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ABSTRACT

Approach and landing are among the most difficult flight regimes for automatic

control of fixed-wing aircraft. Additional challenges are introduced when working

with unmanned aerial vehicles, such as modelling uncertainty and limited gust tol-

erance. This thesis develops linear discrete-time automatic landing controllers using

Quantitative Feedback Theory to ensure control robustness and adequate distur-

bance rejection. Controllers are developed in simulation and evaluated in flight tests

of the low cost Easy Star remote-controlled platform. System identification of the

larger Pegasus unmanned aerial vehicle is performed to identify dynamic models

from flight data. A full set of controllers are subsequently developed and evaluated

in simulation for the Pegasus. The extensive simulation and experimental testing

with the Easy Star will reduce the time required to implement the Pegasus con-

trol laws, and will reduce the associated risk by validating the core experimental

software. It is concluded that the control synthesis process using Quantitative Feed-

back Theory provides robust controllers with generally adequate performance, based

on simulation and hardware results. The Quantitative Feedback Theory framework

provides a good method for synthesizing the inner-loop controllers and satisfying

performance requirements, but in many of the cases considered here it is found to be

impractical for the outer loop designs. The primary recommendations of this work

are: perform additional verification flights on the Easy Star; repeat Pegasus system

identification for a landing configuration before flight testing the control laws; design

and implement a rudder control loop on the Pegasus for control of the vehicle after

touchdown.
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NOMENCLATURE

GPS Global Positioning System

IMU Inertial Measurement Unit

QFT Quantitative Feedback Theory

UAV Unmanned Aerial Vehicle

SISO Single-input single-output

MIMO Multiple-input multiple-output

MAV Micro air vehicle, unmanned air vehicle massing less than 5 kg

DOF degree-of-freedom

AHRS Attitude and heading reference system

APM Ardupilot Mega

OKID Observer-Kalman Filter Identification

EKF Extended Kalman Filter

p body-axis angular rate about the body 1 axis; roll rate

q body-axis angular rate about the body 2 axis; pitch rate

r body-axis angular rate about the body 3 axis; yaw rate

VFR visual flying rules

i+ notation for reference frame i

x vector

x̂ unit vector

îj generalized reference to the jth axis of reference frame i+

[x]i parameterization of vector x in reference frame i+
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1. INTRODUCTION

Approach and landing are among the most critical flight regimes for automatic

control of fixed-wing aircraft. As in any flight phase, the effects of external distur-

bances, which appear primarily as air turbulence and static wind, must be mitigated.

Landing should not damage the aircraft. Finally, performance of the controller should

be repeatable for many flights in potentially different environmental conditions.

Additional challenges are introduced when landing light weight unmanned air ve-

hicles (UAVs). Accurate models are not always available, because traditional design

methods do not generally scale down reliably. Parameter estimation may not be

usable without wind-tunnel testing or computational fluid dynamics modeling. Fur-

ther, this scale of aircraft is limited in payload capacity, and therefore in the quality

of sensor data available for system identification from flight data. These sensor lim-

itations also constrain any automatic controllers. Each of these challenges must be

accounted for in the control design and data management.

1.1 Significance

Implementation of an automatic landing system is of immediate use in ongoing

aircraft flight research, and will enable future tests of other control techniques. The

Pegasus UAV (Fig. 1.2) is used primarily as a sensor testbed, as it has unusually

large internal volume and payload mass capabilities for an academic UAV. The ve-

hicle is generally flown under remote control by a human pilot. Fully automated

research flights would reduce operator workload and extend the duration of mis-

sions. Because this vehicle is so different in size and mass than the UAVs for which

most commercially available low-cost autopilots are designed, an automatic landing

controller tailored for this vehicle is desired to ensure reliable and safe performance.

1



Figure 1.1: Easy Star vehicle modified
to carry autopilot and video transmis-
sion equipment.

Figure 1.2: Pegasus vehicle in flight.

Given the expense of maintaining and operating the Pegasus vehicle, this platform

is not ideal as a controls testbed for hazardous flight tests. However, the wide

availability of inexpensive electric aircraft and lightweight microelectronics enables

flight testing of relatively sophisticated control laws at a fraction of the cost, risk,

and personnel requirements of the Pegasus vehicle. The Vehicles Systems + Controls

Laboratory (VSCL) owns several Easy Star and Bixler RC airframes (See Fig. 1.1).

These vehicles cost less than $ 100, have a full set of standard control surfaces, and

can support a lightweight autopilot. By designing the automatic landing controller

and evaluating it on these platforms, this thesis validates the control implementation

before automatic landing of the Pegasus vehicle is attempted, reducing risk. The

same autopilot hardware can be used on both vehicles, so the only changes required

to implement automatic landing on Pegasus are updates to the control gains in

software. Furthermore, since the range of flight conditions experienced by these

UAVs is relatively small, the modeling and simulation framework established in this

thesis for the lightweight vehicle can be used and modified to enable future testing

of more advanced control laws on this same low-cost platform.
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The modeling uncertainty associated with UAVs must be addressed in the de-

sign of the automatic landing controller. Quantitative feedback theory (QFT) is a

robust control methodology for synthesizing control laws for linear plants that guar-

antees satisfaction of frequency domain tracking, stability, and disturbance rejection

requirements for a set of uncertain plants specified by the control designer[52]. QFT

is used in this thesis for design of linear discrete-time robust control laws, in an effort

to ensure overall vehicle safety in flight test.

1.2 Previous research

1.2.1 Automatic landing for unmanned aircraft

Design of automatic landing controllers for manned fixed-wing aircraft is a prob-

lem that dates back several decades [6]. Recently, automatic landing for smaller

unmanned research aircraft has become a topic of research attention. A variety of

different control and sensor approaches have been presented. The literature gener-

ally focuses on innovative applications of sensors with relatively traditional control

approaches.

Ref. [39] designs a fuzzy logic controller for automatic landing in simulation.

This controller shows good performance in controlling a nonlinear aircraft model.

Ref. [5] describes flight tests in which optical flow is used for terrain following and

attitude estimation at low altitudes. In Ref. [30], an inexpensive attitude filter for

a UAV is designed using a Global Positioning System (GPS) receiver, accelerome-

ter, and gyroscope with an Extended Kalman Filter. Ref. [29] explores the use of

inexpensive inertial measurement unit (IMU) and GPS hardware for navigation and

control. Flight test results are presented for nominal maneuvering, but landing is

performed by a remote operator. Ref. [4] experiments with landings using a fusion of

barometric sensors and optical flow to estimate altitude, and demonstrated repeated

3



landings within meters of a target. Proportional-integral-derivative (PID) loops are

used for longitudinal-axis control with a lateral/directional control method based on

course vector fields. This work is extended in Ref. [3], which presents a vision-based

system for longitudinal and lateral control of an unmanned aircraft during landing.

A bias correction scheme is implemented to account for errors in relative orientation,

parameter estimation, wind estimation, and target velocity estimation. In flight test,

the vehicle successfully demonstrated landing onto both fixed and moving platforms,

and consistently landed within 5 m of the target position. Ref. [42] performed

autonomous takeoff and landing of a lightweight (less than 5 kg) air vehicle using

onboard processing only. Sequential feedback loop closures were used for guidance

and control. An ultrasonic rangefinder is used for landing to obtain precise altitude

values in the absence of optical flow or visual imagery. Ref. [22] uses a vision-based

system for visual servoing control of pitch and heading angles to land a small micro

air vehicle (MAV) on a small inflatable dome.

1.2.2 Quantitative feedback theory for aircraft control

QFT is a robust control technique originally applied to linear systems. It has

received significant attention in the field of automatic control of aircraft. This section

highlights prior aircraft control studies that use QFT. Much of the research that has

been performed focuses on fault-tolerant control that is to be applied over a wide

range of flight regimes.

In Ref. [48], flight test results for a pitch axis controller for the Air Force

“Lambda” UAV are presented. Use of QFT is motivated by a desire for a single

feedback system to be used across the aircraft’s flight envelope. A complete design

process for a single-input single-output (SISO) synthesis, including plant uncertainty,

is presented. [27] expands upon the previous paper to develop a longitudinal-axis
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regulator with robustness to elevator damage. In this work, a pitch-axis regulator

is developed, with no additional outside control loops. A complete SISO design is

presented in [51], in which an existing longitudinal-axis controller for a remotely pi-

loted vehicle is improved using QFT. Again, both variations in operating conditions

and fault-induced loss of control effectiveness are considered. This paper gives the

stability and tracking requirements used for synthesis; it also indicates that distur-

bance rejection performance can frequently be satisfied as a by-product of robust

input-output tracking specifications. [21] designed robust inner loop controllers for

the “Lambda” UAV using QFT to achieve robustness to varying flight regimes. The

design work included both longitudinal and lateral/directional control designs with

flight tests and multiple iterations; however, only a fraction of the design process

is presented. Santander and Aranda [45] present multiple-input multiple-output

(MIMO) longitudinal and lateral/directional QFT controllers validated in nonlinear

simulation. More recently, [46] uses QFT to achieve Level 1 handling requirements

for a manual control of a manned aircraft.

The utility of QFT for MIMO control design has been questioned in the past[11].

However, subsequent literature finds that the QFT approach provides a sound basis

for low dimensional MIMO systems[28]. Furthermore, the history of successful QFT

designs in flight test research supports the viability of this approach for control

synthesis.

The work of Ref. [49] has closely motivated the present work. In [49], sequential

loop closures are used to develop QFT-based control laws for automatic landing of a

Commander 700 aircraft in simulation. The autopilot was intended for a commercial

aircraft, and therefore used a very different sensor package than would be available

on a research UAV. The fundamental control structure, however, can be adapted to

any vehicle. A literature search has not revealed any flight test results using QFT
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for automatic landing.

1.3 Research challenges

The primary research challenges are: (1) limited sensor accuracy and available

payload mass; (2) uncertain plant models; (3) external disturbances. These com-

peting challenges require that the flight controller and sensor apparatus be complex

enough to mitigate the effects of process and measurement noise and uncertain plant

models, while being simple enough to run in real-time on a commercial microcon-

troller. This section discusses each of these potential issues in depth.

1.3.1 Hardware limitations

The sensor suite for autonomous landing should be relatively inexpensive and

light enough to implement on a micro air vehicle massing less than 5 kg, to ensure

that the package can be carried by the Easy Star test vehicle. This assumption

greatly limits the available computational power for control computation, as well as

sensor quality. Commercial hardware should be used to minimize the cost. A sensor

package with existing data processing is desired so that the focus of this research can

be on the control synthesis and implementation. Finally, the hardware solution must

be readily integrated with the control laws, and should allow access to raw data so

that filtering can be added in the future if desired or needed. These requirements

limit the available hardware options.

1.3.2 Uncertain plant models

Existing methods for estimating aircraft dynamic properties without the need for

aerodynamic analysis, such as DATCOM, are based partly on trends in manned-scale

aircraft that do not translate well to lightweight UAVs. Although relatively simple

computational methods for aerodynamic analysis are well-established, implementing
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a solver and translating the aircraft geometry to a usable format is still expensive

compared to the cost of an off-the-shelf ready-to-fly RC airplane and sensors. Ideally,

flight tests can be executed to enable system identification, but for the lightweight

UAV, it may be difficult to acquire full state measurements at sufficiently fast rates.

Model errors of between 10-30% are assumed typical for the linear models used for

control synthesis.

1.3.3 Disturbances

The primary disturbances influencing fixed wing aircraft arise from aerodynamic

forces. For modeling, aerodynamic disturbances are classified as either transient or

steady phenomena. The steady effects are assumed to be a nonzero average wind

field, whose magnitude and direction are approximately constant for the duration

of autolanding. The steady wind field changes the effective sideslip and angle-of-

attack of the vehicle, which in turn influence the aerodynamic forces and moments

acting on the vehicle. The primary transient aerodynamic effect is assumed to be air

turbulence. Turbulence refers to the effects of chaotic aerodynamic phenomena, and

acts as an additive term to the average field velocity. Turbulence tends to affect the

entire aircraft as a high-frequency disturbance of variable magnitude, depending on

local air conditions.

The nature of academic flight testing is designed to mitigate the influence of

aerodynamic disturbances. Operational limits for both steady winds and gusts are

established for all flight vehicles. Conditions can change over the duration of flight,

but in general the disturbance threshold for any vehicle is clearly defined indepen-

dently of the control design process. Consequently, the hardware limitations and

uncertain models are assumed to be more critical and are given more attention than

external disturbances.
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This thesis synthesizes automatic landing controllers for two research flight vehi-

cles. The controller is initially implemented on a low-cost demonstrator vehicle for

basic validation in a low-risk environment, and is validated in flight test experiments.

Subsequently, the control law is re-tuned for the larger Pegasus UAV. Motivated by a

desire for computationally simple robust control, quantitative feedback theory (QFT)

is used for most of the design synthesis. Control design requires identification of dy-

namic models for both vehicles, as well as integration with an existing autopilot

hardware/software package for flight testing.
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2. CONTROL SYNTHESIS AND STRUCTURE

Quantitative feedback theory (QFT) is a control synthesis methodology for sat-

isfying closed-loop performance specifications in the presence of quantified plant un-

certainty and/or disturbances. In this section, the QFT formulation and process is

detailed, and its selection for control synthesis is justified. A simple example of the

QFT design process is presented. Subsequently, the cascaded control loops imple-

mented to achieve automatic landing are detailed in terms of their structure and the

controlled variables.

2.1 Quantitative feedback theory

The term “quantitative feedback theory” is first used by Horowitz in 1979 to

describe his approach to linear controller synthesis [48]. The foundations of QFT

can be dated back further to work by Horowitz in 1959 for single-input single-output

(SISO) systems with output feedback[15]. Later work extends the theory to SISO

linear time-varying (LTV) systems[17], nonlinear SISO systems[18], and linear and

nonlinear multiple-input multiple-output (MIMO) systems [19]. The increase in low-

cost computing enabling computer-aided design (CAD) led to a surge of interest in

the aerospace field in the 1990s, and the technique is implemented on a variety of

fixed-wing aircraft systems in both simulation and flight test, as described in Section

1.2.2.

The fundamental objective of QFT is to achieve a desired performance in the

presence of disturbances, sensor noise, and plant uncertainty. The QFT approach

is intended to make the trade-off between the major factors that influence con-

trol design, such as performance requirements, plant uncertainty, controller com-

plexity, and bandwidth, transparent. QFT is initially developed for linear time-
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invariant (LTI) SISO plants, and at its core, the technique facilitates control design

for such systems. It is extended to nonlinear and multiple-input multiple-output

(MIMO) uncertain problems by rigorously converting these problems into LTI SISO

equivalents[16],[17],[18]. The standard SISO loop structure is shown in Fig. 2.1; it

consists of a plant P , feedback controller G, prefilter F , and sensor dynamics H.

The current research implements sequential loop closures on cascaded SISO loops

for assumed linear systems; consequently, the remaining discussion of QFT will be

restricted to linear SISO systems.

Figure 2.1: Generic QFT feedback loop with plant P , controller G, prefilter F , and
sensor dynamics H[52].

The general procedure for control synthesis in the QFT framework is now sum-

marized. In QFT, uncertainties are quantified into a set of uncertain plants, a set

of disturbances, and sets of acceptable output responses to each, which must be

achieved for all plants. QFT is strictly a frequency domain technique. It is common

in engineering practice for output responses to be given in the time domain; if so, the

first step is to translate time domain requirements into frequency domain equivalents.

If all plants are minimum-phase, this can be achieved by defining upper and lower

bounds a(ω) and b(ω) such that a(ω) ≤ |T (jω)| ≤ b(ω) for any T in the set of accept-
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able responses[16]. Subsequently, the next step is to determine the frequency-domain

response of the set of plants at a “reasonable” number of frequencies[16], which is

largely a matter of the designer’s discretion. The responses of the set of plants at a

given frequency are referred to as the plant templates. An example Nichols plot of

plant templates is shown in Fig. 2.2. For a plant Pi in the set specified, the open-loop

plant response with controller is defined to be Li = GPi. The closed-loop response is

then Ti = FLi
1+Li

. For every plant Pi, the value of Li for which all performance bounds

are exactly satisfied can be computed, as in [20].

The Nichols plot shows open-loop magnitude response as a function of open-loop

phase, and is used as the principle tool for designing the controller G in QFT. A rep-

resentative example system response in the Nichols plots is shown in Fig. 2.3. It has

been shown that the optimal value of Li at each frequency lies on the bound defined

by exact satisfaction of all associated requirements; here, “optimal” is taken to mean

the open-loop response that satisfies the requirements with minimum gain[13],[20].

By plotting a designed L with nominal plant Pi, the control designer can see graph-

ically how far the response is from this optimum, and therefore explicitly judge the

tradeoff between increased controller complexity and performance. The prefilter is

subsequently designed based on the controller. For example, if the specified closed-

loop response requires that C < |T (jωi)| < D at frequency ωi, and the system

response without prefilter yields X < | L(jωi)
1+L(jωi)

| < Y , then the prefilter response

must be C −X < |F (jωi)| < D − Y . Repeating this process for all ωi in the chosen

array generates bounds for |F | at all frequencies. If the variations in the closed-loop

response without the prefilter are too large, infeasible constraints may be generated,

which will necessitate either modification to the controller or to the acceptable output

responses.

Contours defined by the performance requirements can be computed for any
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desired input-to-output response of a SISO loop[7]. As a practical matter, most

examples of QFT in the research literature employ two requirements:

• Bounded stability: | L
1+L
| < SM , where the static margin SM is constant at all

frequencies

• Bounded input-output tracking: Trl(s) ≤ | FL1+L
| ≤ Tul(s)

As noted in [51], disturbance rejection requirements are often satisfied implicitly

in the process of addressing input-output tracking requirements. The plant output

disturbance rejection requirement, under the assumption of unity sensor dynamics,

has the following constraint with respect to the controller:

∣∣∣∣ 1

1 +GP

∣∣∣∣ ≤ Wd (2.1)

In Eq. 2.1, Wd is an upper bound on the output disturbance-to-output response.

