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ABSTRACT

Binomials are polynomials with at most two terms. A binomial ideal is an ideal
generated by binomials. Primary components and associated primes of a binomial
ideal are still binomial over algebraically closed fields. Primary components of gen-
eral binomial ideals over algebraically closed fields with characteristic zero can be
described combinatorially by translating the operations on binomial ideals to opera-
tions on exponent vectors. In this dissertation, we obtain more explicit descriptions
for primary components of special binomial ideals. A feature of this work is that our
results are independent of the characteristic of the field.

First of all, we analyze the primary decomposition of a special class of binomial
ideals, lattice ideals, in which every variable is a nonzerodivisor modulo the ideal.
Then we provide a description for primary decomposition of lattice ideals in fields
with positive characteristic.

In addition, we study the codimension two lattice basis ideals and we compute
their primary components explicitly.

An ideal I € k[, ...,x,] is cellular if every variable is either a nonzerodivisor
modulo 7 or is nilpotent modulo I. We characterize the minimal primary components
of cellular binomial ideals explicitly. Another significant result is a computation of
the Hull of a cellular binomial ideal, that is the intersection of all of its minimal
primary components.

Lastly, we focus on commutative monoids and their congruences. We study prop-
erties of monoids that have counterparts in the study of binomial ideals. We provide
a characterization of primary ideals in positive characteristic, in terms of the con-

gruences they induce.
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1. INTRODUCTION: MAIN CONCEPTS

1.1 Primary Decomposition Basics

Primary decomposition is a cornerstone of ideal theory. It is a generalization of
the factorization of a number into prime powers. From a geometric point of view,
primary decomposition is based on the idea of decomposing a variety into a union of
simpler varieties. Indeed, primary decomposition of radical ideals corresponds to the
decomposition of an affine variety into its irreducible components. When we want
to take multiplicity into account, primary ideals become necessary. (They describe
the multiplicity of irreducible components.) In this section, we make an introductory
review to recall the basic concepts and to fix the notation we use.

Throughout this dissertation R denotes a commutative Noetherian ring with
an identity element, and k denotes an algebraically closed field. We denote S =

k|1, xg, ..., x,]. Also, we assume N = {0,1,2,...} and Z-¢ = {1,2,...}.

Definition 1.1. Suppose that R is a ring. An ideal ) in R is primary if ) # R and

if for every ab € ) we have that either a € Q) or b" € () for some n > 0.

The following reformulation is more symmetric : for ) primary, if ab € () and
a,b ¢ @, then some powers of a and b belong to Q.

Let Q be a primary ideal in R, then it is easy to see that 1/Q is the smallest
prime ideal containing Q. If P = /@, then @ is said to be P-primary.

The intersection of primary ideals need not to be primary, however, we have the

following

Proposition 1.2. If Q; are P-primary for alli = 1,...,n, then(;_, Q; is P-primary.



Proof. We know that 4/[)_; Q; = (-, vVQ:i = P. Suppose zy € ()_, Q; and
y ¢ (), Qi Forsome {, zy € Q, with 2" € Q,. This implies that x € \/Q, = P. But

then there exists m > 0 such that 2™ € Q; for all 7, so 2™ € [, Q;. O

The variety of I < k[zy,...,x,], denoted V (1), is the set of common zeroes of I.

V(I):={xek"| f(z) =0, forall fel}.

We define some operations on ideals: ideal quotient and saturation are important

constructions in ideal theory. Saturation removes the zerodivisors in k[xy, ..., x,]/1.

Definition 1.3. Let ) € R be an ideal and let f € R. We define the ideal quotient

(I:f)={geR|gfel},
and the saturation of I by f
(I:f*)={ge R|gf"el, for some positive integer n }.

The sets above are actually ideals. We are not attaching any value to f*. Since R
is a Noetherian ring, the ascending chain (I : f) € (I : f?) < (I : f?) < ... eventually
stops. The stabilized ideal is denoted by (I : f*). Geometrically, the components

of V(({ : f*)) are those components of V(I) which do not lie on the hypersurface

V).

The following is clear by definition of the quotient ideal.

Corollary 1.4. Let I < k|xq,...,x,] be an ideal. Then

(I :2q) @) s+ )i wy) = (I : ;g - y).



A primary decomposition of an ideal I in R is an expression of [ as a finite

intersection of primary ideals
n
=)@
i=1

For univariate polynomials, primary decomposition is factorization of polynomi-
als. For general rings, primary decomposition need not exist, but in a Noetherian

ring R every ideal has a primary decomposition.

Theorem 1.5. Let R be a Noetherian ring. Every ideal I < R can be written as a

finite intersection of primary ideals.

Proof. An ideal I is irreducible if I = I; n I implies that I = I; or I = I5. Since R
is a Noetherian ring, every ideal is an intersection of finitely many irreducible ideals.
If we show that an irreducible ideal is primary, this completes the proof. Suppose
I is an irreducible ideal and let fg € I with f ¢ I. We have an ascending chain of

ideals

(I:9)c(I:9*)c---

which has to stabilize since R is Noetherian. That means there exists an integer n
such that (I : g") = (I : g"™'). We claim that I = (I +{g")) n(I+{f)). It is obvious
that I < (I +{g™) n (I +{f)). Let he (I +{g™)) n (I +{f)), so h = a; + b1g"
and h = as + by f for some ay,as € I and by, by € R. If we multiply both sides of
the second equation by g, we obtain hg € I. If we multiply both sides of the first
equation by g, we obtain b;¢g"™! € I. This implies by € (I : g"™') = (I : g") and so
hel. O

Theorem 1.6. (Hilbert Basis Theorem) If R is a commutative Noetherian ring with

unity, then so is R[xq,...,x,].

Proof. See Theorem 4.9 in [19]. O



Corollary 1.7. Let k be a field, then S = k[xy, x, ..., x,] is a Noetherian ring.

A primary decomposition I = (;_, Q; is wrredundant(minimal) if the ideals /Q;
are distinct and ﬂ?ﬂ Q; € Q; for all i = 1,...,n. Thus I cannot be written as an
intersection consisting of a proper subset of the ideals Q);.

Theorem 1.8. (Theorem 4.5 in [2].) Let I = (), Q; be an irredundant primary
decomposition of I. Define P; := /Q; for i = 1,....,n. The P;’s are precisely the
prime ideals which occur in the set of ideals \/I : 1 for some r € R. Thus the P;’s

are independent of the particular primary decomposition of 1.

Definition 1.9. The prime ideals P; in Theorem 1.8 are said to be associated to
I. The minimal elements of the set {Py,..., P,} are called minimal prime ideals
associated to I. The non-minimal prime ideals associated to I are called embedded

prime ideals.

Note that Theorem 1.8 shows the uniqueness of associated primes. The names,
embedded and minimal, arose from geometry: if the ideal I € S corresponds to the va-
riety V'(I), the minimal primes correspond to the irreducible components of V' (I), the
embedded primes correspond to varieties embedded in the irreducible components.
In fact, the varieties corresponding to prime and primary ideals are irreducible. If
P is an associated prime of I by Theorem 1.8, P = (I : f) for some f € R. This
implies that V(P) = V(I : f) < V(I), hence the irreducible variety V(P) forms a
part of V(I).

Note that any prime ideal I € P contains a minimal prime associated to I, so
the set of minimal prime ideals associated to I are precisely the minimal elements
in the set of all prime ideals containing /. To be consistent with the literature, we
denote the set associated primes of I by Ass(S/I).

For a proof of the following commutative algebraic fact, see Lemma 3.6 in [13].

4



Lemma 1.10. Let I,J and J' be ideals of S. If we have an exact sequence

0> 8/J—S/I—8/J =0

then Ass(S/T) < Ass(S/J) u Ass(S/J').

Not only the associated primes but also the minimal primary components of an

ideal are unique, which is stated in the following theorem.

Theorem 1.11. (Theorem 4.10 in [2]). The primary components corresponding to

manimal prime ideals are uniquely determined by I.

Remark 1.12. Primary decomposition is not unique due to embedded primary

components. Here is an example; (z2, zy) = (22, 2y, y*) n {x) = (2%, y) n (x).

Primary decomposition of ideals is generalized to finitely generated modules over
Noetherian rings. This analogous theory is not developed only to obtain a general
perspective, some of the results for ideals use the theory of primary decomposition
for modules; for example is the proof of Lemma 1.10.

There are different algorithms for computing primary decompositions of polyno-
mial ideals. The most famous one was designed by Gianni, Trager and Zacharias,
(see [35]) which computes primary decomposition by reducing to the univariate case.
Another important technique for primary decomposition was introduced by Eisen-
bud, Huneke and Vasconcelos in [36]. This is mainly based on homological methods.
The work of Shimoyama and Yokoyama in [37] offers a third approach that relies
on the decomposition of ideal into “pseudo” primary ideals. A pseudo-primary ideal
is an ideal whose radical is a prime ideal. A detailed comparison of algorithms for

primary decomposition is given in [38].



1.2 Binomial Ideals

A binomial is a polynomial with at most two terms and a binomial ideal is an ideal
generated by binomials. Binomial ideals form an important link between commuta-
tive algebra and combinatorics. Beyond its intrinsic mathematical interest, binomial
commutative algebra has varied applications [28], for instance in the dynamics of
chemical reactions under mass-action kinetics, algebraic statistics and combinatorial
game theory, see [33], [11] for references and details. Binomial ideals are also very
important for the study of hypergeometric differential equations, these applications

can be found in [9] and [10].

Definition 1.13. Let S = k[zy,...,2,]. A binomial in S is defined as the difference
of two terms, az® — B2°, where , 8 € k and a,b € Z%,. (Here we use the multi-index

1 . o 01 [
notation: x® = z{*'...x".)

Definition 1.14. A binomial ideal of S is an ideal whose generators can be chosen

as binomials.

Before jumping to the properties of binomial ideals, let us first consider the
primary decomposition of monomial ideals. Monomial ideals are ideals generated by
monomials, and are therefore also binomial ideals. Most ideal theoretic operations
are far simpler for monomial ideals than in general. One of those operations is
primary decomposition. We first describe what a primary monomial ideal looks like.

See [17] for more details about monomial ideals.

Proposition 1.15. A monomial ideal I € k[z1, ..., x,] is primary if and only if

I={ai™, ..z | some other monomials in x;,, ..., x;,).



An approach to decomposition of monomial ideals is finding the irreducible de-
composition. An irreducible monomial ideal is generated by pure powers of vari-
ables. This decomposition can be found by using that for a minimal generator
m = mymo € I where m; and msy are relatively prime monomials we can write
I = (I+{my))n(I+{mg)). Irreducible decomposition of monomial ideals is unique.
This follows from the uniqueness of irreducible resolutions, see Theorem 2.4 in [26].
Another approach is based on Alexander duality, for definitions and algorithms see
27].

If we look at the irreducible decomposition of binomial ideals the components are
not necessarily binomial as was shown in [23].

The variety of a monomial ideal is a union of coordinate planes. Any affine variety
can be defined using trinomials [12], simply by adding new variables. This means
that the geometry coming from trinomial ideals is general, we cannot hope for special
algebraic properties in this context. In between these two, we have binomial ideals
whose geometry is special and we have effective combinatorial tools to apply to their
study. Varieties associated to binomial ideals are unions of toric varieties.

The important article of Eisenbud and Sturmfels [12] can be seen as the starting
point for all research related with primary decomposition of binomial ideals. They
proved that the associated primes, the primary components and the radical of a
binomial ideal are binomial when k is algebraically closed. The fundamental fact
about binomial ideals and the key ingredient in Eisenbud and Sturmfels’ arguments
is that every reduced Grobner basis of a binomial ideal consists of binomials. Indeed,
this fact gives us operations which preserve binomiality.

We first review some of the results of [12] and recall some of their tools. Let us
start describing ”binomial friendly” operations.

The following facts can be easily proved. The sum of two binomial ideals is a



binomial ideal. Every monomial can be considered as a binomial, so every monomial
ideal is a binomial ideal. On the other hand, the intersections of binomial ideals need
not to be a binomial ideal. For example: (x — 1) n{x —3) = {x —1)-{(x — 3) =
(x? — 4z + 3). Also, if k is not algebraically closed, the primary components of a
binomial ideal need not to be binomial. Let [ = {(z® — 1) € R[z] where R denotes
the real numbers. Then I has a unique primary component which is not binomial:
(¥ —1) = (x — 1) n (&® + z + 1). For the rest of this dissertation, unless otherwise
stated, we assume k is algebraically closed. There are several results for which the
characteristic zero hypothesis is necessary, but that will be stated explicitly when

necessary. We assume that k has arbitrary characteristic unless otherwise stated.

Definition 1.16. A monomial order on k[xy,...,z,] is any relation > on N" or

equivalently, any relation on the set of monomials x®, o € N™ satisfying

e > is a total order on N™.
e [fa>pand ye N" then a+~v > [+ 7.
e Every nonempty subset of N” has a smallest element under >.

Theorem 1.17. Let > be a monomial order on S = k|zy,...,x,]| and let I be an
tdeal of S. I is a binomial ideal if and only if the reduced Grobner basis G of 1 with

respect to > consists of binomials.

Proof. This is Corollary 1.2 in [12], here is the sketch of the proof. Let I be a
binomial ideal. If we take the binomial generating set of I, the S-polynomials of
these generators as needed in the Buchberger algorithm are again binomial. The
converse follows from the fact that reduced Grobner basis is unique with respect to
given order > and it is also a basis for the ideal. For more explanation about these

concepts, see [5]. O



Given I < Kk[xq,...,x,], the r-th elimination ideal is the ideal of k[z1, ..., z,]
defined by I n k[xy,...,x,]. Let G be a reduced Grobner basis with respect to a
monomial order <. Since the r-th elimination ideal is generated by a subset of the
reduced Grobner basis of I (see Theorem 2 in [5]), namely G' N Kk[z1, ..., z,], we have

the following proposition.

Proposition 1.18. If I < S is a binomial ideal, then the elimination ideal I ~ S is

a binomial ideal for every r < n.
Here is another useful fact.

Proposition 1.19. Let I be a binomial ideal in S and let M be a monomial ideal
inS. If fel+ M and [ is the sum of the terms of f that are not individually

contained in I + M, then f' e I.
Proof. See Proposition 1.10 in [12]. O

We have mentioned that the operation of intersection of ideals does not in general

preserve binomiality, but here is one of the exceptions.

Proposition 1.20. If I is a binomial ideal and M is a monomial ideal in S, then

I N M is a binomial ideal.

Proof. Introduce a new variable t. We know that I n M = (It + M (1 —1))S[t] n S.
The ideal (It + M (1 —1t))S[t] is a binomial ideal in S[t]. By Proposition 1.18, I n M

is binomial. ]
We now review a commutative algebra fact.

Proposition 1.21. Let I be an ideal in S = k|1, ...,x,] and g€ S. If {f1,..., fs} is
a basis of I n{gy, then (I : g) = <%, s %>



Proof. Let q € <%, o %>, then ¢-g € {f1,...., fsy = I n{gy < I. This implies that
qe(l:9).

Let ¢ € (I : g), and therefore ¢ - g € I, also q- g € I n {g) which implies
q-g=aifi+..+asfs. Thus q = al% + ... —i—as% where each % is a polynomial since

fi € I n{g). This implies that g € { ot ). O

oy
Using the Proposition 1.21, it is not difficult to derive the fact that the ideal

quotient of a binomial ideal by a monomial is binomial. Note that quotients of

binomial ideals by monomial ideals or a binomial are generally not binomial.

Proposition 1.22. If I is a binomial ideal and m is a monomial then, (I : m) and

(I : m™) are binomial.

Proof. By Proposition 1.20, I n {m) has binomial generators {fi, ..., fs}. Then (I :

m) = (L, ..., L) is also binomial. By Corollary 1.4, the proof for (I : m*®) is easy. [

There are algorithms to compute the saturation of any ideal in k[z1, ..., z,]. One
such algorithm is described in Chapter 4 in [5] and is based on the same ideas as
in the proof of Proposition 1.22. The main tool is a Grobner basis computation in
n + 1 variables. Another useful approach is given by Sturmfels in Algorithm 12.3 in
[32]. These algorithms are implemented, so we can compute saturation by using a

computer algebra system such as Macaulay 2 [7] or Singular [16].

Definition 1.23. Let < be a fixed monomial order. Assume m; and msy are mono-
mials with m; < ms. Let b = my; — moy, we define bl = mil - mg and call this
binomial the d-th quasi-power of b. I'¥ is the ideal generated by d-th quasi-powers

of elements of I.

The ordinary powers of a binomial are not binomials and taking quasi-power of an

ideal is a natural operation which preserves binomiality. There can be an ambiguity

10



with the sign of the quasi-power. For example, let d = 2 and consider the binomial

—23 — (—y?) = y? — 23. The second quasi-power of the binomial in the left hand side

is 2% — ¢*, on the other hand the second quasi-power of the binomial on the right

hand side is y* — 2%. To remove that ambiguity we choose a monomial order.
1.3 Lattice Ideals

We define a special type of binomial ideals, lattice ideals, which have nice combi-
natorial features. In Theorem 1.30, we determine primary decomposition of lattice

ideals.
Definition 1.24. A lattice L < 7" is a finitely generated free abelian subgroup.

The saturation of £ is the lattice
Sat(L) = {{ € Z" : kl € L for some k € Z}.

A lattice is saturated if it satisfies Sat(L) = L.

Definition 1.25. A partial character is a pair (L, p) consisting of a lattice £ <
Z™ and a group homomorphism p : £L — k* from the additive group £ to the

multiplicative group k* = k — {0}.

A partial character is saturated if its lattice is a saturated lattice. A partial
character (L, p) is a saturation of (£, p) if £ = Sat(£) and p = Pz

We can associate an ideal to each partial character
I (p) = @" — p(u)z"= |ue L) S k[, ..., ]
which is called lattice ideal. We have a nice characterization of lattice ideals.

11



Lemma 1.26. (Corollary 2.5 in [12].) A proper binomial ideal I < S not containing
any monomial is a lattice ideal if and only if I = (I : (][ x;)*), in other words, every

variable is a nonzerodivisor modulo 1.

