
RECIPROCALLY-ROTATING VELOCITY OBSTACLES

A Thesis

by

ANDREW WEYAND GIESE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Nancy M. Amato
Committee Members, Suman Chakravorty

Dylan Shell
Head of Department, Nancy M. Amato

May 2014

Major Subject: Computer Science

Copyright 2014 Andrew Weyand Giese

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/147240038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Modern multi-agent systems frequently use high-level planners to extract basic

paths for agents, and then rely on local collision avoidance to ensure that the agents

reach their destinations without colliding with one another or dynamic obstacles.

One state-of-the-art local collision avoidance technique is Optimal Reciprocal Colli-

sion Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents,

ORCA may deadlock when polygonal shapes are used. To address this shortcom-

ing, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO extends

ORCA by introducing a notion of rotation. This extension permits more realistic

motion than ORCA for polygonally-shaped agents and does not suffer from as much

deadlock. In this thesis, we present the theory of RRVO and show empirically that

it does not suffer from the deadlock issue ORCA has, that it permits agents to

reach goals faster, and that it has a comparable collision rate at the cost of some

performance overhead.

ii

DEDICATION

To my parents, for everything

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Nancy M. Amato, for mentoring me through my

research here at Texas A&M. During my time under her, I’ve learned an incredible

amount and grown significantly as a technical person. I’m humbled by the patience

she displayed as I searched far and wide for a thesis topic, and beholden to her

reassuring words when things didn’t work as well as I’d hoped.

I am grateful to the GAMMA group at UNC Chapel Hill for helping me un-

derstand and use their open-source RVO2 library, which RRVO was built off of.

Specifically, thanks to Stephen J. Guy (now at University of Minnesota), Jur van

den Berg (now at University of Utah), and Ioannis Karamouzas (University of Min-

nesota). The RVO2 library can be found at http://gamma.cs.unc.edu/RVO2

Thank you to my co-author, Daniel Latypov, without whose help I might never

have run any experiments.

I would like to thank my friends and colleagues in the Parasol lab, who tolerated

my overly-excited impromptu whiteboard presentations on my research. I’d like to

specifically thank Jory Denny, Aditya Mahadevan, Ali-akbar Agha-Mohammadi, and

Adam Fidel, who not only acted as mentors and sounding boards in turn, but also

made me feel like a friend and equal.

I would like to thank Bob Lind, my high school Computer Science teacher for

showing me that Computer Science might be hard, but is also fun. Also, Jennifer

Seitzer, my first AI teacher and eventual co-author, for inspiring me to go to graduate

school. Finally, I’d like to thank my committee members, Dylan Shell and Suman

Chakravorty, for their kind words, support, and willingness to work with me under

a deadline.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

1. INTRODUCTION . 1

1.1 Thesis Organization . 4

2. RELATED WORK . 5

2.1 Reactive Models . 5
2.2 Predictive Models . 6
2.3 Cellular Automata . 8
2.4 Cognitive Models . 9

3. PROBLEM DEFINITION . 11

4. RECIPROCALLY-ROTATING VELOCITY OBSTACLES 12

4.1 Reciprocal Velocity Obstacles . 12
4.1.1 Construction . 13
4.1.2 Geometric Linear Programming 15

4.2 Reciprocal Rotation . 16
4.2.1 Method . 17
4.2.2 Obstacles . 22
4.2.3 Collisions . 22
4.2.4 Time Complexity . 23

5. EXPERIMENTAL RESULTS . 24

5.1 Metrics . 24
5.2 Experimental Setup . 25
5.3 Results (Rectangles) . 27

5.3.1 Frame rate . 27
5.3.2 Completion Rate . 28
5.3.3 Completion Time . 29

v

5.3.4 Collisions . 30
5.4 Effect of Shape . 31

5.4.1 Completion Rate . 31
5.4.2 Completion Time . 33

6. CONCLUSION . 34

REFERENCES . 35

vi

LIST OF FIGURES

FIGURE Page

1.1 A long skinny agent (blue rectangle) cannot reach its goal (green),
if represented as its bounding circle (blue dotted circle) or if only
translational movement is permitted. 2

4.1 (a) Two rectangular robots a1 and a2 on a collision course. (b) Con-
struction of V Oτ

a1|a2 for the scenario shown in (a). A linear constraint

(pink region) on a1v is derived from the velocity obstacle, and it can
be seen that a1v does not lie in the feasible region. 14

4.2 (a) When two circular agents with opposing velocities meet, even-
tually they are instructed to choose lateral velocities. (b) When
two rectangular agents with opposing velocities meet, they may never
choose a lateral velocity. 17

4.3 When two agents encounter a potential deadlocking situation, they
may rotate to better maneuver about one another. 18

4.4 (a) Agent A, represented as a black rectangle, bounds its maximum
counter-clockwise rotation by assuming another agent, B may rotate
at most as much as A. A discovers that a rotation of about 14◦ (light
gray) is the maximum it can rotate such that it doesn’t intersect the
swept volume of B through ±14◦ (gray). (b) Agent A is able to rotate
farther in a clockwise direction before an identical rotation from agent
B would cause a collision. 21

5.1 Progression of the Lines scenario for 50 agents. Agents are positioned
in opposing groups of parallel lines of five, and instructed to reach
their horizontally-symmetric positions. This scenario requires agents
to navigate around many stopped agents with very small gaps between
them. 26

5.2 Progression of the Circle scenario for 50 agents. Agents are positioned
evenly around a circle and directed to reach their antipodal position.
Congestion forms in the middle of the circle, but is eventually resolved,
and the agents reach their goals. 27

vii

5.3 Frame rate for RRVO as δ increases in the Lines and Circle scenarios.
RRVO remains interactive up through a δ value of 10. 28

5.4 Normalized frame rate of RRVO to ORCA. RRVO’s performance wors-
ens relative to ORCA on the order of δ2. 29

5.5 Percentages of agents to reach their goals in the (a) Lines and (b) Cir-
cle scenarios for RRVO and ORCA. RRVO enables more agents to
reach their goals than ORCA. 30

5.6 The number of frames, or timesteps, it takes for agents to reach their
goals for the (a) Lines and (b) Circle scenarios. RRVO outperforms
ORCA for all values of δ in that agents reach their goals quicker (How-
ever, p0 < 0.005 for δ = 0 in Lines instead of the usual p0 < 0.001). . 31

5.7 The number collisions experienced, on average, by those agents who
reached their goals in the (a) Lines and (b) Circle scenarios. Agents
using RRVO generally do not collide more often on average than if
they were to use ORCA, despite RRVO’s relaxed collision-avoidance
guarantees. In fact, in the Lines scenario they collide significantly less
than in ORCA due to deadlocked agents colliding with completed ones. 32

5.8 Percentages of agents to reach their goals in the (a) Lines and (b) Cir-
cle scenarios for RRVO and ORCA. As shapes approach circular, more
agents reach their goals. However, permitting rotation in general pro-
vides consistently high completion rates. 32

5.9 The number of frames, or timesteps, it takes for agents to reach their
goals for the (a) Lines and (b) Circle scenarios as the number of sides
in agent polygons is increased . 33

viii

1. INTRODUCTION

Collision-free path planning is a central part of any multi-agent system and is a

longstanding problem in robotics and animation. Planning a collision-free path for

even a single agent in a continuous environment was found to be NP-Hard [4], and

any centralized approach to planning collision-free paths for multiple agents is also

PSPACE-hard [19]. Despite these theoretical hurdles, fast and efficient solutions

have been designed using potential fields [25], priority-based decoupling [7], and

sampling-based methods [24] [20] [27].

