive index when the incident light is partially coherent. To

link the numerical simulations to the analytical results in the previous section, we limit

the incident beam to the Gaussian Schell-model beam with infinite width. Thus, the only

free parameter of the incident beam is the coherence length. Moreover, the incident field

can have an arbitrary polarization state because the Mueller matrix is independent of the

CSDM at the source plane (z = 0). In the simulation, we choose to linearly polarize

the incident field. After simplification, the electric field is essentially reduced to a scalar

random field, and the second-order correlation matrix is reduced to a scalar function. The

first step of the problem is to generate a 2D source that satisfies the required correlation

function, and once the source is known, the field at any point in space can be obtained by

propagating the source using the Green’s function [26].

Several numerical methods are available, such as the random pulse method [46], ran-

dom phase screens method [47], and shift-invariant filter method [48], but we use a more

straightforward general method. As an example, let us consider the second-order correla-

tion function on the z = 0 plane

Γ(ρ1,ρ2, τ) = 〈U∗(ρ2, t+ τ)U(ρ1, t)〉 = A(ρ1)A(ρ2)µ(ρ2 − ρ1)η(τ), (5.49)

where A(ρ) is the spatial profile, µ(ρ2 − ρ1) is the spatial degree of coherence, and η(τ)

is the temporal degree of coherence. The goal is to express the random field U(ρ, t) as a
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superposition of some random variables that have predefined correlation functions, i.e.

U(ρ, t) = A(ρ)
∑
k

∑
ω

hµ(k)hη(ω)eik·ρe−iωtI(kx)I(ky)I(ω), (5.50)

where I(kx), I(ky), and I(ω) are complex random numbers with correlation functions

〈I∗(kx)I∗(ky)I∗(ω)I(k′x)I(k′y)I(ω′)〉 = δkxk′xδkyk′yδωω′ . (5.51)

From Eq. (5.49), (5.50), and (5.51), one can obtain

Γ(ρ1,ρ2, τ) = A(ρ1)A(ρ2)
∑
k

|hµ(k)|2 eik·(ρ2−ρ1)
∑
ω

|hη(ω)|2 e−iωt, (5.52)

which implies that

∑
k

|hµ(k)|2 eik·(ρ2−ρ1) = µ(ρ2 − ρ1), (5.53)

∑
ω

|hµ(ω)|2 e−iωτ = η(τ). (5.54)

Thus, the coefficients hµ(k) and hη(ω) in the random field U(ρ, t) can be obtained by

solving the above two equations.

For the monochromatic case, the correlation function is given by

Γ(ρ1,ρ2) = exp

(
−(ρ1 − ρ2)

2

2σ2
µ

)
= µ(ρ1 − ρ2). (5.55)

and the random field is written as

U(ρ) =
∑
k

hµ(k)eik·ρI(kx)I(ky). (5.56)
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The coefficient hµ(k) in Eq. (5.50) can be easily solved from Eq. (5.53). In the actual

DDA simulation, the incident field E(i)(ρ, z, ω) can be obtained directly from the above

results, i.e.

E(i)(ρ, z, ω) =
∑
|k⊥|≤k

hµ(k⊥)I(kx)I(ky) exp

(
i

(
k⊥ · ρ +

√
k2 − |k⊥|2z

))
e(i),

(5.57)

where e(i) is a unit vector denoting the polarization of the incident field. For a specific real-

ization of the random field, one can get the scattering amplitude matrix and corresponding

Mueller matrix in the direction . After averaging over the ensemble of the incident fields,

one can get the Mueller matrix for a sphere. Numeric results are discussed in the section

5.4.

