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ABSTRACT 

 

 

Phenomena occurring when microscopic objects approach planar surfaces are challenging to 

probe directly because their dynamics cannot be resolved with a sufficiently high 

spatial/temporal resolution in a non-invasive way, and suitable techniques/methods involve 

complex instrumentation/computations of limited accessibility/applicability. Interference-based 

techniques can overcome these barriers. However, because most set-ups and analysis methods 

are ideal for planar-like geometries, their accurate application for studying microscopic objects 

has been difficult. Reflection interference contrast microscopy (RICM) has shown particular 

promise allowing objects in close proximity to a surface to be observed from below, producing 

interferograms that inherently embed detailed information about the objects’ topography near the 

substrate. Because precise extraction of this information has been challenging, this study seeks to 

develop analysis methods applicable to RICM to facilitate its practical implementation for 

accurate investigation of interfacial phenomena between microscopic objects and surfaces. 

 The most sophisticated theory of RICM was significantly improved and coupled with a 

general method to simulate the interference pattern from arbitrary convex geometries. 

Experimental results revealed that accurate reconstruction of an object’s contour is possible by 

fitting its interferogram; however, this is computationally intensive and of limited applicability, 

motivating the formulation of a simplified and accurate RICM model. This facilitated a major 

breakthrough: an innovative analysis of RICM interferograms provides the inclination angles of 

the geometry under study and a mathematical procedure allows near-instantaneous 

reconstruction of the contour with nanometer-scale resolution, applicable to arbitrarily shaped 

convex objects under different experimental conditions.  

A method for extracting nanometer-scale topographic information from RICM 

interferograms has been proposed; in particular, microspheres can be conveniently analyzed to 

measure surface roughness based on fringe visibility. Also, precise and accurate measurements 

of microspheres’ size were performed by means of optimized and robust fringe spacing analysis. 

Finally, RICM’s distinctive “view-from-below” perspective was applied in simple experiments 

involving the deposition of microspheres on surfaces, directly revealing the existence of different 

scenarios depending on deposition media and unique femtoliter-scale capillary condensation 

dynamics underneath micron-sized glass beads. Results show that RICM has a clear potential for 
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near real-time analysis of ensembles of objects near surfaces so that statistical/probabilistic 

behavior can be realistically captured. 
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NOMENCLATURE 

 

 

AFM Atomic force microscopy 

BSA Bovine serum albumin 

CCD Charged-coupled device 

CV Coefficient of variation 

D Microsphere diameter 

E Local electric field at a position under consideration 

G Map between spherical coordinates 

I Intensity at a position under consideration 

I0 Intensity of a ray directly coming from the illumination source 

Ix Intensity of a ray x collected by the objective 

Ix Vector quantity representing a light beam x 

INA Illumination numerical aperture 

J Jacobian of a change of variables 

L Thickness 

LX Layer X 

NA Numerical aperture 

NaCl Sodium chloride 

NIST National Institute for Standards and Technology 

NRL Normal reflected light 

nx Refractive index of x 

ODE Ordinary differential equation 

OPLD Optical path length difference 

PBd Polyebutadiene 

PBS Phosphate buffered saline 

PDF Probability distribution function 

PEO Polyethylene oxide 

PSL Polystyrene latex 

R Effective reflection coefficient 

R
sphere

 Radius from spherical fitting 
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R
local

 Local radius of curvature 

RoR Radius of rotation 

RICM Reflection interference contrast microscopy 

s, p Indicate polarization of light 

S Surface profile of an object 

S0 Minimum separation distance between an object and the substrate 

S0
sphere

 Minimum separation distance from spherical fitting 

S* Phase shift height for multi-layer systems 

SEM Scanning electron microscopy 

SRM Standard Reference Material 

x, y Position coordinates at the glass-layer 1 interface 

Z Nanometer-scale variations in a surface profile 

D Maximum detection angle as measured on glass 

I Illumination angle as measured on glass 

TIR Total internal reflection angle as measured on glass 

 Inclination angle relative to the horizontal plane 

 Cutoff inclination angle 

 Phase shift  

C Empirical correction term 

S
P
 Planar parallel interfaces height increment 

S
P

f Planar parallel interfaces height increment between adjacent fringes  

xf Fringe spacing 

 Wavelength of monochromatic light 

 Solid angle  

 Spherical coordinates denoting angles of incidence at a given position 

R Angle of reflection  

 Radius of curvature 

 Standard deviation of surface heights or root-mean-square roughness

 Visibility 

〈 〉 Ensemble average of X 
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CHAPTER I  

INTRODUCTION 

 

 

1.1 Background and motivation 

When a microscopic object approaches a planar substrate, a series of different phenomena might 

occur (for example, contact, electrostatic repulsion, lateral diffusion, deformation, adhesion, 

spreading, etc.) depending on the surrounding medium, the nature of their surfaces and 

interactions, and the presence of external forces. But these phenomena are challenging to probe 

directly because their dynamics cannot be resolved with a sufficiently high spatial and temporal 

resolution in a non-invasive way, and the techniques and analysis methods capable of providing 

accurate quantitative information involve complex instrumentation/computations of limited 

accessibility/applicability
1-13

. These are even more significant constraints when hundreds of 

measurements are required for proper statistical characterization of the phenomena under study. 

Therefore, the implementation of relatively simple techniques and analysis methods capable of 

providing fast and accurate measurements offers a significant advantage. 

Interference-based techniques are known for their set-up simplicity and practical use while 

offering up to angstrom/microsecond-scale resolution
14-16

. However, the accurate use of 

interference for the study of microscopic objects has been difficult to achieve because most set-

ups and analysis methods are ideal for planar-like geometries
14,17-20

. An experimental set-up that 

has shown particular promise involves illuminating an object in close proximity to a transparent 

surface from below using monochromatic light. Interference of light reflected back from 

different optical interfaces in the system directly reveals the existence of contact phenomena, if 

any, while the characteristic fringe pattern that emerges inherently embeds detailed information 

about the object’s shape near the substrate at up to microsecond temporal resolution
15

. A 

particular technique with this characteristic configuration is reflection interference contrast 

microscopy, RICM, extensively applied in the study of particle, cell, and lipid/polymer vesicle 

adhesion
21-28

. 

Although the direct observation and quantification of adhesion phenomena is a well-known 

capability of RICM, additional information embedded in experimentally obtained interferograms 

has not been properly exploited because of the lack of appropriate analysis methods. First, fringe 

spacing in the interference patterns is known to contain precise contour information about the 



 

2 

 

object under study; however, current applications of RICM focus on analysis of known 

geometries and sizes using sophisticated models of image formation
29-31

, or greatly simplified 

fringe spacing analysis when the geometry of the object is unknown
24,32-36

. But this simplicity is 

achieved at the expense of surface profile reconstruction accuracy, particularly when applied to 

curved microscopic objects, because these methods are strictly valid only for the case of planar 

parallel interfaces. Second, interference-based measurements have been shown to be sensitive to 

surface roughness, in particular the visibility of the interference fringes
37

. However, in the 

context of RICM, relationships between fringe visibility and nanometer scale topography have 

not been determined. 

Therefore, the main efforts of the present work are aimed at improving existing and 

formulating new methods for accurate quantitative analysis of, in general, arbitrarily shaped 

convex objects at the microscopic level, see Fig. 1.1, enhancing/facilitating the applicability of 

RICM in diverse areas. For instance, in contact mechanics applications, RICM observation 

provides a direct quantification of the contact area, so it has already been implemented to study 

the deformation of soft particles using conventional deformation models
38

. In this case, an 

improved analysis offers further verification of the model used (thanks to the nanometer 

resolution that can be achieved in the accurate shape reconstruction of the deformed microscopic 

bead) and, as it is pointed out later, the effect of important factors such as deposition medium 

and capillary condensation can be considered. However, most importantly is the fact that novel 

systems with tunable mechanical properties (for example, polymer vesicles and other biomimetic 

systems) have required the recent development of theoretical models for characterization of their 

deformation behavior
39

. Therefore, the unique non-invasive “view-from-below” perspective and 

high-resolution capabilities of RICM can play a significant role in the experimental validation of 

new models, especially when used in combination with other techniques such as atomic force 

microscopy (AFM)
40

. 
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Figure 1.1. Reconstruction of a microscopic arbitrarily shaped convex object by RICM. The system 

corresponds to a polymer vesicle next to a glass substrate; for details see Chapter IV. 

 

  

1.2 Research objectives, novelty and significance  

This study seeks to develop analysis methods applicable to the RICM technique to facilitate its 

practical implementation for accurate investigation of interfacial phenomena between 

microscopic objects and surfaces. The specific aims were: 

 Improve the complete non-planar RICM image formation theory by formulating a more 

precise and general mathematical model for intensity computations. 

 Develop a general method to simulate the interference pattern from arbitrary convex 

geometries with either single or double reflecting layers. 

 Formulate a simplified non-planar RICM model by identifying key parameters that precisely 

capture the behavior observed in experiments and simulations. 

 Develop a nanometer-scale resolution method to provide a fast and accurate reconstruction 

of an arbitrary convex object’s contour next to a bounding surface. 

 Demonstrate RICM capabilities in non-traditional fields by using its unique view-from-

below perspective to directly observe previously unseen contact phenomena. 

 Determine relationships between surface roughness of microscopic objects in contact with a 

substrate and measurable parameters from RICM interference patterns. 

 Perform accurate measurements of microspheres’ size by optimizing fringe spacing analysis 

for spherical geometries. 
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In order to maximize well-known RICM capabilities for surface profile reconstruction, an 

arbitrarily shaped convex geometry model is considered for the first time, which relaxes 

assumptions about the configuration of the reflecting surface (typically approximated as wedges 

or spheres in accurate analysis) while offering exact representation of diverse contours and 

possible experimental situations. To fully exploit this idea, computational methods based on the 

most complete theory of RICM are specifically developed for arbitrary convex geometries 

guaranteeing the best possible simulations of RICM interferograms. At the same time, this 

provides a valuable tool for the identification of key RICM parameters needed for the 

formulation of a simplified non-planar model of RICM applicable to all possible conditions 

where interference occurs in a convex geometry, in contrast with commonly used simple models 

that are strictly valid for planar parallel interfaces and/or small illumination numerical apertures. 

As a result, this approach seeks to address the current trade-off between accuracy and generality 

of the reflecting surface: first, by demonstrating that an accurate reconstruction of an arbitrary 

convex geometry is possible by fitting its experimental interferogram using the complete theory 

of RICM; and second, by enabling the development of an innovative analysis of RICM 

interferograms for fast surface profile reconstruction of arbitrarily shaped convex objects with 

nanometer-scale resolution. 

Here RICM is applied in non-traditional fields with the aim of obtaining valuable new 

information in the context of particle deposition and resuspension from surfaces, thanks to 

RICM’s high resolution, set-up simplicity and unique non-invasive “view-from-below” 

perspective. In addition, a novel RICM application for measuring the surface roughness of solid 

microspheres from fringe visibility analysis is investigated; using a theoretical framework and 

computational methods, a relationship between these variables is specifically determined for the 

RICM set-up. This quantitative analysis of intensities is also possible thanks to advancements in 

protocols to properly compare simulated and experimental intensities. 

Novel methods for analysis of RICM interferograms from microscopic curved objects 

provide greatly enhanced capabilities for the study of their interaction behavior with surfaces. 

This research is significant because the type of systems suitable for RICM quantitative analysis 

are of paramount relevance in areas that include contact mechanics; material characterization; 

biomedicine; immunology; colloid, aerosol, surface, and interface science. Emphasis is made in 

developing analysis methods of practical implementation that potentially enable accurate real 

time analysis of dynamic phenomena and/or studies of ensemble of objects that reveal their 
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statistical/probabilistic behavior. In addition, the insights from the present work represent 

important progress towards simplified formulations and better understanding of the reflection-

interference phenomenon in more complex systems and geometries. 

 

1.3 Reflection interference contrast microscopy 

In 1964, the study of the mechanism of cell adhesion to glass by Curtis
41

 constituted the first 

application of the interference reflection microscopy technique; Ploem
42

, in 1975, improved the 

method by the development of reflection contrast, and due to the work of Gingell, Todd and 

Heavens
43,44

, in 1979 and 1982, RICM became a quantitative technique to determine cell-

substrate separation. In the past decades, more experimental and theoretical improvements have 

been achieved
29,45-47

, showing that this is an area which undergoes continuous development. A 

recent review by Limozin and Sengupta has provided a useful tool for understanding diverse 

aspects of RICM going from the set-up to applications in soft matter and cell adhesion
48

.   

 

1.3.1 RICM set-up 

In the present work, a standard RICM experimental set-up was used as described in the 

following and presented in Fig. 1.2. It consists of an inverted microscope that facilitates the 

observation from below samples that can be simply deposited on a cover glass in air, or samples 

that, provided a density difference in solution, naturally sediment to the bottom thanks to gravity. 

The light source is coherent and has been manually aligned; an interference filter in the light path 

allows obtaining green monochromatic light of wavelength . Next, two aperture diaphragms 

facilitate controlling the illumination cone and field of view on the sample and their positioning 

with respect to the sample and objective enable Köhler illumination
48

. Then, components are in 

place to introduce a series of light polarization changes corresponding to the antiflex 

technique
29,42

. First, a polarizer generates linearly polarized light that is transformed to circular 

polarized light by the /4 plate located inside the objective; second, light reflected back from the 

sample passes the quarter-wave plate for a second time so it goes from circular to linear 

polarization but it has a phase shift of 90°; and third, the polarization direction of the analyzer 

guaranties that only light from outside the microscope is collected by the camera, suppressing 

stray light resulting from internal reflections that would obscure RICM images. More specific 
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information about the main components of the set-up and parameters used can be found in 

Chapter II. 

 

 

 

Figure 1.2. RICM experimental set-up and optical path. Schematic representation of the main 

components involved including light polarization.  

 

 

1.3.2 Image formation theories of RICM 

Across the years, different theoretical models of various degrees of complexity have been 

formulated to describe the RICM image formation process. In the simple theory, the illumination 

cone has a zero aperture angle and the interfaces from which reflections occur are approximated 

as parallel to the glass substrate (that is, the curvature of the object is neglected); as a result, only 

incident and reflected light beams parallel to the optical axis are taken into account and the 

intensity becomes an algebraic function of height
45,49

. The finite aperture theory differs from the 

simple theory in that it considers the effect of a finite aperture angle of illumination; therefore, 

its mathematical form is that of an integral or summation over angles in space
43,44

. An analytical 

solution for this formulation can be obtained after assuming a rectangular illumination profile 

and neglecting the angular dependence of the reflection coefficients, providing an important 

improvement with respect to the simple theory
45

. In addition, the finite aperture theory was 
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recently enhanced to include polarization effects, shown to be relevant when high illumination 

numerical apertures were used
46

. 

A better approach was the non-local theory, which takes into account the finite aperture 

angle of illumination and detection and the effect of curved interfaces; however, it still presents 

some deviations with respect to the experimental data due to assumptions, such as the non-angle 

dependence of the reflection coefficients, intended to simplify the complex calculations
50

. 

Finally, the non-planar interface image formation theory of RICM incorporated the basic ideas of 

the non-local theory but offered a more refined approach with less simplifications and a 

systematic way of evaluating the intensity contributions in three dimensions
29

. This formulation 

was carefully reviewed and improved in the present work, see Chapter III. 

 

1.3.3 RICM and surface profile reconstruction applications 

The simple theory of RICM image formation is commonly used to obtain a fast and 

approximated reconstruction of the surface profile in single- and double-layer systems. From this 

theory, it can be shown that the intensity is a cosine transform of the local height; therefore, the 

contour can be obtained by inverse cosine transform once the maximum and minimum 

intensities in the interference pattern have been determined
45,49

. For double-layer systems, an 

additional phase-shift factor has to be considered, in a slightly modified approach called the 

refractive index method
48,51

. The non-local theory has been used in the context of spherical 

particles for determining their separation distance with the substrate
50

, and based on the non-

planar theory an explicit single-layer model for the geometries of wedges and spheres was 

published by Sackmann, including correction factors from these known geometries to improve 

the calculation of inclination angles and radii of curvature
29

. Surface profiles of various systems 

have also been obtained using correction factors based on non-planar theory
52

 and calibration 

methods
53

. However, to the best of our knowledge, neither has there been an attempt to calculate 

accurate intensity patterns from arbitrary convex geometries with single and double reflecting 

layers, nor to reconstruct this type of surface profiles by using the complete non-planar interface 

image formation theory, as done here in Chapter III. 

Traditionally, RICM has been used to study the adhesion of cells and lipid vesicles, 

where the reconstructed contour by inverse cosine transform is used to get geometric parameters 

that allow adhesion strength calculation
24,32-34

. The recent use of versatile materials such as 

amphiphilic block copolymers that self-assemble in aqueous solutions forming vesicles
54,55

 (one 
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of our experimental systems of study), opens the possibility of using accurate surface profile 

reconstruction by  RICM to analyze their adhesion properties, something mainly done by 

micropipette aspiration technique
56-58

. Another potential application is the study of the behavior 

of polymer vesicles close to a wall under shear flow, which will make possible the determination 

of desirable mechanical properties for the vesicles in vascular flow. Some experimental studies 

in giant lipid vesicles under shear flow have been performed using side view
59

  and side view 

combined with RICM
60

, and also theoretical approaches to the problem have been done
61,62

. 

Leukocyte adhesion to endothelium, the natural model for this system, has been analyzed using 

microspheres
63

 and simulation techniques
64

. However, these dynamic phenomena require the 

implementation of fast and accurate methods, where the computationally intensive non-planar 

theory represents an important limitation. Therefore, these issues are addressed in Chapter IV 

with the formulation of a simplified non-planar model of RICM and the development of a near-

instantaneous surface profile reconstruction method with nanometer-scale resolution. 

 

1.3.4 Direct observation of contact phenomena by RICM 

This represents the most exploited capability of RICM thanks to its unique “view-from-below” 

perspective and the simplicity of the analysis required; as mentioned earlier, it has been 

extensively applied in the study of particle, cell, and lipid/polymer vesicle adhesion
21-28

. In recent 

years, this exceptional capability has been used in immunology applications where RICM proved 

useful in describing a variant of a leukocyte adhesion deficiency type III
65

 and in the formulation 

of immunology methods for quantifying lymphocyte activation
66

.  More fundamental studies of 

cell adhesion on adhesive surfaces have also been performed
67

 and other effects such as cell 

membrane undulations or “roughness” have been monitored
23,68-70

, further demonstrating RICM 

capabilities in the characterization of the adhesion phenomena of blood cells on surfaces. In 

addition, RICM was recently used in pancreatic cancer studies intended to establish a possible 

gene expression role in processes required for metastasis
71

. Although these are exciting RICM 

applications they still follow the traditional line established decades earlier in cell adhesion 

studies. In contrast, in Chapter IV we have demonstrated the importance of RICM distinctive 

capabilities for the direct observation of different deposition scenarios of microspheres on 

surfaces and femtoliter-scale capillary condensation dynamics underneath micron-sized glass 

beads (believed to be unique). Both of these findings are in the context of particle deposition and 

resuspension from surfaces.  
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1.3.5 RICM measurements on microspheres 

The spherical geometry has been widely used in experiments involving RICM, both as an 

experimental system and as a geometric model to extract useful information. Typically, the 

separation between the particle and the substrate is measured
30,31,50

 while taking advantage of the 

concentric and symmetric interferogram to determine its center with sub-pixel resolution, thus 

offering a three-dimensional tracking tool
30,72

. This implies that the microsphere is assumed to be 

perfectly spherical, even down to the nanometer scale, although experimental evidence indicates 

otherwise, typically in the form of a finite separation distance with the substrate when in physical 

contact
40

.  However, the only known direct attempt to quantify roughness using RICM has been 

in the measurement of cell membrane undulations
23,68-70

. Chapter V presents a novel effort to 

measure nanometer-scale surface variations on microspheres using relationships specifically 

derived for the RICM set-up.  

RICM capabilities for particle size measurements have long been appreciated, in 

particular using analysis of limited applicability
40,48

 and with more practical measurements only 

possible by means of correction factors derived from full non-planar RICM
29

. The method 

presented in Chapter V is quite robust and easy to implement because it is based on a direct and 

optimized analysis of multiple interference fringes, resulting in relative errors less than 1% for 

microspheres with diameters between 7 to 60 m. This accuracy is comparable to measurements 

from scanning electron microscopy (SEM) and significantly better than those from conventional 

optical microscopy (relative error ≥ 10%)
73,74

. 

Microspheres also play an important role when RICM is used in combination with other 

experimental techniques. For instance, when colloidal beads are used as force probes, the 

reconstruction of the bead/surface interaction potential is possible if the height distribution 

functions of the fluctuating beads can be measured. In this case, RICM can be used either as an 

optical “passive” technique to observe the Brownian motion of the spherical particle close to the 

wall
30,50,75,76

 or combined with optical tweezers to control the position of the bead
77,78

. Even more 

significant is the relevance of microspheres in the colloidal probe technique
21,40

, where RICM 

and atomic force microscopy are combined for accurate measurements of force interactions that 

require determination of size, local curvature and roughness of the microsphere acting as a 

probe, all of these measurements considered in Chapter V using RICM. 
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CHAPTER II 

METHODS 

 

 

2.1 Image acquisition  

The microscope set-up employed in our experiments was a Zeiss Axiovert 200M Inverted 

microscope. Monochromatic green light, 546.1 nm, was obtained from a 103W HBO mercury 

lamp using a 5 nm band-pass filter. The microscope was equipped with a Zeiss Antiflex EC 

Plan-Neofluar 63x/1.25 Oil Ph3 objective and images were recorded with a Zeiss AxioCam 

MRm camera. Scanning electron microscopy (SEM) images were taken by Dr. Yordanos Bisrat 

at the Materials Characterization Facility at Texas A&M University using an ultra-high 

resolution field emission scanning electron microscope (FE-SEM), the JEOL JSM-7500F. A 5 

nm coating of platinum/palladium was applied on the sample when necessary for SEM 

observation. 

