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ABSTRACT

Binomials are polynomials with at most two terms. A binomial ideal is an ideal

generated by binomials. Primary components and associated primes of a binomial

ideal are still binomial over algebraically closed fields. Primary components of gen-

eral binomial ideals over algebraically closed fields with characteristic zero can be

described combinatorially by translating the operations on binomial ideals to opera-

tions on exponent vectors. In this dissertation, we obtain more explicit descriptions

for primary components of special binomial ideals. A feature of this work is that our

results are independent of the characteristic of the field.

First of all, we analyze the primary decomposition of a special class of binomial

ideals, lattice ideals, in which every variable is a nonzerodivisor modulo the ideal.

Then we provide a description for primary decomposition of lattice ideals in fields

with positive characteristic.

In addition, we study the codimension two lattice basis ideals and we compute

their primary components explicitly.

An ideal I � krx1, ..., xns is cellular if every variable is either a nonzerodivisor

modulo I or is nilpotent modulo I. We characterize the minimal primary components

of cellular binomial ideals explicitly. Another significant result is a computation of

the Hull of a cellular binomial ideal, that is the intersection of all of its minimal

primary components.

Lastly, we focus on commutative monoids and their congruences. We study prop-

erties of monoids that have counterparts in the study of binomial ideals. We provide

a characterization of primary ideals in positive characteristic, in terms of the con-

gruences they induce.
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1. INTRODUCTION: MAIN CONCEPTS

1.1 Primary Decomposition Basics

Primary decomposition is a cornerstone of ideal theory. It is a generalization of

the factorization of a number into prime powers. From a geometric point of view,

primary decomposition is based on the idea of decomposing a variety into a union of

simpler varieties. Indeed, primary decomposition of radical ideals corresponds to the

decomposition of an affine variety into its irreducible components. When we want

to take multiplicity into account, primary ideals become necessary. (They describe

the multiplicity of irreducible components.) In this section, we make an introductory

review to recall the basic concepts and to fix the notation we use.

Throughout this dissertation R denotes a commutative Noetherian ring with

an identity element, and k denotes an algebraically closed field. We denote S �
krx1, x2, ..., xns. Also, we assume N � t0, 1, 2, ...u and Z¡0 � t1, 2, ...u.

Definition 1.1. Suppose that R is a ring. An ideal Q in R is primary if Q � R and

if for every ab P Q we have that either a P Q or bn P Q for some n ¡ 0.

The following reformulation is more symmetric : for Q primary, if ab P Q and

a, b R Q, then some powers of a and b belong to Q.

Let Q be a primary ideal in R, then it is easy to see that
?
Q is the smallest

prime ideal containing Q. If P � ?
Q, then Q is said to be P -primary.

The intersection of primary ideals need not to be primary, however, we have the

following

Proposition 1.2. If Qi are P -primary for all i � 1, ..., n, then
�n
i�1Qi is P -primary.
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Proof. We know that
a�n

i�1Qi �
�n
i�1

?
Qi � P . Suppose xy P �n

i�1Qi and

y R �n
i�1Qi. For some `, xy P Q` with xk P Q`. This implies that x P ?Q` � P . But

then there exists m ¡ 0 such that xm P Qi for all i, so xm P �n
i�1Qi.

The variety of I � krx1, ..., xns, denoted V pIq, is the set of common zeroes of I.

V pIq :� tx P kn | fpxq � 0, for all f P Iu.

We define some operations on ideals: ideal quotient and saturation are important

constructions in ideal theory. Saturation removes the zerodivisors in krx1, ..., xns{I.

Definition 1.3. Let Q � R be an ideal and let f P R. We define the ideal quotient

pI : fq � tg P R | gf P Iu,

and the saturation of I by f

pI : f8q � tg P R | gfn P I, for some positive integer n u.

The sets above are actually ideals. We are not attaching any value to f8. Since R

is a Noetherian ring, the ascending chain pI : fq � pI : f 2q � pI : f 3q � ... eventually

stops. The stabilized ideal is denoted by pI : f8q. Geometrically, the components

of V ppI : f8qq are those components of V pIq which do not lie on the hypersurface

V pxfyq.
The following is clear by definition of the quotient ideal.

Corollary 1.4. Let I � krx1, ..., xns be an ideal. Then

ppppI : x1q : x2q : � � � q : xnq � pI : x1x2 � � � xnq.

2



A primary decomposition of an ideal I in R is an expression of I as a finite

intersection of primary ideals

I �
n£
i�1

Qi.

For univariate polynomials, primary decomposition is factorization of polynomi-

als. For general rings, primary decomposition need not exist, but in a Noetherian

ring R every ideal has a primary decomposition.

Theorem 1.5. Let R be a Noetherian ring. Every ideal I � R can be written as a

finite intersection of primary ideals.

Proof. An ideal I is irreducible if I � I1 X I2 implies that I � I1 or I � I2. Since R

is a Noetherian ring, every ideal is an intersection of finitely many irreducible ideals.

If we show that an irreducible ideal is primary, this completes the proof. Suppose

I is an irreducible ideal and let fg P I with f R I. We have an ascending chain of

ideals

pI : gq � pI : g2q � � � �

which has to stabilize since R is Noetherian. That means there exists an integer n

such that pI : gnq � pI : gn�1q. We claim that I � pI�xgnyqXpI�xfyq. It is obvious

that I � pI � xgnyq X pI � xfyq. Let h P pI � xgnyq X pI � xfyq, so h � a1 � b1g
n

and h � a2 � b2f for some a1, a2 P I and b1, b2 P R. If we multiply both sides of

the second equation by g, we obtain hg P I. If we multiply both sides of the first

equation by g, we obtain b1g
n�1 P I. This implies b1 P pI : gn�1q � pI : gnq and so

h P I.

Theorem 1.6. (Hilbert Basis Theorem) If R is a commutative Noetherian ring with

unity, then so is Rrx1, ..., xns.

Proof. See Theorem 4.9 in [19].

3



Corollary 1.7. Let k be a field, then S � krx1, x2, ..., xns is a Noetherian ring.

A primary decomposition I � �n
i�1Qi is irredundant(minimal) if the ideals

?
Qi

are distinct and
�n
j�iQj � Qi for all i � 1, ..., n. Thus I cannot be written as an

intersection consisting of a proper subset of the ideals Qi.

Theorem 1.8. (Theorem 4.5 in [2].) Let I � �n
i�1Qi be an irredundant primary

decomposition of I. Define Pi :� ?
Qi for i � 1, ..., n. The Pi’s are precisely the

prime ideals which occur in the set of ideals
?
I : r for some r P R. Thus the Pi’s

are independent of the particular primary decomposition of I.

Definition 1.9. The prime ideals Pi in Theorem 1.8 are said to be associated to

I. The minimal elements of the set tP1, ..., Pnu are called minimal prime ideals

associated to I. The non-minimal prime ideals associated to I are called embedded

prime ideals.

Note that Theorem 1.8 shows the uniqueness of associated primes. The names,

embedded and minimal, arose from geometry: if the ideal I P S corresponds to the va-

riety V pIq, the minimal primes correspond to the irreducible components of V pIq, the

embedded primes correspond to varieties embedded in the irreducible components.

In fact, the varieties corresponding to prime and primary ideals are irreducible. If

P is an associated prime of I by Theorem 1.8, P � pI : fq for some f P R. This

implies that V pP q � V pI : fq � V pIq, hence the irreducible variety V pP q forms a

part of V pIq.
Note that any prime ideal I � P contains a minimal prime associated to I, so

the set of minimal prime ideals associated to I are precisely the minimal elements

in the set of all prime ideals containing I. To be consistent with the literature, we

denote the set associated primes of I by AsspS{Iq.
For a proof of the following commutative algebraic fact, see Lemma 3.6 in [13].
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Lemma 1.10. Let I, J and J 1 be ideals of S. If we have an exact sequence

0 Ñ S{J Ñ S{I Ñ S{J 1 Ñ 0

then AsspS{Iq � AsspS{Jq Y AsspS{J1q.

Not only the associated primes but also the minimal primary components of an

ideal are unique, which is stated in the following theorem.

Theorem 1.11. (Theorem 4.10 in [2]). The primary components corresponding to

minimal prime ideals are uniquely determined by I.

Remark 1.12. Primary decomposition is not unique due to embedded primary

components. Here is an example; xx2, xyy � xx2, xy, y2y X xxy � xx2, yy X xxy.

Primary decomposition of ideals is generalized to finitely generated modules over

Noetherian rings. This analogous theory is not developed only to obtain a general

perspective, some of the results for ideals use the theory of primary decomposition

for modules; for example is the proof of Lemma 1.10.

There are different algorithms for computing primary decompositions of polyno-

mial ideals. The most famous one was designed by Gianni, Trager and Zacharias,

(see [35]) which computes primary decomposition by reducing to the univariate case.

Another important technique for primary decomposition was introduced by Eisen-

bud, Huneke and Vasconcelos in [36]. This is mainly based on homological methods.

The work of Shimoyama and Yokoyama in [37] offers a third approach that relies

on the decomposition of ideal into “pseudo” primary ideals. A pseudo-primary ideal

is an ideal whose radical is a prime ideal. A detailed comparison of algorithms for

primary decomposition is given in [38].

5



1.2 Binomial Ideals

A binomial is a polynomial with at most two terms and a binomial ideal is an ideal

generated by binomials. Binomial ideals form an important link between commuta-

tive algebra and combinatorics. Beyond its intrinsic mathematical interest, binomial

commutative algebra has varied applications [28], for instance in the dynamics of

chemical reactions under mass-action kinetics, algebraic statistics and combinatorial

game theory, see [33], [11] for references and details. Binomial ideals are also very

important for the study of hypergeometric differential equations, these applications

can be found in [9] and [10].

Definition 1.13. Let S � krx1, ..., xns. A binomial in S is defined as the difference

of two terms, αxa�βxb, where α, β P k and a, b P Zn¡0. (Here we use the multi-index

notation: xα � xα1
1 ...x

αn
n .)

Definition 1.14. A binomial ideal of S is an ideal whose generators can be chosen

as binomials.

Before jumping to the properties of binomial ideals, let us first consider the

primary decomposition of monomial ideals. Monomial ideals are ideals generated by

monomials, and are therefore also binomial ideals. Most ideal theoretic operations

are far simpler for monomial ideals than in general. One of those operations is

primary decomposition. We first describe what a primary monomial ideal looks like.

See [17] for more details about monomial ideals.

Proposition 1.15. A monomial ideal I P krx1, ..., xns is primary if and only if

I � xxm1
i1
, ..., xm1

i1
| some other monomials in xi1 , ..., xi1y.

6



An approach to decomposition of monomial ideals is finding the irreducible de-

composition. An irreducible monomial ideal is generated by pure powers of vari-

ables. This decomposition can be found by using that for a minimal generator

m � m1m2 P I where m1 and m2 are relatively prime monomials we can write

I � pI�xm1yqXpI�xm2yq. Irreducible decomposition of monomial ideals is unique.

This follows from the uniqueness of irreducible resolutions, see Theorem 2.4 in [26].

Another approach is based on Alexander duality, for definitions and algorithms see

[27].

If we look at the irreducible decomposition of binomial ideals the components are

not necessarily binomial as was shown in [23].

The variety of a monomial ideal is a union of coordinate planes. Any affine variety

can be defined using trinomials [12], simply by adding new variables. This means

that the geometry coming from trinomial ideals is general, we cannot hope for special

algebraic properties in this context. In between these two, we have binomial ideals

whose geometry is special and we have effective combinatorial tools to apply to their

study. Varieties associated to binomial ideals are unions of toric varieties.

The important article of Eisenbud and Sturmfels [12] can be seen as the starting

point for all research related with primary decomposition of binomial ideals. They

proved that the associated primes, the primary components and the radical of a

binomial ideal are binomial when k is algebraically closed. The fundamental fact

about binomial ideals and the key ingredient in Eisenbud and Sturmfels’ arguments

is that every reduced Gröbner basis of a binomial ideal consists of binomials. Indeed,

this fact gives us operations which preserve binomiality.

We first review some of the results of [12] and recall some of their tools. Let us

start describing ”binomial friendly” operations.

The following facts can be easily proved. The sum of two binomial ideals is a

7



binomial ideal. Every monomial can be considered as a binomial, so every monomial

ideal is a binomial ideal. On the other hand, the intersections of binomial ideals need

not to be a binomial ideal. For example: xx � 1y X xx � 3y � xx � 1y � xx � 3y �
xx2 � 4x � 3y. Also, if k is not algebraically closed, the primary components of a

binomial ideal need not to be binomial. Let I � xx3 � 1y � Rrxs where R denotes

the real numbers. Then I has a unique primary component which is not binomial:

xx3 � 1y � xx� 1y X xx2 � x� 1y. For the rest of this dissertation, unless otherwise

stated, we assume k is algebraically closed. There are several results for which the

characteristic zero hypothesis is necessary, but that will be stated explicitly when

necessary. We assume that k has arbitrary characteristic unless otherwise stated.

Definition 1.16. A monomial order on krx1, ..., xns is any relation ¡ on Nn, or

equivalently, any relation on the set of monomials xα, α P Nn satisfying


 ¡ is a total order on Nn.


 If α ¡ β and γ P Nn, then α � γ ¡ β � γ.


 Every nonempty subset of Nn has a smallest element under ¡.

Theorem 1.17. Let ¡ be a monomial order on S � krx1, ..., xns and let I be an

ideal of S. I is a binomial ideal if and only if the reduced Gröbner basis G of I with

respect to ¡ consists of binomials.

Proof. This is Corollary 1.2 in [12], here is the sketch of the proof. Let I be a

binomial ideal. If we take the binomial generating set of I, the S-polynomials of

these generators as needed in the Buchberger algorithm are again binomial. The

converse follows from the fact that reduced Gröbner basis is unique with respect to

given order ¡ and it is also a basis for the ideal. For more explanation about these

concepts, see [5].

8



Given I � krx1, ..., xns, the r-th elimination ideal is the ideal of krx1, ..., xrs
defined by I X krx1, ..., xrs. Let G be a reduced Gröbner basis with respect to a

monomial order  . Since the r-th elimination ideal is generated by a subset of the

reduced Gröbner basis of I (see Theorem 2 in [5]), namely GXkrx1, ..., xrs, we have

the following proposition.

Proposition 1.18. If I � S is a binomial ideal, then the elimination ideal I X S is

a binomial ideal for every r ¤ n.

Here is another useful fact.

Proposition 1.19. Let I be a binomial ideal in S and let M be a monomial ideal

in S. If f P I �M and f 1 is the sum of the terms of f that are not individually

contained in I �M , then f 1 P I.

Proof. See Proposition 1.10 in [12].

We have mentioned that the operation of intersection of ideals does not in general

preserve binomiality, but here is one of the exceptions.

Proposition 1.20. If I is a binomial ideal and M is a monomial ideal in S, then

I XM is a binomial ideal.

Proof. Introduce a new variable t. We know that I XM � pIt�Mp1� tqqSrts X S.

The ideal pIt�Mp1� tqqSrts is a binomial ideal in Srts. By Proposition 1.18, IXM
is binomial.

We now review a commutative algebra fact.

Proposition 1.21. Let I be an ideal in S � krx1, ..., xns and g P S. If tf1, ..., fsu is

a basis of I X xgy, then pI : gq � xf1

g
, ..., fs

g
y.

9



Proof. Let q P xf1

g
, ..., fs

g
y, then q � g P xf1, ..., fsy � I X xgy � I. This implies that

q P pI : gq.
Let q P pI : gq, and therefore q � g P I, also q � g P I X xgy which implies

q � g � a1f1� ...�asfs. Thus q � a1
f1

g
� ...�as fsg where each fi

g
is a polynomial since

fi P I X xgy. This implies that q P xf1

g
, ..., fs

g
y.

Using the Proposition 1.21, it is not difficult to derive the fact that the ideal

quotient of a binomial ideal by a monomial is binomial. Note that quotients of

binomial ideals by monomial ideals or a binomial are generally not binomial.

Proposition 1.22. If I is a binomial ideal and m is a monomial then, pI : mq and

pI : m8q are binomial.

Proof. By Proposition 1.20, I X xmy has binomial generators tf1, ..., fsu. Then pI :

mq � xf1

m
, ..., fs

m
y is also binomial. By Corollary 1.4, the proof for pI : m8q is easy.

There are algorithms to compute the saturation of any ideal in krx1, ..., xns. One

such algorithm is described in Chapter 4 in [5] and is based on the same ideas as

in the proof of Proposition 1.22. The main tool is a Gröbner basis computation in

n� 1 variables. Another useful approach is given by Sturmfels in Algorithm 12.3 in

[32]. These algorithms are implemented, so we can compute saturation by using a

computer algebra system such as Macaulay 2 [7] or Singular [16].

Definition 1.23. Let   be a fixed monomial order. Assume m1 and m2 are mono-

mials with m1   m2. Let b � m1 � m2, we define brds � md
1 � md

2 and call this

binomial the d-th quasi-power of b. I rds is the ideal generated by d-th quasi-powers

of elements of I.

The ordinary powers of a binomial are not binomials and taking quasi-power of an

ideal is a natural operation which preserves binomiality. There can be an ambiguity

10



with the sign of the quasi-power. For example, let d � 2 and consider the binomial

�x3�p�y2q � y2�x3. The second quasi-power of the binomial in the left hand side

is x6 � y4, on the other hand the second quasi-power of the binomial on the right

hand side is y4 � x6. To remove that ambiguity we choose a monomial order.

1.3 Lattice Ideals

We define a special type of binomial ideals, lattice ideals, which have nice combi-

natorial features. In Theorem 1.30, we determine primary decomposition of lattice

ideals.

Definition 1.24. A lattice L � Zn is a finitely generated free abelian subgroup.

The saturation of L is the lattice

SatpLq � t` P Zn : k` P L for some k P Zu.

A lattice is saturated if it satisfies SatpLq � L.

Definition 1.25. A partial character is a pair pL, ρq consisting of a lattice L �
Zn and a group homomorphism ρ : L Ñ k

� from the additive group L to the

multiplicative group k
� � k� t0u.

A partial character is saturated if its lattice is a saturated lattice. A partial

character pL, ρq is a saturation of pL̂, ρ̂q if L � SatpL̂q and ρ̂ = ρ|L̂.

We can associate an ideal to each partial character

I�pρq � xxu� � ρpuqxu� | u P Ly � krx1, ..., xns

which is called lattice ideal. We have a nice characterization of lattice ideals.

11



Lemma 1.26. (Corollary 2.5 in [12].) A proper binomial ideal I � S not containing

any monomial is a lattice ideal if and only if I � pI : p±xiq8q, in other words, every

variable is a nonzerodivisor modulo I.

The arithmetic properties of partial characters are used to provide characteriza-

tions of prime binomial ideals. The following statement will describe the form of

prime binomial ideals.

Theorem 1.27. (Corollary 2.6 in [12].) Let P be a binomial ideal in S. Set

ty1, ..., y`u :� tx1, ..., xnu X P and let tz1, ..., zku :� tx1, ..., xnu � P . The ideal P

is prime if and only if

P � I�pρq � xy1, ..., y`y

for a saturated partial character pL, ρq on Zk corresponding to z1, ..., zk.