The arithmetic properties of partial characters are used to provide characteriza-
tions of prime binomial ideals. The following statement will describe the form of

prime binomial ideals.

Theorem 1.27. (Corollary 2.6 in [12].) Let P be a binomial ideal in S. Set
{y1, .., ye} = {x1,...,xn} 0 P and let {z,..., 2} := {x1,...,2,} — P. The ideal P
1s prime if and only if

P=1.(p)+ <y, ye)

for a saturated partial character (L, p) on ZF corresponding to zy, ..., 2.

A commutative semigroup Q is a set with an associative, commutative binary
operation. If Q has an identity, it is called a monoid. The semigroup algebra is
k[Q] = > co k-7 with multiplication given by ¢ - th = t2*b  Let us fix a subset
A € Z% and define a semigroup algebra homomorphism « : k[z1, ..., x,] — k[Z"] that
maps x; to t%. The ideal kerar is denoted 14 and called the toric ideal associated to A.
In fact, all affine toric varieties arise in this way. We have k[z1, ..., 2, /14 = k[NA],
so 14 is a prime ideal, since k[NA]| is an integral domain as a subring of k[Z"].

Moreover, 14 is equal to a binomial ideal as follows
Iy =" =2 | a(z") = a(z)).

See Lemma 4.1 in [32] for more explanation. All prime binomial ideals are translated
toric ideals as follows. If p is not the trivial character, then we define an isomor-

phism between I, (p) and I, by rescaling the variables x; — p(e;)z;, which induces

12



a rescaling " — p(v)z? on general monomials.

Toric geometry has many applications, these ideals encode the combinatorics of
polytopes and give interactions among algebra, geometry and combinatorics. For
more information and for details about toric varieties, see the classical text [14] or

the newer one [6].

Definition 1.28. Let p be a prime number. We define Sat,(£) and Sat; (L) to be
the largest sublattices of Sat(L£) containing £ such that | Sat,(£)/L |= p* for some
k€ Z and | Sat,(£)/L |= g where (p,g) = 1.

Then we can write

Sat, (L) = {m € Sat(L) | p°m € L for some e € N}.

Sat, (L) = {m € Sat(L) | dm € L for some d € N such that (d, p) = 1}.

Remark 1.29. If p = 0, we adopt the convention that Sat,(£) = Sat(£) and
Sat, (L) = L.

The following result describes the associated primes and the corresponding pri-

mary components of lattice ideals by using the saturations of lattices.

Theorem 1.30. (Corollary 2.2 in [12]). Let k be a field and char(k) = p > 0. Let
(L,p) be a partial character. If [Sat,(L)/L] = g, then there are g distinct characters
(Sat, (L), p1), ..., (Sat,(L),p,) that extend (L,p), and for each (Sat,(L),p;) there
exists a unique character (Sat(L), p;) that extends (Saty,(L),p;). There is a unique
partial character (Sat,(L), p') that extends (L, p). The radical, associated primes and

minimal primary decomposition of 1, (p) < k[xy, ..., z,] are

V1 (p) = I (p),

13



Ass(S/14(p)) = {Ie(p) [1 =1, ..., g}

and
g

1) = V100

where I, (p;) is Li(p;)- primary. In particular, the associated primes I, (p;) of I, (p)

are all minimal.

All binomial ideals in the Laurent polynomial ring k[z7, ..., 2] are lattice ideals.

Theorem 1.30 is also true for binomial ideals in k[x7,...,2f]. In fact, since it is

e T
easier to work in the Laurent polynomial ring, the proof of this theorem was done
first in k[z], ..., z¥], then it was finished by taking the contraction from the Laurent

polynomial ring.

Remark 1.31. If p =0, . (p;) = I+ (p;) in Theorem 1.30, which implies that lattice
ideals are radical in char(k) = 0, as they are equal to the intersection of prime ideals.
Note that lattice ideals do not have embedded associated primes, which means that
primary decomposition of lattice ideals is unique. Also, lattice ideals do not contain

monomials. This follows from, for instance, Lemma 1.42.

We know that some quasi-power of the lattice ideal is contained in its radical in

char(k) = p > 0. The next proposition describes this power.

Proposition 1.32. Let k be an algebraically closed field and char(k) = p > 0. Let
I.(p) be a lattice ideal with partial character (L,,p) and let g be the order of the

group Sat,L,/L,, then

(VI0) " = L(p)

Proof. Since 4/1,(p) is a lattice ideal, we can write 4/1, (p) = I (p) for some partial

character (Lj,p). If o+ — p(pu)z*~ € I1,(p) then p € Sat,(L,). We want to show

14



that the g-th quasi-power of z#+ — p(p)x#~ is in I, (p). By the definition of Sat,(L,),

p'u e L, for some r. Since ¢ is the order of the group Sat,L,/L,, g € L,. Then

2 — (p(p)) iz = z®+ — p(qu)z?- € I, (p),

since p(gu) = pqp)-

1.4  Primary Decomposition of Binomial Ideals

Theorem 1.33. (Theorem 6.1 in [12]). Let k be an algebraically closed field and
I be a binomial ideal of S = k[xy,...,x,]. Then every associated prime of I is a

binomial ideal.

Proof. 1t I = (a1, ...,x,), then it is a prime ideal, so suppose I does not contain all
the variables. If I is a lattice ideal I = I, (p) then by Theorem 1.30, the associated
primes of I are generated by binomials. So assume (I : z;) # I for some i. We may
assume x; ¢ I, for if x; € I, by reducing modulo z;, we can find another variable
x; satisfying (I : x;) # I and x; ¢ I by the assumption above. We do Noetherian
induction, assuming that every binomial ideal of .S strictly larger than I has binomial

associated prime ideals. Then we use the exact sequence

0— S/ :a;) = S/ — S/(I+w:)),

by Lemma 1.10, we know that Ass(S/I) < Ass(S/(I: x;))u Ass(S/(I + (x;))). Note
that both (I : ;) and (I + {z;)) are binomial ideals so their associated primes are

binomial, so by Noetherian induction, I has binomial associated primes. O

Definition 1.34. Let [ be an ideal. The intersection of minimal primary components
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of I is denoted by Hull(T).

Let us introduce a new kind of binomial ideals. A binomial ideal is cellular if
every variable is either a nonzerodivisor modulo I or is nilpotent modulo /. We look
at the features and primary components of cellular binomial ideals from a general

perspective in Section 3, but now we need the following property.

Theorem 1.35. (Theorem 6.4 in [12]). If I is a cellular binomial ideal then Hull(I)

s also a binomial ideal.
The following theorem is a core result of [12].

Theorem 1.36. Let I be a binomial ideal in S = Kk[xy,...,z,], where k is alge-
braically closed. Let Q2 be a finite set. Suppose {P; |€ Q} is the set of associated

primes of I. Let 9; be the set of nonzerodivisor variables of P; and M; be the maxi-

(3

mal monomial ideal contained in P;. We denote Hjegi xj = Ts,

1. If char(k) = p > 0, then for sufficiently large powers q = p°,

I =(\Hull((I + ") : 2)

1S

s a minimal primary decomposition of I into binomial ideals.

2. If char(k) = 0 and e; is a sufficiently large integer, then

I =(Hull((T + M{' + (P, n K[5])) : 2F)

1EQ
18 a minimal primary decomposition of I into binomial ideals.

The main step of the proof of Theorem 1.36 is to show that the intersection of

the proposed ideals are equal to I. The rest easily follows from the facts that these
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ideals are primary, and that the ideals inside the Hull operation are cellular, which

preserves binomiality by Theorem 1.35.

Remark 1.37. Although the Hull operation is not explicit, we still derive the fact
that in char(k) = 0 the binomial parts of the associated primes are contained in
the corresponding primary component of I. This feature in characteristic zero will
be used to reduce the characterization of primary component to a monomial ideal
problem which is more manageable and combinatorial see Theorem 2.2 in Section 2
for more detail. In the case that char(k) = p > 0 on the other hand, every binomial
in the associated primes has a Frobenius power that belongs to the corresponding

primary component.
The following result can be derived from Theorem 1.36.

Theorem 1.38. Let k be an algebraically closed field of arbitrary characteristic. Let
I € Kk[xy,...,x,] be a binomial ideal. Then the associated primes and corresponding

primary components of I can be chosen binomial.

Thomas Kahle has developed a Macaulay 2 package called Binomials, see [7], [20],
which specializes well known algorithms to the case binomial ideals, namely primary
decomposition, minimal primes, computations of the radical, etc. Computer algebra
can implement operations in finite extensions of Q. A pure difference ideal is an
ideal whose generators are all differences of monic monomials. The binomial package
is restricted to pure difference binomial ideals, since for them binomial primary
decomposition exists in cyclotomic extensions of Q. Let w, denote an ¢-th root
of unity. Cyclotomic fields Q(wy) can be constructed by taking the quotient of Q(x)
modulo the principal ideal generated by the minimal polynomial of w,. For further

information about cyclotomic fields, see [19].
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1.5 Primary Decomposition of Lattice Ideals in Positive Characteristic

The order of the group Sat;(ﬁ) /L plays a key role in primary decomposition of
lattice ideals. As we know in Theorem 1.30, the number of distinct saturations of
the partial character defining the lattice ideal equals the order of the finite group
Sat;,(£)/L. We now review an algorithm for computing the distinct saturations of a

partial character that was developed in [20].
Algorithm 1.39. Saturation of partial characters

Input: (L,p) a partial character where L is generated by the columns of a

matrix L.
Output: All distinct saturations (Sat(L£), p;), i = 1, ..., n.

1. Compute the saturation £’ = Sat(L), for example, find the Hermite normal
form of the matrix L and divide each column by the greatest common divisor

of its elements. Let I’ be the matrix for £’.

2. Express the generators of £ in terms of the generators of L', by solving the

matrix system.

L=LD
for the r x r square matrix D = (d;;) where r = rank(L) = rank(L’).

3. Let £;, £} and d; be the columns of L, L' and A respectively. Let p' be one of
the saturations. For the values that p takes on the columns of L', define a new

variable; y; = p(¢}) for i = 1,...,r. Compute the following Laurent binomial

ideal in Q[y1, ..., yr|

j=1..r.

r @
J =) =] Jwi
=1

18



4. Compute
1 _ _ dt d— . . . 0
7= 0 Q] = (6 o0 15 = 1) s ([T
i=1

5. J' is a zero dimensional ideal. Solve J' over a suitable extension of Q and

output L' together with the list of solutions of J'.

Remark 1.40. We point out that saturations of partial characters exist only when
k is algebraically closed. The proof of the correctness of this algorithm was provided
originally in [20]. We constructed J, since for each generator ¢ of L, we have a relation
¢ = L'k, and p/ and p must take the same values on the generators of L. Thus, the
solutions of J' give us the saturation of the partial character (L, p). The degree is
equal to | £'/L |. We can find the solutions over a cyclotomic field Q(&,) because the

ideal is a zero-dimensional pure difference binomial ideal. For more details, see [20].

Definition 1.41. Let B = (b;;) be an n x r integer matrix. If b € Z", define
bT,b- € N" via (b%); = max(b;,0) and (b™); = max(—b;,0), so that b = b* — b™.
Form the ideal I(B) from the columns by, ..., b, of B

I(B) = <xb;r a2 — 2.

The binomial ideal I(B) is called the lattice basis ideal associated to B.

Lemma 1.42. Let B € 7% be an integer matriz and let £ be the lattice generated
by the columns of B. Let (L,p) be the trivial partial character. The lattice ideal
I.(p) is computed from I(B) by taking the saturation with respect to the product of

all the variables



Proof. We know that the lattice ideal I,(p) is saturated by Lemma 1.26 and it
contains I(B), so the ideal on the right hand side is contained in I, (p). For the

converse, let u € £, then u = 22:1 a;b; for some a; € Z. This implies that

zv" b "
mu_1:n<b.> -1

€T

If we clear the denominators we get that

We want to show that the right hand side lies in I(B). If 2 — 2" and 24" — 2%

lie in an ideal J then 2" (z¢" — 27) 4+ 24 (2¢7 —2°7) = 2" 2% — 2 2% also lies
in the ideal J. If we apply this argument to the generators of I(B), we obtain that
[T, (%)% — ] ]i_, (2% )% also lies in I(B). This means that a monomial multiple

of %" — 2% lies in I(B) as well. O

We denote I the lattice ideal (I(B) : (zy...2,)®) induced by the matrix B, with
trivial partial character.

As we observe in Theorem 1.30, the order of the group Sat,,(£)/L plays a key
role in primary decomposition of lattice ideals in positive characteristic. Indeed, the
number of distinct saturations of partial character equal to the order of the finite
group Sat, (£)/L.

Let B be a nonzero (m x n)- matrix over Z, which defines the lattice ideal Ig.

There exist invertible (m x m) and (n x n)- matrices, U = (u;;) and V = (v;5)
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respectively, so that U - B - V' is the product

s; 0 - 0
0 S92 0
D=10 S,
0 -+« - 0
0 -« --- 0

and the diagonal elements s; satisfy s;/s;;1 for all 1 < ¢ < r. This is the Smith
Normal Form of the matrix B. Factor s; = pclﬂl -pgé x -pa;c and let a} < a{ ife <.

The lattice basis ideal of D is

I(D) =yt —Lys2 — 1, ..,y — 1.

The lattice basis ideal of D is equal to the lattice ideal corresponding to D, since
Ip = (I(D): (J[_,v:)*) = I(D) . We show the last equality. By Corollary 1.4, it
is sufficient to check (I(D) : y;) € I(D). I(D) and (y;) are comaximal, since I(D) +

{yiy = K[y, .., yn], consequently the intersection is equal to {yi*y; — Vi, -, YSr Ui — Ui -

By Proposition 1.21, (I(D) : y;) = <yi1‘z_—yi, o yirz;ii—yi> which is 1(D) again.
To prove the fact Ip = I(D) , we can also use the following fact which is Theo-
rem 2.9 in [34].

Lemma 1.43. Let B be an integer matriz whose entries are non-negative and whose
columns are linearly independent. Then the lattice basis ideal corresponding to B s

a lattice ideal.
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Fix p, to be the characteristic of our field as where £ € {1, ..., k}. Note that when
¢ ¢ {1,..., k}, the primary decomposition of I, is similar to the primary decomposition
in characteristic 0 and we are not interested in it. We shorten the notation psz =«
for convenience. Let C; be the set of ¢; = s;/a;-th roots of unity for all 1 < j <r.
Thus, C; = {wcj,ng, ...,ngf_l, 1}. Let p;,..i. be the partial characters of the form

-

61—>Z.1

€y — ’ig
Dit i = 3

e, — 1,

\

where 7; runs over all elements of C;. By Corollary 2.2 in [12] , each partial character

induces the following associated prime ideal of Ip

‘[i17---,i7- = <y1 - ila o Yr — 27">

Hence there are s1 - sy -+ s./aq - - - - many associated primes of Ip.

Proposition 1.44. Let Ip and I;, . ;. be as above where char(k) = p,. If ¢ =

oy -, then the I, ; -primary component of Ip is

1111

I

U1 yeenylr

=Ip+ (L)

Proof. We claim that the ideals Ij, _, are primary and their intersection is equal to

ir

Ip. Note that the set of ideals we constructed are pairwise comaximal. Thus the
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intersection of those ideals is equal to their product.

/ (I/ / !/
[ L= | | (i NI NI —1)
21500y ir Ulyeesir—1,1 11y 5lr—1,Wep Pl yeenyip— 1,00 !

Ccr
i+€C} ’L'%géct
T

— () o+ G =ity = e, — 1)

’itECt
t#

= ﬂ ﬂ Ip + <y —ins s Yy — b1, Y77 — 1)

it€Ct Gp_1€CH_1
t#r—1

a ﬂ ﬂ ID+<y(11—i1,...,ygcjfl — Ly — 1)

1+€Ct 1y_2€Cr_o
t#r—2

= Ip + (yi* — 1, ...,ygi’fl -1yl —1)

= Ip.

Now we need to show that each I is primary. Indeed, if we show that

oyin

L3 T ir

I . o=yt =ty ..,y — t,) for some t; € k, we are done by Theorem 1.30.
ol
Remember that p,* = ;.
Let us fix j € {1,...,7}. Since «; is the greatest common divisor of s; and ¢, we

have m,n € Z such that ms; + gn = «;. We wish show that
<yj] - 17%‘ - Zj> = <yjj - >

Since s;,q > 0, without loss of generality m < 0 and n > 0. Then y;msj — 1 and

y!"—il" are elements of the ideal on the left hand side. The binomials y/; "’ g e —

ms;+qn

1) and y?” —Y; are elements of the ideal on the left hand side, so is the binomial

On the other hand, recall that ¢; = s;/c; and let d; = ¢/a;. Thus, the binomials

23



y =il gy =1,y G _ i?ndj and yi — ig-lfmcj ) Jie in the ideal on the right hand

side, so is the binomial ] — 4. This shows that

Lo =1Ip+ i —if, oyl — i) =yt =ty g0 =t

for some t; € k. O

When characteristic of k is p # p; for all ¢ € {1,...,k}, the primary decomposi-
tion of Ip is equal to the primary decomposition in char(k) = 0 and the primary
components are [;, ;.

The following example illustrates how the operations defined above work. All the

computations are performed using the computer algebra system Singular, [16].

Example 1.45. Let
2 00

D=10 6 0
006

Let char(k) = 2 and consider the lattice ideal Ip in Kk|y1, yz2, ys]

Ip ={y; — 1,45 — 1,ys — D).