Crowd simulations allow us to study the behavior of crowds ranging from a few

individuals to those numbering in the tens of thousands. They enable us to observe

how agents interact with each other given constraints on cooperation and competition

in a wide variety of realistic scenarios. Multi-agent systems have found numerous

application in architectural design [35], emergency training [28], entertainment [34],

urban planning [1], and more.

To satisfy interactivity requirements for crowd simulation, it is common to sep-

arate planning into high-level and low-level phases. The high-level planner usually

preprocesses the environment to construct a static navigation graph (e.g., a naviga-

tion mesh [26]) that can quickly solve path queries using A* or Dijkstra’s shortest

path algorithms. After a desired path is extracted by the high-level planner, control

is handed off to a low-level planner that is responsible for navigation decisions on a

per-timestep basis. The low-level planner’s role can be considered online local colli-

sion avoidance (LCA). LCA is responsible for deforming a trajectory generated by a

high-level planner in order to avoid collision with unforeseen obstacles. LCA is usu-

ally performed in each sense-plan-act cycle, whereas high level planning is performed

1

periodically.

Recently, decoupled methods that anticipate the positions of obstacles over a

small time window have gained traction [8]. These Velocity Obstacle (VO) variations

are able to efficiently simulate agent movement for up to thousands of agents, and

are amenable to parallelization. Most Velocity Obstacle techniques assume disc-

shaped robots translating in a plane. This representation may be unsuitable for

some agents, e.g., a bus, or one may wish to use a larger variety of shapes to model

finer interactions between agents. Another important weakness of VO methods is

that they restrict motion to translation, which is sufficient when circular agents are

used because a circle is rotation invariant. However, using the bounding circle of

an agent or restricting it to translation alone may cause some problems to become

unsolvable, as in the example shown in Figure 1.1.

Figure 1.1: A long skinny agent (blue rectangle) cannot reach its goal (green), if represented as its
bounding circle (blue dotted circle) or if only translational movement is permitted.

In this work, propose Reciprocally-Rotating Velocity Obstacles (RRVO) to address

the inadequacies of using translating discs to represent agents for local collision

avoidance. RRVO represents agents as convex rotating polygons, and in each sense-

plan-act cycle, an agent chooses a new translational velocity and orientation. Agents

2

avoid colliding with each other while rotating by assuming their neighbors may rotate

as much as themselves. By choosing high clearance rotations, RRVO often breaks

the symmetries that cause deadlock in ORCA.

In ORCA, an agent’s neighbors induce constraints on collision-free velocities for

the next time step. These constraints form the basis of a linear program that is solved

to find a collision-free velocity that is optimized to be nearest to some preferred

velocity. In RRVO, each collision-free orientation is associated with a linear pro-

gram. Collision-free orientations are discovered by discretizing the interval through

which an agent may rotate in the next time frame, and then applying a notion of

reciprocity where we account for potential orientations of neighboring agents. The

naïıve RRVO algorithm solves all linear programs and arbitrates over the resulting

collision-avoiding velocities to choose a preferred one. In our implementation, we

discard most linear programs by minimizing the distance from an agent’s current

velocity to the feasible region. By utilizing the space more efficiently via rotation,

we empirically show that RRVO agents deadlock less frequently than ORCA ones.

The cost of accounting for ones own orientations, as well as the orientations of each

neighbor, however, incurs a theoretical performance penalty that is quadratic in the

granularity at which we discretize these sets of orientations.

Our specific contributions include:

• Reciprocally-Rotating Velocity Obstacles (RRVO) theory,

• Analysis of time complexity, and

• An empirical study that shows how RRVO results in less deadlock, faster com-

pletion, and comparable collision rates to ORCA in exchange for some compu-

tational overhead.

3

A version of this work [11] with preliminary results has been accepted to ap-

pear at the IEEE International Conference on Robotics and Automation (ICRA) in

May/June 2014.

1.1 Thesis Organization

This thesis is organized as follows. Section 2 describes related work for local

collision avoidance in multi-agent systems. Section 3 more formally defines the

multi-agent collision avoidance problem as it pertains to polygonal agents. Section 4

introduces the theory of Reciprocally-Rotating Velocity Obstacles and reviews its

foundations. In Section 5 we detail our experimental approach of RRVO, and com-

pare it to ORCA in terms of overhead and deadlock resolution. Finally, we summarize

and conclude the work in Section 6.

4

2. RELATED WORK

Local collision avoidance has been studied extensively. In this section, we separate

different approaches to LCA into four different models: reactive, predictive, cellular

automata, and cognitive (rule-based).

2.1 Reactive Models

Local collision avoidance was popularized largely by Reynolds’ seminal work

where agents in a flock were attracted to either a global or local flock center, but

repulsed from nearby neighbors [32]. The flock as a whole was given a goal, called a

“migratory urge”, and individual members attempted to match velocities with their

neighbors. The result was realistic bird-like flocking that didn’t need to be explicitly

scripted by an animator. Avoidance of static obstacles was performed geometrically

by finding the nearest point on each obstacle and assigning a repulsive force from

the surface normal.

Helbing expanded Reynold’s ideas to include general social forces acting as at-

tractive and repulsive impulses [17]. Personal space was represented with a radius

about an agent’s center, and a repulsive force was assigned to any other agent that

entered this sphere. Agents grouped together as families or friends remained coherent

via an attractive force assigned they mutually assigned each other.

Reif and Wang independently developed a social forces model in [31]. Although

their work shares many similarities to Helbing’s, it was actually inspired by Khatib’s

seminal work [25] on potential fields. Reif and Wang make an argument for spring

laws to allow flocks to assemble into predefined formations, analyze the stability and

convergence of their fields, and design a number of hierarchical potential laws to

achieve specific desired behaviors other than generic flocking or single-point queries.

5

Collision avoidance is still handled through locally assigning repulsive forces to the

centers of nearby agents and obstacles.

The same year as Reif and Wang’s paper, Reynolds presented work that argued

for a library of primitive steering behaviors that could be combined to create realistic

pursuit-evasion, wander, path following, leader following, and cohesion behaviors [33].

Combining the higher level behaviors in a priority-based architecture would allow

one to create realistic agents capable of a variety of tasks. Obstacle avoidance is

handled via its own primitive steering behavior where a cylinder extends outward

from an agent’s forward axis as a sort of probe to test for future collisions. When

the cylinder intersects an obstacle or other agent, a repulsive force is assigned to the

point of intersection. This cylinder grows and shrinks dynamically with the agent’s

speed.

In [10], Gayle et al. used ideas from both [18] and [31] to allow for collision-free

translational and rotational motion between arbitrary polyhedra. This was achieved

by sampling points across the surfaces of the polyhedra, and then combining social

forces on those individual points to provide acceleration and torque. All forces acting

on the agents were incorporated as physical constraints for a physics-based motion

planner described in [9]. Our work also allows for rotational motion, but does so

without using potential fields to impart torque; instead, we use a geometric approach

to create linear programs which agents explicitly use to select desirable orientations.

2.2 Predictive Models

Predictive models anticipate future collisions so that agents can take steps to

avoid them. Often this means linearly extrapolating neighbor velocities, and then

avoiding the future locations of those neighbors.

Our work most closely follows that of Reciprocal Velocity Obstacles (RVO), first

6

presented by van den Berg et al. in [43] and then renamed to Optimal Reciprocal

n-Body Collision Avoidance (ORCA) in [41]. RVO and ORCA predict the set of

collision-causing velocities for each agent by assuming linear trajectories, and then

choose a velocity outside that set. The main difference between RVO and ORCA is

that ORCA solves a linear program whereas RVO searches via sampling.

