

NOC RESOURCE ALLOCATION BASED ON PHYSICAL DESIGN TECHNIQUES

A Thesis

by

GONGMING YANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Jiang Hu

Committee Members, Weiping Shi
 Anxiao Jiang
Head of Department, Krishna Narayanan

May 2014

Major Subject: Computer Engineering

Copyright 2014 Gongming Yang

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147240174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

Networks-on-Chip (NoC) has been recognized as a scalable approach for on-chip

communication. Quality-of-Service (QoS) is a fundamental part of application specific

NoCs. This thesis focuses on resource allocation on NoC, to improve the capability of

NoC for Guaranteed Service (GS). A graph model is adopted to describe physical and

temporal sources of a NoC. Based on the graph model, an RRR-based algorithm is

proposed for simultaneous routing and time slot allocation. In addition, a negotiation-

based algorithm is suggested for achieving power-efficient QoS for application-specific

NoCs. Last, a hybrid NoC architecture, which combines circuit switching and packet

switching, is developed and investigated. Experimental results show that our techniques

outperform previous works.

iii

DEDICATION

To all sentient beings

iv

ACKNOWLEDGEMENTS

First, I am grateful to Buddha.

Second, it is my pleasure to express my sincere gratitude to my advisor, Prof.

Jiang Hu, for his continuous support and encouragement in the past two years. His

guidance during our numerous discussions gave me a strong motivation to finish this

work.

I particularly thank Mr. Hao He for his great help.

I am particularly grateful to my parents, my wife, my brother and my brother in-

law, for their continuously encouraging. My gratitude also goes to all beings for their

supporting in all the time.

v

TABLE OF CONTENTS

 Page

ABSTRACT ... ii

DEDICATION... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS ...v

LIST OF FIGURES .. vii

LIST OF TABLES ... viii

CHAPTER I INTRODUCTION .. 1

1.1 Background .. 1

1.2 Related Works .. 2

1.2.1 Simultaneous Packet Routing and Time Slot Assignment 2

1.2.2 Power-Efficient QoS for Application Specific NoCs 3

1.2.3 Hybrid Architecture for NoC ... 3

1.3 Problem Formulation .. 4

1.3.1 Simultaneously Resource Allocation and Routing 4

1.3.2 Power-Efficient QoS for Application Specific NoCs 4

1.3.3 Hybrid Architecture for NoC ... 5

CHAPTER II APPROACHES ... 6

2.1 Algorithm for Simultaneous Routing and Time Slot Assignment 6

2.1.1 Resource Graph Model .. 6

2.1.2 Mapping Bandwidth to NoC Resource Graph .. 8

2.1.3 Time Window Size .. 8

2.1.4 Capacities of Edges in Expanded Graph ... 9

2.1.5 Mapping from Expanded Graph to Base Graph .. 9

2.1.6 Routing on Expanded Graph .. 9

2.1.7 Flit Injection Uncertainty ... 10

2.1.8 In-order Delivery ... 11

2.1.9 Deadline Constraint ... 12

2.1.10 Enforcing Deadline Constraint ... 12

2.1.11 RRR-based Algorithm ... 14

vi

2.1.12 The Pseudo-code of RRR-based Algorithm .. 17

2.2 Power-Efficient QoS for Application Specific NoC .. 18

2.2.1 Power Consumption Model.. 19

2.2.2 Graph Model for Power-Efficient QoS ... 21

2.2.3 Cost Functions for A* Search Algorithm ... 23

2.2.4 Non-preferred Edges .. 24

2.2.5 The Pseudo-code of Negotiation-based Heuristic 26

2.3 Hybrid Architecture for NoC .. 27

2.3.1 High Level Design of Hybrid NoC... 28

2.3.2 GS Network... 28

2.3.3 Graph Model ... 30

2.3.4 BE Network ... 32

2.3.5 Time Slot Allocation and Routing .. 33

CHAPTER III EXPERIMENT SETUP AND RESULT ... 34

3.1 Simultaneously Resource Allocation and Routing ... 34

3.1.1 Experiment of Success Rate ... 34

3.1.2 Stress Test ... 35

3.1.3 Experiment for Conventional RRR and Our RRR 36

3.2 Experiment for Power-Efficient QoS .. 36

3.2.1 Experiment for Large TGFF Cases .. 37

3.3 Experiments for Hybrid NoC Architecture .. 38

3.3.1 Stress Experiment for Success Rate ... 38

CHAPTER IV CONCLUSIONS .. 40

REFERENCES .. 41

vii

LIST OF FIGURES

 Page

Figure 1. Example of expanded graph model... 7

Figure 2. Example of routing and slot mapping ... 10

Figure 3. Injection uncertainty by adding super nodes ... 11

Figure 4. Relaxing steps with deadline constraints .. 13

Figure 5. Pseudo-code of RRR-based algorithm .. 17

Figure 6. The method to increase the capacity of an edge .. 20

Figure 7. Constructing power-efficient expanded graph .. 22

Figure 8. Example of a non-preferred edge.. 24

Figure 9. Pseudo-code of Negotiation-based Heuristic .. 26

Figure 10. Hybrid structure of NoC ... 28

Figure 11. Design of 4 ports and 6 ports GS router .. 29

Figure 12. Constructing expanded graph for Hybrid NoC design 31

Figure 13. Routing in the graph model of Hybrid NoC architecture 32

Figure 14. Topology of BE routers in Hybrid Design .. 33

viii

LIST OF TABLES

 Page

Table 1. Experiment result of success rate for resource allocating and routing 34

Table 2. Experiment result of stress test .. 35

Table 3. Comparison of conventional RRR and our RRR .. 36

Table 4. Experiment and result of large TGFF cases ... 37

Table 5. Comparison between TDM NoC and Hybrid NoC ... 38

1

CHAPTER I

INTRODUCTION

The performance of many modern digital systems is limited by their

interconnection instead of their logic circuits or storage elements. In a high-performance

system, a large amount of power is consumed to drive signals on wires and most of clock

cycle time is attributed to wire delay rather than gate delay. Networks-on-chip (NoC) has

been recognized as a scalable approach to cope with the increasingly large demand for

on-chip communication. In NoC designs, Quality of Service (QoS) and power-efficiency

are of paramount importance. This thesis focuses on application-specific NoC that has

somewhat traceable traffic patterns. This is in contrast to NoCs in microprocessors

where the traffics are largely random. In specific, this thesis studies three subjects: (1)

simultaneous packet routing and time slot assignment for QoS, (2) power-efficient QoS,

and (3) hybrid NoC architecture for power-efficient NoCs.