5.4 Results

We applied the analytical formalism to calculate the Mueller matrix of a sphere when

the incident light is partially coherent. The results are shown in Fig. 5.3. The sphere has a

refractive index of n = 1.5 and a radius of a = λ, where λ is the wavelength of the inci-

dent light. The coherence length σµ has values from λ to 10λ. Note that P11 is essentially

the intensity reported in [2, 29] based on a scalar incident field and similar conclusions

were reached. One of the most important conclusions is that the phase function tends to

be more isotropic as the incident field becomes less coherent and gradually approaches

the coherent case as the coherence length increases. Other Mueller matrix elements also

become more isotropic as coherence deteriorates. Moreover, the reduced Mueller matrix

elements P22/P11, P33/P11, and P44/P11 in the backward direction are much more sensi-

tive to the coherence length than those in the forward direction, and can be explained by

the fact that interference in the forward direction is more robust to random phases than

that in the backward direction.
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Figure 5.3: Mueller matrix elements for a sphere of radius a = λ and refractive index
n = 1.5. The coherence length σµ has values of λ, 4λ, and 10λ.
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Figure 5.4: Comparison of Mueller matrix elements computed from DDA and Mie meth-
ods. Two cases, σµ = λ and 4λ are simulated. The remaining parameters are the same as
Fig. 5.3.
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Figure 5.5: Mueller matrix elements for a sphere in the backward direction (180◦). The
coherence length σµ = λ is from 0 to 10λ. The remaining parameters are the same as Fig.
5.3.

To validate the formalism we derived, we compared the analytical results with DDA

simulations. The comparisons of Mueller matrix elements are shown in Fig. 5.4. The

sphere has the same parameters as before and two cases, σµ = λ and 4λ, are computed. In

the DDA simulations, 160 plane wave components are used to construct the incident field,

a total of 1000 ensemble averages are taken, and the inter-dipole spacing used is d ∼ λ/20.

The results show that DDA simulations agree very well with the analytical formalism.

We investigated the Mueller matrix elements in the backward direction (180◦ degree
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Figure 5.6: The spectral degree of coherence of the scattered field from a sphere. θ is
the angle between scattering direction and the +z direction. Four cases, including the
coherent case are simulated. The parameters are the same as Fig. 5.3.

scattering). The sphere has the same parameters as before, and the coherence length is

chosen from 0 to 10λ. As can be seen from Fig. 5.5, for Mueller matrix elements P12/P11

and P43/P11, no significant dependence on coherence length is observed. In comparison,

other Mueller matrix elements all change monotonically and gradually plateau as the co-

herence length increases. Evidently, all approach the coherent values when the coherence

length reaches a large enough value.

In addition, we computed the spectral degree of coherence of the scattered field. The
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results are shown in Fig. 5.6, where the sphere has the same parameters as previously and

the coherence length is chosen from λ to 10λ. Here, the spectral degree of coherence is

defined as the correlation between two directions, the +z and the polar angle θ. We find

that at any angle, the normal of the degree of coherence always decreases as the incident

light becomes less coherent. Note that |η| is not always unity even when the coherence

length approaches infinity due to the completely unpolarized special form of the incident

beam. A simple calculation gives the degree of coherence when the coherence length is

infinitely large

|η(θ1, θ2)| =
|S∗2(θ1)S2(θ2) + S∗1(θ1)S1(θ2)|√

|S1(θ1)|2 + |S2(θ1)|2
√
|S1(θ2)|2 + |S2(θ2)|2

, (5.58)

where S1 and S2 are defined in Eq. (5.25). It can be shown that Eq. (5.58) is not always

equal to unity.

As applications of the formalism developed, we computed the Mueller matrix ele-

ments for water droplets and hexagonal ice crystals that are the constituents of atmospheric

clouds. The results for a water droplet are shown in Fig. 5.7. The water droplet has a size

parameter x = 80 and a refractive index n = 1.33. The coherence length parameter kσµ

has values from 5 to 100. Apart from similar conclusions to the case of a small sphere,

we found that both the corona and glory phenomena will be eliminated as the incident

field becomes incoherent. Since both are consequences of interference, which can be ex-

tinguished by the introduction of incoherence, the elimination is reasonable. The results

