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ABSTRACT 

 

Moored buoy systems are often deployed by oceanographers to gather scientific 

information on local and global changes in the water column, weather patterns and 

climate change. The data they gather is first transmitted to satellites or passing 

oceanographic ships prior to transmission land based research facilities. Most buoy 

designs are powered by battery systems that provide ballast and some can be recharged 

by solar panels. At-sea maintenance may include regular battery replacement or repairs 

to the buoy system due to vandalism, each being expensive propositions. In order to 

reduce the costs and utilize green energy, this thesis research investigates the use of 

incorporating a pendulum wave energy conversion (WEC) device as a permanent or 

semi-permanent power source for some oceanographic buoys having an average power 

consumption that can vary from 0.1W to 6.0W.  

The main criteria for selecting a WEC device for this application are operational 

reliability, sustainability during operational and extreme weather conditions, and 

minimizing the opportunity for vandalism. A general analytical model was developed 

and simulations of the motions of the buoy were performed using the numerical code 

COUPLE, which was originally developed to simulate the coupled response behavior of 

a deepwater floating hull and the associated mooring/riser/tendon systems. Based upon 

the motion behavior from the numerical simulation, the electrical power output by the 

selected WEC device is estimated using an iterative scheme to estimate equivalent 

damping of a hydraulic Power Take-Off (PTO) system.  
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Several illustrative case studies are presented to verify that the electrical power 

output rate is in the range of the power demands needed by typical oceanographic buoys. 

It is concluded that the proposed pendulum WEC device is a feasible solution that can be 

designed to provide an alternative power system to power oceanographic buoys. The 

research study provides a way to approach the design and utilization of WEC devices to 

capture wave energy as a natural power source for a wide range of buoy shapes, sizes 

and configurations for existing and future buoy designs. 
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NOMENCLATURE 

 

DOF Degrees-Of-Freedom 

FFT Fast Fourier Transform 

HP High pressure 

LP Low pressure 

NOAA National Oceanic and Atmospheric Administration 

PTO Power Take-Off 

WEC Wave Energy Conversion 
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CHAPTER I  

INTRODUCTION 

 

1.1 Background 

Moored oceanographic buoys measure data obtained in the ocean, such as wind 

velocity, air and sea surface temperature, salinity, and air pressure, and transmit them to 

the land through satellite telecommunication systems. These recorded observations make 

significant contributions to the ability of meteorologists and oceanographers to analyze 

global weather and climate. The operations performed by buoys consume electricity, and 

hence batteries are currently used for many oceanographic buoys as their power sources. 

These batteries usually last a few months or years, and the battery power system bears a 

high maintenance cost for regular battery replacements. Some of the moored 

oceanographic buoys utilize solar panels installed on the top of the buoys, but vandalism 

and stealing of solar panels have been reported (Teng at el., 2009). In order to reduce the 

maintenance costs and mitigate the risk of losing their power sources, a WEC device is 

proposed as a permanent or semi-permanent power source for oceanographic buoys.  

As tools that use the Eulerian measure, there are many different types of moored 

oceanographic buoys, which are anchored at fixed locations. Moored buoys have a 

variety of shapes and sizes depending on their purposes for measurement and conditions 

under which they are deployed as shown in Fig. 1 that can be found on the webpage 

provided by National Data Buoy Center (NDBC) of National Oceanic and Atmospheric 

Administration (NOAA) (NDBC, 2008). Their diameters vary from a few meters to 12 
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meters (Berteaux, 1991). Among them, 3-meter discus buoys are widely operated by the 

center since 1983 (Timpe & Teng, 1992).  

Knowing the total maximum power requirement for sensors, electronic chips, 

and transmitters installed on oceanographic buoys is crucial when validating usefulness 

of renewable power sources, such as WEC. The power requirement will depend on the 

number and types of sensors, transmission settings, and electrical settings, such as 

electrical voltages and currents. Using the information given by the operators of moored 

oceanographic buoys, the average power consumption of a 3-meter discus buoy is 

surveyed. Based on this power requirement, this research explores the feasibility of 

using a WEC device as a permanent or semi-permanent energy source in a typical 

oceanographic buoy through the approach of numerical simulation. If a WEC device can 

produce enough electrical power, meteorologists and oceanographers may benefit from 

wave energy as an alternative energy source. Findings through this research 

investigation can be integrated into the design of oceanographic buoys equipped with the 

WEC device. 
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Figure 1 Various types of moored oceanographic buoys (NDBC, 2008) 
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1.2 Objectives and Research Scope 

The following sequential approach is taken in this research investigation. First, 

an appropriate WEC device concept is selected to be incorporated in the design of a 

typical disk buoy. The main criteria for choosing the WEC device are reliability, 

sustainability, and minimizing the opportunity for vandalism and stealing of a power 

source. Second, a pendulum design model for the relative movement between hull and 

the Power Take-Off (PTO) system is selected, and then a set of motion equations of the 

pendulum model is formulated both by a Lagrange’s approach and by a Newtonian 

approach. Third, numerical simulations of the motions of a buoy are made in time 

domain using COUPLE, which considers actual wave conditions at the locations where a 

moored buoy is likely deployed. The surge and pitch motions of the floating body 

excited by regular waves are used as inputs for the pendulum motion to calculate the 

external moment exciting the motion of the pendulum. Fourth, the work of the hydraulic 

PTO system is modeled as equivalent damping of the pendulum motion using the 

concept of the energy transfer from the mechanical energy to electric energy. Finally, an 

electrical power output by the selected WEC device is estimated through an iterative 

scheme to accurately estimate the work done by the PTO system. Case studies are 

conducted to validate the selected WEC device is a feasible solution as a permanent or 

semi-permanent power source for oceanographic buoys.  
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CHAPTER II  

POWER DEMAND AND WEC DEVICE 

 

2.1 Power Requirement of Oceanographic Buoys 

The electric power consumed by sensors, electronic chips, and transmitters of an 

oceanographic buoy depends on its mission and consequently has a broad range. 

Typically the power need is provided by batteries, solar panels, or some combination. 

There are two ways to estimate power consumption. One way is to identify electric 

power consumptions of each piece of equipment to be deployed on the buoy, and then 

take the sum of the individual requirement to determine the total power demand. The 

other way is to inspect the recorded power history using electric current and voltage. 

Considering the fact that the number and type of sensors are different depending on the 

buoy mission and where it will be deployed, the average power consumption is 

calculated through information on the real time electric current uses at its nominal 

voltage given by operators (Meinig, 2013; Pettigrew & Pigeon, 2013).  

In particular, power consumptions highly depend on weather and climate because 

the transmission of data through a satellite is one of the most consumable elements, and 

it takes a much longer time with cloudy weather. Considering this fact, the power 

requirements of buoys are surveyed by selecting a couple of reference buoys which are 

deployed for different purposes and in different regions (e.g. tropical area and north 

area). These power consumptions range from 0.1 W to 6.0 W as a daily use because time 

average electric currents show 12 mA to 0.5 A at nominal 12 voltage.  
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In addition, marine lanterns attached to the buoy superstructure are normally self-

powered independently by small scale solar panels equipped inside of the lantern. 

However, considering the purpose of this research is to power the entire buoy using 

wave energy, all components will be included. The power consumption of a marine 

lantern depends on its uses and factors such as light intensity, eclipse period, and 

daytime setting. Considering the most typical uses of marine lanterns summarized in 

Table 1, it can be concluded that the marine lantern requires less than 0.1W, which is 

insignificant when considering the total power consumption of an instrumental 

oceanographic buoy.  

 

 

Table 1 Typical power consumption of a marine lantern 
Setting Value 

Light intensity 3 NM 

Eclipse period (duty cycle) 10 % 

Number of LED 1 

Voltage 12 VDC 

Current 
Night 0.10 A - 0.12A 

Eclipse and daytime 0.9 mA - 1 mA 

Daylight time 12 hrs 
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2.2 Selection of WEC Device 

Selecting a suitable WEC device for an oceanographic buoy from existing WEC 

device concepts considered ease of integration into the buoy design, mechanism 

simplicity, reliability, and the desire of the minimum maintenance. Thus, the mechanics 

of SEAREV1 WEC device was selected as the basis for this study (Babarit, 2005; 

Babarit et al., 2006). A device similar to SEAREV can be sealed inside the buoy, which 

avoids the corrosion from the sea water, the attachment of barnacles, and inadvertent 

damage and minimizes the potential for vandalism. This WEC concept utilizes simple 

oscillatory motions of an inner pendulum wheel and requires very little maintenance. To 

avoid corrosion problems, WEC devices that utilized heaving buoys were not chosen 

although many of their mechanisms are also simple. This is because most heaving WEC 

devices have moving parts or interfaces, which are between a heaving floater and a 

reference frame, exposed to sea water as shown Fig. 2.  