1.1 Background

Networks-on-Chip is an inter-communication system for an integrated circuit

between intellectual-property (IP) blocks in a System-on-Chip (SoC). It applies

networking theory and methods to bring notable improvements over conventional point-

to-point connection, bus and crossbar interconnections.

Bus on chip is an inter-communication system that connects all components in a

chip. Modern bus can be wired in either a multi-drop or daisy chain topology or

2

connected by switched hubs. NoC improves the scalability and the power efficiency of

complex SoCs compared with bus and other design.

Quality-of-Service (QoS) is characterized by diverse parameters, such as

reliability, delay, jitter, bandwidth, packet loss, and throughput [1]. In this paper, the

QoS on NoC is characterized by guaranteeing bandwidth and the maximal latency

allowed for delivery for Guaranteed Service traffics.

1.2 Related Works

1.2.1 Simultaneous Packet Routing and Time Slot Assignment

When latency constraints for packets are tight, time-division multiplexing (TDM)

is able to provide guaranteed performance. The TDM implementation divides time into a

series of slots. The duration and the number of time slots govern the granularity of the

resource to be allocated. The virtual circuit of TDM is a set of contiguous time slots

spanning a routing path from the source intellectual-property block (IP block) to the

destination IP block. Finding the “optimal” time slot allocation is generally NP-hard, so

most realistic implementations are heuristic approaches.

There are several early works studying the time slot allocation problem. A.

Hansson, et al. [2], performs packet routing and time slot assignments separately. The

work of Z. Lu, et al. [3] defines a new concept of a logical network (LN) and

investigates how to allocate VC with LN to avoid conflict of paths, and performs time

slot allocation and routing simultaneously using a brute-force method, which is

computationally very expensive for large size NoCs.

3

 A graph model is proposed in [4] to describe the physical resources and time slot

based on the notion of time plane. With this model, routing and time slot assignment can

be conducted simultaneously by finding disjoint paths on the graph. Then, the problem is

similar as global routing in chip layout. In this regard, J. A. Roy, et al. [5] proposes a

Fairly Good Router (FGR) based on the framework of Ring-up-and-Re-Route (RRR).

RRR is a straightforward yet very effective approach to solving contentions in routing.

FGR improves RRR penalty function over its previous works and hence increases

opportunities of finding feasible solutions.

1.2.2 Power-Efficient QoS for Application Specific NoCs

Bandwidth utilization inevitably affects power-efficiency, which is crucial yet

largely neglected in prior NoC QoS methods. NoC capacity optimization is studied in [6].

It is an iterative greedy heuristic for minimizing link capacities. It iteratively routes a

flow among the minimal cost paths in the network. However, QoS is not handled in this

work. Perhaps the only work that seems to touch both power-efficiency and NoC QoS is

[7]. It mainly solves task mapping and scheduling assuming fixed routing as well as

fixed link and buffer capacity.

1.2.3 Hybrid Architecture for NoC

The book by W. Dally et al. [8] is a classic literature on computer interconnect

network. Many NoC techniques, such as packets switching, wormhole routing and

virtual-channel flow control, are largely borrowed from techniques described in this

book. Later, the work of K. Goossens, et al. [9], proposes a network on silicon (NoS) to

implement the communication among IP blocks. This work tries to design a router

4

network with packet switching techniques to reduce wire congestion between IP blocks

and enable scalable integration of IP blocks. Also, this work proposes a combination of

circuit and packet switching in the spirit of ATM [10], and used TDM circuit switching

for Guarantee Services and virtual output queuing for Best Effort traffics. Based on

those previous works, the TDM technique is better to support circuit switching; however,

the packet switching is more effective on handling Best Effort traffics.

1.3 Problem Formulation

1.3.1 Simultaneously Resource Allocation and Routing

Given a resources Graph (,)G V E of a NoC and a set of GS traffic flits

1 2{ , ,... }pf f f  .

Objectives: Generate paths 0 1{ , ,..., }mp p p p and allocate time slot

simultaneously for each flit if .

Constraints: The utilization ue for any edge e E is no greater than Ce , the

capacity of this edge, latency constraint of each flit is satisfied, and all flits of the same

packet should be delivered in order.

1.3.2 Power-Efficient QoS for Application Specific NoCs

Given a resources Graph (,)G V E of a NoC, a set of GS traffic flits

1 2{ , ,... }pf f f  , and dynamic/static power model (,)pm V E .

Objectives: Generate paths 0 1{ , ,..., }mp p p p and allocate time slot

simultaneously for each flit if and decide link/buffer capacity, such that the power

consumption of all routers and net links in NoC is minimized.

5

Constrains: Satisfy the bandwidth and deadline requirement of every if , and

delivered in order.

1.3.3 Hybrid Architecture for NoC

Objectives: Seamlessly combine circuit switching for GS traffics and packet

switching for Best-Effort (BE) traffics, and design a practical algorithm to route and

allocate time slots simultaneously.

6

CHAPTER II

APPROACHES

2.1 Algorithm for Simultaneous Routing and Time Slot Assignment

2.1.1 Resource Graph Model

The resource allocation problem can be modeled in a directed graph (,)G V E

where V is a set of nodes modeling routers and E is a set of edges indicating

communication links. To allocate time slots and routes simultaneously, graph (,)G V E is

expanded into '(', ')G V E , called expanded graph, which includes time slots information.

We define time plane as a set of edges in a specific time slot. Since we cannot

infinitely long time horizon, we assume the traffic patterns are repeated in periodic time

windows.

In order to capture the temporal aspect of the problem, the graph is expanded

along time axis by duplicating the nodes V to  0 1 1, ,... twV V V  , at each time plane

{0,1,..., 1} tp tw  where tw is the number of time plane, and without loss of generality,

iV is the set of vertex exist in time plane i .

The edges in base (,)G V E are expanded along time axis, by changing the

destination of the edge to corresponding node in the next time plane. Transmitting one

flit from iV to jV must be done in the only one time slot; otherwise the flit may conflict

with other flit to jV . The time difference between two adjacent time planes is one time

slot.

7

For any 0 1(,) (, ,..., ,...)i ie si di E e e e where si is the source vertex of ie and di is

the destination node of ie . The edges based on ie are

0 1 1
0 1 1 2 1 0{ (,), (,),..., (,)}tw

i twE e s d e s d e s d


  , the last edge 1

1 0(,)t

twe s d

 wraps back to

time plane 0. Overall, the edge set in expanded graph is defined as 0 1 1' { , ,..., }twE E E E 
   .

