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ABSTRACT

The current methods for uncertainty analysis in dynamical systems are restricted

in terms of computational cost and evaluation domain since they either use grid

points or work only along trajectories. To break through these problems we present

a new method: the Rothe & maximum-entropy method which follows the steps below.

A deterministic dynamical system with initial value uncertainties can be analyzed

via the uncertainty propagation which is based on the Liouville equation in the form

of the first-order linear partial differential equation. On this equation we conduct a

semi-discretization in time via A-stable rational approximations of consistency order

k and this yields the stationary spatial problem. This spatial problem now can

be solved by the spatial discretization scheme: we propose the maximum-entropy

approximation which provides unbiased interpolations even with fewer number of

scattered points. Through these steps we finally obtain a system of linear equations

for the evolution of the probability density function ut, which can be easily solved in

several ways.

This method can provide more efficiency in terms of computation time thanks

to using fewer number of scattered points instead of grid points. Also, it enables

the constant tracking of probability density functions in a specific fixed domain of

interest and this is especially effective for switched systems.
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NOMENCLATURE

Pt Frobenius-Perron operators

A Infinitesimal generator of the semigroup of Frobenius-Perron operators

|| · || L2-norm

PDF Probability density function

MOC Method of characteristics

PDE Partial differential equation

ODE Ordinary differential equation
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1. INTRODUCTION

In real applications, initial values are not known exactly so they can be expressed

as statistical uncertainty such as the Gaussian distribution. This uncertainty is prop-

agated forward in time by the system dynamics and the solutions to this uncertainty

propagation help understand stochastic systems.

Over the past few years studies on the stochastic system with initial value uncer-

tainties have been done widely [9, 6, 8]; however, the methods to analyze this system

are still restricted in terms of computational cost and evaluation domain. One of the

methods, Rothe method [20], uses grid points in approximating spatial functions as

part of its scheme and this requires a lot of computations at each time step. There

are several numerical solutions to reducing computation time in dealing with grid

points but for higher dimensional systems the cost becomes more critical even with

them. The other method, method of characteristics [8], uses a point cloud and this

cloud tends to contract, in most cases of our interest, or expand along trajectories

over time depending on the system; as a result, it is not possible to keep evaluating

probability density functions in the specific spatial domain of our interest over time.

Thus, our objective is to present a new method to deal with the above two

problems: computational cost and evaluation in the specific domain of interest. This

can be realized by combining an entropy-based spatial discretization scheme: the

maximum-entropy approximation [17] with a temporal semi-discretization scheme:

the Rothe method [20].

This thesis is organized as follows. In chapter 2, the concept of uncertainty in

dynamical systems and the way of analyzing its time evolution are given to help

understand the underlying theories of this thesis. In chapter 3, we introduce the

maximum-entropy approximation scheme which is used for the Rothe & maximum-
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entropy method, and show two numerical examples using this approximation scheme.

In chapter 4, we briefly introduce the current method, the method of characteris-

tics, as a comparison then propose a new method, the Rothe & maximum-entropy

method, which first conducts a semi-discretization in time then performs a spatial

discretization using the maximum-entropy approximation. At the end of chapter 4,

we show two examples using the Rothe & maximum-entropy method, especially for

the switched system, it will be shown that this new method can provide effectiveness

and accuracy in evaluating probability density functions. And chapter 5 concludes

this thesis.
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2. UNCERTAINTY IN DYNAMICAL SYSTEMS

In this chapter, we first state the problem to solve throughout this thesis then re-

view some concepts required to understand the effects of uncertainty in deterministic

dynamical systems [13]. The uncertainty propagation associated with a dynamical

system is defined via time-varying family of transformations of probability distribu-

tions called the semigroup of Frobenius-Perron operators. These operators describe

how a continuous transformation of points in space induces a transformation in the

probability distribution over the space.

2.1 Problem Statement

First, let us consider the following autonomous system

ṡ = f(s,p), s(0) = s0 (2.1)

where s ∈ Rns and p ∈ Rnp denote the state and parameters, respectively. The

extended state x := [s p]T ∈ Rnt , where nt = ns + np, allows for reconstruction of

(2.1).