 

 

                                                 

1 Système Électrique Autonome de Récupération d’Énergie des Vagues 
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Figure 2 Examples of a heaving buoy: Wavebob (left) and L-10 (right) (Falcao, 2010) 
 

 

2.3 Principle of WEC Device and Power Take-Off System 

The selected WEC device can be envisioned as consisting of a heavy wheel, 

whose gravitational center is purposely set off from a pivot point, and a Power Take-Off 

(PTO) system, as shown in Fig. 3. The heavy wheel oscillates about the geometric center 

at point A when the buoy is experiencing surge, heave, and pitch motions under the 

impact of ocean waves. The oscillation of the off-centered heavy wheel generates 

relative motions with respect to the hull of a buoy, which in turn drives the PTO system 

(e.g. hydraulic system or direct-drive synchronous machine). In Fig. 4, a schematic 

illustrating the principle of how the PTO system drives a hydraulic motor to generate 

electricity is presented.  
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Figure 3 Schematic principle of SEAREV 
 

 

Previous studies on a SEAREV device include a conceptual PTO with linear 

damping (Babarit, 2005), a PTO with a hydraulic system (Babarit et al., 2008; Josset et 

al., 2007), and a PTO with a synchronous machine (Ruellan, et al., 2010). In this 

research investigation, the PTO with hydraulic system is selected. The hydraulic system 

package is similar to that of the previous studies on the hydroelectric conversion system 

of SEAREV. The hydraulic system illustrated in Fig. 4 includes a double acting 

hydraulic linear ram that is horizontally hinged at the hull, a low pressure (LP) tank, a 

high pressure (HP) accumulator, and a hydraulic motor and generator. The piston 

movements (inside of the ram) are induced by the wheel’s oscillations. The motion of 

the piston forces the working fluid to enter the HP accumulator and to leave the LP tank. 
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The pressure difference between the HP accumulator and the LP tank drives the 

hydraulic motor, which in turn drives the electric generator (Falcao, 2007). 

 

 

 

Figure 4 Power Take-Off system for an oceanographic buoy 
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CHAPTER III  

APPROACH AND METHODOLOGY 

 

3.1 Buoy Motion 

3.1.1 Coupled Dynamic Analysis and 6-DOF Motion Equation 

In this study, the motions of the buoy moored by three mooring lines are 

simulated in time domain using the numerical code COUPLE, a coupled dynamic 

analysis program developed by Zhang and his former and currents students at Texas 

A&M University. A coupled dynamic analysis considers the dynamic interactions 

between the hull and its mooring lines by including the effect of the time dependent 

inertia and drag forces of the lines, whereas a conventional quasi-static analysis 

approach does not consider such effects. Thus, the coupled dynamic analysis provides 

more reliable results than a quasi-static approach in predicting the motions of floating 

bodies and tensions in mooring lines (Chen, 2002). In the coupled dynamic analysis, the 

six Degrees-Of-Freedom (6-DOF) motion equation is properly coupled with its mooring 

system by matching the displacements and forces at their connection points (fairleads) 

through hinged boundary conditions.  For computing the dynamics of mooring lines, 

each mooring line is approximated as a slender rod and discretized into many elements, 

and they are modeled using a finite element method (Garrett, 1982; Ma & Webster, 

1994). The space-fixed ( ˆˆˆ ˆoxyz   ) and body-fixed (oxyz) coordinate systems are employed 

to calculate the motion of floating bodies as shown in Fig. 5. The governing equations 
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for the 6-DOF motions of a rigid floating body were derived before (Chen, 2002; Lee, 

1995; Paulling & Webster, 1986) and can be expressed as follows. 

   
2

2
ˆt t

g g

ω
T r T ω ω r F

        
 

d d
m m m

dt dt
  (1) 

 
2

2o o o

d d
m

dt dt

 
     

 
g

ω
I ω I ω r T M   (2) 

where,  = (1, 2, 3)T is the coordinate of the point o in the space-fixed coordinate, the 

T is the transfer matrix between the body-fixed and space-fixed coordinate system, the 

superscript t indicates the transpose of a matrix, ω = (ω1, ω2, ω3)T is the angular velocity, 

rg = (xg, yg, zg)T is the vector of the center of gravity, Io is the moment of inertia of the 

body, and F̂ and Mo represent the total forces and the total moments applied on the rigid 

body respectively. Note that ω, rg, Io, and Mo are expressed with respect to the body-

fixed coordinate. Euler angles and their sequence related roll, pitch, yaw are detailed in 

Appendix A. 

 

 

Figure 5 Coordinate system for a rigid slender body 
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3.1.2 Morison Equation for Wave Loads 

Wave loads applied on a floating body include radiation and diffraction wave 

loads in addition to incident wave loads. The radiation and diffraction wave loads can be 

critical when a floating body has large horizontal dimensions in comparison with the 

wavelength of the incident wave. The radiation waves are generated by the motions of 

the floating body, which consumes the energy, is known as radiation damping. However, 

considering the size of oceanographic buoys (4-m diameter) and typical wavelengths of 

waves considered in this study (from 25 m to rough 100 m), the slender body 

approximation is a reasonable approximation for this study.  

Thus, Morison Equation can be employed, and consequently the radiation and 

diffraction wave loads are neglected. This approach simplifies the calculation and 

provides an accurate estimate of wave loads provided that the ratio of wavelength to the 

diameter of a slender body λ/D>5 (Faltinsen, 1990). Because of these merits, Morison 

Equation is widely used to calculate wave loads on slender floating structures (Ahmad, 

1996; Henderson & Patel, 1998; Jain, 1997).  

 Recently, COUPLE has been updated for shallow draft floating body’s 

simulations (Zhang, 2014). In particular, COUPLE considers wave slopes when 

calculating bottom pressure applied on the floating body. The consideration may change 

external moments for wave loads. This is critical in order to have accurate results for 

pitch motions and coupled surge motions of all kind of shallow draft bodies such as 

oceanographic buoys or CALM (Catenary Anchor Leg Mooring) buoys used in the oil 
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and gas industry. As long as the motions (mainly surge and pitch) of the moored buoy 

are accurately estimated, the power by the PTO can also be estimated accurately.  

In addition, using the nonlinear deterministic Hybrid Wave Model (HWM), 

COUPLE has the following uniqueness and advantage. The wave kinematics are 

predicted up to the free surface and at least accurate up to second order in wave 

steepness (Jia, 2012; Spell et al., 1996; Zhang et al. 1996). Thus, there is no necessity for 

choosing an estimation among several empirical or stretching approximations, such as 

linear extrapolation and wheeler stretching. 

 

3.2 Pendulum Oscillation 

3.2.1 Pendulum Model 

The SEAREV WEC device is modeled as a pendulum model that captures the 

interaction between the hull and its PTO system as shown in Fig. 6. As in an earlier 

study by Babarit (2005), the motion of the buoy is assumed to be two dimensional. Thus, 

this pendulum model has 4 Degrees-Of-Freedom (DOF), the surge, heave, and pitch of 

the buoy, and the relative motion (angle) between the hull and the wheel. The model is 

similar to the model shown in the previous study, but the difference between them is that 

the point G in Fig. 6 represents the center of gravity of the entire buoy in Fig. 3 

including the inner pendulum wheel in addition to its hull.  

The pendulum system experiences a damping force by taking the hydraulic PTO 

system into account. This damping causes reduction in the amplitude of oscillation of the 

pendulum P in Fig. 6. The damped oscillation of the wheel P is accurately calculated 
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using equivalent damping and an iterative scheme in later sections. Once the motions of 

the buoy are accurately calculated, the damped oscillation of the pendulum P can also be 

estimated accurately.  