There are |Saty(L)/L| = 9—many associated primes. The partial characters for

associated primes are

( ( '
€1 — 1 €1 — 1 €1 — 1
! - ! _ J ! = ¢
Pri1 = e — 1 pl,l,w; =Yer—1 pl,l,w§ =3e — 1
1 1 2
€3 — €3 — Wsy €3 — W
\ \ \
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( ( (
€1 — 1 €1 — 1 €1 — 1
! = 1 ! = 1 ! = 1
pl,w%,l €2 — W3 pl,wé,wé €2 — W3 pl,wé,wg €y — Wy
1 2
e3 — 1 €3 — Wy €3 — w3
\ \ \
( ( (
€1 — 1 €1 — 1 €1 — 1
! = < 2 ! = 2 ! = < 2
P1w? 1 ey = w5 Pruwiwl es = wi  Prw?w? ey — w3
1 2
k63—>1 k63—>w3 keg,—mu3

where ws is a primitive cubic root of unity. The corresponding primary components

are

1110 =1Ip+ <?J§ - 1,y§ - 1,y§ — 1),
Iy =Ip+ 1 — Ly — 1,5 —wi),
L2 =Ip+ <y — Ly — 1y; —wy),
Loy =1Ip+ 1 — Ly —wi, g5 — 1),

L =Ip + Y = 1ys — Wi, ys — wy),

8 8§ 2. 8 2
Ii’wé»wg = Ip+ i — 1y —ws, ys — wi),

8 8 1,8
Lw%,l =1Ip+y —1Lyy —ws,y3 — 1),
8 8 1.8 1

Ii,wg,wg =Ip+ i — Ly — w3, Y3 — wy),
2

! _ 8 8 1,8
Il,w%,w% - ]D + <y1 - ]-7y2 — W3, Y3 — W3 ).

The intersection of first three ideals is

Ji=1Ip+f—1,y5— 1,43 — D).
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Intersecting the other three ideals I1,,,1,, and I,;, we obtain

J2 = ID +<y§ - 17y§ _w§7y§4_ 1>

The intersection of 1,,,1,, and I,, is

J3 = [D +<y§ - 17?/5 _wi’l)vy{%l_ 1>

Finally, take the intersection of Ji, Jo and J3

JindanJs :[D+<y§_17yg4_1>y§4_1> = Ip.

This example illustrates that it is easy to find the primary components of a lattice
ideal whose defining matrix is a concatenation of a diagonal matrix and a zero matrix.
We would like to compute the primary components of general lattice ideals in positive
characteristic by using the ideas above. Computing the Smith normal form of the
matrix corresponding to a given lattice ideal, we obtain the isomorphisms to find the
primary components in Laurent polynomial ring. Consequently the only thing we
need to do is to take the contraction from the Laurent polynomial ring.

Let B = (b;j) be the matrix defining the lattice ideal I. Let

D(mxn) = U(mxm) ’ B(mxn) ) ‘/Enxn)

be the Smith normal form of B. The columns of U induce a map

=+

©: lk[x%r, nx] — lk[yfr, ,y:ﬁ]
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that sends 2; — [[,. ., yfij/nuiﬁo y; . Note that the inverse matrix U1 of U,
gives the inverse map; o' : k[yf, ..., vt ] — k[zf, ..., 2]
The next example will clarify how to construct the isomorphisms mentioned above

and how to obtain the primary components.

Example 1.46. Let

2 0
B=|-2 3
1 —6

- ‘ - SO (2 2 5 .2 4
be a matriz and consider the corresponding lattice ideal Ip = {x{xs—1x5, T3—17T2, T]—

roxy, 18 — 2323y < k|w1, 19, 23] where char(k) = 2.

The Smith normal form of B, D =U - B -V 1is equal to

10 -1 -2 -1 2 0

10
o 3(=11 3 1]||1-2 3

11
0 0 3 4 2 1 -6

The primary components of the lattice ideal corresponding to D, Ip = (y; —1,y3 —

1), are

Jl :ID+<yl—173/2_1>:<yl—1;y2_1>7
Jo=1Ip+{y1 — Lyo —wyy = (y1 — 1,42 — wi),
J3 :ID+<?J1_17y2_w§>:<y1_1ay2_w§>7

where w3 is a primitive cubic root of unity in k.

The inverse of the matriz U
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-5 -2 -1

gives us the map o' : k[yi,yy,v35] — kla7,xy, 23] that sends y1 — xiwy/a3,

Yo > x9/2% and yz3 —> x1/x3. Thus the primary components of I are

I = (o ' (1) : (w120m3)°) = ((afwy — a3, w1y — 23) © (212925)™)

= (xy — 23, 77 — Tow3),

I = (7' (J2) : (m120m3)®) = ((aima — a5, 12 — wyal)y : (T12273)%),

I3 = (gp_l(Jg) D (rrmox3)™) = (<x%x2 — l’g,l'g — w§x§> : (r1mo23)™).

If k has characteristic 3, Ip is a primary ideal and so is (¢~ (Ip) : (x12913)®) =

Ip.

Example 1.47. Let C be a 4 x 3-matriz with the Smith Normal form, D =U-C-V,

18 -~ ~ - o ~
1 00 1 0O 00 3 =20
-1 0 =2
0 30 -1 1 00 3 -2 3
= : -2 0 -3
0 0 6 -2 -1 0 1 0O 0 6
0 1 0
0 00 2 =210 -3 0 3

: o : (33 23 2,2 2 4 4 .6
The corresponding lattice ideal is Ic = (xjxy — xy, xix5 — 1, 27209, £] — ow3, 5 —

375y S k[, 29, 3, 4] where char(k) = 2.
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The primary components of Ip = (y; — 1,y5 — 1,yS — 1) in K[y, ya, y3] are
_ 2 2 2 _ 2
J1 = ]D+<y1 —1Ly; —1,u3 _1>— <yl — 1Ly — 1y3 _1>v
JZ = -[D +<y% - 17?/3 - 1ay§ —W§>’
JQ = ID + <y% - 1>y§ - w?znyg - w?2;>

The inverse of the matriz U gives us the map o' : k[yi, v3, y3 | — klzi, x5, 25, 75
that sends yy v T1T213, Yo x2x§x4 and y3 — x4. Hence the primary components

of Ig are

I, = ((p’l(Jl) L (mwox3ny)®) = <x1:z:23:f’1 — 1,x2x§$4 -1, :ci -1
= <I‘1.§L’2 — Ty, Ii — 1,213‘% — .CL’1>,

I, = (gfl(Jg) s (mw023)™) = (<Z‘1I2Ii -1, I2$§$4 — 1,@21 — w§> s (my023)7),

Iy = (go_l(Jg) s (mywo23)™) = (<x1$2xi -1, x2x§x4 — w%, a:i — w§> s (r1m23)™).

When char(k) = 3, Ip has two primary components

j1 :]D+<y$—1,y3—1,y§+1>=<y1—1,y2—1y§+1>~

The primary components of Ig are

I, = (¢*1(j1) D (rymomsry)™) = <xfx2 — 1,;153 — x?,mi -1,
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I = (07 (o) : (w1m0w374)®) = (@iwy + 1,25 — 2% 23 + 1.
The following statements are consequences of Theorem 1.30.

Corollary 1.48. Assume char(k) = p > 0. Let B be an n x n integer matriz
with detB = p® for some e > 0. Let the columns of B span the lattice L, and let

Ip =< s | £; € L) be the corresponding lattice ideal. Then Ig is primary.

Proof. Since B has full rank, Sat(£) = Z" and | Sat(L)/L | = | Z"/L | = detB =
p°. We know that £ < Sat) (L) < Sat(L) where Sat;,(£) is the largest sublattice of
Sat(L) such that | Sat,(£)/L | = g where (p,g) = 1. Sat,(£)/L is a subgroup of
Sat(L)/L, thus | Sat,(£)/L | = g must divide | Sat(L)/L | = p°. Hence g must be 1,
which means that Ip is primary when the characteristic of k is p, by Theorem 1.30.

]

Corollary 1.49. Let I < k[xq,...,x,] be a lattice ideal, where k is an algebraically
closed field. There exists a prime number p such that for all prime numbers p' bigger
than p, the primary decomposition of I in a field of characteristic p' is same as the

one in the field of characteristic 0.

Proof. After a certain prime, the order of the group | Sat,(£)/L | turns to be 1,
which is compatible with our convention when the characteristic of the field is equal

to 0. OJ

30



2. LATTICE BASIS IDEALS

2.1 Combinatorial Characterization of Primary Components of Binomial Ideals

Computing primary components explicitly is difficult, as the Hull operation which
discards the embedded primary components and appears in Theorem 1.36, is not
explicit. Dickenstein, Matusevich and Miller [8] provided a characterization of the
primary components of an arbitrary binomial ideal in a polynomial ring over an
algebraically closed field of characteristic zero. They translate the operations of
binomial ideals to operations on exponent vectors and associated partial characters
and formulate the primary components of binomial ideals as sums of binomial and
monomial ideals. They describe those monomial ideal using congruences induced by

binomial ideals as in the following definition.

Definition 2.1. Let Q be a monoid. A congruence ~ on (Q, +) is an additively
closed equivalence relation: a ~b = a+c ~ b+ c for all a,b,c € Q. A binomial

ideal I < k[Q] induces a congruence ~, which we denote by ~;, in which :

u~vif t“ =AY el for some\ € kand A # 0.

Congruences give us a strong connection between combinatorics and commutative
algebra of binomial ideals.

We use the following notation for the next theorem. For § < {1,...,n} let & be
the complement of § in {1,...,n}. Let N° = {u € N* | u; = 0fori € §}. Thus
Nm = N° x N°. Including additive inverses for elements of N°, we obtain Z° x N?
with corresponding semigroup k[Z® x N°| = k[z; | i € 6][zF | i € 6]. This is a mixed

Laurent and ordinary polynomial ring. Let £ be a saturated sublattice of Z°. The
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image of N° in the torsion free group Z°/L is denoted by N°/L£. We denote the ideal

I[Z5) as the extension of the ideal I to the ring k[z7 | j € 6][z; | i € d].

Theorem 2.2. (Theorem 3.2 in [8]) Let k be an algebraically closed field with char-
acteristic 0. Let I < Kk[xq,...,x,] be a binomial ideal with an associated prime
P =1,+{x; | i€ such that p : L — k* is a saturated partial character with
a saturated lattice L < 7Z° < Z". Let ~ be the congruence defined by the ideal

(I 4+ 1,)[Z68] on Z° x N°. Set Z& = N°/L

1) If P is a minimal prime of I and U is the set of elements p € N™ whose
congruence class under ~ has an infinite image in Z.P x N°, then the P-primary

component of I is

Q=(I+1,):]J(@)*) + <" | peU).

€0

2) The only monomials in Q are those in (x" |, pe U).

3) Let K be a monomial ideal containing a sufficiently high power of {x; | i € §)
and let = be the congruence on 70 x N° determined by (I + 1, + K)[Z5]. Let Uk
be the set of elements p € N™ whose congruence class under = have an infinite

image in Z® x N°. If P is an embedded prime of I then

Q=(IT+I,+K): ] [(@)®) + " | pe Ux)

1€0
1s a valid choice for the P-primary component of I.
4) The only monomials in Q are those in (z" | € Ug).

Here, we are trying to construct a binomial primary component of the ideal

I starting from [ itself. We start the construction by adding the binomial part
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of P which is contained in the lattice ideal part, I,(p). This is a consequence
of Theorem 1.36. Then we continue extending the ideal I + I, (p) by taking the
saturation with respect to the nonzerodivisor variables of P, specifically, x; where
i € 0. This follows from Proposition 4.8 and 4.9 in [2] : that state that the P-primary
component of an ideal J is equal to the P-primary component of (J : [ [;¢5 (z;)%).
One of the critical steps of the construction is determining the monomials we need to
add. This is achieved using congruences. For more explanation about the monomials,
we refer to Lemma 2.8 in [8]. The other crucial step is to show that the constructed
ideal @) is primary. To show that, Dickenstein, Matusevich and Miller reduced the
problem to a monomial ideal problem by taking quotient modulo 7, (p) and they use
the characterization for primary ideals whose radical is a monomial associated prime.
(See Theorem 2.23 in [28].) In order to compute embedded primary components
replace I by I + K and the result follows as above.

The characterization of primary components of binomial ideals is still not com-
plete since we assume that we know which primes are associated and we assume that
k is algebraically closed with characteristic zero.

Recall that we denote the ideal I[ZJ] as the extension of the ideal I to the ring
k[z5 | j € 0][x; | i € §]. The following lemmas characterize the monomials that
belong to the primary components of binomial ideals when char(k) = 0 and when

char(k) = p > 0, respectively.

Lemma 2.3. Let I be a binomial ideal in k[x] where k is an algebraically closed field
with characteristic zero. Let P = I, (p) + {(x; | i € 6) be an associated prime of I.
Let T' be a congruence class determined by (I + (I.(p)))[Zd]. If T has two distinct
elements u, v such that v —u € Z° x NO but v —u ¢ L,, then for allu el t" is in

the P-primary component of I.
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Proof. Follows from Lemma 2.8 in [8]. O

If we mimic the proof of the lemma above, we can determine the monomials of

the primary component in fields with positive characteristic.

Lemma 2.4. Let I be a binomial ideal in k[x] where k is an algebraically closed
field with characteristic p > 0. Let P = I,(p)+{x; | i € 0) be an associated prime of
I. Let T be a congruence class determined by (I + (I.(p))PN[Z6] for some e » 0.
If T has two distinct elements u, v such that v — u € Z° x N but v —u ¢ L,, then

for allwe ', t* is in the P-primary component of I.

Proof. Let u # v € T with v — u € Z° x N°. This means that z* — \z¥ € (I +
(I (p))PN[Z6] for some X € k. We claim that 1 — Az¥ * ¢ P[Zd] for all X € k. By
contradiction, assume there exists A € k such that 1 — Az*~* e P|Zé). If v; —u; # 0
for some 4 € §, this implies that 1 € P, since z; € P. Thus v; —u; = 0 for all i € J,
but then 1 — Az"* € I, (p)[Zd] and therefore v —u € L, which gives a contradiction
by definition.

We conclude that 1 — Az""* maps to a unit in (k[z]/I + (I.(p))P1p. Since
(1 — Aaz"™) = 2% — Az¥ maps to zero in k[x]/I + (I.(p))1, 2" maps to zero
in (k[z]/I + (I, (p))P1)p. As the elements of I' arise from the monomials that are
scalar multiples of z* modulo (I + (I, (p))PN[Z4] , they also map to zero. So for all
uel, xvekera: klz]/I + (I (p)P) — (k[z]/I + (I.(p))P1)p which is also in the

primary component of . O

The graph of binomial ideals is another combinatorial tool for binomial ideals.
Graphs of binomial ideals provide a better way to visualize the congruence classes,
which in this setting correspond to connected components. We define the graph of

binomial ideals in certain submonoids of Z".
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Definition 2.5. Let P be a submonoid of Z". A binomial ideal I in the monoid ring
k[P] defines a graph ¥p(I) whose vertices are the elements of P and whose edges are
pairs (u,v) € P x P such that % — Az" € I for some A € k*. A connected component
of ¥p(I) is said to be infinite if it consists of infinitely many vertices; otherwise it is
called finite. A vertex of ¥p(I) is called an infinite vertex if it belongs to an infinite

connected component, otherwise it is called a finite vertex. If P = N", we write ¢(I)

instead of ¥p(1).

The graph of a binomial ideal can be very difficult to draw. We illustrate them
as simply as possible, for instance, the graph will have many more edges than those

depicted in figures since any connected component of ¥p(I) is a complete graph.

Theorem 2.6 (Theorem 2.15, [8]). Let k be an algebraically closed field and I <
K[y, ..., x,] a binomial ideal. Let 6 < {1,...,n}, and set P = Z° x N°. If {x; | i € §)

1s a mintmal prime of I, its corresponding primary component is

([ : (H:U])OO) +{z" | uw e N" is an infinite vertex of 9p(k[P] - I)). (2.1)

jEd

Moreover, the only monomials in these primary components are those of the form x*

such that u € N is an infinite vertex of 9p(k[P] - I).

Remark 2.7. Since we now want to compute the primary components corresponding
to monomial associated primes, we do not need to worry about the translation of the
infinite image which is described in Theorem 2.2. Note that the monomials which
belong to the primary component described above are precisely coming from infinite
vertices of the corresponding graph. Moreover the Theorem 2.6 is true for every

characteristic.
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Remark 2.8. Note that the monomial ideal in (2.1) is generated by monomials x*
where u; = 0 if j € §. Indeed, if w € N” is an infinite vertex of ¥p(k[P] - I), so is
u — U, where 4; = 0 if 7 € 0 and u; = w; if 7 ¢ 0. This is because monomials in the

variables x; for j € § are units in k[P].

We use the following criterion to identify the infinite components of ¥p(k[P]-I);

this is a special case of Lemma 2.10 in [8].

Lemma 2.9. Let I < k[zy,...,x,] be a binomial ideal, 6 < {1,...,n}, and P =
70 x N°. A connected component of 9Ip(k|P] - I) is infinite if and only if it contains

two distinct vertices u,v € P such that u —v € P.

If I is a binomial ideal, there exists a (multi)grading of the polynomial ring that
makes I a homogeneous ideal. In fact, it is often the case that a binomial ideal is
given together with a specified grading. Depending on their behavior with respect to
a given grading, the associated primes and primary components of a binomial ideal

are called toral or Andean.

Definition 2.10. Let G be a commutative semigroup and let M = @ ., M, be a G-

geG
graded module over the polynomial ring k[z1, ..., x,]|. The G-graded Hilbert function
Hy; of M is the set map G — N whose value at each group element g € G is the

vector space dimension dimy(M,); explicitly Hy(g) = dimg(My).

Definition 2.11. Let M be a finitely generated G graded module over the polyno-
mial ring k|[z1, ..., z,], we say M is toral if Hys is bounded above. A G-graded ideal
I is called toral if k[z1, ..., 2,]/I is a toral module. On the other hand if H); is not
bounded above, M is called an Andean module. A graded ideal I is called a Andean

if k[x1,...,2,]/I is an Andean module.
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Example 2.12. The toric ideal 14 = {x* — 2" | u,v € N" and Au = Av) is an

NA-graded toral prime since dimy(Kk[x1, ..., Xu]|/Ia)a is either O or 1, see Lemma 4.3.

In general, the toral primary components of a binomial ideal are more easily
described combinatorially than the Andean ones, as their graphs can actually be
drawn in much lower dimension than the number of variables. Indeed, we will see that
the monomial part of the primary component is easier to compute. The following is a
characterization of a toral component, if we compare to Theorem 2.2, the congruence

classes we are looking at are simpler.