A commutative semigroup Q is a set with an associative, commutative binary

operation. If Q has an identity, it is called a monoid. The semigroup algebra is

krQs � °
qPQ k � tq with multiplication given by ta � tb � ta�b. Let us fix a subset

A � Zd and define a semigroup algebra homomorphism α : krx1, ..., xns Ñ krZns that

maps xi to tai . The ideal kerα is denoted IA and called the toric ideal associated to A.

In fact, all affine toric varieties arise in this way. We have krx1, ..., xns{IA � krNAs,
so IA is a prime ideal, since krNAs is an integral domain as a subring of krZns.
Moreover, IA is equal to a binomial ideal as follows

IA � xxu � xv | αpxuq � αpxvqy.

See Lemma 4.1 in [32] for more explanation. All prime binomial ideals are translated

toric ideals as follows. If ρ is not the trivial character, then we define an isomor-

phism between I�pρq and IA by rescaling the variables xi ÞÑ ρpeiqxi, which induces
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a rescaling xu ÞÑ ρpvqxv on general monomials.

Toric geometry has many applications, these ideals encode the combinatorics of

polytopes and give interactions among algebra, geometry and combinatorics. For

more information and for details about toric varieties, see the classical text [14] or

the newer one [6].

Definition 1.28. Let p be a prime number. We define SatppLq and Sat1ppLq to be

the largest sublattices of SatpLq containing L such that | SatppLq{L |� pk for some

k P Z and | Sat1ppLq{L |� g where pp, gq � 1.

Then we can write

SatppLq � tm P SatpLq | pem P L for some e P Nu.

Sat1ppLq � tm P SatpLq | dm P L for some d P N such that pd, pq � 1u.

Remark 1.29. If p � 0, we adopt the convention that Sat1ppLq � SatpLq and

SatppLq � L.

The following result describes the associated primes and the corresponding pri-

mary components of lattice ideals by using the saturations of lattices.

Theorem 1.30. (Corollary 2.2 in [12]). Let k be a field and charpkq � p ¥ 0. Let

pL, ρq be a partial character. If |Sat1ppLq{L| � g, then there are g distinct characters

pSat1ppLq, ρ1q, ..., pSat1ppLq, ρgq that extend pL, ρq, and for each pSat1ppLq, ρiq there

exists a unique character pSatpLq, ρ̂iq that extends pSat1ppLq, ρiq. There is a unique

partial character pSatppLq, ρ1q that extends pL, ρq. The radical, associated primes and

minimal primary decomposition of I�pρq � krx1, ..., xns are

a
I�pρq � I�pρ1q,

13



AsspS{I�pρqq � tI�pρ̂iq | i � 1, ..., gu

and

I�pρq �
g£
i�1

I�pρiq

where I�pρiq is I�pρ̂iq- primary. In particular, the associated primes I�pρ̂iq of I�pρq
are all minimal.

All binomial ideals in the Laurent polynomial ring krx�1 , ..., x�n s are lattice ideals.

Theorem 1.30 is also true for binomial ideals in krx�1 , ..., x�n s. In fact, since it is

easier to work in the Laurent polynomial ring, the proof of this theorem was done

first in krx�1 , ..., x�n s, then it was finished by taking the contraction from the Laurent

polynomial ring.

Remark 1.31. If p � 0, I�pρ̃iq � I�pρiq in Theorem 1.30, which implies that lattice

ideals are radical in charpkq � 0, as they are equal to the intersection of prime ideals.

Note that lattice ideals do not have embedded associated primes, which means that

primary decomposition of lattice ideals is unique. Also, lattice ideals do not contain

monomials. This follows from, for instance, Lemma 1.42.

We know that some quasi-power of the lattice ideal is contained in its radical in

charpkq � p ¡ 0. The next proposition describes this power.

Proposition 1.32. Let k be an algebraically closed field and charpkq � p ¡ 0. Let

I�pρq be a lattice ideal with partial character pLρ, ρq and let q be the order of the

group SatpLρ{Lρ, then �a
I�pρq

	rqs
� I�pρq.

Proof. Since
a
I�pρq is a lattice ideal, we can write

a
I�pρq � I�pρ̃q for some partial

character pLρ̃, ρ̃q. If xµ� � ρ̃pµqxµ� P I�pρ̃q then µ P SatppLρq. We want to show

14



that the q-th quasi-power of xµ�� ρ̃pµqxµ� is in I�pρq. By the definition of SatppLρq,
prµ P Lρ for some r. Since q is the order of the group SatpLρ{Lρ, qµ P Lρ. Then

xqµ� � pρ̃pµqqqxqµ� � xqµ� � ρpqµqxqµ� P I�pρq,

since ρ̃pqµq � ρpqµq.

1.4 Primary Decomposition of Binomial Ideals

Theorem 1.33. (Theorem 6.1 in [12]). Let k be an algebraically closed field and

I be a binomial ideal of S � krx1, ..., xns. Then every associated prime of I is a

binomial ideal.

Proof. If I � xx1, ..., xny, then it is a prime ideal, so suppose I does not contain all

the variables. If I is a lattice ideal I � I�pρq then by Theorem 1.30, the associated

primes of I are generated by binomials. So assume pI : xiq � I for some i. We may

assume xi R I, for if xi P I, by reducing modulo xi, we can find another variable

xj satisfying pI : xjq � I and xj R I by the assumption above. We do Noetherian

induction, assuming that every binomial ideal of S strictly larger than I has binomial

associated prime ideals. Then we use the exact sequence

0 Ñ S{pI : xiq Ñ S{I Ñ S{pI � xxiyq,

by Lemma 1.10, we know that AsspS{Iq � AsspS{pI : xiqqY AsspS{pI � xxiyqq. Note

that both pI : xiq and pI � xxiyq are binomial ideals so their associated primes are

binomial, so by Noetherian induction, I has binomial associated primes.

Definition 1.34. Let I be an ideal. The intersection of minimal primary components
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of I is denoted by HullpIq.

Let us introduce a new kind of binomial ideals. A binomial ideal is cellular if

every variable is either a nonzerodivisor modulo I or is nilpotent modulo I. We look

at the features and primary components of cellular binomial ideals from a general

perspective in Section 3, but now we need the following property.

Theorem 1.35. (Theorem 6.4 in [12]). If I is a cellular binomial ideal then HullpIq
is also a binomial ideal.

The following theorem is a core result of [12].

Theorem 1.36. Let I be a binomial ideal in S � krx1, ..., xns, where k is alge-

braically closed. Let Ω be a finite set. Suppose tPi |P Ωu is the set of associated

primes of I. Let δi be the set of nonzerodivisor variables of Pi and Mi be the maxi-

mal monomial ideal contained in Pi. We denote
±

jPδi
xj � xδi

1. If charpkq � p ¡ 0, then for sufficiently large powers q � pe,

I �
£
iPΩ

HullppI � P
rqs
i q : x8δi q

is a minimal primary decomposition of I into binomial ideals.

2. If charpkq � 0 and ei is a sufficiently large integer, then

I �
£
iPΩ

HullppI �M ei
i � pPi X krδisqq : x8δi q

is a minimal primary decomposition of I into binomial ideals.

The main step of the proof of Theorem 1.36 is to show that the intersection of

the proposed ideals are equal to I. The rest easily follows from the facts that these
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ideals are primary, and that the ideals inside the Hull operation are cellular, which

preserves binomiality by Theorem 1.35.

Remark 1.37. Although the Hull operation is not explicit, we still derive the fact

that in charpkq � 0 the binomial parts of the associated primes are contained in

the corresponding primary component of I. This feature in characteristic zero will

be used to reduce the characterization of primary component to a monomial ideal

problem which is more manageable and combinatorial see Theorem 2.2 in Section 2

for more detail. In the case that charpkq � p ¡ 0 on the other hand, every binomial

in the associated primes has a Frobenius power that belongs to the corresponding

primary component.

The following result can be derived from Theorem 1.36.

Theorem 1.38. Let k be an algebraically closed field of arbitrary characteristic. Let

I � krx1, ..., xns be a binomial ideal. Then the associated primes and corresponding

primary components of I can be chosen binomial.

Thomas Kahle has developed a Macaulay 2 package called Binomials, see [7], [20],

which specializes well known algorithms to the case binomial ideals, namely primary

decomposition, minimal primes, computations of the radical, etc. Computer algebra

can implement operations in finite extensions of Q. A pure difference ideal is an

ideal whose generators are all differences of monic monomials. The binomial package

is restricted to pure difference binomial ideals, since for them binomial primary

decomposition exists in cyclotomic extensions of Q. Let ω` denote an `-th root

of unity. Cyclotomic fields Qpω`q can be constructed by taking the quotient of Qpxq
modulo the principal ideal generated by the minimal polynomial of ω`. For further

information about cyclotomic fields, see [19].
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1.5 Primary Decomposition of Lattice Ideals in Positive Characteristic

The order of the group Sat1ppLq{L plays a key role in primary decomposition of

lattice ideals. As we know in Theorem 1.30, the number of distinct saturations of

the partial character defining the lattice ideal equals the order of the finite group

Sat1ppLq{L. We now review an algorithm for computing the distinct saturations of a

partial character that was developed in [20].

Algorithm 1.39. Saturation of partial characters

Input: pL, ρq a partial character where L is generated by the columns of a

matrix L.

Output: All distinct saturations pSatpLq, ρiq, i � 1, ..., n.

1. Compute the saturation L1 � SatpLq, for example, find the Hermite normal

form of the matrix L and divide each column by the greatest common divisor

of its elements. Let L’ be the matrix for L1.

2. Express the generators of L in terms of the generators of L1, by solving the

matrix system.

L � L1D

for the r � r square matrix D � pdijq where r � rankpLq � rankpL1q.

3. Let `j, `
1
j and dj be the columns of L, L1 and A respectively. Let ρ1 be one of

the saturations. For the values that ρ takes on the columns of L1, define a new

variable; yi � ρp`1iq for i � 1, ..., r. Compute the following Laurent binomial

ideal in Qry1, ..., yrs

J � xρp`jq �
r¹
i�1

y
dij
i | j � 1, ..., ry.
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4. Compute

J 1 � J XQry1, ..., yrs �
�
xyd� � ρp`jqyd� | j � 1, ..., ry : p

r¹
i�1

yiq8


.

5. J 1 is a zero dimensional ideal. Solve J 1 over a suitable extension of Q and

output L1 together with the list of solutions of J 1.

Remark 1.40. We point out that saturations of partial characters exist only when

k is algebraically closed. The proof of the correctness of this algorithm was provided

originally in [20]. We constructed J , since for each generator ` of L, we have a relation

` � L1k, and ρ1 and ρ must take the same values on the generators of L. Thus, the

solutions of J 1 give us the saturation of the partial character pL, ρq. The degree is

equal to | L1{L |. We can find the solutions over a cyclotomic field Qpξ`q because the

ideal is a zero-dimensional pure difference binomial ideal. For more details, see [20].

Definition 1.41. Let B � pbijq be an n � r integer matrix. If b P Zn, define

b�, b� P Nn via pb�qi � maxpbi, 0q and pb�qi � maxp�bi, 0q, so that b � b� � b�.

Form the ideal IpBq from the columns b1, ..., br of B

IpBq � xxb�1 � xb
�
1 , ..., xb

�
r � xb

�
r y.

The binomial ideal IpBq is called the lattice basis ideal associated to B.

Lemma 1.42. Let B P Zn�k be an integer matrix and let L be the lattice generated

by the columns of B. Let pL, ρq be the trivial partial character. The lattice ideal

I�pρq is computed from IpBq by taking the saturation with respect to the product of

all the variables

I�pρq � pIpBq : px1...xnq8q.

19



Proof. We know that the lattice ideal I�pρq is saturated by Lemma 1.26 and it

contains IpBq, so the ideal on the right hand side is contained in I�pρq. For the

converse, let u P L, then u � °r
i�1 aibi for some ai P Z. This implies that

xu
�

xu�
� 1 �

¹�
xb

�
i

xb
�
i

�ai

� 1.

If we clear the denominators we get that

r¹
i�1

pxb
�
i qaipxu� � xu

�q � xu
�

�
r¹
i�1

pxb�i qai �
r¹
i�1

pxb�i qai
�
.

We want to show that the right hand side lies in IpBq. If xc
� � xc

�
and xd

� � xd
�

lie in an ideal J then xd
�pxc� � xc

�q � xd
�pxc� � xc

�q � xc
�
xd

� � xc
�
xd

�
also lies

in the ideal J . If we apply this argument to the generators of IpBq, we obtain that±r
i�1 pxb

�
i qai �±r

i�1 pxb
�
i qai also lies in IpBq. This means that a monomial multiple

of xu
� � xu

�
lies in IpBq as well.

We denote IB the lattice ideal pIpBq : px1...xnq8q induced by the matrix B, with

trivial partial character.

As we observe in Theorem 1.30, the order of the group Sat1ppLq{L plays a key

role in primary decomposition of lattice ideals in positive characteristic. Indeed, the

number of distinct saturations of partial character equal to the order of the finite

group Sat1ppLq{L.

Let B be a nonzero pm � nq- matrix over Z, which defines the lattice ideal IB.

There exist invertible pm � mq and pn � nq- matrices, U � puijq and V � pvijq
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respectively, so that U �B � V is the product

D �

�
������������������

s1 0 � � � 0

0 s2 � � � 0

...
. . .

...
...

0 � � � � � � sr

0 � � � � � � 0

... � � � � � � ...

0 � � � � � � 0

�
������������������

and the diagonal elements si satisfy si{si�1 for all 1 ¤ i ¤ r. This is the Smith

Normal Form of the matrix B. Factor si � p
ai1
1 � pai22 � � � paikk and let ail ¤ ajl if i   j.

The lattice basis ideal of D is

IpDq � xys11 � 1, ys22 � 1, ..., ysrr � 1y.

The lattice basis ideal of D is equal to the lattice ideal corresponding to D, since

ID � pIpDq : p±n
i�1 yiq8q � IpDq . We show the last equality. By Corollary 1.4, it

is sufficient to check pIpDq : yiq � IpDq. IpDq and xyiy are comaximal, since IpDq �
xyiy � kry1, ..., yns, consequently the intersection is equal to xys11 yi�yi, ..., ysrr yi�yiy.
By Proposition 1.21, pIpDq : yiq � xy

s1
1 yi�yi
yi

, ..., y
sr
r yi�yi
yi

y which is IpDq again.

To prove the fact ID � IpDq , we can also use the following fact which is Theo-

rem 2.9 in [34].

Lemma 1.43. Let B be an integer matrix whose entries are non-negative and whose

columns are linearly independent. Then the lattice basis ideal corresponding to B is

a lattice ideal.
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Fix p` to be the characteristic of our field as where ` P t1, ..., ku. Note that when

` R t1, ..., ku, the primary decomposition of ID is similar to the primary decomposition

in characteristic 0 and we are not interested in it. We shorten the notation p
aj`
` � αj

for convenience. Let Cj be the set of cj � sj{αj-th roots of unity for all 1 ¤ j ¤ r.

Thus, Cj � tωcj , ω2
cj
, ..., ω

cj�1
cj , 1u. Let ρi1,...ir be the partial characters of the form

ρi1,...,ir :�

$''''''''''&
''''''''''%

e1 Ñ i1

e2 Ñ i2

...

er Ñ ir

where ij runs over all elements of Cj. By Corollary 2.2 in [12] , each partial character

induces the following associated prime ideal of ID

Ii1,...,ir � xy1 � i1, ..., yr � iry.

Hence there are s1 � s2 � � � sr{α1 � � �αr- many associated primes of ID.

Proposition 1.44. Let ID and Ii1,...,ir be as above where charpkq � p`. If q �
α1 � � �αr, then the Ii1,...,ir-primary component of ID is

I 1i1,...,ir � ID � pIi1,...,irqrqs.

Proof. We claim that the ideals I 1i1,...,ir are primary and their intersection is equal to

ID. Note that the set of ideals we constructed are pairwise comaximal. Thus the
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intersection of those ideals is equal to their product.

£
itPCt

I 1i1,...,ir �
£
itPCt
t�r

pI 1i1,...,ir�1,1
X I 1i1,...,ir�1,ωcr

X ...X I 1
i1,...,ir�1,ω

cr�1
cr

q

�
£
itPCt
t�r

ID � xyq1 � i1, ..., y
q
r�1 � ir�1, y

qcr
r � 1y

�
£
itPCt
t�r�1

£
ir�1PCr�1

ID � xyq1 � i1, ..., y
q
r�1 � ir�1, y

qcr
r � 1y

�
£
itPCt
t�r�2

£
ir�2PCr�2

ID � xyq1 � i1, ..., y
qcr�1

r�1 � 1, yqcrr � 1y

...

� ID � xyqc11 � 1, ..., y
qcr�1

r�1 � 1, yqcrr � 1y

� ID.

Now we need to show that each I 1i1,...,ir is primary. Indeed, if we show that

I 1i1,...,ir � xyα1
1 � t1, ..., y

αr
r � try for some tj P k, we are done by Theorem 1.30.

Remember that p
aj`
` � αj.

Let us fix j P t1, ..., ru. Since αj is the greatest common divisor of sj and q, we

have m,n P Z such that msj � qn � αj. We wish show that

xysjj � 1, yqj � iqjy � xyαjj � iqnj y.

Since sj, q ¡ 0, without loss of generality m   0 and n ¡ 0. Then y
�msj
j � 1 and

yqnj �iqnj are elements of the ideal on the left hand side. The binomials y
msj�qn
j py�msjj �

1q and yqnj �ymsj�qnj are elements of the ideal on the left hand side, so is the binomial

y
αj
j � iqnj .

On the other hand, recall that cj � sj{αj and let dj � q{αj. Thus, the binomials
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y
αjcj
j � iqncjj , y

sj
j � 1, y

αjdj
j � iqndjj and yqj � ip1�mcjqqj lie in the ideal on the right hand

side, so is the binomial yqj � iqj . This shows that

I 1i1,...,ir � ID � xyq1 � iq1, ..., y
q
r � iqry � xyα1

1 � t1, ..., y
αr
r � try

for some tj P k.

When characteristic of k is p � pi for all i P t1, ..., ku, the primary decomposi-

tion of ID is equal to the primary decomposition in charpkq � 0 and the primary

components are Ii1,...,ir .

The following example illustrates how the operations defined above work. All the

computations are performed using the computer algebra system Singular, [16].

Example 1.45. Let

D �

�
�����

2 0 0

0 6 0

0 0 6

�
����� .

Let charpkq � 2 and consider the lattice ideal ID in kry1, y2, y3s

ID � xy2
1 � 1, y6

2 � 1, y6
3 � 1y.

