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ABSTRACT 

 

This paper recovers consumer search cost estimates in airline markets consistent 

with theoretical search models. We follow an empirical framework developed in the 

recent literature on the structural estimation of search models to retrieve information on 

consumer search costs using price information. A unique data set of airline fares coupled 

with detailed ticket characteristics allows us to utilize this framework. We work in this 

paper with non-refundable and restricted tickets. Results show that the magnitude of 

search costs borne by air travelers in our ticket group is economically important. 

Specifically, search cost means vary between 4.75% and 8.12% of the mean route fare 

across markets and can be as high as US$58 for certain consumers in our sample. 

Consistent with previous work in other markets, our estimates indicate that most 

consumers sample just a few prices before buying while a relative small fraction of 

consumers search intensively. Results suggest that consumer search cost plays an 

important role in explaining part of the price dispersion observed in the airline industry.  
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CHAPTER I  

INTRODUCTION  

  

The pervasiveness of price dispersion is now well-known.  Abundant theoretical and 

empirical literature addresses the effect of numerous factors in driving price dispersion. 

In particular, consumer search cost has received considerable attention from theoretical 

economists especially after Stigler’s (1961) seminal paper “The Economics of 

Information”. Academic interest in consumer search cost was fostered by the price 

dispersion observed even in markets with seemingly homogenous products. From this 

empirical observation it is intuitive to rationalize costly search as the underlying 

assumption of theoretical models since the time required to survey different sellers 

represents an opportunity cost to consumers. Despite the importance of consumer search 

behavior there are still few empirical measures of search costs in individual markets or 

industries.  

The main goal of this paper is to contribute to our understanding of price dispersion 

by measuring consumer search costs in airline markets. Two distinct features of this 

industry suggest that consumer search costs might be important. First, consumers face a 

large array of fares, and second, there is considerable dispersion both within and across 

routes. For instance, Borenstein and Rose (1994) calculate the expected difference of 

fares between two passengers randomly chosen on the same route as 36 percent of the 

mean fare. Some within route differences can be explained by ticket characteristics 

associated with price discrimination or scarcity pricing.  Still, part of the remaining 
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difference is likely explained by search frictions consumers confront while booking 

airline tickets. In this work we recover search cost estimates of consumers in airline 

markets consistent with theoretical search models.  

The present paper fits in the emerging literature on the structural estimation of 

consumer search models and builds on the work of Hong and Shum (2006). Their main 

insight is that the observed price distribution can be rationalized as an equilibrium 

outcome where profit maximizing firms respond to costly consumer search by using 

mixed pricing strategies. Hong and Shum show that restrictions imposed by standard 

search models provide sufficient structure to recover search cost estimates from pricing 

data alone. In our case, using only price data requires working with a group of similar 

tickets. Our unique dataset allows us to utilize this framework since it contains 

information on transacted fares coupled with detailed ticket characteristics.  

This is the first paper to measure the extent of consumer search cost in the airline 

industry. Previous literature on airline pricing has focused on the role of market 

structure, peak load pricing, scarcity pricing and price discrimination strategies in 

driving price dispersion with little attention to consumer search cost. Our calculations 

suggest that search costs borne by consumers booking airline fares are economically 

important and that they play an important role in explaining part of the price dispersion 

observed in airline markets. Finally, our estimates provide further evidence that concerns 

about market power and policies designed to address these must consider demand side 

characteristics such as consumer search behavior in order to be effective.  
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Results indicate that mean consumer search costs in airline markets vary between 

$8.84 and $27.75 or between 4.8 and 8.1 percent of the mean fare across routes in our 

sample. For certain consumers, however, search costs can be as high as $58. 

Furthermore, we find that most consumers sample only a few fares while a small fraction 

of consumers search intensively. In addition, our estimates are consistent with average 

markups ranging from 30.4% to 52.3% within our ticket group and routes.  

It seems plausible that search costs estimates are higher offline. Our results show 

that consumers booking offline face search costs approximately twice as high as online 

consumers. A possible explanation is that online booking provides a superior search 

process relative to traditional offline travel agents. An alternative interpretation of this 

result is that incentives differ across the two distribution channels. In the case of offline 

booking, travel agents undertake the search process for consumers but face weaker 

incentives than online consumers since they are not spending (saving) their own money.  

This paper is organized as follows. Section 2 reviews previous work on the 

emerging empirical search cost literature. Section 3 discusses the institutional set up 

including a succinct description of airline pricing and standard contracts in this industry.  

Section 4 describes the structure of the two standard search models. Section 5 describes 

our dataset and empirical strategy. Section 6 presents the results and Section 7 

concludes.  
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CHAPTER II  

LITERATURE REVIEW 

 

As noted, there is an abundant theoretical literature on search costs but few 

empirical applications. We would like to review briefly the emerging literature on the 

structural estimation of consumer search models. Our analysis closely follows this 

previous work. 

 Hong and Shum (2006) build an empirical framework to retrieve consumer search 

cost information using only observed prices. First, they assume firms offer a 

homogenous product and that observed price dispersion arises due to variation in 

consumer search costs, caused for example, by varying opportunity costs. Given 

consumers’ search behavior; in equilibrium, profit maximizing firms will use a mixed 

pricing strategy. They show that restrictions imposed by supply and demand models on 

the equilibrium price distribution provide sufficient structure to recover search cost 

estimates from observed prices.  

 More recently, Moraga-González and Wildenbeest (2008) develop an oligopolistic 

version of the non-sequential model in Hong and Shum (2006) and pose an alternative 

Maximum Likelihood (ML) approach for estimating this model. Monte Carlo 

simulations show their procedure outperforms Hong and Shum’s Empirical Likelihood 

model both numerically and in goodness-of-fit. In this paper we use the ML procedure 

proposed by Moraga-González and Wildenbeest to estimate the non-sequential model.  
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A well cited paper from this literature is Hortacsu and Syverson (2004).1 This is the 

first work to our knowledge to consider the relative role of product differentiation and 

consumer search cost in driving price dispersion. Using data on mutual funds and market 

shares they find that consumers appear to value observable non-financial features such 

as age, tax exposure and total number of funds in the same fund family and that even 

small search costs can rationalize the fact that the index fund offering the highest utility 

does not capture the whole market.  The main difference with the present work is that we 

recover search cost estimates using only price data; this requires working with a group of 

similar tickets in our case.  

