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ABSTRACT 

 

Networks-on-Chip (NoC) has been recognized as a scalable approach for on-chip 

communication. Quality-of-Service (QoS) is a fundamental part of application specific 

NoCs. This thesis focuses on resource allocation on NoC, to improve the capability of 

NoC for Guaranteed Service (GS). A graph model is adopted to describe physical and 

temporal sources of a NoC. Based on the graph model, an RRR-based algorithm is 

proposed for simultaneous routing and time slot allocation. In addition, a negotiation-

based algorithm is suggested for achieving power-efficient QoS for application-specific 

NoCs. Last, a hybrid NoC architecture, which combines circuit switching and packet 

switching, is developed and investigated. Experimental results show that our techniques 

outperform previous works. 
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CHAPTER I 

INTRODUCTION 

 

The performance of many modern digital systems is limited by their 

interconnection instead of their logic circuits or storage elements. In a high-performance 

system, a large amount of power is consumed to drive signals on wires and most of clock 

cycle time is attributed to wire delay rather than gate delay. Networks-on-chip (NoC) has 

been recognized as a scalable approach to cope with the increasingly large demand for 

on-chip communication. In NoC designs, Quality of Service (QoS) and power-efficiency 

are of paramount importance. This thesis focuses on application-specific NoC that has 

somewhat traceable traffic patterns. This is in contrast to NoCs in microprocessors 

where the traffics are largely random. In specific, this thesis studies three subjects: (1) 

simultaneous packet routing and time slot assignment for QoS, (2) power-efficient QoS, 

and (3) hybrid NoC architecture for power-efficient NoCs. 

1.1 Background 

Networks-on-Chip is an inter-communication system for an integrated circuit 

between intellectual-property (IP) blocks in a System-on-Chip (SoC). It applies 

networking theory and methods to bring notable improvements over conventional point-

to-point connection, bus and crossbar interconnections.  

Bus on chip is an inter-communication system that connects all components in a 

chip. Modern bus can be wired in either a multi-drop or daisy chain topology or 
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connected by switched hubs. NoC improves the scalability and the power efficiency of 

complex SoCs compared with bus and other design.  

Quality-of-Service (QoS) is characterized by diverse parameters, such as 

reliability, delay, jitter, bandwidth, packet loss, and throughput [1]. In this paper, the 

QoS on NoC is characterized by guaranteeing bandwidth and the maximal latency 

allowed for delivery for Guaranteed Service traffics. 

1.2 Related Works 

1.2.1 Simultaneous Packet Routing and Time Slot Assignment 

When latency constraints for packets are tight, time-division multiplexing (TDM) 

is able to provide guaranteed performance. The TDM implementation divides time into a 

series of slots. The duration and the number of time slots govern the granularity of the 

resource to be allocated. The virtual circuit of TDM is a set of contiguous time slots 

spanning a routing path from the source intellectual-property block (IP block) to the 

destination IP block. Finding the “optimal” time slot allocation is generally NP-hard, so 

most realistic implementations are heuristic approaches. 

There are several early works studying the time slot allocation problem. A. 

Hansson, et al. [2], performs packet routing and time slot assignments separately. The 

work of Z. Lu, et al. [3] defines a new concept of a logical network (LN) and 

investigates how to allocate VC with LN to avoid conflict of paths, and performs time 

slot allocation and routing simultaneously using a brute-force method, which is 

computationally very expensive for large size NoCs. 
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 A graph model is proposed in [4] to describe the physical resources and time slot 

based on the notion of time plane. With this model, routing and time slot assignment can 

be conducted simultaneously by finding disjoint paths on the graph. Then, the problem is 

similar as global routing in chip layout. In this regard, J. A. Roy, et al. [5] proposes a 

Fairly Good Router (FGR) based on the framework of Ring-up-and-Re-Route (RRR). 

RRR is a straightforward yet very effective approach to solving contentions in routing. 

FGR improves RRR penalty function over its previous works and hence increases 

opportunities of finding feasible solutions. 

1.2.2 Power-Efficient QoS for Application Specific NoCs 

Bandwidth utilization inevitably affects power-efficiency, which is crucial yet 

largely neglected in prior NoC QoS methods. NoC capacity optimization is studied in [6]. 

It is an iterative greedy heuristic for minimizing link capacities. It iteratively routes a 

flow among the minimal cost paths in the network. However, QoS is not handled in this 

work. Perhaps the only work that seems to touch both power-efficiency and NoC QoS is 

[7]. It mainly solves task mapping and scheduling assuming fixed routing as well as 

fixed link and buffer capacity.  

1.2.3 Hybrid Architecture for NoC 

The book by W. Dally et al. [8] is a classic literature on computer interconnect 

network. Many NoC techniques, such as packets switching, wormhole routing and 

virtual-channel flow control, are largely borrowed from techniques described in this 

book. Later, the work of K. Goossens, et al. [9], proposes a network on silicon (NoS) to 

implement the communication among IP blocks. This work tries to design a router 
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network with packet switching techniques to reduce wire congestion between IP blocks 

and enable scalable integration of IP blocks. Also, this work proposes a combination of 

circuit and packet switching in the spirit of ATM [10], and used TDM circuit switching 

for Guarantee Services and virtual output queuing for Best Effort traffics. Based on 

those previous works, the TDM technique is better to support circuit switching; however, 

the packet switching is more effective on handling Best Effort traffics.  

1.3 Problem Formulation 

1.3.1 Simultaneously Resource Allocation and Routing 

Given a resources Graph ( , )G V E  of a NoC and a set of GS traffic flits 

1 2{ , ,... }pf f f  . 

Objectives: Generate paths 0 1{ , ,..., }mp p p p  and allocate time slot 

simultaneously for each flit if . 

