
ORTHOGONAL POLYNOMIAL APPROXIMATION IN HIGHER

DIMENSIONS: APPLICATIONS IN ASTRODYNAMICS

A Dissertation

by

AHMAD HANI ABD ALQADER BANI YOUNES

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chairs of Committee, John L. Junkins
Co-Chairs of Committee, James D. Turner
Committee Members, Srinivas Rao Vadali

Shankar Bhattacharyya
Head of Department, Rodney D. W. Bowersox

August 2013

Major Subject: Aerospace Engineering

Copyright 2013 Ahmad Hani Abd Alqader Bani Younes

ABSTRACT

We propose novel methods to utilize orthogonal polynomial approximation in

higher dimension spaces, which enable us to modify classical differential equation

solvers to perform high precision, long-term orbit propagation. These methods have

immediate application to efficient propagation of catalogs of Resident Space Ob-

jects (RSOs) and improved accounting for the uncertainty in the ephemeris of these

objects. More fundamentally, the methodology promises to be of broad utility in

solving initial and two point boundary value problems from a wide class of math-

ematical representations of problems arising in engineering, optimal control, phys-

ical sciences and applied mathematics. We unify and extend classical results from

function approximation theory and consider their utility in astrodynamics. Least

square approximation, using the classical Chebyshev polynomials as basis functions,

is reviewed for discrete samples of the to-be-approximated function. We extend the

orthogonal approximation ideas to n-dimensions in a novel way, through the use of

array algebra and Kronecker operations. Approximation of test functions illustrates

the resulting algorithms and provides insight into the errors of approximation, as

well as the associated errors arising when the approximations are differentiated or

integrated. Two sets of applications are considered that are challenges in astrody-

namics. The first application addresses local approximation of high degree and order

geopotential models, replacing the global spherical harmonic series by a family of

locally precise orthogonal polynomial approximations for efficient computation. A

method is introduced which adapts the approximation degree radially, compatible

ii

with the truth that the highest degree approximations (to ensure maximum accel-

eration error < 10−9ms−2, globally) are required near the Earths surface, whereas

lower degree approximations are required as radius increases. We show that a four

order of magnitude speedup is feasible, with both speed and storage efficiency op-

timized using radial adaptation. The second class of problems addressed includes

orbit propagation and solution of associated boundary value problems. The succes-

sive Chebyshev-Picard path approximation method is shown well-suited to solving

these problems with over an order of magnitude speedup relative to known meth-

ods. Furthermore, the approach is parallel-structured so that it is suited for parallel

implementation and further speedups. Used in conjunction with orthogonal Finite

Element Model (FEM) gravity approximations, the Chebyshev-Picard path approx-

imation enables truly revolutionary speedups in orbit propagation without accuracy

loss.

iii

This work is dedicated to my wife Laiali and sons Yamen, Amro and Motaz

whose sacrifices, which were realized by our loss of precious time together,

were for me the most painful and humbling of all

iv

ACKNOWLEDGEMENTS

God...All that is Holy and Divine, thank YOU for giving me the faith and power

to overcome the obstacles I faced during my graduate studies.

Dr. John L. Junkins, I thank you for giving me the opportunity to work with

someone as inspiring as yourself on a project as enriching as this. I thank you for

your continuous support and faith in me, for your passion, leadership and guidance

– for giving me wings to fly!

Thank you, Dr. James D. Turner, for your enormous contributions which had a

large impact on my work, for showing insights from your vast experience and research

in the field.

Thank you, Dr. Daniele Mortari, for introducing me to the attitude and attitude

error world.

Thank you Dr. Rodney D. W. Bowersox for using your leadership and authority

in allowing us to use whatever department utility required making my work possible.

I also give thanks to the sweetest persons in the department, Karen Knabe and Lisa

Jordan; your admisnitrative support has been superb. You were so patient with me

and always there to assist me whenever I needed anything. I will cherish that forever.

Thank you Dr. Srinivas Rao Vadali and Dr. Shankar Bhattacharyya for serving

on my doctoral committee and for teaching me about dynamics and control.

This work was conducted under the Air Force Office of Scientific Research Con-

tract FA9550-11-1-0279; the support of our program manager Kent Miller is grate-

fully acknowledged. We are also pleased to acknowledge useful discussions with Ryan

v

Russell with regard to gravity approximation and for sharing the GRACE spherical

harmonic coefficients.

Many thanks to both (LASR) and (MCPI) mafia at Texas A&M University. I

have been so blessed to work with such a talented team of friends.