There are |Sat12pLq{L| � 9�many associated primes. The partial characters for

associated primes are

ρ11,1,1 �

$''''''&
''''''%

e1 Ñ 1

e2 Ñ 1

e3 Ñ 1

ρ11,1,ω1
3
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ 1

e3 Ñ ω1
3

ρ11,1,ω2
3
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ 1

e3 Ñ ω2
3
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ρ11,ω1
3 ,1
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ ω1
3

e3 Ñ 1

ρ11,ω1
3 ,ω

1
3
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ ω1
3

e3 Ñ ω1
3

ρ11,ω1
3 ,ω

2
3
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ ω1
3

e3 Ñ ω2
3

ρ11,ω2
3 ,1
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ ω2
3

e3 Ñ 1

ρ11,ω2
3 ,ω

1
3
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ ω2
3

e3 Ñ ω1
3

ρ11,ω2
3 ,ω

2
3
�

$''''''&
''''''%

e1 Ñ 1

e2 Ñ ω2
3

e3 Ñ ω2
3

where ω3 is a primitive cubic root of unity. The corresponding primary components

are

I 11,1,1 � ID � xy8
1 � 1, y8

2 � 1, y8
3 � 1y,

I 11,1,ω1
3
� ID � xy8

1 � 1, y8
2 � 1, y8

3 � ω2
3y,

I 11,1,ω2
3
� ID � xy8

1 � 1, y8
2 � 1, y8

3 � ω1
3y,

I 11,ω1
3 ,1
� ID � xy8

1 � 1, y8
2 � ω2

3, y
8
3 � 1y,

I 11,ω1
3 ,ω

1
3
� ID � xy8

1 � 1, y8
2 � ω2

3, y
8
3 � ω1

3y,

I 11,ω1
3 ,ω

2
3
� ID � xy8

1 � 1, y8
2 � ω2

3, y
8
3 � ω2

3y,

I 11,ω2
3 ,1
� ID � xy8

1 � 1, y8
2 � ω1

3, y
8
3 � 1y,

I 11,ω2
3 ,ω

1
3
� ID � xy8

1 � 1, y8
2 � ω1

3, y
8
3 � ω1

3y,

I 11,ω2
3 ,ω

2
3
� ID � xy8

1 � 1, y8
2 � ω1

3, y
8
3 � ω2

3y.

The intersection of first three ideals is

J1 � ID � xy8
1 � 1, y8

2 � 1, y24
3 � 1y.
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Intersecting the other three ideals Iρ4 , Iρ5 and Iρ6, we obtain

J2 � ID � xy8
1 � 1, y8

2 � ω2
3, y

24
3 � 1y.

The intersection of Iρ7 , Iρ8 and Iρ9 is

J3 � ID � xy8
1 � 1, y8

2 � ω1
3, y

24
3 � 1y.

Finally, take the intersection of J1, J2 and J3

J1 X J2 X J3 � ID � xy8
1 � 1, y24

2 � 1, y24
3 � 1y � ID.

This example illustrates that it is easy to find the primary components of a lattice

ideal whose defining matrix is a concatenation of a diagonal matrix and a zero matrix.

We would like to compute the primary components of general lattice ideals in positive

characteristic by using the ideas above. Computing the Smith normal form of the

matrix corresponding to a given lattice ideal, we obtain the isomorphisms to find the

primary components in Laurent polynomial ring. Consequently the only thing we

need to do is to take the contraction from the Laurent polynomial ring.

Let B � pbijq be the matrix defining the lattice ideal IB. Let

Dpm�nq � Upm�mq �Bpm�nq � Vpn�nq

be the Smith normal form of B. The columns of U induce a map

ϕ : krx�1 , ..., x�ms Ñ kry�1 , ..., y�ms
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that sends xj ÞÑ
±

uij¡0 y
uij
i {±uij 0 y

�uij
i . Note that the inverse matrix U�1 of U ,

gives the inverse map; ϕ�1 : kry�1 , ..., y�ms Ñ krx�1 , ..., x�ms.
The next example will clarify how to construct the isomorphisms mentioned above

and how to obtain the primary components.

Example 1.46. Let

B �

�
�����

2 0

�2 3

1 �6

�
�����

be a matrix and consider the corresponding lattice ideal IB � xx2
1x3�x2

2, x
5
3�x2

1x2, x
4
1�

x2x
4
3, x

6
1 � x3

2x
3
3y � krx1, x2, x3s where charpkq � 2.

The Smith normal form of B, D � U �B � V is equal to

�
�����

1 0

0 3

0 0

�
����� �

�
�����
�1 �2 �1

1 3 1

3 4 2

�
����� �
�
�����

2 0

�2 3

1 �6

�
����� �
�
��1 0

1 1

�
�� .

The primary components of the lattice ideal corresponding to D, ID � xy1�1, y3
2�

1y, are

J1 � ID � xy1 � 1, y2 � 1y � xy1 � 1, y2 � 1y,

J2 � ID � xy1 � 1, y2 � ω1
3y � xy1 � 1, y2 � ω1

3y,

J3 � ID � xy1 � 1, y2 � ω2
3y � xy1 � 1, y2 � ω2

3y,

where ω3 is a primitive cubic root of unity in k.

The inverse of the matrix U
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U�1 �

�
�����

2 0 1

1 1 0

�5 �2 �1

�
����� ,

gives us the map ϕ�1 : kry�1 , y�2 , y�3 s Ñ krx�1 , x�2 , x�3 s that sends y1 ÞÑ x2
1x2{x5

3,

y2 ÞÑ x2{x2
3 and y3 ÞÑ x1{x3. Thus the primary components of IB are

I1 � pϕ�1pJ1q : px1x2x3q8q � pxx2
1x2 � x5

3, x2 � x2
3y : px1x2x3q8q

� xx2 � x2
3, x

2
1 � x2x3y,

I2 � pϕ�1pJ2q : px1x2x3q8q � pxx2
1x2 � x5

3, x2 � ω1
3x

2
3y : px1x2x3q8q,

I3 � pϕ�1pJ3q : px1x2x3q8q � pxx2
1x2 � x5

3, x2 � ω2
3x

2
3y : px1x2x3q8q.

If k has characteristic 3, ID is a primary ideal and so is pϕ�1pIDq : px1x2x3q8q �
IB.

Example 1.47. Let C be a 4�3-matrix with the Smith Normal form, D � U �C �V ,

is �
��������

1 0 0

0 3 0

0 0 6

0 0 0

�
��������
�

�
��������

1 0 0 0

�1 1 0 0

�2 �1 0 1

2 �2 1 0

�
��������
�

�
��������

3 �2 0

3 �2 3

0 0 6

�3 0 3

�
��������
�

�
�����
�1 0 �2

�2 0 �3

0 1 0

�
����� .

The corresponding lattice ideal is IC � xx3
1x

3
2 � x3

4, x
2
1x

2
2 � 1, x2

1x2, x
4
1 � x2x

4
3, x

6
1 �

x3
2x

3
3y � krx1, x2, x3, x4s where charpkq � 2.
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The primary components of ID � xy1 � 1, y3
2 � 1, y6

3 � 1y in kry1, y2, y3s are

J1 � ID � xy2
1 � 1, y2

2 � 1, y2
3 � 1y � xy1 � 1, y2 � 1y2

3 � 1y,

J2 � ID � xy2
1 � 1, y2

2 � 1, y2
3 � ω1

3y,
...

J9 � ID � xy2
1 � 1, y2

2 � ω2
3, y

2
2 � ω2

3y.

The inverse of the matrix U gives us the map ϕ�1 : kry�1 , y�2 , y�3 s Ñ krx�1 , x�2 , x�3 , x�3 s
that sends y1 ÞÑ x1x2x

3
4, y2 ÞÑ x2x

2
3x4 and y3 ÞÑ x4. Hence the primary components

of IB are

I1 � pϕ�1pJ1q : px1x2x3x4q8q � xx1x2x
3
4 � 1, x2x

2
3x4 � 1, x2

4 � 1y

� xx1x2 � x4, x
2
4 � 1, x2

3 � x1y,

I2 � pϕ�1pJ2q : px1x2x3q8q � pxx1x2x
3
4 � 1, x2x

2
3x4 � 1, x2

4 � ω1
3y : px1x2x3q8q,

...

I9 � pϕ�1pJ9q : px1x2x3q8q � pxx1x2x
3
4 � 1, x2x

2
3x4 � ω2

3, x
2
4 � ω2

3y : px1x2x3q8q.

When charpkq � 3, ID has two primary components

J̃1 � ID � xy9
1 � 1, y9

2 � 1, y9
3 � 1y � xy1 � 1, y3

2 � 1y3
3 � 1y,

J̃1 � ID � xy9
1 � 1, y9

2 � 1, y9
3 � 1y � xy1 � 1, y2 � 1y2

3 � 1y.

The primary components of IB are

I1 � pϕ�1pJ̃1q : px1x2x3x4q8q � xx2
1x2 � 1, x6

3 � x3
1, x

3
4 � 1y,
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I2 � pϕ�1pJ̃2q : px1x2x3x4q8q � xx2
1x2 � 1, x6

3 � x3
1, x

3
4 � 1y.

The following statements are consequences of Theorem 1.30.

Corollary 1.48. Assume charpkq � p ¡ 0. Let B be an n � n integer matrix

with detB � pe for some e ¡ 0. Let the columns of B span the lattice L, and let

IB � xx`�i � x`
�
i | `i P Ly be the corresponding lattice ideal. Then IB is primary.

Proof. Since B has full rank, SatpLq � Zn and | SatpLq{L | = | Zn{L | = detB =

pe. We know that L � Sat1ppLq � SatpLq where Sat1ppLq is the largest sublattice of

SatpLq such that | Sat1ppLq{L | = g where pp, gq = 1. Sat1ppLq{L is a subgroup of

SatpLq{L, thus | Sat1ppLq{L | = g must divide | SatpLq{L | = pe. Hence g must be 1,

which means that IB is primary when the characteristic of k is p, by Theorem 1.30.

Corollary 1.49. Let I � krx1, ..., xns be a lattice ideal, where k is an algebraically

closed field. There exists a prime number p such that for all prime numbers p1 bigger

than p, the primary decomposition of I in a field of characteristic p1 is same as the

one in the field of characteristic 0.

Proof. After a certain prime, the order of the group | SatppLq{L | turns to be 1,

which is compatible with our convention when the characteristic of the field is equal

to 0.
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2. LATTICE BASIS IDEALS

2.1 Combinatorial Characterization of Primary Components of Binomial Ideals

Computing primary components explicitly is difficult, as the Hull operation which

discards the embedded primary components and appears in Theorem 1.36, is not

explicit. Dickenstein, Matusevich and Miller [8] provided a characterization of the

primary components of an arbitrary binomial ideal in a polynomial ring over an

algebraically closed field of characteristic zero. They translate the operations of

binomial ideals to operations on exponent vectors and associated partial characters

and formulate the primary components of binomial ideals as sums of binomial and

monomial ideals. They describe those monomial ideal using congruences induced by

binomial ideals as in the following definition.

Definition 2.1. Let Q be a monoid. A congruence � on pQ,�q is an additively

closed equivalence relation: a � b ñ a � c � b � c for all a, b, c P Q. A binomial

ideal I � krQs induces a congruence �, which we denote by �I , in which :

u � v if tu � λtv P I for someλ P k andλ � 0.

Congruences give us a strong connection between combinatorics and commutative

algebra of binomial ideals.

We use the following notation for the next theorem. For δ � t1, ..., nu let δ̄ be

the complement of δ in t1, ..., nu. Let Nδ � tu P Nn | ui � 0 for i P δ̄u. Thus

Nn � Nδ � Nδ̄. Including additive inverses for elements of Nδ, we obtain Zδ � Nδ̄

with corresponding semigroup krZδ � Nδ̄s � krxi | i P δ̄srx�i | i P δs. This is a mixed

Laurent and ordinary polynomial ring. Let L be a saturated sublattice of Zδ. The
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image of Nδ in the torsion free group Zδ{L is denoted by Nδ{L. We denote the ideal

IrZδs as the extension of the ideal I to the ring krx�j | j P δsrxi | i P δ̄s.

Theorem 2.2. (Theorem 3.2 in [8]) Let k be an algebraically closed field with char-

acteristic 0. Let I � krx1, ..., xns be a binomial ideal with an associated prime

P � Iρ � xxi | i P δ̄y such that ρ : L Ñ k
� is a saturated partial character with

a saturated lattice L � Zδ � Zn. Let � be the congruence defined by the ideal

pI � IρqrZδs on Zδ � Nδ̄. Set ZΦ � Nδ{L

1) If P is a minimal prime of I and U is the set of elements µ P Nn whose

congruence class under � has an infinite image in ZΦ�Nδ̄, then the P -primary

component of I is

Q � ppI � Iρq :
¹
iPδ

pxiq8q � xxµ | µ P Uy.

2) The only monomials in Q are those in xxµ |, µ P Uy.

3) Let K be a monomial ideal containing a sufficiently high power of xxi | i P δ̄y
and let � be the congruence on Zδ�Nδ̄ determined by pI�Iρ�KqrZδs. Let UK

be the set of elements µ P Nn whose congruence class under � have an infinite

image in ZΦ� Nδ̄. If P is an embedded prime of I then

Q̃ � ppI � Iρ �Kq :
¹
iPδ

pxiq8q � xxµ | µ P UKy

is a valid choice for the P -primary component of I.

4) The only monomials in Q̃ are those in xxµ | µ P UKy.

Here, we are trying to construct a binomial primary component of the ideal

I starting from I itself. We start the construction by adding the binomial part
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of P which is contained in the lattice ideal part, I�pρq. This is a consequence

of Theorem 1.36. Then we continue extending the ideal I � I�pρq by taking the

saturation with respect to the nonzerodivisor variables of P , specifically, xi where

i P δ. This follows from Proposition 4.8 and 4.9 in [2] : that state that the P -primary

component of an ideal J is equal to the P -primary component of pJ :
±

jPδ pxjq8q.
One of the critical steps of the construction is determining the monomials we need to

add. This is achieved using congruences. For more explanation about the monomials,

we refer to Lemma 2.8 in [8]. The other crucial step is to show that the constructed

ideal Q is primary. To show that, Dickenstein, Matusevich and Miller reduced the

problem to a monomial ideal problem by taking quotient modulo I�pρq and they use

the characterization for primary ideals whose radical is a monomial associated prime.

(See Theorem 2.23 in [28].) In order to compute embedded primary components

replace I by I �K and the result follows as above.

The characterization of primary components of binomial ideals is still not com-

plete since we assume that we know which primes are associated and we assume that

k is algebraically closed with characteristic zero.

Recall that we denote the ideal IrZδs as the extension of the ideal I to the ring

krx�j | j P δsrxi | i P δ̄s. The following lemmas characterize the monomials that

belong to the primary components of binomial ideals when charpkq � 0 and when

charpkq � p ¡ 0, respectively.

Lemma 2.3. Let I be a binomial ideal in krxs where k is an algebraically closed field

with characteristic zero. Let P � I�pρq � xxi | i P δ̄y be an associated prime of I.

Let Γ be a congruence class determined by pI � pI�pρqqqrZδs. If Γ has two distinct

elements u, v such that v � u P Zδ � Nδ̄ but v � u R Lρ, then for all u P Γ, tu is in

the P -primary component of I.
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Proof. Follows from Lemma 2.8 in [8].

If we mimic the proof of the lemma above, we can determine the monomials of

the primary component in fields with positive characteristic.

Lemma 2.4. Let I be a binomial ideal in krxs where k is an algebraically closed

field with characteristic p ¡ 0. Let P � I�pρq � xxi | i P δ̄y be an associated prime of

I. Let Γ be a congruence class determined by pI � pI�pρqqrpesqrZδs for some e " 0.

If Γ has two distinct elements u, v such that v � u P Zδ � Nδ̄ but v � u R Lρ, then

for all u P Γ, tu is in the P -primary component of I.

Proof. Let u � v P Γ with v � u P Zδ � Nδ̄. This means that xu � λxv P pI �
pI�pρqqrpesqrZδs for some λ P k. We claim that 1 � λ̃xv�u R P rZδs for all λ̃ P k. By

contradiction, assume there exists λ̃ P k such that 1� λ̃xv�u P P rZδs. If vi � ui � 0

for some i P δ̄, this implies that 1 P P , since xi P P . Thus vi � ui � 0 for all i P J̄ ,

but then 1� λ̃xv�u P I�pρqrZδs and therefore v� u P Lρ which gives a contradiction

by definition.

We conclude that 1 � λxv�u maps to a unit in pkrxs{I � pI�pρqqrpesqP . Since

xup1 � λxv�uq � xu � λxv maps to zero in krxs{I � pI�pρqqrpes, xu maps to zero

in pkrxs{I � pI�pρqqrpesqP . As the elements of Γ arise from the monomials that are

scalar multiples of xu modulo pI �pI�pρqqrpesqrZδs , they also map to zero. So for all

u P Γ, xu P kerα : krxs{I � pI�pρqqrpes Ñ pkrxs{I � pI�pρqqrpesqP which is also in the

primary component of I.

The graph of binomial ideals is another combinatorial tool for binomial ideals.

Graphs of binomial ideals provide a better way to visualize the congruence classes,

which in this setting correspond to connected components. We define the graph of

binomial ideals in certain submonoids of Zn.
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Definition 2.5. Let P be a submonoid of Zn. A binomial ideal I in the monoid ring

krP s defines a graph GP pIq whose vertices are the elements of P and whose edges are

pairs pu, vq P P �P such that xu�λxv P I for some λ P k�. A connected component

of GP pIq is said to be infinite if it consists of infinitely many vertices; otherwise it is

called finite. A vertex of GP pIq is called an infinite vertex if it belongs to an infinite

connected component, otherwise it is called a finite vertex. If P � Nn, we write G pIq
instead of GP pIq.

The graph of a binomial ideal can be very difficult to draw. We illustrate them

as simply as possible, for instance, the graph will have many more edges than those

depicted in figures since any connected component of GP pIq is a complete graph.

Theorem 2.6 (Theorem 2.15, [8]). Let k be an algebraically closed field and I �
krx1, ..., xns a binomial ideal. Let δ � t1, . . . , nu, and set P � Zδ �Nδ̄. If xxi | i P δ̄y
is a minimal prime of I, its corresponding primary component is

�
I :
�¹
jPδ

xj
�8
� xxu | u P Nn is an infinite vertex of GP pkrP s � Iqy. (2.1)

Moreover, the only monomials in these primary components are those of the form xu

such that u P Nn is an infinite vertex of GP pkrP s � Iq.

Remark 2.7. Since we now want to compute the primary components corresponding

to monomial associated primes, we do not need to worry about the translation of the

infinite image which is described in Theorem 2.2. Note that the monomials which

belong to the primary component described above are precisely coming from infinite

vertices of the corresponding graph. Moreover the Theorem 2.6 is true for every

characteristic.

35



Remark 2.8. Note that the monomial ideal in (2.1) is generated by monomials xu

where uj � 0 if j P δ. Indeed, if u P Nn is an infinite vertex of GP pkrP s � Iq, so is

u � û, where ûi � 0 if i P δ and ûj � uj if j R δ. This is because monomials in the

variables xj for j P δ are units in krP s.

We use the following criterion to identify the infinite components of GP pkrP s � Iq;
this is a special case of Lemma 2.10 in [8].

Lemma 2.9. Let I � krx1, . . . , xns be a binomial ideal, δ � t1, . . . , nu, and P �
Zδ �Nδ̄. A connected component of GP pkrP s � Iq is infinite if and only if it contains

two distinct vertices u, v P P such that u� v P P .

If I is a binomial ideal, there exists a (multi)grading of the polynomial ring that

makes I a homogeneous ideal. In fact, it is often the case that a binomial ideal is

given together with a specified grading. Depending on their behavior with respect to

a given grading, the associated primes and primary components of a binomial ideal

are called toral or Andean.

Definition 2.10. Let G be a commutative semigroup and let M �ÀgPGMg be a G-

graded module over the polynomial ring krx1, ..., xns. The G-graded Hilbert function

HM of M is the set map G Ñ N whose value at each group element g P G is the

vector space dimension dimkpMgq; explicitly HMpgq � dimkpMgq.