Constraints: The utilization ue for any edge e E is no greater than Ce , the 

capacity of this edge, latency constraint of each flit is satisfied, and all flits of the same 

packet should be delivered in order. 

1.3.2 Power-Efficient QoS for Application Specific NoCs 

Given a resources Graph ( , )G V E  of a NoC, a set of GS traffic flits 

1 2{ , ,... }pf f f  , and dynamic/static power model ( , )pm V E . 

Objectives: Generate paths 0 1{ , ,..., }mp p p p  and allocate time slot 

simultaneously for each flit if and decide link/buffer capacity, such that the power 

consumption of all routers and net links in NoC is minimized. 
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Constrains: Satisfy the bandwidth and deadline requirement of every if , and 

delivered in order. 

1.3.3 Hybrid Architecture for NoC 

Objectives: Seamlessly combine circuit switching for GS traffics and packet 

switching for Best-Effort (BE) traffics, and design a practical algorithm to route and 

allocate time slots simultaneously. 



 

6 

 

CHAPTER II 

APPROACHES 

 

2.1 Algorithm for Simultaneous Routing and Time Slot Assignment 

2.1.1 Resource Graph Model 

The resource allocation problem can be modeled in a directed graph ( , )G V E  

where V  is a set of nodes modeling routers and E  is a set of edges indicating 

communication links. To allocate time slots and routes simultaneously, graph ( , )G V E  is 

expanded into '( ', ')G V E , called expanded graph, which includes time slots information.  

We define time plane as a set of edges in a specific time slot. Since we cannot 

infinitely long time horizon, we assume the traffic patterns are repeated in periodic time 

windows. 

In order to capture the temporal aspect of the problem, the graph is expanded 

along time axis by duplicating the nodes V  to  0 1 1, ,... twV V V  , at each time plane 

{0,1,..., 1} tp tw  where tw  is the number of time plane, and without loss of generality, 

iV  is the set of vertex exist in time plane i .  

The edges in base ( , )G V E  are expanded along time axis, by changing the 

destination of the edge to corresponding node in the next time plane. Transmitting one 

flit from iV  to jV must be done in the only one time slot; otherwise the flit may conflict 

with other flit to jV . The time difference between two adjacent time planes is one time 

slot.   
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For any 0 1( , ) ( , ,..., ,...)i ie si di E e e e  where si  is the source vertex of ie and di  is 

the destination node of ie . The edges based on ie  are 

0 1 1
0 1 1 2 1 0{ ( , ), ( , ),..., ( , )}tw

i twE e s d e s d e s d


  , the last edge 1

1 0( , )t

twe s d

  wraps back to 

time plane 0. Overall, the edge set in expanded graph is defined as 0 1 1' { , ,..., }twE E E E 
   . 

 

 

Base G(E,V) Expanded G’(E’,V’)

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a b

cd

a0

a1

a2

b0

b1

b2

c1

c2

c0

 

Figure 1. Example of expanded graph model 
 

For example, in the Figure 1, the base graph ( , )G V E  contains 4 nodes and 4 

edges. The red edge 0 ( , )e a b  in the base graph ( , )G V E  is expanded to edge set 

0 0 1 1 2 2 0{ ( , ), ( , ), ( , )}E e a b e a b e a b  and 1( , )e b c in the other direction is expanded to edge 

set 1 0 1 1 2 2 0={ ( , ), ( , ), ( , )}E e b c e b c e b c . Both the red dot line edge 2 0( , )e a b  and the blue dot 

line edge 2 0( , )e b c  are wrapping around edges. The left side is the base graph ( , )G V E , 
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the right side is the expanded graph where the blue edges are the expansion of ( , )e a b  

and red edges are expansion of ( , )e b c . 

2.1.2 Mapping Bandwidth to NoC Resource Graph 

In TDM networks, the time is divided into many time slots with the same length. 

The data capacity of each time slot (Cslot ) is decided by Cslot Ce Lslot  , where Ce  

is the bandwidth of the edge and Lslot  is the length of the time slot.  For example, an 

edge with bandwidth of 1Gbps , and the length of time slot is 1 millisecond, then in 

theory, the data capacity of the time slot will be 1 1 1Gbps ms Mbps  . 

In realistic environment, the data capacity of each time slot is less than that in 

theory, because it takes time to perform clock synchronization and link negotiation. 

Moreover, there could be additional overhead in packets. Thus, a realistic mapping of 

bandwidth can be defined as: 

Cslot Ce Lslot     where 0 1.0   

2.1.3 Time Window Size 

Time window size is a parameter of repetitive traffic patterns. If there are two or 

more traffics, the window size is set to the least common multiple of all traffics. 

However, the time axis or time window can be extremely long and the graph size would 

be prohibitively large. To solve this issue, NoC traffic is often abstracted to repeated 

periodic patterns, which can approximately represent aperiodic cases if the period is 

sufficiently large.  
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2.1.4 Capacities of Edges in Expanded Graph 

The capacities of edges in expanded graph '( ', ')G V E  are the same as the 

capacity of the time slot for this edge. To avoid time slot confliction in routings, the 

capacity of edge in expanded graph is assigned with minimal bandwidth and doesn’t 

allow to be shared with other flits.  

2.1.5 Mapping from Expanded Graph to Base Graph 

Assume a set of paths 0 1' { , ,..., }kP p p p are found in an expanded graph, where 

{ ( , ) | ',  d '  , '}i jm kn jm knp e s d s V V e E         , and the subscript j  and k  are the ID of 

nodes in base graph, the subscript m  and n  are the ID of time plane in the expanded 

graph. Mapping 'P back to 0 1{ , ,..., }kQ q q q  where 

{ ( , , ) | ,  d , ,0 }i j k j kq e s d sid s V V e E sid Cslot       is calculated as bellow: 

For any ( , )jm jn ie s d p    , then the edge in base graph ( , )j k ie s d q , and time slot 

ID sid m . 