 

 

 

Figure 6 Pendulum model of SEAREV 
 

 

3.2.2 Pendulum Motion Equation Derived using a Langrange’s Approach 

The oscillation of the pendulum shown in Fig. 6 is forced by the surge, heave, 

and pitch motions of the buoy (shown as G wheel in the figure), which can be calculated 

using COUPLE. One approach to formulate the equation of motion for the pendulum 

model is to use a Lagrange’s approach.  
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Let L be the Lagrangian quantifying kinetic energy and potential energy 

expressed in terms of generalized variables. The Lagrange’s approach is based on the 

concept that the sum of kinetic energy and potential energy is constant in a conservative 

system (Baruh, 1999; Thomson, 1972). 

 L K P    (3) 

where, K is total kinetic energy, and P is total potential energy. 

 

 0, 1,2,...,
i i

d L L
i M

dt q q

  
     

  (4) 

where, iq  and iq  are generalized variable and velocity respectively, and M is the number 

of generalized variables involved in L. In order to define L, the coordinates of point G 

and P must be defined. 

 
 

    
,

sin sin , cos cos

G x z

P x d l z d l     



      
  (5) 

where, x, z, and θ are surge, heave, pitch of the floating body, and α is the relative angle 

between the hull and the pendulum wheel. d is the distance from the center of gravity of 

the floating body, G, to the pivot point of the wheel A, and l is the distance from the 

pivot point to the mass center of the pendulum wheel.  

It follows then that the Lagrangian L can be expressed as  
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   
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      
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22 2
1 2 1 2

22 2 2

2

2

1 1 1

2 2 2

1

2 2 cos cos cos

cos cos

L m m x I I

d l
m

d x l x d l

m g d l

  

  

         

  

    

  
           

  

  

  

     
  (6) 

where, m1, m2, I1, and I2 are the mass and moment of inertia of the buoy hull and 

pendulum wheel respectively, and g the gravitational acceleration. 

Then it follows from the application of Eq. 4 that a system of non-linear motion 

equations results. The resulting equation for these two pendulums in the conservative 

system can be written in the matrix form 

 0PMX F    (7) 

where, M is mass matrix, X is the set of generalized variables, Fp is pendulum matrix for 

the remaining terms including gravitational forces.  

  , , , ,  T
X x z   (8) 

   
   

   
   

1 2

1 2

2 2 2 2

2 2

2 2 2

2 2 2
2 2 2

1 2 2 2 2 2 2 2
2 2

2 2 2 2 2

0

0

cos cos sin sin

cos sin

cos cos cos

sin sin sin

2 cos cos

cos

m m

m m
M

m d m l m d m l

m l m l

m d m l m l

m d m l m l

I I m d m l m d l I m l m d l

I m l m d l I m l

     
   

    
    

 



 
    
   

     
   
     
    ,

  (9) 
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       
 
     

   

  

  

  


  (10) 

The details of the derivation are shown in Appendix B. 

The fourth row in vector X is the generalized variable α, and the related equation 

governs the motion of the inner pendulum wheel. The equation is linearized by assuming 

both pitch angle θ and the relative angle α are small, as shown in Eq. 11 and Eq. 12 

given below. It should be noted that heave acceleration is much smaller than gravitation 

acceleration in case simulations, so nonlinear terms which have the heave acceleration 

are neglected. Besides, as the configuration of the PTO implies, heave acceleration at 

small pitch angles cannot make significant contribution to pendulum motions. Thus, 

heave acceleration is neglected for power generation, although COUPLE calculates all 

of 6-DOF buoy motions including heave motions. 

    2
2 2 2I m l m gl M t      (11) 

    2
2 2 2 2 2M t m l x I m l m dl m gl        (12) 

where, M(t) is the forcing term, resulting from motions of the buoy.  

M(t) is contributed from kinetic energy and potential energy induced by surge 

and pitch motions, that is, their accelerations. Thus, the forcing term M(t) is divided into 

two parts, related to surge and pitch, respectively as shown in Eq. 13 and Eq. 14. 

  surge 2M t m l x    (13) 
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    2
pitch 2 2 2 2M t I m l m dl m gl        (14) 

The given motions induced by regular waves are approximated by sinusoidal 

functions, and these forcing terms are used for estimating responses of the pendulum’s 

oscillation respectively.  

The motion equation for this pendulum model derived here is identical with the 

motion equations derived using a free body diagram and vector mechanics in the earlier 

study by Babarit (2005), by correcting the typo –d to d. The system of linearized motion 

equations for X=(x, z, θ, α)T by the Lagrange’s approach is given in Appendix B.   

 

3.2.3 Pendulum Motion Equation Derived using a Newtonian Approach 

The pendulum motion derived by the Lagrange’s approach can also be derived 

using a Newtonian approach. The following free-body diagram depicts the all forces and 

moments applied on the pendulum wheel.  
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Figure 7 Free-body diagram for the pendulum motion 
 

 

where, the inertia force 1 is due to pitch of the floating body, and the inertia force 2 and 

inertia moment due to rotational motions of inner wheel with respect to the point A. The 

mass moment of inertia is the centroidal mass moment of inertia of the pendulum wheel. 

The inertia force 3 results from the surge acceleration of the body, and inertia force 4 is 

from the heave acceleration.   

Some of forces related to moments about the axis through A is analyzed by 

following vector mechanics.  
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Figure 8 Vectors for applied forces 
 

 

Moment equilibrium with respect to A provides the following equation, which is 

consistent with the motion equation derived through the energy based approach in the 

previous section. 

 
      

   

2
2 2 2 2

2 2

sin cos

cos sin 0

A
M I m l m gl m dl

m l x m l z

      

   

      

    

  

 
  (15) 

In the next section, the subscripts “2” have been removed. That is I refers I2 and m refers 

m2.  

 

3.3 Estimation of Electric Power Generation 

The motion equations derived using the Lagrange approach do not involve the 

damping resulting from the energy transfer from the mechanical energy to electric 

energy. Thus, this section presents an iterative scheme to estimate equivalent damping 
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coefficient, quantifying work done during the gas (or hydraulic oil) compression by the 

ram in the HP accumulator. Using this scheme, not only the damping due to energy 

transfer is considered, but also the produced electrical power is accurately estimated. For 

simplification, the pressure difference between two chambers of the double acting 

cylinder is assumed as constant. The work, W, done in a wave period, T, is 

 
0

T

pW p S X dt       (16) 

where, ∆p is the pressure difference between the HP accumulator and the LP tank, S is 

the piston area, and pX  is the velocity of the piston.  Since the work done by the piston 

consumes the energy of the oscillating wheel, the energy dissipation of the oscillating 

wheel during one wave period should be equal to the work done by the ram. The 

dissipated energy of the oscillating wheel, E, is calculated by evaluating the integral  

 
0

T

p pE bX X dt      (17) 

where, b is the damping coefficient obtained by equating Eq. 16 and Eq. 17. This 

equivalent damping is considered in motion equation of the wheel.  

The displacement of the piston is related to the rotational angle through the 

coefficient λ. For this coefficient, the half of the distance between two end points (back 

and forth) of the piston during one cycle of oscillation divided by the amplitude of 

relative angle is taken.  

 pX    (18) 

After considering the damping, Eq. 11 can be modified and expressed as  
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    2 2
1 1 1 surge or pitchn n n n nI ml b mgl M t            (19) 

where, the subscript n indicates the number of iterations and the right-hand side (RHS) 

represents a forcing term, either Eq. 13 or Eq. 14.  

The iteration converges quickly after a few iterations. Finally, the produced 

electrical energy is estimated by Eq. 20 for surge and pitch separately, and then the 

summation of each power output is applied to estimate the total power output. The 

equivalent damping b retains the amplitude of oscillation at the previous iteration as an 

element. Thus, in order to conservatively estimate the total power output, the summation 

of each power output from M(t) pitch and M(t) surge is applied and replaces M(t) in Eq. 12.  

 
,0

1 T

p i NP p S X dt
T        (20) 

where, N is the last iteration number.  