RVO has been the focus of much research, and there are many variations and

optimizations in the literature. None of them allow agents to rotate, and instead

concern themselves almost exclusively with choosing a better collision-free transla-

tional velocity.

In [36], the authors were interested in modelling arrival and departure behaviors

around shared resources. Departing agents use RVO normally, but arriving agents

use a slightly modified version to change their preferred velocities so that they defer to

the departing agents. In [12], the authors assign a confidence level to predicted future

positions that drops off linearly with time. Agents prioritize avoiding positions they

are more confident about. He and van den Berg developed an ORCA-variant that

considers groups of agents as single entities for meso-scale collision avoidance [16].

In [13], RVO is used to compute the set of collision-free velocities, from which agents

choose those that minimize biomechanical energy expenditure using the principle of

least effort. In [14], the authors sought to parallelize RVO computations on SIMD,

shared-memory, multi-core machines. Yeh et al. developed a system where agents

signal intent by placing proxy agents at locations they wished others to avoid [44].

Finally, in [15], the authors used a psychological model to vary the parameters of

RVO to create more realistic simulations.

In [23], the authors used Helbing’s social forces model with a twist. Instead of

agents simply reacting to the presence of other agents inside their personal space,

agents integrate their own trajectories and linearly extrapolate the trajectories of

7

other agents to predict future collisions. For each future collision, an evasive force

is applied that drops off exponentially with distance. Evasive force is thresholded

to avoid jerky motion. The result is that agents take paths that expend less energy

than agents using a pure social forces approach.

In [39], the authors employed a mixture of long, mid, and short-term planning

coupled with a collision prediction model as well as reactive collision avoidance to

achieve realistic motion for thousands of agents in real-time. The authors exper-

imented with adapting the frequencies at which the passive perception, collision

prediction, and reactive behaviors would run, enabling them to use fewer resources

while achieving the same effect. The difference between our work and theirs is that

their reactive collision avoidance model involved casting three rays out from the agent

to detect nearby obstacles and agents, and using a rule-based system to determine

an action based on the object’s relative position.

Sometimes it may be preferable to not make any assumptions about an agent fol-

lowing a predictable trajectory. Egocentric Affordance Fields rates areas around

other agents as threatening based on their proximity and relative velocity [22].

Threatening areas create repulsive potential fields about the agent. Other poten-

tial fields are constructed in concentric rings about the agent, and the resulting

motion is a result of the summed forces acting upon it at any point in time.

2.3 Cellular Automata

When crowd density becomes exceptionally high, modelling agents as particles or

incompressible fluids has become an attractive notion. Largely based on the work of

Hughes [21] and Chenney [5], these approaches discretize the environment into a grid

of varying coarseness, and assign velocity fields that direct agent motion in individual

cells. Due to the nature of cellular decomposition, agents cannot theoretically collide

8

and thus local collision avoidance is rarely needed.

Treuille et al.’s Continuum Crowds maps agents to grid cells and generates po-

tential fields based on how much weight an agent assigns path length, time, and

congestion [40]. Computing an agent’s path is done by integrating the sum of po-

tentials acting on it. Agent speed varies depending on crowd density and terrain

slope. Because the grid may be relatively coarse, agents in the same grid cell may

occasionally intersect, so the authors iterate over all pairs of agents and enforce a

minimum separation distance. While such an approach works well in practice it is

not guaranteed to satisfy the minimum distance constraint, as moving one agent

affects its distance to all others.

Narain et al. took a similar approach, but added a notion of incompressibility

where agents in areas of especially high density are more affected by the overall

average crowd velocity of that area [29]. Collision avoidance is again handled by

enforcing a minimum pairwise distance between all agents.

While cellular automata approaches are extensively used for their ability to sim-

ulate extremely large crowds, they make many simplifying assumptions about indi-

vidual agents. In particular, they usually do not account for agent-specific physical

or mental properties such as visual occlusion or variable environmental knowledge.

Instead, they are applicable for simulating large groups of homogeneous agents.

2.4 Cognitive Models

Cognitive models attempt to incorporate human psychology into overall crowd

behavior. The variables representing each agent’s mental state affect the goals the

agents intend to reach, and indirectly the routes the agents will traverse.

Shao and Terzopoulos constructed a system where agents sense ground height

and static and dynamic obstacles [38]. Agents are equipped with a small library of

9

reactive rule-driven behaviors to avoid collision. By using a hierarchy of variably-

detailed maps to solve planning and pathing queries, the authors were able to achieve

real-time performance for many agents in a large environment. The maps range

from a simple topological graph indicating connections between rooms to a fine grid

decomposition to be used for reactive collision avoidance.

In [30], the authors combined psychological, social forces, and geometrical rules

into a system meant for more realistic simulation of very large crowds that would not

have the downsides of a cellular automata approach. Collision avoidance is handled

with a mixture of social forces and geometric rule-based behaviors. The authors

successfully addressed the “shaking” problem that can appear in simulations where

agents appear to vibrate in high density situations due to repulsive forces on all

sides. The resulting system successfully recreates a variety of phenomena seen in

large crowds, such as panic propagation, bi-directional flow, pushing, and queuing.

Cognitive models generally result in more realistic motion among agents, but

one weakness is that they typically rely on rule-driven collision avoidance behaviors,

which may require a great deal of hand-tuning.

10

3. PROBLEM DEFINITION

In this section , we describe the collision avoidance problem for multi-agent sys-

tems that is addressed in this thesis. For the following definitions, we will restrict

ourselves to a two-dimensional environment and assume there are no nonholonomic

constraints on movement.

Let there be a set of n agents A such that each agent ai ∈ A can be represented

with a position aipos and an orientation aiθ ∈ (−π, π]. The agent’s geometry, aiP ,

is a convex polygon consisting of the vertices {aiP1
, aiP2

, · · · , aiPm
} centered about

aipos and rotated about the vertical axis by aiθ . Agent ai additionally has a velocity

aiv , a maximum translational speed aismax
, and a maximum angular velocity aiωmax

.

Finally, the agent has a preferred translational velocity aivpref and orientation aiθpref .

Problem 1. (Collision Avoidance) Each agent ai ∈ A must choose a new collision-

free velocity and orientation at each timestep of the simulation such that is valid for

a time interval of length ≥ τ .

Ideally, the new velocity aivnew
and orientation aiθnew

are as close as possible to

the agent’s preferred velocity and orientation, respectively. LCA techniques such as

ORCA and RRVO are not concerned with choosing aivpref or aiθpref and assume that

both are provided by the high-level planner. For example, aivpref =
(
aigoal − aipos

)
and aiθpref = atan2(aivpref), where atan2 is the signed arctangent function. We

assume agents do not explicitly coordinate to select new orientations and velocities.

11

4. RECIPROCALLY-ROTATING VELOCITY OBSTACLES

In this section we introduce Reciprocally-Rotating Velocity Obstacles (RRVO),

our solution to the multi-agent collision avoidance problem where non-circular agents

assume that their neighbors are equally capable of rotating as much as they are each

timestep. First we provide some background on velocity obstacles, including their

construction and the notion of reciprocity between agents. Next, we introduce the

idea of reciprocal rotation. Finally, we address the theoretical complexity of RRVO

before discussing how RRVO handles obstacles and resolves collisions.

4.1 Reciprocal Velocity Obstacles

A velocity obstacle [8] is defined as the set of all robot velocities that will cause

a collision. In its original formulation, agents assume others continue moving along

a linear trajectory. In [41], this assumption is different in that agents assume others

will bear half the responsibility of avoiding a collision (reciprocity).