Definition 2.11. Let M be a finitely generated G graded module over the polyno-

mial ring krx1, ..., xns, we say M is toral if HM is bounded above. A G-graded ideal

I is called toral if krx1, ..., xns{I is a toral module. On the other hand if HM is not

bounded above, M is called an Andean module. A graded ideal I is called a Andean

if krx1, ..., xns{I is an Andean module.
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Example 2.12. The toric ideal IA � xxu � xv | u, v P Nn and Au � Avy is an

NA-graded toral prime since dimkpkrx1, ..., xns{IAqa is either 0 or 1, see Lemma 4.3.

In general, the toral primary components of a binomial ideal are more easily

described combinatorially than the Andean ones, as their graphs can actually be

drawn in much lower dimension than the number of variables. Indeed, we will see that

the monomial part of the primary component is easier to compute. The following is a

characterization of a toral component, if we compare to Theorem 2.2, the congruence

classes we are looking at are simpler.

Theorem 2.13. (Theorem 4.13, [8]) Let I P krx1, ..., xns be an A-graded ideal and

let P � I�pρq � xxi | i P δ̄y be a toral minimal associated prime of I. We define

Ī � I � krxs{xxi � 1 | i P δy.

1) If U is the set of elements µ whose congruence class in Nδ̄ under �Ī is infinite,

then P -primary component of I is

Q � ppI � Iρ �Kq :
¹
iPδ

pxiq8q � xxµ | µ P Uy.

2) Let P be a toral embedded prime of I. Let K be a monomial ideal containing

a sufficiently high power of xxi | i P δ̄y and let ŪK be the set of u P Nδ̄ whose

congruence class under �Ī�K is infinite. Then

Q̃ � ppI � Iρq :
¹
iPδ

pxiq8q � xxµ | µ P UKy

is a valid choice for the P -primary component of I.

The only monomials in Q and Q̃ are those in xxµ | µ P Uy and xxµ | µ P UKy,
respectively.
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2.2 Lattice Basis Ideals

In this section we review important facts about lattice basis ideals and especially

how their associated primes arise.

Recall that lattice basis ideal was introduced in Definition 1.41. LetM be an n�m
integer matrix with rank m. Remember that we can write µ P Zn as µ � µ� � µ�

where µ� and µ� are non-negative and have disjoint support. The lattice basis ideal

associated to M is

IpMq � xxµ� � xµ
� | µ is a column of My � krx1, . . . , xns � krNns.

Hoşten and Shapiro studied the associated primes of lattice basis ideals in [18].

They show that the minimal primes of such an ideal are determined by the sign

patterns of the entries of the corresponding matrix. On the other hand, they illustrate

the fact that embedded primary components are not uniquely determined by the sign

patterns of the matrix.

Convention 2.14. A � paijq P Zd�n denotes an integer d�n matrix of rank d whose

columns A1, ..., An all lie in a single open linear half space of Rd. We also assume

that the column of A span Zd as a lattice.

Convention 2.15. Let B � pbjkq P Zn�m be an integer matrix of full rank m ¤ n.

The rows of B are denoted by b1, ..., bn and its columns by B1, ..., Bm. Assume every

nonzero element of column span of B over integers is mixed, meaning that it has both

strictly positive and strictly negative entries. Having chosen B, we set d � n � m

and pick a matrix A P Zd�n of full rank such that ZA � Zd and AB � 0.

Fix matrices A and B as in Convention 2.15, and let IpBq be the lattice basis
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ideal corresponding to B

IpBq � xxB�
i � xB

�
i | Bi is a column of By � krx1, . . . , xns.

By using Corollary 2.1 and Theorem 2.1 in [18], we can list the minimal associated

primes of IpBq. We first consider the associated primes of pIpBq :
±
xi
8q. They

arise from the saturations of the partial character of the lattice ideal pIpBq :
±
xi
8q.

Indeed, all of the associated primes of pI : p±n
i�1 xiq8q are isomorphic, by rescaling

the variables, to IA � xxv��xv� | v P Zn, Av � 0y, where A is as in Convention 2.14.

Recall that the prime ideal IA is called the toric ideal associated to A. When the

characteristic of the underlying field k is zero, it is shown in [12] that the primary

components of IpBq corresponding to these associated primes are the associated

primes themselves. The case of positive characteristic is considered in Section 1.5.

Another kind of associated primes of IpBq arises after row and column permu-

tations of B. In fact, these associated primes of IpBq are described as in the form

of P � xxi1 , ..., xis , I�pρLqy where L is the lattice generated by columns of BL comes

from the block decomposition of the matrix B of the form

�
�� N BL

M 0

�
��

where M is mixed of size s � t with no zero rows. BL is the pn � sq � pm � tq
matrix whose columns generate the lattice L. Also M has to satisfy another block

decomposition property called irreducibility which is the following criterion.

Definition 2.16. A matrix M is called irreducible if

1) M is a mixed s� t matrix where s ¤ t, and
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2) One cannot bring M into the following form after permuting its rows and

columns

M �

�
�� N 1 B1

M 1 0

�
��

where M 1 is mixed m� p matrix where m ¡ p.

Remark 2.17. In the case of lattice basis ideals, the toral associated primes arise

when M which is the submatrix in the decomposition above is square and invertible.

If M is not square or not invertible, then the corresponding associated prime is

Andean. One can verify this fact by Lemma 4. 9 and Example 4. 11 in [8].

2.3 Codimension Two Lattice Basis Ideals

We study lattice basis ideals arising from n� 2 integer matrices, known as codi-

mension two lattice basis ideals. In collaboration with L. F. Matusevich [24] we gave

explicit descriptions for primary components of codimension two lattice basis ideals

especially for those whose corresponding associated prime is monomial and Andean.

Convention 2.18. From now on, B � rbijs is an n � 2 integer matrix of rank 2.

The rows of B are denoted by b1, . . . , bn, and its columns by B1, B2. Fix an integer

pn� 2q � n matrix A such that AB � 0, and whose columns span Zn�2 as a lattice.

IpBq is the lattice basis ideal corresponding to B.

Since B has rank two, the lattice basis ideal IpBq corresponding to B is a complete

intersection. Therefore all of its associated primes are minimal. In the Section 2.2,

we discussed how the associated primes of lattice basis ideals arise in general. In

the case of codimension two, the set of associated primes of IpBq consists of the

associated primes of pI : p±n
i�1 xiq8q and the monomial primes xxi, xjy if bi and bj
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lie in opposite open quadrants of Z2. Using the following decomposition of B, we

obtain the associated prime xxi, xjy

B �

�
�����

N

bi1 bi2

bj1 bj2

�
�����

where the last two rows correspond to xi and xj respectively. Note that we do

not have a binomial I�pρLq in the associated prime since we do not have a BL

submatrix in the decomposition above. Lastly, we point out that
�
bi1 bi2
bj1 bj2

�
satisfies

the irreducibility condition.

We now turn our attention to the primary components of IpBq arising from

monomial associated primes.

We mentioned that for a binomial ideal I, there exists a (multi)grading of the

polynomial ring that makes I a homogeneous ideal and in general, I is given together

with a specified grading. We use the matrix A in Convention 2.18 to define a Zn�2-

grading of krxs, where degpxiq is defined to be the ith column of A. The ideal IpBq
is homogeneous with respect to this A-grading, its associated primes and primary

components are homogeneous as well. By Definition 2.11, we classify the associated

primes and primary components of an A-graded ideal according to their A-graded

behavior.

The monomial primes xxi, xjy such that the corresponding rows of B, bi and bj,

are linearly dependent and in opposite open quadrants of Z2 correspond to Andean

components. It is easy to see that the A-graded Hilbert function of krxs{IA takes only

the values zero and one and this holds in the same way for the other non-monomial

associated primes of IpBq.
On the other hand, the Hilbert function of krxs{xxi, xjy is bounded if the rank of
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the submatrix of A indexed by t1, . . . , nu� ti, ju has full rank, and this occurs when

bi and bj are linearly independent, see Remark 2.17.

By Theorem 2.13, we know that the toral primary components of a binomial ideal

are simpler than the Andean ones, as their graphs can actually be drawn in much

lower dimension.

The following fact is a consequence of Theorem 2.13 which also applies to the

case when the associated prime is monomial.

Theorem 2.19. Let I be an A-graded binomial ideal in krxs, where k is algebraically

closed, and assume that P � xxi | i P δ̄y is a toral minimal prime of I. Define the

binomial ideal Ī � I � krxs{xxj � 1 | j P δy � krNδ̄s by setting xj � 1 for j P δ. The

P -primary component of I is

�
I : p

¹
jPδ

xjq8


� xxu | u P Nδ̄ is an infinite vertex of G pĪqy.

Remark 2.20. The main feature of the Theorem 2.19 is that G pĪq has vertices in

Nδ̄, and the cardinality of δ̄ can be much smaller than n. For the case of codimension

two lattice basis ideals, if xxi, xjy is a toral associated prime of IpBq | δ̄ |� 2 always,

and we can compute the monomials by the graph G pIpBqq where

IpBq � xx|bi1|i � x
|bj1|
j , x

|bi2|
i � x

|bj2|
j y � krxi, xjs.
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Example 2.21. Let

B �

�
���������������������

2 4

�4 �6

2 3

�1 3

�1 �2

2 �6

�8 �12

�3 �6

�
���������������������

,

so that IpBq � xx2
1x

2
3x

2
6 � x4

2x4x5x
8
7x

3
8, x

4
1x

3
3x

3
4 � x6

2x
2
5x

6
6x

12
7 x

6
8y.

The rows p2, 4q and p�4,�6q are linearly independent and lie in opposite open

quadrants, so xx1, x2y is a toral associated prime of IpBq. We can compute the mono-

mials of the xx1, x2y-primary component of IpBq by looking the graph of G pIpBqq
where IpBq � xx2

1 � x4
2, x

4
1 � x6

2y. It is sufficient to add the monomials coming from

the infinite connected components are tx4
1, x

6
2, x

2
1x

2
2u, see Figure 2.1. Thus the other

monomials corresponding to infinite vertices can be generated by these monomials,

as can be seen in the staircase diagram in dashed lines.

By Theorem 2.19, the xx1, x2y-primary component of IpBq is

pIpBq : p
¹
`�1,2

x`q8q � xx4
1, x

6
2, x

2
1x

2
2y � xx4

1, x
6
2, x

2
1x

2
2, x

4
2x4x5x

8
7x

3
8 � x2

1x
2
3x

2
6y.

For a precise result in this case, see Proposition 2.24 and Lemma 2.33.

2.4 Graphs Associated to Matrices

In this section, we study graphs arising from 2�2 integer matrices, whose vertices

are elements of N2. We see that these graphs are sufficient to control the primary
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m

m

m

•
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•

•

•

•

•

Figure 2.1: The graph G pIpBqq

components of the codimension two lattice basis ideals.

Definition 2.22. Let Q be a subset of Zn and let M be an n �m integer matrix.

We define GQpMq the graph of M whose vertices are the elements of Q, and where

two vertices u, v P Q are connected by an edge if and only if u � v or v � u is a

column of M .

Definition 2.23. A connected component of GQpMq is called infinite, if it contains

infinitely many vertices; otherwise it is called finite. A finite (or infinite) vertex of

GQpMq is one that belongs to a finite (or infinite) connected component.

If Q � Nn, we omit Q from the notation, and write GpMq instead of GNnpMq.
We consider graphs GQpMq where Q is a submonoid of Zn such as Nn or Nk�Zn�k

or a subset of Zn, such as tu P Nn | λ1u1 � � � � � λnun � λ0u, for fixed given

λ0, . . . , λn P Q (Lemma 2.44), or tu P N2 | u1 ¤ `u, for fixed given ` P N.

We are interested in determining whether the connected components are infinite

or finite. We will derive the infinite vertices which are mentioned in Theorem 2.6
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from the infinite vertices of GQpMq. Indeed, GQpMq carries the algebraic information

we need to find the monomial part of the associated prime and it is much easier to

analyze. The following result describes the connected components of GpMq, where

M is a 2 � 2 nonsingular matrix whose rows lie in non adjacent open quadrants of

Z2.

Proposition 2.24 (Lemma 6.5 in [10]). Let M � rµijsi,jPt1,2u P Z2�2 of rank two,

and assume that µ11, µ12 ¡ 0 and µ21, µ22   0. Set

R �

$'&
'%

tu P N2 | u1   µ12, u2   �µ21u if |µ11µ22| ¡ |µ12µ21|,
tu P N2 | u1   µ11, u2   �µ22u if |µ11µ22|   |µ12µ21|.

Every finite connected component of GpMq contains exactly one vertex in R. In

particular, the number of finite connected components of GpMq is the cardinality of

R, which is minp|µ11µ22|, |µ12µ21|q.

Example 2.25. Let M �

�
�� 1 3

�2 �4

�
��. GpMq has minp| � 4|, | � 6|q � 4 finite

connected components, which are shown in Figure 2.2.

z

w•

•

•

•

•

•

•

•

S

S

S

S

S

S

Figure 2.2: The graph of M
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If the entries of M P Z2�2 are all positive integers, then GpMq has no finite

connected components. In this case, we focus on a family of subgraphs of GpMq, as

follows.

Definition 2.26. Let M P Z2�2 of rank two, all of whose entries are positive. For

` P N let Q` � tu P N2 | u1 ¤ `u. We denote G`pMq � GQ`pMq, and call these

graphs the band graphs of M . Note that G`pMq is the induced subgraph of GpMq
whose vertices lie in Q`, and consequently if ` ¤ `1, then G`pMq is a subgraph of

G`1pMq.

Before proving our results about band graphs, we need a few more definitions.

Definition 2.27. Let M be a rank two integer matrix

M �

�
��r s

a b

�
��

such that r ¥ s ¡ 0, 0   a ¤ b, and gcdpr, sq � 1. The graphs G`pMq have two types

of edges: those parallel to the first column of M are called the r-edges of G`pMq, and

those parallel to the second column of M are called the s-edges of G`pMq. If r � s,

we could refer to these edges as a-edges and b-edges. Consider N2 with coordinates

w, z. A vertex of G`pMq is called a turn if it is adjacent to both an r-edge and an

s-edge of G`pMq. A turn pw0, z0q is called a left turn if there is a vertex adjacent

to pw0, z0q whose w-coordinate is smaller than w0. Turns that are not left turns are

called right turns.

Intuitively, when we walk along a connected component of G`pMq in the direction

that increases z, we turn left at a left turn, and right at a right turn. For an

illustration of the definitions above, see Figure 2.3.
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The following result, joint with L. F. Matusevich, characterizes the situation when

a band graph has an infinite connected component.

Proposition 2.28. Let M be as in Definition 2.27. If `   r � s � 1, then every

connected component of G`pMq is finite. If ` ¥ r � s � 1, then for every w0 P
t0, 1, . . . , `u there exists z0 P N such that pw0, z0q belongs to an infinite component of

G`pMq.

Proof. Write r � sq1�q2 where 0 ¤ q2   s. We claim that any connected component

of GrpMq contains at most 2q1 � 2 vertices (implying that GrpMq, and therefore

G`pMq for ` ¤ r, has no infinite connected components). A connected component of

GrpMq can only contain one r-edge since the w-coordinates of vertices in GrpMq are

bounded by r. Thus, we can have at most two turns in such a connected component.

We can connect at most q1-many s-edges at each turn. Including the turns, the

number of vertices in a connected component of GrpMq is at most equal to 2q1 � 2.

We observe that a modification of the argument above shows that a connected

component of G`pMq is infinite if and only if it contains infinitely many left turns.

Now consider Gr�tpMq where 0 ¤ t   s. We show that Gr�tpMq has an infinite

connected component if and only if t � s � 1. Note that not all components of

Gr�tpMq have left turns, for instance, the vertex pr � t, 0q is itself a connected

component, which therefore has no turns. In what follows, we study how many left

turns a connected component can have.

The ordering ¡ on the elements of N2 defined by pw, zq ¡ pw1, z1q if z ¡ z1,

or z � z1 and w1 ¡ w, induces a total ordering on the set of left turns of a given

component of Gr�tpMq.
Let C be a connected component of Gr�tpMq, and suppose that pw0, z0q is a left

turn in C. We wish to produce the next left turn of C according to ¡, if it exists.
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Since pw0, z0q is a left turn in C, we have pw0 � r, z0 � aq P C. This is a right

turn, because Gr�tpMq cannot contain two adjacent r-edges, as the w-coordinates

of the vertices of Gr�tpMq are bounded by r � t, and t   s. We attach s-edges to

pw0 � r, z0 � aq, to produce a vertex pw0 � r, z0 � aq � pqs, qbq P C, where q ¡ 0

is as large as possible. The integer q is produced by writing r � t � pw0 � rq �
qs � rr � t � pw0 � rq mod ss, where rα mod βs denotes the remainder of α upon

division by β, for α, β P Z, α ¡ 0.

If pw0 � r, z0 � aq � pqs, qbq is coordinatewise greater than or equal to pr, aq, then

pw0 � r, z0 � aq � pqs, qbq is a left turn of C which is greater according to ¡ than

pw0, z0q. Now, z0�a ¥ 0 and b ¥ a imply that z0�a�qb ¥ a. Therefore, in order for

pw0�r, z0�aq�pqs, qbq to be a left turn, we need r ¤ w0�r�qs � r�t�rr�t�pw0�rq
mod ss, or equivalently, t ¥ r2r � t� w0 mod ss.

Replacing pw0, z0q by pw0�r, z0�aq�pqs, qbq, we see that the condition needed for

the existence of a left turn which is greater according to¡ than pw0�r, z0�aq�pqs, qbq
is t ¥ r2r � t� pw0 � r � qsq mod ss � r3r � t� w0 mod ss.

Continuing in this manner, the existence of infinitely many left turns in C is

equivalent to requiring t ¥ r`r � t � w0 mod ss for all ` ¡ 0. However, since

gcdpr, sq � 1, there exists ` ¡ 0 such that r`r � t � w0 mod ss � s � 1. Therefore,

if t   s � 1, C has finitely many left turns, and is finite, and if t � s � 1, C has

infinitely many left turns, and is infinite.

If t   s � 1, a component of Gr�tpMq either has no left turns or finitely many

left turns, which shows that Gr�tpMq has no infinite components.

Let t � s � 1 and w0 P t0, . . . , r � s � 1u. If w0 ¥ r, then for large enough

z0, pw0, z0q is a vertex of both an r- and an s-edge whose other vertex has lower

z-coordinate, and is therefore a left turn in its connected component, which is thus

infinite. If w0   r, we can choose z0 sufficiently large such that attaching as many
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s-edges to pw0, z0q as possible yields a left turn, which implies that the component

of pw0, z0q is infinite.

Finally, if ` ¡ r � s � 1, for each 0 ¤ t ¤ ` � pr � s � 1q, G`pMq contains as a

subgraph the image of Gr�s�1pMq under the translation pw, zq ÞÑ pw � t, zq. This

implies that for each w0 P t0, . . . , `u, there is z0 ¡ 0 such that pw0, z0q is an infinite

vertex of G`pMq.

Example 2.29. Let

M �

�
�� 7 4

1 1

�
��

The band graphs G4pMq and G7pMq are illustrated in Figure 2.3.

z

w
G4pMq

•

•

•

•

z

w
G7pMq

left turn

•

•• •

•

•

•

•

Figure 2.3: Examples of band graphs

All of the connected components of G4pMq and G7pMq are finite. The minimum

` P N such that G`pMq has an infinite connected component is ` � 10 (see Figure 2.4).