The non-dimensional damping ratio can be expressed as 

 
 

2
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i N i Nb

mgl I ml

  


 
  (21) 

 By applying the iteration scheme at each pressure condition, the optimum 

electrical power and the pressure condition can be calculated. 
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CHAPTER IV  

NUMERICAL SIMULATION 

 
 
4.1 Simulation Particulars 

4.1.1 Selection of Wave Conditions 

The wave conditions used in the numerical simulations were selected from data 

in the Gulf of Mexico and are for relatively benign sea conditions. The wave conditions 

at a water depth of 80 m are based on actual records by a NOAA buoy at Station 42020, 

which is deployed in the sea near Corpus Christi in Texas, and represents the benign sea 

states of the Gulf of Mexico. The significant wave height and wave dominant period, 

which is the period with the maximum wave energy, for 5 years (from 2008 to 2012) are 

presented in Table 2. The data range for significant wave height is from 0.00m to 8.25m, 

and the range for peak period is from 0.5 sec to 15.5 sec. Data beyond these ranges is not 

considered. The original data set provided by NOAA can be found on their webpage 

(NDBC, 2013). 
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Table 2 Wave data recorded by a NOAA buoy at Station 42020 in the Gulf of Mexico 

 

 

 

Based on Table 2, ten different wave conditions were chosen to represent the 

yearly local wave conditions, and these are summarized in Table 3. The percentages 

indicate the probability of the occurrence for the related wave conditions in a one year-

timeframe.   

 

 

 

\Tp(sec)
Hs(m)

0.5
-1.5

1.5
-2.5

2.5
-3.5

3.5
-4.5

4.5
-5.5

5.5
-6.5

6.5
-7.5

7.5
-8.5

8.5
-9.5

9.5
-10.5

10.5
-11.5

11.5
-12.5

12.5
-13.5

13.5
-14.5

14.5
-15.5 Sum %

0.0-0.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
0.25-0.75 0 8 1001 1775 2387 1782 826 398 62 36 11 3 3 1 0 8293 19.65
0.75-1.25 0 0 93 1567 3226 4970 2868 1150 191 59 23 0 4 1 0 14152 33.53
1.25-1.75 0 0 0 72 1005 3181 3331 1619 221 70 4 3 4 4 0 9514 22.54
1.75-2.25 0 0 0 2 90 1154 2317 1800 302 89 13 1 6 8 0 5782 13.70
2.25-2.75 0 0 0 0 8 243 885 1200 222 59 9 0 3 10 0 2639 6.25
2.75-3.25 0 0 0 0 0 20 251 618 176 34 13 0 3 5 0 1120 2.65
3.25-3.75 0 0 0 0 0 2 50 247 85 33 16 0 11 3 0 447 1.06
3.75-4.25 0 0 0 0 0 0 7 74 32 21 7 0 7 9 0 157 0.37
4.25-4.75 0 0 0 0 0 0 0 12 13 10 5 0 1 2 0 43 0.10
4.75-5.25 0 0 0 0 0 0 0 3 5 8 5 0 1 0 0 22 0.05
5.25-5.75 0 0 0 0 0 0 0 0 0 3 3 0 0 4 0 10 0.02
5.75-6.25 0 0 0 0 0 0 0 0 1 2 4 0 2 1 0 10 0.02
6.25-6.75 0 0 0 0 0 0 0 0 0 1 2 0 1 1 0 5 0.01
6.75-7.25 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 3 0.01
7.25-7.75 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 4 0.01
7.75-8.25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
Sum 0 8 1094 3416 6716 11352 10535 7121 1310 427 119 7 47 49 0 42201 100.00
% 0.00 0.02 2.59 8.09 15.91 26.90 24.96 16.87 3.10 1.01 0.28 0.02 0.11 0.12 0.00 100.00
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Table 3 Computational domain 
Water Depth Tp Hs Probability 

79.9m 

4.0 sec 0.5 m 6.4% 

5.0 sec 
0.5 m 8.7% 

1.0 m 11.6% 

6.0 sec 

0.5 m 6.4% 

1.0 m 17.9% 

1.5 m 11.5% 

7.0 sec 

1.0 m 10.4% 

1.5 m 12.1% 

2.0 m 8.4% 

8.0 sec 2.0 m 6.6% 

  

 

4.1.2 Selection of the Buoy and Mooring System 

 A 3-meter discus buoy is commonly used by NOAA. The height of the buoys’ 

hull is in the range of 1 to 2 meters, and they weigh between 0.8 to 3.2 tons in the 

absence of any payloads. Based on the estimates of the size of the oscillating wheel 

needed to generate the desired electric power, two oceanographic buoys with cylindrical 

shapes (WEC-1 and WEC-2) were chosen for this research study. Originally a discus 

buoy of 3-meters in diameter was considered, but the dimensions were increased 

considering the size of the wheel and the PTO system needed to generate enough 

electrical power. Table 4 lists the sizes of WEC-1 and WEC-2 and the dimensions of the 
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PTO systems. The arrangement of mooring system attached to the buoy is sketched in 

Fig. 9. The overlooking view of the mooring system is also sketched in the figure, and 

the properties of the mooring system are summarized in Table 5.  

The shape of the pendulum is composite with a rectangular body and a fan-shape 

body as shown in Fig. 10. In order to make l large, the fan-shape is considered, and the 

rectangular body, whose length is same as the radius of the fan-shape and width is small, 

is considered only for attaching a piston rod. Attaching concentrated mass near the edge 

of the pendulum is helpful in making l larger, as previous studies on SEAREV did 

(Ruellan et al., 2010). It is expected that the concentrated mass helps to generate larger 

electric power with the smaller mass of pendulum because of the relatively larger l. 

However, considering the limited space inside of the buoy due to arrangements of 

additional equipment, such as an accumulator and hydraulic motor, the solid 

homogeneous fan-shape is considered, which reduces maximum thickness of the wheel. 

The sensitivity of the pendulum wheel thickness is discussed in Appendix C. 

The horizontal attachment of the hydraulic cylinder to the hull is different from 

the previous study by Josset et al (2007) and reflects the limited space inside of the 

oceanographic buoy. The limited length of the hydraulic piston obstructs a full 

revolution of the wheel as shown in Fig. 10. The related problem caused by the limited 

stroke can be solved in two ways. First, the pendulum is set to be mechanically 

disconnected from the hydraulic cylinder beyond a certain angles such as ±30° for WEC-

2. Second, attaching blocks between both the hull and the pendulum makes oscillations 

stop at the limited angle.  
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Table 4 Dimensions of WEC devices 
 Dimensions Unit WEC-1 WEC-2 

Buoy 

Hull 

Diameter m 4 

Height m 2.5 

Draft m 0.65 

Mass kg 4,000 

C.G. m 1.36 

Cm - 1.0 

Cd - 1.0 

Inner 

Wheel 

Mass kg 1,000 

Diameter m 1.3 2.0 

d m - - 

l m 0.306 0.470 

Width of rectangular part cm 6.5 10.0 

Angle of fan-shape ° 107.1 107.1 

Moment of inertia kg∙m2 111.1 263.1 

Thickness  
Steel cm 29.2 12.3 

Concrete cm 99.5 42.0 

Piston 

Diameter of cylinder cm 5.0 

Length of piston rod m 1.20 

Pressure difference bar 0.01 – 3.00 
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where, C.G. in the table is the center of gravity for buoy hull including inner wheel. Cm 

is the added-mass coefficient for the circular cylinder. The moment of inertia in the table 

is the centroidal mass moment of inertia of the inner pendulum.  

 

 

Table 5 Specification of the mooring system 
Dimensions Unit WEC-1 WEC-2 

Number of mooring lines ea 3 

Length of mooring lines m 500 

Mass per unit length in air kg/m 6.50 

Elastic stiffness (EA) N 2.89e07 

Pretension N 1.63e04 

 

 

 

Figure 9 Sketch of the buoy and mooring system 
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Figure 10 Arrangement of the inner pendulum wheel (WEC-2) with dimensions in the 
unit of meter 

 

 

4.2 Buoy Motions 

Numerical simulations for 6-DOF motions of the buoy excited by regular waves 

are made using the numerical code COUPLE. The surge and pitch motions for the most 

probable site wave condition (H= 1.0 m, T= 6.0 sec) are presented in Fig. 11 and Fig. 12. 