Theorem 2.13. (Theorem 4.13, [8]) Let I € k|[z1,...,x,] be an A-graded ideal and
let P = 1,(p)+{x;|ied) bea toral minimal associated prime of I. We define
I=1 k[z]/{w; —1]ied).

1) If U is the set of elements p whose congruence class in N® under ~7 1S infinite,

then P-primary component of I is

Q=(IT+1,+K):][(@)*) +{a" [ peU).

1€0
2) Let P be a toral embedded prime of I. Let K be a monomial ideal containing
a sufficiently high power of {x; | i € 0) and let Uk be the set of u € N’ whose

congruence class under ~j i 1s infinite. Then

Q= (U+1,): | [(e)®) + (o | we Ux)

1€0

1s a valid choice for the P-primary component of I.

The only monomials in Q and Q are those in (x| p € U and (z" | € Ug),

respectively.
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2.2 Lattice Basis Ideals

In this section we review important facts about lattice basis ideals and especially
how their associated primes arise.

Recall that lattice basis ideal was introduced in Definition 1.41. Let M be an nxm
integer matrix with rank m. Remember that we can write p € Z" as up = p* — p~
where ;™ and p~ are non-negative and have disjoint support. The lattice basis ideal

associated to M is

I(M) = (" — 2" | pis a column of M) < k[zy,. .., x,] = k[N"].

Hosten and Shapiro studied the associated primes of lattice basis ideals in [18].
They show that the minimal primes of such an ideal are determined by the sign
patterns of the entries of the corresponding matrix. On the other hand, they illustrate
the fact that embedded primary components are not uniquely determined by the sign

patterns of the matrix.

Convention 2.14. A = (a;;) € Z¥" denotes an integer d x n matriz of rank d whose
columns Ay, ..., A, all lie in a single open linear half space of RY. We also assume

that the column of A span Z% as a lattice.

Convention 2.15. Let B = (bj) € Z"*™ be an integer matriz of full rank m < n.
The rows of B are denoted by by, ..., b, and its columns by By, ..., B,,. Assume every
nonzero element of column span of B over integers is mized, meaning that it has both
strictly positive and strictly negative entries. Having chosen B, we set d = n —m

and pick a matriz A € Z¥" of full rank such that ZA = 74 and AB = 0.

Fix matrices A and B as in Convention 2.15, and let /(B) be the lattice basis
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ideal corresponding to B
I(B) = (2B — 2B | B; is a column of B € Kk[z1, ..., z,].

By using Corollary 2.1 and Theorem 2.1 in [18], we can list the minimal associated
primes of I(B). We first consider the associated primes of (I(B) : [[«;*). They
arise from the saturations of the partial character of the lattice ideal (I(B) : | | ;™).
Indeed, all of the associated primes of (I : ([, z;)®) are isomorphic, by rescaling
the variables, to I4 = (a"* — 2"~ | v € Z", Av = 0), where A is as in Convention 2.14.
Recall that the prime ideal I, is called the toric ideal associated to A. When the
characteristic of the underlying field k is zero, it is shown in [12] that the primary
components of I(B) corresponding to these associated primes are the associated
primes themselves. The case of positive characteristic is considered in Section 1.5.

Another kind of associated primes of I(B) arises after row and column permu-
tations of B. In fact, these associated primes of I(B) are described as in the form
of P ={xy, ...z, [ (pc)) where L is the lattice generated by columns of B, comes

from the block decomposition of the matrix B of the form

N | B;
M| 0O

where M is mixed of size s x ¢t with no zero rows. B is the (n — s) x (m —t)
matrix whose columns generate the lattice £. Also M has to satisfy another block

decomposition property called irreducibility which is the following criterion.
Definition 2.16. A matrix M is called irreducible if

1) M is a mixed s x ¢t matrix where s < t, and
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2) One cannot bring M into the following form after permuting its rows and

columns

N'"| B
M| 0

where M’ is mixed m x p matrix where m > p.

Remark 2.17. In the case of lattice basis ideals, the toral associated primes arise
when M which is the submatrix in the decomposition above is square and invertible.
If M is not square or not invertible, then the corresponding associated prime is

Andean. One can verify this fact by Lemma 4. 9 and Example 4. 11 in [8].

2.3 Codimension Two Lattice Basis Ideals

We study lattice basis ideals arising from n x 2 integer matrices, known as codi-
mension two lattice basis ideals. In collaboration with L. F. Matusevich [24] we gave
explicit descriptions for primary components of codimension two lattice basis ideals

especially for those whose corresponding associated prime is monomial and Andean.

Convention 2.18. From now on, B = [b;;] is an n x 2 integer matriz of rank 2.
The rows of B are denoted by by, ..., b,, and its columns by By, By. Fix an integer
(n —2) x n matriz A such that AB = 0, and whose columns span Z" 2 as a lattice.

I(B) is the lattice basis ideal corresponding to B.

Since B has rank two, the lattice basis ideal I(B) corresponding to B is a complete
intersection. Therefore all of its associated primes are minimal. In the Section 2.2,
we discussed how the associated primes of lattice basis ideals arise in general. In
the case of codimension two, the set of associated primes of I(B) consists of the

associated primes of (I : ([ [, z;)®) and the monomial primes (z;,z;) if b; and b,
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lie in opposite open quadrants of Z2. Using the following decomposition of B, we

obtain the associated prime {z;, z;)

where the last two rows correspond to z; and x; respectively. Note that we do
not have a binomial I, (p;) in the associated prime since we do not have a B,

bi1 bia
bj1 bj2

submatrix in the decomposition above. Lastly, we point out that ( ) satisfies
the irreducibility condition.

We now turn our attention to the primary components of I(B) arising from
monomial associated primes.

We mentioned that for a binomial ideal I, there exists a (multi)grading of the
polynomial ring that makes I a homogeneous ideal and in general, I is given together
with a specified grading. We use the matrix A in Convention 2.18 to define a Z" 2
grading of k[z], where deg(x;) is defined to be the ith column of A. The ideal I(B)
is homogeneous with respect to this A-grading, its associated primes and primary
components are homogeneous as well. By Definition 2.11, we classify the associated
primes and primary components of an A-graded ideal according to their A-graded
behavior.

The monomial primes {(x;, z;) such that the corresponding rows of B, b; and b;,
are linearly dependent and in opposite open quadrants of Z? correspond to Andean
components. It is easy to see that the A-graded Hilbert function of k[x]/I 4 takes only
the values zero and one and this holds in the same way for the other non-monomial

associated primes of I(B).

On the other hand, the Hilbert function of k[z]/{x;, ;) is bounded if the rank of
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the submatrix of A indexed by {1,...,n} —{i, j} has full rank, and this occurs when
b; and b; are linearly independent, see Remark 2.17.

By Theorem 2.13, we know that the toral primary components of a binomial ideal
are simpler than the Andean ones, as their graphs can actually be drawn in much
lower dimension.

The following fact is a consequence of Theorem 2.13 which also applies to the

case when the associated prime is monomial.

Theorem 2.19. Let I be an A-graded binomial ideal in k[x], where k is algebraically
closed, and assume that P = {x; | i € &) is a toral minimal prime of I. Define the
binomial ideal T = I -Kk[z]/{x; — 1| j € 6) < k[N] by setting x; = 1 for j € 5. The

P-primary component of I is

(I ; (n :L‘j)oo) +{z" | ue N is an infinite vertez of 4(I)).

jES
Remark 2.20. The main feature of the Theorem 2.19 is that ¢(I) has vertices in
N? , and the cardinality of 6 can be much smaller than n. For the case of codimension
two lattice basis ideals, if {x;, ;) is a toral associated prime of I(B) | § |= 2 always,

and we can compute the monomials by the graph 4 (I(B)) where

I(B) = <be“‘ — ltal glbal x‘jbj2|> < klz;, x;].

joo
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Example 2.21. Let

o
4 —6
2 3

so |t |
1 -2
2 —6

8 12

__3 _6_

so that I(B) = (x3z3xk — 2irswsadad, viwded — aSa2alal?al).

The rows (2,4) and (—4,—6) are linearly independent and lie in opposite open
quadrants, so {x1,x2) s a toral associated prime of I(B). We can compute the mono-
mials of the {(x1,zs)-primary component of I(B) by looking the graph of 4(I(B))
where I(B) = (x? — 24, x* — 28). It is sufficient to add the monomials coming from
the infinite connected components are {x}, 25, 2223}, see Figure 2.1. Thus the other
monomials corresponding to infinite vertices can be generated by these monomials,

as can be seen in the staircase diagram in dashed lines.

By Theorem 2.19, the {x1, xs)-primary component of I(B) is

(I(B) « (] [ w)®) + a8, 2723y = (ol af, afal, agwaasaial — afafad).
01,2

For a precise result in this case, see Proposition 2.24 and Lemma 2.33.

2.4  Graphs Associated to Matrices

In this section, we study graphs arising from 2 x 2 integer matrices, whose vertices

are elements of N2, We see that these graphs are sufficient to control the primary
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Figure 2.1: The graph ¢(1(B))

components of the codimension two lattice basis ideals.

Definition 2.22. Let ) be a subset of Z" and let M be an n x m integer matrix.
We define Go(M) the graph of M whose vertices are the elements of @), and where
two vertices u,v € () are connected by an edge if and only if u —v or v —u is a

column of M.

Definition 2.23. A connected component of Gg(M) is called infinite, if it contains
infinitely many vertices; otherwise it is called finite. A finite (or infinite) vertex of

Go(M) is one that belongs to a finite (or infinite) connected component.

If @ =N", we omit @ from the notation, and write G(M) instead of Gnn(M).

We consider graphs Gg(M) where @ is a submonoid of Z" such as N" or N¥ x Zn~*
or a subset of Z", such as {u € N | Ajuy + -+ + Au, = Ao}, for fixed given
Ao, -y A € Q (Lemma 2.44), or {u € N? | u; < ¢}, for fixed given £ € N.

We are interested in determining whether the connected components are infinite

or finite. We will derive the infinite vertices which are mentioned in Theorem 2.6
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from the infinite vertices of G (M). Indeed, G (M) carries the algebraic information
we need to find the monomial part of the associated prime and it is much easier to
analyze. The following result describes the connected components of G(M), where

M is a 2 x 2 nonsingular matrix whose rows lie in non adjacent open quadrants of

/i

Proposition 2.24 (Lemma 6.5 in [10]). Let M = [p;]ijeq2 € Z*** of rank two,

and assume that piiq, 1o > 0 and por, poe < 0. Set

7 — fueN? | uy < g, us < —pin}  if [paipeoe] > |pazpanl,

{ue N? | up < py,ug < —pigo} if |panpoe] < |pazttor]-

Every finite connected component of G(M) contains exactly one vertex in Z. In
particular, the number of finite connected components of G(M) is the cardinality of

R, which is min(|p11 sl |p1apio1])-

1 3
Example 2.25. Let M = . G(M) has min(| — 4],| — 6|]) = 4 finite

-2 -4

connected components, which are shown in Figure 2.2.

Figure 2.2: The graph of M
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If the entries of M € Z?*? are all positive integers, then G(M) has no finite
connected components. In this case, we focus on a family of subgraphs of G(M), as

follows.

Definition 2.26. Let M € Z**? of rank two, all of whose entries are positive. For
(e Nlet Q = {ue N?|u <} We denote Go(M) = Gg,(M), and call these
graphs the band graphs of M. Note that G,(M) is the induced subgraph of G(M)

whose vertices lie in @y, and consequently if ¢ < ¢, then G,(M) is a subgraph of

GZ/ (M) .
Before proving our results about band graphs, we need a few more definitions.

Definition 2.27. Let M be a rank two integer matrix

a b

such that r = s > 0,0 < a < b, and ged(r, s) = 1. The graphs G,(M) have two types
of edges: those parallel to the first column of M are called the r-edges of G¢(M), and
those parallel to the second column of M are called the s-edges of Gy(M). If r = s,
we could refer to these edges as a-edges and b-edges. Consider N? with coordinates
w, z. A vertex of Gy(M) is called a turn if it is adjacent to both an r-edge and an
s-edge of G(M). A turn (wy, zo) is called a left turn if there is a vertex adjacent
to (wo, z9) whose w-coordinate is smaller than wy. Turns that are not left turns are

called right turns.

Intuitively, when we walk along a connected component of G;(M) in the direction
that increases z, we turn left at a left turn, and right at a right turn. For an

illustration of the definitions above, see Figure 2.3.
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The following result, joint with L. F. Matusevich, characterizes the situation when

a band graph has an infinite connected component.

Proposition 2.28. Let M be as in Definition 2.27. If { < r + s — 1, then every
connected component of G¢(M) is finite. If { = r + s — 1, then for every wy €

{0,1,...,¢} there exists zg € N such that (wy, zo) belongs to an infinite component of

Go(M).

Proof. Write r = sq; +q2 where 0 < g2 < s. We claim that any connected component
of G,.(M) contains at most 2¢; + 2 vertices (implying that G,.(M), and therefore
G¢(M) for £ < r, has no infinite connected components). A connected component of
G, (M) can only contain one r-edge since the w-coordinates of vertices in G, (M) are
bounded by r. Thus, we can have at most two turns in such a connected component.
We can connect at most ¢;-many s-edges at each turn. Including the turns, the
number of vertices in a connected component of G,.(M) is at most equal to 2¢; + 2.

We observe that a modification of the argument above shows that a connected
component of G¢(M) is infinite if and only if it contains infinitely many left turns.

Now consider G,4+(M) where 0 <t < s. We show that G,,+(M) has an infinite
connected component if and only if ¢t = s — 1. Note that not all components of
G (M) have left turns, for instance, the vertex (r + ¢,0) is itself a connected
component, which therefore has no turns. In what follows, we study how many left
turns a connected component can have.

The ordering > on the elements of N? defined by (w,z) > (w',2') if 2 > 2/,
or z = 2’ and w' > w, induces a total ordering on the set of left turns of a given
component of G, (M).

Let C be a connected component of G,(M), and suppose that (wy, 29) is a left

turn in C'. We wish to produce the next left turn of C' according to >, if it exists.

47



Since (wy, 29) is a left turn in C, we have (wg — 7,29 —a) € C. This is a right
turn, because G, (M) cannot contain two adjacent r-edges, as the w-coordinates
of the vertices of G,.4(M) are bounded by r + ¢, and t < s. We attach s-edges to
(wg — 1,29 — @), to produce a vertex (wyg — 1,20 — a) + (¢s,qb) € C, where ¢ > 0
is as large as possible. The integer ¢ is produced by writing r + ¢t — (wy — r) =
qs + [r+t— (wp —r) mod s], where [« mod (] denotes the remainder of oz upon
division by 3, for o, 8 € Z, a > 0.

If (wog—r, z0 —a) + (gs, ¢b) is coordinatewise greater than or equal to (r,a), then
(wo — 1,20 — a) + (gs,¢b) is a left turn of C' which is greater according to > than
(wo, 20). Now, zg—a = 0 and b = a imply that zo—a+¢b = a. Therefore, in order for
(wo—r, zo—a)+(gs, gb) to be aleft turn, we need r < wo—r+qs = r+t—[r+t—(wo—r)
mod s], or equivalently, t > [2r + t — wy mod s].

Replacing (wo, z0) by (wo—r, z0—a)+(gqs, gb), we see that the condition needed for
the existence of a left turn which is greater according to > than (wo—r, zo—a)+(gs, gb)
ist>=[2r+t—(wy—r+gs) mods|=[3r+t—wy mod s].

Continuing in this manner, the existence of infinitely many left turns in C' is
equivalent to requiring ¢ = [fr + t — wy mod s] for all £ > 0. However, since
ged(r, s) = 1, there exists ¢ > 0 such that [¢r + ¢ — wy mod s| = s — 1. Therefore,
if t < s — 1, C has finitely many left turns, and is finite, and if t = s — 1, C has
infinitely many left turns, and is infinite.

If t < s—1, a component of G, (M) either has no left turns or finitely many
left turns, which shows that G,,:(M) has no infinite components.

Let t = s —1 and wy € {0,...,7 +s—1}. If wy = r, then for large enough
20, (wo, 29) is a vertex of both an r- and an s-edge whose other vertex has lower
z-coordinate, and is therefore a left turn in its connected component, which is thus

infinite. If wg < 7, we can choose zy sufficiently large such that attaching as many
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s-edges to (wo, zg) as possible yields a left turn, which implies that the component
of (wy, z0) is infinite.

Finally, if £ > r +s—1, foreach 0 <t < ¢ — (r + s — 1), Go(M) contains as a
subgraph the image of G,;s_1(M) under the translation (w,z) — (w + ¢,z). This
implies that for each wg € {0, ..., ¢}, there is zy > 0 such that (wg, zo) is an infinite

vertex of Gy(M). O

Example 2.29. Let

The band graphs G4(M) and G7(M) are illustrated in Figure 2.3.

}( left turn

Figure 2.3: Examples of band graphs

All of the connected components of G4(M) and G7(M) are finite. The minimum

¢ € N such that G¢(M) has an infinite connected component is ¢ = 10 (see Figure 2.4).

Remark 2.30. In Proposition 2.28, we assumed that the entries in the top column

of M were relatively prime. In the following result, we remove that assumption.
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Glo-(M) |

Figure 2.4: A band graph with an infinite component

Theorem 2.31. Consider a rank two matrix

a b

where r, s, a,b are positive integers, r = s, a < b and ged(r, s) = d = 1. The minimal
¢ € N such that G¢(M) has an infinite connected component is ¢ = r + s —d. If
0<t<dandwye {0,...,r+s—d+t}, there exists zo such that (wy, 29) is an
infinite vertex of Grys qri(M) if and only if wy is divisible by d. If { > r + s, for

each wy € {0, ..., 0}, there exists zy such that (wo, zo) is an infinite vertex of Gy(M).

Proof. Let M be the (integer) matrix obtained from M by dividing r and s by d, so
that Proposition 2.28 applies to the band graphs of M.

Let ¢ € N and set / = |¢/d], the integer part of £/d. We show that Gy(M) is a
disjoint union of graphs isomorphic to Gy(M) or Gy_,(M).