 Wildenbeest (2011) generalizes the model in Moraga-González and Wildenbeest 

(2008). In that article, the author maps a vertical differentiation model into a standard 

homogenous goods model which allows combining mixed strategies in prices and firm 

asymmetries into a single framework. Using price data from supermarkets in the United 

Kingdom, the structure of the equilibrium model is used to estimate both search costs 

and the impact of product differentiation on prices. Results indicate that around 61 

percent of the variation in prices is explained by supermarket heterogeneity, while the 

remaining variation is due to search frictions.  

One of the latest papers is De los Santos, Hortacsu and Wildenbeest (2012). They 

have access to a detailed dataset on the browsing and purchasing behavior of a large 

panel of consumers searching for books online. The availability of such a dataset allows 

the authors to test several predictions of the two benchmark search models. Their results 
                                                 

1 In their model they extend the framework of Carlson and McAfee (1983). 



 

6 

 

show the non-sequential model provides a more accurate description of observed 

consumer search patterns. The sequential model can be rejected on both the recall 

patterns they observe in the data and the absence of dependence of search decisions on 

observed prices. 
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CHAPTER III  

PRICING AND CONTRACTS IN AIRLINE MARKETS 

 

Consumers booking airline tickets face a large array of fares.2 This fare variation is 

one of the most salient features of the airline industry and of the complex process of 

airline revenue maximization. Airlines face costumers with different willingness to pay, 

therefore, offering different fares allows consumers to self-select themselves 

accordingly. On the other hand, airlines must deal with challenges specific to hospitality 

industries. First, inventory is highly perishable; empty seats lost value at departure. 

Second, airlines experience both stochastic and predictable changes in demand; load 

factors for specific flights are subject to random shocks and demand varies predictably 

along different time frames – for instance, peak hours during the day and holidays - . All 

these factors make revenue maximization by carriers a challenging task. Next, we 

discuss the two main components of airlines revenue maximization.  

The first component of airlines revenue maximization is differential pricing or the 

practice of offering various “fare products” with different characteristics for travel on a 

common city-pair. These characteristics include features such as class of travel, 

refundability, travel and stay restrictions and advance purchase requirements.3 

Differential pricing allows carriers to screen consumers and separate them into different 

                                                 

2 We logged on to one of the biggest online travel agencies to search for a roundtrip ticket to travel from 
DFW to JFK three weeks before departure. We found eighty one different fares to travel on the same day 
and return one week later. 
3 These different combinations of fares and ticket characteristics are commonly referred to as “bins” or 
“buckets” in the revenue management literature.  
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groups according to their price and time elasticities - e.g., business and leisure travelers – 

and search costs. In addition, fare departments make pricing decisions for the different 

groups of tickets several months in advance.  

The second component of revenue maximization is yield management. Yield (or 

revenue) management consists in the process of determining the number of seats made 

available in each “fare group” previously defined by the fare department. Essentially, 

yield management is seat inventory control. Carriers would like to sell as many seats as 

possible but each sale of a discount ticket forgoes the opportunity to sell that seat at a 

higher price. Therefore, the main purpose of yield management is to “protect” seats for 

potential high-priced late booking passengers while ensuring the highest possible load 

factor. This process requires airlines to balance the tradeoff between capacity utilization 

rates and revenues per passenger.4 

After different fare bins have been priced by the fare department and the number of 

tickets in each bin has been assigned by yield management, carriers make fares available 

through Computer Reservation Systems (CRSs). Vendors in this industry, which include 

traditional offline travel agents, online sellers such as Orbitz and Expedia, and airline 

websites, access fares through a CRS. Hence, all fares are made available through 

Computer Reservation Systems (CRSs).  

The distribution of fares faced by travel agents is governed through a series of 

contracts. During our sample period, the fourth quarter of 2004, the standard contracts 

                                                 

4 See Belobaba, Odoni and Barnhart (2009), Chapter 4, for a detailed discussion.  
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used by carriers included Most-Favored Nation (MFN) clauses granting agents access to 

all fares offered by carriers.  

MFN clauses play a key role in our framework since they mean that there existed 

only a single price vector offered by firms which the bilateral MFN clauses require to be 

available both online and offline. Passengers searching for airline fares would sample 

from this single price vector regardless of whether they are searching online or offline. 

As a result, firms would recognize that the set of consumers and their associated costs 

would be the search costs of the entire distribution of consumers searching the entire, 

single price vector. This means that the search cost distribution of consumers faced by 

firms consists of the union of search costs of consumers searching both online and 

offline. For this reason, the institutional set-up requires the estimation of a single search 

cost distribution.  
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CHAPTER IV  

SEARCH MODELS 

 

The basic assumption of search models is that search is a costly activity since the 

time required to sample prices entails an opportunity cost for consumers. Costly search 

induces consumers to keep searching until the marginal cost of search equals its 

marginal benefit – in our set-up, the marginal benefit corresponds the expected savings 

of sampling an additional price - . As an abstraction of real consumers’ behavior, search 

strategies in these models might not fit particular search habits. Still, they are useful as a 

general description of demand behavior when price dispersion is driven by search cost 

heterogeneity in the population of consumers.  