In the current research, bounded stability and input-output tracking alone are found

to provide adequate performance in all QFT loops save for one. In an effort to

improve disturbance rejection in one loop, an explicit output disturbance rejection

criterion was added, and is discussed further in Sec. 4.2.2.2.

The primary motivation in selecting QFT for designing automatic landing con-

trollers is the robustness to specified plant uncertainties. Small-scale UAS dynamics

tend to be effectively nonlinear due in part to their susceptibility to winds and tur-

bulence, according to Chao, Cao, and Chen[8]. The Pegasus aircraft is substantially

larger and more massive than many of the small UAS used in current academic

research, but is still roughly an order of magnitude less massive than a small com-

mercial or general aviation manned vehicle. As such, exogeneous inputs caused by

turbulence or gusts can produce large changes in the vehicle states, making identifi-
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Figure 2.2: Example Nichols plot of plant templates at various frequencies.

Figure 2.3: Generic Nichols plot for open-loop system L = GP . Shown are: (1)
Crossover frequency ωφ; (2) phase margin φ; (3) Gain margin frequency ωM ; (4)
Gain margin M [52].
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cation of an accurate linear model difficult even when flight data are available. The

ability to account for model uncertainties in the design process is advantageous. The

reason QFT is selected instead of a different robust control technique is because QFT

allows for direct design of discrete-time linear control laws with a clear representa-

tion of the tradeoff between controller complexity and performance. Use of linear

control laws minimizes the associated computational overhead, and the transparency

in the design stage should enable the design of controllers that satisfy performance

requirements reasonably well while remaining relatively low-order. The objective is

to make the controllers as simple as feasible to make integration with an existing

autopilot system straightforward.

QFT is implemented typically as a computer-aided design (CAD) process. The

design procedure is to add, remove, and change the poles and zeros of the controller

and prefilter and observe the change of the system response in real-time. In the

current research, the Terasoft MATLAB R© QFT Frequency Domain Control Design

Toolbox enables the CAD process by generating interactive plots and automating the

computation of the bounds for performance requirements. Direct digital design is

achieved by designing a controller and prefilter with continuous-time poles and zeros,

then converting the resulting controller into an equivalent discrete-time controller

using a zero-order hold[7]. This conversion is a background process, and the work

of the control designer is agnostic with respect to a continuous- or discrete-time

controller. To illustrate the design procedure, the next section considers the example

of a linearized pendulum with control torque in detail.

2.2 Example - Pendulum Controller Design Synthesis

To illustrate the QFT synthesis process, a simple control design example is pre-

sented. A single pendulum in a gravity field with aerodynamic damping and an
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Figure 2.4: Step response of the upper and lower tracking bounds.

available control torque is considered. The pendulum mass and the damping coef-

ficient are inexactly known. The governing equation and linearized form in terms

of the mass m, damping coefficient c, length l, control torque u, and gravitational

acceleration g are:

mlθ̈ + cθ̇ +mg sin θ = ul (2.2)

mlθ̈ + cθ̇ +mgθ = ul (2.3)

The control requirements are:

• Stability margin W ≤ 1.1

• 90% rise time between 10 and 15 seconds

• Zero overshoot in response to a step input

The latter requirement is translated into the frequency domain as bounded track-

ing up to frequencies of 1 rad/s. The upper and lower tracking bounds are defined

by a pair of transfer functions each having a complex pole. The lower bound Trl has

a pole at −.38151± .035359i. The upper bound Tru has a pole at −.55147± .33149i.
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Figure 2.5: Bode magnitude and phase response of the upper and lower tracking
bounds. The solid lines are the bounds once augmented with an additional pole and
zero.

These functions were selected to give the step responses shown in Fig. 2.4. To

increase the separation of the response magnitude of the upper and lower bounds

at high frequencies, it is common to add a zero to the upper bound and a pole to

the lower bounds[49]. The additional terms do not substantially change the low-

frequency response but make satisfying high-frequency tracking feasible. A zero at

−5 is added to the upper bound and a pole at −5 is added to the lower bound. The

effect of adding these terms can be seen in Fig. 2.5. The full tracking bounds are

given in Eqs. 2.4-2.5.

Trl =
0.7353

s3 + 5.763s2 + 3.962s+ 0.734
(2.4)

Tul =
0.08264s+ 0.4132

s2 + 1.103s+ 0.414
(2.5)
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Figure 2.6: Plant templates for the set of uncertain plants and frequency array
selected. Frequencies below ω = 1 rad/s are clustered at the upper right.

The plant uncertainty is characterized by known bounds on the mass m and the

damping coefficient c. 0.25 < m < 6.25 and 1 < c < 3 are assumed. For defining

the QFT plant templates, the discrete values m ∈ 0.25, 1, 3, 5, 6.25 and c ∈ 1, 2, 3

are selected and found to give adequate results. The discrete frequency array ω ∈

.01, .05, .1, .175, .25, 1, 2, 10, 25, 100 is chosen. The resulting plant templates can be

seen in Fig. 2.6.

Having defined the plant templates, frequency array, and design requirements,

the stability and tracking bounds for the controller G and prefilter F are determined

automatically by the QFT software. The Nichols plot bounds, used for designing

G(s), are shown in Fig. 2.7. The Nichols plot of the uncertain plants must be above

solid lines and must be below dashed lines to satisfy the performance requirements.

The intersection of these bounds forms the requirements for the controller G. The

prefilter bounds are defined purely in terms of robust tracking and are the upper and
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Figure 2.7: Robust stability and tracking bounds for the pendulum tracking problem.

lower tracking Bode magnitude curves.

The synthesis of the controller G for this particular problem is accomplished in

four steps. Beginning at the top left of Fig. 2.8, an integrator is added to improve

the low-frequency response and better meet the tracking bounds. The gain is then

increased to satisfy the low-frequency bounds, yielding the bottom left plot. At

this point, the low-frequency requirements are met but the closed-loop response is

unstable. A second-order zero is added to stabilize the system and satisfy the tracking

requirements for ω = 1 rad/s. Finally, a real pole is added to reduce the gain at high

frequencies and ensure an appropriate bandwidth for the closed-loop system. The

response with the final controller is shown in Fig. 2.9. The final controller is given
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Figure 2.8: Sequence of steps for the synthesis of the controller G(s).

by:

G(s) =
1353.2s2 + 431.39s+ 697.94

s2 + 24.984s
(2.6)

To synthesize the prefilter F , the Bode magnitude plot of the closed-loop response

for ω ≤ 1 rad/s is considered. The design process is shown in Fig. 2.10. The initial

plot is simply the closed-loop response with a unity prefilter. A real pole is added

to match the tracking bounds at low frequencies. A notch filter, consisting of a

complex pole and zero, is then added to ensure bounded tracking at ω = 1 rad/s.

Note that the notch was designed to deliberately push some of the responses slightly

below the lower bounds so that the response magnitude at higher frequencies was

decreased. Finally, a real zero is added at ω = 100 rad/s to ensure the numerator

and denominator orders match; this does not change the Bode plot significantly. The

final prefilter is given by:
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Figure 2.9: Final Nichols plot response of the open loop system L = GP with the
designed controller.

F (s) =
0.0029967s3 + 0.30163s2 + 0.20192s+ 0.50983

s3 + 1.5088s2 + 1.477s+ 0.50983
(2.7)

This simple example is intended to illustrate the fundamental QFT design method-

ology, and a rigorous performance analysis is outside its scope. The step responses

of a set of 10 random plants with mass and damping properties in the ranges defined

previously are shown in Fig. 2.11.

2.3 Automatic landing control structure and coordinates

For the automatic landing system, sequential loop closures of SISO feedback

loops are used to stabilize the aircraft dynamics and guide the vehicle to a reference

flight path. Motivated by the work of Ref. [49], in which a QFT automatic landing

controller was designed in simulation, the sensor dynamics H are assumed to be

unity for all control loops. Control loops are to consist of prefilter F with feedback
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Figure 2.10: Bode magnitude response of the closed-loop system during prefilter
synthesis.

Figure 2.11: Step responses of 10 random uncertain plants (dashed lines). Step
responses of the tracking bounds are shown with solid lines.
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Figure 2.12: Coordinate system used for automatic landing.

G. The control system, which is further detailed later in this section, consists of

three primary loop sequences:

• Heading control loop in which aileron is modulated to direct the aircraft’s

heading to match the runway direction (Three sequential loops)

• Pitch control loop in which elevator is modulated to control the vehicle’s descent

rate (Two sequential loops)

• Airspeed command and hold loop (Single feedback loop)

The feedback loops used for control are typified by Fig. 2.1. When disturbances

are examined in the control design, output disturbances on y, such as aerodynamic

turbulence, are considered. Before defining the outer-loop variables, the coordinate

systems used are defined.

Two coordinate frames are used in modeling the aircraft dynamics: an inertial

frame, designated n+, and a body-fixed reference frame designated b+. The inertial
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reference frame is defined such that the 1 axis is parallel to the target runway, and

the 3 axis points down. For simplicity, the origin is placed at zero altitude at the

X-Y coordinates used to define the aircraft glideslope. The body reference frame is

fixed to the aircraft at its center of mass. The b+ frame is defined such that when

the aircraft sits at rest on the ground, the body 3 axis is aligned with the inertial 3

axis. The body 1 axis is the projection of the vector from the center of mass to the

aircraft’s nose onto the plane defined by the 3 axis. This is the body-fixed reference

frame traditionally used in aircraft dynamics[44].

The aircraft attitude is parameterized by a sequential 3/2/1 rotation from the

inertial frame to the body frame through angles ψ/θ/φ, also known as heading, pitch,

and roll angles respectively. Since the aircraft should not be undergoing aerobatic

maneuvers, the kinematic singularity associated with θ = ±π
2

is not considered a

problem. The remaining aircraft states are parameterized using traditional aircraft

dynamics nomenclature:

• Inertial velocity of the aircraft parameterized in the body frame:

[v]b =

[
U V W

]T
• Angular velocity of the body fixed frame relative to inertial frame parameter-

ized in the body frame: [ω]b =

[
P Q R

]T
• Vector from the origin of the inertial frame to the aircraft center of mass,

parameterized in the inertial frame: [r]b =

[
X Y Z

]T
The glideslope angle Γ and relative azimuth to the runway λ are defined as in

Eqs. 2.8-2.9, and are shown graphically in Fig. 2.12:
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tan Γ = − Z

‖X‖
(2.8)

tanλ =
Y

‖X‖
(2.9)

The automatic landing control problem can be broken into two stages:

1. Approach to the runway: reference azimuth and glideslope angles are tracked

until the aircraft altitude decreases to a specified flare height. Constant air-

speed is maintained.

2. Flare maneuver: once the flare height is reached, the aircraft performs a flare by

tracking a reference descent rate until touchdown. Target airspeed is reduced

in preparation for landing.

Three variables are controlled directly by control modulation: aircraft bank angle

φ using aileron control; aircraft pitch angle θ using elevator control; and aircraft

airspeed using throttle control. Guidance to the runway and landing are achieved

by inputting reference angles to the bank angle and pitch angle command and hold

loops, while airspeed is maintained at a constant value.

Guidance of the vehicle in the X-Y plane is achieved by designing a SISO loop

to track a reference azimuth of 0. This loop is maintained throughout the automatic

landing. The plant for this outermost loop is the closed heading command and hold

loop multiplied by the transfer function λ
ψ

. The plant for the heading SISO loop is the

bank angle command and hold loop multiplied by the roll-to-heading angle transfer

function. Guidance in the X-Z plane is effected by a glideslope tracking SISO loop

that tracks a constant reference Γ. In this case, P is the pitch angle command

and hold loop multiplied by the transfer function Γ
θ
. For the flare maneuver, a
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separate descent rate tracking loop is designed. It also generates reference pitch

angle commands. Airspeed is maintained in both phases of the flight by a single

SISO loop.

This section presents the basic theory behind QFT, as well as a representative

example problem and a description of the control loops used in achieving automatic

landing. The following section discusses the modeling environment and assumptions

used in developing the dynamic simulations used in evaluating automatic control

performance.
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3. VEHICLE DESCRIPTIONS AND MODELLING

Control design is performed on the Easy Star and Pegasus UAVs. The VSCL

primarily operates the Pegasus UAV, a custom aircraft in the 100-lbf class. The

vehicle typically carries the ArduPilot Mega (APM) autopilot, a commercial product

capable of enabling waypoint navigation on standard remote-control (RC) hardware.

The automatic landing controller, coupled with the standard capabilities of the APM,

will enhance the autonomous capabilities of the vehicle. Because the lab has no

previous experience integrating new control laws with this autopilot software, it is

desired that the control law be tested in a lower-risk environment. The control law

and initial autopilot integration will be done on the inexpensive, hobbyist Easy Star.

The Easy Star has payload capacity to carry the APM and RC hardware; once

the control laws are designed and validated on this aircraft, the same experimental

software with updated control gains can be used to achieve automatic landing on

Pegasus.

This section begins with a brief description of each vehicle. Next, some further

variables are defined to supplement those presented in the previous section. From

there, the modelling process used to identify dynamic models for each vehicle is

described, followed by a description of the sensors used by the autopilot. The turbu-

lence model used in dynamic simulations is detailed briefly. Finally, the simulation

environment and associated assumptions are presented.

3.1 Easy Star system description

The Easy Star is an inexpensive commercial RC product. With its high wing

position and large aspect ratio, it has relatively benign flying qualities and is designed

for inexperienced RC pilots[38]. The vehicle’s payload bay is large enough to carry the
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required RC avionics and battery as well as an APM autopilot. This characteristic

has made this vehicle a popular choice among hobbyists for autonomous flying with

the APM. The vehicle has dual ailerons, rudder, and elevator control, making it an

appropriate controls analog for a standard configuration fixed-wing aircraft. The

small size and all-electric power system enable multiple test flights of short duration

with software changes as required in between.

3.2 Pegasus system description

The Pegasus vehicle was designed and fabricated at Texas A&M. It is designed

for a payload capacity of 20 lbf and its fuselage is wide enough to carry a standard

ATX motherboard. The APM is employed on this vehicle because it offers basic

autopilot capabilities, such as waypoint navigation, in a very small package that

does not hinder the vehicle’s capacity for remote sensing missions. Since first flight

in winter of 2012, the vehicle has approximately five flight hours and 40 flights under

remote control.

3.3 Equations of motion and variable conventions

Aircraft reference frames and states are defined in Section 2.3. The aircraft kinetic

states, U, V,W, P,Q,R, are heavily influenced by the aerodynamic angles between the

aircraft and the relative wind vector, and the governing equations of motion cannot

be derived for a general case. The equations of motion for the kinematic states,

X, Y, Z, ψ, θ, φ, are exactly known for an aircraft modeled as a rigid body, and can
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be written as follows:
Ẋ

Ẏ

Ż

 =


cosψ cos θ cosψ sinφ sin θ − cosφ sinψ sinφ sinψ + cosφ cosψ sin θ

sinψ cos θ cosψ cosφ+ sinφ sinψ sin θ − sinφ cosψ + cosφ sinψ sin θ

− sin θ cos θ sinφ cosφ cos θ



U

V

W


(3.1)

φ̇

θ̇

ψ̇

 =


1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



P

Q

R

 (3.2)

Aircraft linear dynamic models are commonly defined about the steady-state

P = 0, Q = 0, R = 0, φ = 0 at constant values of U, V,W, θ, ψ. With zero steady-

state bank angle, the aircraft dynamics can be decoupled into longitudinal and lat-

eral/directional states:

• Longitudinal states: U,W,Q, θ

• Lateral/directional states: V, P,R, φ

Under the assumption of constant steady states, the dynamics can be written

in terms of perturbations about the steady state, and the perturbation variables

u, v, w, p, q, r are defined for the body axis translational and angular velocities.

The heading angle ψ is sometimes included as one of the lateral/directional states;

since its magnitude is not restricted to a linear regime about a constant steady state,

it is omitted in the preceding list and subsequent linearized dynamic equations.

The primary aircraft controls are elevator, throttle, aileron, and rudder. The de-

coupling outlined above has a similar effect on the controls, such that only elevator

and throttle deflections δe and δt are assumed to influence the longitudinal states,

and only aileron and rudder deflections δe and δr are assumed to influence the lat-

eral/directional states. Under this model, the longitudinal and lateral/directional
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dynamics can be decomposed into two fourth-order linear systems having two con-

trols each.

Finally, it should be noted that the aircraft body 2 and 3 axis velocities are

parameterized in terms of the aerodynamic angle-of-attack and sideslipe angles, α

and β. In the absence of external wind, these angles are defined as in Fig. 3.1 or as

below:

α = arctan
W

U
(3.3)

β = arctan
V

U
(3.4)

Figure 3.1: Definition of aircraft angle-of-attack and body 1 and 3 axes.

3.4 Easy Star modeling

The QFT controller design requires linear dynamic longitudinal and lateral/directional

Easy Star models. Identification of a model from flight data is theoretically possible,

but the APM does not directly measure body-axis velocities. Although additional

equipment can measure body-axis velocities directly, the required aerodynamic probe

with additional tubing and pressure sensors would be difficult to fit in the available
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payload space. It is assumed that system identification from flight data is not prac-

tical for this vehicle.

The flight simulation program X-plane is used to generate flight histories of lon-

gitudinal and lateral/directional axis maneuvers. X-plane uses blade element theory

to estimate aerodynamic characteristics based on the geometry of the aircraft[31],

and basic aerodynamic properties can be obtained from this technique. The thrust

characteristics are determined experimentally from the vehicle hardware, as detailed

in Section 3.4.1. A 3D model of the RC Bixler aircraft, which has nearly identical

dimensions and configuration to the Easy Star, is flown in simulation to generate the

data[41]. The simulation data are then used to fit and evaluate linearized aircraft

models. A discrete-time least squares fit is used in model identification. The details

of the model identification and the linear models themselves are given in Appendix

A.