Base G(E,V) Expanded G’(E’,V’)

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a b

cd

a0

a1

a2

b0

b1

b2

c1

c2

c0

Figure 1. Example of expanded graph model

For example, in the Figure 1, the base graph (,)G V E contains 4 nodes and 4

edges. The red edge 0 (,)e a b in the base graph (,)G V E is expanded to edge set

0 0 1 1 2 2 0{ (,), (,), (,)}E e a b e a b e a b  and 1(,)e b c in the other direction is expanded to edge

set 1 0 1 1 2 2 0={ (,), (,), (,)}E e b c e b c e b c . Both the red dot line edge 2 0(,)e a b and the blue dot

line edge 2 0(,)e b c are wrapping around edges. The left side is the base graph (,)G V E ,

8

the right side is the expanded graph where the blue edges are the expansion of (,)e a b

and red edges are expansion of (,)e b c .

2.1.2 Mapping Bandwidth to NoC Resource Graph

In TDM networks, the time is divided into many time slots with the same length.

The data capacity of each time slot (Cslot) is decided by Cslot Ce Lslot  , where Ce

is the bandwidth of the edge and Lslot is the length of the time slot. For example, an

edge with bandwidth of 1Gbps , and the length of time slot is 1 millisecond, then in

theory, the data capacity of the time slot will be 1 1 1Gbps ms Mbps  .

In realistic environment, the data capacity of each time slot is less than that in

theory, because it takes time to perform clock synchronization and link negotiation.

Moreover, there could be additional overhead in packets. Thus, a realistic mapping of

bandwidth can be defined as:

Cslot Ce Lslot    where 0 1.0 

2.1.3 Time Window Size

Time window size is a parameter of repetitive traffic patterns. If there are two or

more traffics, the window size is set to the least common multiple of all traffics.

However, the time axis or time window can be extremely long and the graph size would

be prohibitively large. To solve this issue, NoC traffic is often abstracted to repeated

periodic patterns, which can approximately represent aperiodic cases if the period is

sufficiently large.

9

2.1.4 Capacities of Edges in Expanded Graph

The capacities of edges in expanded graph '(', ')G V E are the same as the

capacity of the time slot for this edge. To avoid time slot confliction in routings, the

capacity of edge in expanded graph is assigned with minimal bandwidth and doesn’t

allow to be shared with other flits.

2.1.5 Mapping from Expanded Graph to Base Graph

Assume a set of paths 0 1' { , ,..., }kP p p p are found in an expanded graph, where

{ (,) | ', d ' , '}i jm kn jm knp e s d s V V e E         , and the subscript j and k are the ID of

nodes in base graph, the subscript m and n are the ID of time plane in the expanded

graph. Mapping 'P back to 0 1{ , ,..., }kQ q q q where

{ (, ,) | , d , ,0 }i j k j kq e s d sid s V V e E sid Cslot      is calculated as bellow:

For any (,)jm jn ie s d p    , then the edge in base graph (,)j k ie s d q , and time slot

ID sid m .

2.1.6 Routing on Expanded Graph

Observation 1: Assume a set of paths 0 1{ , ,..., }kP p p p in an expanded graph

satisfy the capacity constraints. Then, after mapping P back to the base graph, the

mapped new traffics will satisfy the constraints of capacity in base graph and the slot

assignment is confliction free.

Suppose there are two paths for two flits, 1p and 2p , the two paths conflict in

slot k of edge ie in the base graph. Then, 1p and 2p share time slot k of edge ie . This

10

conflicts with the routing constraint that any edge in the expanded graph does not allow

to be shared with multiple flits.

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a0

a1

a2

b0

b1

b2

c1

c2

c0

a b

cd

(a,b)
0 1 2 3 4 5

0 1 2 3 4 5
(b,c)

f0

f1

f2

f2f2

f1 f1f0 f0 f2f2

Paths for flit0, flit1 and flit2

Time slot allocation for a,b and c

Figure 2. Example of routing and slot mapping

In Figure 2, flit0 and flit1 transmit from node b to node c , and flit2 transmits

from node a to node c . After routing, path 0 1 2{ , }p b c is for flit0, path 1 0 1{ , }p b c is

for flit1, the path 2 1 2 0{a , , }p b c is for flit2, and the slot uses of edge (,)e a b and (,)e b c

are shown in the right part of Figure 2.

2.1.7 Flit Injection Uncertainty

Even though this thesis research is targeted to application specific NoCs, where

traffic patterns are somewhat traceable, it is still difficult to predict the exact flit

injection time. This problem can be solved by adding super source nodes in the

11

expanded graph. For example, in the right part of Figure 3, a super source node is

connected to nodes a0, a1 and a2. This is to model a time range of flit injection time.

Similarly, adding a super destination node like the left part of Figure 3 provides

flexibility for flit arrival deadline.

a0

a1

b0

b1

b2

c1

c2

c0

a2

a0

a1

b0

b1

b2

c1

c2

c0

a2Super

source

node
Super

destination

node

Uniform Traffics
Non-uniform Traffics

Super

destination

node

d

s

d

Figure 3. Injection uncertainty by adding super nodes

2.1.8 In-order Delivery

In-order delivery is very important for TDM networks. The data are chopped into

packets, but the length of a packet is still too long to be efficiently transmitted in NoC.

Thus, a packet is further divided into flits, which are smaller data segments with limited

routing information. To better utilize network bandwidth, we allow flits of the same

packet to be routed along different paths. Such multi-path routing requires that these flits

arrive the destination in-order. The simplest solution for in-order delivery is to choose

only the shortest paths for all flits. If all paths are shortest paths, then all flits take the

12

same amount of time to travel in the NoC, and therefore they reach the destination node

in order.

2.1.9 Deadline Constraint

Deadline constraint is the maximal hops (Mh) allowed for a flit to transmit

across NoC. If a deadline is not tight, routing detour is allowed.

 We implement A* search algorithm for routing on the expanded graph. A*

search computes the function () () ()f n g n h n  for every node n ; ()g n is the actual

cost or hops from start node to node n ; ()h n is the estimated cost or hops from node n

to destination node. If we initialize the graph '(', ')G V E with () 0h n  , then A*

algorithm is the same as Dijkstra’s shortest path algorithm. We calculate ()Dts n and

()Dtd n beforehand, where ()Dts n is the minimal hop count from n to source node and

()Dtd n is the minimal hop count from n to destination node. Thus, () ()Dts n Dtd n is

the minimal hop from source node to destination node if the flits pass node n .