Let (wo, 20) € N? such that wy < £, so that (wy, 29) is a vertex of Gy(M). Write
wy = Wod + tg where ty is an integer with 0 < ¢y < d.

If tp = 0, then (wy, 29) belongs to the image of the map o : G;(M) — G¢(M)

defined on vertices by (w, z) — (dw, z). Since r and s are divisible by d, any vertex in
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the connected component of G,(M) that contains (wy, z9) also has its w-coordinate
divisible by d. This implies that the connected component of (wy, zo) in G¢(M) is
the image under ¢y of the connected component of (wo/d = g, 29) in G;(M).

If ty > 0, consider the map ¢y : Gj_; (M) — G¢(M) defined on vertices by
(w, z) — (dw + to, z). Since r and s are divisible by d, the w-coordinates of all the
vertices of Gy(M) connected to (wy, z9) are congruent to ¢y modulo d. This implies
that the connected component of (wp, z9) in G¢(M) is the image under ¢4, of the
connected component of (1, 2) in G;_,(M).

Note that the images of the maps ¢,; have no common vertices, and their union

is G4(M). Now use Proposition 2.28 to obtain the desired conclusions. O
2 6

Example 2.32. Let M = . When ¢ = 6, the band graph Gg(M) has an
1 2

infinite connected component. However, the vertices (w, z) where w is odd are finite

vertices for all z; see Figure 2.5.

Figure 2.5: The band graph Gg(M)

The following lemma relates the graphs of lattice basis ideals and those associated

to matrices.
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Lemma 2.33. Let M be an nxm integer matrix of rank m, and I(M) its correspond-
ing lattice basis ideal as in Definition 1.41. Let T < {1,...,n} and let P = N7 x 7.
Then u,v € P are connected in 9p(k|P| - I(M)) if and only if they are connected in
Gp(M).

Proof. Assume that u,v € P are connected in Gp(M). We show that z* — 2 €
k[P] - I(M) by induction on the length of the path connecting u to v. If this path
has length one, then u and v are connected by an edge of Gp(M ), meaning that u—v
or v —u, say u — v, equals a column g of M. Then v —v = 4 = puy — p_, so that
v—p_=u—p; =v. Sincev—p_ + . =ue P and for all i, (puy); and (u_); are
not simultaneously nonzero, we see that v € P. But then z* — 2¥ = z¥(z'+ — 2t-) €
k[P] - (M), as we wished.

Now assume that u and v are connected in Gp(M) by a path of length ¢ > 1.
This means that there are vertices u = (O M . v = ¢ of Gp(M) such that
(v, 0+ is an edge of Gp(M) for i = 0,...,¢. By inductive hypothesis, since
v and v are connected in Gp(M) by a path of length ¢ — 1, we have -
2 € k[P] - I(M). But we also know 2% — 2"’ € k[P] - I(M). We conclude that
" —zv € k| P] - I(M), and therefore u and v are connected in ¥p(I(M)).

For the converse, we start by noting that a lattice basis ideal (and its extension
to k[P]) contains no monomials. This follows, for instance, from Lemma 7.6 in [30],
which implies that the saturation (I(M) : {x;---x,)®) < k[z] is not the unit ideal.

Since every connected component of ¥p(I(M)) is a complete graph, if u and v
are connected in ¥p(I(M)), then (u,v) is an edge in ¥p(I(M)). Thus, there exists

nonzero p € k such that =% — pz¥ € k[P]-I(M), and if xV, ..., u(™ are the columns

. (1) 1) (m) (m)
of M, we can write z* — pz¥ = Fl(:z:)(x“+1 e )+ 4 Fp () (2t — ot ) for
certain Fi,..., F,, € k[P]. We can represent this expression as a subgraph K of
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Gp(M): for every term Az” in F;, K contains the edge (v + /LS?, v+ ,u@) and its
corresponding vertices. We label this edge by the coefficient A, and we label each
vertex by the combination of the labels of the edges adjacent to it, with a positive
sign if we look at the vertex v + /ﬁ) of (v+ uﬁ?, v+ u@), and a negative sign for the
vertex v + ,u@. Thus, the only two vertices with nonzero labels are u and v.

Let K, be the connected component of K containing u. We wish to show that
v is a vertex in K, as this implies that v and v are connected in Gp(M). But if
this is not the case, we can use K, to form a polynomial expression with a summand
)\:c”(a:“(p = :1:(“@) for each edge (v + /LS?,V + u@) labeled by A in K, and this
expression equals the sum over the vertices in K, of the label of each vertex times
the corresponding monomial. Since the only vertex with a nonzero label in K, is
u (that label is 1), then we obtain an expression for z* as a combination of the

generators of k[P] - I(M). This contradicts the fact that k[P] - I(M) contains no

monomials. O

Remark 2.34. We can construct ¥p(I(M)) by adding edges to Gp(M) until each
connected component becomes a complete graph. This is correct by the hypotheses
and notation of the previous lemma. For an arbitrary binomial ideal I < k[P], it
is always possible to construct a subgraph of ¥p(I) using a generating set of I, so
that the vertex sets of their connected components are the same. This implies that
saturating the connected components of this subgraph with edges yields ¥p(I). Note
that not every generating set of I contains sufficient information, what we need is a
generating set of I that contains all the generators of the maximal monomial ideal

in I. A different perspective can be found in the Lemmas 1 and 2 in [29].

Remark 2.35. We can construct 4(I(B)) from the graph G(M) associated to the

2 x 2 matrix M whose rows are b; and b; by Lemma 2.33. Also, since we have
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already characterized the connected components of G(M) in Proposition 2.24, we
can describe the corresponding primary component by applying Theorem 2.19. This
yields a very nice picture of the toral components of a codimension two lattice basis

ideals in characteristic zero.

2.5 Codimension Two Lattice Basis Ideals in Three Variables

In this section, we study the Andean components of codimension two lattice basis

ideals. We first look at the case of three variables.

Convention 2.36. Let B be 3 x 2 matriz of full rank 2 as follows

r s
B=1-Xr —Xs
a b

where r,8,a,b € Ly, a < b, r = s, ged(r,s) = d, and 0 < X\ = p/q in lowest terms.
We work in the polynomial ring k[z,y, z|. The lattice basis ideal associated to B is
I(B) = {a"2* — y* 2%20 — y*) € K[z,y,2]. We let P = N? x Z, and work with
k[P] = k[z*][z,y].

Remark 2.37. Note that for a codimension two lattice basis ideal I(B) correspond-
ing to a matrix B as in Convention 2.36, a vertex u = (uy, uy, u,) of ¢(I(B)) that lies
on a hyperplane u, = —Au, + A, for £ € Q, can only be connected to other vertices
on that hyperplane. The reason is that the columns of B which are the building

blocks of the graph G(B) are parallel to the hyperplane u, = —Au,.

Let B be as in Convention 2.36. In [24], we compute the primary component of
I(B) corresponding to the Andean associated prime {(x,y). The only ingredient we

need to understand this component is the graph arising from the extension of 1(B) to
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k[z*][x,y] = k[P]. Indeed, the following proposition illustrates that it is sufficient

to understand the infinite connected components of ¢ (I(B)).

Proposition 2.38. Let B and P = N? x Z as in Convention 2.36. Then

{(uz,uy) € N* | Ju, € Z such that (u,,u,,u,) is an infinite vertex of 9p(k[P]-1(B))}

= {(us,u,) € N* | Ju, € N such that (u,,u,,u,) is an infinite vertez of 4(1(B))}.

Proof. If uw = (ug, u,,u,) € N* is an infinite vertex of ¢(I(B)), then it is clear that
it is also an infinite vertex of ¥p(k[P] - I(B)).

Let u = (uy, uy, u,) € P be an infinite vertex of ¥p(k[P]- I(B)). By Lemma 2.9
there exists v = (vg, vy, v,), 0 = (Uy, Ty, V) € N* x Z connected to u such that 0, = v,
and v, = v,. Since u is connected to v, we can find a nonzero p € k such that
aheytv zts — prleytv2¥= € k[ P] - I(B), and by clearing denominators, we can produce
i € N such that z#(x¥yUs 2%= — px¥=y® 2¥=) € I(B); in particular, u+u, and p+wv, are
non negative. Thus, the vertices (uy,uy, u, + i), (vz, vy, v, + ) € N* are connected
in 4(1(B)). Enlarging p as needed, we may assume that (u,, w,, u, + p), (Vz, vy, v, +
1), (0, 0y, U, + ) are coordinatewise non negative and connected in ¢ (1(B)).

By Remark 2.37, there exists £ € QQ such that v, = —Av, + A\ and v, = =AU, + \(,
so that v, — v, = —A(0, —v,). Since A > 0 and v, — v,, U, — v, are non negative, we
see that v, = 0, and v, = v,.

In conclusion, the vertices (vy,v,, v, + p), (vg, vy, 0, + 1) € N* are connected in
G(I(B)), since either (vy, vy, U, + 1) = (Vg Uy, Uy + 1) OF (Vg Uy, Uy + 1) — (U, Uy, V2 + 1)
belongs to N?, we see that these vertices belong to an infinite component of 4(I(B))
by Lemma 2.9. As these vertices are connected to (ug, uy, u, + i), we conclude that

this is an infinite vertex of ¢ (I(B)). O
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Corollary 2.39. Let B and P = N? x Z as in Convention 2.36. The primary

component of I(B) corresponding to the associated prime {x,y) is
(I :2%7) +{a"y"™) | Ju, € N such that (uy,uy,,u,) is an infinite vertex of G(B)).

Proof. The result follows from Theorem 2.6, Remark 2.8 and Lemma 2.33. O
The fact in Remark 2.37 motivates the following definition.

Definition 2.40. Let B be as in Convention 2.36 and ¢ € (1/p)N. Set S(¢) =
N" n {(wg, uy, uz) | uy = —Au, + M}, The graph Gg)(B) is called the (-th slice

graph of B. G(B) equals the disjoint union Ureqmn Gs(B) as a graph.

Example 2.41. Let I(B) = (x*z — y*, 272 — y7), the slice graphs of 1(B) are illus-

trated in Figure 2.6.

Figure 2.6: Slice graphs for I(B) = (z*z — y* 272 — y7)

We group the slice graphs of B according to isomorphism in the following result.
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Lemma 2.42. Let B as in Notation 2.36. Suppose (c;,cy,c.) € N® is a vertex of
Gsw(B), where { € (1/p)N. Write c, = qC,+1, ¢, = pcy+j, where ¢,,¢,,1,j € N and
0<i<gq, 0<j<p. Then Ggu)(B) is isomorphic to the slice graph Gg.ivjixn(B)
that contains (qCy, pcy, c,) as a vertex. Consequently, in order to understand the (con-
nected components of) all the slice graphs of B, it is enough to understand G g (B)
for £ e gN.

Proof. The desired isomorphism ;; between G (B) and Ggyisj/n)(B) is defined
by

(Ugy Uy, Uy) = (Ug + 0,0y + J,Uz).

Note that a vertex of the form (¢c,, pc,, c.) € N*, where ¢,, ¢, € N belongs to a slice

graph G (B) where { e gN. O

Example 2.43. To better understand how the ideas above work, let us illustrate them
for the ideal I = {x'?25 — y® 21826 — 2" Thus, r = 12,s = 18, \ = p/q = 3/2
and d = 6. We know that an infinite connected component first occurs in Ggaq)(B).
By Lemma 2.44 and Theorem 2.31, we realize that (24,0, z), (18,9, 2), (12,18, z),
(6,27, z) and (0,36, z) are infinite vertices for some z. The projections onto the xy-
plane of the slice graphs of B are shown in Figure 2.7. The monomials induced by
these infinite vertices give a staircase diagram that can be seen in the picture in the
left hand side.

Let us consider the vertices under the stair starting with (0,36) and ending with
(6,27). We know that the vertices shown with circles are finite by Theorem 2.31.
To understand the connected components of all the slice graphs of B that passes
through the vertices in this figure, it is enough to understand Gga)(B), Gsee)(B)
and Gses)(B). For example the vertices depicted with stars belong to the slice graphs

which are isomorphic to Ggpa(B) and they are all finite. Also, the vertices shown
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(0, 36)d

koo

%4,,4),, Gss)(B)

Figure 2.7: Slice graphs for I(B) = (z'226 — ¢!8 21826 — 427

with a square belong to the slice graphs which are isomorphic to Gg6)(B) and they
are all finite too. The vertices depicted with bullets on the slice graphs Gg(z6)(B)
and GS(QS)(B) correspond to infinite vertices, but note that the monomials induced
by these can be divided by x%y*" or y3. Thus the minimal generating set of the
monomial ideal we are looking for does not contain the aforementioned monomials.
Lastly, the vertices which are shown with small bullets are related to the slice graph

Gs22)(B), and they are all finite, since infinite vertices first appear in Gg(24)(b).

In order to draw the graphs in a simpler way, we “straighten out” the slice graphs
of B. Recall the notation in Convention 2.36. Given ¢ € N, let ¢, : N> — Z3 be the
injective function defined by (w, k) — (qw, A(¢f — quw), k) = (quw,p(¢ — w), k). Note

that the image ¢,({(w, k) € N* | 0 < w < £,0 < k}) is the intersection with N* of the
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hyperplane given by u, = —Au, + Agl.

Lemma 2.44. Let B be as in Convention 2.36 and let M = [’”(/lq Séq]. Given £ € N,
define ¢y as above. The image under ¢, of the band graph G,(M) is the slice graph
Gse) (B). [

We have already studied the connected components of the band graphs G,(M),

thus we can compute the primary component of I(B) associated to {z,y).

Theorem 2.45. Let B as in Notation 2.36. The primary component of I(B) corre-

sponding to the associated prime {x,y) is

(I(B) : ZOO) + <y)\(r+s—d)’ xdy)\(r—i-s—Zd)? .I,QdyA(r—i-s—iial)7 o ’Ir+s—d>.
Proof. By Theorem 2.6, the desired component is (I(B) : 2*) + .4, where
M = {x"y" | Ju, € Z with u = (uy, uy, u,) an infinite vertex of %2xz(I1(B))).

By Proposition 2.38, we can use ¢(I(B)) instead of %yz2,z(I(B)) in the definition of
A, and by Lemma 2.33, we can use G(B) instead of 4(I(B)).
Now using Remark 2.37, Lemmas 2.42 and 2.44 and Theorem 2.31 we obtain the

desired result. O

Theorem 2.45 is an important for understanding the primary decomposition of
I(B) in the general n x 2 case. Indeed, we reduce the general case to 3 x 2 case.
We are now ready to state and prove the main result in [24], which gives an explicit
expression for the Andean primary components of a codimension two lattice basis

ideal.
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Theorem 2.46. Let B as in Convention 2.18, and suppose that b;, b; are linearly de-
pendent rows of B lying in opposite open quadrants of Z2. Without loss of generality,
assume that by, bia > 0, let d = ged(bir, bi2), and write X = —bj1/bjy = —bja/bia > 0.
The primary component of I(B) corresponding to the associated prime {(z;, ;) is

(](B) . ( 1_[ xk)oo) + <$;\(bi1+bi2_d), I;ix;\(bn-&-bﬂ—Qd), x?dx;\(bm-&-biz—fid)’ o 7x?i1+bi2—d>.
ki,

The only monomaials in this ideal are those in the ideal

A(bir+bia—d) _d_A(bi1+bia—2d) bi1+bia—d
(x; , T3 fee s T ).

Proof. Let 0 = {i,j}, and set P = N? x Z°?. Choose 0 < a < b € Z such that the

. bi1 bi
matrix B = [b]i bjz} has rank 2. Our result follows from Theorems 2.45 and 2.6 if
a b

we show that

{(u;,u;) € N? | Ju € P an infinite vertex of ¥p(I(B))} =

{(c1,¢2) € N? | 3¢y € Z with (cq, ¢, ¢3) an infinite vertex of Gy (1(B)).
By Lemma 2.33, it is enough to show that

{(u;, u;) € N7 | Ju € P with u; and u; an infinite vertex of Gp(B)} =

{(c1,¢3) € N? | 3¢ € Z with (cy, ¢, ¢3) an infinite vertex of Gyzyz(B).

We show <; the other inclusion is similar.
Let (u;,u;) € N7, such that there is u € N7 x Z% (whose i-th and j-th coordinate
are u; and w;) that is an infinite vertex of Gp(B). By Lemma 2.9, there are v, 0 € P

connected to u such that v —wv € P. Since v and v are connected, there is a sequence
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of vertices u = pu, ..., pt = v, 0+ p2) = 5 e P such that (u®, pF1) is
an edge in Gp(B) for k=1,...0, — 1.