In addition to the identified model, the control surfaces are assumed to have

first-order dynamics with a 0.1 sec time constant, such that the actual deflection

δ is related to the commanded deflection δc by the transfer function. The Hitec

HS-5055MG servos used on the Easy Star will be powered at 4.8 V; the 0.1 second

time constant provides a 90% rise time of just under 0.2 seconds, which matches

the manufacturer’s specification for the time to reach 60◦at 4.8 V[14]. The assumed

servo dynamics are:

δ

δc
=

10

s+ 10
(3.5)

3.4.1 Thrust modelling

To increase the vehicle’s available thrust, the stock electric motor is replaced

with a Model Motors AXI 2217/12[37]. The manufacturer does not provide a thrust

rating with the 7” x 6 Easy Star propellor, so static testing is conducted to deter-
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mine the maximum thrust. The motor with propellor is secured to a scale with the

thrust axis normal to the scale. The measured thrust at full throttle is between

1.5 lbf (6.7 N) and 2.0 lbf (8.9 N) in each of several trials. This is consistent with

the manufacturer data, which provide thrust values between 9 and 12 N using the

same battery and slightly larger propellors. The static tests were conducted with

fully charged batteries. Automatic landing will take place after flying, which will

deplete the battery and may reduce the available thrust. The maximum thrust at

landing is conservatively assumed to be only 1.0 lbf (4.4 N). The maximum thrust is

incorporated into the simulation, and replaces the X-plane estimate for the throttle

influence on the u̇ channel. The throttle’s influence on the other states cannot read-

ily be measured without a more extensive experiment but should be less significant.

The values derived from X-plane are assumed to be sufficiently accurate.

The dynamic response of the motor to throttle inputs is also characterized for

modeling and simulation purposes. A separate experiment is conducted to determine

the dynamic response. The Easy Star fuselage with motor installed is secured to

a fixed surface. An MPX7002DP air data sensor with Pitot-static probe is then

attached to the vertical tail in the propellor wash, at a horizontal distance of 10.5”

behind the spinner. Due to the relatively high noise level associated with this sensor,

five trials are conducted with the sensor at different locations. After each trial, the

air data sensor is moved down 1” from the previous trial, with the first trial beginning

at the motor centerline. The Pitot probe extends ahead of the vertical tail surface, so

it is assumed that the thrust profile is radially symmetric about the motor centerline

with no interference from the vertical tail. The experimental setup is shown in Fig.

3.2. In each trial, a ramp throttle input from 0% to 100% is given and held constant

at 100% for three to five seconds. A step input from 100% back to 0% is given.

The thrust dynamics are assumed to be first-order, such that the actual throttle
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Figure 3.2: Experimental setup determining Easy Star motor dynamic response.

output δT is related to the commanded throttle δTC by:

δ̇T = α(δTC − δT ) (3.6)

Using the above assumption and a first-order forward difference approximation

for δ̇T , a least-squares solution for α is computed using the data from all five tests.

It is assumed that thrust is proportional to V 2, so the value of α can be computed

by a best fit for V 2 as a function of the recorded throttle inputs. The least-squares

solution for α is 1.90. Fig. 3.3 plots the measured time histories against the computed

response using Eq. 3.6 with the same inputs and initial conditions. The motor

dynamics are also included in the dynamic simulation and QFT transfer functions.

3.4.2 Parametric uncertainty

Aircraft stability properties suffer from large uncertainties in modeling when flight

test data are not available. Typical errors are on the order of 20% error (see Table

3.1). Additive uncertainty is assumed in modelling uncertain longitudinal and lateral-

directional plants for the QFT control synthesis. Because typical model accuracy
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Figure 3.3: Measured and least-squares velocity profile time response from Easy Star
motor. x indicates distance radially outward from the thrust centerline.

differs between the longitudial and lateral/directional axes, a different approach is

used to populate the set of uncertain plants for each axis:

1. For the longitudinal axis, the uncertainties in the nondimensional coefficients

listed in Table 3.1 are assumed to encompass the most significant model un-

certainty. Continuous-time models of the form of Eq. 3.7 are assumed. Nondi-

mensional derivatives are computed by performing elementwise division of the

continuous [A] and [B] matrices with the matrices of Eq. 3.8. The extrema of

the appropriate stability derivatives are computed, and the factorial set of un-

certain derivatives is used to populate the dimensional continuous-time linear

coefficients.

2. For the lateral-directional axis, stability derivative errors may be as high as

90% [43], which is infeasibly large for use with QFT. Instead, each of the

dimensional [A] and [B] matrix entries for non-kinematic equations is assumed

to have additive errors of up to ±20% of the nominal value. (Rudder is not used

in the autolanding control laws, so rudder derivative errors are not considered.)
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Derivative Accuracy
CLα ±5%
Cmα ±10%
CDα ±10%
CLu ±20%
Cmu ±20%
CDu ±20%
CLq ±20%
Cmq ±20%
CDq ±20%

Table 3.1: Typical longitudinal-axis modeling errors.[43]
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For both the longitudinal and lateral/directional axes, the set of uncertain plants

is populated by computing the extrema of each uncertain matrix element, then com-

puting the set of models using factorial combinations of these extrema. The nominal

model is also retained for the control design process. There are a total of 32,768

lateral-directional models and 2048 longitudinal models.

34



3.5 Pegasus system identification

An accurate model of the Pegasus system is needed for control synthesis and veri-

fication in simulation. Traditional longitudinal and lateral/direction axis models are

identified. System identification is performed in three primary steps: data collection

in flight test, preprocessing for model fitting, and model fitting using Observer-

Kalman filter Identification (OKID) and verification.

3.5.1 Flight test

Flight tests of the Pegasus aircraft were conducted under manual control be-

tween September and November 2013. A summary of flights is given in Table 3.2.

Longitudinal-axis maneuvers consist of an elevator doublet followed by a throttle dou-

blet. Lateral/directional maneuvers consist of a rudder doublet followed by an aileron

doublet. A total of fifteen longitudinal axis trials and thirty-two lateral/directional

axis trials are conducted over three flight days.

To capture high-frequency content of the system response, aircraft states are

recorded at 50 Hz except for position measurements, which are recorded at 5 Hz (see

Table 3.3). An APM version 1 is used to collect and log data[10]. The autopilot

provides position measurements, altitude, and three-axis acceleration and angular

rate measurements and attitude estimates. The IMU is less precise than that of

the APM2 used in later flights[10], a fact that will be discussed later. Aerodynamic

data are measured by an Aeroprobe five-hole probe that measures airspeed, angle of

attack, and sideslip angle. A custom pressure sensor board reads probe values at 50

Hz and communicates them to the APM 1 using the I2C communications protocol.
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Date Time
Wind

(mean/max)
Objectives

Center
of gravity

Weight (lbf)
Time of

flight (min)
2014/09/14 10:48 CDT 2/7 mph Longitudinal 51 in 93.5 12.8
2014/11/02 17:57 CST 6/13 mph Lateral/directional 49 in 99 8.0
2014/11/03 14:32 CST 4/12 mph Lateral/directional 49 in 99 6.7
2014/11/03 15:04 CST 4/12 mph Longitudinal 49 in 99 9.2

Table 3.2: Test matrix for Pegasus system identification flight tests. Daily average and high steady wind values, measured
at a nearby weather station, are shown[50]. Center of gravity is expressed as the distance along the body 1-axis aft of
the vehicle nose.
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Measurement Units Sample rate (Hz)

Inertial position
degrees latitude/longitude

meters altitude
5

Three-axis acceleration m/s2 50
Three-axis angular velocity rad/s 50

Barometric altitude meters 50
Three-axis attitude estimates radians 50

Table 3.3: Measured states, units, and sample rates for Pegasus system identification.

3.5.2 Data processing

Angular rates and aerodynamic angles are prefiltered using Butterworth filters

in MATLABTM to reduce measurement noise[33]. In some initial longitudinal axis

trials, the attitude estimate from the autopilot appears to approach non-zero steady-

state values after excitation, which is inconsistent with the observed behavior during

flight. This is interpreted as a possible effect of gyro bias, or simply poor accuracy in

attitude estimation. In addition, for two of three flight days, performance of the air

data probe is inconsistent. Angle-of-attack and sideslip angle measurements are not

usable on two days, and on one of those days airspeed readings are also unusable.

The process used to address these issues is described in this section.

3.5.2.1 Attitude estimation

To obtain the Euler angle position history, an extended Kalman filter (EKF)

is implemented based on the method outlined in Ref. [30]. This filter is used to

process all subsequent data and provide three-axis attitude and gyro bias estimates.

The following procedure is used, and is also summarized in the flowchart of Fig. 3.4:

1. GPS-derived inertial position histories are differentiated once to estimate iner-

tial velocity in three axes.
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Figure 3.4: Flowchart of attitude estimation from GPS time histories.
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2. To reduce noise, a two-term moving average of inertial velocity is taken and

used subsequently.

3. In a north-east-down inertial coordinate system, aircraft heading is estimated

from ψ = arctan Veast
Vnorth

.

4. Velocity histories are differentiated to produce acceleration histories, and a

two-term moving average is again taken to reduce noise.

5. A value of −gn̂3 is added to the inertial acceleration histories for consistency

with accelerometer measurements, in which n+ is the inertial coordinate sys-

tem.

6. The inertial acceleration vector is transformed through a three-axis rotation

through ψ into an intermediate reference labeled i+.

7. The transformed acceleration histories are now related to the aircraft body

frame by a 2-axis rotation through θ and a 1-axis rotation through φ. In

theory this vector should match the accelerometer measurements after rotating

through the two still-unknown angles.

8. φ and θ are estimated in a least-squares sense by solving the following linearized

transformation equation relating the intermediate frame i+ to the body frame

b+: 
a1

a2

a3


b

=


1 0 −θ

0 1 φ

θ −φ 1



a1

a2

a3


i

(3.9)

9. The resulting φ and θ histories are treated as measurement updates in a

continuous-discrete EKF.
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Figure 3.5: Comparison of pitch attitude estimates from flight data and from the
EKF for one longitudinal-axis maneuver.

Attitude and gyro bias estimation is a familiar estimation problem with many

existing solutions. The EKF attitude estimator in Ref. [9] is modified to use the

Euler angles directly instead of the quaternion to parameterize attitude, simplifying

the filter by eliminating the need to enforce quaternion normality. A sample of the

autopilot and EKF estimates is shown in Fig. 3.5.

3.5.2.2 Aerodynamic angle estimation

The air data measurements are not usable from some flight days. The GPS-

derived inertial velocity history and attitude estimates are used to approximate air-

speed and aerodynamic angles as necessary. Body-frame velocity components U, V,W

are computed by transforming the inertial frame velocity vector. Eqs. 3.3 and 3.4 are

used to approximate the aerodynamic angles, with the assumption that the external

wind is small relative to the magnitude of the aircraft velocity. Airspeed measure-

ments are judged to be usable from two of three flight days by comparing them to the

body 1-axis inertial speed, but all of the aerodynamic data were unusable from the

final day of testing. Direct airspeed measurements are found to yield better models

and are used whenever available. Since aerodynamic angles are usable on only one

flight day, the approximation from inertial velocities described above was used on all

flights for consistency in comparing model fits on different flight days.
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3.5.3 Model fitting with OKID

Observer-Kalman Filter Identification is used to identify the linear models used

for QFT control design. OKID is an established algorithm for system identification[26]

and has been used previously in identifying aircraft models from flight data[32]. The

algorithm directly fits a discrete-time state-space model, with the following form, to

measured outputs and inputs:

xk+1 = [A]xk + [B]uk (3.10)

yk = [C]xk + [D]uk (3.11)

In Eq. 3.10, xk is the value of the state at time t = k∆T , where ∆T is the sample

period for the discrete system. uk and yk are the control inputs and measured outputs

at time t = k∆T . To identify models from the processed flight data, the data are

manually segmented into each longitudinal or lateral/directional maneuver. A model

is then fitted to each data segment. For validation, control inputs are fed back into

the identified model, starting at the measured initial state, and the measured and

predicted responses are compared.

Models are verified against both the data used in identification and from other

segments. Both mean squared error (MSE) and the Theil inequality coefficient (TIC)

are used as metrics of fit. MSE is defined in terms of the measured output ỹk and

predicted output ŷk as in Eq. 3.12:

MSE =

∑N
k=1(ỹk − ŷk)2

N
(3.12)

41



The TIC is defined as follows:

TIC =

√
1/N

∑N
k=1(ỹk − ŷk)2√

1/N
∑N

k=1 ỹ
2
k +

√
1/N

∑N
k=1 ŷ

2
k

(3.13)

Eq. 3.13 yields a vector whose members are between 0 and 1, and can be evaluated

across one data set or several. TIC = 0 implies the predictions match the data

exactly and TIC = 1 implies maximum inequality. Acceptable values vary, but a

range of 0.25 < TIC < 0.3 is considered to indicate good agreement[25].

The longitudinal model fits linear perturbation models for airspeed u, angle-

of-attack α, pitch rate q, and pitch angle θ. One model is fit to each segment

of longitudinal axis flight test maneuvers using OKID. Comparisons of measured

outputs with those predicted by the identified model are shown in Fig. 3.6 for two

flight maneuvers. The lateral/directional model fits perturbations in sideslip angle

β, roll rate p, yaw rate r, and bank angle φ as a linear function of these states and

aileron and rudder inputs. Fig. 3.7 shows a comparison of measured outputs and

model-predicted outputs for three lateral/directional trials. A detailed summary of

the model identification and selection process for both axes is given in Appendix B.

3.5.4 Parametric uncertainty

Uncertain linear models are generated for Pegasus by assuming additive errors on

the continuous-time state and control coefficients. Uncertainty is assumed to be in

non-kinematic states only (that is, no uncertainty is associated with the Euler angle

propagation). The objective in defining the uncertain sets is to select the maximum

errors for which acceptable control performance can still be achieved. For the longi-

tudinal axis, each continuous-time state coefficient is assumed to have an uncertainty

of ±5% with control coefficient errors of ±10%. For the lateral/directional axis, the
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Figure 3.6: Comparison of longitudinal axis time histories and Pegasus model pre-
dicted outputs. Flight data are indicated by the thick black lines.
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Figure 3.7: Sample model fitting for selected Pegasus lateral/directional model. Solid
lines indicate model predicted outputs.
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state and control coefficient errors are ±5% and ±20% respectively. The factorial

set of combination of the extrema of these variables is used to generate discrete sets

of uncertain models for each axis.

3.6 Sensor modeling

To implement the automatic landing feedback control laws, the following aircraft

states must be measured or estimated:

• Body 1-axis airspeed U

• Inertial position X, Y, Z

• Body attitude ψ, θ, φ

The APM[10] includes a full sensor suite capable of providing the required mea-

surements for normal flight. An ultrasonic rangefinder is added to the standard

sensor package for accurate height-above-ground measurements in landing. The sen-

sors used, and errors assumed, are shown in Table 3.4. The remainder of this section

details the sensors and assumptions used in modeling them for simulation purposes.

3.6.1 Global positioning system

The APM uses a MediaTek MT3329 GPS running at 5 Hz. Data from the manu-

facturer indicate that the unit provides latitude/longitude measurements with a 2.5

m RMS error, and inertial north/east velocity is accurate to 0.05 m/s[36]. Due to

the limited altitude accuracy of GPS, raw measurements from this sensor are not

used to measure altitude or rate of change of altitude during flight.

3.6.2 Airspeed sensor

An airspeed kit using a MPX7002DP differential pressure sensor is employed.

This sensor measures the differential pressure ∆p with typical errors of 2.5% of the
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Table 3.4: Sensors and assumed errors for simulation.

full scale reading, and maximum errors of 6.25% full scale[12]. The rated full scale

value is 4 kPa, so the sensor noise is assumed to be Gaussian white with a typical 3σ

value of 100 Pa. Airspeed is sampled at 10 Hz. Since the air vehicle will operate at low

altitudes well within the subsonic regime, airspeed V is calculated from differential

pressure by the incompressible Bernoulli equation ∆p = 1
2
ρV 2. Here, ρ is assumed

to be the sea-level air density of 1.225 kg
m3 .

To reduce the effects of sensor noise, the APM uses the following lowpass filter

equation to estimate the current airspeed, Vk, from the current differential pressure

reading, ∆pk, and the previous measured airspeed Vk−1:

Vk = 0.7Vk−1 + 0.3
√

1.9936∆pk (3.14)

3.6.3 Barometric sensor

The APM uses a Measurement Specialties MS5611-01BA03 barometric pressure

sensor to determine vehicle altitude. This sensor’s maximum error band is given
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as ± 250 Pa[35], which corresponds to a 3σ error of approximately 20 m at sea

level. However, each time the sensor is read in the autopilot software, four pressure

measurements are taken and averaged to reduce measurement noise; this repeated

sampling is included in simulation. Altitude is updated at 10 Hz in the autopilot loop.

To determine the measured altitude h̃, the autopilot uses the following equation, in

which ph=0 and Th=0 indicate the pressure and temperature when the barometer is

calibrated upon initialization:

h̃ = 29.271267 ln(
ph=0

p
)(Th=0 + 273.15) (3.15)

To reduce the effects of sensor noise, the barometer readings are lowpass filtered

at the nominal update rate of 10 Hz with a 0.7 Hz cutoff frequency. The current

barometer measurement, hk, is updated by the following digital filter before being

used in the autopilot loop:

hk = hk−1 + 0.30547(hk − hk−1) (3.16)

3.6.4 Attitude and heading reference system

The APM’s attitude and heading reference system (AHRS) estimates the aircraft

attitude from gyroscope measurements. Attitude is parameterized with a 3/2/1 Eu-

ler angle rotation sequence through ψ/θ/φ. The Digital Motion Processor used for

attitude determination on the MPU-6000 IMU is not documented[24]. Rather than

replicating the complete APM calculations in simulation, the AHRS error perfor-

mance is analyzed experimentally. Images of the setup used in the experiment are

shown in Fig. 3.8. In the experiment, a rotating platform is driven by a Hitec HS-311

servo. The APM is then attached to the platform with either the roll, pitch, or yaw
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axis normal to the platform. The servo rotates the APM through 90◦ at an average

rate of 66.67◦ s−1, holds for one second, then returns to 0◦ at the same rate. This

rotation is performed three times for each axis to improve accuracy.