2.1.6 Routing on Expanded Graph 

Observation 1: Assume a set of paths 0 1{ , ,..., }kP p p p  in an expanded graph 

satisfy the capacity constraints. Then, after mapping P  back to the base graph, the 

mapped new traffics will satisfy the constraints of capacity in base graph and the slot 

assignment is confliction free. 

Suppose there are two paths for two flits, 1p  and 2p , the two paths conflict in 

slot k of edge ie  in the base graph. Then, 1p  and 2p  share time slot k of edge ie . This 
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conflicts with the routing constraint that any edge in the expanded graph does not allow 

to be shared with multiple flits.  

 

 

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a0

a1

a2

b0

b1

b2

c1

c2

c0

a b

cd

(a,b)
0 1 2 3 4 5

0 1 2 3 4 5
(b,c)

f0

f1

f2

f2f2

f1 f1f0 f0 f2f2

Paths for flit0, flit1 and flit2

Time slot allocation for a,b and c

 

Figure 2. Example of routing and slot mapping 
 

In Figure 2, flit0 and flit1 transmit from node b to node c , and flit2 transmits 

from node a to node c .  After routing, path 0 1 2{ , }p b c  is for flit0, path 1 0 1{ , }p b c  is 

for flit1, the path 2 1 2 0{a , , }p b c  is for flit2, and the slot uses of edge ( , )e a b  and ( , )e b c  

are shown in the right part of Figure 2. 

2.1.7 Flit Injection Uncertainty 

Even though this thesis research is targeted to application specific NoCs, where 

traffic patterns are somewhat traceable, it is still difficult to predict the exact flit 

injection time. This problem can be solved by adding super source nodes in the 
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expanded graph. For example, in the right part of Figure 3, a super source node is 

connected to nodes a0, a1 and a2. This is to model a time range of flit injection time. 

Similarly, adding a super destination node like the left part of Figure 3 provides 

flexibility for flit arrival deadline. 
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Super 
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node
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Figure 3. Injection uncertainty by adding super nodes 

 

2.1.8 In-order Delivery 

In-order delivery is very important for TDM networks. The data are chopped into 

packets, but the length of a packet is still too long to be efficiently transmitted in NoC. 

Thus, a packet is further divided into flits, which are smaller data segments with limited 

routing information. To better utilize network bandwidth, we allow flits of the same 

packet to be routed along different paths. Such multi-path routing requires that these flits 

arrive the destination in-order. The simplest solution for in-order delivery is to choose 

only the shortest paths for all flits. If all paths are shortest paths, then all flits take the 
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same amount of time to travel in the NoC, and therefore they reach the destination node 

in order. 

2.1.9 Deadline Constraint 

Deadline constraint is the maximal hops ( Mh ) allowed for a flit to transmit 

across NoC. If a deadline is not tight, routing detour is allowed. 

 We implement A* search algorithm for routing on the expanded graph. A* 

search computes the function ( ) ( ) ( )f n g n h n   for every node n ; ( )g n  is the actual 

cost or hops from start node to node n ; ( )h n  is the estimated cost or hops from node n  

to destination node. If we initialize the graph '( ', ')G V E  with ( ) 0h n  , then A* 

algorithm is the same as Dijkstra’s shortest path algorithm. We calculate ( )Dts n  and 

( )Dtd n  beforehand, where ( )Dts n  is the minimal hop count from n  to source node and 

( )Dtd n  is the minimal hop count from n  to destination node. Thus, ( ) ( )Dts n Dtd n  is 

the minimal hop from source node to destination node if the flits pass node n .  

To calculate ( )Dts n and ( )Dtd n , we firstly calculate ( )g n  for every node n , by 

setting ( ) 0h n  . After routing across the entire graph, we obtain ( ) ( )Dts n g n  for 

every node n . Then, we reverse the direction of all edges in the expanded graph by 

reversing ( , )i je s d  to ( , )j ie d s , and set ( ) 0h n  . After routing across the entire graph by 

A* search, we assign ( ) ( )Dtd n g n  for every node n . 

2.1.10 Enforcing Deadline Constraint 

We add an additional constraint to A* search, that we relax node x , if and only if 

Dts(x)+Dtd(x)<Mh. 
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Observation 2: Let Mh  be the maximal number of hops allowed for a specific flit, 

if A* only select nodes with ( ) ( )Dts x Dtd x Mh   then the new A* algorithm can find 

paths whose hops are no greater than Mh , and if this path exist, the new A* algorithm at 

least can find one. 

To satisfy the in-order delivery constraints together with the constraint of 

deadline is a difficult task. If there is only one flit in a time window, we do not need to 

worry the in-order delivery constraint. If there are multiple flits, we relax all edges using 

A* search, and then record the total number of hops for each path, and then choose paths 

which satisfy in-order delivery constraint.  