Recall that By and By are the columns of B, and denote B, and B, the columns

of B. Define )
B, if b+ _ 00 _ B,
5 ; k+1 k) _
RO —By 1fﬂ(+)—ﬂ()——31,
B if p®D — pu® = By,
B e (k1) (k)
| By if p W\ = —Bs.
Choose any ¢ € Z and let v = (u;,uj,c). Set also v*+D = v 4 *) for

k=1,...,0o—1. Then the first and second coordinates of v*) are equal to the i-th
and j-th coordinates of u(® respectively, which implies that v, ... (%) e N? x Z.
By construction, (¢*), v+1)) is an edge of GNzxz(B) for k=1,...,0,—1, so that in
particular, v, v(“) and v(*?) belong to the same connected component of GNzXz(B)
Moreover, ¥ — v € P implies that v(2) — (%) € N2 x Z, so by Lemma 2.9, vV is an
infinite vertex of Gyzxz(B), and we conclude that (u;,u;) belongs to the set in the

right hand side. O

Example 2.47. We continue to compute the primary components left off in Exam-
ple 2.21 Recall that I(B) = {x?ziz? — rixvyrsadad, vieded — oSa2xlri?al).
e (2,3) and (—4,—6) are linearly dependent rows of B and they are in opposite

open quadrants. The {xq,x3)- primary component of 1(B) is
((L(B) : (] | w0)*) + (a5, afws, 323, wiaf, 3))
42,3

_ 8 ,.6 4.2 2.3 .4 .22 10 4 5,.4

4 8.3 .22 2 8,43 2.3 4
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6 8,43 2 4 4 6.2 612 _ 6 3

o [f we look at the {x3,x7)- primary component of I(B)

([T z0)™) + (28, adat, 2325, w520, 21%))
0£3,7

_ 3,4 2.8 16 ,.2,..10,.4 5,.8

4 8.3 2.2 2 2 2 8,43 2.3 4

6 8,43 2 4 4 ,6..2 612 6 3

e (—1,3) and (2,—6) are linearly dependent rows of B and they lie in opposite

open quadrants of Z*. The (x4, x)- primary component of I(B) is

2 2 2.2 4 6 4 8.3 _ 2
n 20)°) +{xd, vial, axy, 1Y) = (o}, wial, 4wy, 15, voT 4053 TE — AT ).
(#4,6

o [f we look at the {x1,xg)- primary component of 1(B)

2.3 .6 4 8,3 .22
n 20)) + (ot wiag, wg)) = (o), ¥iag, 7f, vywaws iy — wITFIG).
0£18

To conclude this section we remark that the techniques we use to compute the
Andean component of codimension two lattice basis ideal are hard to generalize.
The first obstacle towards a generalization is that for codimension two lattice basis
ideals, we know which primes are associated to the ideal. For general lattice basis
ideals on the other hand, we do not have an efficient combinatorial method to find
the minimal associated primes. In other words, we do not have an efficient algorithm
to test whether the matrix has the wanted block decomposition which is mentioned

n [18]. The second difficulty is that while we are able to pass from the monoid
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N2 x Z" 2 to N", by using the linear dependence of the rows under consideration
(Proposition 2.38.), but this does not have to hold in the general case. The third
difficulty can be about finding the infinite vertices of the graph of binomial ideals.
In the codimension two case, we have two edges that are building blocks. This gives
us a combinatorial control to detect the infinite vertices, as in Theorem 2.38. When
the number of columns increases, we cannot hope to compute the finite or infinite

connected components of the graphs we construct by simply drawing them.
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3. CELLULAR BINOMIAL IDEALS

In this section, we find a characterization for the minimal primary components
of a cellular binomial ideal. We have already considered some properties of cellular
binomial ideals in previous sections. Let us recall the central definition of this section

and fix the corresponding notations.
3.1 Cellular Decomposition of Binomial Ideals

Definition 3.1. An ideal I < k[zy,...,z,] is cellular if every variable is either a

nonzerodivisor modulo [ or is nilpotent modulo I.

The study of cellular decomposition was motivated by analyzing the intersection

of a variety corresponding to a binomial ideal with coordinate cells (I*)°
(k*)° = {(a1, ...,an) | a; # 0,i€ d and a; = 0, ] ¢ &},

where ¢ runs over all subsets of {1,...,n}. The closure of the intersection of the
variety corresponding to a binomial ideal V' (I) with (I*)° is the variety corresponds

to the ideal

Is = (I +<Cxi|i¢0)): (sz)w

1€d
If I is a radical ideal then I = ()5 Is. A more refined version of this statement is

given in the following theorem.

Theorem 3.2. (Theorem 6.2 in [12].) Let I be a binomial ideal then

- N <<z+<xfi|i¢a>>:<ﬂxi>°°>,

6c{l,...,n} i€d
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for d; is sufficiently large.

To be more precise about the numbers d;, we can use the fact that for some
primary decomposition of I = ) i Qj, x?" € @; if and only if z; € \/@ for all 7 and j.
There is also a partial criterion to determine the numbers d; without using a primary
decomposition, that can be found in Theorem 2.8 in [31].

The ideals (I +{x% |i¢ 6)) : ([ ,e5 #:)®) we manufactured from I are obviously
cellular binomial ideals. In fact, I is cellular if and only if I = [ gd) for some 6 <
{1,...,n} and d € Z",. From now on, we usually specify 0 and b when we work
with a cellular binomial ideal. If the index set for the nonzerodivisor variables is
d < {1,...,n}, then we call I a d-cellular binomial ideal. We now look at some

features of these ideals.
Proposition 3.3. Let I = Igb) < k[xy, ..., z,] be a cellular binomial ideal .

1. There exists a partial character (p, L,) such that I nk[z; | i€ 0] = I (p) and
\[ZQ/I+(p)+<l‘Z|Z€5>

2. Let I = I(gb) be a cellular binomial ideal, and let P = I,(p) + M(P) be an
associated prime of I, where M(P) is the largest monomial ideal contained in

P. Then M(P) = {(x; | i€ ).
Proof. This is a combination of Propositions 2.2 and 2.3 in [31]. O

Proposition 3.4. Let I < K[z, ...,x,] be a binomial ideal and g € k[xy, ..., x,]. If

(I:9)=(I:9°) thenI=(I:qg)n(I+{g)).

Proposition 3.4 is the key ingredient in an algorithm for computing cellular de-
composition of a binomial ideal. If I is not cellular, we can find a variable x, which is

a zerodivisor but not nilpotent modulo 7. For sufficiently large r, (I : z}) = (I : ).
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Now say 2 = g and apply the proposition above. Note that both (I : ¢g) and (I +{g))
are binomial ideals that strictly contain I. If we repeat the same argument with the
new ideals we constructed, we obtain a chain of ideals that has to stop by Noethe-
rianity. At the end, we obtain a cellular decomposition of the original ideal. The

following algorithm is due to Ojeda and Sanchez [31].

Algorithm 3.5. Cellular decomposition of a binomial ideal
Input : A binomial ideal I.

Output : A cellular decomposition of I.
1. If I is cellular return [.
2. Choose z; that is zero divisor but not nilpotent modulo I.
3. Determine the power m such that (I : z") = (I : 2°).
4. Repeat the algorithm for (I : ") and I + {z").

To compute the integer in the third step, one can use the algorithm given by
Becker and Weispfenning in [4].

Cellular decompositions of binomial ideals are not canonical; they can be consid-
ered as an approximation for primary decomposition. Eisenbud and Sturmfels proved
the binomiality of the primary decomposition by using this intermediate cellular de-
composition step, for example in Theorem 1.36 and Theorem 1.35. An irredundant
primary decomposition of a binomial ideal I can be obtained from the given primary
decompositions of the cellular components of I by deleting redundant components. In
[1] and [12], the authors discussed cases where a cellular decomposition is a primary

decomposition.
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3.2 Computing Associated Primes and Primary Components of a Cellular

Binomial Ideal

Theorem 3.6. Let [ = Iéb) be a cellular binomial ideal in S = Kk|z1, ..., x,], where
char(k) =p > 0. If P = I.(7) + M(P) where M(P) is the mazimal monomial ideal
i P is an associated prime of I, then there exists a monomial m in the variables

{x;}ies and a partial character T such that T is a saturation of T and
(I:m)nklz;|ied]=1,(r)

Proof. See Theorem 8.1 in [12]. O

Theorem 3.6 states that the associated primes of cellular binomial ideals have
partial characters supported on different lattices. In the light of theorem above, we
review the algorithm for computing associated primes of cellular binomial ideals due

to Eisenbud and Sturmfels [12].

Algorithm 3.7. Associated primes of a cellular binomial ideal I = Ié(b)
Input: A cellular binomial ideal I.

Output: The list of associated primes P, ..., P of I.
1. Compute a Grobner basis of I with respect to a term order <.
2. Set U to be the set of standard monomials of I in the variables {x; | i € §}.

3. For each m in U,

3.1. Compute the partial character 7 that satisfies I, (7) = (I : m)nk|z; | i €
J].

3.2. For each saturation 7; of 7, output the prime ideal I, (7;) + {(z; | i € ).

67



Using Theorem 3.6, Eisenbud and Sturmfels gave an alternative decomposition of
a binomial ideal into unmixed binomial ideals when char(k) = 0. Recall that an ideal
I is called unmized if its height is equal to the heights of its associated primes. In
particular, for an unmixed ideal the associated primes have the same height, which

means that there are no embedded primes of I.

Corollary 3.8. Let k be a field of characteristic zero. Let I be a d-cellular binomial
ideal in K|x1,...,x,]. Then I can be written as a finite intersection of unmized

binomaual ideals as follows

ja N Hull(I + ((I : m) n k[4])),
m a monomial in {x;};c5

where m is a monomial in k[0].

Example 3.9. Let [ = (x?zt* — y*212, 2%, 13, 1?0v* — t*w?) < Kk[z,y,2,t,v,w]. The
ideal I is a § = {z,y, z,w}-cellular binomial ideal. The monomials we need to check
in order to obtain an unmized decomposition of I as above are {1, z, zt, t* zt*}. We

use Singular [16] in our computations
(I:1)nk[0] =o,I; =Hul(I + @) = (2 %),
)N =W —w"),Is = Hu + U —w)) =vT —w, 25,17, 2t7),
(1:¢%) N k[o] = (v* —w?), [y = Hull(l + (v* —w®)) = (v* —w?, 2%, ¢°, 2t*)
(I : 2t*) " K[6] = (2 — y?,v* — w?), I3 = Hull(I + (z* — 3*,v* — w?))
= <02 o w27 ZQatga x2 - y2>

Then,
I = Il M [2 M Ig.
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Note that the computations for monomials z and zt give the ideal I, again, which
is redundant. In the case of char(k) = 2, the computations are exactly same for
1. Indeed, Fisenbud and Sturmfels have a conjecture that Corollary 3.8 is true for

positive characteristic as well.

Definition 3.10. A lattice L is potentially associated to a cellular binomial ideal
I= Igb) if there exists a witness monomial m € k[w; | i € §] such that (I : m) nk[x; |

i € 0] = I.(7) for some character 7 : L — k*.
The lattice ideals (I : m) n k[z; | i € 0] are partially ordered by inclusion.

Definition 3.11. Let char(k) = p > 0. Let [ = ](gb) be a cellular binomial ideal such
that I nk[x; | i € ] = I, (p). A potentially associated lattice L is called embedded

if it properly contains L, and if Sat(L,) # Sat(L).

Definition 3.12. Let I be a cellular binomial ideal. We define Moy, (/) to be the

monomial ideal generated by all witness monomials of embedded lattices of I.

Note that 1 is not in My (1).

The definition of the My, (1)) implies the following result.

Lemma 3.13. Let I be a §-cellular binomial ideal, and let (p, L,) such that I nk[z; |
jeél=1I.(p). A monomial me klxz; |ie 6] —1I belongs to Mewp,(I) if and only if

there exists a binomial z* — \x® € k[z; | j € ] such that
1. A #0,
2. a—b¢ Sat(L,), and
3. m(x® — ab) e I.
Moreover, in this case, ma®, ma® ¢ I, and we may assume ged(z®, %) = 1.
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Proof. It m € Momn(I), (I : m) nk[z; | j € 6] = I.(7), and Sat(L,) # Sat(L,). Pick
2* — Az’ € I, (1) € k[z; | j € §] such that a — b ¢ Sat(L,). We can do this, because
if we had a —b € Sat(L,) for all 2 — Az® € I, (1), then we would have L, < Sat(L,),
and consequently Sat(L,) < Sat(L,), which together with the fact that L, properly
contains L, would imply Sat(L.) = Sat(L,), a contradiction.

Since I (7) contains no monomials, we see that A\ # 0. Moreover, if ma®, ma® e I,
then we would have m € I, since I is d-cellular, and the monomials 2% and 2 only
involve the variables indexed by §. The fact that we may assume that ged(z?, 2%) = 1
also follows from the fact that I is d-cellular, as ged(z?, 2°) can only involve the
variables indexed by .

For the converse, let m ¢ I be a monomial involving only the variables indexed
by &, and suppose there is a binomial 2* — Az’ € k[x; | i € 0] satisfying the three
conditions required above.

Now 2% — Aab € (I : m) nk[x; | i € 6]. Since (I : m) is d-cellular, we know that
(I :m)nklz; | i€ d] =1,(r) for some character 7 : L, — k*. Since (I : m) 2 I, we
have 1. (1) 2 I.(p), and therefore L. = L,. However, a —b e L. — Sat(L,), which
implies that L. is an embedded potentially associated lattice to I and therefore

M € Mo (1). 0

Example 3.14. [ = (232 — 23, 2 2°yt — 2%y, v*, 1> — 1) € K[z, y, 2,t] is a cellular
binomial ideal such that {z,t} are the cellular variables and {xz,y} are the nilpotent
variables. In this case Moy, (I) = (). Observe that x*y is not in My, (I), although
(I : 2%y) N k|z,t] contains the binomial t — 1, since we already have t> — 1 in I, and

the corresponding lattices have the same saturation.

Remark 3.15. A slightly different definition of Mey, (1) first appears in [21]. Kahle

introduces this notion to improve the implementations in the package Binomials.
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In particular, he designed M, (I) to reduce the number of colon operations in
that algorithm, see the algorithm in [21]. In Proposition 6, he gave the minimal
primary component of a cellular binomial ideal which has exactly one minimal prime
: I + My (I) in char(k) = 0. We modified the definition of M,(I) by adding the
extra condition that Sat(L,) # Sat(L). Moreover, we gave a description in [25] for
minimal primary components of general cellular binomial ideals in any characteristic,

which is reproduced Theorem 3.22.

We now give an algorithm to find Mey,(I) for I a cellular binomial ideal. This

will be useful to find the primary components of cellular binomial ideals.

Algorithm 3.16. The monomial ideal My, (1).
Input : A J-cellular binomial ideal I.
Output : The monomial ideal M., (I) < k[§] where z;,i € §, are nilpotent

variables.

1. Compute the lattice ideal I n k[d] = I (p).

2. Initialize a to-do list with all monomials in a k-basis of k[0]/(I n k[d]).

3. Iterate the following until the to-do list is empty.

3.1 Choose a monomial m in a k-basis of k[0]/(I nk[d]). Compute the lattice

ideal (1 : m) nk[d] = I, and check if Sat(L,) # Sat(L,).

3.1.1 If yes, then add m to My, (/) and remove all monomials which can

be divided by m from the to-do list.

3.1.2 If no, then remove m and every monomial that can divide m from the

to-do list and return to step 3.1.

71



Proof of Correctness. Computing the intersection of I with nonzerodivisor vari-
ables can be computed by using Grobner bases and elimination. The intersection
ideal is a lattice ideal by Proposition 3.3. If a monomial m € k[6]/(I n k[d]) sat-
isfy Sat(L,) # Sat(L,), we do not need to check the monomials that can be di-
vided by m. Since m can generate them, so they also belong to My, (). Let
n be a monomial in to-do list and let n divide a monomial m in the list where
(I :n)nklx; |ie€d] =1.(1) < (I :m)nk[x; |ied] =1.(7) with Sat(Lz) = Sat(L,).
This implies that Sat(L.) = Sat(L,), so 7 ¢ Meyp(Z). There are finitely many steps

since there are finitely many monomials m € k[d]/(I n k[d]) to check, as I is cellular

and I contains pure powers of variables x; for i € 4. O

Proposition 3.17. Let I be a d-cellular binomial ideal with Moy, (I) = &. Then I

does not have any embedded associated primes.
Proof. By Theorem 3.6, the embedded primes of I are of the form I, (7) + {(w;|i € &),
where 7 is the saturation of the partial character 7 given by

(I:m)nk[z; |ied]=1(r),

for some monomial m € M, (7).
Such a monomial m must belong to My, (I). Since My, (1) = &, we see that [

has no embedded primes. O]

Remark 3.18. Note that if / has one minimal primary component and if My, (1) =

& then [ is a primary ideal.

Theorem 3.19. Let I be an §-cellular binomial ideal with I nk[6] = I, (p). Then

the ideal I + Momn(1) is d-cellular binomial ideal whose primary components are all
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minimal and

(I + Mo (1)) n K[0] = L1 (p).

Proof. For all x; i € §, there exists a d; € Z- such that xf € I S I+ My (1), which
implies that the variables indexed by ¢ are nilpotent modulo I + My, (1).

We now show that the variables indexed by ¢ are nonzerodivisors modulo I +
Menn(I). It is sufficient to show ((I + Mewb(1)) : @) = I + Memp (1) for all j € 6.
The ideal I + Meyp(I) is binomial and so is (({ + Memb(£)) : ;). The equality
((I + Memb(I)) = i) = I + Memn(I) follows if we show that the generators of ((I +
Memn(1)) = xj) are contained in I 4+ Mepn ().

Let z# be a monomial generator of (({ + Memb({)) : ;) where j € 6 then atz; €
I+ Moy (I). If 2#z; € I, then o* € I as [ is d-cellular. Assuming z#z; ¢ I, we claim
that there exists a monomial x” € My, (1) such that a#x; — Ax¥ € 1.

The claim is true if 2#z; € Mem,(I), so suppose not. We know that ztz; €

I+ Menn(1)), so we may write

wtr; = Figi + - Frgp + Hity + -+ - Hyt, + Hypitp o + - + Hyty, (3.1)
where g1, ..., g, are binomials in I, neither of whose monomials belong to I, t1,. ..,
are monomials in I, and t,,1, ...,y are monomials in My, (/). We visualize (3.1)

as a graph GG whose vertices are the exponent vectors of the monomials in the right
hand side of (3.1); for instance, if F} contains a monomial 2 with nonzero coefficient,
and ¢g; = A\x® — \ox?, then v + a and v + b are vertices of G. The edges of G' come
from the binomials and monomials ¢1, ..., gk, t1,...,ty. For instance, (v + a,v + b)
is an edge in G arising from the binomial g;. The monomials give rise to loops in

. /. . . . .
G: if t; = z¥ and 2 is a monomial with nonzero coefficient in H;, (v + v/, v + /')
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is a loop in G. Note that G may have multiple edges and multiple loops. Each
vertex in G receives a label as follows. The initial label of the vertex w is zero. For
each edge (u,v) where v # u arises from a binomial A;z" + Az, add A; to the
label of u. For every loop (u,u), which arises from a term ~yz*, add 7 to the label
of z*. Note that this process labels each vertex by its coefficient in (3.1), so that
only the vertex p + e; receives a nonzero label (which equals 1); here e; denotes
the vector in Z"™ whose only nonzero coordinate is the j-th one, which equals 1. A
connected component I' of G corresponds to an element of I + My, ([), namely
F(T) = X0 vertex in r 1abel(w)x®. If T' is the connected of i + e;, then f(I') = atx;.
Since atx; ¢ I, the connected component I' of y + e; in G must contain a vertex
v coming from Meny,(I). As ztx; ¢ Memn(I), p + €; and v must be connected by
a sequence of edges corresponding to binomials in I. Now the claim follows by
induction on the length of this path.