A first-order discrete-time model is fit to each axis in terms of the “true” angle

at time ti, (θt)i (as determined by the angle commanded to the servo), the previous

angle measurement θi−1, a constant offset bθ, and a standard deviation σθ:

θi = aθi−1 + b(θc)i + bθ +N (0, σ2
θ) (3.17)

The measured standard deviation between the AHRS outputs and the predicted

outputs based on the model is taken as σθ. This metric admits some more error

than may be actually present in the AHRS, since the servo actuator dynamics are

not accounted for. Since the actuation rate is much lower than the rated limit of

the servo[47], this error is assumed to be relatively small, and the additional error is

retained as a conservative estimate. The 3σ error limits for the AHRS are shown in

Table 3.4. The pitch-axis fit is shown in Fig. 3.9.

3.6.5 Ultrasonic rangefinder

Preliminary landing simulations using the standard sensor package make it clear

that the worst-case barometer error is too large for reliable autoflare maneuvers. Be-

cause of the minimal available onboard processing power, typical filtering schemes are

considered impractical for implementation on the Easy Star. Lightweight ultrasonic

rangefinders can provide accurate range data, but typically are limited in maxi-

mum range to distances right above the planned autoflare altitude. An ultrasonic

rangefinder cannot be used to determine altitude throughout the flight envelope, but

can be incorporated for use exclusively during the flare maneuver.

The XL-MaxSonar-EZ4 provides range data with nominal 1 cm accuracy at ranges

48



Figure 3.8: Test setup for APM2 AHRS error estimation.

between 20 cm and 7.6 m[1]. Furthermore, it has a footprint of approximately 1”

by 1” and weighs only 5.9 grams. At distances less than the minimum or greater

than the maximum sensitive range, it is assumed the sensor returns the minimum
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Figure 3.9: Comparison of commanded, measured, and modeled APM2 pitch axis
response in experiment.

or maximum range, respectively. As a worse-case estimate, a maximum effective 3σ

error bound of 25 cm is assumed to be present in the range readings for simulation.

This value is considered to be extremely conservative.

On Pegasus, the sensor is so small that it can be installed almost anywhere;

for simulation purposes, it is assumed to be located at approximately the center of

mass (i.e., the vector from the center of mass to the sensor is negligibly small). To

avoid damage to the sensor during landings on the Easy Star, the sensor must be

embedded in the Easy Star’s wing, aligned with the vehicle b̂3 axis. Since the sensor

is aligned with the vehicle 3-axis and not the inertial 3-axis, the vehicle attitude must

be considered in computing the relationship between vehicle altitude h and sensor

measured range Rs. This relationship is used in simulating the sensor response at a

given vehicle state.

The position of the sensor relative to the vehicle center of mass, rs is assumed

to be primarily along the body 2 axis, b̂2, such that rs = rsb̂2. The sensor height-

above-ground is given by hs = h + rs sinφ cos θ. hs is simply the projection of the

sensor’s measured range vector, Rs, onto the inertial n̂3 axis. The measured range
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Rs and vehicle altitude h are related by:

Rs cosφ cos θ = hs = h+ rs sinφ cos θ (3.18)

3.7 Turbulence modeling

The turbulence model implemented is the Dryden wind turbulence model[34]

from MIL-F-8785C[2], which gives 3-DOF additive disturbance forcesas functions

of altitude and gust intensity. The turbulence is given in an inertial frame aligned

with the mean wind direction and transformed into the body axes, where it results

in additive noise. Each component of the turbulence is obtained by passing band-

limited white noise through the corresponding transfer function. For example, the

turbulence aligned with the mean wind direction is found by passing white noise

through Hu(s). The governing equations are given in state-space form by Ref. [34],

and units of feet and feet/second are used for distance and speed:

Hu(s) = σu

√
2Lu
πV

1
Lu
V
s+ 1

Hv(s) = σv

√
2Lv
πV

2
√

3Lv
V

s+ 1

(2Lv
V
s+ 1)2

Hw(s) = σw

√
2Lw
πV

2
√

3Lw
V

s+ 1

(2Lw
V
s+ 1)2

(3.19)

The variables Lu, Lv, Lw are functions of altitude h:

Lu = 2Lv =
h

(0.177 + 0.000823h)1.2

Lw =
h

2

(3.20)
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The turbulence intensities σu, σv, σw are given by:

σu = σv =
0.1W20

(0.177 + 0.000823h)0.4

σw = 0.1W20

(3.21)

In Eq. 3.21, W20 is the turbulence intensity, characterized by the wind speed at

a 20 ft altitude. The Pegasus is currently restricted to autonomous operations below

400 ft above ground level, or roughly 750 ft above sea level. Based on the probability

of turbulence intensities as given in Ref. [34], it is reasonable to expect turbulence

intensities no greater than 10 ft/s ≈ 3 m/s at operational altitudes of 400 ft or less,

with a less than .001 probability of exceedance.

3.8 Dynamic simulation

A key focus of this research is the validation of the control laws through dynamic

simulation. The primary objective of dynamic simulation is to evaluate and quantify

the controller’s robustness to the various uncertainties present in the modelling:

process and measurement noise as well as dynamic uncertainty in the system models.

Controller synthesis and initial validation is performed in MATLABTM. The in-

ner QFT loops (heading, roll, pitch, and airspeed) are evaluated by simulating the

step response of the set of uncertain linear plants selected for control design. No

sensor uncertainty is implemented. For the outer loops, the potential nonlinear ef-

fects of large Euler angles are considered important. A full 12-DOF simulation is

conducted using the identified linear models to propagate the vehicle’s velocity-level

variables, while the nonlinear kinematic equations of motion are used to propagate

the translational and rotational states. To address model uncertainty, simulations

are conducted using each of the uncertain lateral/directional or longitudinal mod-

els. Lateral/directional uncertainty is included when testing the azimuth tracking,
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and longitudinal uncertainty is assumed when testing glideslope tracking and aut-

oflare. For preliminary controller evaluation, no process or measurement noise is

incorporated.

After the full automatic landing controller has been synthesized, Monte Carlo sim-

ulations are conducted to analyze the robustness to various uncertainties. For both

vehicles, model uncertainty is considered critical. 12-DOF simulation with nonlin-

ear kinematics is conducted using one randomly selected longitudinal and lateral-

directional model from each of the uncertain sets to propagate the velocity-level

states. The remaining uncertainty considered varies depending on the vehicle. For

the Easy Star, prevailing winds must be low for a flight to be permitted, so the effects

of turbulence are considered negligible relative to the sensing uncertainty outlined

in the previous section. The effects of steady crosswinds and tailwinds on the land-

ing are considered as the worst-case external disturbances. Steady crosswinds are

transformed into the body axes and act as additive noise on the vehicle’s u, α, and

β perturbed states. For Pegasus, which is two orders of magnitude heavier than the

Easy Star, turbulence effects are considered more significant than steady winds since

the rated gust limits for Pegasus are much higher than for the Easy Star. Sensor

noise is once again considered as a significant influence on vehicle behavior.

The initial control design and nonlinear evaluation for both vehicles was per-

formed in MATLABTM. The primary robustness Monte Carlo simulations for the

Easy Star were also conducted in MATLABTM. In evaluating the continuous-time

plant with discrete control updates, the run time of the code was found to be un-

acceptably slow, significantly limiting the number of Monte Carlo simulations that

could be conducted. For Pegasus batch simulations, the code was ported to C++,

which reduced the typical run time required for each simulation by roughly an order

of magnitude. The freely available C++ Armadillo library[40] was used to implement
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matrix operations; all other code including the Runge-Kutta 45 integrator was writ-

ten form scratch for this research. The C++ simulation was validated by comparing

results against MATLAB simulations with no uncertainty. The C++ simulation re-

placed the MATLAB nonlinear simulation for the Pegasus control design. It was

also adapted for rapid evaluation of the Easy Star outer-loop controllers after initial

flight tests demonstrated a need for control re-design.

This section describes the two UAVs and the basic assumptions and modeling

used in implementing the dynamic simulations used to evaluate the performance of

the automatic landing controllers. The next section presents a detailed description

of the design and verification of the automatic landing controllers for each vehicle.
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4. CONTROL DESIGN AND VALIDATION

QFT is used to develop robust feedback controllers with guaranteed tracking per-

formance for the set of uncertain plants identified in Section 3. The QFT controller

is designed as a set of sequential closed single-input single-output loops. A digital

controller with an update rate of 10 Hz is synthesized. This update rate is compati-

ble with real-time operation of the ArduPilot Mega autopilot, whose inner loop runs

at 50 Hz with outer loops of 10, 5, and 1 Hz[10]. The basic structure of each loop

consists of a prefilter F (z), controller G(z), and plant or inner loop model P (s) or

P (z). The primary performance specifications of interest in each loop are:

‖ P (z)G(z)

1 + P (z)G(z)
‖ ≤ SM (4.1)

Trl(s) ≤ ‖
F (z)P (z)G(z)

1 + P (z)G(z)
‖ ≤ Tul(s) (4.2)

The first specification ensures robust stability margins (SM) to compensate for

the uncertain plant model. The second ensures robust tracking performance in the

frequency domain between the lower bound Trl and the upper bound Tul. Both

performance criteria place constraints on the controller; the prefilter is restricted

only by the tracking bound.

This section presents the detailed control synthesis and preliminary evaluation for

both the Easy Star and Pegasus flight vehicles. For the Easy Star, the design of the

lateral/directional loops is presented first, followed by the longitudinal-axis loops.

Flight test results with this vehicle indicated that some loops should be redesigned,

and, where applicable, new or modified controllers are also presented. Similarly,

for Pegasus, the lateral/directional loops are presented followed by the longitudinal
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control loops. In the Pegasus design, particular attention is given to performance of

the outer control loops in the presence of turbulence, which proves to be a major

research challenge for the identified dynamic model.

4.1 Easy Star controller design

4.1.1 Lateral/directional control

Lateral/directional control consists of three control loops: (1) an azimuth tracking

loop, which generates reference headings ψref ; (2) a heading command and hold loop,

which generates reference bank angles φref ; (3) a bank angle command and hold

loop. The control loops are synthesized from the innermost loop outwards. This

inner-outer methodology is implemented because of the desire for robust tracking in

the inner loops. The bank angle command and hold transfer functions are driven by

the large range of plant uncertainty. The performance of the outer loops is strongly

influenced by the design of the bank angle loop.

4.1.1.1 Bank angle command and hold loop

The innermost lateral/direction loop is the bank angle command and hold loop.

The nominal open-loop transfer function is Lφ = GφPφ. The stability margin and

tracking bounds for the bank angle command and hold loop are as follows:

• Lower tracking bound: Trl(s) = 1.25
s3+6s2+5.25s+1.25

• Upper tracking bound: Tul(s) = 0.5s+1.25
s2+s+1.25

• Stability margin: SM = 1.4

The plant uncertainty in Pφ is governed by parametric uncertainty in the identi-

fied linear model. The lateral/directional uncertainty assumptions have been detailed

previously, and a large set of uncertain models has been synthesized. This set of mod-

els is impractically large for computing the robust stability and tracking bounds. To
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identify a manageable subset of models that encompasses the full range of plant un-

certainty, the Nichols plot of the open-loop plants at eight frequencies between 0.1 rad
s

and 30 rad
s

is created. At each frequency, the convex hull of the plotted templates is

computed, and all plants that appear in the convex hull at one or more frequencies

are retained. This technique is used for all the inner loops designed in the course of

this research. The reduced set of models has 167 plants that represent the extrema

of the plant uncertainties assumed.

To satisfy the performance constraints for the full set of plants, the following

controller Gφ and prefilter Fφ are designed:

Gφ(z) =
z4 − 2.5817z3 + 2.1787z2 − 0.5969z

−1.6136z4 + 2.6016z3 + 0.03421z2 − 1.4361z + 0.4139
(4.3)

Fφ(z) =
z2

46.29z2 − 68.812z + 23.517
(4.4)

Figs. 4.1-4.2 show the closed-loop system responses with and without the prefilter

Fφ. Fig. 4.1 is used to verify that the closed-loop system satisfies robust stability,

and Fig. 4.2 verifies that the controller satisfies the robust tracking stipulated.

Figure 4.1: Bode magnitude plot show-
ing the closed-loop response of the Easy
Star bank angle system without pre-
filter Fφ.

Figure 4.2: Bode magnitude plot show-
ing the closed-loop Easy Star bank
angle system response and tracking
bounds.
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4.1.1.2 Heading command and hold loop

The heading command and hold loop generates reference bank angle commands

for the bank angle loop. The actual bank angle, which is the output of the bank

angle command and hold loop, is the input to the heading angle plant Pψ. The

assumed transfer function from bank angle to heading angle is ψ
φ

= g
U1s

. Since the

gain is dependent on the steady-state aircraft speed, the gain is assumed to be the

principle source of error in Pψ, with extrema of ± 20% of the nominal value.

Due to the large uncertainties associated with the lateral/directional model, it

is not practical to design the bank angle and heading angle loops independently.

Rather, the inner loop prefilter and controller are designed iteratively with a head-

ing angle prefilter to satisfy acceptable performance for the inner and outer loops

simultaneously. The heading command and hold performance requirements are: (1)

90% rise time of between three and seven seconds; (2) maximum overshoot of less

than 30%.

To improve the heading angle response, the following prefilter Fψ is implemented:

Fψ =
z3 − 2.9030z2 + 2.8127z − 0.9084

0.08783z3 − 0.1746z2 + 0.09119z − 0.004118
(4.5)

Fig. 4.3 shows the system response to a 45◦ step command in heading. The

heading state histories demonstrate acceptable performance. The aileron deflection

histories, which include the effects of actuator dynamics, indicate that the maximum

required control deflection is not excessively large (less than 10◦). The rise time is

between 4 and 6.3 seconds. The maximum overshoot is 31%. This performance is

considered acceptably close to the specifications.
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Figure 4.3: Response to a 45◦ commanded step change in heading with nominal Easy
Star linear model.

4.1.1.3 Azimuth tracking loop

The outermost loop in the lateral-directional controller tracks the angle from

the aircraft to the inertial origin in the X − Y plane, λ, and generates reference

heading commands to drive the angle to zero. Because the reference value of λ is

zero, there is no pre-filter associated with this loop, and consequently no tracking

requirements. A stability margin of 1.2 is stipulated for the azimuth tracking loop.

A feedback controller Gλ(z) is designed using QFT to ensure robust stability for the

set of plants.

The nominal transfer function from ψ to λ is assumed to be U1

Rs
, in which R

specifies the range to the origin. For robust stability, the value of U1

R
is assumed to

vary by ± 20% from a nominal speed of 11 m/s and range of 50 m. The principal

challenge in designing the azimuth tracking loop is in designing Gλ to regulate λ

quickly while achieving acceptable performance from an initial state far from the

runway.

To satisfy the performance requirements, the following controller Gλ(z) is imple-

mented:
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Gλ(z) =
z2 − 1.9934z + 0.9969

0.5226z2 − .9974z + .4766
(4.6)

To analyze the performance of the lateral-directional controller, two sets of de-

terministic simulations are conducted: (1) the nominal plant is simulated for initial

conditions of X(0) = −500 m, Y (0) ∈ {−500,−400,−300,−200,−100, 0} m, and

ψ(0) ∈ {45, 30, 15, 5, 0}◦; (2) each of the uncertain plants from the assumed linear

model uncertainties is simulated for initial conditions of (X, Y, ψ)(0) = (−500,−500, 45◦).

For each of these simulations, the longitudinal perturbed state variables are assumed

to be zero. The nonlinear translational dynamics including the effects of steady-state

forward speed U1 and steady-state pitch angle θ1 are included.

Fig. 4.4 shows the results for the set of uncertain plants with the single initial

condition. The set shows fairly uniform convergence to the origin. Near the origin,

the trajectories are well within the width of the assumed 10 m wide runway. Fig. 4.5

shows the results for the nominal plant with varying initial conditions. The response

Figure 4.4: Uncertain Easy Star plant responses from initial conditions (x, y, ψ) =
(−500,−500, 45◦). The boundaries indicated are y = ±5 m.
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2.80in

Figure 4.5: Nominal Easy Star plant groundtrack for various initial conditions

at each set of conditions is acceptable. Each trajectory passes through the origin to

within 3 cm, with a maximum deviation from the runway center of less than 1 m

within 60 m downrange of the origin.

4.1.1.4 Lateral/directional control redesign

Initial flight tests using the heading command and hold loop to track a constant

heading indicate that the heading control loop initially designed is significantly un-

derdamped, as in Fig. 4.6. In this test, the vehicle is flown under manual control,

then the autopilot is engaged to regulate heading. The response is obviously un-

derdamped, which is also true of the simulated response shown in Fig. 4.3. When

the bank angle controller is evaluated with a reference bank of 0◦, the response is

relatively well-damped, so the heading loop is modified. A controller Gψ is added to

the heading control loop to improve performance. The azimuth tracking loop is also
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Figure 4.6: Initial Easy Star heading axis response to a hold of 135◦.

updated to account for the redesigned inner loop. The new control laws are:

Gψ =
z − 0.9668

0.03072z − 0.01192
(4.7)

Fψ =
z2 − 1.6567z + 0.6661

15.268z2 − 29.926z + 14.67
(4.8)

Gλ =
2.5001z2 − 4z + 1.5

z2 − z
(4.9)

Performance of the redesigned controller in flight test is presented in Section 6.

4.1.2 Longitudinal control

The longitudinal control is distinct for two flight phases: (1) glideslope tracking

for most of the approach to the runway; (2) flare tracking immediately before touch-

down. Glideslope tracking consists of independent control loops for tracking a target

glideslope and maintaining constant airspeed. The flare maneuver is performed im-

mediately before landing to reduce the vehicle’s vertical speed.

4.1.2.1 Pitch angle command and hold loop

The glideslope tracker consists of a cascaded loop, with the inner loop being a

pitch angle command and hold loop for the angle θ. Because the pitch-axis control is

so critical to autonomous landing, the stability and tracking requirements are more
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restrictive than in the lateral/directional inner loop.