 

 

S D

u

x w

v

Dts : 0

Dtd : 0

Dts : 2

Dtd : 0

Dts : 1

Dtd : 0
Dts : 2

Dtd : 0

Dts : 3

Dtd : 0

Dts : 3

Dtd : 0 S D

u

x w

v

Dts’ : 3

Dtd : 0

Dts’ : 2

Dtd : 0

Dts’ : 2

Dtd : 0
Dts’ : 1

Dtd : 0

Dts’ : 1

Dtd : 0

Dts’ : 0

Dtd : 0

S D

u

x w

v

Dts : 0

Dtd : 3

Dts : 2

Dtd : 2

Dts : 1

Dtd : 2
Dts : 2

Dtd : 1

Dts : 3

Dtd : 1

Dts : 3

Dtd : 0

(a) Pre-Process to get accurate Dts (b) Pre-Process to get accurate Dtd

(c) Graph with accurate for hops

S D

u

x w

v

Dts : 0

Dtd : 3

Dts : 2

Dtd : 2

Dts : 1

Dtd : 2
Dts : 2

Dtd : 1

Dts : 3

Dtd : 1

Dts : 3

Dtd : 0

(d) Relax sequences

1

2

2

3

 
Figure 4. Relaxing steps with deadline constraints 
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Figure 4 is an Example for A* search algorithm with deadline constraint. Figure 

4(a) is a graph with 6 nodes, and a flit from  to S D . The deadline constraint is 3 hops. 

First we run A* search in (a) to obtain Dts  for each node. Next, we construct the 

reversed graph and run A* search in (b) to assign Dtd  to each node.  Figure 4 (c) is the 

graph with both Dts  and Dtd .  Figure 4(d) shows the relaxation steps of A* search. 

In step (1), edge ( , )e S x  is relaxed. In step (2), Dts+Dtd of node u  exceeds the 

max hot count constraint (deadline constraint) and therefore node u is not relaxed. But, 

node w  is relaxed in step (2). In the step (3), the destination node D  is reached. Then, 

the path { , , , }p S x w D  is correctly found and runs faster than Dijkstra’s algorithm by 

skipping some nodes, such as u  and v . 

2.1.11 RRR-based Algorithm 

First we briefly review rip-up-and-reroute (RRR) [5], a very popular approach of 

wire routing. Wire routing for circuit layout has been studied for decades. It is similar to 

the NoC resource allocation problem because both of them need to allocate limited 

resources on a graph.  

Then, it assigns cost for every edge, and then starts routing for all flits one after 

another and ignores the capacity constraints. Therefore the paths after the initial routing 

may have many overflows. If Ce  is the capacity of an edge e  and Ue  is the utilization 

of the edge, we define the overflow is as max( ,0)Ue Ce . The overflowed edges violate 

the capacity constraint, so some flits need to be re-routed to less congested regions. 

Typically, a shortest path algorithm, such A* search, is employed for the rerouting while 

the congestion is captured by edge costs.  
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The key of RRR routing algorithm is to decide which paths need to be re-routed 

and how to change edge cost to make the routing in the next iteration avoid congested 

regions. An efficient technique to avoid congested regions is to increase an edge cost at 

each iteration as long as this edge continuously has overflow. Edge cost e  depends on 

both edge’s length be  and its congestion penalty pe , and we define the cost as: 

e be he pe                                                                                    (2.1) 

where he  is the history factor. If i  is the index of iterations, he  is updated 

iteration by iteration as: 

                                                if 1
                                                       otherwise

i
e inc
i
e

h h Ue Cei

e h
h

                        (2.2) 

For a constant δ, pe is the congestion penalty term defined as: 

 exp( ( / 1))                                if  
                                                          otherwise

Ue Ce Ue Ce

pepe                   (2.3) 

By increasing the cost of edges which have overflow, A* search algorithm avoids 

choosing overflowed edges in the next iteration. RRR terminates when there is no 

overflowed edge or a given limit on the number of iterations is reached. 

Before introducing the RRR-Based routing algorithm, we discuss an important 

concept: path flexibility. Path flexibility is the number of distinctive shortest paths from 

its source to its destination. When several flits are re-routed, a conventional method 

often re-routes them in an arbitrary order. We observe that flits with greater flexibility 

should be re-routed later than flits with less flexibility. In our RRR-based routing 

algorithm, we first sort the flits and re-route them in non-decreasing order of flexibility. 
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Another concept we used is the dead-loop. RRR may keep re-routing forever 

even there are feasible solutions, and we call this kind of loop as dead-loop. The dead-

loop can happen in conventional RRR algorithm. We design a technique called dead-

loop detector, and after so many experiments, we found that it reduces the number of 

iterations before the algorithm finds a feasible solution. The dead-loop detector attempts 

to route the flits that need to be re-routed based on the residual graph. For example, the 

capacity of edge e  is Ce , the utilization of this edge is ue , then, in residual graph, the 

capacity of this edge is Ce ue , and the utilization of this edge is 0. If the flits to be re-

routed in the residual graph cannot find feasible solution, we say a dead loop may occur. 

Once the risk of dead-loop is detected, we rip up more flits on edges where overflow 

exists. Increasing the number of flits for rerouting may reduce the chance of dead-loop. 
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2.1.12 The Pseudo-code of RRR-based Algorithm 

 

 

Input: Resource Graph ( , ),maximal iterators G E V k

Output:A set of flits  to be rerouted with confliction free

Sort flits  in non-decreasing order of path flexibility

While (--  && ) dork   
For e E with  doue ce  

 |  where  is the path of flitsr i ie p pi    

Rip up r

End

For each  dorf 
 c rf   

If   conflict with cf 
 |  of this flit and x i if e p ue ce   

End
End

End

1

2

3

4
5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

Construct '( ', ') and  and r cG V E    

Trying to Re-route f

End

For each  dorf 

r x 

For each  dorf 
Re-route  and remove  from rf f 

End

 

Figure 5. Pseudo-code of RRR-based algorithm 
 

Figure 5 shows the Pseudo-code of the RRR-Based Method. The first line of 

code is to sort flits in a non-decreasing order of path flexibility. The second line 

constructs expanded graph and puts all flits into r  to route all flits in the first iteration. 