The high-level view of the algorithm for Optimal Reciprocal Collision Avoidance

(ORCA) is displayed in Algorithm 1. In ORCA, each agent transforms the posi-

tions and velocities of its nearest neighbors into linear constraints on its own chosen

velocity. Solving the resulting linear program yields a collision-free (or nearly so)

new velocity. The resulting linear program may be infeasible, in which case the con-

straints are relaxed until exactly one velocity is feasible. A feasible linear program

is guaranteed to be collision-free provided that other agents employ the same algo-

rithm. In an infeasible linear program, the chosen velocity is that which violates

constraints the least, and is thus the most likely collision-free velocity attainable.

12

Algorithm 1 Compute new velocity for agent ai

Input: neighborsai ⊂ A
Output: aivnew

1: for all neighborj ∈ neighborsai do
2: Add a linear constraint on aivnew

3: Solve linear program to find aivnew

4.1.1 Construction

Algorithm 1 solves a linear program to discover a new collision-avoiding velocity

for ai. At the core of the algorithm is the creation of each linear constraint based on

the positions and velocities of ai’s neighbors. This involves first building a Velocity

Obstacle, which is a geometric region in velocity space denoting the set of agent

velocities that are not guaranteed to be collision-free.

Given two agents a1 and a2, a1 will create a velocity obstacle representing a2 (and

vice-versa) such that a1 wishes to choose a guaranteed collision-free velocity for the

time interval τ . We denote this velocity obstacle representing a2 as V Oτ
a1|a2 . The

computation of V Oτ
a1|a2 is shown in Algorithm 2.

Geometrically, V Oτ
a1|a2 is an unbounded polygon such that:

• It contains the Minkowski sum of a1 and a2’s geometry, M = a1P ⊕ a2P , where

⊕ is the Minkowski sum operator,

• it is bounded by at least one line segment on M ,

• it is bounded on two sides by the tangent lines on M through the origin, and

• it is otherwise unbounded.

Figures 4.1(a) and (b) show an example of this construction.

13

Algorithm 2 Compute velocity obstacle induced by a2 on a1

Input: Agents a1 and a2, time horizon τ
Output: V Oτ

a1|a2
1: M ← a1P ⊕ a2P //Minkowski Sum

2: Translate
(
M ,

a2pos (1−τ)−a1pos (1+τ)

τ

)
3: Scale(M , 1

τ
)

4: (tleft, tright)← ComputeTangents(M , 0)
5: for all mi ∈M do
6: if ((tright − tleft)× (mi − tleft)) ≤ 0 then
7: V Oτ

a1|a2= V Oτ
a1|a2∪ {mi}

8: //Represent unbounded sides with tangent vectors
9: V Oτ

a1|a2 .left leg ← 2tleft
10: V Oτ

a1|a2 .right leg ← 2tright

(a) (b)

Figure 4.1: (a) Two rectangular robots a1 and a2 on a collision course. (b) Construction of
V Oτ

a1|a2
for the scenario shown in (a). A linear constraint (pink region) on a1v is derived from the

velocity obstacle, and it can be seen that a1v does not lie in the feasible region.

The translation applied to M on line 2 of Algorithm 2 is actually the combination

of three different translations. Computing the Minkowski sum M of a1 and a2 and

translating it to a2pos allows us to discard a1’s geometry and only consider it as a

point robot defined by a1pos . To get an absolute frame of reference, we consider a1

at the origin (egocentric coordinates), so we translate M by −a1pos . Furthermore,

we only require that a1 chooses a velocity that is valid for a given time interval τ ,

so we scale M and its position by 1
τ
(line 3). This has the effect of ‘dragging’ the

14

Minkowski sum nearer to the origin to simulate future timesteps while maintaining

the same tangent lines.

ComputeTangents() computes tleft and tright, which are the tangent points

on M relative to the origin. They act as endpoints to rays in the direction of the

tangent lines that help bound V Oτ
a1|a2 . Lines 5-7 use these endpoints to compute the

line segment(s) on M that bound V Oτ
a1|a2 .

4.1.2 Geometric Linear Programming

Note that V Oτ
a1|a2 is a constraint on the relative velocity of a1 and a2, defined as:

Definition 1. (Relative Velocity) vrela1|a2 = a1v − a2v

In this section we will transform V Oτ
a1|a2 from a constraint on vrela1|a2 into a linear

constraint on a1v , which agent a1 can use to choose its new velocity vnewa for the

next timestep.

Any relative velocity vrela1|a2 inside V Oτ
a1|a2 will violate our guarantee of collision-

free movement for time τ . Finding pnear, the nearest point on V Oτ
a1|a2 to v

rel
a1|a2 , allows

us to compute the minimum amount that vrela1|a2 must change (u):

Definition 2. (Minimal Velocity Change) u = pnear − vrela1|a2

When testing obstacle-agent collisions, full responsibility is on the agent to affect

vrela1|a2 , so a1v must change by at least u to avoid collisions. However, for agent-agent

collisions, each agent a1 and a2 assumes half the responsibility in affecting vrela1|a2 , so

the minimum amount that a1v and a2v must change is u
2
. In [41], they prove this

formulation still results in collision-free motion.

a1v + u is a vector facing in the direction that a1v must change for collision

avoidance. We can represent the entire set of admissible velocities as a geometric

half plane bounded by the line perpendicular to a1v + u. This half-plane is a linear

15

constraint on the agent’s next chosen velocity where the feasible region lies in the

direction u from a point on the bounding line. An example linear constraint is shown

in Figure 4.1(b).

Each velocity obstacle for agent a1 induces a new linear constraint on a1’s chosen

velocity. Consequently, solving for vnewa involves solving a two-dimensional linear

program, which can be done in O(n) randomized expected time where n is the

number of constraints [37].

When crowd density becomes high, it is possible that a solution to the linear

programming problem does not exist, which will cause the solver to fail. Because

the agent still needs to decide upon a velocity, the two-dimensional linear program is

transformed into a three-dimensional one where the infeasible velocity that minimizes

the distance to its nearest half-plane is chosen. This velocity can be thought of as

the velocity that violates constraints the least [41].

4.2 Reciprocal Rotation

Using velocity obstacles to derive collision-free velocities works well when agents

are represented as discs; when agents become near, so do the tangent points they

compute on the dilated disc representing the Minkowski sum between their geome-

tries. That is, vrela1|a2 almost always eventually projects onto a tangent line, allowing

agents to move around each other, as in Figure 4.2(a).

When agents are polygonal, though, this construction has a serious flaw. When

two polygonal agents interact, there is no guarantee that the tangent points on

a1P ⊕ a2P grow nearer as the agents do, which can cause deadlock, as shown in

Figure 4.2(b). In Reciprocally-Rotating Velocity Obstacles, we reduce the possibility

of deadlock between two agents by explicitly disallowing this scenario. When we also

allow agents to rotate, we can greatly reduce the amount of deadlock.

16

(a) (b)

Figure 4.2: (a) When two circular agents with opposing velocities meet, eventually they are in-
structed to choose lateral velocities. (b) When two rectangular agents with opposing velocities
meet, they may never choose a lateral velocity.

When we permit polygonal agents a1 and a2 to rotate, the shape of the velocity

obstacles they induce on each other will change. As shown in Figure 4.3, as agents

actively rotate, they can more easily utilize available space to move around one

another.

In Reciprocally-Rotating Velocity Obstacles, agents assume that others will rotate

reciprocally. That is, in RRVO, agents assume that others may rotate equally (or

equally opposite). When all agents make this assumption, they can intelligently

choose collision-free orientations. RRVO easily handles rotating agents, and considers

convex obstacles as special cases of (convex) agents. Therefore, we consider RRVO

to be an extension and generalization of ORCA.