SM = 1.2 (4.10)

Trl(s) =
1.25

s3 + 6s2 + 5.25s+ 1/25
(4.11)

Tul(s) =
.1389s+ .6944

s2 + .7599s+ .6944
(4.12)

Uncertain plant models are generated using the approach outlined in Sec. 3.4.2.

The full set of uncertain models is downselected using the convex hull of the Nichols

plot plant templates. This produces a set of 56 candidate models, including the

nominal model. The transfer functions θ(s)
δa(s)

are computed for the QFT control

design.

To satisfy the performance requirements, the following controller Gθ(z) and pre-

filter Fθ(z) are implemented:

Gθ(z) =
z3 − 2.5588z2 + 2.2991z − 0.7231

−2.5636z3 + 6.0048z2 − 4.6755z + 1.2343
(4.13)

Fθ(z) =
z3 − 2.2095z2 + 1.6386z − 0.3984

23.0885z3 − 63.6612z2 + 58.7204z − 18.1170
(4.14)

Fig. 4.7 shows the stability and tracking performance of the set of closed-loop

plants in terms of the Bode magnitude plots. Both sets of requirements are met.

Fig. 4.8 shows the step response of the set of closed-loop uncertain linear plant

models. The set of closed-loop plants demonstrates the desired closed-loop rise time

and overshoot characteristics.

4.1.2.2 Glideslope tracking loop

The reference glideslope is defined as the line passing through the inertial coordi-

nate origin, aligned with the runway, with a slope of Γref . The vehicle must track the
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Figure 4.7: (Left) Robust stability margin for Easy Star closed-loop pitch angle
control without prefilter. (Right) Robust tracking for the full pitch angle loop.

Figure 4.8: Step response for the closed-loop set of candidate longitudinal-axis Easy
Star plants.
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glideslope until it descends to the flare altitude, at which point the flare maneuver

is performed. The reference glideslope is a constant, so no prefilter is implemented

in the glideslope tracking loop. The tracking error Γref − Γ is fed into the controller

GΓ, which generates a reference pitch angle for the pitch angle command and hold

inner loop.

The primary requirements of the glideslope tracking law are:

• Steady-state error of less than 1◦.

• Robust tracking for initial glideslopes between 2◦and 15◦.

• Maximum elevator control deflections less than 15◦.

A potentially large initial error in the glideslope is assumed because the automatic

landing mode on the Easy Star may be triggered by a remote pilot during testing.

The following controller is implemented to meet the requirements:

GΓ =
5.51z2 − 6.5z + 1

z(z − 1)
(4.15)

To evaluate the controller performance, two sets of simulations are conducted with

a target glideslope of 5◦: (1) The nominal model is evaluated for initial conditions

X ∈ {−800,−500} m, Γ ∈ {2◦, 5◦, 10◦, 15◦}; (2) The full set of uncertain models

determined for the pitch angle control development is evaluated for initial conditions

X = −500 m, Γ = 15◦. For simulation, lateral/directional dynamics are neglected,

and forward speed is assumed to be constant (due to the presence of a constant speed

control loop, which has not yet been developed). The full nonlinear translational

dynamics are incorporated. A first-order actuator with a 10 sec time constant is

assumed for the elevator deflection. A flare height of 5.3 m is assumed, based on

Ref. [49], and simulations terminate at this altitude.
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Figure 4.9: Results for the nominal Easy Star longitudinal plant at various initial
conditions

Figure 4.10: Results for the set of uncertain Easy Star plants with initial glideslope
of 10◦.

Fig. 4.9 shows the simulation results for the nominal model at various initial

conditions. The plots show acceptable performance and the requirements are met.

The glideslope converges to within 1◦ of the target Γref in all simulations by the

time the flare altitude is reached. Fig 4.10 shows the simulation results for the set

of uncertain plants. All of the performance requirements are met except for the

elevator deflection limit of 15◦. Because fewer than half the uncertain plants exceed

this bound, and the initial condition of Γ = 15◦ is considered an extreme case, the

designed GΓ is acceptable.
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4.1.2.3 Throttle control loop

The throttle control loop is designed to regulate the vehicle body-axis forward

speed about its steady-state value during descent and landing. This control loop

consists of a single closed loop with the standard prefilter and controller arrangement.

The requirements for the throttle control loop are as follows:

• Rise time between seven and ten seconds.

• Overshoot of less than 10%.

• Stability margin of 1.1.

Since the only requirement of the throttle control loop is regulation to a constant

value, the rise time is much lower than for the other control loops. The set of

uncertain plants is derived using the convex hull of the Nichols plant templates as

for the other control loops. The throttle response to commands is modeled as a first-

order response as derived experimentally in Sec. 3.4.1. This is intended to represent

a conservative estimate of the motor response time. To satisfy the requirements, the

following prefilter Fu(z) and controller Gu(z) are implemented:

Gu(z) =
z2 − 1.7143z + 0.7367

1.3797z2 − 1.6695z + 0.2901
(4.16)

Fu(z) =
z2 − 1.8362z + 0.8468

9.9495z2 − 19.3958z + 9.4587
(4.17)

Figs. 4.11-4.12 show the performance of the controller and prefilter for the linear

uncertain plants. The stability margin requirement is satisfied as shown in Fig. 4.11.

The rise time and overshoot can be seen in Fig. 4.12 to be about 7 seconds and 5%,

respectively.
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Figure 4.11: Robust stability margin for Easy Star closed-loop airspeed control loop
without prefilter.

Figure 4.12: Step response for the set of Easy Star plants in the airspeed command
and hold loop.
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4.1.2.4 Flare tracking loop

The autoflare loop is the most critical loop in the autolanding maneuver. Once the

vehicle reaches the flare altitude, hflare, the control system switches from glideslope

tracking to the autoflare maneuver, in which the descent rate is directly regulated

by commanding reference pitch angles. The autoflare loop consists of a prefilter and

controller designed using QFT in the usual fashion. The reference descent rate is

defined as a function of current altitude, h, and constant τ as follows:

ḣref = −1

τ
h (4.18)

The controller requirements for the flare loop are: (1) stability margin less than

1.1; (2) Rise time between 5 and 7 seconds with a maximum overshoot of 10%. The

maximum flare length (i.e. the ground distance traveled during the maneuver) should

be less than 150 m. To ensure vehicle safety, the descent rate at landing should be less

than 1.8 m
s
. For control design, the descent rate is linearized as ḣ = U1(θ−α). Descent

rate is modeled in simulation by the first-order backwards-difference approximation

ḣ ≈ hk−hk−1

T
, which is the assumed microcontroller computation for descent rate.

After iteration over different settings, the flare settings hflare = 4 m and τ = 2.5 s

are selected. The value of τ is selected so that the reference descent rate at the flare

height will match the nominal descent rate from tracking the reference glideslope.

The flare controller Gflare(z) and prefilter Fflare(z) are:

Gflare(z) =
2.6005z2 − 5.1000z + 2.5000

z2 − z
(4.19)

Fflare(z) =
z4 − 2.4426z3 + 2.2758z2 − 0.9898z + 0.1825

4.7188z2 − 8.9315z + 4.2385
(4.20)

The performance of the autoflare controller is coupled with the performance of
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the airspeed command and hold, as well as the conditions at the start of the flare,

and it is not useful to evaluate the step response of the set of uncertain linear plants.

The performance of the uncertain longitudinal-axis plants is evaluated by simulating

landings with the full set of longitudinal controllers, assuming deterministic state

measurements are available, with the nonlinear kinematic equations of motion. The

set of plants evaluated is the union of the set of plants considered for both the

airspeed and pitch angle command and hold loops. This set has 114 plants. These

plants are evaluated for initial conditions X = 500 m, Γ = 10◦.

Figure 4.13: (a) Glideslope angle of the set of uncertain Easy Star plants. The
singularities in the glideslope history near time t = 40 occur when the vehicle passes
near x = 0, but happen after the autoflare maneuver begins and do not affect the
controller’s performance. (b) Inertial trajectories of the set of uncertain Easy Star
plants. (c) Perturbed body 1-axis speed during the Easy Star simulations. (d)
Throttle use during Easy Star glideslope tracking. Limits of 0% and 100% throttle
are enforced in simulation.

Fig. 4.13 shows the glideslope tracking performance of the set of uncertain plants.

4.13(a) plots the time history of the glideslope of each plant relative to the origin.

The singularities near t = 40 occur when the plants pass through X = 0. However,

these singularities occur after the autoflare maneuver is triggered and do not affect

performance. Fig. 4.13(b) shows the inertial trajectories in the X-Z plane. The
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Figure 4.14: (a) Inertial trajectories of uncertain Easy Star plants during the flare
maneuvers. (b) Descent rates of the uncertain Easy Star plants during flare maneu-
vers. (c) Perturbed Easy Star body 1-axis speed during flare maneuvers. (d) Easy
Star pitch angles during flare maneuvers.

deviation is larger than ideal for some plants, which is driven by the large initial

glideslope tracking error and relatively short ground path to the origin. These initial

conditions represent a worst-case scenario, and the performance is considered accept-

able. Figs. 4.13(c)-(d) show the perturbed body 1-axis speed and throttle during

the flight. Again, although tracking exhibits significant errors for some plants, per-

formance is tolerable given that this is a worst-case scenario. Furthermore, airspeed

typically converges to within 2 m/s of the steady-state value by t = 40, the typi-

cal flare start time. Additionally, these plots indicate that this performance can be

achieved with the expected throttle control limits.

Fig. 4.14 shows the flare tracking performance. Fig. 4.14(a) shows the iner-

tial trajectories during the automatic flares. Several plants violate the desired flare

length. This is the result of a deliberate design choice to favor a long flare rather

than risk an increase in hard landings when uncertain sensing and disturbances are

included. As reflected in Fig. 4.14(b), decent rates are relatively low during the

flare. Figs. 4.14(c)-(d) are included to demonstrate that airspeed and pitch angle

are correctly regulated during the flare maneuver.
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Figure 4.15: Analysis of flare performance of the set of uncertain plants.

Fig. 4.15 plots the descent rate at touchdown versus the flare groundtrack dis-

tance with the target limits for each. 108 of the plants are within the assumed “soft

landing” descent rate limit. 33 plants violate the flare length requirement. Given

the success in meeting the descent rate limit, the violation of the flare length is con-

sidered acceptable for preliminary implementation, given the uncertainty present in

the plants. The complete controller design for the Easy Star is validated in Monte

Carlo simulation with sensor noise; results of this evaluation are presented in the

next section.

4.1.2.5 Longitudinal control redesign

Initial flight tests of the Easy Star automatic flare loop indicated that the con-

troller as designed was significantly underdamped. Representative results are shown

in Figs. 4.16-4.17. To some extent, this was a result of the design choice to reduce the

chance of a hard landing in favor of longer flares. The actual flight performance exhib-

ited much less damping than was present in simulation, and the autoflare controller

and prefilter were redesigned to add damping and improve the reference tracking in

72



Figure 4.16: Easy Star glideslope tracking and initial flare performance in flight
testing. The testing is performed with a 15 m vertical offset from the ground, so the
flare altitude is 19 m. The descent rate response tracks the reference but shows very
little damping. The dashed line indicates the effective flare altitude and the solid
line indicates the effective target landing altitude.
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Figure 4.17: Easy Star glideslope tracking and initial flare performance in flight
testing. The testing is performed with a 15 m vertical offset from the ground, so
the flare altitude is 19 m. The descent rate response shows a large initial overshoot.
The dashed line indicates the effective flare altitude and the solid line indicates the
effective target landing altitude.
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the flare mode.

The redesigned controller and prefilter are:

Gflare(z) =
2.525z2 − 5.025z + 2.500

z2 − z
(4.21)

Fflare(z) =
.00726

z2 − 1.876z + 0.8831
(4.22)

Performance of the redesigned controller in flight test is presented in Section 6.

4.2 Pegasus controller design

Pegasus control laws have the same structure and similar requirements to the

Easy Star controllers. The Pegasus design is constrained by the requirements of the

backup human pilot. Since the Pegasus vehicle has previously been flown manually,

the initial range to the runway in past recorded landings has been as short as 500

meters. The vehicle’s steady-state airspeed is approximately 30 m/s, so this is a very

short approach corridor, and is the primary driver behind the design of the outermost

longitudinal and lateral/directional control loops.

4.2.1 Pegasus lateral/directional control design

The lateral/directional control consists of the bank angle, heading angle, and

azimuth angle loops. QFT is used for synthesis of each loop. The heading angle and

azimuth angle are most challenging to design.

4.2.1.1 Bank angle command and hold

The bank angle command and hold loop consists of the prefilter, Fφ with feedback

controller Gφ. With Pφ designating the transfer function φ
δa

, the open-loop response

is Lφ = GφPφ. The primary design requirements of the bank angle command and
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hold loop are a 90% rise time of three to five seconds and an overshoot of no more

than 20%. Because the bank angle control loop is a part of the heading command and

hold loop, the performance of the inner controller strongly influences the design of the

robust heading controller. To address the coupling between these loops, an iterative

workflow is used. Inner loop controllers are designed, then the outer loop controller is

synthesized to satisfy the QFT bounds as best as possible. The performance of both

control loops in the time domain is then evaluated, and the inner loop is revisited

until performance is acceptable. The bank angle design requirements in terms of

stability margin and tracking bounds are given below:

Trl(s) =
1.25

s3 + 6s2 + 5.25s+ 1.25

Tul(s) =
0.5s+ 1.25

s2 + s+ 1.25

SM = 1.4

(4.23)

Plant uncertainty assumptions are outlined in Section 3.5. Using the convex hull

of the plant templates, as with the Easy Star, 144 plants, including the nominal

model, are used for robust QFT design. To prevent control saturation, the max-

imum commanded aileron deflection is limited to ±20% in this loop. To satisfy

the performance requirements, the controller and prefilter of Eqs. 4.24-4.25 are im-

plemented. The step responses of the closed-loop linear systems with each of the

uncertain plants are shown in Fig. 4.18. The responses are not all within the bounds

of the step response of the tracking limits; this is not considered to be problematic

because the original time domain requirement of a 90% rise time of five seconds is

76



achieved with an overshoot of 3%.

Gφ(z) =
z3 − 1.735z2 + 0.7415z

25.06z3 − 60.17z2 + 47.35z − 12.24
(4.24)

Fφ(z) =
z2 − 1.730z + .7482

5.667z2 − 10.78z + 5.135
(4.25)

Figure 4.18: Bank angle step response of closed loop uncertain lateral/directional
Pegasus system. The upper and lower tracking bounds are plotted for reference.

4.2.1.2 Heading angle command and hold loop

The control structure for the heading command and hold loop is the same as

that used for the bank angle command and hold loop. The plant is the product of

the transfer function ψ(z)
φ(z)

with the set of uncertain bank angle command and hold

closed loops Tφ. The assumed linear model for the heading angle is ψ̇ = r; since this

is a kinematic relationship, there is no assumed additional uncertainty and all plant

uncertainty for the heading angle command and hold loop originates in the bank

angle loop.
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For the heading angle command and hold loop, the step response requirements

are a 90% rise time of three to seven seconds with an overshoot of no more than 30%.

As with the bank angle command and hold loop, an open-loop stability margin of

1.4 is required, and the upper and lower tracking bounds are the same as those of

Eq. 4.23. The following prefilter and controller are implemented:

Gψ =
z − 0.9657

0.1355z − 0.1107
(4.26)

Fψ =
0.2600z2 − 0.4746z + 0.2163

z2 − 1.940z + 0.9414
(4.27)

The step response of the uncertain plants meets the rise time requirement with

no overshoot (see Fig. 4.19). In the full simulation, the maximum commanded bank

angle is limited to ±15◦ as a safety measure against controller destabilization.

Figure 4.19: Step response of uncertain Pegasus plants to a step change in heading
(linear kinematic equation is used for propagation).
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4.2.1.3 Azimuth regulation loop

The azimuth tracking loop consists of three cascaded SISO control loops: bank

angle command and hold, heading angle command and hold, and azimuth angle regu-

lator. Because the Pegasus system is currently restricted to visual flying rules (VFR),

the aircraft excursions are not typically far from the takeoff point. Consequently, the

azimuth tracking loop must be capable of centering the aircraft on the runway from

a relatively short initial downrange distance. Moreover, the vehicle’s cruising speed

of about 30 m/s is comparable to a manned light sport aircraft[23], and limits the

time between engaging the autolanding controller and reaching the target landing

coordinates. Overall, the task of the azimuth regulation loop is very different for Pe-

gasus than for an automatic landing controller on a manned aircraft, for which the

approach distance might be several nautical miles[49]. The azimuth regulation loop

is primarily designed by considering the response to the most extreme set of initial

conditions, which were assumed to be X = −250 m and Y = ±75 m, corresponding

to an initial azimuth angle of 16.7◦. In addition to the model uncertainty identified

previously, the control loops should be robust to at least light turbulence (defined as

an intensity of 5 mph), and should be capable of landing in the presence of sensor

uncertainty.

The azimuth regulation loop is only required to regulate azimuth angle to zero, so

no prefilter is implemented in this loop. The requirements for the azimuth regulation

loop are as follows: in the deterministic (zero turbulence) case, the loop must regulate

the crossrange position to ‖Y ‖ ≤ 5 m by the time the vehicle reaches X = 0 m,

and should maintain this limit subsequently. X = 0 m is, conservatively, taken as

the earliest point at which touchdown will occur, since the automatic flare should

extend touchdown beyond this point. Additional requirements must be satisfied in
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the presence of a turbulence intensity of 5 m/s: the vehicle should reach ‖Y ‖ ≤ 11 m

by the time ‖X‖ ≤ 50 m, and should subsequently maintain Y position within this

11 m limit for 90% of cases. 11 m is selected because it is approximately three times

the wingspan of the vehicle.