The two benchmark models in this literature are the non-sequential and sequential 

search models.5 The main difference between the models regards consumer search 

strategies. In the non-sequential model, consumers choose the number of price quotes to 

obtain, or alternatively, the number of times to search, and then buy at the lowest 

sampled price. This assumption is generally motivated by the argument that there is a 

fixed component of search costs. The sequential model assumes instead that consumers 

keep searching until the last price found is not greater than their reservation price.6 Both 

models take the optimality of search strategies as given and confer little guidance on 

which of the two offers a better description of consumers search practices in a specific 

                                                 

5 The non-sequential model is also referred to as the fixed-sample search model.  
6 Sequential search is the standard assumption in job-search models in labor economics.  
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empirical set-up. Some authors have maintained that a particular strategy might be 

preferred. For example, Manning and Morgan (1985) suggest that non-sequential search 

may provide a better description of the search process when there is a fixed cost 

component to search. 

Here, we take consumer search strategies as given and retrieve search costs 

estimates consistent with both models. A more general model in which consumer choose 

their search strategy first is beyond the scope of this paper.  

IV A. The Sequential Model 

As discussed by Stahl (1989) most of the work in the sequential-search literature 

seems to have been motivated by the desire for a model in which price differences 

among stores could be explained as an equilibrium outcome. There was the need to fill 

the gap between the Bertrand and the “Diamond (1971) paradox” results. In the first 

case, if consumers can search costlessly (i.e., they are fully informed of the price set by 

each store) then the unique Nash Equilibrium (NE) is the competitive price. On the other 

hand, if search costs are non-negative, then the unique NE is the monopoly price. As a 

consequence, subsequent models featuring fully optimizing consumers and firms were 

developed producing mixed-strategy NE in prices which are interpreted as price 

dispersion. 

Hong and Shum (2006) follow the work of Albrecht and Axell (1984), Stahl (1989) 

and Rob (1985) and postulate a theoretical model with heterogeneous search costs in 

order to generate a non-degenerate equilibrium price distribution. The intuition is that 

with heterogeneity in consumer search costs attributable to differences in their 
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opportunity cost of searching, low-price firms more often serve consumers with low 

search costs, and high price firms more often serve consumers with high search costs. 

Nevertheless, as explained by the authors heterogeneity in consumer search costs is not 

sufficient to ensure the existence of a continuous equilibrium price distribution.  

There is a set of restrictions on the population search-cost distribution that are 

required for non-degenerate equilibrium price dispersion in the sequential search model.7 

In particular, Theorem 4 in Rob (1985) shows that for a continuous equilibrium price 

distribution to exist, it must satisfy an equation like (5) below. Therefore, we can either 

verify that the function in (5) is a valid CDF or we can check if the likelihood function in 

(4) is a proper density function – that is, positive along its support – to check for the 

existence of a continuous price distribution.  

In this model, consumer search strategy consists in choosing whether to buy at the 

lowest price found so far or sample an additional price, that is, there is an option value 

associated to searching again which resembles an “optimal stopping” problem.  

There is a continuum of risk-neutral sellers producing a homogenous product at a 

constant marginal cost r. As discussed in Hong and Shum (2006) working only with 

price data does not allow for the estimation of both the distribution of search costs and 

marginal costs. Still, heterogeneity in marginal costs is not sufficient to generate price 

dispersion; high search cost consumers are required for high marginal cost vendors to 

                                                 

7
 Rob’s Theorem 3 states that a sufficient condition for nonexistence of a continuous equilibrium price 

distribution is that the search-cost density vanishes in some positive interval [0, A) with A > 0. In our case, 
we avoid this issue by assuming that search costs are distributed according to the Weibull distribution, 
which has support [0,  ). 
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sell at a high price. Each firm maximizes expected revenues by optimally choosing a 

price, p. Let the resulting equilibrium price distribution be F(p) with bounds   and  ̅. 

Similarly, the model assumes there is a continuum of buyers with differential search 

costs; c, randomly drawn from Fc the distribution of consumers search costs. A 

consumer with a cost per search of ci will not stop searching until encountering a price 

z*(ci) that satisfies the following indifference condition:   

                 

             (1) 

 

where the second equality follows from integration by parts. This indifference condition 

states that the consumer will stop searching when her search cost ci equals her marginal 

benefit, which consists of the expected savings from making an additional search having 

observed z. Note that z*(ci) is increasing in c. Define the reservation price for each ci as: 

 

          (2) 

 

Now denote G the distribution of reservation prices in the population, given Fc and 

the mapping (2). Note that there is fraction of consumers with reservation price  ̅,  

 α = 1 - G( ̅), and that G( ) = 0. 

The equilibrium price distribution is defined by the firms' indifference condition. 

Suppose consumer i has reservation price   
 . A firm charging  ̂ will only sell to 
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consumers i for whom  ̂    
 . Since we assume firms are symmetric, a firm's demand at 

price   ̂ is proportional to (1 - G( ̂)). Thus, the firms' indifference condition is:  

 

        (3) 

IV B. Sequential-search Model Estimation 

Equation (3) defines n-1 equations for each of the n-1 observed prices excluding   ̅. 

However, there are n unknowns: G(p1 =  ),G(p2),…,G(pn-1),G(pn =  ̅).Thus, the model is 

under identified and additional assumptions are required for estimation. Hong and Shum 

(2006) propose a Maximum Likelihood estimation procedure for this model by assuming 

that the search cost CDF, Fc(.;θ), follows a parametric distribution family with 

parameters vector θ. After some algebraic manipulation, the likelihood function for each 

price can be derived as: 8 

             

(4) 

 

With corresponding equilibrium price CDF: 

  

(5)              

   

     

 

                                                 

8 Derivation of the likelihood function is presented in the Appendix.  
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In the above equations, we denote          
       , the inverse CDF of the 

search cost distribution. Given θ, the auxiliary parameters α and r can be solved as 

follows: first, the proportion of consumers with reservation price equal to  ̅, can be 

solved from the initial condition G( ) = 0 and the indifference condition of the firm as: 

      

(6) 

 

On the other hand, selling cost r can be determined by the condition that Fp(p) = 1. 