Other results for the other nine wave conditions are presented in Appendix D. The 

amplitude of the motions of all ten wave conditions are tabulated in Table 6. To be 
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specific, this amplitude is measured based on peak to trough values of one regular 

motion in the range of 450 sec to 500 sec, when the related motions reach steady state. 

It was assumed that motions are sinusoidal, and this approach was used for 

computing external moment, M(t), used in Eq. 13 and Eq. 14. Many of time series results 

approximate a sinusoidal function, but some of pitch motions show highly nonlinearity 

(e.g. H=1.0 m, T=5.0 sec and H=2.0 m, T=8.0 sec). Thus, to estimate an electric power 

output conservatively, FFT (Fast Fourier Transform) is used to obtain the first harmonic 

data from the simulation results neglecting the second and higher harmonics. This is 

because the amplitude of the first harmonic data is usually smaller than the amplitude of 

original simulation data for surge and pitch. The amplitudes of the first harmonic data 

are also listed in Table 6. Both amplitudes (a half of peak to trough value and the first 

harmonic by FFT) are used and compared for simulating the electric power output 

discussed in later sections.  

In this frequency range, the results show that the shorter the wave periods and the 

higher the wave heights, the larger the surge and pitch motions. Furthermore, wave 

height is more important than wave period to have larger surge and pitch, which is 

expected.  

Also, as discussed in the previous chapter, wave slopes are considered for 

calculating bottom pressures applied to the oceanographic buoy which has a shallow 

daft. To be specific, surge and pitch motions are reduced by an average 17% and 64% 

respectively for the ten regular wave cases considered in this study. In this thesis, only 

the results with the consideration of wave slope are shown and discussed.  
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Figure 11 Surge motion for one regular wave case (H=1.0 m, T=6.0 sec) 
 

 

 

Figure 12 Pitch motion for one regular wave case (H=1.0 m, T=6.0 sec) 
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Table 6 Floating body motions calculated by COUPLE 

T 

[sec] 

H 

[m] 

Amplitude 

A half of peak to trough value FFT 

Surge [m] Pitch [°] Surge [m] Pitch [°] 

4 0.5 0.230 1.440 0.231 1.259 

5 
0.5 0.240 0.750 0.224 0.567 

1.0 0.460 2.500 0.423 1.559 

6 

0.5 0.248 0.500 0.205 0.303 

1.0 0.450 1.600 0.366 0.900 

1.5 0.625 3.025 0.528 1.613 

7 

1.0 0.465 1.010 0.338 0.483 

1.5 0.590 1.600 0.429 0.905 

2.0 0.750 2.550 0.541 1.333 

8 2.0 0.700 2.600 0.707 1.346 

 

 

4.3 Power Output 

4.3.1 Power Output from Regular Waves 

 Based on the surge and pitch motions, the related power output is estimated for 

each given regular wave. This section presents the results for power estimation for the 

most occurring wave condition (H=1.0m, T=6.0 sec). Figs. 13-16 shows iteration results 

at 0.2 bar of the pressure difference (∆p) between the HP accumulator and the LP tank. 



 

34 

 

The figures confirm that the estimated power output, damping ratio, and response of the 

pendulum motion converge quickly for both WEC configurations. To be specific, it 

takes at most about 5-7 iterations to reach the convergence. In the case of surge, it takes 

only 2-3 iterations, and the changes are relatively smaller than the cases of pitch. This is 

because M(t) surge is much larger than M(t) pitch, so the damping corresponding to 0.2 bar 

(∆p) is a relatively larger resistance for pendulum motions induced by pitch motions than 

by surge motions.  

 

 

 

Figure 13 Convergence at ∆p = 0.2 bar for one regular wave case (H=1.0 m, T=6.0 sec) 
using WEC-1 (surge only) 
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Figure 14 Convergence at ∆p = 0.2 bar for one regular wave case (H=1.0 m, T=6.0 sec) 
using WEC-1 (pitch only) 

 

 

 

Figure 15 Convergence at ∆p = 0.2 bar for one regular wave case (H=1.0 m, T=6.0 sec) 
using WEC-2 (surge only) 
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Figure 16 Convergence at ∆p = 0.2 bar for one regular wave case (H=1.0 m, T=6.0 sec) 
using WEC-2 (pitch only) 

 
 

 

Figs. 17-20 show the converged electrical power outputs for the two WEC cases 

at various pressure differences between the HP accumulator and the LP tank. Amplitudes 

obtained using FFT is used for the computing results Fig. 17 and Fig. 19. Amplitudes 

taken as a half of peak to trough value are used for the computing results Fig. 18 and 

Fig. 20. The optimum power rates and the pressure differences are summarized in Table 

7. It should be noted that the estimated power outputs based on the amplitude obtained 

using FFT are conservative because the accelerations induced by the second harmonic 
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The table shows that optimum generations by two WEC devices rate 1.42 W - 
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indicate that each configuration of WEC devices produces its optimum power output at a 

unique pressure difference. The power outputs decrease dramatically when the pressure 

difference is beyond of the ‘optimal’ pressure difference. When the pressure difference 

is above of 0.76 for FFT use (or 0.93 bar for a half of peak to trough value use), the 

WEC devices simply do not produce electrical power because the estimated equivalent 

damping coefficient is too large. In other words, the large resistance provided by the 

piston induced by the large pressure difference stops the wheel to oscillate.  

The plots and table also show that contributions from pitch motions are much 

smaller than from surge motions. Furthermore, beyond certain pressure differences, pitch 

does not produce any energy, but surge does. Thus, the optimum powers for the most 

occurring wave condition are contributed from surge motions except for Fig. 18. 

However, the contribution of surge and pitch depends on the WEC dimension, wave 

frequency, and motion results which are elements of M(t). Thus, the statement for which 

motion critically contributes to electric power generation cannot be generalized for all of 

SEAREV type devices.  
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Figure 17 Power output for one regular wave case (H=1.0 m, T=6.0 sec) using WEC-1 
and FFT data 

 
 

 

 

Figure 18 Power output for one regular wave case (H=1.0 m, T=6.0 sec) using WEC-1 
and a half of peak to trough value 
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Figure 19 Power output for one regular wave case (H=1.0 m, T=6.0 sec) using WEC-2 

and FFT data 
 
 

 

 

Figure 20 Power output for one regular wave case (H=1.0 m, T=6.0 sec) using WEC-2 
and a half of peak to trough value 
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Table 7 Summary of power output for one regular wave case (H=1.0 m, T=6.0 sec) 
Use of data 

 

     Motion/Item 

A half of peak to 

trough value 
FFT 

WEC-1 WEC-2 WEC-1 WEC-2 

Surge Optimum power 2.15 W 3.45 W 1.42 W 2.28 W 

At pressure difference 0.66 bar 0.66 bar 0.53 bar 0.53 bar 

Pitch Optimum power 0.57 W 0.83 W 0.18 W 0.26 W 

At pressure difference 0.34 bar 0.32 bar 0.19 bar 0.18 bar 

Total Optimum power 2.20 W 3.45 W 1.42 W 2.28 W 

At pressure difference 0.42 bar 0.66 bar 0.53 bar 0.53 bar 

 

 

4.3.2 Weighted Average Power Output for the Ten Regular Wave Cases 

The yearly average power output is estimated based on the summation of the 

power output of the ten wave conditions multiplied by the related occurrence probability 

in each year. In computing the power output of each wave condition, the pressure 

difference is kept as a constant. Figs. 21-24 show the estimated average power output for 

the two WEC cases at various pressure differences. The surge and pitch amplitudes 

obtained using FFT is used for Fig. 21 and Fig. 23, while the amplitudes obtained as a 

half of peak to trough value are used for Fig. 22 and Fig. 24. The optimum power rates 

and the pressure differences are summarized in Table 8. Table 8 shows that optimum 

power generations by two WEC devices rate 1.69 W - 2.88 W and 2.76 W – 4.55 W.  
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When the pressure difference is kept at 0.59 – 0.63 bar, the power outputs from 

both WEC-1 and WEC-2 roughly reach the optimum values. Tables 9-12 show the 

results at pressure difference at 0.60 bar. Comparing the amplitudes of the floating body 

listed in Table 6 to power outputs in Tables 9-12, it is shown that a large motion results 

in large power output. The pitch amplitudes based on the FFT data do not contribute to 

the optimum power generation at all for both WEC devices.  Also, at some wave 

conditions there are no power output generated by either pitch or surge. In particular, 

there is no contribution from the wave conditions H=0.5m, T=6.0 sec and H=1.0m, 

T=7.0 sec when using amplitudes based on the FFT data because M pitch (t) and M surge (t), 

the moment excited by them, are too small to overcome the resistance for pushing the 

piston. This is mainly caused by two factors: one is small amplitudes of surge and pitch 

induced by small wave height and the other is small wave frequency, both of which 

reduce the related accelerations and hence M pitch (t) and M surge (t). Additionally, in our 

case, the wave frequency is far apart from the natural frequency of the pendulum system.  
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Figure 21 Weighted average power output for the ten regular wave cases using WEC-1 
and FFT data 