ẋ = F (x), x(0) = x0 (2.2)

The existence and uniqueness of a solution x(t) of this initial value problem is guar-

anteed by the local Lipschitz continuity of the function F [4], that is,

There exists L ≥ 0 such that |F (x)− F (y)| ≤ L |x− y|, ∀x ∈ Rd, y ∈ Bκ(x)

where Bκ(x) denotes an open neighborhood of x. This property holds throughout

the remainder of this thesis.
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Next, let Φt : Rd → Rd denote the evolution operator such that Φtx(0) := x(t)

then it satisfies the following properties:

• Φ0x = x, ∀x ∈ Rd

• Φt(Φt′x) = Φt+t′x, ∀x ∈ Rd, ∀t, t′ ∈ R

• Φtx is differentiable with respect to x, ∀t ∈ R

In order to adopt uncertainty to the system, we assume that x0 = X0 is a random

variable. Under this assumption, the evolution Xt, defined by Φtx0, is a random

variable as well.

Now, we can define the following initial value uncertainty problem [20].

Definition 2.1.1 (Initial Value Uncertainty Problem): For the system ẋ = F (x),

assume that the initial value x0 = X0 is a random variable and has a known prob-

ability distribution with its density u0. The problem is to compute the probability

density function ut associated with the random state x(t) = Xt on a finite interval

t ∈ [0, T ] where ut = u(t, ·), u : R× Rd → R, t ≥ 0.

2.2 Uncertainty Propagation

The evolution operator Φt for a fixed time t ≥ 0 accounts for a transformation

on the state space Ω and this transformation results in a change to the probability

distribution on Ω. The probability of a set B at time t should be equal to the

probability of its pre-image Φ−1t (B) as depicted in Fig. 2.1 and this property enables

us to draw the following relation between u0 and ut:

ut = Ptu0 (2.3)
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where Pt corresponds to Φt and is called the Frobenius-Perron operator. The Frobenius-

Perron operator maps an initial probability density u0 to ut as Φt does an initial state

x0 to x(t) at time t. The general definition of the Frobenius-Perron operators is as

follows.

Definition 2.2.1 (Frobenius-Perron operator): The Frobenius-Perron operator Pt :

D → D (where D is the space of probability distributions on the manifold M) asso-

ciated with the diffeomorphism ϕt : M → M is a so-called transfer operator on the

space of probability distributions, defined by the change-of-variables formula

Ptu =

∫
M

u(ϕ−1t (x)) det
(
Dϕ−1t (x)

)
µ(dx), (2.4)

where µ(dx) is Lebesgue measure on M and u ∈ D is arbitrary. Furthermore, the

family of operators {Pt}t≥0 is a semigroup of Frobenius-Perron operators satisfying

• P0u = u, ∀u

• Pt(Psu) = Ps(Ptu) = Pt+su, ∀u, t, s ≥ 0

Figure 2.1: The conservation of probability mass on any set B and its pre-image
Φ−1t (B) defines the Frobenius-Perron operator Pt corresponding to Φt, which relates
the two density functions u0 and ut to each other. [20]
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where a semigroup is a set S together with a binary operation · that satisfies the

associative property: (a · b) · c = a · (b · c), ∀a, b, c ∈ S.

As defined above, the Frobenius-Perron operator describes how some initial dis-

tribution of system uncertainty u ∈ D is propagated forward in time by the system

dynamics; see [12, 13] for more discussions and examples on the uncertainty propaga-

tion. In addition, an infinitesimal change in the system uncertainty is characterized

by the following proposition [13].

Proposition 2.2.2: Denote the semigroup of Frobenius-Perron operators associ-

ated with a deterministic dynamical system by ut(x) = u(t, x) = Ptu0(x), where

u0 ∈ D is given. Then the Liouville equation

∂

∂t
ut(x) +

n∑
i=1

∂

∂xi
(ut(x) f(x)) = 0 (2.5)

is the unique infinitesimal generator of ut(x).