Remark 2.30. In Proposition 2.28, we assumed that the entries in the top column

of M were relatively prime. In the following result, we remove that assumption.
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z

w
G10pMq

•

• •

•

•

••

•

••

•

•

Figure 2.4: A band graph with an infinite component

Theorem 2.31. Consider a rank two matrix

M �

�
��r s

a b

�
��

where r, s, a, b are positive integers, r ¥ s, a ¤ b and gcdpr, sq � d ¥ 1. The minimal

` P N such that G`pMq has an infinite connected component is ` � r � s � d. If

0 ¤ t   d and w0 P t0, . . . , r � s � d � tu, there exists z0 such that pw0, z0q is an

infinite vertex of Gr�s�d�tpMq if and only if w0 is divisible by d. If ` ¡ r � s, for

each w0 P t0, . . . , `u, there exists z0 such that pw0, z0q is an infinite vertex of G`pMq.

Proof. Let M̂ be the (integer) matrix obtained from M by dividing r and s by d, so

that Proposition 2.28 applies to the band graphs of M̂ .

Let ` P N and set ˆ̀� t`{du, the integer part of `{d. We show that G`pMq is a

disjoint union of graphs isomorphic to Gˆ̀pM̂q or Gˆ̀�1pM̂q.
Let pw0, z0q P N2 such that w0 ¤ `, so that pw0, z0q is a vertex of G`pMq. Write

w0 � ŵ0d� t0 where t0 is an integer with 0 ¤ t0   d.

If t0 � 0, then pw0, z0q belongs to the image of the map ϕ`,0 : Gˆ̀pMq Ñ G`pMq
defined on vertices by pw, zq ÞÑ pdw, zq. Since r and s are divisible by d, any vertex in
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the connected component of G`pMq that contains pw0, z0q also has its w-coordinate

divisible by d. This implies that the connected component of pw0, z0q in G`pMq is

the image under ϕ`,0 of the connected component of pw0{d � ŵ0, z0q in Gˆ̀pM̂q.
If t0 ¡ 0, consider the map ϕ`,t0 : Gˆ̀�1pMq Ñ G`pMq defined on vertices by

pw, zq ÞÑ pdw � t0, zq. Since r and s are divisible by d, the w-coordinates of all the

vertices of G`pMq connected to pw0, z0q are congruent to t0 modulo d. This implies

that the connected component of pw0, z0q in G`pMq is the image under ϕ`,t0 of the

connected component of pŵ0, z0q in Gˆ̀�1pM̂q.
Note that the images of the maps ϕ`,i have no common vertices, and their union

is G`pMq. Now use Proposition 2.28 to obtain the desired conclusions.

Example 2.32. Let M �

�
��2 6

1 2

�
��. When ` � 6, the band graph G6pMq has an

infinite connected component. However, the vertices pw, zq where w is odd are finite

vertices for all z; see Figure 2.5.

z

w

•
•

•

•
•

•
•

•
•

•

S

S

S

S

S

S

S

S

S

S

S S

Figure 2.5: The band graph G6pMq

The following lemma relates the graphs of lattice basis ideals and those associated

to matrices.
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Lemma 2.33. Let M be an n�m integer matrix of rank m, and IpMq its correspond-

ing lattice basis ideal as in Definition 1.41. Let τ � t1, . . . , nu and let P � Nτ � Zτ̄ .

Then u, v P P are connected in GP pkrP s � IpMqq if and only if they are connected in

GP pMq.

Proof. Assume that u, v P P are connected in GP pMq. We show that xu � xv P
krP s � IpMq by induction on the length of the path connecting u to v. If this path

has length one, then u and v are connected by an edge of GP pMq, meaning that u�v
or v � u, say u � v, equals a column µ of M . Then u � v � µ � µ� � µ�, so that

v � µ� � u� µ� � ν. Since v � µ� � µ� � u P P and for all i, pµ�qi and pµ�qi are

not simultaneously nonzero, we see that ν P P . But then xu � xv � xνpxµ� � xµ�q P
krP s � IpMq, as we wished.

Now assume that u and v are connected in GP pMq by a path of length ` ¡ 1.

This means that there are vertices u � νp0q, νp1q, . . . , νp`q � v of GP pMq such that

pνpiq, νpi�1qq is an edge of GP pMq for i � 0, . . . , `. By inductive hypothesis, since

νp1q and v are connected in GP pMq by a path of length ` � 1, we have xν
p1q �

xv P krP s � IpMq. But we also know xu � xν
p1q P krP s � IpMq. We conclude that

xu � xv P krP s � IpMq, and therefore u and v are connected in GP pIpMqq.
For the converse, we start by noting that a lattice basis ideal (and its extension

to krP s) contains no monomials. This follows, for instance, from Lemma 7.6 in [30],

which implies that the saturation pIpMq : xx1 � � � xny8q � krxs is not the unit ideal.

Since every connected component of GP pIpMqq is a complete graph, if u and v

are connected in GP pIpMqq, then pu, vq is an edge in GP pIpMqq. Thus, there exists

nonzero ρ P k such that xu� ρxv P krP s � IpMq, and if µp1q, . . . , µpmq are the columns

of M , we can write xu � ρxv � F1pxqpxµ
p1q
� � xµ

p1q
� q � � � � � Fmpxqpxµ

pmq
� � xµ

pmq
� q for

certain F1, . . . , Fm P krP s. We can represent this expression as a subgraph K of
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GP pMq: for every term λxν in Fi, K contains the edge pν � µ
piq
� , ν � µ

piq
� q and its

corresponding vertices. We label this edge by the coefficient λ, and we label each

vertex by the combination of the labels of the edges adjacent to it, with a positive

sign if we look at the vertex ν �µpiq� of pν �µpiq� , ν �µpiq� q, and a negative sign for the

vertex ν � µ
piq
� . Thus, the only two vertices with nonzero labels are u and v.

Let Ku be the connected component of K containing u. We wish to show that

v is a vertex in Ku, as this implies that u and v are connected in GP pMq. But if

this is not the case, we can use Ku to form a polynomial expression with a summand

λxνpxµpiq� � xpµ
piq
� q for each edge pν � µ

piq
� , ν � µ

piq
� q labeled by λ in Ku, and this

expression equals the sum over the vertices in Ku of the label of each vertex times

the corresponding monomial. Since the only vertex with a nonzero label in Ku is

u (that label is 1), then we obtain an expression for xu as a combination of the

generators of krP s � IpMq. This contradicts the fact that krP s � IpMq contains no

monomials.

Remark 2.34. We can construct GP pIpMqq by adding edges to GP pMq until each

connected component becomes a complete graph. This is correct by the hypotheses

and notation of the previous lemma. For an arbitrary binomial ideal I � krP s, it

is always possible to construct a subgraph of GP pIq using a generating set of I, so

that the vertex sets of their connected components are the same. This implies that

saturating the connected components of this subgraph with edges yields GP pIq. Note

that not every generating set of I contains sufficient information, what we need is a

generating set of I that contains all the generators of the maximal monomial ideal

in I. A different perspective can be found in the Lemmas 1 and 2 in [29].

Remark 2.35. We can construct G pIpBqq from the graph GpMq associated to the

2 � 2 matrix M whose rows are bi and bj by Lemma 2.33. Also, since we have
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already characterized the connected components of GpMq in Proposition 2.24, we

can describe the corresponding primary component by applying Theorem 2.19. This

yields a very nice picture of the toral components of a codimension two lattice basis

ideals in characteristic zero.

2.5 Codimension Two Lattice Basis Ideals in Three Variables

In this section, we study the Andean components of codimension two lattice basis

ideals. We first look at the case of three variables.

Convention 2.36. Let B be 3� 2 matrix of full rank 2 as follows

B �

�
�����

r s

�λr �λs
a b

�
�����

where r, s, a, b P Z¡0, a ¤ b, r ¥ s, gcdpr, sq � d, and 0   λ � p{q in lowest terms.

We work in the polynomial ring krx, y, zs. The lattice basis ideal associated to B is

IpBq � xxrza � yλr, xszb � yλsy � krx, y, zs. We let P � N2 � Z, and work with

krP s � krz�srx, ys.

Remark 2.37. Note that for a codimension two lattice basis ideal IpBq correspond-

ing to a matrix B as in Convention 2.36, a vertex u � pux, uy, uzq of G pIpBqq that lies

on a hyperplane uy � �λux � λ`, for ` P Q, can only be connected to other vertices

on that hyperplane. The reason is that the columns of B which are the building

blocks of the graph GpBq are parallel to the hyperplane uy � �λux.

Let B be as in Convention 2.36. In [24], we compute the primary component of

IpBq corresponding to the Andean associated prime xx, yy. The only ingredient we

need to understand this component is the graph arising from the extension of IpBq to
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krz�srx, ys � krP s. Indeed, the following proposition illustrates that it is sufficient

to understand the infinite connected components of G pIpBqq.

Proposition 2.38. Let B and P � N2 � Z as in Convention 2.36. Then

tpux, uyq P N2 | Duz P Z such that pux, uy, uzq is an infinite vertex of GP pkrP s�IpBqqu

� tpux, uyq P N2 | Duz P N such that pux, uy, uzq is an infinite vertex of G pIpBqqu.

Proof. If u � pux, uy, uzq P N3 is an infinite vertex of G pIpBqq, then it is clear that

it is also an infinite vertex of GP pkrP s � IpBqq.
Let u � pux, uy, uzq P P be an infinite vertex of GP pkrP s � IpBqq. By Lemma 2.9

there exists v � pvx, vy, vzq, ṽ � pṽx, ṽy, ṽzq P N2�Z connected to u such that ṽx ¥ vx

and ṽy ¥ vy. Since u is connected to v, we can find a nonzero ρ P k such that

xuxyuyzuz � ρxvxyvyzvz P krP s � IpBq, and by clearing denominators, we can produce

µ P N such that zµpxuxyuyzuz�ρxvxyvyzvzq P IpBq; in particular, µ�uz and µ�vz are

non negative. Thus, the vertices pux, uy, uz � µq, pvx, vy, vz � µq P N3 are connected

in G pIpBqq. Enlarging µ as needed, we may assume that pux, uy, uz�µq, pvx, vy, vz�
µq, pṽx, ṽy, ṽz � µq are coordinatewise non negative and connected in G pIpBqq.

By Remark 2.37, there exists ` P Q such that vy � �λvx�λ` and ṽy � �λṽx�λ`,
so that ṽy � vy � �λpṽx� vxq. Since λ ¡ 0 and ṽx� vx, ṽy � vy are non negative, we

see that vx � ṽx and vy � ṽy.

In conclusion, the vertices pvx, vy, vz � µq, pvx, vy, ṽz � µq P N3 are connected in

GpIpBqq, since either pvx, vy, vz�µq�pvx, vy, ṽz�µq or pvx, vy, ṽz�µq�pvx, vy, vz�µq
belongs to N3, we see that these vertices belong to an infinite component of G pIpBqq
by Lemma 2.9. As these vertices are connected to pux, uy, uz � µq, we conclude that

this is an infinite vertex of G pIpBqq.
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Corollary 2.39. Let B and P � N2 � Z as in Convention 2.36. The primary

component of IpBq corresponding to the associated prime xx, yy is

pI : z8q � xxuxyuyy | Duz P N such that pux, uy, uzq is an infinite vertex of GpBqy.

Proof. The result follows from Theorem 2.6, Remark 2.8 and Lemma 2.33.

The fact in Remark 2.37 motivates the following definition.

Definition 2.40. Let B be as in Convention 2.36 and ` P p1{pqN. Set Sp`q �
Nn X tpux, uy, uzq | uy � �λux � λ`u. The graph GSp`qpBq is called the `-th slice

graph of B. GpBq equals the disjoint union
�
`Pp1{pqNGSp`qpBq as a graph.

Example 2.41. Let IpBq � xx4z � y4, x7z � y7y, the slice graphs of IpBq are illus-

trated in Figure 2.6.

ux

uy

uz

GS4pBq GS7pBq

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 2.6: Slice graphs for IpBq � xx4z � y4, x7z � y7y

We group the slice graphs of B according to isomorphism in the following result.
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Lemma 2.42. Let B as in Notation 2.36. Suppose pcx, cy, czq P N3 is a vertex of

GSp`qpBq, where ` P p1{pqN. Write cx � qc̄x�i, cy � pc̄y�j, where c̄x, c̄y, i, j P N and

0 ¤ i   q, 0 ¤ j   p. Then GSp`qpBq is isomorphic to the slice graph GSp`�i�j{λqpBq
that contains pqc̄x, pc̄y, czq as a vertex. Consequently, in order to understand the (con-

nected components of) all the slice graphs of B, it is enough to understand GSp`qpBq
for ` P qN.

Proof. The desired isomorphism ϕij between GSp`qpBq and GSp`�i�j{λqpBq is defined

by

pux, uy, uzq ÞÑ pux � i, uy � j, uzq.

Note that a vertex of the form pqc̄x, pc̄y, czq P N3, where c̄x, c̄y P N belongs to a slice

graph GSp¯̀qpBq where ¯̀P qN.

Example 2.43. To better understand how the ideas above work, let us illustrate them

for the ideal I � xx12z6 � y18, x18z6 � y27y. Thus, r � 12, s � 18, λ � p{q � 3{2
and d � 6. We know that an infinite connected component first occurs in GSp24qpBq.
By Lemma 2.44 and Theorem 2.31, we realize that p24, 0, zq, p18, 9, zq, p12, 18, zq,
p6, 27, zq and p0, 36, zq are infinite vertices for some z. The projections onto the xy-

plane of the slice graphs of B are shown in Figure 2.7. The monomials induced by

these infinite vertices give a staircase diagram that can be seen in the picture in the

left hand side.

Let us consider the vertices under the stair starting with p0, 36q and ending with

p6, 27q. We know that the vertices shown with circles are finite by Theorem 2.31.

To understand the connected components of all the slice graphs of B that passes

through the vertices in this figure, it is enough to understand GSp24qpBq, GSp26qpBq
and GSp28qpBq. For example the vertices depicted with stars belong to the slice graphs

which are isomorphic to GSp24qpBq and they are all finite. Also, the vertices shown
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Figure 2.7: Slice graphs for IpBq � xx12z6 � y18, x18z6 � y27y

with a square belong to the slice graphs which are isomorphic to GSp26qpBq and they

are all finite too. The vertices depicted with bullets on the slice graphs GSp26qpBq
and GSp28qpBq correspond to infinite vertices, but note that the monomials induced

by these can be divided by x6y27 or y36. Thus the minimal generating set of the

monomial ideal we are looking for does not contain the aforementioned monomials.

Lastly, the vertices which are shown with small bullets are related to the slice graph

GSp22qpBq, and they are all finite, since infinite vertices first appear in GSp24qpbq.

In order to draw the graphs in a simpler way, we “straighten out” the slice graphs

of B. Recall the notation in Convention 2.36. Given ` P N, let φ` : N2 Ñ Z3 be the

injective function defined by pw, kq ÞÑ pqw, λpq` � qwq, kq � pqw, pp` � wq, kq. Note

that the image φ`ptpw, kq P N2 | 0 ¤ w ¤ `, 0 ¤ kuq is the intersection with N3 of the
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hyperplane given by uy � �λux � λq`.

Lemma 2.44. Let B be as in Convention 2.36 and let M � � r{q s{q
a b

�
. Given ` P N,

define φ` as above. The image under φ` of the band graph G`pMq is the slice graph

GSpq`qpBq.

We have already studied the connected components of the band graphs G`pMq,
thus we can compute the primary component of IpBq associated to xx, yy.

Theorem 2.45. Let B as in Notation 2.36. The primary component of IpBq corre-

sponding to the associated prime xx, yy is

pIpBq : z8q � xyλpr�s�dq, xdyλpr�s�2dq, x2dyλpr�s�3dq, . . . , xr�s�dy.

Proof. By Theorem 2.6, the desired component is pIpBq : z8q �M , where

M � xxuxyuy | Duz P Z with u � pux, uy, uzq an infinite vertex of GN2�ZpIpBqqy.

By Proposition 2.38, we can use G pIpBqq instead of GN2�ZpIpBqq in the definition of

M , and by Lemma 2.33, we can use GpBq instead of G pIpBqq.
Now using Remark 2.37, Lemmas 2.42 and 2.44 and Theorem 2.31 we obtain the

desired result.

Theorem 2.45 is an important for understanding the primary decomposition of

IpBq in the general n � 2 case. Indeed, we reduce the general case to 3 � 2 case.

We are now ready to state and prove the main result in [24], which gives an explicit

expression for the Andean primary components of a codimension two lattice basis

ideal.
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Theorem 2.46. Let B as in Convention 2.18, and suppose that bi, bj are linearly de-

pendent rows of B lying in opposite open quadrants of Z2. Without loss of generality,

assume that bi1, bi2 ¡ 0, let d � gcdpbi1, bi2q, and write λ � �bj1{bi1 � �bj2{bi2 ¡ 0.

The primary component of IpBq corresponding to the associated prime xxi, xjy is

pIpBq : p
¹
k�i,j

xkq8q � xxλpbi1�bi2�dqj , xdix
λpbi1�bi2�2dq
j , x2d

i x
λpbi1�bi2�3dq
j , . . . , xbi1�bi2�di y.

The only monomials in this ideal are those in the ideal

xxλpbi1�bi2�dqj , xdix
λpbi1�bi2�2dq
j , . . . , xbi1�bi2�di y.

Proof. Let σ � ti, ju, and set P � Nσ � Zσ̄. Choose 0   a ¤ b P Z such that the

matrix B̂ �
�
bi1 bi2
bj1 bj2
a b

�
has rank 2. Our result follows from Theorems 2.45 and 2.6 if

we show that

tpui, ujq P Nσ | Du P P an infinite vertex of GP pIpBqqu �

tpc1, c2q P N2 | Dc3 P Z with pc1, c2, c3q an infinite vertex of GN2�ZpIpB̂qq.

By Lemma 2.33, it is enough to show that

tpui, ujq P Nσ | Du P P with ui and uj an infinite vertex of GP pBqu �

tpc1, c2q P N2 | Dc3 P Z with pc1, c2, c3q an infinite vertex of GN2�ZpB̂q.

We show �; the other inclusion is similar.

Let pui, ujq P Nσ, such that there is u P Nσ � Zσ̄ (whose i-th and j-th coordinate

are ui and uj) that is an infinite vertex of GP pBq. By Lemma 2.9, there are v, ṽ P P
connected to u such that ṽ� v P P . Since v and ṽ are connected, there is a sequence

60



of vertices u � µp1q, . . . , µp`1q � v, µp`1�1q, . . . , µp`2q � ṽ P P such that pµpkq, µpk�1qq is

an edge in GP pBq for k � 1, . . . `2 � 1.

Recall that B1 and B2 are the columns of B, and denote B̂1 and B̂2 the columns

of B̂. Define

vpkq �

$'''''''&
'''''''%

B̂1 if µpk�1q � µpkq � B1,

�B̂1 if µpk�1q � µpkq � �B1,

B̂2 if µpk�1q � µpkq � B2,

�B̂2 if µpk�1q � µpkq � �B2.

Choose any c P Z and let νp1q � pui, uj, cq. Set also νpk�1q � νpkq � vpkq for

k � 1, . . . , `2 � 1. Then the first and second coordinates of νpkq are equal to the i-th

and j-th coordinates of µpkq respectively, which implies that νp1q, . . . , νp`2q P N2 � Z.