 

2.2 Sample selection and preparation 

The experimental systems chosen in the present work are microscopic objects, such as polymer 

vesicles, polystyrene latex (PSL) and glass particles, close to a glass substrate. There are several 

reasons for this sample choice. First, these systems typically adopt an overall spherical shape (as 

determined from bright field, the circular symmetry in the RICM images and SEM observation) 

covering a wide range of sizes in the micrometer scale where curvature effects become important 

in the interference pattern to be analyzed. Polymer vesicles, especially when non-symmetric 

RICM images are observed, also offer the possibility of studying arbitrary convex geometries. 

The second one is the objects’ geometry at their bottom. Polymer vesicles (which are perfectly 

spherical when free in solution) are expected to experience deformation when close to or in 

contact with a planar surface. Glass and PSL microspheres, although hard to deform despite 

being in contact with the substrate, offer other interesting effects such as surface roughness, a 

close look to its assumed spherical shape, and the possibility to directly observe contact 

phenomena between the particles and the substrate. The third aspect is the objects’ surfaces, 

where the vesicles represent added complexity for RICM analysis because of the presence of the 

smooth polymer membrane (double-layer system), when compared with glass and PSL surfaces 
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of different topographies (single-layer systems). Also, PSL particles of uniform surface 

topography are expected to reveal the effects of strong capillary forces acting during drying. 

Finally, although the polymer vesicles are in aqueous surroundings, the other microspheres can 

be studied both in air and aqueous medium, verifying the applicability of the methods of analysis 

developed under different experimental conditions. 

 

2.2.1 Polymer vesicles 

Block copolymer vesicles spontaneously form in water when the copolymer has one 

hydrophobic and one hydrophilic block, called amphiphilic di-block copolymers.
54,55

 

Polyethylene oxide-block-polybutadiene (PEO89-PBd120, molecular mass 10,400 g mol
-1

) 

purchased from Polymer Source Inc. (Canada) has been used. For vesicle preparation, a polymer 

film containing 250 μg of the block copolymer is formed by evaporation (8 hours) at the bottom 

of a 5 mL glass scintillation vial and the film is rehydrated during 24 hours at 60ºC with 1-2 mL 

of a 300 mOsm kg
-1

 sucrose solution (Osmometer model 3320, Advanced Instruments, Inc., 

Norwood, MA). To obtain shell polymerized vesicles, the resulting solutions were exposed for 1-

3 hours to 200 μL of 20 % ammonium persulfate (99%) and 30 μL of 1,2-

bis(dimethylamino)ethane (99%). Then, the vesicles are placed in phosphate buffered saline 

(PBS) solution of equal osmotic pressure than their interior. Ammonium persulfate and 1,2-

bis(dimethylamino)ethane were obtained from Acros Organics (Morris Plains, NJ), whereas PBS 

and sucrose (ACS reagent) were purchased from Fisher Scientific (Pittsburgh, PA). 

A small volume (typically 200 L) of the previously prepared vesicle solution is placed 

in a sealed chamber on top of an optical borosilicate cover glass (0.16 to 0.19 mm thickness); a 

coating of bovine serum albumin (BSA) is applied on the glass surface if adhesion and spreading 

of the vesicles onto the substrate is not desired. The gravitational force determined by the density 

difference between the sucrose and PBS solutions pushes the vesicles towards the substrate and 

allows them to settle, while the BSA coating and possible electrostatic repulsion due to impurity 

charges on the vesicles and the highly negatively charged glass surface keep them from getting 

in contact with the substrate
75

. As a result, the vesicles float above the glass surface in a slightly 

deformed configuration with respect to their spherical shape when they are free in solution. 
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2.2.2 Microspheres 

Diverse samples of microspheres have been considered, both monodisperse and polydisperse, as 

follows. The Standard Reference Material (SRM) 1961 is a suspension of nominal 30-m 

diameter polystyrene spheres in water obtained from the National Institute of Standards and 

Technology (NIST, USA); SRM 1961 has a certified particle diameter of 29.64 ± 0.06 m and a 

Gaussian size distribution with a coefficient of variation (CV) of 0.8%.  Monodisperse 

fluorescent green PSL particles of 15 µm in diameter (14% CV) with a refractive index of 1.59 

were manufactured by Thermo Fisher Scientific Inc. (USA), come in powder form and are 

denoted as PSL15. The 15 µm diameter monodisperse glass beads used in the experiments 

(Glass15) were provided in powder form by the Aerosol Technology Lab at Texas A&M 

University. The polydisperse glass beads of 30-50 µm diameter (Glass30-50) were manufactured 

by Polysciences Inc. (USA), come in powder form, are made of soda lime glass and have a 

refractive index of 1.51.  

Different experimental conditions were considered for the microspheres. SRM 1961 was 

studied in a diluted solution where the particles are hovering next to the substrate. In dry 

deposition experiments, Glass30-50 and PSL15 particles were directly placed on top of a cover 

glass and observed within minutes; Glass30-50 was also monitored during larger time scales (a 

couple of weeks) where some particles were exposed to ambient conditions while others were 

kept in sealed chambers and/or vacuum. In wet deposition experiments, Glass30-50 and PSL15 

microspheres were directly deposited on the cover glass and a droplet of ultra-pure de-ionized 

water was added on top of the particles; drying under ambient conditions and vacuum was 

performed. A medium of 0.1 M NaCl solution was used in experiments where particles are 

required to be in contact with the glass substrate so that the electrostatic repulsion barrier is 

overcome. 

 

2.3 RICM experiments and image analysis 

Processing of RICM images was performed with the software ImageJ 1.41o (public domain, 

National Institutes of Health, USA) and MATLAB R2010a, and the experimental and 

computational procedures implemented to extract quantitative information are described in the 

following. 
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2.3.1 Measurement of RICM set-up parameters 

Light coming through the objective illuminates the focal area with a cone of light,  (as 

measured on the glass side), given by the size of the aperture stop in the microscope; this 

determines the illumination numerical aperture (INA) in the set-up by means of the relationship 

INA = nglasssin(). Here,  measurements are based on the determination of the normalized 

irradiance profile, I0()/I0max, for a given aperture, according to the description by Gingell and 

Todd
43

, see Fig. 2.1. When the aperture stop is increased up to the point where no changes are 

observed, a maximum INA of 1.25 is reached that actually corresponds to the numerical aperture 

(NA) of the objective. At this maximum, I0()/I0max closely follows the cosine-fourth law of 

illumination up to 0.5 radians, with a drop in the intensity observed between 0.24 and 0.45 

radians due to the presence of a phase plate inside the objective. The profile for the minimum 

aperture available, 0.74 mm diameter, breaks away from the INAmax curve and follows a sigmoid 

which does not instantly drop to zero, making the choice of a specific  value somewhat 

arbitrary but necessary, because its value is a key parameter in simulations and image analysis. 

All images in the present work were taken using the smallest INA available, estimated to be 0.48 

as measured from the value of theta (0.32 radians) where I0()/I0max drops to about 2% its 

maximum, and NA = 1.25 for the objective.  

 

 

 

Figure 2.1. Irradiance profiles for different apertures. Normalized irradiance profiles are shown for 

four different aperture stop diameters (indicated in mm). They are measured from the circular conic 

section of illumination projected on the surface of a glass block positioned on top of the objective (bottom 

inset); a radial average is performed over the projection generated, the background is subtracted and the 

results are normalized by the maximum intensity. The insets correspond to a 2.17 aperture where the top 

inset shows the illumination cone as seen in air. 
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2.3.2 Scale factor between simulated and experimental intensities  

Prior to observing the specimens under the microscope, a scale factor between experimental and 

simulated intensities is measured. RICM images of different glass-ambient medium systems of 

known refractive indices (measured with an Abbe refractometer) are taken about one hour after 

the ignition of the fluorescence lamp to allow for its complete stabilization, see Fig. 2.2a.  

 

 

 

Figure 2.2. Scale factor between simulated and experimental intensities. (a) A variety of substrate-

ambient medium interfaces are used to obtain different experimental intensities. (b) Experimental and the 

corresponding simulated intensities follow the same functional form when plotted against refractive index. 

Notice that the “zero” intensity has to be subtracted from the experimental value.  (c) The scale factor is 

the slope of the linear correlation between the intensities. 

 

 

The experimental intensity values are obtained from the measurement of an average 

intensity (over a selected region inside the field of view) from which a “zero” intensity is 

subtracted (measured from the dark shadow in the periphery) and the resulting values are 

normalized by the exposure time (although this normalization can be omitted if all images are 

taken with the same exposure time). Then, the measured experimental intensities are plotted as a 

function of the refractive index of the ambient medium. Because the refractive index of all the 
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components is known, simulations can be performed to get the corresponding simulated intensity 

showing that they follow the same functional form, as seen in Fig. 2.2b. Actually, in our 

approach, the refractive index of the cover glass was initially unknown and its value, 1.530, was 

estimated so that the best linear correlation (going through the origin) between the experimental 

and simulated intensities is obtained in Fig. 2.2c while the corresponding slope provides the 

scale factor between them.  

The scale factor measured is found to remain fairly constant (~ 1 % variation) during 

several hours, even if different samples are observed; however, if the illumination is changed or 

the lamp is turned off, a new scale factor has to be measured. Notice also that once the refractive 

index of the cover glass is determined, only the construction of the plot in Fig. 2.2c is necessary. 

 

2.3.3 Subtraction of non-uniform background 

To accurately analyze intensities in RICM images, an image homogenization procedure is 

executed. It turns out that the field of view is not uniformly illuminated and this can introduce a 

significant error in minimum separation distance measurements. Therefore, images of the 

background, like the one in Fig. 2.3a, can be used to determine the intensity values (Fig. 2.3c) 

that have to be subtracted from a particular RICM image (Fig. 2.3b) so that its intensity 

variations due to a non-uniform background are accounted for. For instance, if this background 

correction is not made, a relative error as large as 28 % in separation distance determination 

could be obtained when the intensity used in the measurement is located at the brightest spot in 

Fig. 2.3c.  

The procedure implemented is as follows: first, it is recommended to obtain a single 

background image by averaging and smoothing several glass-ambient medium interface images 

taken at different places over a clean cover glass while keeping the field of view aperture 

constant; second, the corresponding “zero” intensities are  measured and subtracted from both 

the background image (Fig. 2.3a) and the image of interest (Fig. 2.3b); third, a selection 

corresponding to a common background in Fig. 2.3a and Fig. 2.3b is identified, while excluding 

inner areas containing all interferograms from objects (that is, all interferograms are masked 

out); fourth, average background intensities measured from the identified common selection are 

used to scale the background image onto the intensity scale of the image of interest; finally, 

intensity deviations over the background image with respect to the average background intensity 
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are computed (Fig. 2.3c) and subtracted from the image of interest. Notice that the procedure 

does not alter the average background intensity of the image of interest. 

 

 

 

Figure 2.3. Subtraction of non-uniform background. (a) RICM image resulting from averaging and 

smoothing several individual images of glass/air interfaces; it illustrates the regions where the “zero” 

(outside outer selection) and background (selection inside the field of view) intensities are measured. (b) 

RICM image of a polymer vesicle in aqueous medium before homogenization, with an average 

background intensity of 355.44; notice that this value is measured within the field of view but masking out 

the area containing the interferogram corresponding to the polymer vesicle. (c) Intensity values to be 

subtracted from (b) so that irregularities coming from a non-uniform background are accounted for; 

minimum and maximum intensities of -60.14 and 16.86, respectively, were obtained. 10 m scale bars. 

 

 

2.3.4 Intensity profile measurement 

After non-uniformities from the background are subtracted, the intensity profile along an 

observation line or area is measured, followed by a “zero” intensity subtraction (from the dark 

area outside the field of view), and normalization by the exposure time (if necessary), see Fig. 

2.4. Notice that the observation lines are manually selected perpendicular to the fringe’s front, so 

an average intensity profile over an area can be directly measured when dealing with wedge 

geometries or, if there is circular symmetry in the RICM image, the center of the interferogram is 

located and a circular average of intensities is obtained; in contrast, only single profiles can be 

obtained from an arbitrary convex geometry. To accurately determine the center of an 

interferogram with circular symmetry, a custom made routine is implemented in ImageJ as 

follows: first, a square selection power of two (128x128, 256x256, etc.) is made around the 

center and a new image is created; then, background is subtracted with a rolling ball radius of 50 

pixels and the resulting image is convolved with itself using the FD Math command 

(Process>FFT>FD Math); a threshold is set using the relationship (min + (max – min)*0.92, 
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max) where min and max are the minimum and maximum intensity values, respectively, of the 

image obtained after convolution; the resulting image is then converted to binary and the center 

of mass is computed; finally, the center obtained is averaged with the center of the square image 

to obtain the center of the interferogram. This procedure provides sub-pixel resolution and has 

proven highly reliable and robust. 

The positions of peaks and valleys (and consequently the fringe spacing and minimum 

and maximum intensities) are determined from the resulting intensity profile so that subsequent 

procedures can be performed. To obtain an absolute contour reconstruction and/or to perform 

fringe visibility analysis, the experimental intensity values are scaled to match the simulated 

intensity versus height curve from the theory for stratified planar structures, and the minimum 

separation distance between the specimens and the glass is measured assuming that particles and 

vesicles are close enough to the glass substrate (minimum separation distance < 200 nm). 

 

 

 

Figure 2.4. Intensity profiles in representative interferograms. (a) Interference fringes from a wedge 

geometry. (b) Concentric and symmetric fringes from a sphere-like geometry; center pixel is set to black. 

(c) Concentric and non-symmetric fringes from an arbitrarily shaped convex geometry. 10 m scale bars. 
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CHAPTER III 

REFLECTION INTERFERENCE CONTRAST MICROSCOPY OF ARBITRARY 

CONVEX SURFACES
*
 

 

 

3.1 Overview 

Current accurate applications of reflection interference contrast microscopy (RICM) are limited 

to known geometries; when the geometry of the object is unknown, an approximated fringe 

spacing analysis is usually performed. To complete an accurate RICM analysis in more general 

situations, we review and improve the formulation for intensity calculation based on non-planar 

interface image formation theory, and develop a method for its practical implementation in 

wedges and convex surfaces. In addition, a suitable RICM model for an arbitrary convex surface, 

with or without a uniform layer such as a membrane or ultrathin coating, is presented. 

Experimental work with polymer vesicles shows that the coupling of the improved RICM image 

formation theory, the calculation method, and the surface model allow an accurate reconstruction 

of the convex bottom shape of an object close to the substrate by fitting its experimental intensity 

pattern. 

 

3.2 Introduction 

An image formed by reflection interference contrast microscopy, RICM, contains precise 

information about the topography of the object under observation. Current applications of RICM 

are focused on analysis of experimental interference patterns from known geometries and sizes 

using sophisticated models of image formation
29-31

, or greatly simplified fringe spacing analysis 

when the geometry of the object is unknown
24,32-36

. For instance, simultaneous determination of 

the three-dimensional (3D) positions of multiple spherical particles can be performed by direct 

comparison with simulated interferograms from spheres
30

. On the other hand, RICM adhesion 

studies of cells and lipid vesicles, where the geometry is unknown, usually involve determining 

their approximated contour near the contact region by inverse cosine transform
24,32-34

. However, 

if a sophisticated RICM image formation model could be applied to simulate intensity patterns 

                                                      
*
 Reprinted with permission from “Reflection interference contrast microscopy of arbitrary convex 

surfaces” by Jose C. Contreras-Naranjo, James A. Silas, and Victor M. Ugaz, 2010, Applied Optics 49: 

3701-3712, Copyright 2010, The Optical Society (OSA) 
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from arbitrary geometries so that they could be directly compared with experimental 

interferograms, it would be possible to extract much more accurate information from RICM 

images (for example, object shape, separation distance, and membrane thickness, etc.).   

 In the present research we focus on geometries with an arbitrary convex surface with or 

without a uniform second layer such as an ultrathin coating or a membrane because these 

systems are important in a number of applications. In addition to cells and lipid vesicles, the 

polymer vesicles employed here come from the novel use of versatile materials such as 

amphiphilic block copolymers that self-assemble in aqueous solutions and are important in the 

design of drug delivery systems, biosensors and cell mimicry
54,79-81

. Another type of system that 

can be studied includes ultrathin polyelectrolyte multilayer films adsorbed onto micrometer-size 

colloidal particles. Following the removal of the particle template, these systems provide tailored 

hollow capsules suitable for diverse applications
82,83

. More generally speaking, an accurate 

RICM analysis fits extraordinarily well in understanding the deformation behavior of soft 

particles near a flat substrate, which is of paramount importance for the progress in colloid and 

interface science
39

. 

Since the first RICM theoretical considerations by Gingell and Todd in 1979
43

, 

important theoretical improvements have been accomplished thanks to the work of Sackmann 

and co-workers during the 1990s
29,45,50

. The non-planar interface image formation theory
29

, 

introduced in 1998, represents the most sophisticated theory yet. This paper presents a review 

and improvement of this theory, with the formulation of a general statement for intensity 

calculations and a correction in terms of the optical path length difference (OPLD) determination 

in non-planar interfaces. A method for the practical implementation of the improved theory in 

wedges and convex surfaces is presented, based on an approximated formulation that directly 

uses the convenient backward ray-tracing technique. Also, a general model for an arbitrary 

convex surface, with or without a uniform layer such as a membrane or ultrathin coating, is 

presented. In order to speed up the calculations without losing accuracy, the appropriate 

geometric simplifications in the model are studied using simulations. As a result, the 

experimental data demonstrate the validity of the improved theory, the calculation method 

employed in the simulations, and the developed surface model when used together to accurately 

obtain the surface profile of a polymer vesicle by fitting its experimental intensity pattern. 
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3.3 Results 

3.3.1 RICM image formation theory improvement 

RICM image formation is illustrated in Fig. 3.1a, followed by the description of the non-planar 

interface image formation theory
29

 in Fig. 3.1b, which is the most sophisticated to date. 

According to this theory, the contributions to the intensity at B(x, y) are integrated incoherently 

as follows: 

 

 

t

yxI









d

d
,

EE
                (3.1) 

 

Where E is the local electric field, Ω are spherical coordinates denoting angles of 

incidence at B, and t stands for a time average. The integral in equation (3.1) has been rewritten 

as 
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considering that s-polarized light cannot interfere with p-polarized light and vice versa; recently, 

polarization effects have been included in a planar model showing that they become relevant 

when a high illumination numerical aperture, INA, is used
46

. R is the effective reflection 

coefficient which is a function of the geometry, refractive indices, and constraints in the system; 

and I0 is the intensity of the incident light supposed to be homogeneous in , in the interval [0, 

IA]. According to this formulation, the integration variables () correspond to ) in Fig. 

3.1b because they are indexing all rays incident at B that reenter the microscope after reflection 

at the non-planar interface. 
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Figure 3.1. RICM overview and non-planar model in a single-layer system. (a) RICM image formed 

due to the interference of rays reflected from different optical interfaces in the system when the object is 

illuminated from below using monochromatic light. (b) The illumination source is considered 

monochromatic, pseudo-coherent, and angularly limited by the illumination numerical aperture (INA) of 

the microscope, which means all I0 originate from within the cone defined by the maximum illumination 

angle, IA. The normalized intensity at B in the image plane, I(x, y), is calculated integrating over spherical 

coordinates (22) the contributions from rays I1 and I2 incident within the cone of detected light, DA, 

determined by the numerical aperture (NA) of the objective. The path length and intensity corresponding 

to each particular ray are determined by backward ray-tracing, taking into account reflection and 

transmission at every optical interface corresponding to a given geometry; however, multiple reflections 

are not considered. 

 

 

This formulation correctly describes a situation such as the one depicted in Fig. 3.1b 

with two identical beams, I0, originating from the homogeneous illumination source, and I2 as 

the only ray incident at B(x, y) after reflection at the non-planar interface, which gives a single 

possibility for defining the integration variables  as . However, if we think about a 

more complex situation where more than two complementary rays, I0, interfere, the use of a 
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consistent indexing , based on rays that are reflected back from the object, becomes more 

difficult and even impossible. This is due to the fact that, after reflection at the non-planar 

interface, each complementary I0 results in different contributions I2, I3,… and each one of them 

is more likely to have a different orientation , ... when incident at B. Another issue 

with the  indexing is that in some situations we may not be able to account for all I1 

contributions to the intensity because the existence of I1 is determined by the existence of I2, and 

this depends on the geometry and constraints in the system. Because  are not general 

variables for integration in equations (3.1), (3.2), and (3.3), we instead consider the I1 angles 

, shown in Fig. 3.1b, as quantities capable of providing a basis for consistent indexing in 

any situation. These variables are unique because no other complementary I0 is reflected off the 

substrate-layer 1 interface and they exist whenever there are contributions to the intensity. 

Based on these considerations, we express the local intensity, I(x, y) at the image point 

B, located at the substrate-layer 1 interface, in terms of: 

 

  ps

t

IIyxI 














1

1

d

d

,

EE

           (3.4) 

 

         

  

 


 

 





2

0 0

111

2

0 0

1111011
,

11
,

,

IA

IA

ddsin

ddsin2/,*, IRR

I

psps

ps         (3.5) 

 

Here the average over solid angle of the contributions to the intensity is done by indexing the 

integration following I1, with orientation as shown in Fig. 3.1b, and its interference with 

the corresponding contributions I2, I3, … if any, from complementary rays I0. This defines a two-

dimensional (2D) set of angles in the -plane, Ω1, corresponding to the solid angle where all 

contributions to the intensity reside (the differential element of solid angle is given by dΩ = 

sin(1)d1d1). It can be seen that the denominator of equations (3.4) and (3.5) is a normalization 

constant directly related to Ω1. Once the INA of the microscope is set to a certain value, the 

extended illumination source, I0(), becomes geometrically constrained within the illumination 
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cone defined by IA. Consequently, the solid angle over which contributions to the intensity are 

collected, Ω1, is set by max IA, the only parameter that is necessary to obtain the 

normalization term. On the other hand, we see that the numerator can be calculated, 

unambiguously and at least in theory, by tracking all beams I1 within Ω1 and finding all 

complementary rays I0 and their contributions I2, I3,… that satisfy the constraints in the system 

and combine to produce interference. However, the intensity calculation becomes more 

challenging in this new scenario because instead of using the convenient backward ray-tracing 

method based on ) we have to start with (), and only well-defined geometries such as 

wedges and spheres offer the possibility of obtaining an analytical solution.  