The linear approximate transfer function for λ
ψ

(s) ≈ U1

Rs
(in whichR =

√
(X2 + Y 2)

is the range) is used for control synthesis[49]. Relatively low control gains are re-

quired to satisfy robust stability bounds. To avoid singularities near the origin, the

controller is scheduled with range up to 500 m; i.e., for ranges greater than 500 m,

a fixed multiplier is used to avoid control saturation if the initial azimuth error is

large.

After iteration multiple times through all three inner-to-outer lateral/directional

loops, the controller of Eq. (4.28) is selected as offering acceptable performance.

The closed-loop response of the nominal plant with no disturbances is shown in Fig.

4.20(a).

Gλ =
z − 0.9618

5.726z − 1.791
(4.28)

Monte Carlo simulations are used to evaluate the performance of the azimuth

tracking loop in turbulent conditions. A grid of initial conditions is defined by X

locations ranging from -250 m to -500 m in intervals of 50 m and λ ranging from

0◦ to 16.7◦ in intervals of 5.567◦. ψ(0) ∈ {0◦,−5◦,−10◦−, 15◦} are considered as

initial headings, and all other perturbed lateral/directional states are initially zero.

At each grid point of initial conditions, one simulation is performed with each of

the 144 uncertain models with turbulence intensities of 2.3 and 4.45 m/s. For both

turbulence intensities, it is found that the vehicle is regulated to a lateral position

‖Y ‖ ≤ 11 m in all cases before reaching X = 0 m, and remains with the 11 m

bounds until reaching X = 500 m, which is the break condition for the simulation.
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Figure 4.20: Nominal Pegasus plant azimuth response in X-Y space with no turbu-
lence. Y = ±5 m bounds shown.

This performance validates the lateral-directional control design.

4.2.2 Pegasus longitudinal control design

The longitudinal control system consists of the cascaded inner-outer tracking loop

for pitch control and the airspeed command and hold loop. The pitch control loop

uses the glideslope tracking loop for most of the descent and the automatic flare

loop to track reference descent rate commands near the runway. Both of these loops

provide reference pitch angles for the same pitch angle command and hold inner loop.

The airspeed command and hold loop is used to regulate forward speed during the

flight.

4.2.2.1 Airspeed command and hold loop

The primary time-domain requirements of the airspeed command and hold loop

are a rise time of between 10 and 15 seconds with no overshoot. The relatively slow

throttle dynamics limit performance, but the requirements of the throttle control

system are primarily regulation or tracking of piecewise constant references while
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rejecting disturbances, so the requirements are relatively simple to satisfy. The

frequency domain stability requirement is a robust stability margin of 1.2. The

rise-time requirements are translated into robust tracking bounds by Eq. 4.29:

0.0246

s3 + 0.7487s2 + 0.2186s+ 0.02475
≤ ‖ FuLu

1 + Lu
‖ ≤ 0.1659s+ .04976

s2 + 0.4s+ .05
(4.29)

Since the two-stroke gasoline engine on the vehicle is known to have a slow re-

sponse time compared to the servos that actuate the control surfaces, the throttle

dynamics are explicitly accounted for during control synthesis. The throttle system

consists of a mechanical linkage that is actuated by a servo; therefore, both the

servo and engine dynamics are considered. The servo is assumed to have first-order

dynamics with a 50% time constant of 0.1 seconds; the engine is assumed to have

first-order dynamics with a 1.0 second time constant. These dynamics, which essen-

tially represent a delay in the control application, are included in the plant model

Pu.

To satisfy the requirements, the controller and prefilter of Eqs. 4.30 and 4.31 are

implemented. The step response is shown in Fig. 4.21, and satisfies the 90% rise

time specifications.

Gu =
z3 − 2.551z2 + 2.1556z − .60277

.034441z3 − .045706z2 + .012181z − .00091285
(4.30)

Fu =
.00056098z2

z2 − 1.9594z + .95997
(4.31)

Disturbance rejection is analyzed by considering Monte Carlo simulations with

each of the uncertain longitudinal-axis plants for sixty seconds with a turbulence

intensity of 2.3 m/s. The 220 uncertain models from the union of the airspeed

and pitch axis plant sets is used. The lateral/directional guidance loop is active in
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Figure 4.21: Step response of airspeed command and hold closed loop.

Figure 4.22: Pegasus airspeed time history in Monte Carlo simulations.

these simulations to reject disturbances, but the initial azimuth angle is zero. A

constant perturbed airspeed of -5 m/s is the reference. The resulting time histories

are shown in Fig. 4.22. The slow response time of the control loop limits its ability

to compensate for disturbances; however, steady-state errors of typically ≤ 2 m/s

are achieved. In 168 simulations, the final airspeed is within 0.25 m/s of the target,

a 76.3% success rate by this metric.
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4.2.2.2 Pitch angle command and hold loop

The pitch angle command and hold loop is the inner loop for both the glides-

lope tracking and automatic flare loops. It is one of the most critical loops in the

automatic landing sequence, as it must be capable of accurate tracking of reference

commands during the short flare maneuver, while rejecting disturbances induced by

turbulence and sensor errors. The time domain requirements are a rise time of be-

tween one and three seconds. The stability margin is 1.3. The tracking requirement

is enforced in the frequency domain by the same upper and lower bounds used in the

bank angle controller design: Trl(s) = 1
0.288s3+1.92s2+2.6s+1

and Tul(s) = 0.4s+1
0.124s2+0.6s+1

.

Additionally, after several iterations of the pitch-axis controllers, including the outer

loops, a disturbance rejection criterion was added to the pitch angle control loop

to minimize the influence of turbulence on overall performance. The requirement is

equivalent to Eq. 2.1. For the pitch axis controller, a bounded input disturbance

response at all frequencies considered is enforced, expressed by Eq. 4.32:

∣∣∣∣ 1

1 + PφGφ

∣∣∣∣ ≤ 1.0 (4.32)

Since the servos used for control surface actuation are the same as that used to

drive the throttle, first-order servo dynamics with a time constant of 0.1 seconds are

included in the elevator-to-pitch angle transfer functions in control synthesis.

The controller and prefilter of Eqs. 4.33 and 4.34 are implemented. The step

response of 116 uncertain linear longitudinal plants, including servo dynamics is

shown in Fig. 4.23. The 90% rise time requirement is met. In addition, the elevator
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Figure 4.23: Step response of uncertain Pegasus linear plants to a commanded change
in pitch angle.

deflection remains bounded within 20% full scale range.

Gθ =
z5 − 1.968z4 + 1.258z3 − 0.2970z2 + 0.019727z − 0.0004401

−1.844z3 + 3.188z2 − 1.344z
(4.33)

Fθ =
z2 − 0.099574z + 0.0024788

51.42z2 − 87.93z + 37.42
(4.34)

4.2.2.3 Glideslope tracking loop

The glideslope tracking loop is the outermost loop for pitch axis control. Based

on flight data with a remote human pilot, a typical landing approach, from begin-

ning of descent until touchdown, has a ground run of approximately 600 m and an

approach glideslope of 5◦ to 10◦. The glideslope tracking loop should provide suffi-

ciently rapid regulation of tracking errors to a reference to land the vehicle near the
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specified GPS coordinates. The loop should also be robust to the same level of tur-

bulence considered in the azimuth tracking loop. For safety, the glideslope tracking

performance should be evaluated over a range of initial conditions to quantify which

initial states are most critical for successful automatic landing. A minimum initial

range of X = 1000 m to the target waypoint is assumed; when the vehicle is closer

initially, performance becomes extremely sensitive to the initial state.

To improve the landing performance of the vehicle, the reference glideslope decays

with time, as opposed to the constant reference used with the Easy Star. Assuming

a target waypoint at the inertial coordinate frame’s origin, the reference glideslope in

terms of the initial glideslope Γ0, initial X-position X0, and reference final glideslope

Γf = 1◦ is:

Γ(X) = Γ0

(
Γf
Γ0

)(X0−X)/X0

(4.35)

The glideslope tracking loop for the Pegasus consists of a the following controller

GΓ and prefilter FΓ:

GΓ(z) =
0.5383z2 − 1.038z + 0.500

z(z − 1)
(4.36)

FΓ(z) =
3.213× 10−6z2

z3 − 2.965z2 + 2.930z − 0.9651
(4.37)

To avoid the glideslope singularity at X = 0, the controller is scheduled with

range, up to a maximum of 500 m (i.e., beyond 500 m a fixed gain of 500 is used

to avoid saturating the control if the initial glideslope error is large). The controller

GΓ was designed primarily by iterative evaluation of the performance of the uncer-

tain plant models in nonlinear simulation with turbulence, as was the controller for

the azimuth regulator. To evaluate the effectiveness of the controller, Monte Carlo

simulations are conducted for the set of uncertain longitudinal models, using a grid
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Γ(0) 4 3 2
no turbulence 0 1 0

turbulence 0.03947 0.5975 0.0848

α(0) -2.5 0 2.5
no turbulence 0.3333 0.3333 0.3333

turbulence 0.2406 0.2406 0.2406

θ(0) -5 -2.5 0
no turbulence 0.3333 0.3333 0.3333

turbulence 0.2406 0.2406 0.2406

Table 4.1: Proportion of successful Pegasus glideslope approaches with and without
turbulence as main effects of initial conditions. All angles are given in degrees.

of the following set of initial conditions:

• α(0) ∈ [−2.5◦, 0◦, 2.5◦]

• θ(0) ∈ [−5◦,−2.5◦, 0◦]

• Γ(0) ∈ [2◦, 3◦, 4◦]

Glideslope performance is evaluated in terms of the X-position error magnitude at

the flare altitude; if the error between the actual position and the reference trajectory

is less than 60 m, this is considered a success. Simulations are conducted with both

zero and light turbulence, to evaluate the performance degradation in the presence of

turbulence, from an initial X coordinate of X = −1000 m. Performance is presented

as the fraction of successful trials for each set of initial conditions.

The overall success rates are 24.06% with turbulence and 33.3% without turbu-

lence. Table 4.1 shows the success rates as main effects of the initial conditions,

both with and without turbulence. For safety, the control authority is limited by re-

stricting commanded pitch angles to ±15◦, which is the primary reason that success

cannot be achieved in all of the deterministic cases. This restriction also somewhat
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limits the disturbance rejection of the controller. The results indicate that the accu-

racy of the glideslope tracking depends strongly on the initial glideslope angle, with

little dependence on initial angle-of-attack and pitch angle. The success rate with

turbulence varies, but is typically between 60% and 70% of the success rate without

turbulence. Based on the performance with varying Γ(0), automatic landings should

be attempted if the initial glideslope is near 3◦. The initial glideslope is easy to

measure, with good accuracy from GPS, and software failsafes can be designed to

prevent automatic landings being triggered if the glideslope deviation is more than

0.5◦.

4.2.2.4 Automatic flare

The automatic flare loop is the outer loop for pitch control from the point when

the vehicle is below the flare altitude until touchdown. Overall vehicle safety is most

closely related to this loop. A reference descent rate, which is simply a linear function

of altitude, is tracked during the flare maneuver.

For Pegasus, the flare altitude is increased to 10 m, since the vehicle is much

larger and faster than the Easy Star. This should provide some additional margin of

safety and give the remote operator more time to override if the autopilot experiences

an error when switching to the flare controller. The reference descent rate in terms

of altitude, h, is:

ḣ = −0.200h (4.38)

The primary requirement is disturbance-free tracking of the reference to within 0.5

m/s for the set of uncertain plants. This threshold is selected to minimize the chance

of a hard landing. Tracking should be achieved within three seconds. It is intended

that in hardware implementation the commanded pitch angle should be limited to

±5◦; however, in simulations with turbulence, this restriction too greatly limited
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Γ(0) (◦) 4 3 2
no turbulence 0.9956 1 1

turbulence 0.0009747 0.01413 0.03119

α(0) (◦) -5 -2.5 0
no turbulence 0.9985 0.9985 0.9985

turbulence 0.01511 0.01706 0.01413

θ(0) (◦) -5 -2.5 0
no turbulence 0.9985 0.9985 0.9985

turbulence 0.01657 0.01608 0.01365

Table 4.2: Table of the success rate of achieving “soft” landings, defined as a ver-
tical descent rate of magnitude 6 ft/s or less at touchdown, both with and without
turbulence, for Pegasus longitudinal-axis control.

control authority, and the controller is unable to properly compensate for 5 mph

turbulence. Consequently, no restriction is placed in simulation. It is recommended

that the 5◦ limit on commanded pitch angle be enforced if the measured pitch angle

is ±5◦ or more.

The following controller is implemented for the automatic flare with unity pre-

filter:

Gflare(z) =
0.10825z2 − 0.1675z + 0.0625

z2 − z
(4.39)

Flare performance is evaluated in terms of the number of hard and soft landings

with and without turbulence. As a preliminary analysis of performance, simulations

are conducted with the same grid of initial conditions used to evaluate the glideslope

tracking, from an initial range of X = 1000 m. One simulation is run with each of

the 228 uncertain longitudinal models. Both turbulence with an intensity of 5 mph

and calm conditions are considered, as before. In evaluating the performance, the

primary metrics of interest are the percentage of simulations that terminate in “soft”

and “hard” landings. These thresholds are defined by descent rates of 6 ft/s and 10

ft/s, respectively.
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Success rates of achieving soft landings are presented in Tables 4.2 and Table

4.3. Although the performance in deterministic simulations is good, the disturbance

rejection is evidently very poor. At the initial range of 1000 m, the performance ap-

pears to be essentially invariant with respect to initial pitch angle or angle-of-attack.

The success rate does improve slightly as the initial glideslope angle decreases. Ta-

ble 4.3 compares the overall performance with and without turbulence. In both sets

of simulations, landing or crashing occurs in every case. The success rate of soft

landings in the deterministic case is essentially 100%, and is about 5% in the turbu-

lent simulations. Overall approximately 80% of turbulent simulations are expected

to crash in a way that significantly damages the vehicle, although the exact result

would depend strongly on the attitude at touchdown.

It is clear from the performance of the flare controller that the performance with

turbulence is unacceptable for implementation in flight test. The controller presented

in Eq. 4.39 is the result of numerous iterations in both deterministic and stochastic

simulations with turbulence. It is felt that the performance cannot be substantially

improved without a significant change in the controller parameters, either by using

a more sophisticated (i.e. nonlinear) control law or greatly increasing the update

rates of the inner and outer pitch loops. It is also felt that this extreme sensitivity to

turbulence is not a realistic representation of the Pegasus system performance at low

speeds and altitudes. This indicates a limitation of the identified longitudinal-axis

model.

This section has summarized the complete control synthesis and verification for

both the Easy Star and Pegasus aircraft. In the next section, the performance of the

controllers for each vehicle is considering using Monte Carlo simulations with sensor

noise, uncertain plants, and disturbances.
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non-landing rate hard landing rate soft landing rate
no turbulence 0.0 0.001462 0.9985

turbulence 0.0 .1282 .04971

Table 4.3: Comparison of overall Pegasus landing performance with and without
turbulence. Non-landings refer to cases where the vehicle has not reached the ground
within the 50 second simulation time. Hard landings occur when the descent rate is
greater than 10 ft/s at touchdown. All other simulations correspond to crashes with
significant damage to the vehicle.
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5. UNCERTAIN MONTE CARLO SIMULATION RESULTS

The previous section describes the initial synthesis and validation of control loops

for both the Easy Star and Pegasus flight vehicles. In some cases, such as the out-

ermost guidance loops, results with some uncertainty are used for initial evaluation.

In the current section, simulations of both vehicles with the designed controllers are

conducted. Simulations include sensor noise models as well as environmental effects.

In each simulation the nonlinear kinematic equations of motion are used, while linear

models are used to propagate the dynamic states. The sets of uncertain longitudinal

and lateral/directional models are too large to exhaustively evaluate all combina-

tions of models. In an effort to consider the full range of the assumed uncertainty, a

random pairing of one uncertain longitudinal and one uncertain lateral/directional

model is used in each simulation to propagate the velocity-level states. In evaluating

the performance, a vertical speed at landing of 6 ft/s is considered a “soft” or nominal

landing, a speed of 10 ft/s in considered a “hard” landing (minor damage to vehicle,

repairable with no significant effect on performance), and a greater speed at landing

is considered a crash (effective loss of vehicle or damage requiring major repair) [49].

Easy Star performance is considered first, then Pegasus performance. For the Easy

Star, results are presented in the presence of static winds of varying strength and

direction. For Pegasus, simulations are conducted in the presence of turbulent air,

since disturbance rejection proved difficult in the control design of Section 4.

5.1 Easy Star results

The controllers designed in Sec. 4.1 are evaluated in simulation using the sensor

noise characteristics assumed in Sec. 3.6. To improve performance of the flare

maneuver, the target body 1-axis speed during the flare is set at −2 m/s relative

92



to the steady-state value. In addition, the following simplifying assumptions are

made in implementing the control laws, in preparation for implementation on a

microcontroller:

• Ultrasonic rangefinder measurements are approximately equivalent to vehicle

altitude. This assumption is valid as long as bank and pitch angles are suf-

ficiently small during the flare maneuver. This expedites computation and

avoids the use of Eq. 3.18.

• Azimuth and glideslope angles can be approximately determined by λ = −Y
‖X‖ ,

Γ = −Z
‖X‖ ; this avoids computation of transcendental functions, and is valid as

long as initial angles are less than approximately 10◦.

• Y-axis position errors approach zero before the vehicle reaches the region near

the localizer, such that vehicle range to the localizer is well-approximated by

X. This simplifies the computation of range. For localizer ranges of less than

10 m, the reference heading angle is set to zero to avoid the singularity at

X = 0.

The primary performance metrics of interest are as follows:

• Descent rate at touchdown

• Flare length

• Pitch angle at touchdown

• Minimum body 1-axis speed (to prevent aerodynamic stall)

• Y-position at touchdown
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• Maximum control surface deflections (Throttle is limited between 0-100% and

its extrema are not considered)

To evaluate control law performance, four sets of 1000 Monte Carlo simulations

are executed at different levels of static winds with uncertain plants and sensor noise.