4.2.1 Method

In this subsection, we present Reciprocally-Rotating Velocity Obstacle theory,

from deciding which neighboring agents must be considered to how we use the notion

of reciprocal rotation to choose a collision-free orientation.

17

(a) (b) (c) (d)

Figure 4.3: When two agents encounter a potential deadlocking situation, they may rotate to better
maneuver about one another.

The idea behind RRVO is to assume a maximum amount of rotation by nearby

neighbors, and then compute approximated swept areas they may rotate through.

From these swept areas, we may create Velocity Obstacles, the boundaries of which

can be transformed into linear constraints on velocity. An overview of the method is

presented in Algorithm 3. The approximation of the swept area and the creation of

the linear constraints are handled simultaneously by rotating each (convex) neighbor

by a small amount and using the methodology of ORCA to create a linear constraint

for that orientation. Later in this section we will more fully explain what we mean

by “reachable orientations”.

Algorithm 3 Compute new velocity and orientation for agent ai

Input: neighborsai ⊂ A, aiωmax

Output: aivnew
, aiθnew

1: LP ← a set of linear programs
2: for all Orientations reachable by ai do
3: for all neighborj ∈ neighborsai do
4: for all Orientations reachable by neighborj do
5: LP [i] = LP [i] ∪ linear constraint on aivnew

6: Solve linear programs in LP and choose desired
(
aivnew

, aiθnew

)

18

Not every agent in the environment needs to be considered as a reciprocally-

rotating neighbor. In fact, if we could observe the maximum speeds of other agents,

we could compute the set of neighbors that must be considered when rotating to

guarantee collision-free rotation by using their bounding radii.

Definition 3. (Bounding Radius) The bounding radius of agent ai, airad, is the

maximal Euclidean distance from aipos to some point aiPj
∈ aiP .

Definition 4. (Rotation Neighbors) The rotation neighbors for agent ai ∈ A for time

interval τ are defined by the set Nrotai
= {∀ai ∈ A | aj 6= ai, ||aj − ai|| − τ(aismax

+

ajsmax
) < (airad + ajrad)}

Rotation neighbors for polygonal agents can be visualized by returning to the

notion of disc-shaped agents, such that every agent’s disc has radius equal to the

distance from the agent’s center to the farthest point on its polygonal boundary. For

any agent, its rotation neighbors consist of those whose discs (could) overlap its own

within τ .

Given a time interval of duration τ , every agent ai ∈ A has a set of reachable

orientations aiθreach ⊆ (−π, π] from which it will choose aiθnew
.

Definition 5. (Reachable Orientations) aiθreach = {aiθ −
(
τaiωmax

)
, aiθ +

(
τaiωmax

)
}

\ {∀θ | ∃aj ∈ Nrotai
, ai 6= aj, aipos ∈ aiP ⊕ ajP }

Implicit in Definition 5 is that ∀aj ∈ A (ai 6= aj), aj is rotated by the same ∆θ

(or −∆θ) as ai. That is, ai cannot choose a change in orientation if an equal (or

equally opposite) change in ajθ would cause a collision. Also not stated is that the

Minkowski sum between ai and aj’s geometries, aiP ⊕ ajP , is centered at ajpos .

RRVO approximates the bounds on aiθreach by discretizing the set of rotations by

the constant δ. For each orientation of ai, we check for collision against δ neighbor

19

orientations, for all neighbors. If there is a collision, then aiθreach is approximately

bounded in that direction (clockwise or counter-clockwise).

After aiθreach is computed, a desired orientation must be selected from the interval.

If the chosen aiθnew
is not reachable in the next frame, then aj simply rotates at its

maximum speed for that timestep (this can happen if τ is on the order of a few

seconds).

Given the above information, Algorithm 3 can then be summarized as follows:

• Agents assume that the reachable change in their own orientation is the same

reachable change by any neighbor.

• If a rotation causes collision with any neighbors’ set of potential orientations,

no more linear programs are created because the set of reachable orientations

has been bounded (see Figure 4.4); linear programs are only created for (ap-

proximately) collision-free orientations.

• To choose a new orientation and velocity, all linear programs are solved and

some function is applied on the resulting choices to choose an optimal one.

In our implementation, we further optimized the method by discarding most

linear programs. We only kept those where we considered the feasible region to

be maximized. To understand the specifics of how this is performed, recall that

each constraint of a linear program is created by finding u (Definition 2), the vector

representing the distance from vrela1|a2 to V Oτ
a1|a2 . Geometrically, we developed the

notion of a signed magnitude for the vector u. We consider u’s magnitude as negative

if V Oτ
a1|a2 is contained within V Oτ

a1|a2 , and positive otherwise. More formally, u’s

magnitude is negative if the angle between it and a vector pointing toward the

center of V Oτ
a1|a2 is greater than

π
2
. In any linear program, there will be one or more

20

constraint that has minimal magnitude of u. We associate this minimum value of u

with each linear program and only keep those linear programs that maximize it.

After solving the remaining linear programs, we ranked the potential new (orien-

tation, velocity) pairs by the following criteria (in order of precedence):

1. Linear program feasibility (favor linear programs that don’t relax constraints)

2. Minimization of |atan2(aiv)|− |aiθ | (favor those that allow agents to face their

velocity vectors)

3. Minimization of |aiv − aivpref | (favor those that allow agents to follow their

preferred velocities)

(a) (b)

Figure 4.4: (a) Agent A, represented as a black rectangle, bounds its maximum counter-clockwise
rotation by assuming another agent, B may rotate at most as much as A. A discovers that a
rotation of about 14◦ (light gray) is the maximum it can rotate such that it doesn’t intersect the
swept volume of B through ±14◦ (gray). (b) Agent A is able to rotate farther in a clockwise
direction before an identical rotation from agent B would cause a collision.

Choosing a new velocity that satisfies all constraints should lead to collision-free

rotation and translation. However, because we have discretized the set of orientations

instead of computing an actual swept area, our approach is an approximation that

improves as δ increases. The approximation may be overly optimistic for low values

21

of δ, which could lead to a choice of velocity and orientation that may cause a collision

in the transition to aiθnew
. As we show in our results though, even low values of δ

(< 10) lead to very few collisions. Another caveat of our algorithm is that we are

forced to approximate the set of rotation neighbors by using a conservative nearest

neighbor check because we do not allow agents to deduce maximum speeds of other

agents.

4.2.2 Obstacles

RRVO can be extended to work with static obstacles. Assuming that obstacles are

also represented using convex polygons, agents may treat them as motionless agents.

Accounting for obstacles, therefore, is simpler and more efficient than accounting for

other agents. However, RRVO is only concerned with collision avoidance, and is like

ORCA in that it is not guaranteed to direct the agent around static obstacles; a

high-level planner should take that responsibility.

4.2.3 Collisions

A feasible solution to the linear program does not always exist. In this case, the

agent may find itself in collision at the next timestep. When an agent is in collision,

a velocity obstacle cannot be constructed because no tangent lines exist. In this

case, we instead choose to construct a linear constraint based on the distance from

a1pos to the nearest point on M scaled by the timestep duration. Such a constraint

encourages agents to choose velocities that escape collisions. When an agent is in

collision, RRVO allows them to rotate through the entire set of orientations without

regard to collision in an additional effort to resolve collision via rotation.

22

4.2.4 Time Complexity

In ORCA, finding one’s k-nearest neighbors is performed in O(k log n) time on

average when using a k -d tree, which can be constructed in O(n log n) time [2]. Ve-

locity obstacle creation for each agent is a constant time operation with circles, and

solving the geometric linear program involves satisfying k constraints, one for each

neighbor. As mentioned in Section 4.1.1, solving such a two or three-dimensional

linear program can be done in O(k) time. Every agent must perform nearest neigh-

bor search and solve a linear program, so the total time complexity of ORCA is

O (nk log n+ nk) = O (nk log n).