In this thesis we are only focused on a deterministic dynamical system but it is

also notable that the infinitesimal generator of the semigroup of Frobenius-Perron

operators for a stochastic dynamical system is a partial differential equation called the

Fokker-Planck equation [13] which describes the propagation of system uncertainty

when the system evolution is random.
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3. MAXIMUM-ENTROPY APPROXIMATION

In this chapter we introduce the maximum-entropy approximation which is used

as a spatial discretization scheme for the Rothe method in the next chapter. The

notion of entropy in information theory was first introduced by Shannon as a mea-

sure of uncertainty [15] and Jaynes further proposed the maximum-entropy principle

in which maximizing entropy enables the least-biased statistical inference under the

condition of insufficient data [10, 11]. Based on these two works, Sukumar pro-

posed the maximum-entropy approximation [17, 19] which is used to construct basis

functions for the Rothe & maximum-entropy method.

3.1 Construction of Basis Functions

Suppose that a sample space, Ω, consists of mutually independent discrete events

x1, x2, . . . , xn which occur with unknown probabilities p(x1), p(x2), . . . , p(xn) ≥ 0,

respectively but with a known expected value E(x). Since P (Ω) = 1 for a random

experiment, probabilities p(xi) should satisfy

n∑
i=1

p(xi) = 1 (3.1)

and since the expected value is known, they should also satisfy

n∑
i=1

p(xi)xi = E(x) (3.2)

Then the most likely probability distribution p(xi) can be obtained by maximizing

the following Shannon entropy for a discrete probability distribution: [15, 10]

H(p) = −
n∑
i=1

p(xi) ln(p(xi)) (3.3)

7



Similarly, consider a convex hull, Ω, consisting of a set of distinct scattered nodes

{xi}ni=1 in Rd. Any point x ∈ Ω̄ where Ω̄ = Ω ∪ ∂Ω has basis functions φi(x)

associated with each node xi. Since the basis function φi(x) can be regarded as

a probability of influence of node xi on the point x, φi(x) ≥ 0 and we have the

following problem from (3.3)

max
{φi}

(
H(φ) = −

n∑
i=1

φi(x) lnφi(x)

)
(3.4)

Also, (3.1) and (3.2) similarly yield the following constraints, respectively:

n∑
i=1

φi(x) = 1 (Constant precision) (3.5)

n∑
i=1

φi(x)xi = x (Linear precision) (3.6)

The constant and linear precisions are sufficient conditions for convergence in the

Galerkin method for second-order partial differential equations [16].

The general form of entropy for a discrete probability distribution is given by

[10, 11]

H(p,m) = −
n∑
i=1

pi ln

(
pi
mi

)
(3.7)

where pi is a probability of event i and mi is a prior estimate of pi. This is called the

Shannon-Jaynes entropy and yields the following constrained optimization problem:

max
φ∈Rd

+

(
H(φ,m) = −

n∑
i=1

φi(x) ln

(
φi(x)

mi(x)

))
(3.8)
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subject to the linear constraints:

n∑
i=1

φi(x) = 1 (3.9)

n∑
i=1

φi(x)xi = x (3.10)

For d-dimensional problems, let λr(r = 0, 1, . . . , d) be the Lagrange multipliers

for the (d+1) linear constraints then we have the following variational equation [10].

δ

[
n∑
i=1

(
−φi ln

φi
mi

)
+λ0

(
1−

n∑
i=1

φi

)
+ λ1

(
x−

n∑
i=1

φixi

)

+λ2

(
y −

n∑
i=1

φiyi

)
+ λ3

(
z −

n∑
i=1

φizi

)
+ · · ·

]
= 0

(3.11)

where xi = (xi, yi, zi, · · · )T and x = (x, y, z, · · · )T . By letting λ0 = lnZ − 1 and

using (3.9) where Z is known as the partition function and used for the canonical

distribution in statistical mechanics [19], the solution of this equation can be written

as

φi(x) =
Zi(x)∑n
j=1 Zj(x)

=
Zi(x)

Z(x)
(3.12)

where

Zi(x) = mi(x) exp(−xTi λ(x)) (3.13)