From line 3 to line 21 is the body of RRR-Based Method. From line 4 to line 7, all flits 
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that going through overflowed edges ( ue ce ) are found and ripped up, and the edge 

costs are recalculated. The codes from line 8 to line 10 put all flits that do not involve 

overflow into c . Though flits in c  are overflow-free, they may not necessarily be the 

optimal solution. The codes from line 11 to line 16 attempt to route all flits in the 

residual expanded graph and find out whether a dead loop may exist or not. The code of 

line 12 tries to reroute the flits. If there is any flit conflicting with flits in c , the 

corresponding flits in phi_c is moved into x . There is no dead loop if x  is empty. The 

code of line 17 assigns all flits in x  to r . The code of line 19, re-routes all traffics 

need to be re-routed and updates the cost of affected edges. 

2.2 Power-Efficient QoS for Application Specific NoC 

This section discusses power-efficient NoC QoS for Multi-Processor System-on-

Chip (MPSoC). An MPSoC often has multiple operation user-cases. For example, a 

smart phone processor may perform text editing, voice recognition or video streaming at 

different times. Each user-case entails a specific traffic pattern on NoC. The objective is 

to minimize average energy dissipation among all user-cases, including dynamic and 

static energy. Ideally, a flit is routed along the shortest physical path in the network 

without waiting in a buffer. If there is resource contention between different flits, the 

decisions face three options: (1) increasing link capacity, (2) waiting in a buffer, (3) 

routing detour. The first two options increase static energy while option (3) causes more 

dynamic energy. Hence, there is a tradeoff among these options and we can use the three 
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options to find routing and time slots for each flit such that the total power consumption 

is reduced. 

In previous works, the IP blocks and the net links are designed before the routing 

and time slot allocation, yet, some links or NoC routers can be removed without 

degrading the QoS and some other links may need to increase their bandwidth, and some 

nodes need to add buffers. All decisions can be made along with routing and time slot 

assignment. Please note that link and buffer capacity can be shared among different user 

cases. Therefore, our approach includes simultaneous routing, time slot assignment and 

link/buffer capacity optimization. 

2.2.1 Power Consumption Model 

Power consumption includes two parts, static and dynamic. The dynamic power 

of each node is estimated as: 

                              if used by any flit
0                                     if unused
dn fnDn                         (2.4) 

where dn is the dynamic power of one flit and fn is the number of flits. 

The static power of an edge is defined as  

                            if 
if 

0                                      if 0
                        

Se Su Cb su M

Se su M

Se su

  

 

 

                                     (2.5) 

where su is the number of physical links implementing one edge, Cb is the static 

power of a single link and M is the upper bound on the number of physical links. Please 

note the infinite power is not realistic, but is to forbid the number of links from being 
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greater than the upper bound. The link capacity increase is equivalent to adding 

additional physical links. This is illustrated in Figure 6. 
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Figure 6. The method to increase the capacity of an edge 
 

Figure 6 is an example of increasing the capacity. The edge ( , )e a b  should carry 

4 flits if time window size is 3. However, this edge can transport only 3 flits at a time.  

Instead of increasing the capacity of ( , )e a b  to 4 flits in slot window, we add additional 

wire for ( , )e a b , so the capacity of ( , )e a b increases up to 6 flits. 

The dynamic power for an edge is defined as  

                                              if used by any flit
0                                                     if unused
fu CfDe        (2.6) 
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where fu is the number of flits passing through the edge and Cf is the dynamic 

power dissipation of one flit. 

 

The static power for a buffer edge is defined as: 

                          if 
if 

0                                     if 0
                       

Sf su Cbs su M

Sf su M

Sf su

  

 

 

                                     (2.7) 

where su is the buffer depth, Cbs is the static of buffer for one flit and M is the 

upper bound for buffer depth. 

The dynamic power for a buffer edge is defined as  

                                   if used by any flit
0                                             if unused
fu CbeDe         (2.8) 

where fu is the number of flits entering (or exiting) the buffer and Cbe is the 

dynamic power dissipation of a single flit. 

2.2.2 Graph Model for Power-Efficient QoS 

The problem of Power-efficient QoS for Application Specific Networks-on-Chip 

can be described upon a directed base graph ( , )G V E  too, where V  is a set of nodes 

modeling routers and E  is a set of edges indicating communication links. To allocate 

time slot and route simultaneously, the base graph ( , )G V E  is expanded into '( ', ')G V E , 

called expanded graph, which contains time slot information. This graph model employs 

the same concepts of slot window size, time plane, and graph expansion as the resource 
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graph described in Section 2.1.1. However, graph model here considers link and buffer 

capacity change. 

Suppose time window size is tw , buffer edges can be constructed as follows. For 

every node v V , there is a set of nodes 0 1 1' { , ,..., }twV v v v   in expanded. Then the 

buffer edges are 0 0 1 1 1 2 1 1 0{ ( , ), ( , ),..., ( , )}tw twBe e v v e v v e v v  .  
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Figure 7. Constructing power-efficient expanded graph 
 

Figure 7 shows one example of buffer edges. Since a buffer holds flits at the 

same router instead of transmitting the flits to other routers, a buffer edge is always 

incident to nodes corresponding to the same router. The right side of Figure 7 shows 

how buffer can improve the utilization of links. There are two flits, one traveling from a  

to c , injected at time plane 0, and the other one going from b to c, inserted at time plane 
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1. When we route the second flit, the time slot 1 of node b  is occupied by the first flit. 

In this case, the second flit can be stored at router b  for one time slot, and reach node c 

along path 1 2 0{ , , }b b c . Although the second flit needs to wait, the link capacity from b  to 

c  does not need to be increased. 

2.2.3 Cost Functions for A* Search Algorithm 

The negotiation-based heuristic is based on RRR algorithm. The cost function 

and how to find non-preferred edge are two key concepts of our negotiation-based 

heuristic. We use A* search algorithm to route in the expanded graph. The cost for A* 

search is the incremental power consumption for nodes or edges.  