for the hexagonal ice crystal are shown in Fig. 5.8. The ice crystal has a size parameter

kL = 2ka = 150, where L is the height and a is the semi-width, and a refractive index

n = 1.31. The coherence length parameter kσµ has the values 5, 10, and 100. The re-

sults show that both the 22◦ and 46◦ halos gradually disappear as the coherence length

decreases, the same explanation also holds for corona and glory for water droplets. The
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Figure 5.7: Mueller matrix elements for a water droplet of size parameter x = 80 and
refractive index n = 1.33. The coherence length parameter σµ has values of 5, 10 and 100.
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Figure 5.8: Mueller matrix elements for a hexagonal ice crystal with size parameter kL =
2ka = 150, where L is the height and a is the semi-width, and refractive index n = 1.31.
The coherence length parameter kσµ has values of 5, 10 and 100.
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Figure 5.9: Mueller matrix elements for a water droplet in the backward direction (180◦).
The coherence length parameter kσµ is from 0 to 100. The size parameter of the water
droplet is x = 80 and the refractive index is n = 1.33.
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Figure 5.10: Mueller matrix elements for a hexagonal ice crystal in the backward direction
(180◦). The coherence length parameter kσµ is from 0 to 100. The remaining parameters
are the same as Fig. 5.8.
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Mueller matrix elements for the water droplet and ice crystal in the backward direction are

shown in Fig. 5.9 and Fig. 5.10, respectively. We found similar results to those of small

spheres.

5.5 Conclusions and Discussions

The conventional Lorenz-Mie formalism is generalized to the case when the incident

light is partially coherent. For the Gaussian Schell-model beams, the Mueller matrix and

spectral degree of coherence for the scattered field is derived analytically and the formal-

ism is validated by DDA simulation. The Results suggest that the reduced Mueller matrix

elements P22/P11, P33/P11, and P44/P11 in the backward direction strongly depend on

the degree of coherence of the incident light. The same formalism is applied to randomly

orientated water droplets and hexagonal ice crystals. We find that the corona and glory

phenomena associated with water droplets and halos with hexagonal ice crystals disappear

if the incident light is highly incoherent.

The relevance of these results to atmospheric radiation is three-fold. First, despite the

fact that the solar source is completely incoherent, which is presumably thermal emis-

sion, the sunlight reaching the surface of the earth acquires a certain degree of correlation

through the process of propagation. This is a straightforward result of the van Cittert-

Zernike theorem [49, 50], and a rough estimation reveals that the sunlight has a spatial

coherence length of about 60 µm [26]. Given the size of large atmospheric particles,

the finite coherence length of sunlight will have observable effects on the pattern of the

scattered field. Second, when using a laser beam instead of natural solar light in remote

sensing, the light beam becomes partially coherent when passing through atmospheric tur-

bulence. Therefore, it is of practical interest to investigate the effect of spatial coherence in

light scattering. Third, even though there is not a variant of the radiative transfer equation

in which the scattering matrix derived in this paper can be inserted, the results obtained
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here shed light on what results can be expected in a multiple scattering situation. As it is

shown here, all Mueller matrix elements become smoother as the coherence of incident

light deteriorates, one would naturally expect the same thing to happen in a multiple scat-

tering system. As a matter of fact, the effect of spatial coherence on scattering from an

optically inhomogeneous medium was studied by Sukhov et al. [43], and they found that

the spread of the scattered intensities are more limited when the incident light is incoherent

when compared with the fully coherent case.