In addition to the described general formulation for intensity determination, we find that 

a correction is also needed in the OPLD calculation to properly account for non-planar 

interfaces. The interference of I1 and I2, shown in Fig. 3.1b, has been previously described to 

have an OPLD as follows
29

: 

 

   ABCBCBnSBASnOPLD 101 sin;           (3.6) 

 

However, this equation is only valid in the particular orientation of the 2D situation described in 

Fig. 3.1b. For arbitrary geometries an expression in terms of vectors is more appropriate: 

 

   BAR0  01 nSBASnOPLD             (3.7) 

 

Where R0 is the unitary vector (pointing upward) that defines the orientation of ray I0 in the glass 

side and BA is the vector from point B to point A, according to Fig. 3.1b. Although the vector 

product term in equation (3.7) is part of the calculation of the OPLD between I1 and I2, it can be 

applied to the interference between I1 and additional contributions I3, I4 … by taking into 

account that, in general, A represents the point source in the image plane of the corresponding 

complementary I0.  

 In the following section we describe how to perform intensity calculations according to 

equations (3.4) and (3.5). For simplicity, we concentrate on geometries such as wedges and 

arbitrary convex surfaces, although these equations are general and can be applied to any 

arbitrary geometry with any number of layers. The selected geometries allow us to explore 
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simplifications to the problem so we can take advantage of the backward ray-tracing method to 

make the computations easier and practical. 

 

3.3.2 RICM intensity calculations in wedges and convex surfaces 

In geometries such as wedges and convex surfaces, a consistent indexing in (ii), i ≥ 2, is 

sometimes possible by performing a change of variables. We use the subscript “i” to generalize a 

feasible indexing by using any ray incident at B(x, y) after being reflected back from any layer of 

the non-planar interface. In order to be successful, any single or multiple consistent indexing 

must be able to account for the contributions of all rays incident at B. Such indexing defines a 

2D set of angles in the ii-plane, Ωi, and has to correspond to a one-to-one mapping between 

points inside Ω1 and Ωi. Therefore, we formally introduce the map G of Ω1 onto Ωi defined by 

the change of variables: 
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That leads to: 
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Notice that the differential element of solid angle is now given by dΩ = J(i,i)didi , where 

J(ii) is the Jacobian of the transformation
84

. Because the map G depends on the geometry of 

the reflecting surface, this Jacobian is also a function of it and its calculation requires the first-

order partial derivatives of the mapping functions to be continuous. 
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The most important condition for the success of equations (3.9) and (3.10) is the 

complete transformation of the integration space Ω1 delimited by IA. When we use (ii) 

variables, such solid angle is transformed by the geometry of the reflecting surface and it may be 

that only a partial transformation into Ωi is possible. This is illustrated in Fig. 3.2 using the 

geometry of wedges. For the 30 wedge in the top row, the main constraint in both domains is 

IA and the interaction with DA produces two regions, one with only I1 contributions and a 

second one with interference of I1 and I2, which can be completely observed in Ω1 and Ω2. The 

intensity can therefore be calculated using either equations (3.9) and (3.10) or Equations (3.4) 

and (3.5) as shown in the third figure. In the 40 wedge at the bottom row, Ω2 is cut off by TIR 

(total internal reflection limit) and from the translation of this limit to Ω1 we can see that there is 

a missing region, I1
*
, outside the borders, with only I1 contributions. In this situation, only 

equations (3.4) and (3.5) give the correct result while equations (3.9) and (3.10) produce a 

different value as can be seen in the intensity profile. 

In addition to the possibility of not accounting for all contributions to the intensity when 

performing the change of variables, calculation of the Jacobian of the transformation implies that 

we know the relationship between ) and ii). This is basically the same reason that 

makes the direct application of the general formulation impractical when dealing with an 

arbitrary geometry. Therefore, although equations (3.9) and (3.10) are given in terms of ii) 

variables, we still cannot take full advantage of the backward ray-tracing method. However, we 

can obtain a new formulation for the intensity calculation, where the inconvenient Jacobian in 

equation (3.10) is replaced by sin(i) such that the differential element of solid angle is now 

given by dΩ′ = sin(i)didi. Consequently, we have: 
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This formulation is not a mathematically correct transformation of equations (3.4) and (3.5) 

because J(i, i) = sin(i) only valid in the limiting case of planar parallel interfaces and we 

expect to obtain an approximate result that deviates from the correct one as the inclination of the 

non-planar interface increases. However, this approximated formulation yields correct fringe 

spacings from wedges and convex surfaces because it accounts for all the interference between 

complementary rays I0 with contributions I1, I2, I3… in such geometries. The fact that we might 

be missing single I1 contributions only affects the average intensity in the interferogram, 

similarly to what is seen in Fig. 3.2 (bottom row) for the case of the change of variables. 

 

 

 

Figure 3.2. Missing intensities in wedge systems. Intensity calculations correspond to glass-water-air 

wedges of 30 (top row) and 40 (bottom row). The integration domains Ω1 and Ω2, shown in the first and 

second figures for each wedge, remain the same for all image plane positions where intensities are 

calculated and plotted in the third figure according to ) and 22) indexing. To illustrate the 

transformation of Ω1 into Ω2 and vice versa, it can be seen how the boundaries of the integration domains, 

mainly determined by IA and TIR; four arbitrary interior points, A, B, C, and D; and some arbitrary 

interior lines, white dashed lines, translate from one domain to the other in each wedge geometry. The 

intensity profiles show that the change of variables is successful for the 30 wedge but not for the 40 

wedge because of I1
*
 contributions present in Ω1 but missing in Ω2. The simulations were performed in 

glass/water/air wedges with refractive indices 1.5/1.33/1, respectively, INA = 0.48, and NA = 1.25. Notice 

that represents a single point, E, at the Ω2 boundary and  goes only up to  in order to exploit the 

symmetry of the problem. 
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It is also important to consider how the approximated intensity profile is obtained from 

equations (3.11) and (3.12). The normalization term is no longer simply a constant given by IA 

because the absence of the correct Jacobian makes it a function that depends of the geometry of 

the reflecting surface, and possibly of position in the image plane. However, a similar issue 

associated with approximating the Jacobian also affects the numerator of equation (3.12), 

thereby making it possible to obtain the approximated intensity values from these equations after 

normalization. This is illustrated in Fig. 3.3, using simulations from a sphere, where the 

approximated solution gives acceptable intensity values (average relative error of 5.21%) that 

maintain the correct fringe spacing in the interferogram; the agreement is even better when 

smaller INAs are used (data not shown). 

 

 

 

Figure 3.3.  Exact and approximated intensity computations in convex geometries. Simulations 

corresponding to a 6 m radius latex sphere in water and 100 nm above the glass surface, with INA = 

0.78, NA = 1.25 and nlatex = 1.55, are performed to illustrate the behavior and convenience of the 

approximation given by equations (3.11) and (3.12) compared to the exact solution, equations (3.4) and 

(3.5). (a) The intensity without normalization is the calculation from the numerators of the mentioned 

equations; (b) the normalization corresponds to the evaluation of their denominators and (c) the final 

intensity value is obtained after normalization. It is important to point out that in these calculations there 

are no missing contributions in Ω2. 
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Equations (3.11) and (3.12) can be directly implemented using simulations by backward 

ray-tracing of the rays with (ii) orientation incident at B(x, y), without previous knowledge of 

the relationship between (11) and (ii), and applying appropriate normalization. However, 

the most significant aspect of this formulation is that numerical evaluation of the numerator in 

equation (3.11) allows indirect calculation of the exact intensity from equations (3.4) and (3.5). 

From Fig. 3.2 we see that within the boundaries of Ω2 the map G is invertible; then, whenever 

J(i,i) ≠ 0 we can write: 
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Which defines the inverse map G
-1 

for wedges and convex surfaces. Therefore, when performing 

the integration in equation (3.11), we can proceed as follows: first, we find all contributions 

possible in Ωi, by backward ray-tracing, with their corresponding effective reflection coefficients 

and intensities of the incident light; next, by using the idea of the inverse mapping, we proceed 

to relocate that information in Ω1; finally, the existence of missing regions is determined in Ω1 so 

that the missing contributions can be appropriately accounted for and the exact calculation 

according to equations (3.4) and (3.5) can be completed. More detailed information about the 

numerical construction of the inverse mapping and subsequent integration can be found in the 

Appendix A. Figure 3.3c shows a comparison between the exact calculation performed by direct 

evaluation of equations (3.4) and (3.5), the approximated calculation from direct evaluation of 

equations (3.11) and (3.12), and the indirect evaluation of equations (3.4) and (3.5) based on the 

direct evaluation of equations (3.11) and (3.12). It can be seen that we have successfully used the 

information collected from the approximated formulation and, via inverse mapping, performed 

an indirect evaluation of equations (3.4) and (3.5) which is in excellent agreement with the direct 

computation. This allows calculating exact intensity values in a much more computationally 

efficient manner when dealing with an arbitrary convex geometry.  

 Finally, we note how the previous formulation given by equations (3.1), (3.2), and (3.3) 

compares to the different sets of formulations developed here. When we look at the denominator 

of equation (3.3), we see that it corresponds to the same normalization term in equation (3.5), the 

exact general calculation, except that the numerator of equation (3.3) is equivalent to the one in 

equation (3.12), the approximated solution for wedges and convex surfaces. Consequently, 
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because the appropriate normalization term is required to obtain either the approximated or exact 

intensity, as seen in Fig. 3.3, it can be concluded that the previous formulation does not provide 

correct intensity values. However, we expect equations (3.1), (3.2), and (3.3) to accurately 

reproduce the fringe spacing in wedges and convex surfaces and to provide the correct intensity 

value in the limiting case of planar parallel interfaces, in the same way as the approximated 

solution. 

 

3.3.3 RICM simulations of known geometries 

The current mathematical models for wedges and spheres have been reviewed. For these known 

geometries it is possible to calculate the intensity directly from equations (3.4) and (3.5), 

equations (3.9) and (3.10) or equations (3.11) and (3.12), with essentially the same 

computational effort; thus, we can perform simulations to study and compare results from these 

formulations. In addition to the earlier discussions, we find that the normalization term in 

equation (3.12) is a particular constant for different inclination angles of the wedge, because the 

loci of contributions Ω2, illustrated in Fig. 3.2, remain unchanged for all positions. On the other 

hand, simulations from a sphere in Fig. 3.3 illustrate how that normalization term monotonically 

decreases as a function of radial position. This behavior occurs due to the fact that the loci of 

contributions displace towards larger i’s and become smaller as we move away from the center 

of the sphere. 

Also, we can use wedges and spheres to directly compare the results from our improved 

theory and models with previously published results
29

. Although, in general, equations (3.1), 

(3.2), and (3.3) do not produce the correct intensity values, the qualitative behavior previously 

observed in interferograms from these geometries is also obtained with the new general 

formulation. For instance, the mean intensity of fringe patterns from wedge geometries is 

constant within the interferogram (Fig. 3.2) but it is a function of the angle of inclination, while 

in the case of spheres the mean intensity varies within the interferogram (Fig. 3.3). This confirms 

that the mean intensity changes with local inclination of the non-planar interface, an effect that is 

successfully explained by the displacement of the loci of interference of the rays, the region 

labeled as “I1 & I2” inside Ω2 in Fig. 3.2, and their interaction with constraints such as DA.  

To look at the fringe spacing behavior, we notice that it is possible to obtain an 

approximated micro topography of the sample based on a fringe spacing analysis by using the 

simplest theory of RICM image formation
29,45

; when this is applied to wedges and spheres, the 
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inclination angle, , and the radius of curvature, , can be estimated, respectively. The deviation 

of such estimation from the correct values has been studied using simulations and an empirical 

correction term, C, has been introduced as follows
29

:  

 

 UCwedgeCUCC  ,            (3.14) 

 

 UCsphereCUCC  ,            (3.15) 

 

Where the corrected measurement is obtained from the uncorrected value, denoted by subscripts 

UC, times the correction factor that is expressed as a function of uncorrected measurements. The 

statement made in equations (3.4) and (3.5) does not modify the fringe spacing with respect to 

equations (3.1), (3.2), and (3.3), however the correction made to the calculation of OPLD in 

equation (3.7) is expected to have a significant effect. This is shown in Fig. 3.4, where new 

correction factors for wedges and spheres are plotted and compared to the ones with the 

uncorrected OPLD and previously reported fittings (see equations (32) and (35) in
29

 and the 

corresponding fitting parameters given). The fact that the factors calculated from uncorrected 

OPLD values, equation (3.6), follow previously reported fittings obtained by performing 

simulations of equations (3.1), (3.2), and (3.3) shows their agreement with our simulations. At 

the same time, it confirms that the fringe spacing remains invariant with respect  

 

 

 

Figure 3.4. Comparison with previous results. Using the corrected OPLD, the correction factors for 

fringe spacing analysis in (a) wedges and (b) spheres have been determined. In addition, the factors 

calculated from the uncorrected OPLD are shown; they follow previously reported fittings obtained by 

using simulations of equations (3.1), (3.2), and (3.3). The systems studied correspond to glass-water-air for 

wedges and glass-water-latex for spheres contacting the substrate with INA = 0.48 and NA = 1.25. 
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to the formulation used for the intensity calculation. Finally, we see that the effect of the OPLD 

correction is basically to reinforce the results from the simplest theory as the correction terms are 

now closer to unity, especially for the cases of large inclinations of the non-planar interface. 

Other known geometries such as ellipsoids and circular and elliptic cylinders have been 

studied, especially in order to determine the effect of using a cylindrical geometry to 

approximate a convex surface with non-zero Gaussian curvature. Some related results are 

discussed in the following section, in addition to simulations of double-layer systems with 

spherical geometry. 

 

3.3.4 RICM of arbitrary convex surfaces 

In this section we present an approach to model general convex reflecting surfaces with or 

without a thin layer. In addition, appropriate simplifications are studied that can enable the 

calculations to be performed faster without loss of accuracy. The simulations from such systems 

are performed according to the procedure described in Appendix A, using a numerically 

reconstructed inverse map. Then, a deformable polymer vesicle close to the glass surface is used 

to provide an experimental system that resembles an arbitrary convex surface. 

 

3.3.4.1 Arbitrary convex surface model 

Splines are smooth piecewise polynomial functions that can be utilized to model the contour of 

the object immediately above the observation line, the line where the intensity profile is 

measured and analyzed. Then, a general way to define a surface from this contour is to rotate the 

spline around a given axis. The location of the rotation axis, defined by the radius of rotation, 

RoR, gives the ability to represent the surface of the object under study that fits different 

experimental situations, as shown in Fig. 3.5a. This model allows arbitrary surfaces to be 

described and is able to exactly represent the geometries of spheres, with RoR = 0, and wedges 

and cylinders, with RoR = Infinity. The case of RoR = Infinity, referred to as the cylindrical 

approximation, is of particular interest because it has the advantage that a 3D geometric problem 

of finding intersections between the rays and the surface is simplified to a 2D problem, making 

the calculations easier and faster. At the same time, it is expected to be a valid approximation for 

any convex geometry because the RICM image is a strong function of the local height of the 

object, which remains unchanged.  
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Figure 3.5. Arbitrary convex surfaces and double-layer systems. (a) Spline model for an arbitrary 

convex surface that fits different experimental situations by adjusting the RoR parameter. (b) Local 

geometry, approximations, and contributions to the intensity in the spline model extension to double-layer 

systems. 

 

 

In order to evaluate our model, we performed simulations of latex spheres in water 

contacting a glass surface with NA = 1.25 using the exact geometry, and compared their 

interferograms with the ones from the cylindrical approximation. In general, the same fringe 

spacings are maintained across all radial positions and no difference is observed in the initial 

portion of the intensity profile although the magnitude of the intensity curve obtained from the 

cylindrical approximation diverges somewhat from the exact geometry. It is found that the 

average of the relative error between the interferograms, taken up to the point where the profiles 

decay to the background intensity, follows a linear trend with INA values larger than 0.48; the 

error is about 1.66% for INA = 0.48 and 4.76% for INA = 0.98. Several simulations show that 

this relative error presents small variations with the sphere size and can be as small as 1.03% for 

INA = 0.28. The behavior can be explained given that the loci of contributions become larger as 
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the INA value increases, collecting more information about the lateral shape of the object. 

Therefore, if the sphere is replaced by an elongated ellipsoid, the error decreases and tends to 

zero as the elongation becomes larger. For instance, the cylindrical approximation accurately 

represents the interferogram, along the x axis, of an elongated ellipsoid with radii 4, 40, and 4 

m along the x, y, and z axes, respectively. Because the spline model with RoR = Infinity does 

not introduce a significant error in the calculated intensities, especially when a small INA is 

used, subsequent simulations involving double-layer systems are performed using this model. 

 

3.3.4.2 Model extension to double-layer systems 

To the best of our knowledge, explicit models using the non-planar interface image formation 

theory in double-layer systems have not been reported. Thus, we formulated a method to 

calculate the intensity in these systems considering that the second layer resembles a membrane 

or ultrathin coating of arbitrary convex geometry with a uniform thickness, L, much smaller than 

the object size. The calculation is based in the indirect evaluation of equations (3.4) and (3.5), 

taking advantage of the backward ray-tracing method, as described in the Appendix A for a 

single-layer system. Therefore, when calculating the intensity I(x, y) at a point B, every 

individual beam incident at that point and resulting from a reflection at the second layer/ambient 

medium interface, I3, is traced backward to a source point D, see Fig. 3.5b. In order to do this, 

the following approximation is used to speed up the calculations: once I3 intersects the spline at a 

point Q, the radius of curvature at Q is calculated to define concentric circular cylinders that 

model the local curvature and thickness of the layer, as illustrated in Fig. 3.5b. Using this local 

and well defined geometry, the tracing backward of the beam I3 can be completed to its source I0 

at a point D, and the two complementary I0 beams with contributions I1 and I2 can be determined.  

Notice that we trace backward I3 instead of I2. The main reason for this is to avoid an 

additional and necessary numerical search for I3 if we select I2; by choosing I3 and obtaining I0, 

I2 can be determined analytically from the cylindrical geometry after solving a fourth order 

polynomial equation. In addition, that choice does not introduce a consistency problem because 

the thickness of the second layer is assumed to be much smaller than the local radius of 

curvature and, consequently, I2 and I3 exist simultaneously. This represents the situation where a 

multiple and consistent indexing is possible for equations (3.11) and (3.12), which allows the 

indirect calculation of equations (3.4) and (3.5).  
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Figure 3.6. RICM in a spherical double-layer system. (a) The intensity at the center of the 

interferogram, I(0), can be easily obtained from the planar theory considering that the particle is close to 

the surface, and the thickness of the coating is small. (b) The non-planar theory gives the same 

information for I(0) and it points out that the average intensity of the interferogram, Avg(I), can be 

correlated with the thickness of the coating, as it can be seen for the case when the particle is in contact 

with the glass. The simulations are performed with INA = 0.48, NA = 1.25 and RoR = Infinity in the spline 

model. 

 

 

To look at the implementation of this double-layer model, we performed simulations of a 

6 m radius latex sphere with an ultrathin coating (< 200 nm thickness) of refractive index 1.45 

in water. For a symmetric particle with a convex geometry at its bottom, the intensity at the 

center of the interferogram, radial position 0 m, can be calculated from the theory for stratified 

planar structures
29

. Using this planar theory it is possible to account for all reflections from the 

three interfaces involved, glass/water, water/coating and coating/latex, in addition to the finite 

aperture effect. This is shown in Fig. 3.6a where the intensity is plotted as a function of the 

thickness of layer one, height of the particle above the glass surface, and layer two, thickness of 
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the coating. If the height and the thickness are unknown, a single intensity at the center of the 

interferogram might correspond to multiple (height, thickness) pairs, as can be seen from the 

contours in Fig. 3.6a. Therefore, a more detailed analysis involving the complete intensity 

pattern and the geometry of the particle is required to obtain a unique solution. 

Here we consider that the coated particle is in contact with the substrate, so the intensity 

at the center of the interferogram, I(0), can be directly correlated with the thickness of the 

coating (Fig. 3.6b). These results verify the agreement between the intensity I(0) obtained from 

the planar and non-planar theories, using the exact model for a sphere and the corresponding 

spline model with RoR = Infinity. Also, simulations from the non-planar theory indicate that the 

average intensity of the interferogram, Avg(I), can be correlated with the thickness of the 

coating. This additional information could be used to discriminate between thicknesses that give 

the same intensity I(0). Finally, notice that the Avg(I) curve obtained from the cylindrical 

approximation is in very good agreement with the one from the spherical geometry, with an 

average relative error of 0.75%; confirming that the spline model with RoR = Infinity is a 

suitable model for intensity calculations in double-layer systems. 

 

3.3.4.3 Experimental observation of a polymer vesicle near the substrate 

A 200 L volume of vesicle solution was placed in a sealed chamber on top of a cover glass 

coated with bovine serum albumin, BSA, to avoid adhesion and spreading of the vesicles onto 

the glass surface. After settling, the vesicles float above the glass surface in a slightly deformed 

configuration with respect to their spherical shape when they are free in solution. Figure 3.7a 

shows the RICM image of one of these vesicles using the smallest illumination numerical 

aperture available, INA = 0.48.  