The prior estimate, mi(x), can be selected out of global radial basis functions,

compactly supported radial basis functions, cubic spline weight functions, etc. In this

thesis we use the global radial basis function: the Gaussian, mi(x) = exp(−β‖xi −
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x‖2) where β is a constant variable. By letting x̃i = xi−x, (3.12) and (3.13) become

φi(x̃) =
Z̃i(x̃)∑n
j=1 Z̃j(x̃)

=
Z̃i(x̃)

Z̃(x̃)
(3.14)

Z̃i(x̃) = mi(x̃) exp(−x̃Ti λ(x̃)) (3.15)

Solving these equations for λ can be recast as the following dual problem for the

convergence of solutions [1]:

Find λ such that F = ln Z̃(λ) is minimized. (3.16)

Here F is an upper bound for the entropy H [2] and more details can be found in [18].

This dual problem can be solved through various optimization schemes and we use

the MATLAB command fminsearch to find its solution in the numerical examples.

Once we find λ minimizing F , the maximum-entropy basis functions are ob-

tained from Equation (3.14). Furthermore, given measurements {zi}ni=1 for the nodes

{xi}ni=1, the maximum-entropy basis matrix function A is constructed then we can

find a linear estimator α̂ from the following estimation problem:

Given Aα̂ = b, find α̂ that minimizes ‖Aα̂− b‖2 (3.17)

where

A =


φ1(x1) · · · φn(x1)

...
. . .

...

φ1(xn) · · · φn(xn)

 α̂ =


α̂1

...

α̂n

 b =


z1
...

zn


There are a few algorithms to find α̂ such as:

10



• Least Squares (cheap but less accurate)

• QR Decomposition

• Singular Value Decomposition (expensive but more reliable)

The matrix A computed from the maximum-entropy scheme tends to have low rank

when a lot of data points are given as nodes and they are close enough to each other.

Unfortunately, all of the three algorithms do not work out well for our problem so

we employ the following Truncated Singular Value Decomposition (SVD) which gives

fast and reliable estimates even with fewer data points.

Definition 3.1.1 (Truncated Singular Value Decomposition): If A is an m × n

matrix and has rank r, A = Um×mSm×nV
T
n×n where U and V are unitary matrices,

and S is a m×n diagonal matrix consisting of the singular values of A. By eliminating

zero or nearly zero singular values of S and making it a r × r diagonal matrix, and

transforming U and V into m× r and n× r matrices, respectively, we obtain a new

matrix A = Um×rSr×rV
T
n×r.

In approximating probability density functions at each time step, it is important

to maintain the shape feature of them since even a spike with the overall error kept

small may result in a totally different shape of probability density functions at the

next time step. This means that having a similar shape with a higher overall error

is more desirable than having a spike with a lower overall error. Here the maximum-

entropy approximation has a benefit: the maximum-entropy basis functions enable

the least-biased statistical interpolations and this means that this approximation is

the best tool in extracting the feature of probability density functions in terms of

shapes at each time step, although the method of least squares using other basis

functions might be a bit better in terms of overall errors.
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3.2 Numerical Examples

In this section we apply the maximum-entropy basis functions and the truncated

SVD to two systems and demonstrate how well these two methods interpolate them

based on some given points.

First, suppose we have the system: z = (x2 − 1)(10y2 − 4) + 4y2 + 2. Fig. 3.1

shows true and interpolated z values for 51× 51 points based on α̂ estimated by the

maximum-entropy basis functions of given 10 × 10 points. The Frobenius norm of

the errors for 51× 51 points is 1.4908.

0

0.5

1

0

0.5

1
0

2

4

6

0

0.5

1

0

0.5

1
0

2

4

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Figure 3.1: Top-left: true data; Top-right: interpolated data; Bottom: errors at each
point
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Figure 3.2: Left: true data; Right: interpolated data at time t = 0.1
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Figure 3.3: Left: true data; Right: interpolated data at time t = 1.0

Next, suppose we have the Van der Pol oscillator:

ẋ1 = x2

ẋ2 = −x1 + (1− x21)x2

ρ̇ = −ρ(1− x21).