The routing is carried out sequentially, one flit after another. Before routing a flit, 

Negotiation-Based Heuristic pretends to add one flit for every edge and node, calculate 

the incremental power consumption as the cost for edge or node. Then A* search is 

applied to find a minimal power consumption path. Although the negotiation-based 

method finds the minimal power path for every flit, it is still greedy for the overall 

problem and cannot guarantee the overall optimality. 

Cost e  for edges or nodes are calculated as bellow: 

(lg( ) 1)s de p he p                                                            (2.9) 

where sp  is the increment of the static power if a flit is added in the next 

iteration. It is calculated as bellow: 

1i i

s s sp p p   , where i  is the index for iterations. 
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dp  is the increment of the dynamic power if a flit is added in the next iteration 

and can be calculated as bellow: 

1i i

d d dp p p   , where i  is the index for iterations. 

The history penalty term is increased when this edge is found to be non-preferred. 

       if edge e is non-preferred1
              otherwise

i
e inc
i
e

h hi

e h
h

  , where i  is the index for the 

iterations. 

2.2.4 Non-preferred Edges 

Non-preferred edges are those that may cause flits to stuck at local optimal routes. 

Next, we will elaborate what they are and show how avoiding can help to improve 

solution quality. 

 

 

u
x

y

z

p
q

v

w

u x

y

z

p q v

w

(a) (b)

 
Figure 8. Example of a non-preferred edge 
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We describe by an example in Figure 8. Negotiation-based heuristic routes one 

flit at a time. In this example, the red flit with less path diversity is routed first. It can 

find 3 shortest paths, and without loss of generality, we assume the algorithm chooses 

path { , , , }u x q v . Then the algorithm attempts to route the green flit from w  to y . 

Because the static power consumption of edges 0{ ( , ), ( , ), ( , )}E e u x e x q e q v  will not be 

increased if one flit is newly added, the routing of the second flit tries to reuse 0E . Then 

it turns out that (a) in Figure 8 is one of the optimized paths. However, the solution of (b) 

in Figure 8 is better; because the red traffic and the green traffic have two edges shared 

and can save more energy. In this case, (x,q) is a non-preferred edge. If we increase the 

cost of this edge, the A* search would select path { , , , }u p q v . The key characteristic of 

edge ( , )x q  is that the direction of the red flit along it is the opposite of the direction the 

green flit. To be more specific, the direction from node x  to node q  is not an edge of 

any edge in the shortest path from w  to y . 

We define non-preferred edges as the edges that are within other flits’ shortest 

paths but have direction opposite to the direction of the shortest paths. If any non-

preferred edges are detected, the cost of this edge increased and the flits are re-routed in 

the next iteration.  
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2.2.5 The Pseudo-code of Negotiation-based Heuristic 

 

 

Input:  Resource Graph ( , ),GS flits , iteration count 
Output: Power-efficient routing for flits 

G E V k



Sort flits  in non-decreasing order of path flexibility

While (--  && ) dok  

For every  dof 

Count power consumption
Save the solution with minimal power consumption

Route  using A* Algorithm and remove  from f f 

End

1

2

3

4
5

6

7

8
9

10

11

12

Calculate costs of edges and nodes for adding one flit

f  

Calculate Dts and Dtd for every flits  

For each non-preferred edge { }  doie p f 

 Put any |  of  to i if f e p f  
Rip up  from ( , )f G E V

End

Increase history factor for e

End

13

14

15

16

 
Figure 9. Pseudo-code of Negotiation-based Heuristic 

 

In line 1, the algorithm calculates Dts  and Dtd  for all flits, which are useful to 

achieve in-order delivery. Line 5 to line 8 routes all flits to be re-routed. From line 9 to 

line 13, we check all the non-preferred edges to find which flits need to be re-routed in 

the next iteration. Line 14 is to calculate the overall power consumption for the current 

iteration. Line 15 saves the best solution.  
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This heuristic does not need to handle the dead loop issue, because one can 

always finds a feasible solution by increasing link/buffer capacity. If the capacity of 

some edges has to be enlarged more than the system allowed, we simply designate the 

corresponding solution with infinite power consumption. Another issue we need to point 

out is that the iteration k  is a flexible parameter. Because there is no sufficient 

information for us to tell in which iteration we can find the best result, we run the code 

for a fixed number of iterations.  

2.3 Hybrid Architecture for NoC 

It is well known that communication links occupy a large amount of space in 

chip. Most NoC techniques are borrowed from computer interconnection network, which 

share ideas with internet technology. In a NoC, GS traffic and BE traffic coexist. Thus, 

typical NoCs designs should take both of them into consideration. GS traffics imply 

service guarantee and top service priority. BE traffics can be categorized to different 

priority levels. Our observation is that GS can be easily achieved with circuit-switching 

while BE traffics fit better in packet switching. We consider to integrate these two in a 

seamless manner. The circuit switching can be implemented in a way similar as FPGA 

reconfiguration. Therefore, we design NoCs as a network with two different types of 

routers – one is GS router where switches that are configured by SRAM like in FPGA, 

the other is BE router like in conventional NoC designs. 
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2.3.1 High Level Design of Hybrid NoC 
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Figure 10. Hybrid structure of NoC 
 

Figure 10 is an example of the proposed hybrid NoC architecture. The GS routers 

connect with IP blocks, other GS routers and BE routers. The routers and links at the 

bottom layer form the GS network, which operates according to TDM. The routers and 

links in the up plane form the BE network, which is a packet switching network. Every 

BE router is assigned to 5 or 6 IP blocks, which form a local network.  