To calculate ()Dts n and ()Dtd n , we firstly calculate ()g n for every node n , by

setting () 0h n  . After routing across the entire graph, we obtain () ()Dts n g n for

every node n . Then, we reverse the direction of all edges in the expanded graph by

reversing (,)i je s d to (,)j ie d s , and set () 0h n  . After routing across the entire graph by

A* search, we assign () ()Dtd n g n for every node n .

2.1.10 Enforcing Deadline Constraint

We add an additional constraint to A* search, that we relax node x , if and only if

Dts(x)+Dtd(x)<Mh.

13

Observation 2: Let Mh be the maximal number of hops allowed for a specific flit,

if A* only select nodes with () ()Dts x Dtd x Mh  then the new A* algorithm can find

paths whose hops are no greater than Mh , and if this path exist, the new A* algorithm at

least can find one.

To satisfy the in-order delivery constraints together with the constraint of

deadline is a difficult task. If there is only one flit in a time window, we do not need to

worry the in-order delivery constraint. If there are multiple flits, we relax all edges using

A* search, and then record the total number of hops for each path, and then choose paths

which satisfy in-order delivery constraint.

S D

u

x w

v

Dts : 0

Dtd : 0

Dts : 2

Dtd : 0

Dts : 1

Dtd : 0
Dts : 2

Dtd : 0

Dts : 3

Dtd : 0

Dts : 3

Dtd : 0 S D

u

x w

v

Dts’ : 3

Dtd : 0

Dts’ : 2

Dtd : 0

Dts’ : 2

Dtd : 0
Dts’ : 1

Dtd : 0

Dts’ : 1

Dtd : 0

Dts’ : 0

Dtd : 0

S D

u

x w

v

Dts : 0

Dtd : 3

Dts : 2

Dtd : 2

Dts : 1

Dtd : 2
Dts : 2

Dtd : 1

Dts : 3

Dtd : 1

Dts : 3

Dtd : 0

(a) Pre-Process to get accurate Dts (b) Pre-Process to get accurate Dtd

(c) Graph with accurate for hops

S D

u

x w

v

Dts : 0

Dtd : 3

Dts : 2

Dtd : 2

Dts : 1

Dtd : 2
Dts : 2

Dtd : 1

Dts : 3

Dtd : 1

Dts : 3

Dtd : 0

(d) Relax sequences

1

2

2

3

Figure 4. Relaxing steps with deadline constraints

14

Figure 4 is an Example for A* search algorithm with deadline constraint. Figure

4(a) is a graph with 6 nodes, and a flit from to S D . The deadline constraint is 3 hops.

First we run A* search in (a) to obtain Dts for each node. Next, we construct the

reversed graph and run A* search in (b) to assign Dtd to each node. Figure 4 (c) is the

graph with both Dts and Dtd . Figure 4(d) shows the relaxation steps of A* search.

In step (1), edge (,)e S x is relaxed. In step (2), Dts+Dtd of node u exceeds the

max hot count constraint (deadline constraint) and therefore node u is not relaxed. But,

node w is relaxed in step (2). In the step (3), the destination node D is reached. Then,

the path { , , , }p S x w D is correctly found and runs faster than Dijkstra’s algorithm by

skipping some nodes, such as u and v .

2.1.11 RRR-based Algorithm

First we briefly review rip-up-and-reroute (RRR) [5], a very popular approach of

wire routing. Wire routing for circuit layout has been studied for decades. It is similar to

the NoC resource allocation problem because both of them need to allocate limited

resources on a graph.

Then, it assigns cost for every edge, and then starts routing for all flits one after

another and ignores the capacity constraints. Therefore the paths after the initial routing

may have many overflows. If Ce is the capacity of an edge e and Ue is the utilization

of the edge, we define the overflow is as max(,0)Ue Ce . The overflowed edges violate

the capacity constraint, so some flits need to be re-routed to less congested regions.

Typically, a shortest path algorithm, such A* search, is employed for the rerouting while

the congestion is captured by edge costs.

15

The key of RRR routing algorithm is to decide which paths need to be re-routed

and how to change edge cost to make the routing in the next iteration avoid congested

regions. An efficient technique to avoid congested regions is to increase an edge cost at

each iteration as long as this edge continuously has overflow. Edge cost e depends on

both edge’s length be and its congestion penalty pe , and we define the cost as:

e be he pe    (2.1)

where he is the history factor. If i is the index of iterations, he is updated

iteration by iteration as:

  if 1
 otherwise

i
e inc
i
e

h h Ue Cei

e h
h

   (2.2)

For a constant δ, pe is the congestion penalty term defined as:

 exp((/ 1)) if
 otherwise

Ue Ce Ue Ce

pepe    (2.3)

By increasing the cost of edges which have overflow, A* search algorithm avoids

choosing overflowed edges in the next iteration. RRR terminates when there is no

overflowed edge or a given limit on the number of iterations is reached.

Before introducing the RRR-Based routing algorithm, we discuss an important

concept: path flexibility. Path flexibility is the number of distinctive shortest paths from

its source to its destination. When several flits are re-routed, a conventional method

often re-routes them in an arbitrary order. We observe that flits with greater flexibility

should be re-routed later than flits with less flexibility. In our RRR-based routing

algorithm, we first sort the flits and re-route them in non-decreasing order of flexibility.

16

Another concept we used is the dead-loop. RRR may keep re-routing forever

even there are feasible solutions, and we call this kind of loop as dead-loop. The dead-

loop can happen in conventional RRR algorithm. We design a technique called dead-

loop detector, and after so many experiments, we found that it reduces the number of

iterations before the algorithm finds a feasible solution. The dead-loop detector attempts

to route the flits that need to be re-routed based on the residual graph. For example, the

capacity of edge e is Ce , the utilization of this edge is ue , then, in residual graph, the

capacity of this edge is Ce ue , and the utilization of this edge is 0. If the flits to be re-

routed in the residual graph cannot find feasible solution, we say a dead loop may occur.

Once the risk of dead-loop is detected, we rip up more flits on edges where overflow

exists. Increasing the number of flits for rerouting may reduce the chance of dead-loop.