Gratitude from the very bottom of my heart and soul to my amazing and sup-

portive parents, who encouraged, supported and fueled my work. I love you so much,

more than you can ever imagine, and more than I can ever demonstrate.

Gratitude to the invisible force that was behind all my triumphs, to the miracle

that inspired patience over hardship, to Laiali, I am grateful to you for being the

wife that you are, standing by me every step of the way, brightening every dark alley

I ended up lost in. Thank you for being so special and for making my life so special.

You sure are my four leaf clover; hard to find and lucky to have. Also, I am grateful

to you, my dear sons Yamen, Amro and Motaz, for being my deep soul and with my

utmost heart felt passion. I deeply thank you, my dear brothers (Mohammad, Abdel

Qader, Ammar) and my dear sisters (Nisreen, Shereen, Amani, Enas, and Areen);

you are so close.

Last but not least, I would like to gratefully acknowledge the support of all

my friends who made the past semesters tolerable during the worst days and both

exciting and fun during the best days. I believe that my friends are quiet angels,

who lift me to my feet when my wings have trouble remembering how to fly!

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xv

CHAPTER

I INTRODUCTION . 1

I.A. Orthogonal Approximation 5

I.B. Finite Element Representations of the Geopotential . . 7

I.C. Picard Iteration, Chebyshev Polynomials and

Chebyshev-Picard Methods 9

I.D. State of the Art Methods for Numerical Solu-

tion of Satellite Orbits: RKN12(10) 14

II ORTHOGONAL APPROXIMATION 16

II.A. Introduction . 16

II.B. Orthogonal Approximation with One Indepen-

dent Variable . 16

II.C. Numerical Examples for Illustrative Test Func-

tions of One Variable 25

II.D. Orthogonal Approximation: More Than One Variable 30

II.E. Numerical Examples for Illustrative Test Func-

tions of Two Variables 45

III ORTHOGONAL FINITE ELEMENT REPRESENTATIONS

OF THE GEOPOTENTIAL . 51

vii

CHAPTER Page

III.A. Introduction . 51

III.B. Finite Element Model 53

III.B.1. Radial Smart Sampling 54

III.B.2. Radial Adaption 55

III.B.3. Orthogonal Approximation of the Grav-

itational Acceleration 56

III.B.4. Orthogonal Approximation of the Grav-

itational Potential 56

III.C. GRACE Finite Element Representations 58

III.D. The EGM2008 Finite Element Representations 67

III.E. Memory Saving . 74

III.E.1. Equalled-Area Shells 75

III.E.2. North-South Adaption 78

III.F. Accessing the FEM Coefficients 80

III.G. Post-processing the FEM Coefficients 82

IV PICARD ITERATION, CHEBYSHEV POLYNOMIALS AND

CHEBYSHEV-PICARD METHODS 92

IV.A. Introduction . 92

IV.B. OCPI: Orthogonal Chebyshev Polynomial Integrator . 93

IV.B.1. Example: Ballistic Projectile Problem 95

IV.C. MCPI: Modified Chebyshev Picard Iteration 97

IV.C.1. Some Remarks, for Perspective: 102

IV.D. Second Order MCPI Approach 104

IV.E. MCPI Convergence Analysis 107

IV.F. ACPI: Adaptive Chebyshev Picard Iteration 114

IV.F.1. VACPI: Vectorized Adaptive Chebyshev

Picard Iteration 118

IV.G. Numerical Examples 123

IV.G.1. Review Bai’s Examples 123

IV.G.2. Energy Jacobi Integral 140

IV.G.3. MCPI vs Runge-Kutta 4-5 with EGM2008

Gravity Model in C++ Environment 145

IV.G.4. MCPI vs Runge-Kutta 12-10 with EGM2008

Gravity Model in C++ Environment 148

viii

CHAPTER Page

IV.G.5. Trajectory Propagations Using FEM Ver-

sus Spherical Harmonic Gravity Model 152

V SUMMARY AND CONCLUDING REMARKS 160

REFERENCES . 163

APPENDIX A: CHEBYSHEV POLYNOMIALS 174

APPENDIX B: KRONECKER FACTORIZATION AND LEAST SQUARE

APPROXIMATION . 177

APPENDIX C: GRACE GEOPOTENTIAL MODEL APPROXIMATION . . 180

APPENDIX D: NUMERICAL EXAMPLES FOR ILLUSTRATIVE TEST

FUNCTIONS OF THREE VARIABLES 182

ix

LIST OF FIGURES

FIGURE Page

I.1 Estimated Growth of Objects in Earth Orbit Larger Than

10cm (Without Mitigation). 3