We have shown, since Mo, (1) is generated by monomials in the variables indexed
by 9, there exists 2% € Mg, (1) N k[x; | i € 6] that divides 2¥. We write 2V = a2
for some monomial x*.

Since 2 € My (1), ¥ (z* — Az?) € I for some a — b € § which is not in Sat(L,).
Note that (z#z; — Az*)(z* — Az?) € I. The binomial A\z"(z® — Az®) belongs to I, so
does x#x;(2® — Az®). This implies that z#(z* — A2®) € I and 2* € M (1).

Let 2% —\z” be a generator of ((1+Memy(I) : 2;), we want to show that it is also in
I+ Moy, (I). By definition x;(x® — Ax?) € I + Moy, (I). Assume z%; & I + Mo, (1),
this implies 2°z; ¢ I + Moy, (I). By Proposition 1.19, z;(2® — A\z®) € I, so also
2® =P el If x;2% x2% e I + Memp(I), then we use the same argument as above
to conclude that 2%, 2% € My, (I).

Assume that x* € Moy, (I + Memn (1)) is not a monomial in I + M, (7). Hence,

there exists a binomial 2% — Az € k[§] where o — 8 ¢ Sat(L,) and 2 (z* — X\z¥) €
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I+ Me(I). We use the same argument as before; if z#2® is in I + My (1), then z#
is in I + M, (1), which is a contradiction. If z#z® and z#2° are not in I + My, (1),
then by Proposition 1.19, 2#(z*—A\z°) € I, s0 2" € My, (I), which is a contradiction.

]

Before stating the main theorem in this section, we want to give an important

feature of cellular binomial ideals.

Proposition 3.20. Let I be a 6-cellular binomial ideal. Let x* — \x® € I such that

a; = b; forallied. If x° ¢ I (which also implies x° ¢ I) then a; = b; for all i € 6.

Proof. Let i € § such that a; > b;. Since I is a cellular binomial ideal and z; is
nilpotent, there exists a pure power monomial " in I (here ¢; € Z-g). Since x* ¢ I,

we see that ¢; > a;.

ci—aj;
i

Ci—0ai h.a
i xT.

The binomial x (z* — A\z?) belongs to I, and so does the monomial x
This implies that =5~ [],.s, i 2% also belongs to I (saturating out the cellular
variables). Since ay = by for £ € §, we see that zG " [ Lees5.00i " € I. Using the
fact that =* ¢ I, we conclude that ¢; — a; + b; > a;, and so ¢; — 2a; + b; > 0.

We repeat the previous argument, using the product xfi_2“"+b" (2% — \z*) e I, to
see that § 242 T 065 0 2% € I, which implies that 2§~ 2% +2" [ Lics.ovi zb e I, and
as before, ¢; — 2a; + 2b; > a;.

Continuing in this manner, we conclude that ¢; — k(a; — b;) > a; for all k € Z-,

a contradiction, since a; > b;. O

Recall our notation. Let char(k) =p > 0 and let [ = Iéb) € k[x1, ..., x,] be a cel-
lular binomial ideal, where I nk|z; | i € 0] = I.(p). We define Sat,(L,) and Sat’,(L,)
to be the largest sublattices of Sat(L,) containing L, such that [Sat,(L,)/L,| = p"

for some k € Z and |Sat’,(L,)/L,| = g where (p,g) = 1. There are g distinct partial
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characters p; that extends (p, L,) to Sat’,(L,). For each p;, there exists a unique
partial character p; that extends p; to Sat(L,) by Theorem 1.30. When char(k) = 0,

I (p;) = 1+ (p;) for all i.

Lemma 3.21. Let I be a 0-cellular binomial ideal in k|x| where k is algebraically
closed with characteristic p > 0. Let P = I, (p;) +{x; | i € §) be an associated prime
of I. Let ' be a congruence class determined by (I + (I.(p;))|Zd]. If I has two
distinct elements u, v such that v —u € Z° x N® but v —u ¢ L,,, then for allueT,

t* is in the P-primary component of I.

Proof. The proof is same as the one in Lemma 2.4.

]

Theorem 3.22. Use the notation introduced above. Let I be a cellular binomial ideal

with I nk|z; | i€ 6] = 1(p). The minimal associated primes of I are
Po=1,(p;)+{xi|iedyfori=1,..,g.
Let J; = (L + 1:(pi) = (I Lpes ©0)™®), the P;-primary component of I is
Qi = Ji + Mo (J:).
Proof. By Theorem 3.6, the minimal associated primes of I are of the form I, (p;) +

(o i€ 8.

Fix i, we claim that ); is P;-primary. First, we show that (); has a unique minimal

associated prime. If we look at the radical of the ideal, we see \/ (J;) + Memn(J;) € P

Note that /T + I.(p;) S A/ Ji + Memp(J;), which implies that P; = \/\/j + /1 (p;)

C /Q; € P;. Hence v/Q); = P;. Thus @); has a unique minimal associated prime. By
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Theorem 3.19, ); does not have any embedded associated primes. Consequently P;
is the only associated prime of (); which implies that @); is P,-primary.

We show that (); is the P;-primary component of I. It is enough to show that
Memn(J;) € ker o, where « : k[z] — (k[z]/])p,, since J; is already in ker a. The ideal
I+1,(p;) must be in the P-primary component of 1, sois (I+1(p;)) : (] [,e5 x0)*) =
J; since we know that ker «v is the intersection of P;-primary ideals that contain I by
Corollary 10.21 in [2]. Let 2# € Mo, (J;) S k[d]. Let 7 be a partial character such
that (J; : ) nk[0] = I (7) and Sat(L.) # Sat(L,). Hence there exists an element
be L, such that db ¢ L, for all d € Z-o. This implies that 2+ — 7(b)ab- € I (7) and
2+ — \ab= ¢ I, (p;) for all A € k. Thus, z#(zb+ — 7(b)2-) € J;. For some ¥ € k[4],
aha¥ (2t — 7(b)a’-) € I + I,(p;). When char(k) = p > 0, the congruence class T’
containing p+v+b, ~ p+v+b_ determined by I+ 1,(p;)[Zd] has a pair of elements
mentioned in Lemma 3.21, thus z* belongs to ker a.

When char(k) = 0, let I be the congruence class containing p+v+b, ~ p+v+b_
determined by I + (1 (p;))[Zd] and note that b ¢ L,,. By Lemma 2.3, z* belongs to

ker a. L]

Remark 3.23. When char(k) = 0, there is another way to show that Q; is P;-
primary component of I based on the characterization in Theorem 2.2. Let U be the
set defined in Theorem 2.2. The only thing we need to show is that the monomials
in J; and Mon,(J;) are the same as the monomials in M = (% | w € U). It is
obvious that monomials in J; are in M, and we showed that My, (J;) € M in the
proof of Theorem 3.22. Now we need to show the other containment. Let x* € M,
we want to show that z# € J; + My, (J;). Suppose z# ¢ J;. Since x# € M, p is in
a congruence class I' induced by (I + (I.(p;)))[ZJ] which has an infinite image in

N®/L,. x N?. By Lemma 2.9 in [8], there exists v, w € I’ which satisfy that v; > w; for
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all i and 22 — 2%z € (I + (I+(p;)))[Z6] where a,b € 6,v,w € 6. For some ¥ € k[4],
20t — Wbt e [+ 1, (p;) S J;.

J; is a d-cellular binomial ideal, so by Proposition 3.20, v; = w; for all 7. Thus
x¥ belongs to My, (J;). Since p and v are in the same congruence class, there is
a binomial z#z® — zv2® € I + (I, (p;))[Z5], which implies that ztzz" — zz’z" €
I+ (I:(p;)) for some x” € Kk[§]. Since 2 € Meup(J;), it follows that ztz®z” €

Ji + Moy (J5).

Example 3.24. (Ezample 3.1/ continued.) If char(k) # 3, there are three associated
primary components of the lattice ideal I "k|z,t] = (t3—1). They are (t—1), {t —w)
and {t — w?) where w is a primitive cubic root of unity in k. Hence the minimal

primary components of I are

J=(IT+&—=1)): (2)®), Memp(J1) = @, Q1 = J1 + Mo (1) = &t — 1,23, 4%,

Jo = (I +{t—w)) : (28)°), Mep(J2) = D, Qo = Jy+ Moy (o) = (t—w, 2%, 4%, 2%y),
Js = (I+E—w?) : (28)°), Memp(J3) = D, Q3 = Js+ Moy (J3) = E—w?, 23, 4%, 2%y).

The monomial z*y belongs to Qy since (x?yt — x’yw) and (z*yt — x2y) are in Jo, so

r?yw — 2%y = 2*y(w — 1) also belongs to J,. Note that (w — 1) has an inverse in k.

Example 3.25. The saturation operation cannot be omitted from the description of
the minimal primary components of cellular binomial ideals. Let I = {(x* — 3, xu —
yv,u? v u—v) € klz, y,u,v]. T is a cellular binomial ideal with nilpotent variables

{u,v}. Note that I nkl[z,y] = {(x* —y*) = (o —y) n{x + y) if char(k) # 2. When
char(k) = 2, (x? —y?) is itself primary. Note that Me,,(I) = &. Thus, the minimal
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primary components of I in characteristic p # 2 are
Ji= ((T+<@ =)+ (29)™), Mewn(1) = D, Q1 = Ji + Mewp (1) = (z =y, u—v,v%),

Jo= (I +{x+ 1)) : (xy)?), Memp(JS2) = &, Q2 = Jo + Moy, (o) = {x + y, u, v).

I +{x+y) contains the monomial yv without containing v, which shows that we need
saturation operation in this description.
When char(k) =2, J = (I +{z* —y?)) : (xy)®) and J + Mou,(J) = I is already

pPrIMaAry.

The following is another useful characterization for the minimal primary compo-

nents of a cellular ideal.

Theorem 3.26. Let I be a §-cellular binomial ideal, and suppose I N k[z; | i €
0] = Ii(p). Let I.(p;) be a primary component of I(p). Let J; = ((I + 1.(ps)) :

(1 Tics xi)“”> . Then

Ji + Moy (J;) = ((I + I (pi) + Mo (1)) : (Hxl)oo)

€0

Proof. We first claim that Mey, (1) S Memp(J;). To see this, note that J; is §-cellular
and J; nklx; | i € 6] = Iy (p;), with Sat(Lj,) = L, = Sat(L,). If m is a monomial
in Memp(I), the binomial produced in Lemma 3.13 can also be used to show that
m € Memn(J;), since I < J;.

It is now enough to show that Mg (J;) S Ji + Memp(I). Since Moy (J;) is
generated by monomials in the variables indexed by 6, let € Z" such that us = 0
and = € Memp(J;). Note that s = 0 denote that p; = 0 for all i € 6.

If € J;, then z* € J; + Meyp(I), so we may assume that z# ¢ J;, and pick a
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binomial 2% — Az’ € k[z; | i € §] as in Lemma 3.13. In particular, z#(z* — \2b) € J;,
and therefore, we can find a monomial z¥ such that v = 0 and z’z# (2% — \2°) €
I+1(5).

As 2# ¢ J;, the monomials x”z"z®, 2¥x*x° do not belong to I + I.(p;).

Since xVa* (2% — A\a®) € I + 1, (p;), we can write

'zt (2 = Aa) = Fufy + o+ Bofe + B fon + Fofs + Hity + -+ + Hyty, (3.2)

where Fy, ..., Fg, Hy, ..., Hy, f1,..., fs,t1, ..., tx are polynomials,

<f17~--7f7"> = I+(ﬁz)7 <f7"+17--~7f37t17-~~7tk> = [7

the polynomials fi, ..., f. are binomials arising from L;, (in particular, they are not
monomials, and involve only the variables indexed by ¢§), the polynomials f, 1, ..., fs
are binomials that are not monomials, and ¢4, ..., {; are monomials.

As we did in the proof of Theorem 3.19, we visualize the expression (3.2) as a
graph G with labeled vertices. Since z”x*2% and zz*2” do not belong to I + I,.(p;),
the vertices v + 1 + a and v + p + b belong to the same connected component of G
and therefore there is a path in G connecting v + 1 + a to v + u + b, that is, there
exists a sequence of edges ¢; = (a1, 51),...,&¢ = (ay, B¢) arising from the binomials
fi,..., fssuch that oy =v+pu+a, B =a; 1 fori=1,... f—1and By =v+ u+b.

FEach edge ¢; arises from a binomial A, ;2% — )\Ej,ﬁﬁf which is a multiple of one
of the binomials f;, and therefore belongs to either I or I(p;).

If we have an edge ¢; such that («;), = (3;), for all £ € 6 and o; — 3; ¢ Sat(L,),
then the associated polynomial must belong to I. By Lemma 3.13, either (%5 is an

element of I, or it is an element of My, (7). In both cases, we can do induction on

80



the length j of the path that connects v+ p+a to «; to conclude that z¥"#"* belongs
to I + I (p;) in the first case (which is a contradiction), and to I + I, (p;) + Memp (1)

in the second case. Then z"™#*% € I + I, (p;) + Mewn (/) implies that z* € <(I +

Lo (p0) + Mo (1)) + (TTics xi)w).

Thus we may assume that for every edge ¢; such that (o;); = (5;)5, we have
a; — B € Sat(L,).

Let €;,,...,€;, be the subsequence of €1,...,&, consisting of edges ¢; such that
()5 # (Bj)s, and observe that each of these edges is therefore associated to a
polynomial A, 2% — Aaﬂxﬁj that lies in [.

Note that (o, )5 = 1 = (Bs,)s-

Consider A, ,z%1 — )\£i172$ﬁil and A, 2% — /\5i272x5i2. Since the edges ¢; for
i1 < j < iy are parallel to elements of Sat(L,), we see that 5;, —a;, € Sat(L,), and in

particular (3;,)5 = (vu,)s. Let 2¥ = lem (2”1, o, ), and consider the following element

of I

v v
LT Ae; 1T
€iy,2 o Bi Cig,1 oy Bi
Bi ()\51'1 T = )\Eil 2 ¥ Zl) B o ()\51'2 1T = )\Eiz 2 ¥ Z2)
T ’ ’ %2 ’ >

Ae; o e, X7 Ae; 1 Ae, X
_ [Ea27¢0 1 7% — €ig,17 €ig,2 l’ﬂi?.
xPin T2

We write the preceding binomial as Ay ;2" x% — A172x”1»2x5i2 € I, where Ay 1, A2 €
k* a1 and z¥*? are relatively prime monomials involving only the variables indexed
by 6, and vy — 112 € Sat(L,).

Repeating this procedure, we find nonzero A,_; 1, Aj—1 2 € k* and relatively prime
monomials z*e-11 and x"2~'2 involving only the variables indexed by  such that
Vg1,1 — Vg_12 € Sat(L,), and Ay a¥e b1a%s — Aq,lgx”‘ﬂﬂxﬁiq € I. We recall that
(ai))5s = 1 = (Bs,)5; since I is d-cellular, we may assume that ged(a¥a-11p% gra-12g5%4)

= 2. Moreover, o;, — f3;, is congruent to a —b modulo Sat(L,), since a+v +p—a;, €
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Sat(L,), b+ v + p— B, € Sat(L,) and vy_11 — v4_12 € Sat(L,). We conclude that
i, — B, ¢ Sat(L,), and therefore Ay jz¥et1z% — Ay 197 122% € [ implies that
a* € Memp(I), as we wanted.

]

Proposition 3.27. Let Hull(I) denote the intersection of minimal primary compo-

nents of I. If I is a d-cellular binomial ideal then

Hull(Z) = I + Mewp(1).

Proof. Recall that I + Meyy(1) is 0-cellular, and (I + Memp(1)) nk[z; | j € 0] =
Ii(p) = I~ kz; | j e d].

We claim that My, (I + Mo (1)) = &. By contradiction, let 2 € Moy, (I +
Memp(1)). By definition, a* ¢ I + Moy, (1), and we may assume ps = 0. Then there
exists a binomial % — Az € k[z; | j € 0] such that A # 0, a — b ¢ Sat(L,) and
(2 — M) € T + Moy, (I). If 22 € T 4+ Moy, (I), then o € I + My (1), since
I+ My, (1) is d-cellular, giving a contradiction. Similarly, we see x#x® ¢ I+ M, (1).

As before, we write an expression for z#(z* —A\x®) € I+ My, (1) as a combination
of binomials and monomials in I, and monomials in Mey,(/), and think of this
as a labeled graph I'. Since z*z® x#2® ¢ I + Myu,(I), g+ a and pu + b are in
the same connected component of this graph. If a vertex in this component is the
exponent vector of a monomial in I + My, (1), then every vertex in that component
is an exponent vector of a monomial in I + My, (1), which contradicts z#2®, x#2’ ¢
I+ Mep(I).

This means that the connected component of 1+ a and £+ b in I' contains edges
arising from I (and not from My, (I)), and we conclude that z#(z* — \x®) € I. But

then x* € Moy, (), which is also a contradiction.

82



We conclude that I + My, (/) has no embedded associated primes by Proposi-
tion 3.17.

The second step we show that minimal primes of I+ My, () are the same as those
of I. The primary component of I + My, (1) associated to P, = I.(p;) +<{z; | j ¢ 6)
5 (1 Mant0)+ 130 5 (TLes)” )+ Mo 1+ Mo (D4 1.30) - (L))
by Theorem 3.17.

By Theorem 3.17, ((1 + Mo (1) + L (51)) + (TTjes )@) = J; + Moy (J;), where

Ji = ((I + 1. (p:)) : (]_[j65 xj)oo>, so the same argument that proved Mo, (I +
M (I)) = @ shows that Mep, (J; + Memp(J;)) = &.

We conclude that the primary component of I 4+ M,,(I) associated to P is ((I +
Memn (1) + 1. (ﬁl)) : (Hje§ )OO) = J; + Memp(J;), which is the primary component of
I associated to P,.