In this particular experiment, the shape of the object under observation and its height 

above the substrate are unknown, but they can be determined because we know all the 

parameters in the system. The refractive indices of glass, buffer and sucrose solutions are 1.530, 

1.335 and 1.351, respectively, from RICM measurements. The polymer membrane is given by 

the hydrophobic core of polybutadiene; according to the literature, its thickness is about 15 nm
85

 

with a refractive index of 1.51
86

. Also, two additional effects have been incorporated into the 

simulations; first, the real illumination profile, I0(), and second, a cosine-fourth law factor that 

affects the intensity of the rays incident at the position of interest. 
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Figure 3.7. Experimental observation of a polymer vesicle near the substrate. (a) RICM image of a 

polymer vesicle in PBS and filled with sucrose solution when it is close to a glass surface coated with 

BSA (5 m scale bar). (b) The intensity at the center of the interferogram, given by the planar theory, is 

used to determine the height of the vesicle above the glass surface. (c) The intensity profile is obtained 

from a circular average of the picture shown in (a). The experimental data were fitted by using the 

improved non-planar interface image formation theory and the spline model with RoR = Infinity. (d) 

Reconstructed bottom shape of the vesicle according to the non-planar and planar models. 

 

 

The analysis of the experimental data begins with the determination of the minimum 

separation distance between the vesicle and the glass surface, S0. We have previously seen in 

Fig. 3.6 that the intensity at the center of the interferogram is basically object size and shape 

independent and, given that the membrane thickness is known, it can be directly correlated with 

this minimum height using simulations from the planar theory that account for the INA and NA 
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effects, as seen in Fig. 3.7b. This is how we find S0 = 59 ±1 nm, taking into account that the 

intensity continuously increases from the center up to the first intensity peak in Fig. 3.7c. 

Now we determine the bottom shape of the vesicle that gives the best fit to the 

experimental intensity pattern. The traditional RICM analysis considers that the surface profile 

can be reconstructed by inverse cosine transform of the intensity distribution
45

; however, when 

dealing with a double-layer system, it has been pointed out that the traditional analysis 

underestimates the heights by a value S*, in this case 37.4 nm
51

. Therefore, we use the result 

illustrated in Fig. 3.7b to obtain an appropriate fast reconstruction of the profile using the planar 

theory. The incremental height difference between two adjacent intensity extrema is ΔS
P
 = 103.8 

nm, which is close to the value for normal incidence light, /4n1 = 102.3 nm, in the traditional 

analysis; then, based on the previously determined S0, the height for the first intensity peak (S* + 

ΔS
P
), and the distance between consecutive extrema obtained from Fig. 3.7c, the bottom shape of 

the vesicle is reconstructed and the result is presented in Fig. 3.7d. 

By incorporating the improved non-planar theory and the arbitrary convex surface model 

with a thin membrane, an additional surface profile is reconstructed, see Fig. 3.7d. Because the 

simulated intensity profile obtained from the reconstructed contour successfully reproduces the 

experimental data in Fig. 3.7c, it can be concluded that it corresponds to an accurate 

representation of the bottom shape of the vesicle under study. Up to a radial position of 1.5 m 

there are no significant curvature effects and the bottom shape given by the planar theory is 

within 3% of error when compared to the non-planar result; however, beyond that point the error 

quickly increases reaching 20% at 4 m. To the best of our knowledge, this is the first time that 

an accurate RICM analysis is performed in a double-layer system of unknown geometry. 

 

3.4 Discussion 

The improvement of the RICM image formation theory, with the general formulation for 

intensity calculations in equations (3.4) and (3.5), successfully accounts for contributions to the 

intensity that can be missing in previous formulations. But analysis of wedges and convex 

surfaces shows that the implementation of this formulation is not trivial, leading us to develop a 

method to obtain the exact result from an approximated, intermediate, formulation. In addition, 

simulations of known geometries such as wedges and spheres allow a direct comparison with 

previous models, revealing that the OPLD correction, equation (3.7), becomes important for 
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large inclinations of the non-planar interface and that the fringe spacing analysis is more accurate 

than previously thought. 

RICM can be used to obtain valuable information from the system under study. For 

instance, by using simulations, we explored how to determine the thickness of an ultrathin 

coating (< 200 nm) on a spherical particle. The development of a general model for an arbitrary 

convex surface, including a uniform second layer which could be a thin coating or a membrane, 

expands the possible range of systems that can be accurately studied using RICM. Because 

RICM experiments are usually performed using the smallest INA available, a particular case of 

this surface model, the cylindrical approximation, becomes a suitable model with an expected 

average relative error in the calculated intensity profile smaller than 2%. If high INAs are used, 

the average relative error would be larger than 5%, but the correct fringe spacing is still 

maintained. Our experimental work with polymer vesicles shows that the coupling of the 

improved RICM image formation theory and the surface model allows an accurate 

reconstruction of the convex bottom shape of an object close to the substrate by fitting its 

experimental intensity profile.  

A natural direction for expansion of the present work would be the study of concave 

geometries. RICM has already been employed to measure small contact angles of droplets using 

a wedge approximation
29,87

 or simple fringe spacing analysis
36,88

; however, there is not a clear 

idea of the error involved in such measurements. Because it is possible to have multiple 

contributions to the intensity coming from different regions of a concave geometry, a consistent 

indexing based on rays that are reflected back from the object might not be feasible. Therefore, 

our formulation for intensity calculations is expected to play a critical role in this scenario. Also, 

the formulated method to calculate intensities in double-layer systems could potentially be used 

to  analyze more complex systems such as cells, with different reflection distributions (for 

example, due to local refractive index heterogeneities) on the membrane. These local variations 

can be incorporated into the intensity calculation via the effective reflection coefficient, R, and 

their effect in interferograms when the object shape remains unchanged could be evaluated. 
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CHAPTER IV 

A NANOMETER-SCALE RESOLUTION INTERFERENCE-BASED PROBE OF 

INTERFACIAL PHENOMENA BETWEEN MICROSCOPIC OBJECTS AND 

SURFACES
*
 

 

 

4.1 Overview 

Interferometric techniques have proven useful to infer proximity and local surface profiles of 

microscopic objects near surfaces. But a critical trade-off emerges between accuracy and 

mathematical complexity when these methods are applied outside the vicinity of closest 

approach. Here we introduce a significant advancement that enables reflection interference 

contrast microscopy (RICM) provide nearly instantaneous reconstruction of an arbitrary convex 

object’s contour next to a bounding surface with nanometer resolution, making it possible to 

interrogate microparticle/surface interaction phenomena at radii of curvature 1,000 times smaller 

than those accessible by the conventional surface force apparatus. RICM’s unique view-from-

below perspective also reveals previously unseen deformations and allows the first direct 

observation of femtoliter-scale capillary condensation dynamics underneath micron-sized 

particles. Our implementation of RICM provides a generally applicable nanometer-scale 

resolution tool that can be potentially exploited to dynamically probe ensembles of objects near 

surfaces so that statistical/probabilistic behavior can be realistically captured. 

  

4.2 Introduction  

Deformation of soft micron-sized particles near surfaces is fundamentally important in fields 

ranging from colloid science to biomedicine
39,64,89-93

. However, these phenomena are challenging 

to directly probe, because the corresponding deformation dynamics often cannot be resolved 

with sufficiently high spatial and temporal resolution. An experimental technique that has shown 

particular promise involves illuminating an object in close proximity to a surface from below 

using monochromatic light. Interference of light reflected back from different optical interfaces 

                                                      
*
 Reprinted with permission from “A nanometre-scale resolution interference-based probe of interfacial 

phenomena between microscopic objects and surfaces” by Jose C. Contreras-Naranjo and Victor M. Ugaz, 

2013, Nature Communications 4:1919 doi: 10.1038/ncomms2865, Copyright 2013, Nature Publishing 

Group 



 

40 

 

in the system directly reveals the existence of contact phenomena, if any, while the characteristic 

fringe pattern that emerges inherently embeds detailed information about the object’s shape near 

the substrate at up to a microsecond-scale temporal resolution
15

. Reflection interference contrast 

microscopy (RICM)
45,48,49

 employs non-planar interface image formation theory as a basis to 

extract this information and accurately reconstruct the surface profile, but its mathematical 

complexity renders the model cumbersome to implement in its full form.
29-31,94,95

 These 

difficulties have stimulated development and continuous use of approaches that simplify the 

connection between the object’s shape and the spacing between neighboring fringes in the 

interferogram
24,33,35,36,45,46

. But this simplicity is achieved at the expense of reconstruction 

accuracy, particularly when applied to curved microscopic objects, because these methods are 

strictly valid only for the case of planar parallel interfaces. We have devised a hybrid approach 

that couples a simplified non-planar RICM model with an innovative analysis of the entire 

interferogram; as a result, an arbitrarily-shaped convex object can be accurately reconstructed 

with an unprecedented nanometer-scale resolution. 

 

4.3 Results 

4.3.1 Direct imaging of contact phenomena 

Our approach provides an extraordinary accurate picture of microparticle-surface interaction 

phenomena that greatly enhances well-known RICM capabilities extensively applied in the study 

of particle, cell, and lipid/polymer vesicle adhesion
21-28

. However, this technique has seen limited 

application in other fields where the great potential behind RICM’s high resolution, set-up 

simplicity, and unique non-invasive “view-from-below” perspective can produce a significant 

impact. This becomes evident by comparing the RICM images obtained from polystyrene latex 

(PSL) particles deposited on a glass substrate under different conditions. Qualitatively, no 

significant particle deformation and a finite separation distance from the substrate are seen when 

dry particles are directly deposited on the surface (dry deposition, Fig. 4.1a) and observed within 

a few hours, as indicated by interferograms that display a clean uniform pattern of concentric 

rings without a minimum intensity value at the center. But some RICM images significantly 

change when the particles are deposited evaporatively from solution (wet deposition) and 

observed after more than 24 hours. Here, the concentric ring pattern no longer extends to the 

center of the interferogram, but terminates at a finite radius outlining what looks like a contact 
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area with a non-homogeneous intensity (Fig. 4.1b). Scanning electron microscopy (SEM) images 

also reveal significant changes in the contact region due to the water meniscus and 

accompanying capillary forces imposed during drying
96,97

. The extreme nature of these forces is 

especially evident in visible rugosity, in some cases appearing as if material has been pulled 

away from the particle surface. The interferograms become further distorted when impurities in 

the deposition solution accumulate around the perimeter of the contact zone (Fig. 4.1c). 

Although the interference fringe patterns become difficult to distinguish, the shape and extent of 

the surrounding deposition region can be quantified. 

 

 

 

Figure 4.1. RICM reveals different particle deposition scenarios. Dry (a) and wet (b-c) deposition of 

15 µm diameter PSL particles on a glass substrate studied with SEM (top/middle; 10/1 m scale bars) and 

RICM (bottom; 10 m scale bars). Contrary to (a), a contact region with a non-uniform appearance and 

substantial rugosity in the SEM (arrow) are seen in (b) and these non-uniformities become magnified 

when impurities accumulate underneath and around the particles in (c). In both (b) and (c), the RICM 

images clearly show the shape and extent of these features (arrows). 
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Figure 4.2. RICM observation of a liquid meniscus between micron-sized particles and a substrate. 

(a) Schematic representation of the water meniscus between 30-60 µm diameter glass beads and a glass 

surface. Following wet deposition, a meniscus forms and shrinks due to evaporation (b), whereas a few 

days after dry deposition, this interfacial water appears and increases by condensation under ambient 

conditions (20 °C, 51 % relative humidity) (c). Menisci illustrations in (b) and (c) are not drawn to scale; 

10 m scale bars in RICM images. 
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RICM also enables direct observation of liquid water underneath larger glass beads (Fig. 

4.2a), as evident by a continuously shrinking meniscus due to drying following wet deposition 

(Fig. 4.2b) and visible motion of the meniscus boundary when an external air flow is imposed. 

Unexpectedly, a distinct meniscus remains evident even after 72 h of drying under vacuum. 

Hence, RICM directly reveals, for the first time to the best of our knowledge, the presence of 

small amounts of water (volumes in the order of 1 fL owing to capillary condensation
97

) 

underneath micron-sized particles after dry deposition on a glass substrate and upon exposure to 

ambient conditions for several days (Fig. 4.2c). 

 

4.3.2 Fringe spacing analysis based on simplified non-planar RICM 

Although contact phenomena can be directly observed and quantified (typically as an area in the 

RICM image), accurate analysis of the interference pattern requires a link between the intensities 

and the object’s geometry (Fig. 4.3).  

 

 

 

Figure 4.3. Schematic of surface profile reconstruction. Interference fringe patterns obtained from 

RICM images embed precise information about an object’s topography in the vicinity of contact with a 

surface. 

 

 

Instead of applying the complete non-planar interface image formation theory where all 

possible contributions to the observed intensity must be individually determined,
95

 we consider a 

simplified two-dimensional model whereby a single set of complementary rays, I0, interfere to 

produce the intensity observed at a position x in the interferogram, I(x). For the single-layer 
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system in Fig. 4.4a, I(x) depends on the interference of rays I1 and I2 in terms of their optical path 

length difference OPLD (term in square brackets) as follows. 
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Here,  is the inclination angle of the non-planar interface at position x relative to the horizontal 

plane, S(x) is the object’s local height above the substrate at x, R is the angle of reflection at 

S(x),  = 546 nm is the wavelength of the illuminating light (only monochromatic green light is 

considered here), n1 is the refractive index of layer 1 (L1), and  accounts for a phase shift of  if 

the refractive index of the object is higher than the index of the medium. Therefore, the intensity 

at x can be determined using geometric parameters S(x),  and R at any appropriate x, where 

the following relationship, from the geometry in Fig. 4.4a, is satisfied:  

 

)tan()( R  xSxx             (4.2) 

 

The ensemble of admissible x is bounded by the range of incident angles within the 

illumination and detection cones (IA and DA, respectively), according to the complete non-

planar RICM theory. By identifying the single set of complementary rays making the most 

significant contribution to I(x) within these constraints, our analysis seeks to establish a bijective 

mapping between x and xapplicable to the whole range of conditions where interference occurs. 

In contrast, previous simplified models formulated since the early stages of RICM have seen 

their accurate implementation limited to interfaces with small inclinations and/or small 

illumination numerical aperture (INA) values, because they neglect non-planar effects ( = 0) 

and/or assume that only normal incidence light (R = ) is important
45,46,49,78,98

. 

To envision this, we first consider a wedge geometry ( = constant) in which case OPLD 

= 2n1sin()cos(R)x. The cosine dependence in OPLD implies that the most significant 

contribution to I(x) occurs when OPLD is maximized; hence, our analysis is set at a given , x, 

and n1, leaving cos(R) as the remaining unknown. Although this term displays a maximum at R 

= 0, the admissible values are constrained by the finite range of allowable illumination and  
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Figure 4.4. Fringe spacing analysis based on simplified non-planar RICM. (a) Simplified non-planar 

RICM image formation model. The intensity I(x) is produced by the interference of rays I1 and I2 which 

correspond to the single set of complementary rays I0 with the maximum OPLD (determined by geometric 

parameters S(x), , and R defined at position x) among all possible contributions (shaded area). 

Complementary I0 originate from within the illumination cone (1 ≤ IA, where IA is given by the 

illumination numerical aperture, INA, of the microscope); then, they are reflected back from planar 

(substrate/layer 1 at x) and non-planar (layer 1/object at x) interfaces producing rays I1 and I2, 

respectively, which interfere at position x only if they are incident within the cone of detected light (2 ≤ 

DA, where DA is determined by the numerical aperture, NA, of the objective). (b) The formulation of the 

simplified non-planar RICM model is completed when normal/non-normal reflected light regimes are 

identified at OPLDmax, as illustrated with a normalized OPLD plot for the range of detection angles 

corresponding to a series of wedge inclination angles with INA = 0.48 and water surroundings. (c) Despite 

the intrinsic fringe spacing variability, which produces the scattered data points, the behavior of S
P

fxf 

with inclination angle observed in simulations from several different wedge systems is in excellent 

agreement with equation (4.4) where INA,  n1 (surroundings composition), and R (reflected light regime) 

are the main parameters. (d) Percentage error of inclination angles retrieved from the averages of all fringe 

spacing values originated from simulations of comparable wedge systems. Closed and open symbols 

represent retrieved using normal and non-normal reflected light models, respectively. In all figures, 

simulations are performed with NA = 1.25 for wedge angles ranging from 0º to max. 
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detection angles (Fig. 4.4b). When  < IA,L1, OPLDmax occurs when R = 0 (the normal reflected 

light (NRL) regime). For IA,L1 ≤  ≤ max = (IA,L1 + DA,L1)/2, however, the set of rays 

corresponding to R = 0 no longer contribute to I(x). Here, the angle R associated with OPLDmax 

is a function of  with R =   IA,L1 (the non-normal reflected light (non-NRL) regime). These 

regimes establish a map from  to R and, therefore, a bijective mapping between x and xat 

OPLDmax (see Appendix B). 

To make the formulation more suitable for practical implementation, first equation (4.1) 

is rewritten in terms of experimentally measurable maximum and minimum intensities, Imax and 

Imin respectively, and a height value S
P
 is expressed as a function of I(x) according to 

conventional inverse cosine transform methods. 
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Here, A = (Imax + Imin)/2, B = (Imax  Imin)/2, S
P

f = /4n1, and  =  for all cases studied. 

Notice that S
P
 = S(x) only when planar parallel interfaces and normal incidence light are 

assumed ( = R = 0) and S
P

f represents the constant height increment between two consecutive 

fringes. Then, using a wedge geometry (that is, where and R are both position independent), 

equation (4.2) and equation (4.3) are applied to any two intensities with a spacing x and located 

on a common branch of the intensity profile (that is, between the successive extrema that 

determine Imax and Imin) taken along the direction perpendicular to the fringe’s front in the RICM 

image, so that the inclination angle  can be related to the corresponding measured increments 

S
P
 and x (see Appendix C). 

 

x
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P
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To verify this relationship, we next cast our analysis in terms of x as the spacing 

between neighboring fringes in the interferogram xf —a convenient parameter to extract 

experimentally; in this case, S
P
 = S

P
f is constant. The complete non-planar interface image 

formation theory is used to simulate fringe spacings as a function of  in wedge systems under 
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an ensemble of different refractive index and illumination conditions for single- and double-layer 

objects in both air and water surroundings (see Appendix C, Table C1). Up to 51 individual 

fringes are computed for each case to account for intrinsic variability associated with xf in a 

given wedge system. These data superimpose when co-plotted, thereby establishing a mapping 

from  to S
P

f /xf that is successfully reproduced by equation (4.4) when the appropriate 

reflected light regimes are used (Fig. 4.4c). Then, hundreds of S
P

f/xf values corresponding to 

comparable systems (that is the same , n1, and INA) are averaged to perform an inverse 

mapping (from S
P

f/xf to retrieved) by means of equation (4.4), to evaluate the accuracy of the 

fringe spacing analysis, as the original  is known (Fig. 4.4d). The values of retrieved are in 

excellent agreement with those used in the simulations of the complete non-planar theory up to a 

cut-off value of *
 corresponding to the midpoint of the non-NRL regime in Fig. 4.4b. Therefore, 

equation (4.4) enables direct measurement of inclination angles of wedge shaped interfaces 

(from 0° to *
), such as small contact angles of liquid droplets, avoiding the use of fittings or 

angular correction factors based on full non-planar theory calculations
29,87,95

. 

 

4.3.3 Near-instantaneous surface profile reconstruction 

We now seek to apply these insights developed for wedges of constant , toward analysis of 

intensity profiles corresponding to convex geometries with spatially varying inclination angles. 

Figure 4.5a shows S
P
/x for a spherical particle as a function of radial position from the center 

of the fringe pattern x obtained from interferograms simulated using the complete non-planar 

interface image formation theory. To generate this mapping, two different but complementary 

transformations of the intensity data are performed: first, for radial positions less than the 

location of the first intensity extrema, neighboring intensity values are analyzed so that x is 

constant and S
P
 is calculated using equation (4.3) (Fig. 4.5a inset), and second, for those 

positions where interference fringes exist, x is taken as the fringe spacing xf and S
P
= S

P
f, 

exactly as in the previously discussed wedge case (for more details see Appendix D). As a result, 

the relationship between S
P
x and x from the first transformation follows a clear and smooth 

trend although for experimental interferograms some variability is expected because of noise in 

the intensity values. The data from the second transformation is not as clearly defined as the 

S
P

fxf versus  data for the wedge case (Fig. 4.4c), especially as radial position increases, 

because a single fringe spacing now incorporates contributions from multiple values of  at 
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different locations on the object’s contour (in addition to the intrinsic variability observed in xf 

for a particular ). A general trend can be established, however, by applying a smoothing 

procedure subject to the constraints that the smoothed S
P
x data must increase monotonically 

with x, and according to equation (4.4) there is a maximum value that corresponds to max. 

  

 

 

Figure 4.5. Convex geometry analysis. (a) Simulated S
P
x versus x mapping corresponding to a 10 m 

radius sphere in water contacting a glass substrate with NA = 1.25 and glass/water/particle refractive 

indices of 1.53/1.33/1.55, respectively. (b) Retrieved inclination angles from smoothed S
P
x are cut off 

at * because significant errors are obtained beyond this value. Given that the geometry is known, it is 

possible to determine the expected mappings between the studied variables according to the normal/non-

normal reflected light models. 
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Figure 4.5a reveals that the smoothed S
P
x values closely follow the expected 

continuous mapping from x to sin()cos(R) given by the geometry under consideration and the 

normal/non-normal reflected light regimes. This indicates that the simplified non-planar RICM 

model and equation (4.4) can be successfully applied to interferograms from convex geometries 

to accurately retrieve the inclination angles  associated with S
P
andx increments at discrete 

values of x (Fig. 4.5b). A logical approach to use this information would be to approximate the 

unknown surface profile of the object as an ensemble of wedges (shown for a spherical object in 

Appendix B, Fig. B1, where the intensity at each point in the interferogram is successfully 

mapped to a corresponding value of ). But it is challenging to use S
P
,x, and the retrieved  

values alone to perform an accurate surface profile reconstruction because x is inherently large 

(that is, fringe spacing), limiting the resolution by which the profile can be discretized (see 

Appendix E), a current issue with simplified formulations that directly map fringe spacing to a 

constant incremental change in the object’s local height above the substrate
45,46,49

.  