Therefore, given θ and equations (5) and (6), r must satisfy: 

 

(7) 

 

 

The likelihood function for the whole sample of prices, then, is        ∏    
      .  

As discussed above, a necessary condition for the existence of a non-degenerate 

continuous equilibrium price distribution for this model within an interval [ , ̅] is that 

the price CDF in (5) is nondecreasing in this range, or equivalently, that the likelihood 

function (4) be positive for all p ϵ [ , ̅]. This is a strong condition since it requires after 

examining equation (4) that the search cost density fc to be strictly decreasing in the 

range [    
 ̅    

  ̅   
     . 

In this paper, we use the Weibull distribution for the search cost distribution. 

Besides its flexible shape the Weibull distribution is one of the few two-parameter 
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distributions that allows for the density to be strictly decreasing along its full support. 

For the Weibull density,  

                                     |       
  

  
(

 

  
)
    

      ⁄                       

 

the decreasing density condition restricts θ2 ≤ 1. This restriction has important 

implications for the results as we discussed further in the next section.  

IV C. The Non-sequential Model 

The following discussion is based on Moraga-González and Wildenbeest (2008). 

They study an oligopolistic version of the model proposed in Hong and Shum (2006). 

Hong and Shum generalize the non-sequential search model of Burdett and Judd (1983) 

by adding search cost heterogeneity.  

 The basic structure of the model is as follows. There are N retailers selling a 

homogenous good with a common unit selling cost r. There is a unit mass of buyers who 

differ in their search costs which are randomly drawn from Fc, the consumers search cost 

distribution. Consumers have inelastic demand and buy one unit of the product. Let  ̅ be 

the consumer valuation for the good.  A standard assumption of search models is that 

consumers obtain a first price quote at random for free. Beyond the first price, a 

consumer incurs a search cost c per additional price quote. Therefore, consumer with 

search cost c incurs in total search cost c*i.  

Following the notation in Burdett and Judd (1983), denote the symmetric mixed 

strategy equilibrium by the distribution of prices Fp, with density fp(p). Let   and  ̅ be 

the lower and upper bound of the support of Fp. Given the behavior of firms, consumer 
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with search cost c will choose optimally the number of prices i(c) she observes in order 

to minimize total search costs c*(i-1), i.e.: 

 

(8) 

                                                                        

since i(c) must be an integer, this search strategy splits consumers into N subsets of size 

qi, i = 1, 2,…,N, with ∑   
 
     ; then, qi is the fraction of buyers sampling i stores 

(prices) and is strictly positive for all i. This partition is computed as follows. For the 

consumer indifferent between sampling i and i+1 firms it must hold that her search cost 

equals:  

 (9) 

 

here Ep1:i denotes the expected minimum price in a sample of i prices drawn from the 

price distribution Fp. Note that i is decreasing in c. Using this property, the fractions of 

consumers qi sampling i prices are then: 

 

(10) 

 
 

 

Figure 1 presents a graphical illustration. Assume this graph depicts the recovered 

search cost distribution; q1 and Δ1 represent the fraction of consumers who do not incur 

in any search and their corresponding search cost, respectively. Similarly, q2 is the 

fraction of consumers who survey at most two prices before buying and Δ2 denotes their 
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corresponding search cost. Note from the graph that Δi should be interpreted as a lower 

bound for the search cost since it coincides with the search cost of the marginal 

consumer who is just indifferent between searching i prices and i+1 prices. Also notice 

that we can only identify the shape of the search-cost distribution up to the 1 – F(Δ1) 

percentile. 

Turning to the firms’ problem, the upper bound of the price distribution must be  ̅ 

since a firm charging this price will only sell to consumers who do not incur in any 

search, i.e., consumers in q1, who do not compare prices and accept to buy at  ̅. For the 

equilibrium price distribution to represent a mixed strategy equilibrium, firms must be 

indifferent between charging the highest price,  ̅, and any other price in the support of 

Fp. Therefore, the equilibrium condition is: 

 

(11) 

  
 

 From this equilibrium condition, it follows that the minimum price charged in the 

market is: 

(12) 

 

Hong and Shum (2006) show that equations (8) to (12) provide enough structure to 

retrieve information on search costs using only price data for the non-sequential model. 
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IV D. Non-sequential Model Estimation 
 

Moraga-González and Wildenbeest (2008) proposed to estimate the {Δi,qi} for i = 

1,..., N pairs of the search cost distribution by Maximum Likelihood as follows since 

equation (11) cannot be solved analytically for the equilibrium price distribution Fp 

which makes it difficult to calculate the cutoff points: 

 
  

  

In their work Hong and Shum (2006) propose to use the observed price distribution 

to calculate the Δi’s. Moraga-González and Wildenbeest (2008) through Monte Carlo 

simulations show that, although practical, this procedure does not necessarily provide 

minimal variance estimates. Therefore, they propose an alternative method to obtain ML 

estimates of the search cost distribution cutoff points. To do this, we have to rewrite first 

Δi as a function of the ML estimates of the parameters of the price distribution. 

Integrating by parts, we first rewrite the cutoff points as: 

 

   (13) 

  

Since Fp is monotonically increasing in p, its inverse exists so we can use equation 

(11) to solve for p as: 

   

(14) 
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Using (14) and a change of variables equation (9) can be written as:  
 

 

(15) 

 

Therefore, given ML estimates of r,  ,  ̅, and qi, i = 1, 2,...,N, we can use equations 

(14) and (15) to obtain ML estimates of the cut-off  points of the search cost distribution 

by the invariance property of ML estimation. 