Fig. 3.2 shows true and interpolated ρ values for 500 points based on α̂ estimated

13



by the maximum-entropy basis functions of given other 500 points at time t = 0.1

and the Frobenius norm of the errors is 0.1925. And Fig. 3.3 shows the results at

time t = 1.0. The result matches the true data well and the Frobenius norm of the

errors is 0.0270.
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4. NUMERICAL METHODS

In this chapter we briefly review the method of characteristics which is widely

used to solve time-dependent partial differential equations. Then we present another

new numerical method: the Rothe & maximum-entropy method which combines the

maximum-entropy approximation with the Rothe method.

Given a deterministic dynamics F such that ẋ = F (x), the evolution of the

probability density function ut = u(t, ·) in the presence of initial value uncertainties

is described by the first-order linear partial differential equation [20]

∂

∂t
u = Au = −div(F u), u(0, ·) = u0 (4.1)

where A is a differential operator involved only in spatial derivatives of u.

4.1 Method of Characteristics (MOC)

The method of characteristics first conducts a semi-discretization in space and

as a result the problem is reduced to a system of ODEs. Solving these ODEs yields

discrete solutions along trajectories in time.

A first-order PDE can be solved along characteristics which are the curves (t(s),x(s))s∈R

describing the value u(t(s),x(s)) of a solution u by an ODEs. The following shows

that how the MOC transforms the Liouville equation to ODEs [20].

Since div(F u) = div(F )u+ 〈F ,∇u〉, (4.1) can be rewritten as

∂u

∂t
+

nt∑
i=1

Fi ·
∂u

∂xi
= −div(F )u (4.2)
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Letting z(s) := u(t(s),x(s)) gives

dz

ds
=

d

ds
u(t,x) =

∂u

∂t
· dt
ds

+
nt∑
i=1

∂u

∂xi
· dxi
ds

(4.3)

By setting dt
ds

= 1 and dxi
ds

= Fi, we have

dz

ds
=
∂u

∂t
+

nt∑
i=1

Fi ·
∂u

∂xi
= −div(F ) · z (4.4)

Thus, the PDE (4.1) is transformed to the following ODEs

d

ds
t(s) = 1

d

ds
x(s) = F (x(s))

d

ds
z(s) = −div[F (x(s))] · z(s)

(4.5)

Given initial values t(0) = 0, x(0) = x0 and z(0) = u(0,x0), the solution of (4.1) is

u(t,x(t)) = u(0,x0) exp

(
−
∫ t

0

div[F (x(s))]ds

)
(4.6)

As described previously, solving the Liouville equation using the MOC yields

discrete solutions along trajectories in time. For this reason the initial points given

in a spatial domain will gather, in most cases of interest, or disperse over time

depending on the given system and this makes it impossible to evaluate ut over the

specific spatial domain of our interest.

4.2 Rothe & Maximum-Entropy Method

The Rothe method first conducts a semi-discretization in time while the MOC

does in space. By considering the time-dependent PDE as an ODE in a function
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space, the problem is reduced to a stationary or time-independent PDE [7]. Solving

this PDE yields an approximation of ut at a discrete time.

4.2.1 Semi-discretization in Time

As defined in Chapter 2, the true solution of the probability density function at

time t, ut, is described by the semigroup of Frobenius-Perron operators {Pt}t∈[0,T ]

ut = Ptu0, t ∈ [0, T ] (4.7)

and the evolution operator Pt is approximated using rational approximations r(z) to

ez

Pτ ≈ Rτ := r(τA) (4.8)

For our work we approximate ut using A-stable rational approximations R
(k)
τ to Pτ

[3]

utj+1
= R(k)

τ utj = R(k)
τ

(
R(k)
τ utj−1

)
=
(
R(k)
τ R(k)

τ · · ·R(k)
τ

)
u0

(4.9)

where τ > 0 is a small time step such that tj+1 = tj + τ . This discrete evolution

approximated at tj+1 by A-stable rational approximations has consistency order k

which depends on the choice of a rational function. The definitions of A-stability

and consistency order are as follows:

Definition 4.2.1 (A-stability): An approximation r(z) to ez is called A-stable if

its stability region {z ∈ C, r(z) ≤ 1} includes all complex numbers with non-positive

real part, i.e.,

|r(z)| ≤ 1, ∀z ∈ C, R(z) ≤ 0.