Thus our results provide a potential method to determine coherence length and for

possible applications in atmospheric remote sensing.
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6. EFFECTS OF INCOHERENCE ON PARTICLE CHARACTERIZATION USING

DIGITAL HOLOGRAPHIC MICROSCOPY

Digital holography microscopy has proven to be efficient and accurate in characterizing

and tracking colloidal particles. It has shown to be able measure the radius and refractive

index with 1% accuracy and the three-dimensional position with nanometer resolution in

real time. To create high contrast holograms, the illumination normally used is a coherent

laser beam. Using partially coherent illumination, we are able to take into consideration

the effects of incoherence due to light source fluctuations and medium turbulence that the

particle is subjected to. We computed holograms at different degrees of coherence using

Gaussian Schell-model beams, showing reduced contrast when the coherence of illumi-

nation deteriorates. By fitting the obtained holograms to coherent Lorenz-Mie theory, the

retrieved parameters of the particles show that holography is rather robust against incoher-

ence. We also demonstrate the possibility of retrieving coherence length based on partially

coherent Lorenz-Mie theory.

6.1 Introduction

Digital holography microscopy (DHM) has been successfully used to characterize and

track colloidal particles [3, 30]. By fitting the recorded hologram to the full Lorenz-Mie

theory, the parameters of the particle such as the particle size, refractive index and three-

dimensional position, can be retrieved with high accuracy and efficiency [3]. One of the

assumptions in the theory is that the laser beam used is fully coherent; however, the ques-

tion that naturally arises is how coherent does the light need to be before the method

becomes untenable [25, 26, 24]? Historically, a partially coherent light beam was utilized

in holography to reduce speckle due to high coherence [51]. Holography using partially

coherent illumination was also investigated theoretically by Kozacki et al. [52, 53], and
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reduced resolution was reported. More recently, it was demonstrated experimentally by

Gopinathan et al. [54] that reducing the coherence of light could broaden the impulse

response in DHM. However, the effects of incoherence in particle characterization using

DHM have never been considered in the literature.

Based on the incoherent Lorenz-Mie theory by Liu et al. [55], we computed the holo-

grams produced by homogenous colloidal particles at various degrees of coherence when

using Gaussian Schell-model beams [26]. The obtained holograms are then put into a sim-

ilar fitting algorithm used by Lee et al. [3], who treated the illumination as a fully coherent

plane wave. It turns out that the retrieval algorithm is rather robust against incoherence,

with retrieved parameters relatively insensitive to the coherence length of the illumination.

We found that when the illumination has wavelength 632 nm, as long as the coherence

length is at least 2 µm, the retrieved parameters are indistinguishable from those in the

fully coherent case, which partially explains the reason why holographic microscopy of-

fers such high precision in particle characterization and tracking.

We also modified the fitting algorithm to incorporate the incoherence effects when

calculating the holograms, which enables us to retrieve the coherence length of the il-

lumination from an input hologram. Even though the algorithm becomes less efficient

when compared with fitting to the standard Lorenz-Mie theory, it does provide an accurate

estimation of the coherence length, especially when it is comparable to the wavelength.

6.2 Theory

In this work, we consider a similar holographic setup used in [3, 56], except that the

illumination is replaced by a Gaussian Shell-model beam. We denote z0 as the distance

between the plane that contains the light source and the plane that contains the particle,

and zp as the distance between the particle plane and the hologram plane at which the

interference pattern is recorded by a digital camera. The laser beam also passes through
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a microscope before being registered, and therefore, the hologram is magnified with a

magnification ratio determined by the specific instrument.

A monochromatic and partially coherent beam propagating in the ẑ direction can be

written using the angular spectrum representation [26]

E(i)(ρ, z, ω) =

∫
|û′

⊥|≤1
e(i) (û′⊥, ω) exp (ik (û′⊥ · ρ + u′z(z − z0))) d2û′⊥, (6.1)

where the notations have the same meanings as those in Eq. (5.5), except that the three-

dimensional coordinate r in Eq. (5.5) is now expressed as (ρ, z).