2.3.2 GS Network 

GS routers form the circuit-switching network, and connect both the IP blocks 

and the GS routers. From the point view of GS routers, BE routers and IP blocks are 

equivalent. For the sake of convenience, we call both of them Data Handle Point (DHP).  
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GS routers can be designed as 4-ports routers, 6-ports routers, or even more ports routers. 

The structure is depicted in Figure 11. 
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Figure 11. Design of 4 ports and 6 ports GS router 
 

GS network is purely TDM network where time is divided into equal time slots. 

At the beginning of each time slot, the GS routers in the path from source DHP to 

destination DHP are all re-configured by local SRAM such that the physical connections 

form a circuit. Then, source DHP links destination DHP directly, and transmit data point 

to point in the rest of the time slot.  

This approach has several advantages. First, such circuit switching allows very 

low latency each hop as the virtual channel allocation and switch allocation are skipped. 

By avoiding these allocation logics, the power dissipation of each GS router is also very 

low. If the time window size is k and a GS router has 4 ports, we need only 1 byte to 

configure the pass transistors for each time slot and k bytes for k time slots. Hence, the 
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area, power and complexity of a GS router are much lower than a conventional BE 

router. 

2.3.3 Graph Model 

The resource allocation problem for Hybrid NoC design can be modeled in a 

directed graph ( , )G V E , where V  is a set of nodes modeling routers and E  is a set of 

edges indicating net links. The base graph ( , )G V E  is expanded into expanded graph 

'( ', ')G V E . The definitions of time plane and time window size are the same as previous 

sections. 

The edges in base ( , )G V E  are expanded along time axis by duplicating and 

connecting the vertices. For 0 1any ( , ) ( , ,..., ,...)i ie si di E e e e  where si  is the source 

vertex of ie and di  is the target of ie . The edges based on ie  are 

0 1 1
0 0 1 1 1 1{ ( , ), ( , ),..., ( , )}tw

i tw twE e s d e s d e s d

 
  . The edges in expanded graph are defined 

as 0 1 1' { , ,..., }twE E E E 
   .  
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Figure 12. Constructing expanded graph for Hybrid NoC design 
 

Figure 12 is an example on how to construct expanded graph for Hybrid NoC 

architecture. Super-source and super-destination are created, and the edges of expanded 

graph only link each other in the same time plane.  
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Figure 13. Routing in the graph model of Hybrid NoC architecture 
 

Figure 13 is an example of routing in expanded graph for the hybrid NoC 

architecture. In this example, the time window size is 3, and there are two flits from node 

a  to node e . In time slot 0, GS routers link 0 0 0 0 0{ , , , , }a b c d e  together, and make node a  

communicate with node e  directly. In the time slot 1, GS routers link 1 1 1 1 1{ , , , , }a u v d e  

together, and make a  communicate with e  directly. If the IP block sends flits strictly in 

time slot {0,1,3,4,...} the latency of flits can be at most one clock cycle. If the IP block 

generates flits randomly, in the worst case, every flit will be delayed for 1 time slot. 

2.3.4 BE Network 

BE traffics are transmitted in either GS network or BE network. In GS network, 

BE traffics are delivered between IP block and BE router using GS router. If IP block is 

designed to enable BE traffics, the block reserves one or more time slot for BE traffic, 

and routes them to its nearest BE router. In BE network, BE traffics are routed and 
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delivered by BE routers. BE routers only connect BE routers and GS routers. BE routers 

are designed with a TDM interface to receive from or send to GS routers and store data 

in buffer. BE routers do not handle GS traffics, thus, the NoC system can decrease the 

number of BE routers. A ring or double ring topology can be adopted in a hybrid NoC 

architecture according to the size of NoC. 

 

 

 

Figure 14. Topology of BE routers in Hybrid Design 
  

Figure 14 is the example of single ring and double ring structure for the BE 

network.  

2.3.5 Time Slot Allocation and Routing   

The GS network performs the simultaneously routing and time slot allocation in 

the expanded graph, using the RRR-based algorithm. 
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CHAPTER III

EXPERIMENT SETUP AND RESULT 

All the algorithms are implemented in C/C++ and the experiments are performed 

on AMD Opteron processor with 2.2GHz frequency and Linux operating system. 

3.1 Simultaneously Resource Allocation and Routing 

We compare RRR-based method with the method of Z. Lu’s work [3].   

3.1.1 Experiment of Success Rate  

 

Table 1. Experiment result of success rate for resource allocating and routing 

Cases No. 
Packets 

Previous Work[3] RRR-Based 

Success Runtime(s) TimeOut Success Runtime(s) TimeOut 
Mesh 6*6 25-90 20.0% 11 64.0% 60.0% 53 40.0% 
Mesh 8*8 30-160 23.1% 1 73.1% 65.4% 268 34.6% 

Mesh 10*10 35-250 18.2% 4 72.7% 59.1% 1162 40.9% 
Random 36 25-110 20.8% 1 79.2% 66.7% 42 33.3% 
Random 64 30-270 17.4% 1 82.6% 73.9% 324 26.1% 

Random 100 35-450 16.7% 1 83.3% 79.2% 1228 20.8% 
Average  19.4%  75.8% 67.4% 513 32.6% 

 

The leftmost column of Table 1 is the size of the test cases. The mesh 6 6  is 2D 

mesh topology with 6 6 36   nodes, and similarly for mesh 8 8  and mesh 10 10 . 

The Random N where {36,64,100}N   is the random topologies with N nodes. The 

second column tells the number of GS packets in each time window. In each case, about 

85% packets are single-flit and 15% are multi-flits. 
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In the experiment, we set a timeout limit of 4 hours. If a method running out of 

time, the run is counted as a failure. The previous work of [3] has only average 19.3% 

success rate, and RRR-based is average 67.3%.  