Since I+ Moy (1) has the same minimal primes and minimal primary components
as I, and I 4+ My, (1) has no embedded primes, we see that I + Mey, (1) = Hull(T).

O
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4. COMMUTATIVE MONOID CONGRUENCES AND BINOMIAL IDEALS

In this section, we focus on congruences in commutative monoids to derive some
results about primary decomposition of binomial ideals. The decomposition of con-
gruences in commutative monoids is an analogous theory. But, this theory does not
reflect all the features of primary decomposition of binomial ideals and does not truly
lead to the corresponding combinatorics. Kahle and Miller in [22] define a new type
of intersection decomposition which is called mesoprimary decomposition by using
congruences on monoids. This new decomposition is finer than cellular decomposi-
tion, but not as fine as primary decomposition. A good feature of this new theory is
that it allows significant speed-ups in computations [21].

Primary decomposition of binomial ideals can be recovered from mesoprimary
decomposition which is more advantageous in terms of combinatorial clarity and
computational efficiency. Also, we are not supposed to assume some properties about
the base field, for example being algebraically closed and about its characteristics.

In characteristic zero, primary components contain the binomial part of their
radicals (see Remark 1.37), which reflects the combinatorial features more accurately.
In characteristic p > 0, on the other hand, an additional problem arises from the
fact that binomials of the radical of a primary ideal I are not necessarily contained
in the ideal [ itself.

Our aim in this section is to review some results in [22] and try to characterize

the primary binomial ideals in positive characteristic in terms of congruences.
4.1 Congruences on Monoids
Recall from Definition 2.1, a congruence is an additively closed equivalence rela-

tion on a monoid. For example, equality satisfies the definition of congruence. This
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is called identity congruence. Also recall that a binomial ideal I of a monoid algebra

k[Q] induces a congruence ~, which we denote by ~;, in which

u~vif t*— AtY el for some \ # 0.

Remark 4.1. As binomial ideals induce congruences, indeed by Theorem 9.12 in
[22], we know that every congruence is induced by some canonical unital binomial
ideal. Recall that a unital binomial ideal (pure difference binomial) in k[Q] is an
ideal which does not have any monomials and is generated by difference of monic

monomials t* — ¢,

Definition 4.2. Let Q be a commutative monoid and ~ be a congruence on Q. The

quotient Q/ ~ is the set of equivalence classes under addition. We denote Q/.. =: Q.

A congruence on Q induces a Q-grading on the semigroup algebra k[Q], in which
the monomial t* has degree u € Q whenever the image of u under the quotient map
Q — Qis 4. Under this grading, it is easy to define the Hilbert function of the

semigroup algebra.

Lemma 4.3. The Hilbert function Hy : Q — N satisfies

0, ifg=1{uec Q|t"el},

1, otherwise.

Remark 4.4. Although the statements about binomial primary decomposition in
Theorem 1.33 and Theorem 1.38 are for polynomial rings, they can be extended to
hold for binomial ideals in general monoid algebras. One can start by choosing a
presentation N* — Q. The kernel of the induced surjection k[N"] — k[Q] is a

binomial ideal as is proved in Theorem 7.11 in [15]. Thus the preimage I of the
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binomial ideal I < k[Q] is a binomial ideal such that k[N"/;] = k[Q]. If we replace

I by I, we may assume Q = N” and the result follows.

Definition 4.5. An element oo in (Q, +) is called nil if ¢ + 00 = oo for all g € Q.

e An element g € Q is called nilpotent if nqg = oo for some n € N.

e An element g € Q is called cancellative if addition by ¢ is injective : g+a = q+b =

a=2"bin Q.

e An element q € Q is called partly cancellative if ¢ +a =q+ b # o0 = a = b for all

cancellative a,b € Q.

Definition 4.6. An affine semigroup is a monoid that is isomorphic to a finitely
generated submonoid of a free abelian group. In other words, an affine semigroup is
isomorphic to

NA = {cia; + ... + cpan | ¢; € N}
for some A = {ay,...,a,} = Z°.

Definition 4.7. A set I of elements in Q is torsion free if na = nb = a = b for all
n € N, whenever a,b € F'. Fix a prime number p, F' is called p-torsion free if na = nb

and (n,p) =1=a="bforall a,be F and n € N.
Definition 4.8. Use the same notation as in Definition 4.2.

e The congruence ~ is called primary if every element of Q is either nilpotent or

cancellative.

e The congruence ~ is called mesoprimary if it is primary and every element of O

is partly cancellative.
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e The congruence ~ is called primitive if it is mesoprimary and the subset of Q

consisting of cancellative elements is torsion free.

e The congruence ~ is called toric if the non-nil elements of Q form an affine semi-
group.

Example 4.9. Giving a congruence on N" is equal to giving a unital binomial ideal
in kX[N"]. The generators of N" corresponding to the variables x,y, ... will be denoted
by ez, ey, ... for simplicity.

1. The congruence induced by the binomial ideal I = (zx?® — 2y* 2%) < K[z, vy, 2]
is primary. The elements e; and e, € N3 generate the cancellative class and €,
generates the nilpotent class.

2. The congruence induced by the binomial ideal I = {(z* — y? 2*) < k[z,y, 2] is
mesoprimary. The elements €; and e, € N3 generate the cancellative class and €
generates the nilpotent class. Observe that all elements of N/~ satisfy the partly
cancellative property.

3. The congruence induced by the binomial ideal I = {x — y,2*) < k[z,y, 2] is
primitive. This congruence is mesoprimary and the cancellative subset consisting of
the elements e, and €, is torsion-free.

4. The congruence induced by the binomial ideal I = (x®—vy) < Kk[x,y] is toric, since

Q is isomorphic to NA where A = {1,2}.

The difference between a primary congruence and a mesoprimary congruence is
that in a mesoprimary congruence injectivity is required of addition by a nilpotent

element. The following example illustrates this distinction.

Example 4.10. The binomial ideal I = {yz* — y,y*) < k[z,y| induces a primary
congruence. The connected components in the Figure 4.1 exhibit the congruence

classes of the congruence ~.
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Figure 4.1: Cogruence classes of ~;

The translation of two dots in different connected components, for instance (1,0)
and (3,0), upwards by one unit, are connected.

Figure 4.2 shows the mesoprimary congruence induced by J = {(x* — 1,y*) <
k[z,y]. In fact, the pictures for mesoprimary congruences are homogeneous. As
shown in the figure, any translation of two dots from different classes cannot be

connected except in the connected component corresponding to the nil class.

e A e A e A e A e
I N NN v

Figure 4.2: Cogruence classes of ~;

The notions introduced above for the elements of monoids have counterparts for
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binomial ideals; these counterparts will be used for the characterizations of special

types of binomial ideals.

Definition 4.11. A binomial ideal is called mesoprimary if it is maximal among the

ideals inducing a given mesoprimary congruence.

Definition 4.12. Let O be a monoid. The ideal

Img ={"—1]qe Q)

generated by all monomial differences is called unital augmentation ideal of Q. The
ideal

Taug = (" = A | 4 € Q.2 € k)

is an augmentation ideal for a given binomial ideal I < k[Q] if I N I,y is a binomial

ideal.

Remark 4.13. The ideals (2% — z3) and {(z*) < k[z] induce the same congruence
on N. Observe that the first ideal is not cellular, and the second ideal is primary.
To characterize the binomial ideals with respect to the congruences they induce, we

need another condition which is described in the following theorem.

Theorem 4.14. (Theorem 9.12 in [22].) Let Iy < I be binomial ideals in k[Q]
inducing the same congruence on Q, then Iy contains monomials and Iy does not,
also Iy = I) N Ly for an augmentation ideal In.g compatible with 1. If Iy is a

binomaial ideal that contains Iy and induces the same congruence as Iy then Iy = I.

By the theorem above, if Iy < --- < [, is a chain of distinct binomial ideals
in k[Q] inducing the same congruence on Q, then n < 1. Moreover, I is maximal
among the ideals inducing the same congruence if I contains a monomial in the case

that Q has a nil oo.
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Theorem 4.15. I < k[Q] is a cellular binomial ideal if and only if Q/~, is primary

and I s maximal among proper ideals inducing that congruence.

Proof. This is Theorem 10.6.1 in [22]. Let us discuss how the maximality condition
arises. If a monomial t? € k|Q] is a nonzerodivisor or nilpotent modulo / then the
image ¢ € Q of ¢ is cancellative or nilpotent respectively. Now we need to find why
I is maximal among the ideals inducing the same congruence. By Theorem 4.14, if
Q has a nil then I contains a monomial. Let @ = o then a ~; fa for all ¢ € Z-q
by the definition of nil. This implies that for all £ € Z-, there exists a A € k* such
that t* — A\t’ e I. Since I is cellular, ¢* is nilpotent. Let t" € I for some r € Z-,.
Taking ¢ = r for the binomial above, this implies that ¢t* € I. The converse of the
statement is clear.

]

Our next result is Theorem 10.6.5 in [22] which shows the relation between a

prime binomial ideal I and the congruence induced by I.

Theorem 4.16. Let I < k[Q] be a binomial ideal, where k is algebraically closed.
The ideal I < k[Q] is a prime binomial ideal if and only if Q/~, is toric and I is

maximal among ideals inducing that congruence.

Theorem 4.17. Let I < k[Q] be a binomial ideal. If Q/., is primitive and I
18 mazximal among proper ideals inducing that congruence, then I is primary. The

converse holds if k is algebraically closed with characteristic zero.
Proof. This is Theorem 10.6.3 in [22]. O

The converse of Theorem 4.17 is not necessarily true in positive characteristic.
When char(k) = 0, binomial primary ideals have to be mesoprimary. Essentially this

is because of the fact that binomial primary ideals contain the binomial part of its
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radical, in other words, the binomial part of the corresponding associated prime. On
the other hand, binomial primary ideals need not to be mesoprimary in k[Q] when
k is algebraically closed with characteristic p > 0. The example below demonstrates

this fact.
Example 4.18. Let [ = (2% 2%z — y?z, 2" —y") S k[z,y, 2, t]. In char(k) =2, I is
a primary ideal. But it is not mesoprimary. In Q, e, is nilpotent since 2e, = o, but

it 15 not partly cancellative

2e, + e, ~2e,+e, # 0

but 2e, # 2e,, or in other words, x> — \y? ¢ I for all X # 0.

The Example 4.18 justifies that we can say that the mesoprimary decomposition
in [22] is more helpful to find the primary decomposition of binomial ideals when
char(k) = 0 than for the positive characteristic case.

Our next theorem is the main result of this section, which discusses what a
primary binomial ideal looks like when char(k) = p > 0. Note that we replace the

condition of being mesoprimary with condition iii).

Theorem 4.19. Let k be algebraically closed with characteristic p > 0. Let I be a
binomial ideal in k[N"]. I is a primary ideal if and only if it satisfies the following

conditions

i) the congruence ~y induced by I is a primary congruence and I is maximal

among proper ideals inducing that congruence,
ii) the cancellative subset of N/ is p-torsion free and

iii) if q is a nilpotent element that is not partly cancellative with ¢ +a ~ q+b # ©

and a # b, then p°a ~ p°b for some e € Z~y.
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Proof. First, we assume that [ is primary and we show that ~; satisfies the required
conditions. Since I is primary, it is cellular, so ~; is primary by Corollary 4.15. Let
us assume [ = I(gb) for some 0 < {1,...,n} and be Z", and I nk|z; | i € 6] = I, (p)
for some partial character. Note that I, (p) is a primary ideal with unique associated
prime I, (p), where p is a saturation of p. Thus the unique associated prime of I is
L,(p) + i | i ¢ 6).

Now we show that ~; satisfies condition ii). Let a and b be elements in the
subset of N*/_. consisting of the cancellative elements. In other words, z* and z°
are nonzerodivisors modulo I. Let ka ~ kb such that ged(k,p) = 1. Then there
exists a binomial z*¢ — A\z** € I for some A, which implies 2%* — A\z** € I (p). Since
(ka — kb) € L, and ged(k,p) = 1, by definition (a — b) € Sat’,(L,). Recall that
I, (p) is a primary ideal, which means Sat’,(L,) = L, and (a —b) € L,. This implies
1% — Nab e I, (p) € I for some X so, a ~; bin N*/_ . Thus, the cancellative subset
of N"/_, is p-torsion free.

In order to prove iii), we assume there exists a nilpotent element ¢ which is not
partly cancellative, which means there exist cancellative elements a and b such that
c+a~c+b#ooanda b Inother words, there exists a binomial z°z® — Az’ € T
for some A € k* and a —b ¢ L,. Since c+ a ~ ¢+ b # o0, which means that z¢ is
a standard monomial of I in the nilpotent variables. By Theorem 3.22, a — b € L;
since if not 2¢ € Me,,p(I) and since I is primary x¢ € Me,,,(I) < I. But we assume
that z¢ ¢ I; this implies that there exists a A’ such that ¢ — Nz® € I, (p), and for
some p°, p°-th quasi power of % — X’ is in I, which implies that p®a ~ p°b.

For the proof of the converse, we assume ~; satisfies the three conditions stated
above, we claim that I has one associated prime, so it is primary. By Corollary 4.15, I
is cellular and assume I nk[xz; | i € §] = I (p). We want to show that Sat’,(L,) = L,.

Let u € Sat’,(L,) then nu € L, for some n € Z.q such that ged(n,p) = 1. So
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it — p(nu)ax™-= € I, this implies that nuy ~; nu_. Since ~; is p-torsion free,

x
uy ~r u_. This implies v € L, and Sat’,(L,) < L,. Remember that the index of the
group Sat’,(L,)/L, determine the saturations of p and this index is one in here. Thus
there is one extension of p to Sat’,(L,) which is itself, / has one minimal associated
prime; P = I, (p) + {x; | i € §) where j is the saturation of p.

We claim that the only associated prime of I is P. Assume there exists an
embedded associated prime P of I which is different than P. By Algorithm 3.7, P
is in the form I, (7) + (x; | i € &) where (I : m) nk[z; | i € 6] = I,(7) for some
monomial m = a* € {x; | i € §} where m = 2* ¢ I and 7 is the saturation of
7. Since P # P, L strictly contains L;. This means that there exists an element
u € Lz and u ¢ L;. Thus, nu € L, for some n € Z and tu ¢ L,, for all t € Z. So,
a™t — ™= (I : x*) n kl[x; | i € 6]. This implies that a#(z™+ — 2™-) e I. uis a
nilpotent element and it is not partly cancellative since nu, # nu_ in N/ ~;. By
the condition iii), we deduce that p®nu, ~ pnu_ in N"/ ~; for some e € Z~o. This
implies 2P "+ — \aP"~ e I, (p) for some A, contradicting the fact that tu ¢ L,, for
all t € Z.

O

This description can be used to characterize the primary components of binomial

ideals in positive characteristic fields, which is missing in the literature.

Remark 4.20. We assume the notation in Theorem 4.19. If the congruence induced
by [ has a nilpotent element ¢ that is not partly cancellative, then [ is primary only
when char(k) = p. In fields with different characteristics, I cannot be primary since
the binomial zP°® — A\aP"® which occurs in the proof of the above theorem can be
factored over fields with characteristics p # p and implies two different associated

primes of I.
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5. CONCLUSION AND FURTHER QUESTIONS

We have discussed primary decompositions of special binomial ideals and have
given descriptions for primary components. One of the main motivations for this dis-
sertation is to understand how the combinatorics arising from congruences or graphs
of binomial ideals governs the primary decomposition. These geometric combinato-
rial techniques first appeared in [8]. Dickenstein, Matusevich and Miller provided
a characterization of the primary components of an arbitrary binomial ideal in a
polynomial ring over an algebraically closed field of characteristic zero.

In characteristic zero, the main idea is that, because a primary ideal contains
binomial part of its radical, we can take the whole situation modulo the binomial
part of the associated prime ideal. The monomial part, on the other hand, can
be computed by using the infinite vertices of the graphs (or elements of infinite
congruence classes induced by binomial ideals) of some localizations of the binomial
ideals. On the other hand, in positive characteristic the primary component contains
a Frobenius power of the binomial part of its associated prime. This blocks the
use of known techniques that reduce the problem to a manageable monomial ideal
problem. We have provided a partial answer to this open question in the case of
cellular binomial ideals. A natural continuation of the theoretical part of this work
is to investigate the description for primary components of general binomial ideals

in positive characteristic fields. We propose the following conjecture

Conjecture 5.1. Let I € k[N"]| be a binomial ideal where char(k) = p > 0. Let
P = I.(p)+{x; | i€ ) be a minimal prime of I. Let ~ be the congruence on Z x N°
induced by the ideal I + (I, (p))?"[Z°]. Let U be the set of u € N* whose congruence

classes contain two elements v, w such that v —w € (Z° x Ng) andv—w ¢ L,. Then
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the P-primary component of I is

Q= (U+L(py : ([ [2)®) + @ |ueU)).

i€0
for some e € Z~y.

It is straightforward to check that (I + I.(p)?" : (] [,c; x:)®) is contained in the
P-primary component of I. One can also show that (z* | u € U) is contained in
the primary component by following the steps in Lemma 2.4. The missing step is to
show that the ideal @) is primary. This can be achieved by providing combinatorial
conditions to describe a primary ideal in positive characteristics. This question can
be answered by using the Theorem 4.19.

Another question we formulate for further research is the analog of the unmixed
decomposition of cellular binomial ideals in positive characteristic which is mentioned
in Example 3.9.

One last closing remark is that we can adapt the techniques and combinatorial
methods we improve in here to other special types of binomial ideals which already
have combinatorial flavor, for instance circuit ideals. A circuit ideal is a subideal of
a (prime) toric ideal. Eisenbud and Sturmfels proved that the embedded primes of a
circuit ideal are indexed by certain faces of a cone. Bogart, Jensen and Thomas in [3]
gave a characterization for these faces. But it is still an open problem to characterize
the embedded primary components of a circuit ideal, a question that was posed by
Eisenbud and Sturmfels. A combinatorial characterization of embedded primary
components of circuit ideals might be valuable for applications of binomial ideals to

integer programming and statistics.
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