By construction, pνpkq, νpk�1qq is an edge of GN2�ZpB̂q for k � 1, . . . , `2� 1, so that in

particular, νp1q, νp`1q and νp`2q belong to the same connected component of GN2�ZpB̂q.
Moreover, ṽ � v P P implies that νp`2q � νp`1q P N2 � Z, so by Lemma 2.9, νp1q is an

infinite vertex of GN2�ZpB̂q, and we conclude that pui, ujq belongs to the set in the

right hand side.

Example 2.47. We continue to compute the primary components left off in Exam-

ple 2.21 Recall that IpBq � xx2
1x

2
3x

2
6 � x4

2x4x5x
8
7x

3
8, x

4
1x

3
3x

3
4 � x6

2x
2
5x

6
6x

12
7 x

6
8y.

• p2, 3q and p�4,�6q are linearly dependent rows of B and they are in opposite

open quadrants. The xx2, x3y- primary component of IpBq is

ppIpBq : p
¹
`�2,3

x`q8q � xx8
2, x

6
2x3, x

4
2x

2
3, x

2
2x

3
3, x

4
3yq

� xx8
2, x

6
2x3, x

4
2x

2
3, x

2
2x

3
3, x

4
3, x

2
2x

2
3x

10
6 � x4

2x3x
5
4x

4
7,

x4
2x4x5x

8
7x

3
8 � x2

1x
2
3x

2
6, x

2
2x

2
3x5x

8
6x

4
7x

3
8 � x2

1x
3
3x

4
4,
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x6
2x5x

8
6x

4
7x

3
8 � x2

1x
4
2x3x

4
4, x

6
2x

2
5x

6
6x

12
7 x

6
8 � x4

1x
3
3x

3
4y

• If we look at the xx3, x7y- primary component of IpBq

ppIpBq : p
¹
`�3,7

x`q8q � xx4
3, x

3
3x

4
7, x

2
3x

8
7, x3x

12
7 , x

16
7 yq

� xx4
3, x

3
3x

4
7, x

2
3x

8
7, x3x

12
7 , x

16
7 , x

2
3x

10
6 x

4
7 � x2

2x3x
5
4x

8
7,

x4
2x4x5x

8
7x

3
8 � x2

1x
2
3x

2
6, x

2
2x

2
3x5x

8
6x

4
7x

3
8 � x2

1x
3
3x

4
4,

x6
2x5x

8
6x

4
7x

3
8 � x2

1x
4
2x3x

4
4, x

6
2x

2
5x

6
6x

12
7 x

6
8 � x4

1x
3
3x

3
4y

• p�1, 3q and p2,�6q are linearly dependent rows of B and they lie in opposite

open quadrants of Z2. The xx4, x6y- primary component of IpBq is

ppIpBq : p
¹
`�4,6

x`q8q�xx3
4, x

2
4x

2
6, x4x

4
6, x

6
6yq � xx3

4, x
2
4x

2
6, x4x

4
6, x

6
6, x

4
2x4x5x

8
7x

3
8�x2

1x
2
3x

2
6y.

• If we look at the xx1, x8y- primary component of IpBq

ppIpBq : p
¹
`�1,8

x`q8q � xx4
1, x

2
1x

3
8, x

6
8yq � xx4

1, x
2
1x

3
8, x

6
8, x

4
2x4x5x

8
7x

3
8 � x2

1x
2
3x

2
6y.

To conclude this section we remark that the techniques we use to compute the

Andean component of codimension two lattice basis ideal are hard to generalize.

The first obstacle towards a generalization is that for codimension two lattice basis

ideals, we know which primes are associated to the ideal. For general lattice basis

ideals on the other hand, we do not have an efficient combinatorial method to find

the minimal associated primes. In other words, we do not have an efficient algorithm

to test whether the matrix has the wanted block decomposition which is mentioned

in [18]. The second difficulty is that while we are able to pass from the monoid
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N2 � Zn�2 to Nn, by using the linear dependence of the rows under consideration

(Proposition 2.38.), but this does not have to hold in the general case. The third

difficulty can be about finding the infinite vertices of the graph of binomial ideals.

In the codimension two case, we have two edges that are building blocks. This gives

us a combinatorial control to detect the infinite vertices, as in Theorem 2.38. When

the number of columns increases, we cannot hope to compute the finite or infinite

connected components of the graphs we construct by simply drawing them.
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3. CELLULAR BINOMIAL IDEALS

In this section, we find a characterization for the minimal primary components

of a cellular binomial ideal. We have already considered some properties of cellular

binomial ideals in previous sections. Let us recall the central definition of this section

and fix the corresponding notations.

3.1 Cellular Decomposition of Binomial Ideals

Definition 3.1. An ideal I � krx1, ..., xns is cellular if every variable is either a

nonzerodivisor modulo I or is nilpotent modulo I.

The study of cellular decomposition was motivated by analyzing the intersection

of a variety corresponding to a binomial ideal with coordinate cells pk�qδ

pk�qδ � tpa1, ..., anq | ai � 0, i P δ and aj � 0, j R δu,

where δ runs over all subsets of t1, ..., nu. The closure of the intersection of the

variety corresponding to a binomial ideal V pIq with pk�qδ is the variety corresponds

to the ideal

Iδ � pI � xxi | i R δyq : p
¹
iPδ

xiq8.

If I is a radical ideal then I � �δ Iδ. A more refined version of this statement is

given in the following theorem.

Theorem 3.2. (Theorem 6.2 in [12].) Let I be a binomial ideal then

I �
£

δ�t1,...,nu

�
pI � xxdii | i R δyq : p

¹
iPδ

xiq8
�
,
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for di is sufficiently large.

To be more precise about the numbers di, we can use the fact that for some

primary decomposition of I � �j Qj, x
di
i P Qj if and only if xi P

a
Qj for all i and j.

There is also a partial criterion to determine the numbers di without using a primary

decomposition, that can be found in Theorem 2.8 in [31].

The ideals ppI �xxdii | i R δyq : p±iPδ xiq8q we manufactured from I are obviously

cellular binomial ideals. In fact, I is cellular if and only if I � I
pdq
δ for some δ �

t1, ..., nu and d P Zn¡0. From now on, we usually specify δ and b when we work

with a cellular binomial ideal. If the index set for the nonzerodivisor variables is

δ � t1, ..., nu, then we call I a δ-cellular binomial ideal. We now look at some

features of these ideals.

Proposition 3.3. Let I � I
pbq
δ � krx1, ..., xns be a cellular binomial ideal .

1. There exists a partial character pρ, Lρq such that I X krxi | i P δs � I�pρq and
?
I �aI�pρq � xxi | i P δ̄y.

2. Let I � I
pbq
δ be a cellular binomial ideal, and let P � I�pρ̃q � MpP q be an

associated prime of I, where MpP q is the largest monomial ideal contained in

P . Then MpP q � xxi | i P δ̄y.

Proof. This is a combination of Propositions 2.2 and 2.3 in [31].

Proposition 3.4. Let I � krx1, ..., xns be a binomial ideal and g P krx1, ..., xns. If

pI : gq � pI : g8q then I � pI : gq X pI � xgyq.

Proposition 3.4 is the key ingredient in an algorithm for computing cellular de-

composition of a binomial ideal. If I is not cellular, we can find a variable x` which is

a zerodivisor but not nilpotent modulo I. For sufficiently large r, pI : xr`q � pI : x8` q.
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Now say xr` � g and apply the proposition above. Note that both pI : gq and pI�xgyq
are binomial ideals that strictly contain I. If we repeat the same argument with the

new ideals we constructed, we obtain a chain of ideals that has to stop by Noethe-

rianity. At the end, we obtain a cellular decomposition of the original ideal. The

following algorithm is due to Ojeda and Sanchez [31].

Algorithm 3.5. Cellular decomposition of a binomial ideal

Input : A binomial ideal I.

Output : A cellular decomposition of I.

1. If I is cellular return I.

2. Choose xi that is zero divisor but not nilpotent modulo I.

3. Determine the power m such that pI : xmi q � pI : x8i q.

4. Repeat the algorithm for pI : xmi q and I � xxmi y.

To compute the integer in the third step, one can use the algorithm given by

Becker and Weispfenning in [4].

Cellular decompositions of binomial ideals are not canonical; they can be consid-

ered as an approximation for primary decomposition. Eisenbud and Sturmfels proved

the binomiality of the primary decomposition by using this intermediate cellular de-

composition step, for example in Theorem 1.36 and Theorem 1.35. An irredundant

primary decomposition of a binomial ideal I can be obtained from the given primary

decompositions of the cellular components of I by deleting redundant components. In

[1] and [12], the authors discussed cases where a cellular decomposition is a primary

decomposition.
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3.2 Computing Associated Primes and Primary Components of a Cellular

Binomial Ideal

Theorem 3.6. Let I � I
pbq
δ be a cellular binomial ideal in S � krx1, ..., xns, where

charpkq � p ¥ 0. If P � I�pτ̃q �MpP q where MpP q is the maximal monomial ideal

in P is an associated prime of I, then there exists a monomial m in the variables

txiuiPδ̄ and a partial character τ such that τ̃ is a saturation of τ and

pI : mq X krxi | i P δs � I�pτq

Proof. See Theorem 8.1 in [12].

Theorem 3.6 states that the associated primes of cellular binomial ideals have

partial characters supported on different lattices. In the light of theorem above, we

review the algorithm for computing associated primes of cellular binomial ideals due

to Eisenbud and Sturmfels [12].

Algorithm 3.7. Associated primes of a cellular binomial ideal I � I
pbq
δ

Input: A cellular binomial ideal I.

Output: The list of associated primes P1, ..., Ps of I.

1. Compute a Gröbner basis of I with respect to a term order  .

2. Set U to be the set of standard monomials of I in the variables txi | i P δ̄u.

3. For each m in U ,

3.1. Compute the partial character τ that satisfies I�pτq � pI : mq Xkrxi | i P
δs.

3.2. For each saturation τi of τ , output the prime ideal I�pτiq � xxi | i P δ̄y.
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Using Theorem 3.6, Eisenbud and Sturmfels gave an alternative decomposition of

a binomial ideal into unmixed binomial ideals when charpkq � 0. Recall that an ideal

I is called unmixed if its height is equal to the heights of its associated primes. In

particular, for an unmixed ideal the associated primes have the same height, which

means that there are no embedded primes of I.

Corollary 3.8. Let k be a field of characteristic zero. Let I be a δ-cellular binomial

ideal in krx1, ..., xns. Then I can be written as a finite intersection of unmixed

binomial ideals as follows

I �
£

m a monomial in txiuiPδ̄

HullpI � ppI : mq X krδsqq,

where m is a monomial in krδ̄s.

Example 3.9. Let I � xx2zt2 � y2zt2, z2, t3, t2v2 � t2w2y � krx, y, z, t, v, ws. The

ideal I is a δ � tx, y, z, wu-cellular binomial ideal. The monomials we need to check

in order to obtain an unmixed decomposition of I as above are t1, z, zt, t2, zt2u. We

use Singular [16] in our computations

pI : 1q X krδs � ∅, I1 � HullpI �∅q � xz2, t2y,

pI : t2q X krδs � xv2 � w2y, I2 � HullpI � xv2 � w2yq � xv2 � w2, z2, t3, zt2y,

pI : zt2q X krδs � xx2 � y2, v2 � w2y, I3 � HullpI � xx2 � y2, v2 � w2yq

� xv2 � w2, z2, t3, x2 � y2y.

Then,

I � I1 X I2 X I3.
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Note that the computations for monomials z and zt give the ideal I1 again, which

is redundant. In the case of charpkq � 2, the computations are exactly same for

I. Indeed, Eisenbud and Sturmfels have a conjecture that Corollary 3.8 is true for

positive characteristic as well.

Definition 3.10. A lattice L is potentially associated to a cellular binomial ideal

I � I
pbq
δ if there exists a witness monomial m P krxi | i P δ̄s such that pI : mqXkrxi |

i P δs � I�pτq for some character τ : LÑ k
�.

The lattice ideals pI : mq X krxi | i P δs are partially ordered by inclusion.

Definition 3.11. Let charpkq � p ¥ 0. Let I � I
pbq
δ be a cellular binomial ideal such

that I X krxi | i P δs � I�pρq. A potentially associated lattice L is called embedded

if it properly contains Lρ and if SatpLρq � SatpLq.

Definition 3.12. Let I be a cellular binomial ideal. We define MembpIq to be the

monomial ideal generated by all witness monomials of embedded lattices of I.

Note that 1 is not in MembpIq.
The definition of the MembpIqq implies the following result.

Lemma 3.13. Let I be a δ-cellular binomial ideal, and let pρ, Lρq such that IXkrxj |
j P δs � I�pρq. A monomial m P krxi | i P δ̄s � I belongs to MembpIq if and only if

there exists a binomial xa � λxb P krxj | j P δs such that

1. λ � 0,

2. a� b R SatpLρq, and

3. mpxa � λxbq P I.

Moreover, in this case, mxa,mxb R I, and we may assume gcdpxa, xbq � 1.

69



Proof. If m PMembpIq, pI : mq X krxj | j P δs � I�pτq, and SatpLτ q � SatpLρq. Pick

xa � λxb P I�pτq � krxj | j P δs such that a � b R SatpLρq. We can do this, because

if we had a� b P SatpLρq for all xa� λxb P I�pτq, then we would have Lτ � SatpLρq,
and consequently SatpLτ q � SatpLρq, which together with the fact that Lτ properly

contains Lρ would imply SatpLτ q � SatpLρq, a contradiction.

Since I�pτq contains no monomials, we see that λ � 0. Moreover, if mxa,mxb P I,

then we would have m P I, since I is δ-cellular, and the monomials xa and xb only

involve the variables indexed by δ. The fact that we may assume that gcdpxa, xbq � 1

also follows from the fact that I is δ-cellular, as gcdpxa, xbq can only involve the

variables indexed by δ.

For the converse, let m R I be a monomial involving only the variables indexed

by δ̄, and suppose there is a binomial xa � λxb P krxi | i P δs satisfying the three

conditions required above.

Now xa � λxb P pI : mq X krxi | i P δs. Since pI : mq is δ-cellular, we know that

pI : mq X krxi | i P δs � I�pτq for some character τ : Lτ Ñ k
�. Since pI : mq � I, we

have I�pτq � I�pρq, and therefore Lτ � Lρ. However, a � b P Lτ � SatpLρq, which

implies that Lτ is an embedded potentially associated lattice to I and therefore

m PMembpIq.

Example 3.14. I � xx3z � x3, x4, x2yt � x2y, y2, t3 � 1y � krx, y, z, ts is a cellular

binomial ideal such that tz, tu are the cellular variables and tx, yu are the nilpotent

variables. In this case MembpIq � xx3y. Observe that x2y is not in MembpIq, although

pI : x2yq X krz, ts contains the binomial t� 1, since we already have t3 � 1 in I, and

the corresponding lattices have the same saturation.

Remark 3.15. A slightly different definition of MembpIq first appears in [21]. Kahle

introduces this notion to improve the implementations in the package Binomials.
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In particular, he designed MembpIq to reduce the number of colon operations in

that algorithm, see the algorithm in [21]. In Proposition 6, he gave the minimal

primary component of a cellular binomial ideal which has exactly one minimal prime

: I �MembpIq in charpkq � 0. We modified the definition of MembpIq by adding the

extra condition that SatpLρq � SatpLq. Moreover, we gave a description in [25] for

minimal primary components of general cellular binomial ideals in any characteristic,

which is reproduced Theorem 3.22.

We now give an algorithm to find MembpIq for I a cellular binomial ideal. This

will be useful to find the primary components of cellular binomial ideals.

Algorithm 3.16. The monomial ideal MembpIq.
Input : A δ-cellular binomial ideal I.

Output : The monomial ideal MembpIq � krδ̄s where xi, i P δ̄, are nilpotent

variables.

1. Compute the lattice ideal I X krδs � I�pρq.

2. Initialize a to-do list with all monomials in a k-basis of krδ̄s{pI X krδ̄sq.

3. Iterate the following until the to-do list is empty.

3.1 Choose a monomial m in a k-basis of krδ̄s{pIXkrδ̄sq. Compute the lattice

ideal pI : mq X krδs � Iτ and check if SatpLτ q � SatpLρq.

3.1.1 If yes, then add m to MembpIq and remove all monomials which can

be divided by m from the to-do list.

3.1.2 If no, then remove m and every monomial that can divide m from the

to-do list and return to step 3.1.
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Proof of Correctness. Computing the intersection of I with nonzerodivisor vari-

ables can be computed by using Gröbner bases and elimination. The intersection

ideal is a lattice ideal by Proposition 3.3. If a monomial m P krδ̄s{pI X krδ̄sq sat-

isfy SatpLτ q � SatpLρq, we do not need to check the monomials that can be di-

vided by m. Since m can generate them, so they also belong to MembpIq. Let

ñ be a monomial in to-do list and let ñ divide a monomial m̃ in the list where

pI : ñqXkrxi | i P δs � I�pτq � pI : m̃qXkrxi | i P δs � I�pτ̃q with SatpLτ̃ q � SatpLρq.
This implies that SatpLτ q � SatpLρq, so ñ R MembpIq. There are finitely many steps

since there are finitely many monomials m P krδ̄s{pI Xkrδ̄sq to check, as I is cellular

and I contains pure powers of variables xi for i P δ̄.

Proposition 3.17. Let I be a δ-cellular binomial ideal with MembpIq � ∅. Then I

does not have any embedded associated primes.

Proof. By Theorem 3.6, the embedded primes of I are of the form I�pτ̃q� xxi|i P δ̄y,
where τ̃ is the saturation of the partial character τ given by

pI : mq X krxi | i P δs � I�pτq,

for some monomial m PMembpIq.
Such a monomial m must belong to MembpIq. Since MembpIq � ∅, we see that I

has no embedded primes.

Remark 3.18. Note that if I has one minimal primary component and if MembpIq �
∅ then I is a primary ideal.

Theorem 3.19. Let I be an δ-cellular binomial ideal with I X krδs � I�pρq. Then

the ideal I �MembpIq is δ-cellular binomial ideal whose primary components are all
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minimal and

pI �MembpIqq X krδs � I�pρq.

Proof. For all xi i P δ̄, there exists a di P Z¡0 such that xdii P I � I�MembpIq, which

implies that the variables indexed by δ̄ are nilpotent modulo I �MembpIq.
We now show that the variables indexed by δ are nonzerodivisors modulo I �

MembpIq. It is sufficient to show ppI �MembpIqq : xjq � I �MembpIq for all j P δ.
The ideal I � MembpIq is binomial and so is ppI � MembpIqq : xjq. The equality

ppI �MembpIqq : xjq � I �MembpIq follows if we show that the generators of ppI �
MembpIqq : xjq are contained in I �MembpIq.

Let xµ be a monomial generator of ppI �MembpIqq : xjq where j P δ then xµxj P
I �MembpIq. If xµxj P I, then xµ P I as I is δ-cellular. Assuming xµxj R I, we claim

that there exists a monomial xv PMembpIq such that xµxj � λxv P I.