I.2 Flowchart of Orthogonal Approximation Applications. 5

II.1 1-D Approximation. 22

II.2 Cosine Nodes. 25

II.3 Test Function 1. 26

II.4 Approximation Error of Test Function 1 (N = 50,M = 300). 27

II.5 Chebyshev and Power Series Approximations. 28

II.6 Differentiation and Integration Errors. 29

II.7 2-D Approximation. 43

II.8 n-D Approximation. 45

II.9 Multidimensional Cosine Meshes for Discrete Orthogonality

Chebyshev Polynomials in n Dimensional Approximation. 46

II.10 Test Function 2. 47

II.11 Approximation of Test Function 2. 49

II.12 Approximation Error of Test Function 2. 50

III.1 Cosine-like Sampling for the Radial Distance. Note Density

of Nodes is Highest Near rmin. 55

III.2 (GRACE 156 × 156) Maximum Error of Chebyshev FEM

Gravity Approximation (m s−2) as a Function of Polynomial

Order N , for Various Radial Distances. 61

x

FIGURE Page

III.3 (GRACE 156 × 156) Radial Perturbative FEM Gravity Ap-

proximation at the Earth’s Surface (m s−2). 62

III.4 (GRACE 156× 156) Global FEM Gravity Potential Approx-

imation (m2 s−2). 63

III.5 (GRACE 156 × 156) Global FEM Gravity and Associated

Polynomial Coefficients Approximation. 65

III.6 (GRACE 156× 156) Computation Speed of the FEM versus

Spherical Harmonic. 66

III.7 (EGM2008 200 × 200) Maximum Error of Chebyshev FEM

Gravity Approximation (m s−2) as a Function of Polynomial

Order N , for various Radial Distances. 67

III.8 (EGM2008 200 × 200) Radial Gravity Contoured on Three

Spherical Shells. 71

III.9 (EGM2008 200× 200) Radial Perturbative FEM Gravity Ap-

proximation at the Earth’s Surface [m s−2]. 72

III.10 (EGM2008 200 × 200) Global FEM Gravity and Associated

Polynomial Coefficients Approximation. 73

III.11 (EGM2008 200×200) Computation Speed of the FEM versus

Spherical Harmonic. 74

III.12 Coordinate System. 76

III.13 (EGM2008 200 × 200): Polynomial Order N versus Finite

Element Size at Various Approximation Tolerances. 76

III.14 Outline of the EQ Algorithm. 77

III.15 Examples of EQ Shells for N = 9, N = 17, N = 33. 78

III.16 Number of Cells in Each Collar. 79

xi

FIGURE Page

III.17 Equal Areas Mapping versus Classical Spherical Mapping. 79

III.18 Number of Required Polynomial Order Nφ as a Function of

the Latitude at the Earth’s Surface. 80

III.19 Radial Coefficients Look-up Data Structure. 81

III.20 Number of Polynomial Coefficients. 85

III.21 Distribution of Number of Radial Coefficients Interpolating

the x Component Acceleration r ∈ (R⊕, 1.02R⊕). 86

III.22 Distribution of Number of Radial Coefficients Interpolating

the y Component Acceleration r ∈ (R⊕, 1.02R⊕). 87

III.23 Distribution of Number of Radial Coefficients Interpolating

the z Component Acceleration r ∈ (R⊕, 1.02R⊕). 88

III.24 Distribution of Number of Radial Coefficients Interpolating

the x Component Acceleration r ∈ (1.02R⊕, 7R⊕). 89

III.25 Distribution of Number of Radial Coefficients Interpolating

the y Component Acceleration r ∈ (1.02R⊕, 7R⊕). 90

III.26 Distribution of Number of Radial Coefficients Interpolating

the z Component Acceleration r ∈ (1.02R⊕, 7R⊕). 91

IV.1 Ballistic Projectile Problem. 96

IV.2 Approximation Error (N = 50). 97

IV.3 Computation Cost Serial vs Parallel. 98

IV.4 MCPI Iterations for Solution of Initial Problems. 108

IV.5 Flowchart of the Matrix-vector Form of the MCPI Algorithm. 109

IV.6 Eigenvalue Locus of TCα, N < 100. 114

IV.7 Maximum Eigenvalue Locus of TCα, N >= 100. 115

xii

FIGURE Page

IV.8 Maximum Eigenvalue Locus of TCα versus Polynomial Order N . . . 116

IV.9 Flowchart of the Matrix-vector Form of the ACPI Algorithm. 122

IV.10 Integration Errors for Example 1. The CPU Time is 0.042 s

and 1.722 s Respectively. 125

IV.11 Second Order MCPI and RKN12(10) Error History. 128

IV.12 Computation Time and Significant Figures for MCPI. 134

IV.13 MCPI and RKN12(10) Results. 137

IV.14 MCPI vs ODE45. 138

IV.15 Illustration of the Earth Rotating Frame. 141