In the far field region, the scattered field from a homogenous sphere was obtained

similarly as Eq. (5.33)

E(s) (rû, ω) =
exp(ikr)

−ikr

∫
A (û, û′) · e(i) (û′⊥, ω) e−iku

′
zz0d2u′⊥, (6.2)

where we used the fact that

rû = (ρ, z). (6.3)

Note that there is an extra phase factor e−iku′zz0 compared with Eq. (5.33). The total field

is then

E(r) (rû, ω) =

∫
d2û′⊥e

−iku′zz0
[
eikr

−ikrA (û, û′) + eikrû
′·û
]

e(i) (û′⊥, ω) , (6.4)

from which the cross-spectral density matrix (CSDM) can be calculated using Eq. (5.2)

79



and the result reads

W(rû, rû, ω) =

∫
d2û′⊥d

2û′′⊥e
ikz(u′z−u′′z )z0

{
1

k2r2
A∗ (û, û′) · W̃(i) (û′⊥, û

′′
⊥, ω)

·AT (û, û′′) + e−ikr(û
′−û′′)·ûW̃(i) (û′⊥, û

′′
⊥, ω)− e−ikr

−ikre
ikrû′′·ûA∗ (û, û′)

· W̃(i) (û′⊥, û
′′
⊥, ω) +

e−ikr

−ikre
ikrû′·ûW̃(i) (û′⊥, û

′′
⊥, ω) ·AT (û, û′)

}
.

(6.5)

Here W̃(i) (û′⊥, û
′′
⊥, ω) is the angular correlation matrix defined in Eq. (5.9). Without

loss of generality, we restrict ourselves to a specific class of partially coherent beams, the

Gaussian Schell-model beams, which have the following CSDM at the source plane

W
(i)
lm(ρ1,ρ2, ω) = alamblm exp

(
−ρ2

1 + ρ2
2

4σ2
S

)
exp

(
−(ρ1 − ρ2)

2

2σ2
µ

)
, (6.6)

The parameter σS can be interpreted as the width of the beam, σµ as the coherence length,

and the remaining parameters in Eq. (6.6) determine the polarization of the beam. Further-

more, we take the same limit as Ref. [55] by letting the width of the beam go to infinity,

which leads to

W
(i)
lm(ρ,ρ, ω) = alamblm, (6.7)

W̃(i) (û′⊥, û
′′
⊥, ω) = alamblm

k2σ2
µ

2π
exp

(
−1

2
k2σ2

µ |û′⊥|2
)
δ(2) (û′⊥ − û′′⊥)

= W
(i)
lm(z = z0)

k2σ2
µ

2π
exp

(
−1

2
k2σ2

µ |û′⊥|2
)
δ(2) (û′⊥ − û′′⊥) ,

(6.8)

where W
(i)
lm(z = z0) is the polarization matrix of the incident light at the source plane
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[26]. Substituting the above equations into Eq. (6.5), we arrive at

W (rû, rû, ω) =
k2σ2

µ

2π

∫
d2û′⊥ exp

(
−1

2
k2σ2

µ |û′⊥|2
){

W(i)(z = z0)

+
1

k2r2
·W(i)(z = z0) ·AT (û, û′)

− 1

kr
(ie−iαA∗ (û, û′) ·W(i)(z = z0)

−ieiαW(i)(z = z0) ·AT (û, û′) )

}
, (6.9)

where α = kr (1− û′ · û).

The interference pattern recorded by the camera is determined by the intensity of the

total field

I(ρ) = TrW (rû, rû, ω)
∣∣∣
z=zp

, (6.10)

with zp being the distance between the particle plane and the hologram plane. We consider

a linearly polarized illumination, which has a simple polarization matrix at the source

plane

W(i)(z = z0) =

 1 0

0 0

 . (6.11)

Eq. (6.10) can be then explicitly written as

I(ρ) =
k2σ2

µ

2π

∫
d2û′⊥ exp

(
−1

2
k2σ2

µ |û′⊥|2
){

1 +
1

k2r2
(
|A11|2 + |A21|2

)
− 2

kr
Re
(
ie−iαA∗11

)}
. (6.12)

Note that after a series of assumptions and simplifications, the effects of finite coherence

are reduced to a single parameter kσµ. As mentioned in Ref. [3], the hologram can be

normalized by the background when the particle is absent. In this case, the background
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hologram is simply