The claim is true if xµxj P MembpIq, so suppose not. We know that xµxj P
I �MembpIqq, so we may write

xµxj � F1g1 � � � �Fkgk �H1t1 � � � �Hrtr �Hr�1tr�1 � � � � �HN tN , (3.1)

where g1, . . . , gk are binomials in I, neither of whose monomials belong to I, t1, . . . , tr

are monomials in I, and tr�1, . . . , tN are monomials in MembpIq. We visualize (3.1)

as a graph G whose vertices are the exponent vectors of the monomials in the right

hand side of (3.1); for instance, if F1 contains a monomial xν with nonzero coefficient,

and g1 � λ1x
a � λ2x

b, then ν � a and ν � b are vertices of G. The edges of G come

from the binomials and monomials g1, . . . , gk, t1, . . . , tN . For instance, pν � a, ν � bq
is an edge in G arising from the binomial g1. The monomials give rise to loops in

G: if ti � xv and xν
1

is a monomial with nonzero coefficient in Hi, pv � ν 1, v � ν 1q
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is a loop in G. Note that G may have multiple edges and multiple loops. Each

vertex in G receives a label as follows. The initial label of the vertex u is zero. For

each edge pu, vq where v � u arises from a binomial λ1x
u � λ2x

v, add λ1 to the

label of u. For every loop pu, uq, which arises from a term γxu, add γ to the label

of xu. Note that this process labels each vertex by its coefficient in (3.1), so that

only the vertex µ � ej receives a nonzero label (which equals 1); here ej denotes

the vector in Zn whose only nonzero coordinate is the j-th one, which equals 1. A

connected component Γ of G corresponds to an element of I � MembpIq, namely

fpΓq � °w vertex in Γ labelpwqxw. If Γ is the connected of µ � ej, then fpΓq � xµxj.

Since xµxj R I, the connected component Γ of µ � ej in G must contain a vertex

v coming from MembpIq. As xµxj R MembpIq, µ � ej and v must be connected by

a sequence of edges corresponding to binomials in I. Now the claim follows by

induction on the length of this path.

We have shown, since MembpIq is generated by monomials in the variables indexed

by δ̄, there exists xw P MembpIq X krxi | i P δ̄s that divides xv. We write xv � xuxw

for some monomial xu.

Since xw PMembpIq, xwpxa � λ̃xbq P I for some a� b P δ which is not in SatpLρq.
Note that pxµxj � λxvqpxa � λ̃xbq P I. The binomial λxvpxa � λ̃xbq belongs to I, so

does xµxjpxa � λ̃xbq. This implies that xµpxa � λ̃xbq P I and xµ PMembpIq.
Let xα�λxβ be a generator of ppI�MembpIq : xiq, we want to show that it is also in

I �MembpIq. By definition xipxα�λxβq P I �MembpIq. Assume xαxi R I �MembpIq,
this implies xβxi R I � MembpIq. By Proposition 1.19, xipxα � λxβq P I, so also

xα � λxβ P I. If xix
α, xix

β P I �MembpIq, then we use the same argument as above

to conclude that xα, xβ PMembpIq.
Assume that xµ PMembpI �MembpIqq is not a monomial in I �MembpIq. Hence,

there exists a binomial xα � λxβ P krδs where α � β R SatpLρq and xµpxα � λxβq P
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I�MembpIq. We use the same argument as before; if xµxα is in I�MembpIq, then xµ

is in I�MembpIq, which is a contradiction. If xµxα and xµxβ are not in I�MembpIq,
then by Proposition 1.19, xµpxα�λxβq P I, so xµ PMembpIq, which is a contradiction.

Before stating the main theorem in this section, we want to give an important

feature of cellular binomial ideals.

Proposition 3.20. Let I be a δ-cellular binomial ideal. Let xa � λxb P I such that

ai ¥ bi for all i P δ̄. If xb R I (which also implies xa R I) then ai � bi for all i P δ̄.

Proof. Let i P δ̄ such that ai ¡ bi. Since I is a cellular binomial ideal and xi is

nilpotent, there exists a pure power monomial xcii in I (here ci P Z¡0). Since xa R I,

we see that ci ¡ ai.

The binomial xci�aii pxa � λxbq belongs to I, and so does the monomial xci�aii xa.

This implies that xci�ai�bii

±
`Pδ̄,`�i x

b`
` also belongs to I (saturating out the cellular

variables). Since a` ¥ b` for ` P δ̄, we see that xci�ai�bii

±
`Pδ̄,`�i x

a`
` P I. Using the

fact that xa R I, we conclude that ci � ai � bi ¡ ai, and so ci � 2ai � bi ¡ 0.

We repeat the previous argument, using the product xci�2ai�bi
i pxa � λxbq P I, to

see that xci�2ai�2bi
i

±
`Pδ̄,`�i x

b`
` P I, which implies that xci�2ai�2bi

i

±
`Pδ̄,`�i x

b`
` P I, and

as before, ci � 2ai � 2bi ¡ ai.

Continuing in this manner, we conclude that ci � kpai � biq ¡ ai for all k P Z¡0,

a contradiction, since ai ¡ bi.

Recall our notation. Let charpkq � p ¥ 0 and let I � I
pbq
δ P krx1, ..., xns be a cel-

lular binomial ideal, where IXkrxi | i P δs � I�pρq. We define SatppLρq and Sat1ppLρq
to be the largest sublattices of SatpLρq containing Lρ such that |SatppLρq{Lρ| � pk

for some k P Z and |Sat1ppLρq{Lρ| � g where pp, gq � 1. There are g distinct partial
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characters ρ̃i that extends pρ, Lρq to Sat1ppLρq. For each ρ̃i, there exists a unique

partial character ρi that extends ρ̃i to SatpLρq by Theorem 1.30. When charpkq � 0,

I�pρiq � I�pρ̃iq for all i.

Lemma 3.21. Let I be a δ-cellular binomial ideal in krxs where k is algebraically

closed with characteristic p ¡ 0. Let P � I�pρiq � xxi | i P δ̄y be an associated prime

of I. Let Γ be a congruence class determined by pI � pI�pρ̃iqqrZδs. If Γ has two

distinct elements u, v such that v � u P Zδ � Nδ̄ but v � u R Lρi, then for all u P Γ,

tu is in the P -primary component of I.

Proof. The proof is same as the one in Lemma 2.4.

Theorem 3.22. Use the notation introduced above. Let I be a cellular binomial ideal

with I X krxi | i P δs � I�pρq. The minimal associated primes of I are

Pi � I�pρiq � xxi | i P δ̄y for i � 1, ..., g.

Let Ji � ppI � I�pρ̃iqq : p±`Pδ x`q8q, the Pi-primary component of I is

Qi � Ji �MembpJiq.

Proof. By Theorem 3.6, the minimal associated primes of I are of the form I�pρiq �
xxi | i P δ̄y.

Fix i, we claim that Qi is Pi-primary. First, we show that Qi has a unique minimal

associated prime. If we look at the radical of the ideal, we see
apJiq �MembpJiq � Pi.

Note that
a
I � I�pρ̃iq �

a
Ji �MembpJiq, which implies that Pi �

b?
I �aI�pρ̃iq

� ?
Qi � Pi. Hence

?
Qi � Pi. Thus Qi has a unique minimal associated prime. By
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Theorem 3.19, Qi does not have any embedded associated primes. Consequently Pi

is the only associated prime of Qi which implies that Qi is Pi-primary.

We show that Qi is the Pi-primary component of I. It is enough to show that

MembpJiq � kerα, where α : krxs Ñ pkrxs{IqPi , since Ji is already in kerα. The ideal

I�I�pρ̃iqmust be in the Pi-primary component of I, so is ppI�I�pρ̃iqq : p±`Pδ x`q8q �
Ji since we know that kerα is the intersection of Pi-primary ideals that contain I by

Corollary 10.21 in [2]. Let xµ P MembpJiq � krδ̄s. Let τ be a partial character such

that pJi : xµq X krδs � I�pτq and SatpLτ q � SatpLρq. Hence there exists an element

b P Lτ such that db R Lρ for all d P Z¡0. This implies that xb� � τpbqxb� P I�pτq and

xb� � λxb� R I�pρiq for all λ P k. Thus, xµpxb� � τpbqxb�q P Ji. For some xν P krδs,
xµxνpxb� � τpbqxb�q P I � I�pρ̃iq. When charpkq � p ¡ 0, the congruence class Γ

containing µ�ν�b� � µ�ν�b� determined by I�I�pρ̃iqrZδs has a pair of elements

mentioned in Lemma 3.21, thus xµ belongs to kerα.

When charpkq � 0, let Γ1 be the congruence class containing µ�ν�b� � µ�ν�b�
determined by I � pI�pρiqqrZδs and note that b R Lρi . By Lemma 2.3, xµ belongs to

kerα.

Remark 3.23. When charpkq � 0, there is another way to show that Qi is Pi-

primary component of I based on the characterization in Theorem 2.2. Let U be the

set defined in Theorem 2.2. The only thing we need to show is that the monomials

in Ji and MembpJiq are the same as the monomials in M � xxu | u P Uy. It is

obvious that monomials in Ji are in M , and we showed that MembpJiq � M in the

proof of Theorem 3.22. Now we need to show the other containment. Let xµ P M ,

we want to show that xµ P Ji �MembpJiq. Suppose xµ R Ji. Since xµ P M , µ is in

a congruence class Γ induced by pI � pI�pρiqqqrZδs which has an infinite image in

Nδ{Lρi�Nδ̄. By Lemma 2.9 in [8], there exists v, w P Γ which satisfy that vi ¥ wi for
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all i and xvxa�xwxb P pI�pI�pρiqqqrZδs where a, b P δ, v, w P δ̄. For some xν P krδs,
xvxa�ν � xwxb�ν P I � I�pρiq � Ji.

Ji is a δ-cellular binomial ideal, so by Proposition 3.20, vi � wi for all i. Thus

xv belongs to MembpJiq. Since µ and v are in the same congruence class, there is

a binomial xµxa � xvxb P I � pI�pρiqqrZδs, which implies that xµxaxν � xvxbxν P
I � pI�pρiqq for some xν P krδs. Since xv P MembpJiq, it follows that xµxaxν P
Ji �MembpJiq.

Example 3.24. (Example 3.14 continued.) If charpkq � 3, there are three associated

primary components of the lattice ideal IXkrz, ts � xt3�1y. They are xt�1y, xt�ωy
and xt � ω2y where ω is a primitive cubic root of unity in k. Hence the minimal

primary components of I are

J1 � ppI � xt� 1yq : pztq8q, MembpJ1q � ∅, Q1 � J1 �MembpJ1q � xt� 1, x3, y2y,

J2 � ppI�xt�ωyq : pztq8q, MembpJ2q � ∅, Q2 � J2�MembpJ2q � xt�ω, x3, y2, x2yy,

J3 � ppI�xt�ω2yq : pztq8q, MembpJ3q � ∅, Q3 � J3�MembpJ3q � xt�ω2, x3, y2, x2yy.

The monomial x2y belongs to Q2 since px2yt� x2yωq and px2yt� x2yq are in J2, so

x2yω � x2y � x2ypω � 1q also belongs to J2. Note that pω � 1q has an inverse in k.

Example 3.25. The saturation operation cannot be omitted from the description of

the minimal primary components of cellular binomial ideals. Let I � xx2 � y2, xu�
yv, u3, v3, u� vy � krx, y, u, vs. I is a cellular binomial ideal with nilpotent variables

tu, vu. Note that I X krx, ys � xx2 � y2y � xx � yy X xx � yy if charpkq � 2. When

charpkq � 2, xx2� y2y is itself primary. Note that MembpIq � H. Thus, the minimal
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primary components of I in characteristic p � 2 are

J1 � ppI �xx� yyq : pxyq8q, MembpJ1q � ∅, Q1 � J1�MembpJ1q � xx� y, u� v, v3y,

J2 � ppI � xx� yyq : pxyq8q, MembpJ2q � ∅, Q2 � J2 �MembpJ2q � xx� y, u, vy.

I�xx�yy contains the monomial yv without containing v, which shows that we need

saturation operation in this description.

When charpkq � 2, J � pI � xx2 � y2yq : pxyq8q and J �MembpJq � I is already

primary.

The following is another useful characterization for the minimal primary compo-

nents of a cellular ideal.

Theorem 3.26. Let I be a δ-cellular binomial ideal, and suppose I X krxi | i P
δs � I�pρq. Let I�pρ̃iq be a primary component of I�pρq. Let Ji �

�
pI � I�pρ̃iqq :

�±
iPδ xi

�8

. Then

Ji �MembpJiq �
��
I � I�pρ̃iq �MembpIq

�
:
�¹
iPδ

xi
�8


.

Proof. We first claim that MembpIq �MembpJiq. To see this, note that Ji is δ-cellular

and Ji X krxi | i P δs � I�pρ̃iq, with SatpLρ̃iq � Lρ̃i � SatpLρq. If m is a monomial

in MembpIq, the binomial produced in Lemma 3.13 can also be used to show that

m PMembpJiq, since I � Ji.

It is now enough to show that MembpJiq � Ji � MembpIq. Since MembpJiq is

generated by monomials in the variables indexed by δ̄, let µ P Zn such that µδ � 0

and xµ PMembpJiq. Note that µδ � 0 denote that µi � 0 for all i P δ.
If xµ P Ji, then xµ P Ji �MembpIq, so we may assume that xµ R Ji, and pick a
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binomial xa � λxb P krxi | i P δs as in Lemma 3.13. In particular, xµpxa � λxbq P Ji,
and therefore, we can find a monomial xν such that νδ̄ � 0 and xνxµpxa � λxbq P
I � I�pρ̃iq.

As xµ R Ji, the monomials xνxµxa, xνxµxb do not belong to I � I�pρ̃iq.
Since xνxµpxa � λxbq P I � I�pρ̃iq, we can write

xνxµpxa � λxbq � F1f1 � � � � � Frfr � Fr�1fr�1 � Fsfs �H1t1 � � � � �Hktk, (3.2)

where F1, . . . , Fs, H1, . . . , Hk, f1, . . . , fs, t1, . . . , tk are polynomials,

xf1, . . . , fry � I�pρ̃iq, xfr�1, . . . , fs, t1, . . . , tky � I,

the polynomials f1, . . . , fr are binomials arising from Lρ̃i (in particular, they are not

monomials, and involve only the variables indexed by δ), the polynomials fr�1, . . . , fs

are binomials that are not monomials, and t1, . . . , tk are monomials.

As we did in the proof of Theorem 3.19, we visualize the expression (3.2) as a

graph G with labeled vertices. Since xνxµxa and xνxµxb do not belong to I � I�pρ̃iq,
the vertices ν � µ� a and ν � µ� b belong to the same connected component of G

and therefore there is a path in G connecting ν � µ � a to ν � µ � b, that is, there

exists a sequence of edges ε1 � pα1, β1q, . . . , ε` � pα`, β`q arising from the binomials

f1, . . . , fs such that α1 � ν �µ� a, βi � αi�1 for i � 1, . . . , `� 1 and β` � ν �µ� b.
Each edge εj arises from a binomial λεj ,1x

αj � λεj ,2x
βj which is a multiple of one

of the binomials fi, and therefore belongs to either I or I�pρ̃iq.
If we have an edge εj such that pαjq` � pβjq` for all ` P δ̄ and αj � βj R SatpLρq,

then the associated polynomial must belong to I. By Lemma 3.13, either xpαjqδ̄ is an

element of I, or it is an element of MembpIq. In both cases, we can do induction on
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the length j of the path that connects ν�µ�a to αj to conclude that xν�µ�a belongs

to I � I�pρ̃iq in the first case (which is a contradiction), and to I � I�pρ̃iq�MembpIq
in the second case. Then xν�µ�a P I � I�pρ̃iq �MembpIq implies that xµ P

��
I �

I�pρ̃iq �MembpIq
�

:
�±

iPδ xi
�8


.

Thus we may assume that for every edge εj such that pαjqδ̄ � pβjqδ̄, we have

αj � βj P SatpLρq.
Let εi1 , . . . , εiq be the subsequence of ε1, . . . , ε` consisting of edges εj such that

pαjqδ̄ � pβjqδ̄, and observe that each of these edges is therefore associated to a

polynomial λεj ,1x
αj � λεj ,2x

βj that lies in I.

Note that pαi1qδ̄ � µ � pβiqqδ̄.
Consider λεi1,1x

αi1 � λεi1 ,2x
βi1 and λεi2,1x

αi2 � λεi2 ,2x
βi2 . Since the edges εj for

i1   j   i2 are parallel to elements of SatpLρq, we see that βi1 �αi2 P SatpLρq, and in

particular pβi1qδ̄ � pαi2qδ̄. Let xv � lcmpxβi1 , αi2q, and consider the following element

of I
λεi1,2x

v

xβi1

�
λεi1,1x

αi1 � λεi1,2x
βi1
�� λεi2,1x

v

xαi2

�
λεi2,1x

αi2 � λεi2,2x
βi2
�

� λεi1,2λεi1,1x
v

xβi1
xαi1 � λεi2,1λεi2,2x

v

xαi2
xβi2 .

We write the preceding binomial as Λ1,1x
ν1,1xαi1 �Λ1,2x

ν1,2xβi2 P I, where Λ1,1,Λ1,2 P
k
�, xν1,1 and xν1,2 are relatively prime monomials involving only the variables indexed

by δ, and ν1,1 � ν1,2 P SatpLρq.
Repeating this procedure, we find nonzero Λq�1,1,Λq�1,2 P k� and relatively prime

monomials xνq�1,1 and xνq�1,2 involving only the variables indexed by δ such that

νq�1,1 � νq�1,2 P SatpLρq, and Λq1,1x
νq�1,1xαi1 � Λq�1,2x

νq�1,2xβiq P I. We recall that

pαi1qδ̄ � µ � pβi`qδ̄; since I is δ-cellular, we may assume that gcdpxνq�1,1xαi1 , xνq�1,2xβiq q
� xµ. Moreover, αi1�βiq is congruent to a�b modulo SatpLρq, since a�ν�µ�αi1 P
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SatpLρq, b � ν � µ � βiq P SatpLρq and νq�1,1 � νq�1,2 P SatpLρq. We conclude that

αi1 � βiq R SatpLρq, and therefore Λq1,1x
νq�1,1xαi1 � Λq�1,2x

νq�1,2xβiq P I implies that

xµ PMembpIq, as we wanted.

Proposition 3.27. Let HullpIq denote the intersection of minimal primary compo-

nents of I. If I is a δ-cellular binomial ideal then

HullpIq � I �MembpIq.

Proof. Recall that I �MembpIq is δ-cellular, and pI �MembpIqq X krxj | j P δs �
I�pρq � I X krxj | j P δs.

We claim that MembpI �MembpIqq � ∅. By contradiction, let xµ P MembpI �
MembpIqq. By definition, xµ R I �MembpIq, and we may assume µδ � 0. Then there

exists a binomial xa � λxb P krxj | j P δs such that λ � 0, a � b R SatpLρq and

xµpxa � λxbq P I �MembpIq. If xµxa P I �MembpIq, then xµ P I �MembpIq, since

I�MembpIq is δ-cellular, giving a contradiction. Similarly, we see xµxb R I�MembpIq.
As before, we write an expression for xµpxa�λxbq P I�MembpIq as a combination

of binomials and monomials in I, and monomials in MembpIq, and think of this

as a labeled graph Γ. Since xµxa, xµxb R I � MembpIq, µ � a and µ � b are in

the same connected component of this graph. If a vertex in this component is the

exponent vector of a monomial in I �MembpIq, then every vertex in that component

is an exponent vector of a monomial in I �MembpIq, which contradicts xµxa, xµxb R
I �MembpIq.

This means that the connected component of µ� a and µ� b in Γ contains edges

arising from I (and not from MembpIq), and we conclude that xµpxa � λxbq P I. But

then xµ PMembpIq, which is also a contradiction.
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We conclude that I �MembpIq has no embedded associated primes by Proposi-

tion 3.17.