IV.16 Accuracy Check by Hamiltonian for MCPI and RK45. 147

IV.17 Single Orbit Propagation: MCPI vs RK45 Computation Times. . . . 147

IV.18 Accuracy Check by Hamiltonian for MCPI and RK12(10). 149

IV.19 Error in Position and Velocity between MCPI - RK12(10). 149

IV.20 Single Orbit Propagation: MCPI vs RK12(10) Computation Times. . 151

IV.21 Significant Figures for MCPI at EGM2008 50× 50. 151

IV.22 Accuracy Check by Hamiltonian for multi orbits. 152

IV.23 Multi Orbit Propagation: MCPI vs RK12(10) Computation Times. . 153

IV.24 Hamiltonian (or Energy Jacobi) Energy Check. 157

IV.25 Perturbed Propagations for 20 Orbits using EGM2008 200×
200; Presented in (a) Earth-Centered Earth-Fixed (ECEF)

Coordinates, (b) Earth Rotating Coordinates. 158

IV.26 Computation Time Cost for Test #1 through Test #6. 158

xiii

FIGURE Page

IV.27 Computation Time cost for MCPI and RK12(10). 159

A.1 Chebyshev Polynomials of the First Kind. 176

C.1 Approximation of the Perturbed GRACE Geopotential. 181

D.1 Test Function 3 Boundary Surfaces. 184

D.2 Test Function 3 Center Slices Surfaces. 185

D.3 Approximation of Test Function 3 Boundary Surfaces (@ ξ = ±1). . . 186

D.4 Approximation of Test Function 3 Boundary Surfaces (@ η = ±1). . 187

D.5 Approximation of Test Function 3 Boundary Surfaces (@ ζ = ±1). . 188

D.6 Test Function 3 Center Slices Surfaces (@ {ξ, η, ζ} = 0). 189

D.7 Approximation Error of Test Function 3. 190

xiv

LIST OF TABLES

TABLE Page

III.1 Number of Coefficients Saved, r ∈ [R⊕, 1.02R⊕]. 83

III.2 Number of Coefficients Saved, r ∈ [1.02R⊕, 7R⊕]. 83

IV.1 Classical Orbital Elements for Low Eccentricity Orbit. 130

IV.2 Classical Orbital Elements for High Eccentricity Orbit. 139

xv

CHAPTER I

INTRODUCTION

Efficient, high precision orbit propagation has gained renewed impetus due to

the rapidly escalating demands for improved Space Situational Awareness (SSA)

and the challenges posed by the Kessler Syndrome, which hypothesizes that every

collision of two space objects drastically increases the probability of subsequent col-

lisions. Due to a number of factors, space object catalogs presently contain about

20,000 debris objects (> 10 cm) and will almost certainly increase in the near future,

unless effective mitigation efforts are undertaken in the near future. With reference

to Figure I.1, and drawing insights from references [1–16], approximately 20,000 ob-

jects are presently trackable in Earth orbit using existing sensor systems and this

number has escalated rapidly in recent years. Since Figure I.1 was published in 2010,

debris tracking has significantly increased the size of the catalog by 30% for objects

larger than 10 cm, and to an estimated 500,000 objects greater than 1 cm (smaller

than 10 cm cannot be reliably tracked by conventional means. Much of the recent

growth is attributed to improved accounting for the debris resulting from the 2007,

2009 Fengyun-1C and Cosmos/Iridium collisions). Conjunction analysis, probability

of collision analysis, orbit prediction, and orbit determination require substantial

computing resources with thousands of CPU hours presently consumed per week,

these computations accelerate at a rate proportional to the number of objects raised

to a power greater than 2, therefore the Kessler prediction of exponential growth of

the object catalog implies a grand computational challenge. It is mentioned that the

1

competing effects of drag decay and new debris resulting from cascading collisions

pose an unsolved problem and the rate of growth implicit in the Kessler Syndrome

cannot at present be predicted with confidence.

One key issue near the heart of the challenge is the time required to precisely

propagate each object’s orbit. Existing methods for solving these problems have not

been very successful in exploiting parallel computer architectures.