 

 

 

 

Figure 22 Weighted average power output for the ten regular wave cases using WEC-1 
and a half of peak to trough value 
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Figure 23 Weighted average power output for the ten regular wave cases using WEC-2 
and FFT data 

 
 

 

 

Figure 24 Weighted average power output for the ten regular wave cases using WEC-2 
and a half of peak to trough value 
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Table 8 Summary of weighted average power output for the ten regular wave cases 
Use of data 

 

    Motion/Item 

A half of peak to 

trough value 

FFT 

WEC-1 WEC-2 WEC-1 WEC-2 

Surge Optimum power 2.32 W 3.78 W 1.69 W 2.76 W 

At pressure difference 0.65 bar 0.65 bar 0.59 bar 0.59 bar 

Pitch Optimum power 0.67 W 0.98 W 0.24 W 0.35 W 

At pressure difference 0.42 bar 0.40 bar 0.24 bar 0.23 bar 

Total Optimum power 2.88 W 4.55 W 1.69 W 2.76 W 

At pressure difference 0.63 bar 0.61 bar 0.59 bar 0.59 bar 
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Table 9 Power by WEC-1 and its variable at ∆p =0.6 bar (FFT data) 
T H P [W] ζ [-] α i=0 [°] α i=N  [°] λ i=N  [cm] 

[s] [m] Surge Pitch Surge Pitch Surge Pitch Surge Pitch Surge Pitch 

4 0.5 4.43 - 0.68 - 4.00 - 3.32 - 64.96 - 

5 
0.5 1.07 - 2.84 - 2.32 - 1.00 - 65.00 - 

1.0 4.11 - 0.74 - 4.37 - 3.84 - 64.95 - 

6 

0.5 - - - - - - - - - - 

1.0 1.37 - 2.22 - 2.53 - 1.54 - 64.99 - 

1.5 2.72 - 1.12 - 3.66 - 3.05 - 64.97 - 

7 

1.0 - - - - - - - - - - 

1.5 0.63 - 4.84 - 2.14 - 0.82 - 65.00 - 

2.0 1.40 - 2.17 - 2.69 - 1.84 - 64.99 - 

8 2.0 1.21 - 2.51 - 2.66 - 1.81 - 64.99 - 
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Table 10 Power by WEC-1 and its variable at ∆p =0.6 bar (a half of peak to trough 
value) 

T H P [W] ζ [-] α i=0 [°] α i=N  [°] λ i=N  [cm] 

[s] [m] Surge Pitch Surge Pitch Surge Pitch Surge Pitch Surge Pitch 

4 0.5 4.40 - 0.69 - 3.99 - 3.30 - 64.96 - 

5 
0.5 1.43 - 2.12 - 2.48 - 1.34 - 64.99 - 

1.0 4.57 1.47 0.67 2.07 4.76 2.50 4.27 1.37 64.94 64.99

6 

0.5 - - - - - - - - - - 

1.0 2.12 - 1.43 - 3.12 - 2.38 - 64.98 - 

1.5 3.41 2.01 0.89 1.51 4.33 3.03 3.83 2.26 64.95 64.98

7 

1.0 0.93 - 3.28 - 2.32 - 1.21 - 65.00 - 

1.5 1.66 - 1.82 - 2.94 - 2.18 - 64.98 - 

2.0 2.42 1.23 1.25 2.46 3.74 2.55 3.17 1.62 64.97 64.99

8 2.0 1.17 1.15 2.56 2.64 2.63 2.60 1.77 1.72 64.99 64.99
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Table 11 Power by WEC-2 and its variable at ∆p =0.6 bar (FFT data) 
T H P [W] ζ [-] α i=0 [°] α i=N  [°] λ i=N  [cm] 

[s] [m] Surge Pitch Surge Pitch Surge Pitch Surge Pitch Surge Pitch 

4 0.5 7.65 - 0.49 - 4.50 - 3.73 - 99.93 - 

5 
0.5 1.76 - 2.14 - 2.48 - 1.07 - 99.99 - 

1.0 6.76 - 0.56 - 4.68 - 4.11 - 99.91 - 

6 

0.5 - - - - - - - - - - 

1.0 2.20 - 1.71 - 2.65 - 1.68 - 99.99 - 

1.5 4.37 - 0.86 - 3.82 - 3.19 - 99.95 - 

7 

1.0 - - - - - - - - - - 

1.5 1.00 - 3.78 - 2.21 - 0.85 - 100. 

00 

- 

2.0 2.23 - 1.69 - 2.78 - 1.90 - 99.98 - 

8 2.0 1.99 - 1.97 - 2.72 - 1.86 - 99.98 - 
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Table 12 Power by WEC-2 and its variable at ∆p =0.6 bar (a half of peak to trough 
value) 

T H P [W] ζ [-] α i=0 [°] α i=N  [°] λ i=N  [cm] 

[s] [m] Surge Pitch Surge Pitch Surge Pitch Surge Pitch Surge Pitch 

4 0.5 7.61 - 0.49 - 4.48 - 3.70 - 99.93 - 

5 
0.5 2.36 - 1.60 - 2.65 - 1.43 - 99.99 - 

1.0 7.51 1.84 0.50 2.04 5.09 2.50 4.57 1.12 99.89 99.99

6 

0.5 - - - - - - - - - - 

1.0 3.41 - 1.10 - 3.26 - 2.46 - 99.97 - 

1.5 5.49 2.97 0.69 1.27 4.53 3.03 4.01 2.17 99.92 99.98

7 

1.0 1.47 - 2.56 - 2.39 - 1.25 - 99.99 - 

1.5 2.64 - 1.42 - 3.03 - 2.25 - 99.97 - 

2.0 3.85 1.80 0.98 2.09 3.86 2.55 3.28 1.53 99.95 99.99

8 2.0 1.87 1.72 2.02 2.19 2.70 2.60 1.82 1.67 99.98 99.99

 

 

4.3.3 Power Output for Various Positions of WEC Device 

This section explores the effect of the parameter d on the power output, when the 

d is distance from the center of gravity of the buoy, G, to the pivot point of the wheel A. 

This is a parameter to decide the magnitude of M pitch (t). Figs. 25-28 show the variance 

of power generation with the change of d, taking WEC-2 (FFT data) as an example. 

Because the contribution from pitch is much smaller than surge by the given dimensions 

of WECs, only small variances by position changes are shown. Total power outputs 
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beyond certain pressure levels do not have any variance with the change of d because at 

this pressure range only surge that does not have correlation with d contributes to the 

power generation.  