I0(ρ) = TrW0 (rû, rû, ω)
∣∣∣
z=zp

=
k2σ2

µ

2π

∫
d2û′⊥ exp

(
−1

2
k2σ2

µ |û′⊥|2
)

TrW(i)(z = z0)

= 1. (6.13)

Therefore, we have the normalized hologram

B(ρ) =
I(ρ)

I0(ρ)
= I(ρ). (6.14)

Compared with the radial profile obtained in Ref. [3](Eq. (3)), the above equation has one

more free parameter σµ, apart from the particle size ap, the three-dimensional position rp

and the refractive index np.

Measured holograms are then fitted to Eq. (6.14) using the Levenberg-Marquardt non-

linear least-squares minimization algorithm [57]. Once the properties of the particle are

all known, this method effectively retrieves the coherence length of the illumination.

6.3 Numerical results

Following the experimental setup used in Ref. [3], the He-Ne laser beam with wave-

length λ = 0.632 µm was utilized. We also chose the medium that the particle is im-

mersed in to be pure water, which has refractive index nm = 1.3326 at temperature 25 ◦C

for λ = 0.632 µm.

As an application of the theoretical formalism we derived in the last section, we

first computed the holograms and their corresponding radial profiles at various coherence

lengths. It is shown (Fig. 6.1 and Fig. 6.2) that reducing coherence length leads to a

smoother radial profile, and the radial profile gradually converges as the coherence length
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Figure 6.1: The radial profiles at various coherence lengths. The particle has radius a = 1
µm, refractive index n = 1.55 and axial position zp = 20 µm.
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Figure 6.2: Holograms and their corresponding radial profiles. (a) σµ = 2 µm, (b)σµ = 1
µm, (c)σµ = 0.5 µm. The rest of the parameters are the same as Fig. 6.1.
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increases, approaching the fully coherent case. While the contrast of the hologram varies

as the coherence changes, the positions of both minima and maxima remain invariant. Four

different coherence lengths, 0.5, 1.0, 2.0 and 4.0 µm, are considered. The particle size is

fixed at ap = 1.0 µm and refractive index np = 1.55. The particle position is chosen in

such a way that the camera lies in the far field region with zp = 20 µm.

Table 6.1: Retrieved coherence lengths compared with correct values. The parameters are
the same as Fig. 6.1.

Correct value [µm] Initial guess [µm] Retrieved value [µm]
5.0 2.0 4.65
4.0 2.0 4.00
3.0 3.0 3.00
2.0 1.0 2.00
0.5 1.0 0.50

We then use the generated holograms as inputs in the fitting algorithm based on Eq.

(6.14), attempting to retrieve the properties of the particle together with the degree of

coherence of the illumination. With initial guesses chosen sufficiently close to the final

solution, which can be achieved by imposing a constraint on each parameter, the algo-

rithm is able to obtain the correct parameters iteratively. Here we focus on retrieving the

coherence length from a given hologram while fixing the rest of the parameters. As shown

in Table. 6.1, the algorithm correctly produces all coherence lengths up to 4 µm. The

failure at 5 µm is attributed to the fact that all holograms are nearly identical when the

coherence length exceeds 4 µm.

We also investigated the effects of incoherence on particle characterization using holo-

graphic microscopy. Instead of fitting measured holograms to Eq. (6.14), holograms com-

puted at different degrees of coherence are fitted using the conventional Lorenz-Mie theory
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Figure 6.3: Retrieved radii at different coherence lengths. Three cases are considered, a =
1, 2 and 4 µm. The particle has fixed refractive index np = 1.55 and axial position zp = 20
µm.
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Figure 6.4: Retrieved refractive indices at different coherence lengths. Three cases are
considered, np = 1.55, 1.80 and 2.00. The particle has fixed radius ap = 1 µm and axial
position zp = 40 µm.
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Figure 6.5: Retrieved axial positions at different coherence lengths. Three cases are con-
sidered, zp = 20, 40 and 60 µm. The particle has fixed refractive np = 1.55 and radius
ap = 1.0 µm.
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[34]. Interestingly, it turns out that the retrieved parameters are rather insensitive to inco-