Now, to obtain estimates of r,  ,  ̅, and qi, i = 1, 2,...,N, by ML using only price 

data we first apply the implicit function theorem to equation (11), which yields: 

 

(16) 

 
 

 

Let’s order the vector of observed prices in ascending order p1, p2,…,pM. We use p1 

and pM as estimates of the lower and upper bounds of the support of the price 

distribution   and  ̅, respectively.9 Using these, we can solve for the marginal cost as a 

function of the other parameters using equation (12) above: 

 

(17) 

 

 
                                                 

9   and   ̅ converge super consistently to the true bound of the price distribution. See Donald and Paarsch 
(1993) for further discussion. 
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Finally, plugging r into the density function in (16) and using the fact that      

 ∑   
   
     the next maximum likelihood problem can be solved numerically: 

 

(18) 

 

where 

 

 

The standard errors of the estimates of qi, i = 1, 2,...,N-1 are calculated by taking the 

square root of the diagonal entries of the inverse of the negative Hessian matrix 

evaluated at the optimum as usual. Standard errors of qN, r and Δi’s  can be computed by 

the Delta method.  

The estimation procedure work as follows. Given arbitrary starting values  {  
 }   

   . 

Then for every price    in the data set,        is calculated using the equilibrium 

condition (11), which in turn allows us to calculate        using (16). A Preconditioned 

Conjugate Gradient (PCG) method is then used which change the      until the log-

likelihood function is maximized.  
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CHAPTER V  

EMPIRICAL APPLICATION 

V A. Data and Empirical Strategy 

Our dataset contains all online and offline ticket transactions made through one of 

the major CRS for the fourth quarter of 2004 and represents roughly thirty percent of all 

domestic tickets sold in the U.S. during that period. Fares booked to travel after 

December 22nd through the end of year are excluded as well as those booked the 

Wednesday before Thanksgiving through the following Sunday. Data spans transactions 

from offline travel agents, airline websites and several online booking sites. This first 

database includes airline and flight number, origin and destination, fare, booking class, a 

fare code, and dates of purchase, departure and return but does not include information 

on ticket characteristics.  

Ticket characteristics were retrieved from another CRS archive containing both 

fares offered and purchased for travel in particular city-pairs organized by departure, 

airline, and city-pair. From this second data set we collect information on carrier, origin 

and destination, departure date, fare, booking class, advance purchase requirements, 

refundability, travel restrictions, and minimum and maximum stay restrictions for each 

fare. These data were then matched to the transactions database. The criterion used in the 

matching process was to keep a transaction if this could be matched to a fare in the 

second dataset within two percent; for multiple matches within two percent the closest 

was kept. Additional details of the matching process are presented in Sengupta and 
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Wiggins (2013) where they also present evidence that this procedure did not introduce 

major selection issues.  The availability of such a dataset allows us to utilize the 

theoretical framework presented in the previous section since retrieving search cost 

information using only price data requires a sample of consumers booking a group of 

similar tickets.  

Airline tickets can be grouped in a price ascending order in four main categories: 

non-refundable and restricted fares, non-refundable and non-restricted fares, refundable 

and non-restricted fares and first class. We work in this paper with non-refundable and 

restricted tickets. In general, this is the cheapest category of fares and the typical ticket 

booked by leisure travelers, the most price sensitive and time insensitive group of 

consumers. Leisure or vacation travelers are willing to meet basically any travel and 

ticket conditions in order to pay the lowest fare. Given these characteristics, our model’s 

assumption of symmetric firms serving consumers who search for the lowest fare seems 

appropriate. The latter becomes more relevant in the actual setup as we do not consider 

substitution across carriers. Worries about carriers’ choice and consumer loyalty should 

be more of a concern for higher priced ticket groups, especially, first class and 

refundable and non-restricted fares.10  

Our dataset contains information on 250 domestic routes defined at the airport-pair 

level regardless of direction. The routes in this paper were selected based on the number 

of observations within our ticket group in the transactions dataset from the first CRS. 

                                                 

10 Following Wildenbeest (2011), it can be argued that the fraction of consumers searching only once can 
be interpreted as carrier loyal customers; therefore, up to some extent loyalty can be accommodated in our 
setting. 
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The prices used are for roundtrip fares only excluding itineraries with open-jaws and 

circular trip tickets and include tickets for flights operated by American Airlines, 

Continental, Delta, Northwest, US Airways, United Airlines, Frontier, Air Tran, Spirit, 

Alaska, America West, Sun Country, Hawaiian Airlines and American Trans Air.  

Table 1 presents summary statistics of fares in our ticket group for the four routes 

included in this work: ATL-ORD, DTW-LGA, ORD-PHX and ORD-SFO.11 The first 

row presents summary statistics for all observations in these routes, and the next two 

rows, for offline and online transactions separately. The information on this table 

suggests that consumers booking airline tickets in these markets have incentives to 

search given the potential savings from sampling additional fares. Standard deviations 

range from 15% to 30% of the mean route fare across routes. Additionally, summary 

statistics indicate that online fares present lower means than offline fares and less 

dispersion in general.  

Within our ticket group, non-refundable and restricted fares, we limit the sample to 

tickets booked eight to fourteen days before departure. This lessens the concerns of 

availability and potential price changes by airlines as a response to unexpected increases 

in bookings occurring during the last seven days prior departure. Table 2 presents 

summary statistics of fares in our ticket group for the 8-10 day window and the 11-14 

day window before departure. As you can see from the table summary statistics are very 

close across the two windows; mean and median fares in the 8-10 day window are not 

                                                 

11 ATL: Hartsfield-Jackson Atlanta International Airport; DTW: Detroit Metropolitan Wayne County 
Airport; LGA: La Guardia Airport; ORD: Chicago O’Hare International Airport; PHX: Phoenix Sky 
Harbor International Airport; SFO: San Francisco International Airport.  
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more than 3 percent higher than mean and median fares for the second window. Only for 

the ORD-SFO route the 8-10 day window mean fare is approximately 5 percent higher 

although this difference is not statistically significant.  

Previous papers in general use information on posted prices. This raises two 

potential concerns. First, posted prices might bias upwards search cost estimates if high 

price quotes do not generate any trade; and second, “bait and switch” practices in which 

firms post low prices just to attract potential consumers could induce a downward bias in 

recovered search costs. We avoid these issues by working with ticket transactions.  