 

 

 

Figure 25 Power outputs for one regular wave case (H=1.0 m, T=6.0 sec) depending on 
WEC positions (pitch only) 
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Figure 26 Power outputs for the ten regular wave cases depending on WEC positions 
(pitch only) 

 

  

 
Figure 27 Power outputs for one regular wave case (H=1.0 m, T=6.0 sec) depending on 

WEC positions (total) 
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Figure 28 Power outputs for the ten regular wave cases depending on WEC positions 
(total) 

 

 

4.3.4 Power Output by Two Hydraulic Cylinders 

 The space after arranging the inner pendulum in the center of the buoy allows 

installation of an additional hydraulic cylinder on the opposite side as shown in Fig. 29. 
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Figure 29 Arrangement of two hydraulic cylinders 
  

 

The power outputs by two hydraulic cylinders are simulated based on the fact 

that both power estimation and damping are twice the amount of them in the case of one 

hydraulic cylinder. The simulation results below are for WEC-2 and FFT data. As shown 

in Fig. 30, the additional hydraulic cylinder set may be more effective than single 

cylinder set in the relatively low pressure difference range, but the single cylinder set is 

more effective in the relatively high pressure difference range. Thus, if the pressure 

difference is decided, the number of hydraulic cylinder set can be decided for work 

efficacy.  
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Figure 30 Power outputs for one/two hydraulic cylinders Power Take-Off system 
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CHAPTER V  

CONCLUSIONS AND FUTURE WORK 

 
 
5.1 Conclusions 

This study explores the idea of utilizing a Wave Energy Conversion (WEC) 

device to provide electric energy for oceanographic buoys as a permanent or semi-

permanent power source. A WEC device of SEAREV type that can be modeled as a 

pendulum set was selected because of utilizing its simplicity and reliability, and 

minimizing the potential for vandalism and stealing of a current power source. The 

numerical simulations for estimating the power outputs of the WEC devices with sizes 

which can be housed by typical oceanographic buoys are performed and confirm their 

feasibility.  

The method of estimating power outputs mainly consists of three steps. First, the 

motions of the floating buoy moored by its mooring system under the impact of various 

regular waves are calculated using an in-house code, COUPLE. Secondly, the oscillation 

of the wheel is estimated based on the surge and pitch motions of the buoy. In this 

research study, the oscillation of the pendulum set is explained by two approaches. One 

is a Lagrange’s approach. The other is a Newtonian approach, which was already 

performed by the earlier study on SEAREV. Thirdly, the oscillation of the wheel is re-

estimated by allowing for the damping coefficient resulting from the energy consumed 

for driving the piston through an iterative scheme. After the convergence of the damping 

coefficient is reached, the electrical power outputs are obtained. Using the iterative 
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scheme, the parametric studies with pressure difference are performed in order to find 

the optimum power output and its pressure condition of the hydraulic Power Take-Off 

(PTO) system.  

Comparing the results from this study to power demands for typical 

oceanographic buoys, it can be concluded that the proposed WEC device is feasible. 

Further, this study examines the contributions of motions, mainly surge and pitch, to the 

power generation. For the cases of typical oceanographic buoys and the pendulum wheel 

proposed in this study, surge acceleration seems to contribute most to the excitation of 

the pendulum oscillation hence to the generation of electrical power.  

Findings made in this study and performing coupled dynamic analysis for the use 

of a WEC device of SEAREV type may have valuable applications to the design of this 

device used as a renewable energy source in a wide range of shapes and different sizes 

of oceanographic buoys with various mooring configurations in the future.  

 

5.2 Future Work 

The estimated power can be increased by optimizing a few parameters of the 

WEC, such as a pendulum length, mass and its centroidal moment of inertia of the inner 

pendulum wheel, the center of gravity of the buoy, mooring arrangement. Evaluation of 

these parameters can produce the optimized power output within the dimensions of the 

hull described in this study.  

Another improvement can be achieved by changing the wheel type, which is 

currently proposed and arranged in order to mainly utilize horizontal accelerations by 
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surge and pitch motions. The current pendulum type achieves its maximum efficiency 

under the condition that a wave direction is on the plane of two-dimensional motions. In 

order to overcome this drawback, attaching an additional pendulum wheel, which is 

perpendicular to the current wheel or a wheel rotating on a horizontal plane, helps the 

PTO to additionally obtain energy from sway, roll, or yaw motion.   

Furthermore, since the 6-DOF motions of a moored buoy under the impact of 

irregular ocean waves can be predicted using COUPLE, the estimated power output of 

the related WEC devices can be extended for the cases of irregular waves. 
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APPENDIX A 

EULER ANGLES 

 

Euler angles are used to refer to three angles for transforming into one coordinate 

set from another (Baruh, 1999). The idea of transformations comes from the fact that at 

most three successive rotations, in which no two adjacent rotation indices are the same, 

can transform an orthogonal right-handed three dimensional Cartesian coordinate system 

into any other orthogonal right-handed three dimensional Cartesian coordinate systems. 

In generating the three sets of rotations, the possible options are limited to twelve 

choices, 1-2-1, 1-2-3, 1-3-1, 1-3-2, 2-1-2, 2-1-3, 2-3-1, 2-3-2, 3-1-2, 3-1-3, 3-2-1, and 3-

2-3, and are called Euler angle sequences. When used with a space-fixed coordinate 

system, the angles describe the orientation of a rigid body with respect to the spaced 

fixed coordinates. Previous studies (Chen, 2002) and software COUPLE have used the 

roll-pitch-yaw, or 1-2-3, sequence for the Euler angles  T

1 2 3, ,   . 

 Fig. 31 shows how to build a rotation matrix taking an example of only one 

element of the Euler angles. Consider an initial frame 1 2 3aa a , and rotate it by an angle of 

1  about the 1a  axis. Denoting the resulting frame by
' ' '

1 2 3a a a , the following relationship 

is made (Baruh, 1999): 
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Figure 31 A rotation and coordinates 
 

 

 

1 1

2 2 1 3 1

3 2 1 3 1

cos sin

sin cos

a a

a a a

a a a

 

 

  

   
    

  (22) 

This can be expressed in the matrix form of  

    1 1

1 1

1 0 0

' 0 cos sin

0 sin cos

a a 
 

 
   
  

  (23) 

where,    T1 2 3, ,a a a a  and    T1 2 3' ', ', 'a a a a . 

 In order to complete the transformation of roll-pitch-yaw sequence, taking the 

same rotation procedure to the transformed coordinate about 2a   yields 1 2 3a a a    axes.  
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Then, another successive rotation of 1 2 3a a a    coordinate about 3a yields b1b2b3 axes. 

The transformation can be expressed in the matrix form of Eq. 24 and Eq. 25. 

 

 

 

Figure 32 Rotations and Euler angles (Nikravesh, 1988) 
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2 2

cos 0 sin
0 1 0

sin 0 cos
a a

 

 

 
   

  
  (24) 

                  

    
3 3

3 3

cos sin 0
sin cos 0

0 0 1
b a

 
 

 
  

  
  (25) 
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Thus, the following relationship is made. 

    b aT   (26) 

where, 

3 2 3 1 3 2 1 3 1 3 2 1

3 2 3 1 3 2 1 3 1 3 2 1

2 2 1 2 1

cos cos sin cos cos sin sin sin sin cos sin cos

sin cos cos cos sin sin sin cos sin sin sin cos

sin cos sin cos cos

           
           
    



  
    
  

T

 

 (27) 

T is also a transfer matrix between the space-fixed coordinates  Tˆ ˆ ˆ ˆ, ,x x y z  and the 

body-fixed coordinate  T, ,x x y z in COUPLE as below. The matrix is orthogonal with 

the property that t 1T T . 

 x̂ =ξ T x t
  (28) 

where, ξ is a translational displacement between body-fixed coordinates and space-fixed 

coordinates, and the superscript t indicates the transpose of a matrix.  

The derivatives of the Euler angles  T

1 2 3, ,      can be separated along the 

directions of the coordinate, b1b2b3 axes (Nikravesh, 1988).  

  
1

2

3

1 ( ) 1 3 2

1 ( ) 1 2 3

1 ( ) 1 2

cos cos

cos sin

sin

b

b

b

   

   

  

 

   

 

 

 

 

  (29) 
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1

2

3

2 ( ) 2 3

2 ( ) 2 3

2 ( )

sin

cos

0

b

b

b

  

  



 

 

 

 

 



  (30) 

 

1

2

3

3 ( )

3 ( )

3 ( ) 3

0

0





 

 

 

 





 

b

b

b

  (31) 

  

Thus, the angular velocity expressed in the body-fixed coordinate system ω has 

the following relationship with the derivatives of the Euler angles by summing above 

equations.   

  
1

2

3

( ) 1 3 2 2 3

( ) 1 2 3 2 3

( ) 1 2 3

cos cos sin

cos sin cos

sin

b

b

b

     

     

   

  

    

  

 

 

 

  (32) 

 

The relationship can be expressed in the matrix form of 

 d

dt
 B


   (33) 

where, the transfer matrix of angular velocity B is  

 
3 2 3

3 2 3

2

cos cos sin 0
sin cos cos 0

sin 0 1

  
  


 
  
  

B   (34) 
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APPENDIX B 

DERIVATIONS OF THE PENDULUM MODEL 

 

This section presents the derivation of the 4-DOF (x, z, θ, and α) motion equation 

of the pendulum by the Lagrange’s Equation in detail.  