Reciprocally-Rotating Velocity Obstacles performs the same operations at each

step except for the computation of velocity obstacles. Computing a velocity ob-

stacle for two convex polygonal agents a1 and a2 requires the Minkowski sum of

a1P and a2P , as well as computation of tangents. Assuming a suitable representa-

tion of a polygon (e.g., a vertex list topologically sorted counter-clockwise about the

polygon’s centroid), computing the boundary of the Minkowski sum can be done

in O(||a1P || + ||a2P ||) using the convolution method, and finding the tangents is at

worst O(n) in the number vertices of the Minkowski sum [6] (by construction of

the Minkowski sum, we retain the counter-clockwise sorting of the vertices). Addi-

tionally, for each ∆aiθ for which we create a linear program, each neighbor adds δ

constraints to the linear program due to of our discretization of the rotation interval.

Therefore we must compute O(δ2) velocity obstacles for each neighbor. The the-

oretical complexity RRVO incurs is therefore O(δ2argmax(||aiP ||)). Realistically,

a comparable implementation of ORCA to handle polygons must also take on the

additional complexity involved in computing Minkowski sums, so we can consider

RRVO’s additional complexity to be on the order of δ2.

23

5. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate Reciprocally-Rotating Velocity Obsta-

cles. We compare it against ORCA in terms of computational performance, deadlock

resolution, and collision frequency. We show that RRVO suffers from less deadlock,

scales according to our analysis of time complexity, and experiences a comparable col-

lision rate as ORCA. As the shapes used to approximate agents approach a bounding

circle, though, the ORCA and RRVO behave the same.

5.1 Metrics

We measure deadlock in RRVO versus in ORCA by first tracking the percentage

of agents at their goal at simulation’s end. If there is less deadlock, then more agents

will reach their goals. Some agents will be totally deadlocked, and therefore will not

complete. We track only those agents at their goal positions at simulation end instead

of the number of agents that reached their goals once because it is very common for

an agent to get pushed off its goal position, and then subsequently deadlock with

another agent and never reach its goal again.

Next, we measured the number of frames it took each agent to arrive at its goal.

In this case, we track frames for agents that reach their goal once, and then only

for the number of frames it took for them to reach it that first time. That is, if an

agent arrives at its goal, is pushed off it, and then arrives again, we only consider

the number of frames from beginning to the first goal arrival.

We computed the average frame rate (FPS) normalized by the frame rate of

ORCA to show the overhead that RRVO introduces. This measurement is intended

to show how RRVO scales with higher values for δ, and to validate our analysis of

complexity.

24

Finally, we tracked the mean number of collisions agents experienced throughout

the simulation. Because RRVO is only approximately collision-free in scenarios where

ORCA is guaranteed to be collision-free, this measurement is intended to show the

reader how much more collisions to expect when using RRVO.

We only tracked the number of frames and the average collisions for those agents

that actually reached their goals because otherwise the results would be unfairly

skewed in RRVO’s favor due to the fact that it experiences less deadlock than ORCA.

Deadlocking agents tend to collide much more than non-deadlocking agents and skew

the average number of frames it takes for agents to reach their goals.

5.2 Experimental Setup

We implemented RRVO in C++ by adapting the RVO2 library [42]. The library

has existing support for coarse OpenMP parallelization which we retained, although

it by no means represents the limits of RRVO’s scalability. Timing experiments were

run on a quad-core Intel i5-2520M system with 4 GB of memory running Ubuntu

12.04, and we used Performance Application Programming Interface (PAPI) high

performance timers.

For our first round of experiments, we explicitly compare RRVO against ORCA

for all metrics. Agents are modelled as rectangles with a length-to-width ratio of

1.83, which is intended to model the shoulder-to-chest depth ratio of the average

human [3]. We vary the value of δ to observe how finer searching of rotations would

affect our metrics.

For our second round of experiments, we are interested in the effect of shape on

deadlock for both RRVO and ORCA. To that end, we vary the number of sides used

to approximate a bounding circle about an agent. The circle sizes are equivalent to

the bounding circles of the agents from the first round of experiments.

25

For all 33 trials, we used 50 agents. To account for the fact that deadlocking

agents will sometimes never reach their goals, we capped each trial at 20,000 frames.

In each graph we show a 95% confidence interval around each measurement. We

employed Welch’s t test to test for statistical significance. Except where otherwise

stated, α = 0.001.

We experiment with RRVO in two scenarios that have high potential for deadlock:

Lines Five parallel lines of five agents move opposite another group of five parallel

lines of five agents. Agents attempt to reach their horizontally-symmetric positions,

which causes a great deal of congestion. An example simulation of this scenario is

shown in Figure 5.1.

Figure 5.1: Progression of the Lines scenario for 50 agents. Agents are positioned in opposing
groups of parallel lines of five, and instructed to reach their horizontally-symmetric positions. This
scenario requires agents to navigate around many stopped agents with very small gaps between
them.

26

Circle 50 agents are evenly distributed about a circle, and then instructed to

reach the location directly opposite themselves. This scenario causes extreme crowd

density near the center. Figure 5.2 shows an example simulation of this scenario.

Figure 5.2: Progression of the Circle scenario for 50 agents. Agents are positioned evenly around a
circle and directed to reach their antipodal position. Congestion forms in the middle of the circle,
but is eventually resolved, and the agents reach their goals.

5.3 Results (Rectangles)

In this section we present the relative performance of RRVO and ORCA when

rectangular agents (approximating humans) are used.

5.3.1 Frame rate

In Figure 5.3, we demonstrate the frame rates at which the Lines and Circle

scenarios progressed, excluding render time. This figure is intended to show that

even with average computing hardware, RRVO is able to run interactively for δ

27

values up to 10.

 32

 64

 128

 256

 512

 1024

 2048

 0 2 4 6 8 10

F
P

S

δ

Scalability of RRVO in δ

Lines

1053.1

325.4

158.1

91.6

59.5

41.7

Circle
1610.1

515.5

288.9

185.9

123.6

86.6

Figure 5.3: Frame rate for RRVO as δ increases in the Lines and Circle scenarios. RRVO remains
interactive up through a δ value of 10.

Figure 5.4 shows RRVO’s frame rate normalized to ORCA for both scenarios.

The plot shows that RRVO slows down on the order of δ2 albeit slightly better due

to the optimizations mentioned in Section 4.2.1. While having worse performance

than ORCA is a drawback of our method, it may be preferable when the alternative

is deadlock.

5.3.2 Completion Rate

Our results show that RRVO enables more agents to reach their goals than ORCA.

RRVO agents seem to rarely to mutually block each other. Instead, they tend to

either rotate about each other, or use rotation to more efficiently form lanes. Con-

versely, ORCA agents often find themselves in local minima where only a large lateral

velocity would resolve the deadlock.

28

0.0078

0.0156

0.0312

0.0625

0.1250

0.2500

0.5000

1.0000

 0 2 4 6 8 10

N
or

m
al

iz
ed

 F
P

S

δ

RRVO FPS Normalized to ORCA

Lines
Circle

Predicted

Figure 5.4: Normalized frame rate of RRVO to ORCA. RRVO’s performance worsens relative to
ORCA on the order of δ2.

Figures 5.5(a) and (b) show the percentage of agents that reach their goals in

the Lines and Circle scenarios, respectively. Even RRVO with δ = 2 has an average

completion percentage of about 96% while ORCA’s completion rate is only 44% in

the Lines scenario. In the Circle scenario, despite ORCA allowing 96% of agents

to reach their goals on average, even RRVO with δ = 0 has a significantly higher

completion percentage at 98%.