herence. As shown in Fig. 6.3, 6.4 and 6.5, the fitting algorithm consistently produces

correct parameters, as long as the coherence length is at least 2 µm, regardless of the par-

ticle size, refractive index or position. This is due to the fact when the coherence length is

that large, the radial profile is extremely close to that of Lorenz-Mie theory. What is more

intriguing is that the axial position is retrieved correctly over a vast range of coherence

lengths (Fig. 6.5). This result can be partially ascribed to the special dependence of the

radial profile on the coherence length (Fig. 6.1), with all maxima and minima remaining

fixed even though the contrast varies significantly. Consequently, the minimum deviation

can be achieved only when all peaks and valleys match, despite the fact that the curves are

not identical.

6.4 Conclusions

We have investigated the effects of incoherence on particle characterization using digi-

tal holographic microscopy. A formalism describing the radial profile of a hologram using

partially coherent illumination is derived analytically, and subsequently applied to a fitting

algorithm, aimed at retrieving both the properties of the particle and the coherence of the

illumination used. The numerical results reveal that the incoherence reduces the contrast

of the hologram, while the fitting algorithm proves to be robust against incoherence. It

is found that in the region that kσµ � 1 ∗, the results will be indistinguishable from that

of Lorenz-Mie theory. We also demonstrated the possibility of retrieving the coherence

length of a partially coherent beam from measured holograms, which have implications in

studying the coherence of light.

∗It is worth noting that all previous works compared the coherence length with particle size because the
wavelength was fixed, and Eq. (6.13) evidently confirms the sole dependence on kσµ.
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7. CONCLUSIONS

In this dissertation, we studied two different factors that affects the properties of light

scattering: the chirality of the scatterer and the degree of coherence of the incident beam.

Considerable efforts were made to understand the theoretical and practical implications of

those two topics.

In Chapter 2, we did a general survey of the terminology and concepts. The Mueller

matrix was introduced to characterize the single scattering properties of a particle. Spe-

cially, the effects of mirror symmetry on the structure of Mueller matrices were also inves-

tigated. In Chapter 3, we briefly reviewed the numerical methods (the Lorenz-Mie theory

and DDA method) used in this dissertation. These methods served as the basic tools to

compute different the Mueller matrices of different particles in the next few chapters.

In Chapter 4, we studied the light scattering of dinoflagellates based on the plywood

model. We proposed details and features oriented models for a single chromosome and

nucleus, and computed their Mueller matrices. Our results not only gave insights on the

effects of chirality on light scattering, but also provided a potential technique to monitor

and detect red tides using the backscattering signals.

In Chapter 5, we extended the Lorenz-Mie theory and the DDA method to include

partially coherent light beams. After we introduced the coherence theory of light, an

analytical formula was derived for the partially coherent Mueller matrix of a sphere. This

formula was subsequently verified by comparing with DDA simulations. We then applied

the theory to atmospherical particles such as water droplets and ice crystals. It was revealed

that backscattering Mueller matrix elements are strongly correlated with the degree of

coherence of the light beams, which has practical implications in remote sensing.

Finally in Chapter 6, we applied our extended Lorenz-Mie theory to study the effects
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of incoherence on particle characterization using digital holographic microscopy. Rela-

tionships between the contrast of a hologram and the coherence length of the light beam

were also investigated. It was proved that the digital holographic microscopy method is

rather robust against incoherence. As a generalization of the conventional method, we also

demonstrated that the coherence length could be extracted from the measured hologram.
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APPENDIX A

THE COHERENCE LENGTH OF SUNLIGHT

Here we give a brief discussion about the coherence length of sunlight. According to

the van Cittert-Zernike theorem [49, 50], the radiation from a completely incoherent light

source can be coherent in the far distance. This is because the propagation of the mutual

coherence function which describes the degree of coherence is governed by wave equa-

tions. Given arbitrary mutual coherence function at the source and appropriate boundary

condition, the mutual coherence function can be obtained by solving the wave equations

[24]. Therefore, starting from the most incoherent source, defined by the following corre-

lation function

〈φ(r)φ(r′)〉 = I(r)δ(2) (r− r′) , (A.1)

the field could be highly coherent at sufficiently far away.