17

2.1.12 The Pseudo-code of RRR-based Algorithm

Input: Resource Graph (,),maximal iterators G E V k

Output:A set of flits to be rerouted with confliction free

Sort flits in non-decreasing order of path flexibility

While (-- &&) dork   
For e E with doue ce  

 | where is the path of flitsr i ie p pi    

Rip up r

End

For each dorf 
 c rf   

If conflict with cf 
 | of this flit and x i if e p ue ce   

End
End

End

1

2

3

4
5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

Construct '(', ') and and r cG V E    

Trying to Re-route f

End

For each dorf 

r x 

For each dorf 
Re-route and remove from rf f 

End

Figure 5. Pseudo-code of RRR-based algorithm

Figure 5 shows the Pseudo-code of the RRR-Based Method. The first line of

code is to sort flits in a non-decreasing order of path flexibility. The second line

constructs expanded graph and puts all flits into r to route all flits in the first iteration.

From line 3 to line 21 is the body of RRR-Based Method. From line 4 to line 7, all flits

18

that going through overflowed edges (ue ce) are found and ripped up, and the edge

costs are recalculated. The codes from line 8 to line 10 put all flits that do not involve

overflow into c . Though flits in c are overflow-free, they may not necessarily be the

optimal solution. The codes from line 11 to line 16 attempt to route all flits in the

residual expanded graph and find out whether a dead loop may exist or not. The code of

line 12 tries to reroute the flits. If there is any flit conflicting with flits in c , the

corresponding flits in phi_c is moved into x . There is no dead loop if x is empty. The

code of line 17 assigns all flits in x to r . The code of line 19, re-routes all traffics

need to be re-routed and updates the cost of affected edges.

2.2 Power-Efficient QoS for Application Specific NoC

This section discusses power-efficient NoC QoS for Multi-Processor System-on-

Chip (MPSoC). An MPSoC often has multiple operation user-cases. For example, a

smart phone processor may perform text editing, voice recognition or video streaming at

different times. Each user-case entails a specific traffic pattern on NoC. The objective is

to minimize average energy dissipation among all user-cases, including dynamic and

static energy. Ideally, a flit is routed along the shortest physical path in the network

without waiting in a buffer. If there is resource contention between different flits, the

decisions face three options: (1) increasing link capacity, (2) waiting in a buffer, (3)

routing detour. The first two options increase static energy while option (3) causes more

dynamic energy. Hence, there is a tradeoff among these options and we can use the three

19

options to find routing and time slots for each flit such that the total power consumption

is reduced.

In previous works, the IP blocks and the net links are designed before the routing

and time slot allocation, yet, some links or NoC routers can be removed without

degrading the QoS and some other links may need to increase their bandwidth, and some

nodes need to add buffers. All decisions can be made along with routing and time slot

assignment. Please note that link and buffer capacity can be shared among different user

cases. Therefore, our approach includes simultaneous routing, time slot assignment and

link/buffer capacity optimization.

2.2.1 Power Consumption Model

Power consumption includes two parts, static and dynamic. The dynamic power

of each node is estimated as:

  if used by any flit
0 if unused
dn fnDn  (2.4)

where dn is the dynamic power of one flit and fn is the number of flits.

The static power of an edge is defined as

 if
if

0 if 0

Se Su Cb su M

Se su M

Se su

  

 

 

 (2.5)

where su is the number of physical links implementing one edge, Cb is the static

power of a single link and M is the upper bound on the number of physical links. Please

note the infinite power is not realistic, but is to forbid the number of links from being

20

greater than the upper bound. The link capacity increase is equivalent to adding

additional physical links. This is illustrated in Figure 6.

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a0

a1

a2

b1

b2

a b

a0

a1

a2

b1

b2

ba

b0

Flit 0

Flit 1

Flit 2

Flit 3

?

Flit 0

Flit 1

Flit 2

Flit 3

Figure 6. The method to increase the capacity of an edge

Figure 6 is an example of increasing the capacity. The edge (,)e a b should carry

4 flits if time window size is 3. However, this edge can transport only 3 flits at a time.

Instead of increasing the capacity of (,)e a b to 4 flits in slot window, we add additional

wire for (,)e a b , so the capacity of (,)e a b increases up to 6 flits.

The dynamic power for an edge is defined as

  if used by any flit
0 if unused
fu CfDe  (2.6)

21

where fu is the number of flits passing through the edge and Cf is the dynamic

power dissipation of one flit.

The static power for a buffer edge is defined as:

 if
if

0 if 0

Sf su Cbs su M

Sf su M

Sf su

  

 

 

 (2.7)

where su is the buffer depth, Cbs is the static of buffer for one flit and M is the

upper bound for buffer depth.

The dynamic power for a buffer edge is defined as

  if used by any flit
0 if unused
fu CbeDe  (2.8)

where fu is the number of flits entering (or exiting) the buffer and Cbe is the

dynamic power dissipation of a single flit.

2.2.2 Graph Model for Power-Efficient QoS

The problem of Power-efficient QoS for Application Specific Networks-on-Chip

can be described upon a directed base graph (,)G V E too, where V is a set of nodes

modeling routers and E is a set of edges indicating communication links. To allocate

time slot and route simultaneously, the base graph (,)G V E is expanded into '(', ')G V E ,

called expanded graph, which contains time slot information. This graph model employs

the same concepts of slot window size, time plane, and graph expansion as the resource

22

graph described in Section 2.1.1. However, graph model here considers link and buffer

capacity change.

Suppose time window size is tw , buffer edges can be constructed as follows. For

every node v V , there is a set of nodes 0 1 1' { , ,..., }twV v v v  in expanded. Then the

buffer edges are 0 0 1 1 1 2 1 1 0{ (,), (,),..., (,)}tw twBe e v v e v v e v v  .

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a0

a1

a2

b0

b1

b2

c1

c2

c0

a b

c

Time slot 2

Time slot 1

Time slot 0

Time slot plane

a0

a1

a2

b0

b1

b2

c1

c2

c0

a b

c

Buffer used

Expanded Graph with buffers Exmaple of how buffers improve routing

Figure 7. Constructing power-efficient expanded graph

Figure 7 shows one example of buffer edges. Since a buffer holds flits at the

same router instead of transmitting the flits to other routers, a buffer edge is always

incident to nodes corresponding to the same router. The right side of Figure 7 shows

how buffer can improve the utilization of links. There are two flits, one traveling from a

to c , injected at time plane 0, and the other one going from b to c, inserted at time plane

23

1. When we route the second flit, the time slot 1 of node b is occupied by the first flit.

In this case, the second flit can be stored at router b for one time slot, and reach node c

along path 1 2 0{ , , }b b c . Although the second flit needs to wait, the link capacity from b to

c does not need to be increased.