Using the defined coordinates of point G and P by Eq. 5 in text, the velocity of 

each pendulum (or wheel) is calculated.  

 
        

1

2

,

cos cos , sin sin

v x z

v x d l z d l           



        

 
     

 (35) 

where, v1 is the velocity of the pendulum wheel G and v2 is the velocity of the pendulum 

P. 

 The kinetic energy K and potential energy P of each pendulum are calculated as 

below, and the Lagrangian L is defined by them as shown in Eq. 6.  

  2 2 2 2 2
1 1 1 1 1 1

1 1 1 1

2 2 2 2
K I m v I m x z          (36)

 

 

 
    
    

 
 

   

     

2

2 2
2 2 2

2

2

2 2 2

22 2 2 2 2

2

2 2

1 1

2 2

cos cos1 1

2 2 sin sin

1 1
cos sin cos

2 2 2
sin cos

K

I m v

x d l
I m

z d l

x z d l

I m d x d z l x

l z d l

 

     
 

     

  

         

       

  

          
     

    

        

   

 

  
 

  

   

     

   

 
 
    
  
    

 (37) 
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 1 1P m gz  (38) 

   2 2 cos cos     P m g z d l  (39) 

Eq. 4 derives a set of motion equations for each generalized variable x, z, θ, and α.  

The derivative of L with respect to the generalized variable x:  

      1 2 2 2cos cos
L

m m x m d m l
x

     
     


  


  (40) 

 0
L

x





 (41) 

Thus, the first row of the equation by the Lagrange’s Equation is 

 
   

        
2

1 2 2

2

2

cos sin

cos sin 0

m m x m d

m l

   

       

  

      

 

  
 (42) 

 

The derivative of L with respect to the generalized variable z:  

      1 2 2 2sin sin
L

m m z m d m l
z

     
     


  


 (43) 

  1 2

L
m m g

z


  


 (44) 

Thus, the second row of the motion equation by the Lagrange’s Equation is 

 
   

          

2
1 2 2

2

2 1 2

sin cos

sin cos 0

m m z m d

m l m m g

   

       

  

        

 

  
 (45) 

 

The derivative of L with respect to the generalized variable θ:  
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   

     

2 2
1 2 2 2 2 2 2

2 2 2

cos sin

cos sin 2 cos

L
I I I m d m l m d x m d z

m l x m l z m d l

      


      


       


     

     
  

 (46) 

 
   

      
2 2 2

2 2

sin cos sin

cos sin sin

L
m d x m d z m l x

m l z m g d l

       


      


     


    

    

 
 (47) 

Thus, the third row of the motion equation by the Lagrange’s Equation is 

 

   
     

    

2 2 2 2

2 2 2
1 2 2 2 2 2 2

2
2 2

cos sin cos sin

2 cos

2 sin sin sin 0

m d x m d z m l x m l z

I I m d m l I m l m d l

m d l m g d l

     

    

     

     

       

     

  
  

  

 (48) 

 

The derivative of L with respect to the generalized variable α:  

 
       2

2 2 2 2

2

cos sin

cos

L
I m l x m l z m l

m d l

       


 


       




   



 (49) 

 
       

   

2 2

2 2

sin cos

sin sin

L
m l x m l z

m d l m gl

       


     


     


   

   

  
 (50) 

Thus, the fourth row of the motion equation by the Lagrange’s Equation is 

 
     

   

2
2 2 2 2 2

2 2
2 2 2 2

cos sin cos

sin sin 0

m l x m l z I m l m d l

I m l m d l m gl

     

    

      

     

 


 (51) 

These equations are formulated in the matrix form of Eq. 7 using Eqs. 8-10 in text.  

 

The system of linearized motion equations for X=(x, z, θ, α)T is below. In this 

case, the linearization makes Fp in Eq. 10 divided into a linear term KX and a 
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conservative force F, which is the gravitational force. The details can also be found in 

the previous study (Babarit, 2005). Note that the final form in this appendix remains θ 

and α in the second row and column by linearizing sin θ, sin α, and sin (θ+α) to θ, α, and 

θ+α respectively, whereas the earlier study neglected the related terms in the final form.  

 MX KX F   (52) 

 

   
 

 

1 2 2 2 2

1 2 2 2 2
2 2 2

2 2 2 2 1 2 2 2 2 2 2 2
2 2

2 2 2 2 2 2 2

0

0

2

,

m m m d m l m l

m m m d l m l m l
M

m d m l m d l m l I I m d m l m dl I m l m dl

m l m l I m l m dl I m l

   
 

 

    
     
          
       

 (53) 

 

 
 2 2

2 2

0 0 0 0

0 0 0 0

0 0

0 0 ,

K
m g d l m g l

m g l m g l

 
 
 
 
 
 

 (54) 

 
 1 2

0

0

0 .

m m g
F

 
   
 
 
 

 (55) 
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APPENDIX C 

THICKNESS OF THE PENDULUM WHEEL 

 

There are many ways to design an inner pendulum wheel as previous studies 

sketched or designed (Ruellan et al., 2007; Ruellan et al., 2010). Use of a solid 

homogeneous fan-shape body is the simplest way to design an inner pendulum, whose 

gravitational center is set off from a pivot point. 

The centroid of a fan-shape body is as below.  

 
 4 sin / 2

3

r
c




   (56) 

 

 

 

Figure 33 Centroid of fan-shape body 
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The thickness of the fan-shape is very sensitive to the angle β to keep a mass 

quantity constant as shown Fig. 32. In the figure, the thickness ratio defines the ratio of a 

thickness for a circular body to a thickness for a fan-shape body, whose radius and mass 

are same as the circular body. Considering the limited space inside of the oceanographic 

buoy and practical material (e.g. concrete), c/r is recommended to be set below 0.55 to 

0.60. 

 

 

 

Figure 34 Thickness ratio of fan-shape body 
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APPENDIX D 

COUPLE SIMULATION RESULTS 

 

This section plots the results of surge and pitch motions among 6-DOF motions 

calculated by COUPLE for nine wave conditions. The surge and pitch motions for each 

wave condition are attached on a separate page.  
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Figure 35 Surge motion for regular waves (H=0.5 m, T=4.0 sec) 
 

 

 

Figure 36 Pitch motion for regular waves (H=0.5 m, T=4.0 sec) 
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Figure 37 Surge motion for regular waves (H=0.5 m, T=5.0 sec) 
 

 

 

Figure 38 Pitch motion for regular waves (H=0.5 m, T=5.0 sec) 
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Figure 39 Surge motion for regular waves (H=1.0 m, T=5.0 sec) 
 

 

 
Figure 40 Pitch motion for regular waves (H=1.0 m, T=5.0 sec) 
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Figure 41 Surge motion for regular waves (H=0.5 m, T=6.0 sec) 
 

 

 

Figure 42 Pitch motion for regular waves (H=0.5 m, T=6.0 sec) 
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Figure 43 Surge motion for regular waves (H=1.5 m, T=6.0 sec) 
 

 

 

Figure 44 Pitch motion for regular waves (H=1.5 m, T=6.0 sec) 
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Figure 45 Surge motion for regular waves (H=1.0 m, T=7.0 sec) 
 

 

 

Figure 46 Pitch motion for regular waves (H=1.0 m, T=7.0 sec) 
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Figure 47 Surge motion for regular waves (H=1.5 m, T=7.0 sec) 
 

 

 

Figure 48 Pitch motion for regular waves (H=1.5 m, T=7.0 sec) 
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Figure 49 Surge motion for regular waves (H=2.0 m, T=7.0 sec) 
 

 

 

Figure 50 Pitch motion for regular waves (H=2.0 m, T=7.0 sec) 
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Figure 51 Surge motion for regular waves (H=2.0 m, T=8.0 sec) 
 

 

 

Figure 52 Pitch motion for regular waves (H=2.0 m, T=8.0 sec) 
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