For a thermal source like sun, Eq. (A.1) accurately approximates the correlation func-

tion of the field at two points r and r′. Given the distance between the sun and the earth

compared with size of the sun, the light propagating to earth is rather unilateral. This

means that the Huygens-Fresnel principle can be could to compute the field at two loca-

tions r1 and r2 on earth

ψ (r1) =
i

λ

∫
S

φ(r)
eikR1

R1

d2r, (A.2)

ψ (r2) =
i

λ

∫
S′
φ(r)

eikR2

R2

d2r′, (A.3)

where R1 = |r1 − r|, R2 = |r2 − r′| and the integrals are over the surface of the sun. It
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follows from the above equations that

〈ψ(r1)ψ
∗(r2)〉 =

1

λ2

∫
S

∫
S′
〈φ(r)φ∗(r′)〉e

ik(R2−R1)

R1R2

d2rd2r′. (A.4)

This equation essentially describes how the correlation function propagates in space. After

substituting Eq. (A.1) into Eq. (A.4), we obtain

〈ψ(r1)ψ
∗(r2)〉 =

1

λ2

∫
S′
I(r′)

eik(R2−R1)

R1R2

d2r′, (A.5)

here R1 is now |r1 − r′|. The degree of coherence is then given by

η(r1, r2) =
〈ψ(r1)ψ

∗(r2)〉√
I(r1)I(r2)

, (A.6)

where

I(ri) =
1

λ2

∫
S′

I(r′)

R2
i

d2r′, (i = 1, 2). (A.7)

As a simplification, we assume the sun to be a disk of radius a and homogenous inten-

sity I . Denoting r1 = s1r1, r2 = s2r2 and using the following approximation as Ri � a

Ri ≈ ri − si · r′, (A.8)

we have

η(r1, r2) =
eik(r2−r1)

πa2

∫
|r′|≤a

e−ik(s2−s1)·r
′
d2r′. (A.9)

We choose a special case when r1 = r2 = r and express r1 and r2 in cylindrical

coordinate

r1 = (ρ1, z) = (ρ1s1⊥, z), r2 = (ρ2, z) = (ρ2s2⊥, z). (A.10)
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The integral in Eq. (A.9) can be evaluated and the result reads

η(r1, r2) = 2J1(x)/x, (A.11)

where x = ka|s1⊥−s2⊥|= ka|ρ1−ρ2|/r and J1(x) is the Bessel function of the first kind.

Eq. (A.11) describes how the field correlates in the transverse direction. Note that |η(x)|

starts from 1 at x = 0 and gradually decreases to 0 in a oscillatory way as x increases. If

we define the coherence length σµ as the distance between ρ1 and ρ2, i.e. σµ = |ρ1 − ρ2|,

such that the degree of coherence drops to 0.5, then we find that

x = kaσµ/r = 2.215. (A.12)

Thus the coherence length is

σµ = 0.353λr/a. (A.13)

Using the solid angle of the sun observed at the earth ∆Ω = πa2/r2, the coherence length

can be expressed as

σµ = 0.625
λ√
∆Ω

. (A.14)

Given that the sold angle of sun is about 6.79×10−5 sr, the coherence length at wavelength

500 nm is

σµ = 0.625× 0.5 µm√
6.79× 10−5

= 38 µm. (A.15)

A more rough estimation using λ/
√

∆Ω would yield a value about 61 µm.
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