The semi-discretization scheme Rτ defined by r(τA) is called A-stable if r is A-stable.
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Definition 4.2.2 (Consistency order): The local error

εt(u, τ) := Pτut −Rτut

is called consistency error and the discrete evolution Rj
τ , j = 1, . . . , T/τ , is called

consistent if for all t ∈ [0, T ]

lim
τ→0
||εt(u, τ)|| = 0.

The discrete evolution has consistency order k if for all t ∈ [0, T ]

||εt(u, τ)|| = O(τ k+1) as τ → 0.

If the rational approximation r(z) is consistent and A-stable, the convergence of

the discrete evolution is guaranteed by the following theorem [3].

Theorem 4.2.3 (Rational approximation of semigroup): Let A generate a strongly

continuous semigroup Pt = etA, t > 0, i.e.,

lim
t→0
||Ptu− P0u|| = 0, ∀u ∈ D(Pt)

and let further

||Pt|| ≤ 1, ∀t ≥ 0 (4.10)

Then for any A-stable rational approximation r(z) to ez of consistency order k there

is a constant c > 0 such that for all u ∈ D(Ak+1)

||Ptnu−Rn
τu|| ≤ c tnτ

k||Ak+1u||, tn = n τ, τ > 0, n ∈ N.

18



The semigroup of Frobenius-Perron operators Pt, t ≥ 0 is strongly continuous

and satisfies (4.10) [14]. Thus, if the rational function satisfies consistency order k

and A-stability, a discrete solution converges to the analytical solution with order k.

On choosing A-stable rational functions of consistency order k, the Padé approx-

imation to the exponential function ez defined by

r(z) =
a0 + a1z + a2z

2 + · · ·+ anz
n

b0 + b1z + b2z2 + · · ·+ bdzd

gives some choices.

r(z) =
1

1− z
, r(z) =

1 + 1
2
z

1− 1
2
z
, r(z) =

1 + 1
3
z

1− 2
3
z + 1

6
z2
, · · ·

The first one is also known as the backward Euler method and yields consistency or-

der 1, whereas the second one named the Crank-Nicolson method yields consistency

order 2, which is used for our approach in this thesis. Indeed, the higher consistency

order we use, the more accurate approximation we can achieve; however, the compu-

tation becomes very costly because of the second-order approximation A2u. Thus,

we choose the function of consistency order 2. The rational approximation defined

in (4.9) with

R(k)
τ = r (τA) =

Id + τ
2
A

Id− τ
2
A

(4.11)

yields discrete solutions of consistency order 2 and we obtain the following time-

independent or stationary spatial problem

(
Id− τ

2
A
)
utj+1

=
(

Id +
τ

2
A
)
utj (4.12)

where Id is an identity operator.
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Unlike the MOC, the Rothe method sticks to a fixed spatial domain over time so

we can evaluate ut over the specific spatial domain of our interest.

4.2.2 Solutions of the Stationary Spatial Problem

The stationary spatial problem previously proposed can be solved by the spatial

discretization technique, that is, approximation. There are several approximation

schemes such as radial basis functions, moving least-square approximants, natural

neighbor-based interpolants, etc. In this thesis we use the entropy-based approxima-

tion scheme: maximum-entropy approximation for least-biased interpolations, which

was introduced in the previous chapter.