The initial vehicle states for all simulations are:

• ψ(0) = −20◦

• X(0) = −500 m

• Y (0) = 100 m

• Γ(0) = 5◦

All other states are initially their steady-state values. When cross-winds are

present, the vehicle is assumed to approach the runway flying into the wind; at the

initial X-coordinate specified, the control law does not compensate for the crosswind

fast enough when approaching from the opposite direction. It should be noted that

cross-wind landings are not generally permitted, it is desirable to know how the Easy

Star performance may be affected if conditions change within the course of a flight.

The following four sets of simulations are conducted:

1. No external wind

2. 1.35 m
s

crosswind

3. 2.25 m
s

wind along the runway, to determine if glideslope singularities are en-

countered.

4. 2.81 m
s

wind at 36.5◦ to the runway. This represents 125% of the maximum

steady wind and cross-winds allowable for an Easy Star test flight and is con-

sidered the worst-case scenario.
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Monte Carlo results are summarized in Table 5.1. The following section will

display additional results and analysis for each set of simulations.

Case Soft Hard Non-landings
Landings off

runway
Mean flare
length (m)

no wind 854 73 0 36 38.3
1.35 m/s
crosswind

839 87 0 144 35.9

2.25 m/s
tailwind

617 160 0 430 41.6

worst-case 708 150 0 239 31.1

Table 5.1: Summary of Monte Carlo results for the Easy Star flight vehicle.

5.1.1 No external wind

With no external wind, landing performance is limited primarily by state uncer-

tainty at the beginning of the flare maneuver. Results are summarized in Fig. 5.1.

Despite significant sensing errors, 85% of landings are within the target tolerance for

vertical speed. The remainder of landings are split evenly between hard landings and

crashes. Less than 5% of landings are outside the target 10 m wide strip. The mean

flare length is well below the 150 m target defined previously; as expected, the very

long flares seen in Fig. 4.15 only occur in the absence of sensing errors. Maximum

aileron deflections are well within acceptable bounds; a very small number of eleva-

tor extrema exceed 20◦, which is the target maximum. Most of the pitch angles at

touchdown are within acceptable bounds of approximately ± 5◦. The small number

that exceed these bounds correspond to hard landings or crashes. Performance is

acceptable, given the plant uncertainty assumed.
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Figure 5.1: Histogram of Easy Star Monte Carlo results with no external wind.

5.1.2 Maximum rated crosswind

This case evaluates the performance with the nominal maximum crosswind. The

longitudinal-axis performance in terms of the number of soft and hard landings is

essentially unchanged from the zero-wind case. Approximately 15% of landings are

outside the target runway. This represents a performance drop from the no-wind

simulation. The distribution of the landing position in Fig. 5.2 is overall similar

to that in Fig. 5.1, with a constant offset, indicating that the crosswind does not

destabilize the system, but simply adds a bias. The control extrema are similar to

those in the zero-wind case.

Figure 5.2: Histogram of Easy Star Monte Carlo results with 1.25 m/s crosswind.
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5.1.3 Maximum rated steady tailwind

This case evaluates the performance with the nominal maximum steady wind

blowing along the direction of landing; i.e., a tailwind. Performance degrades signif-

icantly from the zero-wind case with fewer than 70% soft landings. The mean flare

length is slightly longer than in the other cases. The minimum flight speed trends

toward higher values than before, which is reasonable given the wind conditions.

The Y-position at landing is off the runway in a large number of simulations, despite

the absence of a crosswind. Further, the number of control extrema above 20◦ in-

creases substantially. Most likely, the larger control extrema and crossrange position

errors can be attributed to the vehicle’s close proximity to the landing waypoint,

which is driven by the tailwind. The short range to the origin induces singulari-

ties in the glideslope and azimuth calculations, which magnify the effects of small

tracking errors. Normally the flare altitude is reached well before the localizer, so

the singularities are not a problem. Since the direction of a steady wind can usually

be determined readily in advance of flight, the runway direction can and should be

selected to be into the wind field to maximize the chances of a safe landing. However,

if wind patterns reverse during flight, this simulation indicates that there is approx-

imately a 75% chance of landing without severe damage to the vehicle. It should

also be noted that the singularity is avoided entirely with Pegasus by scheduling the

controllers with range to the target.

5.1.4 Worst-case analysis

The worst-case scenario assumed has a wind magnitude of 125% the rated maxi-

mum of 5 mph, with a crosswind component of 125% of the maximum rated crosswind

of 3 mph. Results are shown in Fig. 5.4. Results are similar to those with a pure

tailwind, indicating that the tailwind more strongly influences success or failure than
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Figure 5.3: Histogram of Easy Star Monte Carlo results with 2.25 m/s tailwind.

the crosswinds (for the relative magnitudes assumed). The number of soft landings

is actually much higher in the worst-case analysis than in the pure tailwind case, and

the number of landings on the runway is also larger. This most likely occurs because

the combination of a larger tailwind and crosswind tend to keep the vehicle farther

from the localizer when X = 0, reducing the effect of the trigonometric singular-

ity on the landing performance. Overall, the probability of a soft landing in highly

adverse conditions with the Easy Star is much lower than would be preferred, but

is driven by the hardware limitations and vehicle mass. The control law retains an

approximately 80% chance of landing without loss of the vehicle when landing with

a tailwind and significant crosswind. Performance is tolerable, given the relatively

extreme disturbances present.

5.2 Pegasus results

Performance of the Pegasus control laws is evaluated in Monte Carlo simulations

with sensor noise and aerodynamic turbulence using 500 random combinations of one

uncertain longitudinal model and one uncertain lateral/directional model. The same

basic simplifying assumptions outlined in Sec. 5.1 are used in the calculation of range

and glideslope and azimuth angles. In addition, to achieve consistent performance
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Figure 5.4: Histogram of Easy Star Monte Carlo results with 2.81 m/s winds at 36.5◦

to the runway.

in the presence of sensor noise, digital lowpass filters are added to measurements of

heading angle, glideslope angle, azimuth angle, and descent rate. The filtered values

yk are given in terms of the previous value yk−1 and the most recent measurement

xk by:

yk = αxk + (1− α)yk−1, α ∈ [0, 1] (5.1)

The values of α were selected iteratively to reduce the standard deviation in

filtered state errors while retaining approximately zero mean error. Values of 0.15,

0.05, 0.1, and 0.1 were used for the heading, glideslope, azimuth, and descent rate

states respectively. These additions were found to be sufficient to make turbulence-

free performance comparable to the performance in the deterministic simulations

already conducted.

Turbulence intensities of 0, 1, 2.6 and 5.1 mph are considered so that performance

degradation in turbulence can be quantified. All simulations begin at X = 1000 m,

Y = 200 m, and Γ(0) = 3◦, with initially zero perturbed states. The primary per-

formance metric of interest is the descent rate at touchdown, and the corresponding
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Turbulence Soft Hard Non-landings
Landings

off runway
Mean flare
length (m)

no turbulence 421 35 39 0 272
1.0 mph 346 90 34 0 277
2.5 mph 155 147 74 18 287
5.0 mph 41 58 120 160 332

Table 5.2: Landing performance of Pegasus controllers for various levels of turbu-
lence. All simulations include sensor noise. 500 simulations are conducted at each
condition. Target runway width is 11 m (three times the wingspan).

proportions of soft and hard landings, as well as non-landings. Secondary metrics of

interest are the pitch and roll angles at touchdown, X-position at touchdown, and

the distribution of the final descent rates in simulations.

Table 5.2 shows the landing performance of the Pegasus models for the four sets

of simulations conducted. For the zero-turbulence case, the rate of soft landings is

about 80%, which is a noticeable degradation from the deterministic simulations. It

should be noted that in terms of descent rate, there are no crashes in this initial

simulation. Performance is much poorer as the turbulence intensity increases. At a

1 mph turbulence intensity, the effect is relatively minor; there are approximately 50

fewer soft landings, 30 more hard landings, and 20 crashes with significant damage

to the vehicle. At 2.5 mph turbulence intensity, the number of soft landings drops

by more than 50% compared to the zero-turbulence case and the number of hard

landings triples; the descent rate in 137 simulations corresponds to assumed crashes.

Performance is even worse when the turbulence intensity doubles to 5.0 mph, to the

extent that basic vehicle safety can no longer be ensured in a majority of cases.

In addition, at the highest turbulence level, the proportion of landings outside

the 11 m target runway is approximately 30%. It should be noted that this is only

a measure of controller accuracy, and not representative of physically landing off the
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runway at the Riverside test facility. The physical runways available are approxi-

mately 33 m wide, and only 16 landings are outside this value in the worst turbulence.

The mean flare length increases only very slightly with turbulence intensity; clearly

the turbulence has the greatest effect on the descent rate, of the variables considered.

Figs. 5.5-5.6 show histograms of some of the key states at touchdown in the

simulations. These figures demonstrate that the primary effect of turbulence on

these states is on the final attitude and descent rate. With no turbulence, final pitch

angles are generally between -2.5◦and -15◦, and almost all bank angles are less than

5◦. With 1 mph turbulence, the distributions of descent rate and final pitch angle

shift to the left slightly and the standard deviation increases; the spread in the bank

angle distribution increases slightly as well. With 2.6 mph turbulence, the bounds

on pitch angles increase to approximately 0◦-20◦, and bank angle limits essentially

double compared to the zero turbulence case. In the worst-case turbulence, the

pitch angle bounds increase slightly more, and the mean appears to shift to lower

pitch angles as well. Bank angles in this case are mainly bounded by ±15◦. The final

descent rates for each case have already been discussed with the landing performance

in Table 5.2; it is sufficient to say that as turbulence increases, the mean descent

rate decreases and the 3σ bounds increase. It in interesting to note that the final

X-position for most landings is between ±100 m in almost all simulations. The

exceptions occur in the presence of turbulence. As turbulence increases, a small

number of models do not land after first reaching the flare height, but land much

further down the runway. Mostly likely these cases are driven almost entirely by

turbulence.
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Figure 5.5: Summary of final states for Pegasus Monte Carlo simulations with no
turbulence (top) and 1 mph turbulence (bottom).
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Figure 5.6: Summary of final states for Pegasus Monte Carlo simulations with 2.6
mph turbulence (top) and 5.1 mph turbulence (bottom).
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6. FLIGHT TEST RESULTS

Flight tests of the Easy Star began in January 2014. The full autolanding se-

quence was realized by implementing the innermost loop for each control surface, and

adding the outer loops on subsequent flights. The sequence in which each control

loop was added and evaluated is:

• Bank angle command and hold to φ = 0

• Heading command and hold to ψ = 0

• Pitch angle command and hold to θ = 0

• Airspeed command and hold to u = 0

• Azimuth and glideslope tracking loop down to the flare altitude

• Full landing sequence with automatic flare

This section presents the flight tests results using the automatic landing controller

on the Easy Star platform. First, a brief description is given of hardware added to

the vehicle to increase the ability of the remote pilot to recover in the event of an

autopilot failure. Subsequently, the sequence of flight tests performed is described,

including representative results of the glideslope, azimuth, and flare tracking loops,

before displaying results from the successful automatic landings conducted.

6.1 Modifications to vehicle

Flying the automatic landing control law requires modification of the APM soft-

ware. The possibility of a software problem in flight cannot be discounted and could

very likely lead to the loss of the vehicle. To ensure that a remote human pilot can
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Date Wind Objectives
Number
of flights

2014/01/24 5-10 mph
Manual flying,

operator familiarization
1

2014/01/25 5 mph Bank and heading hold 2
2014/01/29 0-5 mph Bank, pitch, and heading hold 5
2014/02/01 0-5 mph APM2 waypoint navigation 1
2014/02/03 5-10 mph APM2 waypoint navigation 1

2014/02/08 5-10 mph
APM2 waypoint navigation,

Full state regulation
2

2014/02/09 5-10 mph Azimuth and Glideslope 2
2014/03/11 10 mph Azimuth and Glideslope 1
2014/03/12 15 mph Azimuth and Glideslope 1
2014/03/13 5-10 mph Flare, automatic landing 10

Table 6.1: Test matrix for Easy Star automatic control flight tests. This includes all
tests for which the vehicle was instrumented with the autopilot, and does not include
prior flights for operator familiarization. The center of gravity for all flights is kept
at 1/4 of the wing root chord.

always take over in the event of an emergency, the vehicle is equipped with a fail-

safe multiplex circuit board that allows the human pilot to override the autopilot by

switching from autopilot outputs to RC receiver outputs. This increases the chances

of recovery in the event of a major failure in the autopilot hardware or software.

6.2 Flight test results

A total of twenty-six flights were conducted between January and March of 2014

for the purpose of evaluating the automatic landing controller on the Easy Star. A

summary of the flight dates and test conditions and objectives is given in Table 6.1.

This list includes several flights evaluating the effectiveness of waypoint navigation

with the APM2’s built-in control loops, which was considered for use in setting up

the automatic landings. Ultimately, the RC pilot preferred to manually set up and

engage the automatic landing, rather than using waypoint navigation for this task.
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The basic regulator loops for roll, pitch, and yaw were evaluated qualitatively

during flight. As discussed in Section 4, preliminary heading-axis regulation time

histories indicated that the controller was underdamped, leading to a redesign. The

response of the other axes was judged to be acceptable.

Figure 6.1: Easy Star experimental glideslope and azimuth tracking position flight
test histories. Reference 5 m wide landing target and glidepath are shown. The
target landing waypoint is at (X, Y, Z) = (0, 0,−15) m.

To test the glideslope and azimuth tracking loops, the autolanding waypoint was

artificially placed 15 m above the runway, giving the backup remote operator time to

recover in the event of a hardware or software problem. In these trials, the automatic

landing flight mode was triggered manually at different vehicle headings to evaluate

the controller performance; the landing maneuvers were aborted by the remote pilot

after several seconds of automatic flight. Flight paths from two test maneuvers are
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shown in Fig. 6.1. Despite initial position errors and somewhat unfavorable initial

conditions, the control law converges to the target approach vector and follows it

until the automatic flight mode is disengaged.

After the successful tests of the glideslope and azimuth tracking loops, the final

remaining step before attemping automatic landing was to test the automatic flare

performance with the 15 m altitude offset. Initial trials indicated the flare tracking

loop was significantly underdamped, as shown previously in Sec. 4.1.2.5 (see Figs.

4.16-4.17), and the controller was redesigned. The redesigned flare loop shows max-

imum typical errors of about 1 m/s relative to the reference, compared to about 2

m/s for the initial controller.

On March 13, 2014, two full automatic landings were completed. The vehicle

was flown under manual control to a position approximately 300 m uprange of the

waypoint that defines the glideslope, then switched into the automatic landing mode.

The inertial position histories and flare performance are shown in Figs. 6.2-6.3. The

approach performance is evaluated in terms of the inertial frame position histories.

The reference glideslope is plotted in the X-Z plane, and the approximate lateral

position of the waypoint with 5 m error lines are plotted for the X-Y plane history.

In both cases, the vehicle begins with significant initial errors in glideslope position.

This initial error in corrected by the time approximately 100 m have been travelled

along the groundpath. The azimuth tracking loops also experience initial error of

a few degrees, which are corrected within roughly 150 m. The azimuth tracking

loop still appears to be slightly underdamped, despite the modifications to the head-

ing control loop, but this effect is likely driven by the lightweight aircraft flying in

unsteady winds.

Flare performance is examined in terms of the position histories below the flare

altitude and the descent rate during that flight segment. The flare altitude was 4
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Figure 6.2: Easy Star first experimental automatic landing time history.
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Figure 6.3: Easy Star second experimental automatic landing time history.
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m for the Easy Star tests. In Figs. 6.2-6.3, descent rates are computed by a first-

order finite difference of the altitude histories; to reduce noise, a five-term moving

average is used to approximate a smoothed descent rate history. Flare performance

is nearly ideal for the first test. The vehicle travels less than 50 m downrange of the

target waypoint and remains within about 1 m/s of the reference descent rate. The

final descent rate is nearly zero and is well within the margin for a “soft” landing.

During the second automatic landing, the vehicle overcorrected to reduce its descent

rate to match the reference, and the touchdown descent rate is on the threshold

of a “hard” landing (defined earlier as a descent rate between 1.83 and 3.05 m/s).

This manifested as damage to the horizontal tail, and some minor scratching to the

pitot-static probe, which was installed in the nose. The aircraft could not be fixed

and flown again in situ, but was repaired with about two man-hours of work. In

examining the flare performance, the response appears to be underdamped. It is

not immediately apparent whether this is due more to the design of the inner or

outer loop, and unsteady winds most likely are a factor as well. There is room to

improve performance with further gain tuning. However, the two flights shown here

demonstrate that the basic implementation of the control law on the hardware works

as intended and is capable of safely guiding the vehicle to a landing.

This section has outlined experimental automatic landings of the Easy Star plat-

form. Performance in flight test validates the simulation results and, with some

adjustments based on experimental performance, the controllers provide adequate

performance to achieve autolanding. The next section summarizes the major con-

clusions and recommendations based on the body of research that has been carried

out.
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7. CONCLUSIONS AND RECOMMENDATIONS

This section presents a summary of the major findings of this thesis, as well

as recommendations for future work. The primary work of this thesis has been to

develop an automatic landing controller using Quantitative Feedback Theory. Full

controllers have been developed in simulation for the Easy Star and Pegasus UAVs.

The controller has been implemented in hardware on the Easy Star platform and

two landings have been performed. Based on the research that has been performed,

the following conclusions about the control design approach and implementation are

presented:

1. The QFT based automatic landing controller has been demonstrated to work

in simulation and in flight test. The Easy Star simulations indicate a high

probability of a successful landing in relatively calm conditions. The dynamic

performance in simulation is qualitatively similar to the flight test results, in

that lightly damped dynamic responses in flight test tend to be underdamped in

the simulation as well. The Pegasus simulations perform well in the presence

of sensor noise and low turbulence. However, the identified Pegasus model

is highly sensitive to turbulence on the longitudinal axis, and performance

diminishes significantly when the turbulence intensity exceeds 1 mph.