2.2.3 Cost Functions for A* Search Algorithm

The negotiation-based heuristic is based on RRR algorithm. The cost function

and how to find non-preferred edge are two key concepts of our negotiation-based

heuristic. We use A* search algorithm to route in the expanded graph. The cost for A*

search is the incremental power consumption for nodes or edges.

The routing is carried out sequentially, one flit after another. Before routing a flit,

Negotiation-Based Heuristic pretends to add one flit for every edge and node, calculate

the incremental power consumption as the cost for edge or node. Then A* search is

applied to find a minimal power consumption path. Although the negotiation-based

method finds the minimal power path for every flit, it is still greedy for the overall

problem and cannot guarantee the overall optimality.

Cost e for edges or nodes are calculated as bellow:

(lg() 1)s de p he p      (2.9)

where sp is the increment of the static power if a flit is added in the next

iteration. It is calculated as bellow:

1i i

s s sp p p   , where i is the index for iterations.

24

dp is the increment of the dynamic power if a flit is added in the next iteration

and can be calculated as bellow:

1i i

d d dp p p   , where i is the index for iterations.

The history penalty term is increased when this edge is found to be non-preferred.

  if edge e is non-preferred1
 otherwise

i
e inc
i
e

h hi

e h
h

  , where i is the index for the

iterations.

2.2.4 Non-preferred Edges

Non-preferred edges are those that may cause flits to stuck at local optimal routes.

Next, we will elaborate what they are and show how avoiding can help to improve

solution quality.

u
x

y

z

p
q

v

w

u x

y

z

p q v

w

(a) (b)

Figure 8. Example of a non-preferred edge

25

We describe by an example in Figure 8. Negotiation-based heuristic routes one

flit at a time. In this example, the red flit with less path diversity is routed first. It can

find 3 shortest paths, and without loss of generality, we assume the algorithm chooses

path { , , , }u x q v . Then the algorithm attempts to route the green flit from w to y .

Because the static power consumption of edges 0{ (,), (,), (,)}E e u x e x q e q v will not be

increased if one flit is newly added, the routing of the second flit tries to reuse 0E . Then

it turns out that (a) in Figure 8 is one of the optimized paths. However, the solution of (b)

in Figure 8 is better; because the red traffic and the green traffic have two edges shared

and can save more energy. In this case, (x,q) is a non-preferred edge. If we increase the

cost of this edge, the A* search would select path { , , , }u p q v . The key characteristic of

edge (,)x q is that the direction of the red flit along it is the opposite of the direction the

green flit. To be more specific, the direction from node x to node q is not an edge of

any edge in the shortest path from w to y .

We define non-preferred edges as the edges that are within other flits’ shortest

paths but have direction opposite to the direction of the shortest paths. If any non-

preferred edges are detected, the cost of this edge increased and the flits are re-routed in

the next iteration.

26

2.2.5 The Pseudo-code of Negotiation-based Heuristic

Input: Resource Graph (,),GS flits , iteration count
Output: Power-efficient routing for flits

G E V k



Sort flits in non-decreasing order of path flexibility

While (-- &&) dok  

For every dof 

Count power consumption
Save the solution with minimal power consumption

Route using A* Algorithm and remove from f f 

End

1

2

3

4
5

6

7

8
9

10

11

12

Calculate costs of edges and nodes for adding one flit

f  

Calculate Dts and Dtd for every flits 

For each non-preferred edge { } doie p f 

 Put any | of to i if f e p f  
Rip up from (,)f G E V

End

Increase history factor for e

End

13

14

15

16

Figure 9. Pseudo-code of Negotiation-based Heuristic

In line 1, the algorithm calculates Dts and Dtd for all flits, which are useful to

achieve in-order delivery. Line 5 to line 8 routes all flits to be re-routed. From line 9 to

line 13, we check all the non-preferred edges to find which flits need to be re-routed in

the next iteration. Line 14 is to calculate the overall power consumption for the current

iteration. Line 15 saves the best solution.

27

This heuristic does not need to handle the dead loop issue, because one can

always finds a feasible solution by increasing link/buffer capacity. If the capacity of

some edges has to be enlarged more than the system allowed, we simply designate the

corresponding solution with infinite power consumption. Another issue we need to point

out is that the iteration k is a flexible parameter. Because there is no sufficient

information for us to tell in which iteration we can find the best result, we run the code

for a fixed number of iterations.

2.3 Hybrid Architecture for NoC

It is well known that communication links occupy a large amount of space in

chip. Most NoC techniques are borrowed from computer interconnection network, which

share ideas with internet technology. In a NoC, GS traffic and BE traffic coexist. Thus,

typical NoCs designs should take both of them into consideration. GS traffics imply

service guarantee and top service priority. BE traffics can be categorized to different

priority levels. Our observation is that GS can be easily achieved with circuit-switching

while BE traffics fit better in packet switching. We consider to integrate these two in a

seamless manner. The circuit switching can be implemented in a way similar as FPGA

reconfiguration. Therefore, we design NoCs as a network with two different types of

routers – one is GS router where switches that are configured by SRAM like in FPGA,

the other is BE router like in conventional NoC designs.

28

2.3.1 High Level Design of Hybrid NoC

IP block

IP block

IP block

IP block

IP block

IP block

IP block

IP block

IP block

IP block

IP block

IP block

IP block IP block IP block IP block

IP block

IP block

IP block

IP block

IP block

GS router

BE router

BE network

GS network

Figure 10. Hybrid structure of NoC

Figure 10 is an example of the proposed hybrid NoC architecture. The GS routers

connect with IP blocks, other GS routers and BE routers. The routers and links at the

bottom layer form the GS network, which operates according to TDM. The routers and

links in the up plane form the BE network, which is a packet switching network. Every

BE router is assigned to 5 or 6 IP blocks, which form a local network.

2.3.2 GS Network

GS routers form the circuit-switching network, and connect both the IP blocks

and the GS routers. From the point view of GS routers, BE routers and IP blocks are

equivalent. For the sake of convenience, we call both of them Data Handle Point (DHP).

29

GS routers can be designed as 4-ports routers, 6-ports routers, or even more ports routers.

The structure is depicted in Figure 11.

a

b

c

d e

f

Pa Pb

PcPd

4 ports 6 ports

Figure 11. Design of 4 ports and 6 ports GS router

GS network is purely TDM network where time is divided into equal time slots.