We are using the distribution of observed transactions during the second week 

before departure as a proxy for the unknown price distribution at every point in time 

during the second week before departure in our sample period. Therefore, we are 

assuming the same fares are available throughout this period. As discussed in section 3, 

fare departments set prices for the different ticket groups far in advance the flying date, 

and also, yield management implies that some fares might become unavailable at some 

point before departure. This might generate an upward bias in search cost estimates since 

we do not observe stock outs. Still, the fact that we consistently observe in the dataset 

consumers booking fares in the cheapest group even up to the last day before departure 

is evidence that these fares are available through the whole sample period.  
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CHAPTER VI  

ESTIMATION RESULTS 

VI A. Sequential Model Results 
 

In this section we present results for the sequential search model. The equilibrium 

condition of firms in the sequential model defines n-1 equations, one for each of the n 

observed prices excluding the highest price.12 However, there are n unknowns; the n 

percentiles of the reservation price distribution corresponding to each of the n observed 

prices. As a consequence, additional assumptions are required to estimate this model. 

Hong and Shum (2006) propose to estimate this model by MLE assuming the search cost 

distribution Fc is parameterized by a finite vector θ. Note that by assuming a functional 

form for the search cost distribution we can extrapolate the entire search cost 

distribution.  

As just mentioned, ML estimation of the sequential model implies specifying a 

functional form for the search costs pdf. Moreover, model derivation requires the 

assumed function to be decreasing along all of its support in order for the density of 

prices to be a valid pdf.13 Only a few distribution families satisfy this restriction. For this 

work we explored different specifications using the Weibull, the gamma and the log-

normal distributions. Results were similar across the different specifications.  

                                                 

12 See equation 3 in section 4.  
13 See equation 4.  
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Table 3 presents results for the four routes using the Weibull distribution. Columns 

1 and 2 present the estimates of the shape and scale parameter respectively. The table 

also shows results for the mean and the median of search costs, the fraction of 

consumers who do not incur in any search and their corresponding search cost estimate. 

Note the high search cost means and the large search cost estimates for α, the fraction of 

consumers who do not search. Results show that search costs borne by consumers in this 

group start at US$255.5 in the ORD-SFO route. In three of the four cases these search 

cost estimates are above the mean route fare.  

As discussed in Hong and Shum (2006), these high sequential search cost estimates 

can be explained by the behavior of the parametric families we consider. The restriction 

imposed on the shape parameter of the parametric distribution in order for the slope of 

the search cost density to be negative along all of its support makes this density to die-

off very slowly.14 

Recovered estimates from this model exceed reasonable expectations for consumers 

search costs in these markets. For this reason, discussion of results in this paper is based 

on non-sequential search costs estimates.  

VI B. Non-Sequential Model Results 

This section presents the estimates of the non-sequential model for the four routes in 

our sample. The estimates from this model are search cost distribution pairs {qi, Δi} for i 

= 1, 2,…,N, these are, the fractions of consumers who search i prices and their 

                                                 

14 The Weibull distribution is decreasing in all its support conditional on the shape parameter being less or 
equal to 1. 
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corresponding search cost estimate in dollars. Recall that Δi’s should be interpreted as 

lower bounds - consumers who search i prices must realize search costs of at least Δi - 

and also that we can only identify the shape of the search-cost distribution up to the 1 – 

F(Δ1) percentile. 

To estimate this model we use the MLE procedure in Moraga-González and 

Wildenbeest (2008). One of the insights of their estimation procedure is that once we 

have obtained ML estimates of the qi’s, that is, the fractions of consumers searching i 

prices, for i = 1, 2,…,N, we can obtain corresponding ML of the search cost estimates, 

Δi’s, by first rewriting prices as a function of the qi’s.15 We can then compute standard 

errors using the Delta method as usual. 

Table 4 presents the results for the non-sequential model. Columns 2 through 4 

contain the ML estimates for each route: p1 and v correspond to the route lowest and 

highest observed fare, respectively; N is the number of unique fares rounded to the 

closest integer and M is the number of observations for the sample period in our ticket 

group. Next we present ML estimates for the fraction of consumers searching i prices: q1 

is the fraction of consumers that do not incur in any search, q2 is the fraction of 

consumers searching at most two prices and so forth, up to qn, which represents the 

fraction of consumers who search exhaustively. Additionally, the table presents the 

estimate for the marginal cost r, the value of the log-likelihood function and the 

computed value for the Kolmogorov-Smirnov statistic which test the null hypothesis that 

the vector of estimated and observed fares belong to the same continuous distribution. 
                                                 

15 See equations 14 and 15 in section 4. 
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Panel B below shows the corresponding ML estimates for the search cost values for each 

qi. The numbers in parenthesis correspond to the standard errors of estimates.   

Results show that consumers incur in little search overall. The estimate for q1 is 

0.25, 0.21, 0.21 and 0.35 for each of the four routes, respectively. In the case of ATL-

ORD, the estimate for q2 is 0.66 which means that 91 percent of consumers search at 

most two prices before buying on this route. Doing a similar exercise across the other 

three routes the reader can verify that 81 and 90 percent of consumers search at most 

seven prices on the DTW-LGA and ORD-PHX routes, respectively, and that 

approximately 90 percent of consumers search four prices at a maximum on the ORD-

SFO route. Air travelers who search intensively account for less than 10 percent, 

excluding DTW-LGA, where this fraction is 19 percent. Estimates are statistically 

significant in general and all other qi’s are not statistically different from zero. This 

result is consistent with previous findings in other markets; most consumers incur in 

little search while a small proportion of consumers search intensively.  