The second step we show that minimal primes of I�MembpIq are the same as those

of I. The primary component of I �MembpIq associated to Pi � I�pρ̃iq � xxj | j R δy
is

��
I�MembpIq�I�pρ̃iq

�
:
�±

jPδ

�8
�Memb

��
I�MembpIq�I�pρ̃iq

�
:
�±

jPδ

�8

by Theorem 3.17.

By Theorem 3.17,

��
I �MembpIq � I�pρ̃iq

�
:
�±

jPδ

�8
 � Ji �MembpJiq, where

Ji �
��
I � I�pρ̃iqq :

�±
jPδ xj

�8

, so the same argument that proved MembpI �

MembpIqq � ∅ shows that MembpJi �MembpJiqq � ∅.

We conclude that the primary component of I�MembpIq associated to Pi is

��
I�

MembpIq � I�pρ̃iq
�

:
�±

jPδ

�8
 � Ji�MembpJiq, which is the primary component of

I associated to Pi.

Since I�MembpIq has the same minimal primes and minimal primary components

as I, and I �MembpIq has no embedded primes, we see that I �MembpIq � HullpIq.
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4. COMMUTATIVE MONOID CONGRUENCES AND BINOMIAL IDEALS

In this section, we focus on congruences in commutative monoids to derive some

results about primary decomposition of binomial ideals. The decomposition of con-

gruences in commutative monoids is an analogous theory. But, this theory does not

reflect all the features of primary decomposition of binomial ideals and does not truly

lead to the corresponding combinatorics. Kahle and Miller in [22] define a new type

of intersection decomposition which is called mesoprimary decomposition by using

congruences on monoids. This new decomposition is finer than cellular decomposi-

tion, but not as fine as primary decomposition. A good feature of this new theory is

that it allows significant speed-ups in computations [21].

Primary decomposition of binomial ideals can be recovered from mesoprimary

decomposition which is more advantageous in terms of combinatorial clarity and

computational efficiency. Also, we are not supposed to assume some properties about

the base field, for example being algebraically closed and about its characteristics.

In characteristic zero, primary components contain the binomial part of their

radicals (see Remark 1.37), which reflects the combinatorial features more accurately.

In characteristic p ¡ 0, on the other hand, an additional problem arises from the

fact that binomials of the radical of a primary ideal I are not necessarily contained

in the ideal I itself.

Our aim in this section is to review some results in [22] and try to characterize

the primary binomial ideals in positive characteristic in terms of congruences.

4.1 Congruences on Monoids

Recall from Definition 2.1, a congruence is an additively closed equivalence rela-

tion on a monoid. For example, equality satisfies the definition of congruence. This
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is called identity congruence. Also recall that a binomial ideal I of a monoid algebra

krQs induces a congruence �, which we denote by �I , in which

u � v if tu � λtv P I for someλ � 0.

Remark 4.1. As binomial ideals induce congruences, indeed by Theorem 9.12 in

[22], we know that every congruence is induced by some canonical unital binomial

ideal. Recall that a unital binomial ideal (pure difference binomial) in krQs is an

ideal which does not have any monomials and is generated by difference of monic

monomials ta � tb.

Definition 4.2. Let Q be a commutative monoid and � be a congruence on Q. The

quotient Q{ � is the set of equivalence classes under addition. We denote Q{� �: Q̄.

A congruence on Q induces a Q̄-grading on the semigroup algebra krQs, in which

the monomial tu has degree ū P Q whenever the image of u under the quotient map

Q Ñ Q̄ is ū. Under this grading, it is easy to define the Hilbert function of the

semigroup algebra.

Lemma 4.3. The Hilbert function HM : QÑ N satisfies

HMpq̄q :� dimkpkrQsqq̄ �

$''&
''%

0, if q̄ � tu P Q | tu P Iu,

1, otherwise.

Remark 4.4. Although the statements about binomial primary decomposition in

Theorem 1.33 and Theorem 1.38 are for polynomial rings, they can be extended to

hold for binomial ideals in general monoid algebras. One can start by choosing a

presentation Nn Ñ Q. The kernel of the induced surjection krNns Ñ krQs is a

binomial ideal as is proved in Theorem 7.11 in [15]. Thus the preimage Ĩ of the
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binomial ideal I � krQs is a binomial ideal such that krNn{Ĩs � krQ̄s. If we replace

I by Ĩ, we may assume Q � Nn and the result follows.

Definition 4.5. An element 8 in pQ,�q is called nil if q �8 � 8 for all q P Q.


 An element q P Q is called nilpotent if nq � 8 for some n P N.


 An element q P Q is called cancellative if addition by q is injective : q�a � q�bñ
a � b in Q.


 An element q P Q is called partly cancellative if q � a � q � b � 8 ñ a � b for all

cancellative a, b P Q.

Definition 4.6. An affine semigroup is a monoid that is isomorphic to a finitely

generated submonoid of a free abelian group. In other words, an affine semigroup is

isomorphic to

NA � tc1a1 � ...� cnan | ci P Nu

for some A � ta1, ..., anu � Zd.

Definition 4.7. A set F of elements in Q is torsion free if na � nbñ a � b for all

n P N, whenever a, b P F . Fix a prime number p, F is called p-torsion free if na � nb

and pn, pq � 1 ñ a � b for all a, b P F and n P N.

Definition 4.8. Use the same notation as in Definition 4.2.


 The congruence � is called primary if every element of Q̄ is either nilpotent or

cancellative.


 The congruence � is called mesoprimary if it is primary and every element of Q̄

is partly cancellative.
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 The congruence � is called primitive if it is mesoprimary and the subset of Q̄

consisting of cancellative elements is torsion free.


 The congruence � is called toric if the non-nil elements of Q̄ form an affine semi-

group.

Example 4.9. Giving a congruence on Nn is equal to giving a unital binomial ideal

in krNns. The generators of Nn corresponding to the variables x, y, ... will be denoted

by ex, ey, ... for simplicity.

1. The congruence induced by the binomial ideal I � xzx2 � zy2, z2y � krx, y, zs
is primary. The elements ex and ey P N3 generate the cancellative class and ez

generates the nilpotent class.

2. The congruence induced by the binomial ideal I � xx2 � y2, z2y � krx, y, zs is

mesoprimary. The elements ex and ey P N3 generate the cancellative class and ez

generates the nilpotent class. Observe that all elements of N{�I satisfy the partly

cancellative property.

3. The congruence induced by the binomial ideal I � xx � y, z2y � krx, y, zs is

primitive. This congruence is mesoprimary and the cancellative subset consisting of

the elements ex and ey is torsion-free.

4. The congruence induced by the binomial ideal I � xx2�yy � krx, ys is toric, since

Q̄ is isomorphic to NA where A � t1, 2u.

The difference between a primary congruence and a mesoprimary congruence is

that in a mesoprimary congruence injectivity is required of addition by a nilpotent

element. The following example illustrates this distinction.

Example 4.10. The binomial ideal I � xyx2 � y, y2y � krx, ys induces a primary

congruence. The connected components in the Figure 4.1 exhibit the congruence

classes of the congruence �I .
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y

x• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

Figure 4.1: Cogruence classes of �I

The translation of two dots in different connected components, for instance p1, 0q
and p3, 0q, upwards by one unit, are connected.

Figure 4.2 shows the mesoprimary congruence induced by J � xx2 � 1, y2y �
krx, ys. In fact, the pictures for mesoprimary congruences are homogeneous. As

shown in the figure, any translation of two dots from different classes cannot be

connected except in the connected component corresponding to the nil class.

y

x• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

Figure 4.2: Cogruence classes of �J

The notions introduced above for the elements of monoids have counterparts for
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binomial ideals; these counterparts will be used for the characterizations of special

types of binomial ideals.

Definition 4.11. A binomial ideal is called mesoprimary if it is maximal among the

ideals inducing a given mesoprimary congruence.

Definition 4.12. Let Q be a monoid. The ideal

Ĩaug � xtq � 1 | q P Qy

generated by all monomial differences is called unital augmentation ideal of Q. The

ideal

Iaug � xtq � λq | q P Q, λq P k�y

is an augmentation ideal for a given binomial ideal I � krQs if I X Iaug is a binomial

ideal.

Remark 4.13. The ideals xx2 � x3y and xx2y � krxs induce the same congruence

on N. Observe that the first ideal is not cellular, and the second ideal is primary.

To characterize the binomial ideals with respect to the congruences they induce, we

need another condition which is described in the following theorem.

Theorem 4.14. (Theorem 9.12 in [22].) Let I0 � I1 be binomial ideals in krQs
inducing the same congruence on Q, then I1 contains monomials and I0 does not,

also I0 � I1 X Iaug for an augmentation ideal Iaug compatible with I1. If I2 is a

binomial ideal that contains I1 and induces the same congruence as I1 then I2 � I1.

By the theorem above, if I0 � � � � � In is a chain of distinct binomial ideals

in krQs inducing the same congruence on Q, then n ¤ 1. Moreover, I is maximal

among the ideals inducing the same congruence if I contains a monomial in the case

that Q̄ has a nil 8.
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Theorem 4.15. I � krQs is a cellular binomial ideal if and only if Q{�I is primary

and I is maximal among proper ideals inducing that congruence.

Proof. This is Theorem 10.6.1 in [22]. Let us discuss how the maximality condition

arises. If a monomial tq P krQs is a nonzerodivisor or nilpotent modulo I then the

image q̄ P Q̄ of q is cancellative or nilpotent respectively. Now we need to find why

I is maximal among the ideals inducing the same congruence. By Theorem 4.14, if

Q̄ has a nil then I contains a monomial. Let ā � 8 then a �I `a for all ` P Z¡0

by the definition of nil. This implies that for all ` P Z¡0, there exists a λ P k� such

that ta � λ`t
`a P I. Since I is cellular, ta is nilpotent. Let tra P I for some r P Z¡0.

Taking ` � r for the binomial above, this implies that ta P I. The converse of the

statement is clear.

Our next result is Theorem 10.6.5 in [22] which shows the relation between a

prime binomial ideal I and the congruence induced by I.

Theorem 4.16. Let I � krQs be a binomial ideal, where k is algebraically closed.

The ideal I � krQs is a prime binomial ideal if and only if Q{�I is toric and I is

maximal among ideals inducing that congruence.

Theorem 4.17. Let I � krQs be a binomial ideal. If Q{�I is primitive and I

is maximal among proper ideals inducing that congruence, then I is primary. The

converse holds if k is algebraically closed with characteristic zero.

Proof. This is Theorem 10.6.3 in [22].

The converse of Theorem 4.17 is not necessarily true in positive characteristic.

When charpkq � 0, binomial primary ideals have to be mesoprimary. Essentially this

is because of the fact that binomial primary ideals contain the binomial part of its
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radical, in other words, the binomial part of the corresponding associated prime. On

the other hand, binomial primary ideals need not to be mesoprimary in krQs when

k is algebraically closed with characteristic p ¡ 0. The example below demonstrates

this fact.

Example 4.18. Let I � xz2, x2z � y2z, x4 � y4y � krx, y, z, ts. In charpkq � 2, I is

a primary ideal. But it is not mesoprimary. In Q̄, ez is nilpotent since 2ez � 8, but

it is not partly cancellative

2ex � ez � 2ey � ez � 8

but 2ex � 2ey, or in other words, x2 � λy2 R I for all λ � 0.

The Example 4.18 justifies that we can say that the mesoprimary decomposition

in [22] is more helpful to find the primary decomposition of binomial ideals when

charpkq � 0 than for the positive characteristic case.

Our next theorem is the main result of this section, which discusses what a

primary binomial ideal looks like when charpkq � p ¡ 0. Note that we replace the

condition of being mesoprimary with condition iii).

Theorem 4.19. Let k be algebraically closed with characteristic p ¡ 0. Let I be a

binomial ideal in krNns. I is a primary ideal if and only if it satisfies the following

conditions

i) the congruence �I induced by I is a primary congruence and I is maximal

among proper ideals inducing that congruence,

ii) the cancellative subset of Nn{�I is p-torsion free and

iii) if q is a nilpotent element that is not partly cancellative with q� a � q� b � 8
and a � b, then pea � peb for some e P Z¡0.
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Proof. First, we assume that I is primary and we show that �I satisfies the required

conditions. Since I is primary, it is cellular, so �I is primary by Corollary 4.15. Let

us assume I � I
pbq
δ for some δ � t1, ..., nu and b P Zn¡0 and I X krxi | i P δs � I�pρq

for some partial character. Note that I�pρq is a primary ideal with unique associated

prime I�pρ̃q, where ρ̃ is a saturation of ρ. Thus the unique associated prime of I is

I�pρ̃q � xxi | i R δy.
Now we show that �I satisfies condition ii). Let a and b be elements in the

subset of Nn{�I consisting of the cancellative elements. In other words, xa and xb

are nonzerodivisors modulo I. Let ka � kb such that gcdpk, pq � 1. Then there

exists a binomial xka � λxkb P I for some λ, which implies xka � λxkb P I�pρq. Since

pka � kbq P Lρ and gcdpk, pq � 1, by definition pa � bq P Sat1ppLρq. Recall that

I�pρq is a primary ideal, which means Sat1ppLρq � Lρ and pa� bq P Lρ. This implies

xa � λ1xb P I�pρq � I for some λ1 so, a �I b in Nn{�I . Thus, the cancellative subset

of Nn{�I is p-torsion free.

In order to prove iii), we assume there exists a nilpotent element c which is not

partly cancellative, which means there exist cancellative elements a and b such that

c�a � c� b � 8 and a � b. In other words, there exists a binomial xcxa�λxcxb P I
for some λ P k� and a � b R Lρ. Since c � a � c � b � 8, which means that xc is

a standard monomial of I in the nilpotent variables. By Theorem 3.22, a � b P Lρ̃
since if not xc P MembpIq and since I is primary xc P MembpIq � I. But we assume

that xc R I; this implies that there exists a λ1 such that xa � λ1xb P I�pρ̃q, and for

some pe, pe-th quasi power of xa � λ1xb is in I, which implies that pea � peb.

For the proof of the converse, we assume �I satisfies the three conditions stated

above, we claim that I has one associated prime, so it is primary. By Corollary 4.15, I

is cellular and assume IXkrxi | i P δs � I�pρq. We want to show that Sat1ppLρq � Lρ.

Let u P Sat1ppLρq then nu P Lρ for some n P Z¡0 such that gcdpn, pq � 1. So

92



xnu� � ρpnuqxnu� P I, this implies that nu� �I nu�. Since �I is p-torsion free,

u� �I u�. This implies u P Lρ and Sat1ppLρq � Lρ. Remember that the index of the

group Sat1ppLρq{Lρ determine the saturations of ρ and this index is one in here. Thus

there is one extension of ρ to Sat1ppLρq which is itself, I has one minimal associated

prime; P � I�pρ̃q � xxi | i P δ̄y where ρ̃ is the saturation of ρ.

We claim that the only associated prime of I is P . Assume there exists an

embedded associated prime P̃ of I which is different than P . By Algorithm 3.7, P̃

is in the form I�pτ̃q � xxi | i P δ̄y where pI : mq X krxi | i P δs � I�pτq for some

monomial m � xµ P txi | i P δ̄u where m � xµ R I and τ̃ is the saturation of

τ . Since P̃ � P , Lτ̃ strictly contains Lρ̃. This means that there exists an element

u P Lτ̃ and u R Lρ̃. Thus, nu P Lτ for some n P Z and tu R Lρ, for all t P Z. So,

xnu� � xnu� P pI : xµq X krxi | i P δs. This implies that xµpxnu� � xnu�q P I. µ is a

nilpotent element and it is not partly cancellative since nu� � nu� in Nn{ �I . By

the condition iii), we deduce that penu� � penu� in Nn{ �I for some e P Z¡0. This

implies xp
enu� � λxp

enu� P I�pρq for some λ, contradicting the fact that tu R Lρ, for

all t P Z.

This description can be used to characterize the primary components of binomial

ideals in positive characteristic fields, which is missing in the literature.

Remark 4.20. We assume the notation in Theorem 4.19. If the congruence induced

by I has a nilpotent element c that is not partly cancellative, then I is primary only

when charpkq � p. In fields with different characteristics, I cannot be primary since

the binomial xp
ea � λxp

eb which occurs in the proof of the above theorem can be

factored over fields with characteristics p̃ � p and implies two different associated

primes of I.
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5. CONCLUSION AND FURTHER QUESTIONS

We have discussed primary decompositions of special binomial ideals and have

given descriptions for primary components. One of the main motivations for this dis-

sertation is to understand how the combinatorics arising from congruences or graphs

of binomial ideals governs the primary decomposition. These geometric combinato-

rial techniques first appeared in [8]. Dickenstein, Matusevich and Miller provided

a characterization of the primary components of an arbitrary binomial ideal in a

polynomial ring over an algebraically closed field of characteristic zero.

In characteristic zero, the main idea is that, because a primary ideal contains

binomial part of its radical, we can take the whole situation modulo the binomial

part of the associated prime ideal. The monomial part, on the other hand, can

be computed by using the infinite vertices of the graphs (or elements of infinite

congruence classes induced by binomial ideals) of some localizations of the binomial

ideals. On the other hand, in positive characteristic the primary component contains

a Frobenius power of the binomial part of its associated prime. This blocks the

use of known techniques that reduce the problem to a manageable monomial ideal

problem. We have provided a partial answer to this open question in the case of

cellular binomial ideals. A natural continuation of the theoretical part of this work

is to investigate the description for primary components of general binomial ideals

in positive characteristic fields. We propose the following conjecture

Conjecture 5.1. Let I P krNns be a binomial ideal where charpkq � p ¡ 0. Let

P � I�pρq�xxi | i P δ̄y be a minimal prime of I. Let � be the congruence on Zδ�Nδ̄

induced by the ideal I � pI�pρqqperZδs. Let Ũ be the set of u P Nn whose congruence

classes contain two elements v, w such that v�w P pZδ �Nδ̄q and v�w R Lρ. Then
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the P -primary component of I is

Q � ppI � I�pρqpe : p
¹
iPδ

xiq8q � xxu | u P Ũyq.

for some e P Z¡0.

It is straightforward to check that pI � I�pρqpe : p±iPJ xiq8q is contained in the

P -primary component of I. One can also show that xxu | u P Ũy is contained in

the primary component by following the steps in Lemma 2.4. The missing step is to

show that the ideal Q is primary. This can be achieved by providing combinatorial

conditions to describe a primary ideal in positive characteristics. This question can

be answered by using the Theorem 4.19.

Another question we formulate for further research is the analog of the unmixed

decomposition of cellular binomial ideals in positive characteristic which is mentioned

in Example 3.9.

One last closing remark is that we can adapt the techniques and combinatorial

methods we improve in here to other special types of binomial ideals which already

have combinatorial flavor, for instance circuit ideals. A circuit ideal is a subideal of

a (prime) toric ideal. Eisenbud and Sturmfels proved that the embedded primes of a

circuit ideal are indexed by certain faces of a cone. Bogart, Jensen and Thomas in [3]

gave a characterization for these faces. But it is still an open problem to characterize

the embedded primary components of a circuit ideal, a question that was posed by

Eisenbud and Sturmfels. A combinatorial characterization of embedded primary

components of circuit ideals might be valuable for applications of binomial ideals to

integer programming and statistics.
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