At the beginning of each time slot, the GS routers in the path from source DHP to

destination DHP are all re-configured by local SRAM such that the physical connections

form a circuit. Then, source DHP links destination DHP directly, and transmit data point

to point in the rest of the time slot.

This approach has several advantages. First, such circuit switching allows very

low latency each hop as the virtual channel allocation and switch allocation are skipped.

By avoiding these allocation logics, the power dissipation of each GS router is also very

low. If the time window size is k and a GS router has 4 ports, we need only 1 byte to

configure the pass transistors for each time slot and k bytes for k time slots. Hence, the

30

area, power and complexity of a GS router are much lower than a conventional BE

router.

2.3.3 Graph Model

The resource allocation problem for Hybrid NoC design can be modeled in a

directed graph (,)G V E , where V is a set of nodes modeling routers and E is a set of

edges indicating net links. The base graph (,)G V E is expanded into expanded graph

'(', ')G V E . The definitions of time plane and time window size are the same as previous

sections.

The edges in base (,)G V E are expanded along time axis by duplicating and

connecting the vertices. For 0 1any (,) (, ,..., ,...)i ie si di E e e e where si is the source

vertex of ie and di is the target of ie . The edges based on ie are

0 1 1
0 0 1 1 1 1{ (,), (,),..., (,)}tw

i tw twE e s d e s d e s d

 
  . The edges in expanded graph are defined

as 0 1 1' { , ,..., }twE E E E 
   .

31

Super Dest

BE Router

With double link to GS

GS Router

GS Router
IP Blocks

Time slot 2

Time slot 1

Time slot 0

Figure 12. Constructing expanded graph for Hybrid NoC design

Figure 12 is an example on how to construct expanded graph for Hybrid NoC

architecture. Super-source and super-destination are created, and the edges of expanded

graph only link each other in the same time plane.

32

Time slot 2

Time slot 1

Time slot 0

S

D

a0

b0 c0

d0

e0

a1

u1 v1

e1

d1

Figure 13. Routing in the graph model of Hybrid NoC architecture

Figure 13 is an example of routing in expanded graph for the hybrid NoC

architecture. In this example, the time window size is 3, and there are two flits from node

a to node e . In time slot 0, GS routers link 0 0 0 0 0{ , , , , }a b c d e together, and make node a

communicate with node e directly. In the time slot 1, GS routers link 1 1 1 1 1{ , , , , }a u v d e

together, and make a communicate with e directly. If the IP block sends flits strictly in

time slot {0,1,3,4,...} the latency of flits can be at most one clock cycle. If the IP block

generates flits randomly, in the worst case, every flit will be delayed for 1 time slot.

2.3.4 BE Network

BE traffics are transmitted in either GS network or BE network. In GS network,

BE traffics are delivered between IP block and BE router using GS router. If IP block is

designed to enable BE traffics, the block reserves one or more time slot for BE traffic,

and routes them to its nearest BE router. In BE network, BE traffics are routed and

33

delivered by BE routers. BE routers only connect BE routers and GS routers. BE routers

are designed with a TDM interface to receive from or send to GS routers and store data

in buffer. BE routers do not handle GS traffics, thus, the NoC system can decrease the

number of BE routers. A ring or double ring topology can be adopted in a hybrid NoC

architecture according to the size of NoC.

Figure 14. Topology of BE routers in Hybrid Design

Figure 14 is the example of single ring and double ring structure for the BE

network.

2.3.5 Time Slot Allocation and Routing

The GS network performs the simultaneously routing and time slot allocation in

the expanded graph, using the RRR-based algorithm.

34

CHAPTER III

EXPERIMENT SETUP AND RESULT

All the algorithms are implemented in C/C++ and the experiments are performed

on AMD Opteron processor with 2.2GHz frequency and Linux operating system.

3.1 Simultaneously Resource Allocation and Routing

We compare RRR-based method with the method of Z. Lu’s work [3].

3.1.1 Experiment of Success Rate

Table 1. Experiment result of success rate for resource allocating and routing

Cases No.
Packets

Previous Work[3] RRR-Based

Success Runtime(s) TimeOut Success Runtime(s) TimeOut
Mesh 6*6 25-90 20.0% 11 64.0% 60.0% 53 40.0%
Mesh 8*8 30-160 23.1% 1 73.1% 65.4% 268 34.6%

Mesh 10*10 35-250 18.2% 4 72.7% 59.1% 1162 40.9%
Random 36 25-110 20.8% 1 79.2% 66.7% 42 33.3%
Random 64 30-270 17.4% 1 82.6% 73.9% 324 26.1%

Random 100 35-450 16.7% 1 83.3% 79.2% 1228 20.8%
Average 19.4% 75.8% 67.4% 513 32.6%

The leftmost column of Table 1 is the size of the test cases. The mesh 6 6 is 2D

mesh topology with 6 6 36  nodes, and similarly for mesh 8 8 and mesh 10 10 .

The Random N where {36,64,100}N  is the random topologies with N nodes. The

second column tells the number of GS packets in each time window. In each case, about

85% packets are single-flit and 15% are multi-flits.

35

In the experiment, we set a timeout limit of 4 hours. If a method running out of

time, the run is counted as a failure. The previous work of [3] has only average 19.3%

success rate, and RRR-based is average 67.3%.

3.1.2 Stress Test

The stress test is to increase the packet injection to a certain network design till

the point where feasible solution of routing and time slot assignment cannot be found.

Then, the maximum number of packets injected to this point is an indication of the

capability of the algorithm. The results are shown in Table 2.

Table 2. Experiment result of stress test

case Previous Work[3] RRR-Based
Maximal No. of traffics Maximal No. of traffics

1 40 101
2 40 81
3 61 100
4 43 92
5 51 93
6 31 67
7 33 140
8 37 80
9 37 100

10 11 29
Average 38.4 88.3

In the Table 2, there are 10 test cases. From the table we can tell that the maximal

numbers of GS traffics that can be accommodated by previous work [3] are only half of

the numbers of our RRR-based algorithm.

36

3.1.3 Experiment for Conventional RRR and Our RRR

The inputs of this comparison test are generated randomly to show whether our

new techniques on RRR-based algorithm work. The main differences between the two

methods are, (1) Conventional RRR does not have dead-loop detection and (2) Our

routing follows non-decreasing order of path diversity. We compare the two methods on

22 cases and the results are shown in Table 3.