As can been seen from panel B, consumers who do not search must bear search 

costs of at least US$ 18.38 on the ATL-ORD route, whereas, on the ORD-SFO route this 

number is at least US$ 58.35. Alternatively, expected savings from sampling at least two 

prices are US$ 18.38 on the ATL-ORD route and US$ 58.35 on the ORD-SFO route. On 

the other hand, consumers who are indifferent between sampling two or three prices 

realize search costs of US$ 6.43 in the first route and US$ 28.08 on the fourth route – 

that is, expected savings from adding a third price to the search vary between US$ 6.43 

and US$ 28.08 across the four routes - . All estimates are highly significant. The last row 
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in panel B shows that the route weighted mean search cost ranges from US$ 8.84 in the 

ATL-ORD route up to US$ 27.75 in the ORD-SFO route, or, 4.8 and 8.1 percent of the 

respective mean route fare.  

We also recover estimates of the marginal cost r; all estimates are within 6 percent 

of the lowest observed fare. These marginal cost estimates are consistent with average 

markups across routes ranging from 30.4 to 52.3 percent. This result is notable 

considering we are working with a narrowly defined ticket group and characteristics 

such as class of travel, refundability, and travel restrictions have already been 

considered. 

Finally, we compare consumers search costs offline and online, ex-post we first 

calculate the fares corresponding to each search cost cutoff point and then obtain the 

percentages of transactions between these fares offline and online separately. Next, we 

compute a weighted search cost by multiplying these percentages by the corresponding 

search cost cutoff point. Again, these should be interpreted as lower bound estimates for 

search costs online and offline.  Table 5 presents the results. Offline consumers bear 

search costs at least 71 percent higher than online consumers across these markets. In all 

four routes offline search costs nearly double online estimates as a percentage of the 

mean route fare. An interpretation of this result could be that online booking offers a less 

costly search mechanism relative to offline travel agents. It is also plausible that this 

difference is explained by different incentives across the two distribution channels. 

Offline travel agents making the search for consumers face weaker incentives to search 
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since they are not spending (saving) their own money, while online consumers, spending 

their own money, face greater incentives to search.  
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CHAPTER VII  

SUMMARY AND CONCLUSIONS 

 

This paper recover search cost estimates of consumers booking airline fares. Results 

show that the magnitude of search costs borne by consumers in our ticket group is 

economically important specially if we consider that this ticket group is usually booked 

by leisure travelers, arguably the segment of air travelers with lower search costs in 

general. Specifically, average search costs estimates range between $8.84 and $27.75 

across the four routes in our sample – or between 4.8 and 8.1 percent of the route mean 

fare - and can be at least as high as $58.4 for consumers who do not search in one of the 

markets examined in this paper. With respect to the amount of search consumers 

engaged in, our results are consistent with previous findings in other markets; most 

consumers incur in little search and a small fraction of consumers search intensively. 

Additionally, recovered marginal costs allow us to compute estimates of average mark-

ups within routes. These estimates vary between 30.4 and 52.3 percent across routes 

included in this work. 

Results also indicate that consumers booking online realize lower search costs than 

consumers booking via traditional offline agents. This result seems intuitive as the 

internet might offer a less costly search process to consumers booking online, and also as 

agents face different incentives across the two distribution channels. Consumers booking 

online have higher incentives to search and book the cheapest available fares since they 

are paying for the ticket, whereas, offline travel agents undertaking the search process 
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for consumers face weaker incentives to search as much since they are not spending their 

own money. However, these results should be interpreted cautiously. The choice of 

distribution channel is an endogenous process so we cannot readily interpret that 

differences in search costs online and offline arise from inherently higher or lower costs 

for either channel. This result might also be explained because of a combination of 

opportunity costs, internet familiarity and other differences between the two groups of 

consumers.  

This paper contributes to the emerging empirical literature estimating search cost 

estimates consistent with theoretical search models. This is the first paper to recover 

consumer search cost estimates in the airline markets. Regarding the literature on airline 

pricing, extensive theoretical and empirical work has addressed the roles of market 

structure, peak-load pricing, scarcity pricing theories and price discrimination strategies 

in driving price dispersion. So far, little attention has been devoted to consumer search 

behavior in these markets. Our results suggest that consumer search cost plays an 

important role in driving part of the price dispersion observed in this industry.   

In general, policies designed to address market power concerns have focused on 

supply side factors. Results from this recent literature including this work suggest that 

demand factors such as consumer search behavior are also of practical importance. 
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Figure 1 - Identification Scheme for Search-Cost Distribution in Non-Sequential 
Search Model 
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                                       Figure 2 – Fares Distribution ATL-ORD 
 

 

 

 

 

 

 

 

 

 

 
       Figure 3 - Fares Distribution DTW-LGA 
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                                        Figure 4 - Fares Distribution ORD-PHX 
  

 

 

 

 

 

 

 

 

 

 

               Figure 5 - Fares Distribution ORD-SFO 
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                                 Figure 6 - ATL-ORD Sequential Estimation                                                
 

 

 

 

 

 

 

 

 

 

                                       

          Figure 7 - DTW-LGA Sequential Estimation 
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                                  Figure 8 - ORD-PHX Sequential Estimation                                              
 

 

 

 

 

 

 

 

 

 

                

                         Figure 9 - ORD-SFO Sequential Estimation  
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                               Figure 10 - ATL–ORD Non Sequential Estimation                         
 

 

 

 

 

 

 

 

 

 

          
       Figure 11 - DTW-LGA Non Sequential Estimation                   
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                               Figure 12 - ORD-PHX Non Sequential Estimation  
 

 

 

 

 

 

 

 

 

 

                                  

                               Figure 13 - ORD-SFO Non Sequential Estimation 
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Table 1 - Summary Fare Statistics by Route 
 

 
 

                            Table 2 - Summary Fare Statistics by Time Window 
 

 

 

  

Route Day 
window Obs Mean Standard 

Deviation Median Min Max

8 -10 463 189.2 28.6 183.0 133.1 303.0
11 - 14 610 183.9 27.3 180.0 133.1 303.0
8 -10 460 194.0 38.8 185.7 126.9 292.6