2. Based on the Easy Star flight test results, the X-plane-derived uncertain model

captures the true system dynamics reasonably well. The identified linear model

should be usable for future linear control synthesis. Additionally, it may be

feasible to use X-plane directly for nonlinear dynamic simulations of Easy Star

and Bixler aircraft.
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3. From a design standpoint, QFT works well for the inner loop controller design

but not as well for the outer loops. In general, it is straightforward to use the

QFT process on the uncertain inner-loop plants to satisfy the robust perfor-

mance requirements while providing adequate time-domain performance. For

the outer loops, it is, in several cases examined here, prohibitively difficult to

satisfy the robust performance criteria and achieve good time-domain perfor-

mance with the assumed level of uncertainty, while maintaining an acceptably

low controller order. In many cases, simple PID controllers were found to

give adequate performance on the outer loops, while the inner loops are relied

on to ensure robustness and disturbance rejection. Performance in stochastic

simulations and flight test supports this control synthesis approach.

Based on the results produced to date, several recommendations are made re-

garding future work:

1. Additional experimental automatic landings should be performed on the low-

cost RC vehicle(s), to ensure the controller performance is repeatable, and to

examine the adequacy of the current sensor package. Changes made between

the Easy Star and Pegasus simulations should be implemented on the Easy Star

to ensure that experimental trials on the two vehicles are consistent, and verify

that these additions make landings safer. These changes include a nonconstant

reference glideslope, and scheduling with range on the glideslope and azimuth

control loops.

2. Pegasus system identification should be repeated and new testing should be

performed at different flight conditions for the longitudinal axis. The cur-

rent longitudinal controllers should then be re-evaluated on the new models.
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The identified longitudinal-axis models used in this document show poor con-

sistency between different trials, i.e. the models produced are typically only

accurate predictors of the measured history for one or two other trials. This

can be partly attributed to the fact that the state excitation in almost all trials

exceeded the linear range for angle-of-attack and pitch angle. Additionally,

some new trials should be conducted at lower airspeeds, around 20 m/s, which

is a typical landing speed based on manual landings. Because of the limitations

of the current longitudinal model, simulated landings had to be done near the

trim state of 30 m/s, which increased the chance of a hard landing compared

to a landing at 20 m/s. Feedback from the human pilot indicates that the vehi-

cle handling characteristics are different, and generally more forgiving, at low

speeds than at high speeds, and accurately capturing the low-speed dynamics

is essential to ensure vehicle and personnel safety.

3. A rudder control loop should be designed and implemented for lateral/directional

control during the flare. The bank angle control loop should be used only to

keep the wings level. The primary effect of this change is to allow the Pegasus

autopilot to maintain control once touchdown occurs. Currently, directional

control cannot be effected by the controller once the vehicle is on the ground,

and the remote operator must take over to ensure the vehicle stays on the

runway. For the Easy Star, this is not an issue because the vehicle has lit-

tle momentum and stops after travelling a short distance. For Pegasus, the

loss of directional control presents a significant safety hazard, since the vehi-

cle lacks brakes and the pilot’s RC transmitter only has an effective range of

about 30 m when the vehicle is on the ground. Maintaining zero bank during

the flare should also help ensure the aircraft’s main wheels touch down nearly
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simultaneously, reducing stress on the landing gear.
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gitudinal robust controller for excellent handling qualities design of a general

aviation aircraft using QFT. 2013.

[47] Servo City. HS-311 Standard. http://www.servocity.com/html/hs-311_

standard.html. Accessed July 14, 2013.

[48] Stuart N. Sheldon and Steven J. Rasmussen. Development and first successful

flight test of a qft flight control system. In Aerospace and Electronics Conference,

1994. NAECON 1994., Proceedings of the IEEE 1994 National, pages 629–636.

IEEE, 1994.

[49] Thomas William Wagner. Digital autoloand system for unmanned aerial vehi-

cles. Master’s thesis, Texas A&M University, 2007.

[50] Weather Underground. Personal Weather Station: KTXBRYAN19.

http://www.wunderground.com/personal-weather-station/dashboard?

ID=KTXBRYAN19#history/data/s20130914/e202404/mtoday. Accessed April

15, 2014.

[51] Shu-Fan Wu, Michael J. Grimble, and Wei Wei. QFT based robust/fault tolerant

flight control design for a remote pilotless vehicle. In Control Applications, 1999.

120



Proceedings of the 1999 IEEE International Conference on, volume 1, pages 57–

62. IEEE, 1999.

[52] Oded Yaniv. Quantitative feedback design of linear and nonlinear control sys-

tems. Springer, 1999.

121



APPENDIX A

EASY STAR MODEL IDENTIFICATION

A.1 Data generation and model fitting

Use of X-plane ensures that full state and control histories with zero noise can be

obtained at a rate faster than the expected Nyquist frequency of the UAV. It should

be noted that the identified model is only used when considering the vehicle kinetic

states. The linearized vehicle kinematic relationships are exactly known, and are

used rather than an identified model. In generating state and control time histories

for system identification, it is essential that all relevant system dynamic modes be

excited without perturbing the aircraft states beyond the regime in which behavior

is nearly linear. Two types of control inputs are used to generate data, as in [49]. (1)

3-2-1-1 inputs, in which a control is deflected to one extreme for three seconds, then

to the opposite extreme for two seconds, followed by a deflection to each extreme for

one second each. (2) Doublets, in which the control is deflected fully to one extreme

for one second, then deflected to the other extreme for one second.

To identify a lateral-direction model, a 3-2-1-1 aileron maneuver followed imme-

diately by a 3-2-1-1 rudder maneuver is performed. The lateral/directional model is

evaluated on a separate data set in which an aileron doublet is followed by a rud-

der doublet. The longitudinal model is identified with a 3-2-1-1 elevator maneuver

followed by a 3-2-1-1 throttle maneuver, and is evaluated with an elevator doublet

followed by a throttle doublet. System identification is performed by generating

discrete-time models that best satisfy the given data in a least-squares sense. For a
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Figure A.1: Identified Easy Star longitudinal axis model response to simulation
inputs. Simulation response (red) plotted for comparison.

discrete-time linear system of the form:

xk+1 = Axk +Buk (k ∈ [0, N − 1]) (A.1)

The error vector ek is defined as:

ek = xk+1 − (Axk +Buk) (k ∈ [0, N − 1]) (A.2)

The least-squares criterion that is minimized is:

N∑
i=1

eTk ek (A.3)

This least-squares fit is feasible in this instance because the data have no noise.

In Fig. A.1, the responses of the identified and simulation longitudinal models to

the doublet control inputs are compared. The identified model matches the frequency
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Figure A.2: Identified Easy Star lateral/directional axes Easy Star model response
to simulation inputs. Simulation response (red) plotted for comparison.

content of the simulation model well. The most obvious magnitude discrepancies

are in the angle-of-attack and pitch rate channels. Since the frequency content of

the identified model matches, and the simulated model is expected to have errors

compared to the true glider, the accuracy of the identified longitudinal model is

considered acceptable.

Fig. A.2 plots the responses of the identified and simulation lateral/directional

models to the verification doublets. For the most part, these outputs match well

in both amplitude and frequency content. There is a discrepancy in the roll rate

response amplitude to the aileron input. Again, the modeled response to considered

acceptable for preliminary control design, given the limited accuracy of the simulation

model and the similarity of the frequency content.

A.2 Vehicle scaling

Due to the limitations of the X-plane 9 software, vehicles massing less than 2.2 kg

cannot reliably be simulated[41]. Consequently, the 3D model used for identification
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is scaled up by a factor of 1.7 in length, and a factor of 3 in mass. Defining l̃ and

m̃ as the corresponding scale factors, it is assumed that the moments of inertia of

the simulation model have been scaled by a factor of Ĩ ≡ m̃l̃2. Due to the nature of

aircraft stability derivatives, the linear models obtained must be rescaled to match

the flight vehicle dimensions[44]. Define Ã1 and B̃1 as the longitudinal axis matrix

variables, and Ã2 and B̃2 as the lateral/directional matrix variables. Further, let Ãij

indicate the entry in the ith row, jth column. The identified continuous-time models

are rescaled as follows:

[A1] =



Ã111
m̃
S̃

Ã121
m̃
S̃

Ã131
m̃
S̃l̃

Ã141

Ã211
m̃
S̃

Ã221
m̃
S̃

(Ã231 − 1) m̃
S̃l̃

+ 1 Ã241

Ã311
Ĩ
S̃l̃

Ã321
Ĩ
S̃l̃

Ã331
Ĩ
S̃l̃2

Ã341

0 0 1 0



[B1] =



B̃111
m̃
S̃

B̃121
m̃
S̃

B̃211
m̃
S̃

B̃221
m̃
S̃

B̃311
Ĩ
S̃l̃

B̃321
Ĩ
S̃l̃

0 0



[A2] =



Ã112
m̃
S̃

Ã122
m̃
S̃l̃

(Ã132 − 1) m̃
S̃l̃

+ 1 Ã142

Ã212
Ĩ
S̃l̃

Ã222
Ĩ
S̃l̃2

Ã232
Ĩ
S̃l̃2

Ã242

Ã312
Ĩ
S̃l̃

Ã322
Ĩ
S̃l̃2

Ã332
Ĩ
S̃l̃2

Ã342

0 1 0 0



[B2] =



B̃112
m̃
S̃

B̃122
m̃
S̃

B̃212
Ĩ
S̃l̃

B̃222
Ĩ
S̃l̃

B̃312
Ĩ
S̃l̃

B̃322
Ĩ
S̃l̃

0 0
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After rescaling, the vehicle longitudinal continuous-time model has the following

dynamic modes and eigenvalues λ:

λ1 = −1.4± 3.9i λ2 = −0.33± .36i

ζ1 = .33 ζ2 = .67

ω1 = 4.2 rad
sec

ω2 = .48 rad
sec

The lateral/directional dynamic characteristics are:

λ1 = −.28 λ2 = −1.6± 6.2 λ3 = −13

τ1 = 3.6 sec ζ2 = .25 τ3 = 0.076 sec

ω2 = 6.4 rad
sec

The continuous-time linear longitudinal model is:



u̇

α̇

q̇

θ̇


=



−0.548 0.0493 −0.149 −8.09

−0.0117 −0.268 0.464 0.0152

0.158 −33.8 −2.59 −1.26

0 0 1.00 1





u

α

q

θ


+



−1.41 4.80

0.201 −0.0100

−34.9 −1.57

0.000 0.000


δe
δt



(A.4)

U1 = 12.6 m/s (A.5)

α1 = −0.0293 rad (A.6)

θ1 = −0.0197 rad (A.7)

The continuous-time lateral-directional model is:
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β̇

ṗ

ṙ

φ̇


=



−2.23 0.248 0.770 −0.326

35.2 −12.0 4.73 −4.62

−54.1 2.17 −2.27 0.282

0 1.00 0 0





β

p

r

φ


+



1.83 0.606

−101 −6.02

16.5 21.1

0 0


δa
δr

 (A.8)
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APPENDIX B

PEGASUS MODEL IDENTIFICATION

B.1 Longitudinal model selection

Models are evaluated by computing the mean squared error in predicting the data

in all other segments on the same day. The models on each day with consistently

good performance are further downselected by comparison against data from other

days. Figs. B.1-B.2 plot the base 10 logarithm of the mean squared error for each

model evaluated on each other trial from the same day. Smaller values indicate a

more accurate fit.

Based on the preceding analysis, three models were evaluated in terms of MSE

against data from other flight days: Models 1 and 3 from day 1 and Model 2 from

day 2. Table B.1 collects the MSEs when these models are evaluated in this fashion.

Based on these results, either Day 1 Trial 3 or Day 2 Trial 2 have good performance

that is relatively consistent across data sets.

To further compare the two models, the Theil inequality coefficient (TIC) is

Model Day log10(MSEu) log10(MSEα) log10(MSEq) log10(MSEθ)
Day 1 Trial 3 1 1.236766 -1.790962 -1.446248 -1.36449
Day 1 Trial 3 2 1.625153 -2.081535 -0.886077 -0.938095
Day 1 Trial 1 1 1.909165 -1.393750 -1.582307 -1.304716
Day 1 Trial 1 2 2.337564 -0.355356 -1.236039 -0.886734
Day 2 Trial 2 1 1.898684 -0.700737 -1.736099 -0.838319
Day 2 Trial 2 2 1.125815 -1.719940 -2.252951 -1.834387

Table B.1: Mean squared errors of the best Pegasus longitudinal models identified
using OKID.
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Figure B.1: Pegasus longitudinal-axis MSEs for day 1 of Pegasus flights.
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Figure B.2: Pegasus longitudinal-axis MSEs for day 2 of Pegasus flights.
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Day 1 Trial 3
Trial TICu TICα TICq TICθ

Day 1 Trial 1 0.8607 0.2410 0.3922 0.4303
Day 1 Trial 3 0.4673 0.2093 0.2906 0.4096
Day 2 Trial 2 0.8514 0.3459 0.3812 0.5575
Day 2 Trial 3 0.9214 0.2766 0.4391 0.7971
Day 2 Trial 4 0.7214 0.3326 0.3618 0.4647

Total 0.7252 0.4445 0.5527 0.7020
Day 2 Trial 2

Trial TICu TICα TICq TICθ
Day 1 Trial 1 0.9103 0.5004 0.2863 0.4010
Day 1 Trial 3 0.4866 0.3521 0.2468 0.1611
Day 2 Trial 2 0.4364 0.2213 0.2975 0.4519
Day 2 Trial 3 0.8749 0.2630 0.2606 0.09451
Day 2 Trial 4 0.6627 0.3706 0.2766 0.5007

Total 0.7482 0.5109 0.3841 0.5359

Table B.2: Comparison of Theil inequality coefficient for two selected Pegasus lon-
gitudinal models.

computed. The TIC is computed for the final two models over a set of five trials

that have similar initial conditions. Two trials are from day 1 and three from day

3. Model accuracy in terms of TIC is quite similar between the two models, which

indicates a certain level of consistency in the identification process. Ultimately, the

Day 3 Trial 2 model is preferred because of its lower error in predicting q and θ.

The identified continuous-time longitudinal model is given by Eqs. B.1-B.5.
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ẋ =



−0.796 −6.86 −3.199 −0.620

0.0266 −0.744 0.169 0.664

−0.0983 2.466 −4.21 −1.64

0.000732 0.181 0.603 −0.392


x +



−30.2 3.2609

−1.70 −0.114

−15.4 0.139

−1.52 −0.0301


δe
δt

 (B.1)



u

α

q

θ


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


+



−0.125 −0.431

0.0523 −0.0421

−0.0631 0.0651

0.0409 0.0425


δe
δt

 (B.2)

U1 = 30.3 m/s (B.3)

α1 = 0.0 rad (B.4)

θ1 = 0.0 rad (B.5)

B.2 Lateral/directional model selection

One model is fit to each of the thirty-two lateral/directional trials from two days of

flying. On some maneuvers, the pilot gave multiple doublet commands consecutively;

each individual doublet is treated as a trial, and so is the string of consecutive

doublets. This means that some data are repeated among the trials. In selecting

the best models, one important consideration is the bank angle at the beginning of

the maneuver. The decoupling of aircraft longitudinal and lateral/directional axis

dynamics is only possible for a steady-state bank angle of zero. Therefore, only

trials for which the initial bank angle has magnitude less than 5◦ are considered.

This effectively eliminates twenty-two models. MSE is found not to differ greatly

among the remaining models, so each model is evaluated in terms of the TIC against
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Trial TICβ TICp TICr TICφ
Day 1 Trial 2 0.2514 0.0985 0.2415 0.2810
Day 1 Trial 5 0.4720 0.1081 0.3888 0.2144
Day 1 Trial 7 0.4008 0.1332 0.4671 0.2874
Day 1 Trial 10 0.4209 0.1232 0.3814 0.4454
Day 1 Trial 12 0.4869 0.1310 0.3965 0.3308
Day 1 Trial 14 0.4719 0.0837 0.2043 0.4052
Day 2 Trial 2 0.3332 0.1303 0.2752 0.6342
Day 2 Trial 11 0.5627 0.2805 0.4801 0.4012
Day 2 Trial 13 0.5117 0.1942 0.4290 0.3904
Day 2 Trial 15 0.3557 0.1529 0.2733 0.3111
Day 2 Trial 17 0.6151 0.2232 0.5628 0.1623

Table B.3: TIC for Pegasus lateral/directional models with steady-state bank angle
less than 5◦. Each TIC value is computed by evaluating the model against the data
used to generate it.

the data used to generate the model. These TIC values are tabulated in Table B.3.

Based on Table B.3, three models are selected for further evaluation: Day 1 Trial

2, Day 2 Trial 2, and Day 3 Trial 15. The TIC of these three models is then computed

for every test in the set of trials in Table B.3. These results are given in Table B.4.

For brevity, only the total TIC computed across all eleven data sets is shown for

the three candidate models. From these results, it is clear that the model from Day

1 Trial 2 has the lowest TIC for three of the four states. This model also shows

reasonably good model fitting qualitatively (see Fig. 3.7), so it is selected as the

linear lateral/directional model for the Pegasus system.

The identified continuous-time lateral/directional model is given by Eqs. B.6 and

B.7.
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Trial TICβ TICp TICr TICφ
Day 1 Trial 2 0.4799 0.1437 0.2646 0.5310
Day 2 Trial 3 0.5168 0.1698 0.3934 0.5124
Day 2 Trial 15 0.6033 0.3323 0.4616 0.8200

Table B.4: Total TIC for three candidate Pegasus lateral/directional models evalu-
ated across all the sets of data considered in Table B.3.

ẋ =



−1.56 0.193 −0.948 0.124

−11.2 −4.79 1.12 −2.77

12.2 −2.33 0.0539 0.845

−0.905 0.607 0.0131 −0.2300


x +



−0.116 −0.590

112 −3.30

32.3 14.1

6.79 −0.656


δa
δr

 (B.6)



β

p

r

φ


=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


x +



0.0461 −0.000266

−0.625 −0.0456

−0.384 −0.249

−0.0139 −0.0144


δa
δr

 (B.7)
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