To overcome these limitations, a continuous approach to the problem is formulated. The 

discrete mapping between x and  in Fig. 4.5b is used to define  as a continuous function of x 

and, therefore, R as a function of x. Then, the bijective mapping between x and x that is 

necessary to reconstruct the object’s surface profile is achieved by using the geometrical 

relationship in equation (4.2) to obtain the following first order ordinary differential equation 

(see Appendix F). 

 

)tan()(tan)tan(

))(tan()tan(
)(

)tan()(tan)tan(

))(tan(
)(

)()(

R
2

R

RR

R
2

R

R

























dxdx
xG

dxd
xF

xGxxF
dx

dx

          (4.5) 

 

The initial condition x
0
 corresponding to the position x

0
 of the first S

P
x data point is 

determined from equation (4.2), where (x
0
) and R(x

0
) are given by the previously defined 

mappings, and a slightly modified equation (4.4) (to account for an additional phase-shift factor 
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S* when multiple layers are present
51

) provides S(x
0
) (see Appendix G). The differential 

equation is straightforward to solve with the minimal computational effort (for example, using 

MATLAB on an ordinary desktop PC) and a continuous surface profile is obtained by 

reorganizing equation (4.2) in the form S(x) versus x.  

We validated our simplified reconstruction approach using experimentally obtained 

interferograms from the RICM analysis of a glass bead in air and polymer vesicles in aqueous 

medium, which are in close proximity to a glass substrate (Fig. 4.6; INA = 0.48 and NA = 1.25). 

The optical path in the glass bead system is composed of glass/air/glass media with refractive 

indices of 1.53/1/1.51, respectively. The polymer vesicle systems involve glass/buffer/polymer 

membrane (15 nm thickness
85

)/sucrose solution with refractive indices of 1.53/1.334 /1.51/1.351, 

respectively.  

Our method enables reconstructed surface profiles to be obtained near-instantaneously 

(~ 1 s of computation time) from the corresponding interferograms (Fig. 4.6a-c). For 

comparison, two of these contours are obtained by means of discrete non-planar (using arbitrary 

small increments, see Appendix E) and planar (traditional analysis
45,49

) methods, and a third one 

is computed after solving the ODE in equation (4.5). The accuracy of these near-instantaneous 

procedures is then verified by comparing their predictions with the most accurate analysis 

available using the full non-planar model of RICM
95

 requiring ~ 1 h of computation time (non-

planar fit in Fig. 4.6a-c). Figure 4.6d clearly indicates that the continuous approach of the ODE 

method produces the best results with an error that does not have a tendency to increase as the 

reconstructed height increases and, in general, is smaller than 30 nm (black dashed line) over the 

entire range of intensities analyzed (essentially including all available fringes up to the 30
th
, 22

nd
, 

and 17
th
 fringes for the results in Figs. 4.6a, 4.6b, and 4.6c, respectively). Of the discrete 

approaches, only the non-planar formulation maintains a similar degree of accuracy for a 

significant portion of the reconstructed heights, although the error increases to about 100 nm 

(black dotted line) at the end. For the discrete planar method, the error can grow quickly and 

even exponentially (the contour is underpredicted), especially when errors are larger than 100 

nm. This description of the error closely resembles the behavior observed in simulated systems 

(see Appendix H). 
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Figure 4.6. Near-instantaneous surface profile reconstruction. Detailed surface profile reconstruction 

of a glass bead in air (a) and polymer vesicles in buffer solution hovering next to the substrate (b) and in 

contact with the substrate (c); insets present the corresponding RICM images (10 m scale bars), 

schematic representations of the system, and S
P
x versus x from a simulated non-planar fit (black exes) 

to experimental data (light red symbols/line, without/with smoothing). Four different procedures (listed in 

increasing order of accuracy) are used to reconstruct the bottom shape of these specimens: discrete planar 

(gray dots) and non-planar (dashed green line) methods, continuous ODE (closed/open red circles, 

NRL/non-NRL) approach, and non-planar fit (thin black line). A sphere profile (thick orange line) is fitted 

to selected reconstructed heights from the ODE method and the non-planar fit is used to define the 

expected surface profile so that the error of the other procedures can be quantified (d). (e) A three-

dimensional reconstruction of the bottom shape of a non-symmetric polymer vesicle hovering next to the 

substrate (~ 37 nm) as observed from three different points of view approximately located at M, N, and O 

in the RICM image, with the corresponding bottom view also shown; heights in the color bar and positions 

are given in microns, 10 m scale bar in RICM image. 
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4.4 Discussion 

Fundamental quantitative descriptors of an object’s deformation can be easily obtained from the 

reconstructed profiles. As symmetry in the RICM images and bright field observation suggest 

that the systems in Fig. 4.6a-c adopt an overall spherical shape, fitting the predicted contours 

based on a spherical geometry yields estimated radii, R
sphere

, and height values at the center of the 

symmetric interferograms, S0
sphere

 (see Appendix I). R
sphere

 of 21.13, 8.51, and 7.12 m for the 

glass bead, suspended vesicle, and vesicle in contact with the substrate, respectively, are in close 

agreement with corresponding values of 21.55, 8.38, and 7.23 m measured directly from the 

bright field images, confirming an overall spherical shape (truncated sphere, actually, for the 

vesicle in contact, as assumed theoretically
99,100

 and shown with confocal microscopy
7
). S0

sphere 

values determined from the fitting provide from qualitative to quantitative information on each 

particular case. For the glass bead, RICM shows a finite separation distance of 49 ± 1 nm 

between particle and substrate, likely attributable to surface roughness
40,76,101,102

, which compared 

with a negative S0
sphere

 of –22.6 nm points to significant deviations from a perfectly spherical 

geometry at the nanoscale. An approximately spherical shape is maintained by the vesicle 

hovering near the substrate with deformation only observed within 250 nm above the glass, as 

indicated by the spherical fitting and a positive S0
sphere

 of 32.2 nm close to that measured directly 

from RICM (41 ± 1 nm). For the vesicle in contact, a negative S0
sphere

 of –138.2 nm allows the 

calculation of a 1.396 m contact radius and 11.3 ° contact angle based on a truncated sphere 

geometry, in excellent agreement with the corresponding measurements from RICM (1.4 m and 

9.9 ° at a height of 7 nm). A contact radius to vesicle radius ratio of ~ 0.2 is close to previous 

reported values for similar shell polymerized vesicles in contact with a glass substrate
7
. 

Material deformation of soft micron-sized objects at surfaces is fundamentally important 

in a host of fields, but these effects have proven challenging to probe experimentally. It has long 

been appreciated that RICM enables the vicinity of a contact region between a microscopic 

object and a bounding surface to be characterized with nanometric resolution, but a complete 

accurate implementation of the technique to study dynamic phenomena has been challenging. 

The analysis of RICM interferograms introduced here overcomes many of these limitations, 

simultaneously incorporating all fringes available from the set-up resolution in a fast and 

accurate reconstruction of the non-contact regime surface profiles. Our results validate the 

method under diverse experimental conditions (air/aqueous media) and different characteristics 
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of the reflecting surface (smooth, soft polymer vesicle membrane versus rougher, solid glass 

bead), and Fig. 4.6e clearly indicates that it is in general applicable to arbitrarily-shaped convex 

objects. In addition, RICM experiments reveal topologically complex local deformations and 

contact phenomena relevant to virtually all adhesion models. The finding of various scenarios at 

the micro scale after dry/wet deposition of PSL particles on a glass substrate is in qualitative 

agreement with recent results that show how different deposition media affect the particle 

removal efficiency, a fact attributed to plastic deformation of particles caused by capillary 

forces
103

. Even more significant is the direct observation of femtoliter-scale capillary 

condensation dynamics underneath micron-sized particles, believed to be unique given that 

capillary condensation have only been directly observed using environmental SEM
104,105

 and 

studied with the surface forces apparatus,
106,107

 although employing two crossed cylindrical mica 

surfaces with very large radii of curvature (~ 1 – 2 cm). This unparalleled view of the particle-

substrate interface offered by RICM reveals new details corresponding to more realistic 

conditions (different particle deposition scenarios, humidity effects, and accurate contour 

reconstruction) while potentially enabling near real-time analysis of ensembles containing 

hundreds of particles near surfaces so that statistical/probabilistic behavior can be realistically 

captured. 
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CHAPTER V 

INTERFERENCE-BASED MEASUREMENTS ON MICROSPHERES: ROUGHNESS, 

DIAMETER AND LOCAL CURVATURE DETERMINATION 

 

 

5.1 Overview 

Accurate measurements of roughness and size of microspheres are fundamentally important in 

colloid science, drug delivery and biomedical applications, but complex instrumentation used 

might be of limited accessibility making it difficult to obtain statistically significant data. 

Therefore, the implementation of interference-based characterization techniques capable of 

simultaneously measure micrometer-sized particles and nanometer-scale features with high 

temporal resolution in simple setups offers a significant advantage. Here interferograms obtained 

from microspheres observed using reflection interference contrast microscopy (RICM) are 

analyzed with novel methods that allow accurate particle characterization, while taking into 

account roughness effects. By means of a theoretical and computational framework, surface 

roughness is studied and correlated to measurable visibility changes in RICM interferograms that 

can also be incorporated in improved measurements of separation distances between surfaces. 

Microsphere size determination from fringe spacing is optimized yielding relative errors 

typically less than 1% and intensities corresponding to the closest particle-substrate contact 

region are analyzed for measuring local radii of curvature and separation distances that are 

studied in connection with surface roughness. Lastly, the analysis of hundreds of microspheres is 

performed to illustrate RICM capabilities for particle characterization of statistical significance. 

 

5.2 Introduction 

Fabrication of microspheres with certain dimensions and surface specifications plays a 

significant role in drug delivery and biomedical applications
108-111

. Also, in the increasingly 

popular colloidal probe technique
21,40,90,112

, accurate measurements of force interactions require 

determination of size, local curvature and roughness of the microsphere acting as a probe. In 

these scenarios, microsphere characterization is mostly done using both scanning electron 

microscopy (SEM) and atomic force microscopy (AFM) in a complementary way: while SEM 

magnification range provides visual assessment of the surface roughness and estimation of 
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microsphere size (relative error ~ 1%), AFM can be used for quantification of the nano-scale 

topography and local curvature in small scanning areas
1,73,74,113

. Although accurate measurements 

can be obtained with these techniques, their complex instrumentation represents limited 

accessibility for researchers and also an important constraint when hundreds of measurements 

are required for proper statistical characterization of particle samples. Therefore, the 

implementation of relatively simple characterization techniques capable of simultaneously 

measure micrometer-sized particles and nanometer-scale features offers a significant advantage.  

Interference-based techniques are known for their setup simplicity and practical use 

while offering up to angstrom/microsecond-scale resolution
14,15

. However, the accurate use of 

interference for the study of microscopic objects has been difficult to achieve because most 

setups and analysis methods are ideal for planar-like geometries
14,17-20

. Here, interferograms 

obtained from microspheres observed using reflection interference contrast microscopy 

(RICM)
45,48,49

 are analyzed following recently developed methods that allow accurate 

investigation of their geometry
114

. These quantitative measurements are studied for simultaneous 

surface roughness, particle size and local curvature determination, while taking into account 

roughness effects not considered previously. 

As a result, a simplified non-planar model of RICM
114

 has been enhanced to include 

surface roughness and, by means of a theoretical framework and computational methods, a 

relationship between the standard deviation of surface heights and the fringe visibility of a rough 

object relative to the fringe visibility of the corresponding smooth surface has been specifically 

determined for the RICM setup. In addition, these visibility changes have been included in the 

construction of the theoretical curves used for measurement of separation distances between 

surfaces when assuming planar parallel interfaces. We specifically consider the implementation 

of these advancements in the experimental RICM analysis of microspheres in close proximity to 

the substrate (< 200 nm), where methods are optimized for accurate diameter measurements 

(relative error typically < 1%) using fringe spacing orders that capture the overall spherical 

geometry without the influence of roughness. In contrast, measured visibility changes attributed 

to surface roughness become relevant for particle-substrate separation distance measurements 

that are studied in connection with surface roughness when contact occurs; also, the local radius 

of curvature is determined for the closest part of the microsphere to the substrate. Finally, these 

methods are implemented in the analysis of hundreds of microspheres to illustrate their 

capabilities for particle characterization of statistical significance. 
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5.3 Results 

5.3.1 Surface roughness effects on RICM interferograms 

Our approach uses geometrical optics and is intended to provide nanometer-scale roughness 

information about curved microscopic objects near a smooth and transparent substrate. 

Therefore, a simplified non-planar model of RICM image formation
114

 is considered, where the 

smooth (that is, mean) surface profile of the object S(x) presents local nanometer-scale 

variations Z(x) that represent surface roughness, see Fig. 5.1a. This allows the computation of 

the intensity at position x, I(x), in terms of a modified optical path length difference OPLD (term 

in square brackets) expressed as a function of geometric parameters defined at position x due to 

non-planar effects
114

, as follows. 
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Here,  is the inclination angle of the smooth non-planar interface at x relative to the horizontal 

plane,R is the angle of reflection at S(x) and its value depends on the reflected light regime that 

applies (normal or non-normal)
114

,  = 546 nm is the wavelength of the illuminating light (only 

monochromatic green light is considered here), n1 is the refractive index of layer 1 (L1), and  

accounts for a phase shift of  if the refractive index of the object is higher than the index of the 

medium. However, equation (5.1) in its current form is of limited practical use because RICM 

images with pixel sizes of 100x100 nm
2
 or larger do not reveal specific single effects of small 

nanometer-scale roughness, an even more significant fact when intensity profiles are obtained 

from an average over rather large areas (for instance, when performing a circular average in a 

concentric and symmetric interferogram). Consequently, we seek to determine ensemble average 

effects of surface roughness that are measurable in RICM interferograms. 

It has been shown that fringe visibility, Imax ‒ IminImax + Iminwhere Imax and Imin 

are the maximum and minimum intensities of the interference fringes, is affected by the root-

mean-square surface roughness, , in several different interferometers and theoretical 

relationships between  and  have been determined in each particular case
37

. Such relationships 

can be obtained by following an ensemble average approach
115

, which, in our case, would 

provide a specific mapping between  and  applicable to the RICM technique. To envision this,  
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Figure 5.1. Surface roughness effects on RICM interferograms. (a) Simplified non-planar RICM 

image formation model including surface roughness. When a single set of complementary rays I0 interfere 

to produce the intensity I(x), approximations are needed in the local geometry at S(x) to model the 

reflection from the rough non-planar interface as shown in the inset. First, the reflection angle R is 

considered to be determined by the inclination angle  of the smooth non-planar interface at x and, 

following the normal to the surface, a new wedge-like geometry with inclination angle is defined at a 

distance Z(x) apart from S(x). Second, ray I2, which would have been reflected at S(x) in the smooth 

case, is now reflected back from the wedge geometry at S’(x’) =  S(x) + Z(x)cos(R + )/cos(R) 

disregarding the presence of the original surface. (b) Using an ensemble average approach, it is 

determined that the relative visibility of fringes in RICM interferograms decreases with surface roughness, 

and a mapping between the two variables is established theoretically and by performing Monte Carlo 

simulations for surfaces with a Gaussian probability density function (PDF) of heights (inset). 

 

 

the following assumptions are made: first, Z(x) represents local surface variations that are small 

when compared to ; second, the correlation length of the surface roughness is smaller than the 

fringe spacing so that  only induce a change in  and not a change in the interference pattern; 

third, the ensemble average is performed along positions where S(x)cos
2
(R)/cos(R + ) 

remains constant; and fourth, to facilitate analytical mappings, Z(x) follows a Gaussian 

probability distribution with mean zero and standard deviation . Then, we obtain an ensemble 

average of intensities 〈 ( )〉 from equation (5.1) (see Appendix J). 

 

〈 ( )〉         √     
  (    (  )[     ⁄ ])    (

  

 
[    (  )

    (  )

   (    )
]   )     (5.2) 

 

Here,  is shown to only affect the amplitude of the intensities through an exponential function 

that inherits the geometry and setup dependent parameter R, and a term in square brackets that 

can be expressed as 2n1/ = /(2S
P

f), where S
P

f is the constant height increment between two 
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consecutive fringes when planar parallel interfaces and normal incidence light are assumed (x = 

xand  = R = 0)
114

. Thus, equation (5.2) indicates that, under the assumptions made, roughness 

effects are effectively decoupled from the phase term that provides the mean or smooth geometry 

information. By using the definition of visibility and taking as a reference the corresponding 

smooth surface, the following relationship is found between a relative ensemble average 

visibility 〈    〉 and  (see Appendix K). 

 

〈    〉   
  (    (  )[ (    

 )⁄ ])
 

            (5.3) 

 

To verify this relationship, we model a rough planar surface with a Gaussian distribution 

of heights Z(x, y) and place it parallel to the smooth substrate at a separation distance S0; then, 

use equation (5.1) to evaluate single intensities I(x, y) corresponding to S0 + Z(x, y) over the 

entire surface (see insets in Fig. 5.1b), so that the ensemble average intensity 〈 〉 can be 

computed in what we describe as a Monte Carlo method, see Appendix K. By varying S0, under 

different refractive index conditions, 〈    〉 can be computed from the fringes in the 〈 〉 versus S0 

curve, and this is repeated for different  to obtain the mapping between 〈    〉 and /(2S
P

f), see 

Fig 5.1b. It can be seen that both equation (5.3) and the Monte Carlo simulations present similar 

exponential decay behavior and are in excellent quantitative agreement for small roughness of 

the surface. However, a significant difference is observed as  increases because, eventually, 

height variations become too large (that is, the first assumption is no longer valid). To determine 

when and how this happens, we notice that Z ranges approximately from ‒4 to 4, where an 

amplitude of 8 in height (peak to valley variations) covers a full period (2S
P

f) of the cosine 

function in equation (5.1) when /(2S
P

f) = 1/8 = 0.125. Effectively, for /(2S
P

f) > 0.125 

(〈    〉 < 0.735) relative differences between the two mappings quickly increase beyond 1% as 

the ensemble average of intensities becomes more complex with heights involving two or more 

periods in equation (5.1), an effect not properly captured by equation (5.3). Therefore, we expect 

our analytical expressions to provide quantitative results for 〈    〉 ≥ 0.65 where /(2S
P

f) < 0.15 

with a relative difference between the two mappings no larger than 2% (a maximum amplitude 

of 8 in Z can be considered as probabilistically conservative). 
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5.3.2 Surface roughness and separation distance measurements  

Now we focus our attention on the theoretical ensemble-average-intensity versus separation 

distance curve, 〈 〉 versus S0 (where  = R = 0), with the aim of understanding roughness effects 

on RICM separation distance measurements between surfaces. When S0 is varied between a 

surface with roughness  and a smooth substrate, there is a minimum average separation 

distance, ⟨  ⟩
C, that can be achieved due to the presence of roughness at contact

40,116-118
. For 

planar surfaces, ⟨  ⟩
C corresponds to the roughness peak distribution, about 3-4 times  for a 

Gaussian surface, a range reported experimentally for a large microsphere-planar substrate 

configuration
118

; for small microspheres, however, curvature effects at the point of contact are 

expected to lower this range. Therefore and in order to illustrate our approach, we consider the 

relationship between ⟨  ⟩
C and  given by ⟨  ⟩

C  √  , which is derived from the subcritical 

case of an unbinding membrane in a short-ranged potential and is equivalent to the hard-wall 

case
119

. These considerations indicate that separation distance measurements at contact can also 

be used to infer the roughness of a surface (in addition to fringe visibility), as long as 〈 〉Rough 

versus S0 is properly determined and the asperities do not suffer significant contact deformation 

(low applied loads). 

Hence, the construction of the mapping 〈 〉Rough versus S0 is performed in two steps. 

First, for S0 ≥ ⟨  ⟩
C, the surfaces likely exist in a non-contact regime and the simplified non-

planar model with roughness effects in equation (5.2) and Monte Carlo simulations from 

equation (5.1) properly describe the shape of the 〈 〉Rough versus S0 curve by introducing a 

decrease in fringe visibility, see Fig. 5.2a. Second, although contact is expected at S0 = ⟨  ⟩
C, 

given the statistical nature of the rough surface and the fact that ⟨  ⟩
C represents an average at 

contact, it is possible to locally measure 〈 〉 values corresponding to S0 < ⟨  ⟩
C. To account for 

this, S0/√  is substituted in equation (5.2) to construct a mapping from S0 to 〈 〉      at 

contact. This mapping, presented in Fig. 5.2a, provides the 〈 〉Rough versus S0 curve for 0 ≤ S0 < 

⟨  ⟩
C (a reasonable supplement to the non-contact regime), meaning that intensities within this 

interval are interpreted as being originated from a continuously smoother surface as S0 decreases 

and, consequently, the rough and smooth curve converge and both share the same 〈 ( )〉. 