3.1.2 Stress Test 

The stress test is to increase the packet injection to a certain network design till 

the point where feasible solution of routing and time slot assignment cannot be found. 

Then, the maximum number of packets injected to this point is an indication of the 

capability of the algorithm. The results are shown in Table 2. 

 

Table 2. Experiment result of stress test 

case Previous Work[3] RRR-Based 
Maximal No. of traffics Maximal No. of traffics 

1 40 101 
2 40 81 
3 61 100 
4 43 92 
5 51 93 
6 31 67 
7 33 140 
8 37 80 
9 37 100 

10 11 29 
Average 38.4 88.3 

 

In the Table 2, there are 10 test cases. From the table we can tell that the maximal 

numbers of GS traffics that can be accommodated by previous work [3] are only half of 

the numbers of our RRR-based algorithm.  
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3.1.3 Experiment for Conventional RRR and Our RRR  

The inputs of this comparison test are generated randomly to show whether our 

new techniques on RRR-based algorithm work. The main differences between the two 

methods are, (1) Conventional RRR does not have dead-loop detection and (2) Our 

routing follows non-decreasing order of path diversity. We compare the two methods on 

22 cases and the results are shown in Table 3. 

 

Table 3. Comparison of conventional RRR and our RRR 

 Conventional RRR New RRR 
No. of Success 18% 91% 
Average  
No. of Iterations 15 28 

Average Runtime 47s 996s 
 

The RRR-based proposed by this thesis solves 91% test cases whe the 

conventional RRR solves only 18%.  The average runtime of our RRR-based method is 

much longer than that of the conventional RRR method. There are two reasons. One is 

that the average runtime does not consider the unsuccessful test cases, which take longer 

than 4 hours, and the other reason is that the conventional RRR is simpler than our RRR. 

3.2 Experiment for Power-Efficient QoS 

To the best of our knowledge, there is no previous work dedicated to power-

efficient QoS for application specific NoCs. Hence, we compare with extensions of one 

related but different work. The Iterative Greedy is extended from the related work [6], 

which is an heuristic for minimizing link capacities only. It iteratively routes a flow 
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along the minimal cost path in the network. If a link’s capacity has already been used in 

previous iterations, its cost is regarded as zero to encourage reuse. 

There are two types of test cases. One is random benchmarks generated by TGFF 

[11] which has been used in many other NoC works.  

3.2.1 Experiment for Large TGFF Cases 

The experiment is on a set of relatively large TGFF cases. The second column is 

the total number of nodes | |v for the expanded graph. So | | | | | |v V tw p   , where | |V is 

the number of physical nodes in base graph ( , )G V E , and | |p  is the number of user 

cases and tw  is the window size. In this situation, the Negotiation-based heuristic 

demonstrates its value on large cases. In the result of Table 4, negotiation-based heuristic 

obtains 14% energy reduction compared to the iterative greedy heuristic. The runtime is 

increased but still at a manageable level. 

 

Table 4. Experiment and result of large TGFF cases 

TestCase Total |v| Iterative Greedy Negotiation-Based 
Energy RunTime(s) Energy RunTime(s) 

Case 1 9000 844 3347 718 7239 
Case 2 9900 1694 9126 1358 17461 
Case 3 10010 1336 6018 1178 12712 
Case 4 10080 1541 7556 1289 14744 
Case 5 10200 1275 5680 1135 12337 
Case 6 10200 1331 6990 1117 13725 
Case 7 10260 1458 7487 1217 14961 
Case 8 10400 1216 6095 1088 13215 
Case 9 10500 798 3292 697 7097 
Case 10 10500 1269 6173 1090 12253 
Case 11 10500 1050 5618 966 11090 
Normalized Total 1 1 0.86 2.03 
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3.3 Experiments for Hybrid NoC Architecture 

3.3.1 Stress Experiment for Success Rate 

In stress comparison experiment, we build 10 test cases, each case with 118 

traffics in the base graph of mesh 6*6 and time window size of 8. Then, we compare the 

maximal number of traffics can be successfully routed between TDM-based NoC and 

the hybrid NoC architecture. In the result, we count the total number of hops. In the 

hybrid architecture, each GS packet takes only one hop as all flits are transmitted in one 

time slot. 

 

Table 5. Comparison between TDM NoC and Hybrid NoC 

cases Maximal # of traffics Average No. hops 
RRR-Hybrid RRR-TDM RRR-Hybrid RRR-TDM 

1 110 112 89 435 
2 103 81 88 437 
3 109 108 85 414 
4 94 94 91 448 
5 103 103 94 435 
6 100 101 91 417 
7 110 111 86 414 
8 110 110 93 431 
9 107 106 92 451 

10 93 93 94 428 
Average 103.9 101.9 90.3 431 
 

In the result of Table 5, the solution space for TDM-based NoC design is similar 

as the hybrid NoC design. The average of the maximal number traffics can be deployed 

in TDM-based is 101.9 and that in Hybrid-based design is 103.9. The total number of 

hops needed for the hybrid design is only 20.9% of that for TDM-based NoC design. 
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This means that the hybrid design significantly decreases traffic latency without 

decreasing the capability of routing. 
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CHAPTER IV 

CONCLUSIONS 

 

The RRR-based algorithm for simultaneous time slot assignment and routing 

increases the success rate compared to previous approaches. The negotiation-based 

algorithm saves more energy for large TGFF cases in an acceptable runtime. As the size 

of NoC increases, the negotiation-based algorithm shows greater advantages. The hybrid 

NoC architecture successfully combines the circuit switching architecture with packet 

switching architecture, decreases the latency for traffics, simplifies the design of the 

architecture decreasing the number of Best-Effort routers, and reduces power 

consumption by the simple GS router design. 
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