11 - 14 681 193.5 34.2 182.0 129.0 296.7
8 -10 370 240.7 59.5 248.0 140.2 473.1

11 - 14 584 240.5 60.7 248.0 142.5 498.0
8 -10 376 351.9 101.1 341.5 162.2 497.3

11 - 14 518 334.4 101.6 322.2 158.3 507.7

ATL - ORD

DTW - LGA

ORD - PHX

ORD - SFO

Route Obs Mean Standard 
Deviation Median Min Max

All 1,073 186.2 28.0 180.0 133.0 303.0
Offline 953 188.1 28.5 183.0 133.0 303.0
Online 120 171.0 44.6 166.0 139.0 234.0

All 1,141 193.7 49.1 181.9 126.9 296.7
Offline 928 189.8 33.8 217.8 126.9 296.7
Online 213 171.4 37.6 155.9 129.0 280.0

All 954 240.6 60.2 248.0 140.2 498.0
Offline 854 244.0 60.9 248.0 140.2 498.0
Online 100 211.6 44.6 198.0 142.5 338.0

All 894 341.8 101.7 326.5 158.3 507.7
Offline 790 351.0 101.8 337.1 158.3 507.7
Online 104 271.8 68.8 266.3 163.0 492.2

ATL - ORD

DTW - LGA

ORD - PHX

ORD - SFO
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Route
θ1 θ2

Mean 
Search 

Cost

Median 
Search 

Cost
α

ATL - ORD 0.012 0.293 123.8 3.4 0.1457 112.4
DTW - LGA 0.04 0.331 246.5 13.2 0.2544 103.3
ORD - SFO 0.034 0.256 209.2 8.1 0.2188 174.3
ORD - PHX 0.025 0.305 215.2 7.5 0.1311 255.5

  
       

Table 3 - Sequential Model Estimates 
 

 

 

 

 

  



 

46 

 

Table 4 - Non-sequential Model Estimates 
 

 
 

 

 

     

ATL - ORD DTW - LGA ORD - PHX ORD - SFO
p 1 133 127 140 158
v 303 297 498 508
N 72 90 111 118
M 1,073 1,141 954 894
q 1 

0.25 (0.02) 0.21 (0.06) 0.21 (0.03) 0.35 (0.05)

q 2
0.66 (0.01) 0.26 (0.03) 0.50 (0.08) 0.10 (0.02)

q 4 . . . 0.45 (0.02)

q 6 . . 0.13 (0.31) .
q 7 . 0.34 (0.05) 0.06 (0.33) .
. . . . .

q 72
0.09 (0.03) . . .

q 90
0.19 (0.16) . .

q 111
0.10 (0.09) .

q 118
0.09 (0.07)

r 127.62 (0.42) 125.19 (0.52) 135.52 (0.81) 148.74 (1.37)
avg mark-up 0.304 0.329 0.404 0.523

LL 4,805.00 5,651.46 5,166.86 5,058.05
KS 3.26 5.52 4.28 2.65

Δ 1
18.38 (0.31) 25.05 (2.11) 41.80 (7.16) 58.35 (0.59)

Δ 2
6.43 (0.25) 11.50 (2.15) 15.54 (2.55) 28.08 (1.02)

Δ 3
3.31 (0.17) 6.67 (1.57) 8.24 (2.36) 15.89 (0.93)

Δ 4
2.11 (0.12) 4.36 (1.14) 5.25 (2.35) 10.05 (0.75)

Δ 5
1.53 (0.10) 3.08 (0.85) 3.72 (2.21) 6.89 (0.60)

Δ 6
1.20 (0.08) 2.28 (065) 2.83 (2.03) 5.04 (0.48)

Δ 7
1.00 (0.07) 1.76 (0.51) 2.25 (1.84) 3.87 (0.40)

Δ 8
0.86 (0.06) 1.41 (0.39)  1.86 (1.76) 3.09 (0.33)

Δ 9
0.76 (0.06) 1.15 (0.33)  1.58 (1.60) 2.55 (0.29)

Δ 10
 0.69 (0.05) 0.96 (0.27) 1.36 (1.46) 2.16 (0.25)

SC mean 8.84 8.85 17.05 27.75

Panel A - ML Estimates of the Non-Sequential Search Model

Panel B - ML Estimates of the Non-Sequential Search Model
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Route SC offline                          
(US$ - % mean route fare)

SC online                         
(US$ - % mean route fare)

ATL - ORD 9.19 (4.9%) 5.05 (2.7%)
DTW - LGA 16.74 (8.6%) 9.10 (4.7%)
ORD - PHX 22.20 (9.2%) 13.00 (5.4%)
ORD - SFO 35.03 (10.2%) 18.26 (5.3%)

Table 5 - Search Costs Estimates Offline and Online 
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APPENDIX B  

DERIVATION OF LIKELIHOOD FUNCTION FOR THE SEQUENTIAL MODEL 

 

Given α and r, we can estimate the τth quantile of the reservation price distribution, 

denoted   ̅
         , using the indifference condition (8): 

 

 

 

Let   
        dente the τth quantile of the parameterized cost distribution, where θ 

denotes the parameters of this distribution that we wish to estimate. By the consumers’ 

reservation price condition, we know that  

 
 

 

And therefore 

 

 

 

In what follows, let        denote the τth quantile of                            

  . Changing variables from   to      [  ̅       ⁄     we can derive the price 

CDF corresponding to  ,  , and r,  
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with a corresponding density function         that can be derived by differentiating the 

above with respect to p: 

  

  

The maximum likelihood estimates for the θ parameters are estimated by 

maximizing the sample log-likelihood function  ∑            . The variance-covariance 

matrix of the estimates is approximated by the inverse of the sample analog of the outer 

product of the gradient vector: 

 

 

where the gradient vector for each observation i is, in turn, approximated by numerical 

derivatives.  

 