An important observation in Fig. 5.2a is that the roughness effects on the 〈 〉Rough versus 

S0 curve previously described can be emulated by properly scaling the corresponding smooth 
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curve according to the visibility given by equation (5.3) and the fact that the intensity changes 

Imin/Imax = 1. This implies that the 〈 〉 versus S0 mapping obtained from the theory for stratified 

planar structures
29

, including illumination numerical aperture (INA) and multiple layer effects, 

can also be scaled to obtain a more accurate 〈 〉Rough versus S0 providing that the visibility 

change due to roughness is known (for instance, using equation (5.3) while incorporating an 

improved S
P

f value). Such curves are presented in Fig. 5.2b for two different INAs, including 

the smallest INA typically available of 0.48 (used here from now on). The improvement obtained 

is significant and especially evident for large separations (> ~80 nm) and large INAs. 

 

 

 

Figure 5.2. Surface roughness and separation distance measurements. (a) Visibility changes due to a 

rough surface ( = 35 nm) can be appreciated on the intensity versus separation distance curve obtained 

from equation (5.2) (dark blue squares) and Monte Carlo simulations (continuous blue line). The portion 

of the curve where the surfaces are expected to be in hard-wall contact is computed from equation (5.2) 

using a variable  (discontinuous green line, full curve shown) given by the relationship in the inset. 

Notice that by scaling the smooth curve (dotted orange line), visibility changes (orange exes) and the 

curve at expected contact (dashed orange line) can be emulated. Curves correspond to glass/air/surface 

with refractive indices of 1.53/1/1.55, respectively. (b) Improved RICM separation distance measurements 

can be obtained by constructing intensity versus separation distance curves that simultaneously capture 

roughness and INA effects; for comparison, see the rough curve from equation (5.2) (dotted orange line). 

The system presented is composed of glass/water/surface with corresponding refractive indices of 

1.53/1.333/1.55,  = 20 nm, and 1.25 numerical aperture. 

 

 

5.3.3 Microsphere size and fringe visibility effects 

The practical implementation of surface roughness measurements using RICM depends on 

computing the fringe visibility of the rough surface relative to the fringe visibility of the 

corresponding smooth surface. In general, an experimental RICM interferogram provides the 
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fringe visibility of a rough object and a way of determining the visibility of the corresponding 

smooth surface is as follows. First, for an arbitrarily shaped convex object, its geometry can be 

accurately reconstructed with nanometer-scale resolution
114

, that is, the average or smooth 

profile can be found. Then, this reconstructed geometry is used to simulate the corresponding 

interferogram by means of the complete non-planar interface image formation theory of RICM
95

, 

from which the visibility of the smooth surface is computed, and, lastly, the relative visibility is 

measured and linked to the object roughness. This approach is employed here for the particular 

case of microspheres, as described in Fig. 5.3. Therefore, this section deals with implementing 

computational methods that facilitate accurate quantification of the information contained in 

RICM images from microspheres in the range 6-60 m diameter, especially finding the 

interferogram center, using interference fringes for accurate particle size determination and 

identifying important visibility effects that must be taken into account in roughness 

measurements. 

 

 

 

Figure 5.3. Schematic of RICM analysis of microspheres. Rough microspheres near a transparent 

smooth substrate can be studied with RICM to obtain particle size and surface roughness information. 

First, an intensity profile with representative ensemble average intensities over radial positions is obtained 

after performing a circular average, see white arrows on RICM image. The intensity profile is then split 

for analysis, where fringe spacing xf data in the dashed box correspond to large areas on the microsphere 

surface and are appropriate to determine its overall spherical geometry (diameter D and separation 

distance S0
sphere

, using simplified non-planar RICM). The remaining intensities, from the center and 

including up to the first peak and valley (dotted box) provide detailed information about the local radius of 

curvature, R
local

, and microsphere roughness in the form of fringe visibility, , and the separation distance, 

S0, between the two surfaces when in contact. 
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The analysis of a concentric and symmetric interferogram begins with the precise 

determination of its center, so that the circular average properly provides a profile of intensity 〈 〉 

versus radial position x. By employing computational methods, it has been found that sub-pixel 

resolution can be achieved in our custom made routines for center finding and, over the particle 

range studied here, the average error observed was 7.3 ± 4.8 nm with a maximum error of 21.2 

nm, see Fig. 5.4a. Then, fringe spacing data xf collected from the averaged intensity profile is 

used to construct the mapping S
P

f/xf versus x, see Fig. 5.4b, from which the smooth surface 

profile can be reconstructed
114

. For microspheres, assuming a perfect sphere of diameter D with a 

separation distance S0
sphere

 from the substrate, we use a relationship derived for this particular 

geometry by means of the simplified non-planar model of RICM, see Appendix L.  

  

    
sphere

   (    )   (sin( )  (  cos( ))   (    ))  ⁄        (5.4) 

 

This equation implicitly contains the mapping from x to sin()cos(R) that is equivalent to the 

mapping from x to S
P

f/xf, therefore, providing a way of directly finding the geometric 

parameters D and S0
sphere

 by fitting the experimental data with equation (5.4), see Fig 5.4b. The 

fitting is performed in two steps, first, assuming that S0
sphere

 = 0 to obtain an initial estimate for D 

and, second, varying both D and S0
sphere

 to find the best fit using non-linear least-squares. Notice 

that not all S
P

f/xf values are used in the fitting, where the first two data points are excluded 

because they are expected to contain precise local topographical information and/or deformation 

and likely deviate from the overall sphere geometry
114

; on the other hand, including too many 

data points reduces accuracy because of the continuously increasing variability observed with 

radial position, see Fig 5.4b. To determine the optimum range of fringe spacing orders to be 

included, starting from the third xf
3
, experimental measurements of the standard reference 

material (SRM) 1961 (nominal 30 m diameter polystyrene spheres) in aqueous medium are 

performed, along with simulations of a similar system using full non-planar RICM, see Fig 5.4c. 

It is found that both experiments and simulations point to a specific range of fringe spacing 

orders (xf
3
-xf

12
) where the magnitude of the size measurement error and its variability are 

minimized, a result that can be extended to the range of microsphere sizes considered here, see 

Fig 5.4d.  
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Figure 5.4. Microsphere size and fringe visibility effects. (a) 1000 simulated RICM images of a 20 m 

diameter sphere (like the one shown on top; 10 m scale bar), where the interferogram center is randomly 

placed within the central pixel, are used to obtain a characterization of the error (beta distribution in the 

middle; minimum, average and maximum error given in nm) when employing methods for accurately 

determining the center of the interferograms with sub-pixel resolution (error within central pixel shown at 

bottom; 100x100 nm). (b) Accurate measurements of microsphere size are performed by fitting S
P

fxf 

data (open blue circles) in a selected range (closed red circles) by means of equation (5.4), as seen here for 

a SRM 1961 particle in aqueous medium. (c) The upper limit of the optimum range (indicated by arrows) 

for the fitting is determined from the minimum error in particle size measured from experimental (blue 

line with circles) and simulated (red line with squares) microspheres of known dimensions. (d) Using 

simulations alone, the result in (c) is extended to the range of microspheres studied and the expected error 

is quantified. (e)  A significant decrease in fringe visibility, measured at the first peak and valley of the 

intensity profile, results from pixilation in the simulated RICM images; although a sixth order polynomial 

(black line) describes the relative decrease in visibility, the intensity changes that take place appear to be 

uncorrelated with particle size. All systems used for simulations are composed of glass/water/sphere with 

corresponding refractive indices 1.53/1.33/1.55, and 1.25 numerical aperture; the spheres are 50 nm above 

the substrate except in (c), where separation distances from 0 to 200 nm are considered. Error bars 

represent one standard deviation. 
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An important feature of our computations using full non-planar RICM is that entire two- 

dimensional images are simulated, so that pixilation, noise and variability from the center 

finding are taken into account when the circular average is performed and a discrete one 

dimensional intensity profile is measured. This becomes evident when the visibility of the 

discrete intensity profile is compared with the visibility of the corresponding continuous profile. 

The observed decrease in relative visibility due to pixilation is virtually relevant to all particle 

sizes studied and especially significant for small particles, see Fig. 5.4e. Although a clear trend 

can be established for the relative decrease in visibility as particles become smaller, the way the 

intensity changes at the extrema (Imin/Imax) seems to be unpredictable. Thus, this effect has to 

be considered in a case by case basis when computing the visibility of the smooth surface from 

simulations in roughness measurements. 

 

5.3.4 Surface roughness and local curvature of microspheres 

As indicated earlier in Fig. 5.3, a detailed analysis is performed on the ensemble average 

intensities, 〈 〉Rough versus x, including up to the first measurable peak and valley that are used to 

compute 〈 〉     , see Fig. 5.5a. Because, in general, the corresponding local geometry cannot be 

assumed to be spherical, we use simplified non-planar RICM to analyze the complete 

interferogram and reconstruct the surface profile while neglecting, at first, roughness effects
114

. 

The resulting geometry approaches the overall spherical shape (determined from equation (5.4)) 

for large radial positions and diverges from it in the proximity to the substrate where the local 

geometry becomes relevant, as seen Fig. 5.5b. Then, a discrete intensity profile 〈 〉 mooth versus x 

that closely reproduces the fringe spacing of 〈 〉Rough versus x is generated from this arbitrarily-

shaped convex geometry and 〈 〉       is determined from the corresponding first peak and 

valley used to obtain 〈 〉      (notice that only this specific portion of the intensity profile needs 

to be simulated). The computed relative visibility 〈 〉    = 〈 〉      〈 〉       provides a value of 

, by means of equation (5.3), and the visibility change required to construct the appropriate 

curve for separation distance measurements (with Imin/Imax = 1) including roughness effects, 

see Fig. 5.5a. Consequently, for particles in contact, ⟨  ⟩
C can be measured and studied in 

connection with the roughness observed from visibility. 
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Figure 5.5. Surface roughness and local curvature of microspheres. (a) Experimental (rough; blue 

circles) and simulated (smooth; continuous/discrete: red line/squares) intensity profiles corresponding to a 

polymer vesicle (top), PSL microsphere (middle), and glass bead (bottom) in aqueous medium and near 

the substrate are plotted (left) in the same scale, based on background intensities, to illustrate the 

differences in visibility due to roughness and the corresponding smooth (dotted orange line) and rough 

(dashed blue line) curves for separation distance measurements (right). (b) The surface profile of the 

microspheres is reconstructed using simplified non-planar (without/with roughness: dotted/continuous 

blue line) and two spherical fittings are shown: the overall particle diameter (dash-dot red line) and local 

radius of curvature at the bottom (green dashed line), determined by fitting S
P
x data (inset; blue circles) 

obtained by means of the rough separation distance curve in (a). The components of the systems studied 

are glass substrate, buffer, PSL particle, glass particle, polymer membrane, and sucrose solution with 

refractive indices of 1.53, 1.334, 1.59, 1.51, 1.51, and 1.351 respectively; 1.25 numerical aperture used. 
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 Roughness effects can now be incorporated in the construction of the S
P
/x versus x 

mapping when analyzing neighboring intensities located before the first intensity extrema, in 

what has been previously called as the first transformation
114

. By using the corresponding branch 

of the 〈 〉Rough versus S0 mapping, seen in Fig. 5.5a, the height increments for planar parallel 

interfaces S
P
 for these intensities can be computed and divided by the constant positional 

increment x (100 nm in our setup) to obtain S
P
/x versus x, see insets in Fig. 5.5b. Therefore, 

a more accurate reconstruction of the surface profile can be achieved for cases where visibility 

changes affect these intensities, especially within 100 nm above the glass substrate, see Fig. 

5.5b. Here we incorporate and evaluate these corrections in the measurement of an arbitrarily 

defined local radius of curvature, R
local

, as the radius of the spherical geometry that provides the 

best fit to the first few S
P
/x values (x < 1 m) resulting from the first transformation. To find 

R
local

, a simplified version of equation (5.4) is employed, where only normal reflected light is 

considered (R = 0), see insets in Fig. 5.5b. 

Table 5.1 summarizes the results obtained when two monodisperse samples of different 

types of microspheres are analyzed as previously described, providing accurate information 

about their diameter, local radius of curvature, roughness from fringe visibility and separation 

distance at contact with the substrate. 

 

 

Table 5.1. RICM measurements on monodisperese microspheres samples 

Particles 

(sample size) 

Diameter 

(µm) 

R
local 

(m) 

S0 

(nm) 
〈 〉    Imin/Imax 



(nm) 

PSL15(193) 15.13 ± 2.08 16.18 ± 6.65 39.7 ± 3.4 0.737 ± 0.049 0.65 ± 0.49 26.3 ± 2.9 

Glass15 (122) 15.69 ± 2.34 13.99 ± 5.77 40.8 ± 9.4 0.723 ± 0.063 1.92 ± 4.50 27.0 ± 3.7 

 

 

5.4 Discussion 

Differences in relative fringe visibility behavior are evident when microspheres of diverse nature 

are compared in Fig. 5.5. At first, we analyze the computed 〈 〉    in terms of surface roughness, 

as suggested by our approach based on geometrical optics and ensemble average of intensities, 

and compare the  obtained with the corresponding measured separation distances S0, under the 
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assumption of a Gaussian distribution of surface heights. For the polymer vesicle hovering above 

the glass (coated with ~4 nm thickness
120,121

 bovine serum albumin, BSA), the measured S0 (~45 

nm, close to S0
sphere

 = 38.4 nm) is consistent with a non-contact scenario according to the 14.9 nm 

roughness determined from fringe visibility (S0 ≈ 3) and the fact that a contact area is only 

detected without BSA. A plausible explanation for the roughness observed (of the same 

magnitude as the 15 nm thickness
85

 of the polymer membrane) is that the polymerized shell 

preserves undulations present in the fluid membrane before polymerization; for instance, 

bending excitations of ~10 nm root mean square and short wavelength (< 0.5 m) have been 

reported in cells
23

. In the case of the PSL microsphere, the separation distance measured (~39 

nm, close to 35.5 nm from the spherical fit) points to (expected) contact with the glass when 

compared to the 29.6 nm of  (S0 ≈ 1.3); however, for a particle under low loads, it appears to 

be too close to the substrate indicating a poor agreement between  and S0 as measured from 

RICM. In contrast, the large glass bead exhibits ~86 nm of separation distance (close to S0
sphere

 = 

76.1 nm) in good agreement with a surface roughness of 24.7 nm from 〈 〉    (S0 ≈ 3.5). 

Although roughness from fringe visibility reported for the vesicle and glass bead seems 

reasonable and in accordance with the separation distance between the specimens and the 

substrate, additional factors discussed in the following paragraphs allow a better understanding 

of discrepancies in the PSL particle measurements. 

 An important observation in Fig 5.5a is that the intensity changes at the first peak and 

valley are highly asymmetric (Imin/Imax >> 1) for the glass bead, contrary to the vesicle and, in 

particular, the PSL microsphere case (Imin/Imax ~ 0.8). Consequently, the first branches of the 

rough and smooth curves for separation distance measurements in the glass bead necessarily 

coincide and a particular scaling is required for subsequent branches; in other words, intensities 

near the center of the interferogram (x < 0.9 m) behave as originated from a smooth surface 

despite the large 〈 〉    and S0 measured that indicate the presence of significant irregularities. 

This apparent inconsistency can be clarified by taking a closer look at the topography of the 

particles studied, as seen in Fig. 5.6a-b, where SEM and RICM allow a qualitative assessment of 

the microspheres’ surface. Given the non-homogeneous asperity covered (~11 %) glass bead 

surface, it is possible to have configurations where the surface is locally smooth around radial 

position x = 0 and, as x increases, the ensemble average of intensities from the circular average 

collects roughness information from larger areas (including the asperities actually in contact with 

the substrate that cause S0) introducing more representative changes I for the following  
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Figure 5.6. SEM and RICM qualitative surface roughness analysis of microspheres. PSL (a) and 

glass (b) microspheres are observed under SEM (left) and RICM (right) techniques at different length 

scales (10/1 m scale bars at top/bottom). Direct SEM observation clearly shows differences in the 

uniformity of the particles’ surface at the micro and nano-scale, where PSL looks highly homogeneous 

while asperities of various shapes and dimensions give a non-uniform appearance to the glass surface. 

Similar information can also be inferred from RICM images taken in air where the uniform and clean 

interferogram of the PSL particle contrasts with the one from the glass bead showing evidence of some of 

the large features (~1 micron and even smaller). This information for the PSL (c) and glass (d) 

microspheres facilitates the formulation of appropriate surface roughness models at the nano-scale relevant 

at contact and for RICM fringe visibility analysis (right), as verified by SEM observation at the 

corresponding scale (left, 100 nm scale bar).   

 

 

intensity extrema, as seen at the bottom of Fig 5.5a. The PSL particle, on the other hand, is fairly 

uniform with features that smoothly appear over the surface in length scales larger than 100 nm, 

similar to what is expected for the polymer vesicle membrane. Therefore, Fig. 5.6 allows 

verifying that a Gaussian roughness model is suitable for the PSL microsphere, as shown in Fig. 
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5.6c, but a different surface model might be more appropriate to achieve better quantification of 

 from 〈 〉    for the glass bead, see Fig. 5.6d. More importantly, this discussion reveals that 

RICM interferograms are also sensitive to surface homogeneity (Imin/Imax) relative to fringe 

spacing (typically ~1 m for the first peak/valley) and emphasizes the highly localized nature of 

the topographic information embedded at/near the center of the interferogram. 

Based on these insights, we now revisit the PSL microsphere in contact with the 

substrate in Fig. 5.5. Fairly symmetric intensity changes mean that representative surface 

variations are effectively captured when 〈 〉    is measured from radial positions between 1-2 m 

involving heights S(x) – S0 > 50 nm. In addition, the relatively small size of the PSL particle 

coupled with smooth variations over a few hundreds of nanometers also imply that S0 is locally 

determined and, probably, uncorrelated with 〈 〉    (in contrast to what happens with the large 

glass bead). These observations are generally applicable to other microspheres; for instance, the 

results in Table 5.1 indicate that both PSL (PSL15) and glass (Glass15) particle samples of 15 

m nominal size have similar surface topography as determined from fringe visibility analysis 

and the separation distance measured, with no correlation observed between  and S0 in either 

case. The main difference between the samples appears to be larger variability present in the 

Glass15 measurements, with around 5 % of the particles exhibiting indicators of a non-

homogeneous surface (Imin/Imax > 5). 

Moving onto larger length scales, RICM capabilities for particle size measurements have long 

been appreciated, in particular using analysis of limited applicability
40,48

 and with more practical 

measurements only possible by means of correction factors derived from full non-planar 

RICM
29,95

. The method presented here is quite robust and easy to implement because it is based 

on a direct and optimized analysis of multiple interference fringes, resulting in relative errors 

less than 1% for microspheres with diameters between 7 to 60 m. When smaller particles are 

analyzed as described here, the exclusion of the first two xf values leaves too little information 

for the fitting, resulting in an increased relative error; therefore, a full analysis to reconstruct the 

geometry is suggested in these cases, followed by a spherical fitting to determine particle 

dimensions
114

. In addition to the high nanometer accuracy reported for our method, it also 

exhibits great precision. For the highly monodisperse SRM 1961 (0.8% coefficient of variation, 

CV) a consistent 1.1 % CV is obtained, where the slightly higher dispersion is possibly due to 

S0
sphere

 being another fitting parameter implicated. For the monodisperse PSL15 microspheres in 



 

70 

 

Table 5.1, the reported measurements (13.7 % CV) are in excellent agreement with 

manufacturer’s values of 15 µm and 14% CV; though no manufacturer information is available 

for Glass15, we feel confident about the 14.9 % CV measured by RICM. Finally, the great 

accuracy and precision achieved in size determination implies that S0
sphere

 might provide valuable 

independent information as pointed out before
114

; although individual values could be negative 

leading to large variability, S0
sphere

 computed from several measurements seems to represent a 

characteristic value for a given particle sample (in a similar way S0 does, see Appendix L). 

An additional microscopic measurement reported in Table 5.1 is R
local

, which is 

consistently higher than the corresponding microsphere radius for the polymer vesicle, PSL15 

and Glass15 samples, in contrast to what is observed for the large glass bead in Fig. 5.5. 

Therefore, this increase in local curvature seems to occur for small microspheres that are closer 

to the substrate than the large glass bead, suggesting that it probably originates from elastic 

deformation due to interactions with the substrate; this is also consistent with R
local

 being larger 

for PSL15 than for Glass15, a valid comparison given that both samples essentially have the 

same size distribution. Interestingly, R
local

 is essentially the same whether roughness corrections 

are included or not (see Appendix L), which is not totally surprising because its computation 

mainly involve changes between consecutive intensities in the first transformation instead of 

absolute intensity values. 

Although the surface roughness analysis presented here focuses on microspheres that 

facilitate obtaining ensemble average intensities, it can be applied, in general, to relatively 

smooth arbitrary convex geometries for which simplified and full non-planar RICM models are 

currently available
95,114

. Also, the assumption of surface roughness following a Gaussian 

distribution of heights can be relaxed, given that more appropriate distributions for certain 

objects (see Fig. 5.6d) can be analyzed, in general, using Monte Carlo simulations. It is 

important to notice that quantitative analysis of fringe visibility is challenging, because a number 

of factors such as scattering (expected to increase with ), absorption and substrate roughness 

have not been taken into account (for simplicity), while additional errors from the refractive 

index of the object, focusing, and model shortcomings also come into play. Consequently, there 

is still room for improvement and for now, our results consistently indicate that 〈 〉    is a 

parameter affected by the object’s nano-scale topography in RICM measurements and agreement 

between surface roughness inferred from 〈 〉    and S0 measurements can only be expected, in 

general, for large microspheres. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 Conclusions 

Reflection interference contrast microscopy is a powerful technique for the study of microscopic 

objects near surfaces, capable of measuring an object’s arbitrary convex shape with nanometer-

scale resolution, while simultaneously providing information about its nanometer-scale 

topography and the presence of contact phenomena, if any, with high temporal resolution and in 

a non-invasive way. Because the methods of analysis developed here are of practical application, 

RICM has a clear potential for near real-time analysis of ensembles of objects near surfaces so 

that statistical/probabilistic behavior can be realistically captured. 