For a fixed spatial domain, Ω, we have the same maximum-entropy basis functions

φi(x) at any time step. Thus, utj+1
and utj are both approximated by φi(x)

ûtj+1
(x) =

n∑
k=1

αtj+1,k φk(x) (4.13)

ûtj(x) =
n∑
k=1

αtj ,k φk(x) (4.14)

where αtj+1,k, αtj ,k are coefficients at t = tj+1, t = tj, respectively and they are to be

determined later. Plugging (4.13) and (4.14) into (4.12) yields

(
Id− τ

2
A
)( n∑

k=1

αtj+1,k φk(x)

)
=
(

Id +
τ

2
A
)( n∑

k=1

αtj ,k φk(x)

)
(4.15)

Since A is linear and the sum over xi is finite, this equation is equivalent to

n∑
k=1

αtj+1,k

(
Id− τ

2
A
)
φk(x) =

n∑
k=1

αtj ,k

(
Id +

τ

2
A
)
φk(x) (4.16)

With the maximum-entropy basis functions, we can analytically express the action

20



of the differential operator A of the semigroup of Frobenius-Perron operators on the

basis functions by the following equation

Aφ = −div(F )φ− 〈F ,∇φ〉 (4.17)

By evaluating (4.16) over all the given points xi using (4.17), it can be restated

as a system of linear equations

Aαtj+1
= Bαtj (4.18)

where A, B are defined as

A =



(
Id− τ

2
A
)
φ1(x1)

(
Id− τ

2
A
)
φ2(x1) . . .

(
Id− τ

2
A
)
φn(x1)(

Id− τ
2
A
)
φ1(x2)

(
Id− τ

2
A
)
φ2(x2) . . .

(
Id− τ

2
A
)
φn(x2)

...
...

. . .
...(

Id− τ
2
A
)
φ1(xn)

(
Id− τ

2
A
)
φ2(xn) . . .

(
Id− τ

2
A
)
φn(xn)



B =



(
Id + τ

2
A
)
φ1(x1)

(
Id + τ

2
A
)
φ2(x1) . . .

(
Id + τ

2
A
)
φn(x1)(

Id + τ
2
A
)
φ1(x2)

(
Id + τ

2
A
)
φ2(x2) . . .

(
Id + τ

2
A
)
φn(x2)

...
...

. . .
...(

Id + τ
2
A
)
φ1(xn)

(
Id + τ

2
A
)
φ2(xn) . . .

(
Id + τ

2
A
)
φn(xn)


The coefficients αtj+1

and αtj are the unknowns to be determined in the following
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where

αtj+1
= [αtj+1,1 αtj+1,2 · · · αtj+1,n]T

αtj = [αtj ,1 αtj ,2 · · · αtj ,n]T

Since utj is given at each time step, tj+1, we can solve for αtj from (4.14):

αtj = Φ−1 utj (4.19)

where

Φ =



φ1(x1) φ2(x1) . . . φn(x1)

φ1(x2) φ2(x2) . . . φn(x2)

...
...

. . .
...

φ1(xn) φ2(xn) . . . φn(xn)


, utj =



utj(x1)

utj(x2)

...

utj(xn)


Therefore, combining (4.19) with (4.18) yields the solution for αtj+1

αtj+1
= A−1BΦ−1 utj (4.20)

and this enables us to compute utj+1

utj+1
= Φαtj+1

(4.21)

One of benefits with this method is that for a fixed spatial domain, the matrices

A, B and Φ do not change at each time step. Once these matrices are computed at

the beginning, no more computations are required. Thus, it vastly reduces the total

computation time.
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4.3 Numerical Examples

Consider a two-state Markov jump linear system which is defined by

xk+1 = Aσxk, σ ∈ {1, 2}

A1 =

0.7 0

0 1

 , A2 =

1 0

0 0.85


and whose initial condition is given by

x0 ∼ N (µ0,Σ); µ0 = [7, 7]T , Σ =

1.52 0

0 1.52


Here the Markov jump linear system is defined as follows:

Definition 4.3.1 (Markov Jump Linear System): The discrete-time Markov jump

linear systems is defined by [5]

x(k + 1) = Aσkx(k), k ∈ N0 (4.22)

where the state x(k) ∈ Rn, the system matricx Aσk ∈ Rn×n and σk ∈ M :=

{1, 2, . . . ,m}. σk is the discrete-time Markov chain with a mode transition prob-

ability

P(σk+1 = j | σk = i) = pij (4.23)

where pij ≥ 0, ∀i, j ∈ M. The probability distribution π(k) ∈ Rm of (4.22) is

governed by

π(k + 1) = π(k)P, π(0) = [π1(0), · · · , πm(0)] (4.24)

where P ∈ Rm×m denotes the transition probability matrix and its row sum
∑m

j=1 pij =
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1,∀i ∈M.