Table 3. Comparison of conventional RRR and our RRR

 Conventional RRR New RRR
No. of Success 18% 91%
Average
No. of Iterations 15 28

Average Runtime 47s 996s

The RRR-based proposed by this thesis solves 91% test cases whe the

conventional RRR solves only 18%. The average runtime of our RRR-based method is

much longer than that of the conventional RRR method. There are two reasons. One is

that the average runtime does not consider the unsuccessful test cases, which take longer

than 4 hours, and the other reason is that the conventional RRR is simpler than our RRR.

3.2 Experiment for Power-Efficient QoS

To the best of our knowledge, there is no previous work dedicated to power-

efficient QoS for application specific NoCs. Hence, we compare with extensions of one

related but different work. The Iterative Greedy is extended from the related work [6],

which is an heuristic for minimizing link capacities only. It iteratively routes a flow

37

along the minimal cost path in the network. If a link’s capacity has already been used in

previous iterations, its cost is regarded as zero to encourage reuse.

There are two types of test cases. One is random benchmarks generated by TGFF

[11] which has been used in many other NoC works.

3.2.1 Experiment for Large TGFF Cases

The experiment is on a set of relatively large TGFF cases. The second column is

the total number of nodes | |v for the expanded graph. So | | | | | |v V tw p   , where | |V is

the number of physical nodes in base graph (,)G V E , and | |p is the number of user

cases and tw is the window size. In this situation, the Negotiation-based heuristic

demonstrates its value on large cases. In the result of Table 4, negotiation-based heuristic

obtains 14% energy reduction compared to the iterative greedy heuristic. The runtime is

increased but still at a manageable level.

Table 4. Experiment and result of large TGFF cases

TestCase Total |v| Iterative Greedy Negotiation-Based
Energy RunTime(s) Energy RunTime(s)

Case 1 9000 844 3347 718 7239
Case 2 9900 1694 9126 1358 17461
Case 3 10010 1336 6018 1178 12712
Case 4 10080 1541 7556 1289 14744
Case 5 10200 1275 5680 1135 12337
Case 6 10200 1331 6990 1117 13725
Case 7 10260 1458 7487 1217 14961
Case 8 10400 1216 6095 1088 13215
Case 9 10500 798 3292 697 7097
Case 10 10500 1269 6173 1090 12253
Case 11 10500 1050 5618 966 11090
Normalized Total 1 1 0.86 2.03

38

3.3 Experiments for Hybrid NoC Architecture

3.3.1 Stress Experiment for Success Rate

In stress comparison experiment, we build 10 test cases, each case with 118

traffics in the base graph of mesh 6*6 and time window size of 8. Then, we compare the

maximal number of traffics can be successfully routed between TDM-based NoC and

the hybrid NoC architecture. In the result, we count the total number of hops. In the

hybrid architecture, each GS packet takes only one hop as all flits are transmitted in one

time slot.

Table 5. Comparison between TDM NoC and Hybrid NoC

cases Maximal # of traffics Average No. hops
RRR-Hybrid RRR-TDM RRR-Hybrid RRR-TDM

1 110 112 89 435
2 103 81 88 437
3 109 108 85 414
4 94 94 91 448
5 103 103 94 435
6 100 101 91 417
7 110 111 86 414
8 110 110 93 431
9 107 106 92 451

10 93 93 94 428
Average 103.9 101.9 90.3 431

In the result of Table 5, the solution space for TDM-based NoC design is similar

as the hybrid NoC design. The average of the maximal number traffics can be deployed

in TDM-based is 101.9 and that in Hybrid-based design is 103.9. The total number of

hops needed for the hybrid design is only 20.9% of that for TDM-based NoC design.

39

This means that the hybrid design significantly decreases traffic latency without

decreasing the capability of routing.

40

CHAPTER IV

CONCLUSIONS

The RRR-based algorithm for simultaneous time slot assignment and routing

increases the success rate compared to previous approaches. The negotiation-based

algorithm saves more energy for large TGFF cases in an acceptable runtime. As the size

of NoC increases, the negotiation-based algorithm shows greater advantages. The hybrid

NoC architecture successfully combines the circuit switching architecture with packet

switching architecture, decreases the latency for traffics, simplifies the design of the

architecture decreasing the number of Best-Effort routers, and reduces power

consumption by the simple GS router design.

41

REFERENCES

[1] M.D. Harmanci, N.P. Escudero, Y. Leblebici, and P. Ienne, "Quantitative modelling

and comparison of communication schemes to guarantee quality-of-service in networks-

on-chip ", in proceedings of IEEE International Symposium on Circuits and Systems,

IEEE, pp.1782-1785 vol.2, 2005.

[2] A. Hansson, K. Goossens, and A. Rãdulescu, "A unified approach to constrained

mapping and routing on network-on-chip architectures", in proceedings of the 3rd

IEEE/ACM/IFIP international conference on Hardware/software codesign and system

synthesis, ACM, pp. 75-80, 2005.

[3] Z. Lu and A. Jantsch, "TDM virtual-circuit configuration for network on-chip", Very

Large Scale Integration (VLSI) Systems, IEEE 16(8):1021–1034, Aug. 2008.

[4] R. Stefan, K. Goossens, "A TDM slot allocation flow based on multipath routing in

NoCs", Microprocessors and Microsystems 35(2): 130-138, 2011.

[5] J. A. Roy and I. L. Markov, "High-performance routing at the nanometer scale",

Computer-Aided Design of Integrated Circuits and Systems, IEEE 27(6):1066–1077,

June 2008.

[6] I. Walter, E. Kantor, I. Cidon, S. Kutten, "Capacity optimized NoC for multi-mode

SoC", in proceedings of the 48th Design Automation Conference, ACM, pp.942-947,

2011.

[7] J. Hu and R. Marculescu, "Energy-aware communication and task scheduling for

network-on-chip architectures under real-time constraints", in proceedings of Design,

42

Automation and Test in Europe Conference and Exhibition, IEEE, pp.234-239 vol.1,

2004.

[8] W.J. Dally, and B.P. Towles, "Principles and practices of interconnection networks",

Elsevier, 2004.

[9] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, "Networks on silicon:

combining best-effort and guaranteed services", in proceedings of Design Automation

and Test in Europe Conference and Exhibition, IEEE, pp.423-425, 2002.

[10] ATM Forum Technical Committee, "ATM User-Network Interface Specification",

The ATM Forum, 1994.

[11] D. Rhodes, R. Dick, and K. Vallerio, "Task graph for free",

http://ziyang.eecs.umich.edu/ dickrp/tg_/.