 The most complete non-planar interface image formation theory of RICM was improved 

with a more precise and general mathematical formulation for intensity calculations. In addition, 

an important correction was made in the three-dimensional evaluation of the optical path length 

difference, indicating that simplified fringe spacing analysis is more accurate than what 

previously thought, especially for large inclinations of the non-planar interface. The improved 

theory was coupled with a general method to simulate the interference pattern from arbitrary 

convex geometries with either single or double reflecting layers, revealing that an accurate 

reconstruction of an object’s arbitrary convex shape is possible by fitting its experimental 

intensity pattern. 

A simplified non-planar RICM model was formulated, enabling the identification of 

normal and non-normal reflected light regimes; these are two complementary regimes of 

illumination that cover all possible scenarios for interference in arbitrary convex geometries. 

Based on this simplified model, a significant breakthrough was achieved: data in RICM intensity 

profiles can be easily transformed to directly provide the inclination angles of the geometry 

under study so that the surface profile can be accurately reconstructed with an unprecedented 

nanometer-scale resolution via an appropriate mathematical procedure of fast execution. This 

innovative analysis of RICM interferograms and the near-instantaneous surface profile 

reconstruction method are applicable to arbitrarily shaped convex objects under different 

experimental conditions. 



 

72 

 

Simple experiments involving the deposition of microspheres on surfaces have revealed 

the existence of different microscopic scenarios depending on deposition media and unique 

femtoliter-scale capillary condensation dynamics underneath micron-sized glass beads, thanks to 

direct observation by RICM. Therefore, RICM’s high resolution, set-up simplicity and 

distinctive non-invasive “view-from-below” perspective can play a significant role in non-

traditional fields; for instance, in this case, potentially facilitating particle 

deposition/resuspension studies under more realistic conditions directly quantifiable. 

A theoretical framework and computational methods, based on the idea of ensemble 

averages of intensities, provided a specific relationship for the RICM set-up between the 

nanometer-scale topography of a microscopic object and its fringe visibility relative to the fringe 

visibility of the corresponding smooth surface. Using this principle, experimental RICM 

interferograms from microspheres can be conveniently analyzed to extract surface roughness 

information.  In addition, visibility changes can be incorporated in improved separation distance 

measurements, revealing that for small (nominal 15-m diameter) particles in contact with the 

substrate, these measurements are determined by the local topography and no correlation was 

observed with the roughness from fringe visibility analysis.   

Precise and accurate measurements of microspheres’ size (< 1% relative error) in the 

range from 7 to 60 m diameter can be performed by means of an optimized and robust fringe 

spacing analysis of their RICM interferograms. Consequently, particle size distributions of 

monodisperse samples can be accurately quantified. 

 

6.2 Recommendations for future work 

A natural direction for expansion of the present work would be the study of concave geometries. 

In this scenario, exact intensity computations represent a significant challenge because it is 

possible to have multiple contributions to the intensity coming from different regions of a 

concave geometry, so a consistent indexing based on rays that are reflected back from the object 

might not be feasible. However, the development of appropriate calculation methods to 

accurately simulate intensity profiles can provide a valuable tool for understanding the 

reflection-interference phenomenon in convex geometries, possibly leading to the formulation of 

simplified models and appropriate surface profile reconstruction methods, as done here for the 

arbitrary convex geometry case. This would mean the possibility of having a complete set of 

tools for analysis of RICM images corresponding to diverse geometric configurations of the 
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reflecting surface and potentially formulating a general way of accurately retrieving arbitrary 

geometries from their interference patterns. 

 Interesting and unique contact phenomena presented qualitatively in Chapter IV can be 

expanded and quantified. Differences observed when water is used as deposition medium can be 

further investigated to determine any remnants of water; observation of large numbers of 

particles could reveal the frequency of occurrence of the different deposition scenarios, which 

can be related to resuspension efficiency with RICM measurements performed on samples 

before and after resuspension experiments. Moreover, the effect of diverse deposition media with 

various surface tension and evaporation rates can provide additional insights about the 

phenomena observed. For the capillary condensation dynamics, short and long term relative 

humidity effects can be determined; following contact angle and roughness measurements on the 

glass bead and substrate surfaces, accurate quantification of the water content can be obtained 

including mathematical modeling of meniscus shape and expected equilibrium configuration. 

Also, RICM observations before and after resuspension experiments can directly relate capillary 

condensation with resuspension effeiciency under different conditions, and similar studies with 

other particle sizes, topography and materials can offer an improved picture of this phenomenon. 

 The theoretical and computational approaches based on ensemble averages of intensities 

in Chapter V have proven useful for the determination and validation of analytical relationships 

between roughness and measurable parameters in RICM interferograms. However, they 

represent the simplest possible scenario and more sophisticated methods are desirable to quantify 

their accuracy, especially including scattering and finite illumination aperture effects. Surface 

roughness models different from the Gaussian one can be considered in the analysis of other 

samples of particles exhibiting asperity-like roughness. In addition, surface profiles from AFM 

measurements on the particles can also be incorporated using computational methods to facilitate 

accurate analysis of hundreds of particles via RICM fringe visibility analysis. Finally, it is 

recommended to extent the current range for particle size measurements, especially for smaller 

particles using simulations and measurements from at least another standard reference material.  
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APPENDIX A 

INDIRECT EVALUATION OF THE EXACT INTENSITY FORMULATION FROM 

THE DIRECT EVALUATION OF THE APPROXIMATED SOLUTION 

 

 

In this Appendix, we describe the indirect evaluation of equations (3.4) and (3.5), exact intensity 

formulation, from the direct evaluation of equations (3.11) and (3.12), approximated solution; a 

comparison between results from these sets of equations is presented in Fig. 3.3c. The main idea 

is to take advantage of the backward ray-tracing method to account for all the contributions of 

rays I2, I3… that are reflected back from the non-planar interface, and simplify the calculations 

when dealing with an arbitrary convex surface. Although we focus on single-layer systems, the 

same procedure can be applied to situations involving multiple layers (see the double-layer 

system depicted in Fig. 3.6). The variables used have been defined in Fig. 3.1b and through the 

main text of Chapter III. 

 Ideally, we would like to know in advance if interference occurs at the position of 

interest, B(x, y); in other words, if there is a range of incident angles where we expect to have I2 

contributions that interfere with I1. As seen in Fig. 3.2, such angles are constrained, as in most 

situations, by IA and DA. The boundary corresponding to IA in Ω2 is a function of the 

geometry of the reflecting surface and, in general, also a function of position at image plane. 

Therefore, because we are interested in arbitrary convex surfaces, it is not possible to obtain an 

analytical expression for the incident angle range that would be valid across all possible 

geometries and positions. To approximately predict the positions at image plane where 

interference fringes could still exist for an arbitrary convex geometry, we can use an analytical 

solution for the maximum inclination angle of a wedge, max, to observe interference: 

 

2

L1
IA

L1
DA

max





              (A1) 

 

Where the superscripts L1 indicate that IA and DA are given in layer 1, and it is assumed that 

they are the only relevant constraints. Then, we define general integration limits for the (2, 2) 

variables at B(x, y); 2 goes from 0 to DAand2ranges from 0 to to exploit the symmetry of 

the system. The upper limit of 2 is defined as DA taking into account that we are pursuing the 
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indirect calculation of the exact formulation, and beyond that limit there are no contributions 

from rays reflected back from the non-planar interface because they cannot reenter the 

microscope. However, if we want to evaluate an approximated intensity value directly from 

equations (3.11) and (3.12), the upper limit of 2 would be set to TIR given that I2 rays with 2 in 

between DA and TIR might be indexing single I1 contributions to the intensity, see Fig. 3.2.  

From the following paragraphs it can be seen that the exact limits for the angles where 

interference occurs are implicitly determined during the course of our calculations. 

The integration can be performed numerically within the specified domain, noting that 

we only need to compute the numerators of the mentioned equations because the denominators 

of equations (3.4) and (3.5) can be easily determined as 2(1 – cos(IA)). In our simulations, we 

make calls to the functions quad and dblquad in MATLAB R2007b which use adaptive Simpson 

quadrature. When the integrand at a particular point (22) has to be calculated, the backward 

ray-tracing procedure is executed. For those situations where I2 can be traced backward to a 

source point A, as shown in Fig. 3.1b, we still need to verify that it will contribute to the 

intensity. The first and most important condition is that I0 must come from the illumination 

source (1 ≤ IA). If this is not satisfied, the integrand value can be set to zero and I1 and I2 are 

not of further interest. Provided that 1 ≤ IA we have, at least, the I1 contribution to the intensity 

and its possible interference with I2 depends on two additional constraints: the point A must be 

inside the field of view and the OPLD must be smaller than the coherence length of waves from 

the mercury arc lamp. 

The conditions stated above can be incorporated into the calculation of the effective 

reflection coefficients as follows: 
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A          (A2) 

 

Here 
L

 = sin
-1

(n0sin(2)/n1) is the angle in layer 1, according to  nell’s law; rij and tij are the 

reflection and transmission coefficients of the interface between the layers i and j, respectively, 

given by the Fresnel equations and taken as a function of the angle between the incident ray and 

the normal to the interface (i, j); k = 2π/λ is the wavenumber and λ is the wavelength of the 
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illuminating light; OPLD is given by equation (3.7); the Heaviside function Θ guarantees that the 

rays come from within the illumination cone; and: 

 

 


 


otherwise0
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,
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A          (A3) 

 

At this point we are able to evaluate the numerator of equations (3.11) and (3.12), but because 

our interest is the exact calculation, it is possible to write: 

 

   22
,

11
, ,,  psps RR              (A4) 

 

In other words, the effective reflection coefficient can be indistinctly considered either as a 

function of (22) or (11). When we do this at every non-zero R
s,p

(22) point calculated 

while evaluating the approximated integral, we are numerically constructing the inverse map G
-1

, 

equation (3.13),
 
for the convex geometry involved. This means that we can calculate integrand 

values for the numerators of equations (3.4) and (3.5) that correspond to a particular region in the 

Ω1 domain with possible interference between I1 and I2 contributions (such a region is labeled as 

“I1 & I2” in Fig. 3.2).  

In order to compute the desired integral, two final steps are necessary. First, if the “I1 & 

I2” region does not fill the entire Ω1 domain, that implies that there is a region of single I1 

contributions where the integration can be performed directly, using equations (3.4) and (3.5), 

provided the translation of the boundary 2 = DA from Ω2 into Ω1. Second, because the 

integrand values in “I1 & I2” form a non-regular grid in the Ω1 domain, a set of points (11, 

Integrand), it is necessary to find an appropriate method to complete the computation of the 

desired integral. 2D Delaunay triangulation performed on a set of (11) allows to obtain a 3D 

approximation of the surface Integrand = F(11) with a series of flat triangles. Then, the 

integration can be carried out as a summation of volumes over all the triangles inside Ω1. Figure 

A1 shows a typical surface of integrand values approximated by the triangulation method. 
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Figure A1. Typical surface of integrand values approximated by the Delaunay triangulation method. 
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APPENDIX B 

FORMULATING NORMAL/NON-NORMAL REFLECTED LIGHT MODELS 

 

 

Our approach uses the complete non-planar RICM model
95

 to simulate a large variety of 

intensity patterns from known geometries under different conditions (that is, illumination 

numerical apertures (INAs), refractive indices (ni), membrane/coating thicknesses (L2), etc…). 

Then, the geometries used (wedges and spheres) and information from their corresponding 

interferograms (such as fringe spacing) are analyzed to identify reasonable simplifications and 

key parameters that allow us to formulate a simplified non-planar RICM model while finding the 

most accurate and simple way to retrieve the original geometry in a wide range of possible 

scenarios. 

Let’s consider a spherical particle under different illumination conditions (Fig. B1). 

When looking for the appropriate simplifications, we try replacing the exact spherical geometry 

with a series of wedges, with one particular wedge per calculated intensity point along radial 

positions starting from the center of the interferogram. This is very convenient given that wedge 

geometries are the simplest non-planar interfaces that only involve 2D computations and similar 

geometric simplifications in the form of cylindrical approximations have been successfully 

implemented before
95

. Actually, the simulated intensity profiles from the series of wedges 

compare very well with the ones from the exact geometry, especially in terms of fringe spacing 

xf (Fig. B1b,e). The fact that wedges can reproduce the illumination behavior observed in 

arbitrary convex geometries (as shown here for a spherical case) is a remarkable observation that 

gives us valuable insights: first, a full 3D description of the reflection-interference phenomenon 

can be simplified and, second, relatively simple geometries like wedges could provide some 

useful analytical expressions applicable to arbitrary convex shapes. 
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Figure B1. Approximating exact RICM spherical geometry computations with a series of wedges 

leads to the formulation of a simplified non-planar RICM model. (a,d) Exact and approximated 

intensity profiles simulated from a 10 m radius sphere in water contacting a glass substrate. (b,e) 

Interferograms in (a, d) are now shown in terms of fringe spacing. (c,f) Normalized OPLD for the 

admissible range of detection angles at each position according to the exact spherical geometry (simplified 

2D view), illustrating the applicability of the simplified non-planar RICM model to convex geometries. 

Simulations were performed with INA = 0.48 (top row) and 0.90 (bottom row); NA = 1.25, and 

glass/water/particle refractive indices of 1.53/1.33/1.55, respectively. 

 

 

Therefore, we consider a simplified 2D picture for the detection angles, 
L1

2 , to describe 

and analyze the behavior of light contributing to interference (Fig. 4.4a,b and Fig. B1c,f). In this 

scenario, the simplest non-planar model for determining I(x) is illustrated in Fig. 4.4a and 

formulated in equation (4.1) (derived by following Contreras-Naranjo et al.
95

 for the calculation 

of the optical path length difference, OPLD). The most significant implication of this model is 

that I(x) depends on geometric parameters (S(x), , and R) defined at position x instead of x, 

due to the non-planar effect. Then, an analysis based on wedge systems allows establishing 

normal/non-normal reflected light regimes at OPLDmax (Fig. 4.4b and Table B1), which 

completes a bijective mapping between x and x for the direct calculation of the intensity profile 

(I(x) versus x) when the geometry of the object (S(x) versus x) is known. 
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Table B1. Analytical relationships corresponding to OPLDmax as derived from wedge systems. 

Simplified Non-planar RICM Model 

Normal Reflected Light  
(NRL) 

Non-Normal Reflected Light 

(non-NRL) 
 

 

 

 

 

 

 

 

Although formulation of the simplified non-planar RICM model is based on wedge 

geometries, the model is expected to work well with arbitrary convex geometries for reasons 

previously discussed. Effectively, when these results from wedges are incorporated into a non-

planar interface with varying slopes such as a sphere, Fig. B1c,f shows that they accurately 

follow the behavior observed for OPLDmax in the exact geometry and successfully describe the 

presence of two different regimes. For that reason, the relationships presented in Fig. 4.4b and 

Table B1 offer a general criterion to determine when normal/non-normal reflected light 

approaches should be used to establish a bijective mapping between positions x and x when 

dealing with arbitrary convex geometries. 
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APPENDIX C 

ACCURATE FRINGE SPACING ANALYSIS 

 

 

Here we describe how the formulated model (Fig. 4.4a,b), despite its simplicity, can be used to 

obtain key relationships between a particular geometry and its corresponding intensity profile. 

Equation (4.3) is an important step in this direction because it shows how discrete intensity 

values I(x) can be transformed into height values S
P
, although S

P
 still have to be corrected to 

account for non-planar effects. By studying simple geometries such as wedges (Fig. C1), exact 

analytical expressions can be formulated which facilitates the further necessary analysis.  

 

 

 

Figure C1. Wedge geometry analysis. (a) Intensity profile from the selected region in the RICM image 

(inset, 10 m scale bar) corresponding to a wedge system; notice the fairly uniform fringe spacing. (b) 

Important parameters are identified in a particular branch of the intensity profile in (a). (c) It is possible to 

establish mappings between fringe spacing and wedge inclination angle using simulations from ensembles 

of wedge systems that, despite significant intrinsic variability (scattered data), follow the trends 

determined by equation (4.4). 

 

 

Let’s start with the slope definition in a wedge system  when two intensities at 

positions x
i
 and x

k
 are considered (see Fig. C1b).  
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In contrast, from previous formulations the slope would have been expressed as tan() = (S
Pk 
˗ 

S
Pi

)/(x
k
 ˗ x

i
) = S

P
/x 

29
, which is not the ratio of the appropriate height and position differentials 

according to the geometry under consideration. Then, equation (4.2) and equation (4.3) are used 

to obtain independent expressions for x and S, respectively, as follows. 
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Finally, equation (4.4) is obtained by substituting equations (C2) into equation (C1) and after 

some algebraic/trigonometric manipulation. The absolute value in equation (C2b) guaranties that 

the height increments are positive, as assumed in the current analysis. 

A convenient parameter extracted from any interferogram is the spacing between 

neighboring fringes xf and, as seen from simulations and experiments, this parameter is fairly 

constant (position independent) in wedge systems although significant variability has been 

observed. In fact, our simplified model and derived relationships indicate that the increment S
P
 

is constant (S
P 

= S
P

f) when consecutive intensity extrema are analyzed and, consequently, S, 

x, and xf are also constant in a wedge system. This enables the verification of equation (4.4) 

by constructing mappings from  to xf (Fig. C1c) and from  to S
P

f /xf (Fig. 4.4c) based on 

simulations using the full non-planar RICM theory. Details about the construction of these 

mappings are given in the following paragraphs and Fig. C2. 

Notice that according to equation (4.4) the relevant parameters for the mapping from  

to xf are  (wavelength of light being used), n1 (surroundings composition), and R (reflected 

light behavior that is a function of INA for the non-NRL regime) indicating that other parameters 

such as n2 (composition of the object or membrane/coating), n3 (object’s composition in double-

layer systems), L2 (membrane/coating thickness), and NA (determines max) do not affect the 

shape of the mapping. In order to verify this, the ensemble of conditions given in Table C1 is 

used to simulate hundreds of interferograms (see Fig. C2a) corresponding to different wedge 

systems from which single fringe spacing data (Fig. C2b-d) can be collected and analyzed.  
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Figure C2. Detailed calculations of the wedge geometry analysis performed to validate equation 

(4.4). First, a series of intensity profiles from wedge geometries are simulated under different conditions; 

for instance, (a) illustrates the interferogram of the wedge system defined by:  = 25º; single-layer (L2 = 0 

nm); n0/n1/n2 refractive indices of 1.53/1.33/1.47, respectively; INA = 0.90; and NA = 1.25. Then, up to 50 

xf values are extracted from each intensity profile in order to account for the variability observed. For the 

interferogram in (a), this is shown in (b) as a function of fringe spacing order and (c) presents the same xf 

values (seen as scattered data) but now associated with the corresponding . Next, all fringe spacing 

values from comparable wedge systems are plotted together (d) so that the trend observed in the mapping 

from  to xf (including variability) can be compared with the expected mapping from equation (4.4) 

(NRL in (c-d)). Finally, average xf values like the one in (d) are used as inputs to equation (4.4) in order 

to evaluate its performance when predicting inclination angles from interferograms of wedge systems. 

 

 

Table C1. Ensemble of wedge systems used to verify equation (4.4) 

Single-layer systems 

n
0
 n

1
 n

2
 

1.53 
1.33 
1.00 

1.47 
1.51 
1.55 
1.59 
1.63 

Double-layer systems 

n
0
 n

1
 n

2
 n

3
 L2 (nm) 

1.53 
1.33 
1.00 

1.45 1.55 

50 
100 
150 
200 

             INA = 0.48, 0.70, 0.90; NA = 1.25 
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When all these data are plotted together to obtain xf versus, fringe spacing values 

corresponding to wedge systems with the same n1 and INA differentiate from other systems, 

establishing independent trends as seen in Fig. C1c, thereby verifying the mapping given by 

equation (4.4). Because our approach is not only limited to fringe spacing analysis, a more 

convenient way of expressing equation (4.4) is with the mapping from  to S
P

f/xf; as 

demonstrated in the present work, S
P
/x is a measurable key parameter when studying arbitrary 

convex geometries. 

Once equation (4.4) has been successfully verified, it is used to retrieve the original  

values. Figure 4.4d illustrates that the relative error in retrieved quickly increases beyond the 

midpoint of the non-NRL regime, where a cutoff angle * = (IA,L1 + max)/2 is defined 

involving errors around -2%. From a practical point of view this issue is not very significant 

because for such relatively large inclinations the corresponding fringe spacing is very small 

(even comparable to pixel size) and, in addition, the visibility of those fringes is very low (being 

greatly affected by camera noise) so that their interference pattern easily fades away and cannot 

be detected. In fact, MaxRes
 = tan

-1
(n2(NA – INA)/n1) provides estimation for the microscope’s 

spatial resolution limit
45

. See Table C2 for a comparison of these parameters and errors at *. 

 

 

Table C2. Maximum resolution and cutoff inclination angles  

MaxRes
 (°)    |    * (°)    |     error at * (%)  

INA Water Air 

0.48 33.80  |  33.37  |  -2.22 26.71  |  44.01  |  -1.11 

0.70 25.55  |  41.32  |  -0.83 19.77  |  55.82  |  -1.59 

0.90 16.92  |  49.45  |  -1.47 12.89  |  70.62  |  -2.58 
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APPENDIX D 

INNOVATIVE ANALYSIS OF RICM INTENSITY PROFILES 

 

 

Given that our simplified non-planar RICM model facilitates an accurate intensity analysis to 

retrieve inclination angles in the case of wedge geometries (Fig. 4.4), we now try to implement 

these ideas in the analysis of interferograms from arbitrary convex surfaces with the aim of 

accurately reconstructing the corresponding geometries. A first and fundamental step is the 

construction of the mapping from x to S
P
/x (Fig. 4.5a) by means of equation (4.4), with details 

of its construction presented here.  