Fig. 4.1 shows that how the probability density function of this system with

the initial condition given by the Gaussian evolves through the Rothe & maximum-

entropy method under the Markov switching with an initial probability π0 and tran-

sition probability matrix P given by

π0 = [0.5, 0.5], P =

0.3 0.7

0.5 0.5



In the simulation 3,000 scattered points in [0, 14]2 are used and the Markov jump

is set to occur every 1 second; between each jump the system is governed by each

system matrix A1 and A2. As a comparison, Fig. 4.2 shows how the probability

density function of the same system evolves through the MOC using 10,000 points

in [0, 14]2.

For tracking the PDF propagation of the switched system, it is required to know
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Figure 4.1: Rothe & Maximum-Entropy Method: PDF propagation of 3,000 scat-
tered points for Markov Jump Linear System (Left: t = 0, Right: t = 5)
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Figure 4.2: Method of Characteristics: PDF propagation of 10,000 points for Markov
Jump Linear System (Left: t = 0, Right: t = 5)

PDFs of all the modes, two modes in this example, at every switching; however,

for the MOC the PDF information is only available for the switched-on mode each

switching time since the points move along the trajectories as depicted in Fig. 4.2.

For this reason the MOC needs to interpolate PDFs of the switched-off modes based

on PDFs of the switched-on mode at every switching, which causes inaccuracy in

tracking the PDF propagation. Whereas, the Rothe & maximum-entropy method

plays in the fixed spatial domain over time as depicted in Fig. 4.1 and this enables

us to capture PDFs of all the modes at every switching without interpolations. As

a result, more accuracy is guaranteed.

For the next example, consider the following Michaelis-Menten kinetics:

ẋ1 = − x2
Km + x1

x1

ẋ2 = 0
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where Km = 1 and whose initial condition is given by

x0 ∼ N (µ0,Σ); µ0 = [2, 2]T , Σ =

1/8 0

0 1/40


Fig. 4.3 shows the evolution of the probability density function of this system

through the Rothe & maximum-entropy method. Also, it is shown that the total

probability mass is preserved over time.
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Figure 4.3: Rothe & Maximum-Entropy Method: PDF propagation of 1,600 points
for the Michaelis-Menten kinetics (Left: t = 0, Right: t = 1)
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5. CONCLUSION

In this thesis we developed a new method, the Rothe & maximum-entropy method,

for analyzing dynamical systems with initial value uncertainties. To this end, we first

conducted a semi-discretization in time using the Rothe method and this yielded

a time-independent or stationary spatial problem. Then we solved the stationary

spatial problem using the spatial discretization technique, the maximum-entropy ap-

proximation. Through these steps we finally obtained a system of linear equations

for the probability density function at time t, ut.

In the numerical examples it is shown that this method is capable of evaluating the

evolution of probability density functions with even fewer number of scattered points

over the specific fixed domain of interest without moving the domain. Especially for

the switched system, this method provided both modes with seamless information

on PDFs over the same spatial substrate regardless of switching. As a result, we

were able to accurately capture the PDF propagation without interpolating PDFs

of the switched-off mode based on PDFs of the switched-on mode, which is used for

the method of characteristics and may result in inaccurate PDF propagation.

Compared to the existing methods: the method of characteristics which is widely

used and the classical Rothe method which uses grid points, the Rothe & maximum-

entropy method offers the following advantages:

1. Computational cost is low compared to the classical Rothe method using grid

points, especially for higher dimensional systems since the spatial discretization

is performed by the maximum-entropy approximation which enables unbiased

interpolations even with fewer number of scattered points.

2. Monitoring the evolution of the probability density functions in the fixed do-
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main of our interest, that is, at the same points over time is possible since the

Rothe method enables us to keep the spatial domain without changing it.

3. With these two advantages above, we may be able to find invariant sets for

dynamical systems with initial value uncertainties.
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