RRVO with values of δ > 0 have statistically higher completion percentages

(p0 < 0.005 for Lines, p0 < 0.001 for Circle) against δ = 0.

5.3.3 Completion Time

For those agents that do reach their goals, RRVO allows them to do so sooner than

ORCA. Figures 5.6(a) and 5.6(b) demonstrate that even RRVO with δ = 0, agents

reach their goals quicker (p0 < 0.001 except for δ = 0 in the Circle scenario, where

p0 < 0.005). This indicates that agents using ORCA experience more interference

from other agents and choose fewer deadlock-avoiding velocities than in RRVO.

29

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0 2 4 6 8 10

%
C

om
pl

et
ed

δ

Percentage of agents to reach their goals (Lines)

RRVO
ORCA

(a)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1.01

0 2 4 6 8 10

%
C

om
pl

et
ed

δ

Percentage of agents to reach their goals (Circle)

RRVO
ORCA

(b)

Figure 5.5: Percentages of agents to reach their goals in the (a) Lines and (b) Circle scenarios for
RRVO and ORCA. RRVO enables more agents to reach their goals than ORCA.

5.3.4 Collisions

Figure 5.7(a) depicts the number of collisions for completing agents in the Lines

scenario. These results show that the number of collisions that RRVO agents en-

counter may actually be far fewer than ORCA agents, even though RRVO approx-

imates collision-avoiding rotation whereas ORCA uses an exact geometric solution

(for translational motion only). The high number of collisions for ORCA is because

ORCA agents continually bump against each other as they attempt to find feasible

velocities.

The Circle scenario is perhaps a more accurate comparison of collision count,

as the completion rates between ORCA and RRVO are more comparable. In this

scenario, while the δ = 2 case creates fewer collisions on average for RRVO than

ORCA, the δ = 8 and δ = 10 cases saw significantly more collisions than ORCA

(p0 < 0.005 and p0 < 0.001, respectively). Otherwise there is no significant difference

in collision counts. The collision results for the Circle scenario are shown in Figure

5.7(b).

30

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0 2 4 6 8 10

T
im

es
te

ps

δ

Avg. Timesteps to Reach Goal (Lines)

RRVO
ORCA

(a)

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 4200

0 2 4 6 8 10

T
im

es
te

ps

δ

Avg. Timesteps to Reach Goal (Circle)

RRVO
ORCA

(b)

Figure 5.6: The number of frames, or timesteps, it takes for agents to reach their goals for the (a)
Lines and (b) Circle scenarios. RRVO outperforms ORCA for all values of δ in that agents reach
their goals quicker (However, p0 < 0.005 for δ = 0 in Lines instead of the usual p0 < 0.001).

5.4 Effect of Shape

In Section 4.2, we showed how ORCA can have a deadlocking problem when

polygonal agents are used. In this section we are interested in seeing the benefit

RRVO has over ORCA as the shape of an agent approaches a circle. Bear in mind

that the radii of the circles for these shapes remain invariant; we only increase the

number of edges (sides). This has the effect of increasing the total area occupied by

an agent, which could potentially make scenarios more difficult. However, we will

show that the benefits of shorter sides outweigh the cost of occupying more space.

5.4.1 Completion Rate

Figures 5.8(a) and (b) show the percentage of agents that reach their goals in

the Lines and Circle scenarios, respectively. The figures demonstrate a positive

correlation with edge count and completion rate. Meanwhile, RRVO with δ = 8

consistently allows all agents to finish, achieving at 90% completion rate for triangles

in the Lines scenario whereas ORCA and RRVO with δ = 0 only permit 17% and

31

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

0 2 4 6 8 10

C
ol

lis
io

ns

δ

Avg. Collisions in Lines Scenario

RRVO
ORCA

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

0 2 4 6 8 10

C
ol

lis
io

ns

δ

Avg. Collisions in Circle Scenario

RRVO
ORCA

(b)

Figure 5.7: The number collisions experienced, on average, by those agents who reached their goals
in the (a) Lines and (b) Circle scenarios. Agents using RRVO generally do not collide more often
on average than if they were to use ORCA, despite RRVO’s relaxed collision-avoidance guarantees.
In fact, in the Lines scenario they collide significantly less than in ORCA due to deadlocked agents
colliding with completed ones.

16% respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3 4 5 6 7 8 16 32 64

%
C

om
pl

et
ed

Sides

Percentage of agents to reach their goals (Lines)

RRVO (δ=0)
RRVO (δ=8)

ORCA

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3 4 5 6 7 8 16 32 64

%
C

om
pl

et
ed

Sides

Percentage of agents to reach their goals (Circle)

RRVO (δ=0)
RRVO (δ=8)

ORCA

(b)

Figure 5.8: Percentages of agents to reach their goals in the (a) Lines and (b) Circle scenarios for
RRVO and ORCA. As shapes approach circular, more agents reach their goals. However, permitting
rotation in general provides consistently high completion rates.

32

5.4.2 Completion Time

Figures 5.9(a) and (b) show the average number of frames it takes agents to reach

their goals for the Lines and Circle scenario, respectively, as the number of sides is

increased. What is interesting about these figures is that the completion rate steeply

drops at first as the number of sides is increased, but then climbs afterwards before it

stabilizes. This is likely the interplay between shorter average sides and larger overall

area occupied. It seems that the ideal shape for an agent is the hexagon, which gives

both high completion rates and low frame counts. Again, while ORCA’s performance

improved relative to RRVO as the shape approached a circle, RRVO (δ = 8) agents

consistently complete in the fewest frames. This result lends more credence to the

notion that choosing high clearance rotations will result in less overall interference,

and makes problems easier to solve.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

3 4 5 6 7 8 16 32 64

T
im

es
te

ps

Sides

Avg. Timesteps to Reach Goal (Lines)

RRVO (δ=0)
RRVO (δ=8)

ORCA

(a)

 3000

 3500

 4000

 4500

 5000

 5500

 6000

3 4 5 6 7 8 16 32 64

T
im

es
te

ps

Sides

Avg. Timesteps to Reach Goal (Circle)

RRVO (δ=0)
RRVO (δ=8)

ORCA

(b)

Figure 5.9: The number of frames, or timesteps, it takes for agents to reach their goals for the (a)
Lines and (b) Circle scenarios as the number of sides in agent polygons is increased

33

6. CONCLUSION

In this work, we introduce Reciprocally-Rotating Velocity Obstacles, an exten-

sion and generalization of Optimal Reciprocal Collision Avoidance (ORCA) for local

collision avoidance. RRVO enables finer modeling of agents that also allows for rota-

tion and helps mitigate potential deadlock scenarios that arise when using polygonal

agents. Our results show that even a little bit of rotation results in much less dead-

lock, and that the performance overhead RRVO incurs is quadratic in the granularity

δ at which agents search for feasible rotations. Despite this drawback, small values of

δ still result in an interactive frame rate, a low number of collisions, and more direct

paths towards goals than ORCA. Finally, RRVO has plenty of room for additional

parallelism, and we plan to explore this avenue in future work.

34

REFERENCES

[1] Itzhak Benenson. Multi-agent simulations of residential dynamics in the city.

Computers, Environment and Urban Systems, 22(1):25–42, 1998.

[2] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509–517, September 1975.

[3] Corky Bingelli. Interior Graphic Standards. Wiley, New York, 2nd student

edition edition, 2011.

[4] John Canny and John Reif. New lower bound techniques for robot motion

planning problems. In Foundations of Computer Science, 1987., 28th Annual

Symposium on, pages 49–60. IEEE, 1987.