As indicated in the main text, two different but complementary transformations of the 

intensity data are performed to obtain S
P
/x from a given interferogram. The first 

transformation is based on the analysis of two consecutive intensities at positions x
 j
 and x

 j+1
 

(located on a common branch of the intensity profile) and assuming that there is a common 

inclination angle j associated with them. Therefore, x
 j
 = x

 j+1
 – x

 j
 is typically a constant 

determined by the pixel size in the RICM image and the direction in which the intensity profile 

is measured. On the other hand, S
Pj

 varies, as computed by means of equation (4.3), where 

better results are produced when using the exact S
P

f calculated from the theory for stratified 

planar structures
29

, which accounts for INA and multiple layers effects (instead of S
P

f = /4n1). 

This approach can be applied to the complete intensity profile by performing branch-wise 

computations where Imax, Imin, and S
Pj

/x
.j
 values are determined for each branch separately. 

 The second transformation is based on the analysis of two consecutive fringes at 

positions xf 
j
 and xf

 j+1
 and assuming that there is a common inclination angle j associated with 

them. Therefore,x 
j
 = xf 

j
 = xf

 j+1
 – xf 

j
 is roughly a constant only for wedge like geometries and 

it varies for arbitrary convex geometries (see Appendix B, Fig. B1b,e). On the other hand, S
Pj

 = 

S
P

f = /4n1 is now a constant for any system and no improved S
P

f calculation have proven to 

be necessary although INA values as high as 0.90 and double-layer systems have been 

considered (exactly as in the fringe spacing analysis for wedge systems). At this point, a series of 

S
Pj

/x
 j
 = S

Pj
f /xf

  j
 values can be computed for all fringe spacing available. 

To construct the mapping from x to S
P
/x, notice that every S

Pj
/x

.j
 has to be 

associated with a particular position, and the constructed mapping is expected to follow the 
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continuous sin()cos(R) versus x function given by the geometry under consideration and the 

normal/non-normal reflected light regimes. This provides an important tool to determine the best 

way of constructing the mapping when an interferogram from a known geometry is analyzed. In 

Fig. D1, sin()cos(R) versus x is determined by a known spherical geometry and it is found that 

S
Pj

/x
.j
 versus (x

 j
 + x

 j+1
)/2, for the first transformation (from intensities), and S

Pj
f/xf

 j
 versus 

xf 
j
, for the second transformation (from fringe spacing), closely follow the expected mapping up 

to a point where variability is so large that it is difficult to distinguish a clear trend. An important 

observation is that, although variability affects both transformations, the one from fringe spacing 

remains closer to the expected mapping as radial position increases (especially for the larger INA 

value), while the transformation from intensities accurately follows the expected mapping for x 

values less than the position of the first fringe. In other words, our simplified model precisely 

predicts the intensities on the first branch of the interferogram and for subsequent branches the 

position of the fringes can be better predicted than the intensities, following a similar behavior 

described in other RICM model
46

. Therefore, a convenient method of constructing the complete 

mapping from x to S
P
/x is using the values obtained from these transformations in a 

complementary way, as presented in Fig. 4.5a. 

 

 

 

Figure D1. Construction of the mapping from x to S
P
/x. Simulated intensity profiles corresponding 

to a 10 m radius sphere in water contacting a glass substrate are analyzed by means of two different 

transformations (from intensities and from fringe spacing) with INA values of 0.48 (a) and 0.90 (b). 

Simulations were performed with NA = 1.25, and glass/water/particle refractive indices of 1.53/1.33/1.55, 

respectively.  
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A significant factor that has to be addressed is the variability observed. The main 

sources of variability are the noise in the intensity values (which directly affects the first 

transformation and also affects the accurate localization of the fringes), the assumption of a 

single j associated with a finite spacing x
.j
 (especially important for the second 

transformation), and intrinsic variability in the fringe spacing (as seen before when analyzing 

wedge systems). Consequently, our approach involves the application of a smoothing procedure 

on the S
P
/x versus x discrete values; this crucial step determines the accuracy and extent of the 

surface profile reconstruction methods that will be described later. The smoothing is performed 

using a customized routine based on the smooth function in MATLAB and its adjustable 

parameters. This routine assumes that variability increases with radial position for an arbitrary 

convex geometry so that the smoothing parameters are adjusted accordingly as monotonically 

increasing smoothed data are obtained from left to right. At the end, the smoothing procedure is 

stopped whenever we first meet one of the following conditions: first, smoothed data reaches the 

maximum S
P

f/xf
min 

= (sin(DA,L1) + sin(IA,L1))/2 predicted by equation (4.4) at max or second, 

it is no longer possible to obtain monotonically increasing smoothed data. 
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APPENDIX E 

SURFACE PROFILE RECONSTRUCTION USING A DISCRETE APPROACH 

 

 

A surface profile of any arbitrary convex geometry, S(x) versus x, can be directly reconstructed 

from its interferogram by recognizing that it is possible to retrieve accurate inclination angles, 

j, from the smoothed S
Pj

/x
.j
 values (see Fig. 4.5b), so that equations (C2) provide a series of 

finite height, S
 j
, and positional, x

j
, increments that describe the object’s geometry.  
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This discrete formulation of the problem, though similar to conventional surface 

reconstruction methods based on inverse cosine transform of intensities
45,46,49

, is a significant 

improvement as it applies to more general situations by incorporating non-planar effects and 

non-normal incidence light. In fact, the contour reconstruction equations for the simplified planar 

model are recovered from equations (E1) in the limiting case where j = R
j
 = 0 (planar parallel 

interfaces and normal incidence light). 

 

jj xx               (E2a)

PSS j              (E2b) 



Equations (E2) indicate that the interferogram from any arbitrary convex geometry can 

be interpreted as being originated from a series of wedge geometries, each one corresponding to 

a given S
Pj

/x
.j
 value, which implies the following geometric approximation. 
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Although the case of one wedge per intensity point illustrated in Appendix B, Fig. B1, produces 

very good results, this geometric approximation of one wedge j per calculated S
Pj

/x
.j
 sounds 

reasonable but it is expected to have important limitations. For instance, the size of the 

increments can be relatively large (that is as determined by fringe spacing) when compared to 

object size, limiting the resolution by which the surface profile can be discretized (a critical issue 

for geometries with slopes that quickly change). This is better visualized in Fig. E1, where the 

surface profile of a spherical object is reconstructed using a discrete approach by means of 

equations (E1). First, the original x positions involved in the first and second transformations 

along with the corresponding increments and retrieved inclination angles are used to perform the 

contour reconstruction (labeled as “Original” resolution in Fig. E1). As expected, systematic 

deviations from the real contour add up after each step is performed, especially after the 

increments are determined by fringe spacing (at around 1.5 m). 

 

 

 

Figure E1. Surface profile reconstruction using a discrete approach. When a discrete approach to 

surface profile reconstruction is followed, the geometry is directly reconstructed using the information of 

the  versus x mapping and better results are obtained as the size of the finite increments becomes smaller 

(increasing resolution). Calculations correspond to a 10 m radius sphere in water contacting a glass 

substrate; simulations were performed with NA = 1.25, and glass/water/particle refractive indices of 

1.53/1.33/1.55, respectively. 

 

 

Following this discrete approach, better resolution and accuracy can be achieved if the 

reconstruction procedure is not constrained by the spacing between intensities and between 

fringes in the interferogram. Therefore, arbitrary x values (with a constant spacing x, for 
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convenience) are defined within the range of positions determined by the mapping from x to  

(Fig. 4.5b), so that interpolation can be performed to calculate their corresponding  values. 

Then, equation (4.4) is used to compute S
P
 and equations (E1) provide the corresponding S 

and x increments. Figure E1 illustrates that these simple calculations with 100 (medium 

resolution) and 10000 (high resolution) increments significantly improve the reconstructed 

surface profile when compared with the original resolution directly given by spacing in the 

interferogram. However, this improvement is limited (with about 10000 increments the 

maximum improvement is reached), indicating that a non-discrete approach must be followed to 

obtain even better results. 
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APPENDIX F 

SURFACE PROFILE RECONSTRUCTION USING A CONTINUOUS APPROACH 

 

 

Here the approach is based on the construction of a continuous mapping from x to  by using 

discrete values j versus x 
j
 (Fig. 4.5b) and piecewise polynomial functions (splines). Our 

analysis focus on the mathematical problem of going from (x) to S(x), which, knowing that 

tan() = dSx/dx, can be achieved if the bijective mapping between x and x is established. 

The steps described in the following allow finding x(x) (see Fig. F1) so that the surface profile 

can be reconstructed from equation (4.2). First, the geometric relationship in equation (4.2) is 

reorganized, for convenience all variables are considered a function of x, with  + R = L1
2 , and 

the derivative with respect to x is calculated: 
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Then, the chain rule is applied and equation (F1a) is substituted into equation (F1b) 
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Recognizing that dSxx/dxxtan(xx) = tan(x) and reorganizing 
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Finally, the final form of the ODE in equation (4.5) is obtained ( L1
2 (x) =  (x) + R(x)) 
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 It is recommended to solve equation (4.5) in two steps: first, for the NRL regime (if 

any), and, second, for the non-NRL regime (if any) using the NRL result as initial condition. 

Also, it is important to mention that the bijective condition for the mapping between x and x has 

to be double checked once the ODE in equation (4.5) is solved and all values larger than the first 

(x, x) for which this condition is not satisfied (if any) must be excluded from the solution. 

 

 

 

Figure F1. Surface profile reconstruction using a continuous approache. Information of the  versus x 

mapping is used to obtain continuous bijective mappings from x to x, which accurately follow the 

expected mappings according to the spherical geometry under consideration and the normal/non-normal 

reflected light regimes. Calculations correspond to a 10 m radius sphere in water contacting a glass 

substrate; simulations were performed with NA = 1.25, and glass/water/particle refractive indices of 

1.53/1.33/1.55, respectively. 
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APPENDIX G 

INITIAL CONDITION IN SURFACE PROFILE RECONSTRUCTION 

 

 

All methods described require the determination of an initial condition (x
0
, S(x

0
)) to perform 

the reconstruction of the surface profile. In order to account for double-layer systems, an 

additional phase shift of –(/S
P

f)S* 
48

 has to be considered in equation (4.1). Therefore, the 

most general formulation for this initial condition is given by equation (4.2) and a slightly 

modified equation (4.3). 
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Here 0
 and R

0
 are the values corresponding to the first data point at position x

0
 in the mapping 

from x to S
P
/x; therefore, I(x

0
) is either an average intensity (if x

0
 lies in the middle of the first 

two intensities analyzed using the first transformation) or intensity extrema (if x
0
 corresponds to 

the first intensity analyzed in terms of the second transformation); l = 1, 2…, is the branch of the 

theoretical intensity versus height curve related to I(x
0
); S

P
f is calculated from the theory for 

stratified planar structures (accounting for INA and multiple layers effects), given that it 

provides a valid correction in the limiting case of planar parallel interfaces which is typically a 

good approximation for the starting point in most applications; and A and B are calculated from 

the maximum and minimum intensities (typically they correspond to the closest intensity 

extrema). A particular situation occurs when a double-layer system is involved and I(x
0
) happens 

to be on what has been called a 0
th
 branch

48
  (S(x

0
) < S*) in which case l = –1 in equation (G1a). 
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APPENDIX H 

ERROR IN SURFACE PROFILES RECONSTRUCTED FROM SIMULATED 

INTERFEROGRAMS 

 

 

Figure H1a illustrates reconstructed surface profiles using the discrete and continuous 

approaches described in Chapter IV and Appendix E (for INA values of 0.48 and 0.90 up to 23 

and 56 fringe spacing values are analyzed, respectively, from simulated interferograms in 

Appendix B, Fig. B1). The error in the reconstructed profiles is obtained by comparison with the 

known spherical geometry originally used to simulate the intensity profiles. Figure H1b presents 

the absolute error as a function of the reconstructed heights, clearly indicating that the 

continuous approach of the ODE method produces the best results with an error that does not 

have a tendency to increase as height increases and, in general, is smaller than 30 nm (black 

dashed line). The same cannot be said about the discrete approaches where the error can grow 

quickly and even exponentially, as shown for the planar method when errors are larger than 100 

nm (black dotted line). Notice that the discrete non-planar method, with non-planar effects 

included in equations (E1) and the use of arbitrary small finite increments, represents a 

significant improvement with respect to the conventional planar method in equations (E2). 

However, the improved non-planar computation still under-predicts the contour of the original 

geometry and only the continuous ODE approach offers an accurate solution, even for large INA 

values. 
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Figure H1. Analysis of the error in surface profiles reconstructed from simulated interferograms. 
(a) Surface profiles reconstructed using three methods that offer different degrees of accuracy. (b) 

Because the original spherical geometry is known, the error existent in each one of the reconstructed 

contours can be quantified as a function of the reconstructed height. All calculations correspond to a 10 

m radius sphere in water contacting a glass substrate. Simulations were performed with NA = 1.25, and 

glass/water/particle refractive indices of 1.53/1.33/1.55, respectively. 
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APPENDIX I 

DETAILED SURFACE PROFILE RECONSTRUCTION OF SELECTED SYSTEMS 

 

 

Three selected experimental systems presented in Fig. I1 (first row) are used to perform a 

detailed RICM analysis (including all intensities inside selections in the second row). Their 

reconstructed surface profiles (presented in Fig. 4.6a-c with important parameters given in Table 

I1) and results from simulated interferograms (presented in Appendix H) are determined using 

both discrete and continuous approaches. Results from discrete formulations (from Appendix E) 

based on equations (E1) and equations (E2) are labeled as “discrete non-planar method” (only 

high resolution results are presented) and “discrete planar method”, respectively. When the 

planar model is implemented, the exact S
P

f calculated from the theory for stratified planar 

structures is used because it is well known to improve the accuracy of the reconstructed 

geometries; in addition, smoothed xf increments are also used. Results from the continuous 

formulation obtained after solving the ordinary differential equation in equation (4.5) are 

referred to as “ODE” and, although the results are continuous functions, they are presented as 

discrete values corresponding to the original data points of the mapping from x to S
P
/x, which 

facilitates using closed/open symbols to identify where normal/non-normal reflected light 

(NRL/non-NRL) regimes are employed. Furthermore, by using the complete non-planar RICM 

image formation theory
95

, a non-planar fit to the experimental data (partially shown in Fig. I1) 

provides a surface profile and additional information such as the position of closest proximity, 

x
min

, and the corresponding minimum separation distance, S(x
min

), between the object and the 

substrate. 
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Figure I1. Experimental systems used for detailed analysis. Top row shows images (left: bright field; 

right: RICM) of a glass bead in air (a) and polymer vesicles in aqueous medium hovering next to the 

substrate (b) and in contact with the substrate (c). Images in the second row display the central pixel (set to 

black) and selections enclosing the intensities successfully considered in the surface profile reconstruction 

analysis (display of selections is limited by pixel resolution); notice that the inner selection approximately 

defines the contact area in (c). Third and fourth rows show the non-planar fit (thin black line) to 

experimental intensities (light red exes) corresponding to positions where the reconstructed surface 

profiles using the ODE method (red circles) and the non-planar fit (thin black line) diverge from spherical 

contours (thick orange line). 10 m scale bars. 
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Table I1. Important parameters involved in the surface profile reconstruction of selected systems 

Parameters Glass bead 
Polymer vesicle 

(hovering near 

substrate) 

Polymer vesicle 
(in contact with 

substrate) 

Construction of the mapping from x to SP/x 

1st transformation 

x (nm) 100 100 100 

S
P

f (nm) 145.2 103.8 103.8 

2nd transformation 

S
P
 = S

P
f = /4n1 (nm) 136.5 102.3 102.3 

Initial condition 

S* (nm) 0 37.4 37.4 

l 1 1 -1 

x
0
 (nm) 50 50 1450 

0 (°) 0.19 1.29 9.89 

S(x
0
) (nm) 49.2 41.8 6.8 

x
min

 (nm) 0 0 1400 

S(x
min) (nm) 49 41 <1 

 

 

When the ODE reconstructed contours (taken as a collection of discrete heights, each 

one corresponding to a S
P
/x value) for the glass bead and vesicles are analyzed in terms of 

spherical profiles, it is observed that an optimum spherical fit is obtained by excluding some 

reconstructed heights resulting from the second transformation (that is, heights corresponding to 

fringe spacing), in addition to excluding all previous heights from the first transformation, see 

Table I2. This is due to the objects’ non-sphericity at their bottom, attributable to deformation in 

the case of the polymer vesicles, and nano-scale deviations from a perfect spherical shape in the 

case of the glass bead, as seen in Fig. I1. In RICM images, the effect of such nano-scale features 

is expected to be enhanced at the positions of closest approach between the surfaces and 
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smoothed out as radial position and separation increases, where light is reflected back from 

larger areas on the particle surface. These observations explain why it is convenient to neglect 

information between the center of the interferogram and one or more intensity extrema when the 

measurements assume that the particle is perfectly spherical down to the nanometer scale (as 

done here and previously
40

). 

 

 

Table I2. Optimum spherical profile fit (shaded) after excluding all heights from the first 

transformation 

Excluded heights from 

second transformation 
S0

sphere
 

(nm) 

R
sphere

 

(m) 

Coefficient of 

determination 

(R
2
) 

Glass bead 

None -7.4 21.278 0.9997986 

1
st -15.4 21.215 0.9998640 

1
st
 to 2

nd -22.3 21.162 0.9999117 

1
st
 to 3

rd -27.2 21.125 0.9999303 

1
st
 to 4

th -28.9 21.113 0.9999236 

1
st
 to 5

th
 -28.1 21.119 0.9999127 

Polymer vesicle (hovering near substrate) 

None 28.9 8.492 0.9998465 

1
st 32.2 8.513 0.9998650 

1
st
 to 2

nd 34.4 8.527 0.9998543 

1
st
 to 3

rd 33.6 8.522 0.9998229 

Polymer vesicle (in contact with substrate) 

None -140.6 7.106 0.9999387 

1
st -138.2 7.122 0.9999501 

1
st
 to 2

nd -136.3 7.133 0.9999496 

1st to 3rd -137.1 7.129 0.9999344 
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APPENDIX J 

ANALYTICAL TREATMENT OF ENSEMBLE AVERAGE INTENSITIES 

 

 

To make the formulated model in Fig. 5.1a and equation (5.1) more suitable for practical 

implementation, an ensemble average approach is followed. Starting from equation (5.1), two 

OPLD terms representing the smooth, 
smooth

, and the rough, 
rough

, components are identified 

and the argument of the cosine function is denoted as A, for convenience: 
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The cosine term is now written in terms of exponential functions, 
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A is substituted back and the summations within the exponential terms are written as products to 

separate 
smooth

 and 
rough

: 
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At this point, the ensemble average intensity is computed: 
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An expression for the distribution of surface heights Z is required to continue; according to the 

main text, a Gaussian probability density function, PDF, with mean zero and standard deviation 

is considered: 
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So the ensemble averages for the remaining terms in equation (J1h) are given by: 
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Finally, equation (5.2) is obtained by substituting the equalities in equation (J3) into equation 

(J1h), factorizing the exponential that contains  and writing the remaining exponentials as the 

corresponding cosine function: 
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APPENDIX K 

FRINGE VISIBILITY ANALYSIS 

 

 

Here we describe how to obtain information embedded in ensemble average intensities by means 

of fringe visibility analysis. First, the visibility is computed for an intensity profile given by 

equation (5.2) (that is, corresponding to a surface with roughness ), where the maximum and 

minimum intensities are: 
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And, therefore: 
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By writing similar equations for a smooth surface (that is,  = 0), an expression for 〈 〉       is 

determined and 〈 〉    = 〈 〉     /〈 〉        is obtained as shown in equation (5.3). 

As mentioned in the main text, a Monte Carlo approach based on intensity computations 

from equation (5.1) is used to verify equation (5.3). The computations performed over the 

surface are for the planar parallel case considering that s-polarized light cannot interfere with p-

polarized light and vice versa, as follows: 
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with   
   
 (   

   
)
 
   and   

   
 (     

   
)
 
(   
   
)
 
  , where I0 = 1 and the reflection coefficients 

are determined by the Fresnel equations and the refractive indices of the substrate, layer 1 and 

object, according to Fig. 5.1a: 
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The ensemble of conditions given in Table K1 is used in the Monte Carlo simulations 

(consequently =). 

 

 

Table K1. Ensemble of conditions used to verify equation (5.3) in a single-layer system. 

n
0
 n

1
 n

2
 

1.530 
1.333 
1.000 

1.470 
1.510 
1.550 
1.590 
1.630 
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APPENDIX L 

MICROSPHERE SIZE AND LOCAL RADIUS OF CURVATURE MEASUREMENTS 

 

 

Equation (5.4) is easily obtained from geometric relationships that consider the non-planar effect 

of the spherical surface. From Fig. 5.1a and assuming that the object is a microsphere of radius R 

with a separation distance S0
sphere

 from the substrate, we can write: 
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After combining equations (L1) to eliminate  (  ) and performing algebraic simplifications, 

equation (5.4) is obtained when R = D/2 is used.  

 For the local radius of curvature (R
local

) determination, only normal reflected light is 

considered (R = 0) so equation (5.4) simplifies to: 
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Table L1 summarizes additional parameters (to those presented in Table 5.1) related to size 

measurements obtained when two monodisperse samples of different types of microspheres are 

analyzed. 

 

 

Table L1. Additional parameters relevant to size and local curvature measurements in 

monodisperse samples 

Particle 

(sample size) 

Smooth R
local 

(m) 

S0
sphere

 

(nm) 

PSL15 (193) 16.18 ± 5.93 22.9 ± 14.7 

Glass15 (122) 13.82 ± 4.91 20.9 ± 23.3 
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