[5] Stephen Chenney. Flow tiles. In SCA ’04: Proceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 233–242, New

York, NY, USA, 2004. ACM Press.

[6] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.

Computational geometry (2nd revised ed.). pages 267–290, 2000.

[7] M. Erdmann and T. Lozano-Perez. On multiple moving objects. In Robotics and

Automation. Proceedings. 1986 IEEE International Conference on, volume 3,

pages 1419–1424, 1986.

[8] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using

velocity obstacles. The International Journal of Robotics Research, 17(7):760–

772, 1998.

[9] Maxim Garber and Ming C. Lin. Constraint-based motion planning using

Voronoi diagrams. In Algorithmic Foundations of Robotics V, pages 541–558.

35

Springer, Berlin/Heidelberg, 2003. book contains the proceedings of the Inter-

national Workshop on the Algorithmic Foundations of Robotics (WAFR), Nice,

France, 2002.

[10] Russell Gayle, William Moss, Ming C. Lin, and Dinesh Manocha. Multi-robot

coordination using generalized social potential fields. In Proc. IEEE Int. Conf.

Robot. Autom. (ICRA), pages 106–113, 2009.

[11] Andew Giese, Daniel Latypov, and Nancy M. Amato. Reciprocally-rotating

velocity obstacles. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2014. to

appear.

[12] Abhinav Golas, Rahul Narain, and Ming Lin. Hybrid long-range collision avoid-

ance for crowd simulation. In Proceedings of the ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games, pages 29–36. ACM, 2013.

[13] Stephen J. Guy, Jatin Chhugani, Sean Curtis, Pradeep Dubey, Ming Lin, and

Dinesh Manocha. Pledestrians: a least-effort approach to crowd simulation. In

Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, SCA ’10, pages 119–128, Aire-la-Ville, Switzerland, Switzer-

land, 2010. Eurographics Association.

[14] Stephen. J. Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin,

Dinesh Manocha, and Pradeep Dubey. Clearpath: highly parallel collision

avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’09, pages

177–187, New York, NY, USA, 2009. ACM.

[15] Stephen J Guy, Sujeong Kim, Ming C Lin, and Dinesh Manocha. Simulating

heterogeneous crowd behaviors using personality trait theory. In Proceedings of

36

the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,

pages 43–55. ACM, 2011.

[16] Liang He and Jur van den Berg. Meso-scale planning for multi-agent navigation.

In (ICRA), 2013, 2013.

[17] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics.

Phys. Rev. E, 51:4282–4286, May 1995.

[18] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.

Physical review E, 51(5):4282, 1995.

[19] John E Hopcroft, Jacob T Schwartz, and Micha Sharir. On the complexity

of motion planning for multiple independent objects; pspace-hardness of the

“warehouseman’s problem”. The International Journal of Robotics Research,

3(4):76–88, 1984.

[20] D. Hsu, J-C. Latombe, and R. Motwani. Path planning in expansive configura-

tion spaces. In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 2719–2726,

1997.

[21] Roger L. Hughes. A continuum theory for the flow of pedestrians. Transportation

Research Part B: Methodological, 36(6):507 – 535, 2002.

[22] Mubbasir Kapadia, Shawn Singh, William Hewlett, and Petros Faloutsos. Ego-

centric affordance fields in pedestrian steering. In Proceedings of the 2009 sym-

posium on Interactive 3D graphics and games, pages 215–223. ACM, 2009.

[23] Ioannis Karamouzas, Peter Heil, Pascal van Beek, and Mark H Overmars. A

predictive collision avoidance model for pedestrian simulation. In Motion in

Games, pages 41–52. Springer, 2009.

37

[24] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

Trans. Robot. Automat., 12(4):566–580, August 1996.

[25] O. Khatib. Real–time obstacle avoidance for manipulators and mobile robots.

Int. J. Robot. Res., 5(1):90–98, 1986.

[26] David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on

Computing, 12(1):28–35, 1983.

[27] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path plan-

ning. Technical report, 1998.

[28] Daniel Massaguer, Vidhya Balasubramanian, Sharad Mehrotra, and Nalini

Venkatasubramanian. Multi-agent simulation of disaster response. In ATDM

workshop in AAMAS, volume 2006. Citeseer, 2006.

[29] Rahul Narain, Abhinav Golas, Sean Curtis, and Ming C. Lin. Aggregate dy-

namics for dense crowd simulation. In ACM SIGGRAPH Asia 2009 papers,

SIGGRAPH Asia ’09, pages 122:1–122:8, New York, NY, USA, 2009. ACM.

[30] N. Pelechano, J. Allbeck, and N. Badler. Controlling individual agents in high-

density crowd simulation. In ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, 2007.

[31] J. H. Reif and H. Wang. Social potential fields: A distributed behavioral control

for autonomous robots. J. Robot. and Autonom. Sys., pages 171–194, 1999.

[32] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.

In Computer Graphics, pages 25–34, 1987.

[33] C. W. Reynolds. Steering behaviors for autonomous characters. In Game De-

velopers Conference, 1999.

38

[34] Mark Riedl, Cesare J Saretto, and R Michael Young. Managing interaction

between users and agents in a multi-agent storytelling environment. In Pro-

ceedings of the second international joint conference on Autonomous agents and

multiagent systems, pages 741–748. ACM, 2003.

[35] S. Rodriguez, A. Giese, N. M. Amato, S. Zarrinmehr, F. Al-Douri, and M. Clay-

ton. Environmental effect on egress simulation. In Proc. of the 5th Intern. Conf.

on Motion in Games, 2012, Lecture Notes in Computer Scien ce (LNCS), pages

7–18, 2012.

[36] Seyed Abbas Sadat and Richard T Vaughan. Bravo: Biased reciprocal velocity

obstacles break symmetry in dense robot populations. In Computer and Robot

Vision (CRV), 2012 Ninth Conference on, pages 441–447. IEEE, 2012.

[37] Raimund Seidel. Linear programming and convex hulls made easy. In Proceed-

ings of the sixth annual symposium on Computational geometry, SCG ’90, pages

211–215, New York, NY, USA, 1990. ACM.

[38] Wei Shao and Demetri Terzopoulos. Autonomous pedestrians. In SCA ’05: Pro-

ceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 19–28, New York, NY, USA, 2005. ACM Press.

[39] S. Singh, M. Kapadia, B. Hewlett, G. Reinman, and P. Faloutsos. A modular

framework for adaptive agent-based steering. In Symposium on Interactive 3D

Graphics and Games, I3D ’11, pages 141–150, New York, NY, USA, 2011. ACM.

[40] Adrien Treuille, Seth Cooper, and Zoran Popovi. Continuum crowds. ACM

Trans. Graph., 25(3):1160–1168, 2006.

[41] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Reciprocal

n-body collision avoidance. In Cdric Pradalier, Roland Siegwart, and Gerhard

39

Hirzinger, editors, Robotics Research, volume 70 of Springer Tracts in Advanced

Robotics, pages 3–19. Springer Berlin Heidelberg, 2011.

[42] Jur van den Berg, Stephen J Guy, Jamie Snape, Ming C Lin, and Dinesh

Manocha. Rvo2 library: Reciprocal collision avoidance for real-time multi-agent

simulation, 2011.

[43] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles

for real-time multi-agent navigation. In Robotics and Automation, 2008. ICRA

2008. IEEE International Conference on, pages 1928–1935. IEEE, 2008.

[44] H. Yeh, S. Curtis, S. Patil, J. van den Berg, D. Manocha, and M. Lin. Compos-

ite agents. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, SCA ’08, pages 39–47, Aire-la-Ville, Switzerland,

Switzerland, 2008. Eurographics Association.

40