There exists a fairly small set of “well accepted” for solving the differential

equations of celestial mechanics, and the integration methods implemented on par-

allel machines are only modified versions of the well-proven traditional integration

approaches. The conventual methods are robust and stable, but are typically poorly

suited for parallelization. Numerical methods for propagating orbits is considered by

most to be a rather mature field, with a still widely used method dating from the

work of K.F. Guass in the mid-1800s. It is therefore perhaps a surprise that one order

of magnitude speedup is possible, relative to the conventional algorithms. However,

this is indeed the case, and these methods are one main focus of this dissertation.

This dissertation addresses the following four issues:

1. local approximation of high degree and order geopotential models, replacing

the global spherical harmonic series by a family of locally precise orthogonal

polynomial approximations for efficient computation,

2. extension of current research results to develop refined methods for efficient

orbit propagation, with emphasis on methods that are easily parallized and

with systematic error characterization and development of adaptive methods

to automate the control of precision and efficiency,

2

3. evaluation of the new methods with regard to precision, stability, and efficiency,

in comparison to existing methods for solution of initial and two point boundary

value problems, and

4. implementations of the concepts and algorithms in a parallel computing archi-

tecture.

Figure I.1: Estimated Growth of Objects in Earth Orbit Larger Than 10cm

(Without Mitigation).

The classical Picard Iteration method has been largely a museum piece, vis-á-

vis computing spacecraft orbits, because it converts the usual system of nonlinear

ordinary differential equations into a sequence of integrals with a requirement for

iterative numerical quadrature in lieu of utilizing the large family of single and/or

multi-step methods that have evolved, and have been used successfully for over a

century, for numerically solving the corresponding nonlinear system of differential

equations. A recent dissertation by Xiaoli Bai [17] presents a novel fusion of or-

thogonal polynomial approximation and linear algebra developments with Picard

3

Iteration, called the Modified Chebyshev Picard Iteration (MCPI). MCPI refines

a high order orthogonal function approximation of the entire state trajectory over

a substantial time span, in contrast to traditional, step-wise integration methods.

Bai’s version of MCPI is closely related to the historical works of Feagin [18, 19],

Shaver [20], and Clenshaw and Norton [21]. The key is that MCPI is well suited to

parallelization, whereas the traditional differential equation solvers are poorly suited

for parallelization, we show that computation of force functions along each path it-

eration can be rigorously distributed over many parallel cores with negligible cross

communication needed, and this truth opens the door to extremely attractive paral-

lel computing means for propagation of large numbers of high precision orbits over

long time intervals. Extensions of the approach to solve the two-point boundary

value problems of optimal control, and the preliminary results obtained by Bai et

al. [17,22] are very encouraging. We also mention that research on efficient methods

to accurately replace high order gravity fields by piecewise continuous interpolation a

la refs [23–27] and in this dissertation indicate that a speedup of over several orders

of magnitude in the computation time to compute a state-of-the art gravitational

acceleration is possible. Since the gravitational acceleration computation dominates

the total acceleration, this speedup, when combined with over one order of magni-

tude speed up of MCPI gives rise to an opportunity for revolutionary improvement in

the efficiency of precision orbit propagation. The fundamental speedups are further

enhanced since these efficiency gains are increased substantially as the methods are

ideal for computational acceleration through massive parallelization.

4

I.A. Orthogonal Approximation

There are several treatments of discrete approximation using Chebyshev poly-

nomials [17,24,27–33]. Among the more comprehensive of these are the texts [28,30].

In [27], orthogonal approximation is placed in a broader context of multi-resolution

approximation via linear and nonlinear input/output maps. In Appendix A, we sum-

marize a few most relevant aspects of approximation using Chebyshev polynomials

that we utilize in this work.

Figure I.2: Flowchart of Orthogonal Approximation Applications.

Figure I.2 shows some orthogonal approximation applications in astrodynamics.

5

Two sets of applications are considered in this dissertation that are fundamental

challenges in astrodynamics. The first application establishes highly efficient local

approximation of high degree and order geopotential models, replacing the global

spherical harmonic series by a family of locally precise orthogonal polynomial ap-

proximations for efficient computation. A method is introduced which adapts the

approximation degree radially, compatible with the truth that the highest degree

approximations (to ensure, for example, maximum acceleration error < 10−9 ms−2,

globally, for high fidelity) are required near the Earth’s surface, whereas lower degree

approximations are required as the radius increases. The second class of problems

is orbit propagation as well as solution of associated boundary value problems. The

Chebyshev-Picard path approximation method is shown to be well-suited for solving

these problems with over an order of magnitude speedup relative to known meth-

ods in a serial processor. Furthermore, the approach is parallel-structured so that

it is ideally suited for parallel implementation and further speedups. Used in con-

junction with orthogonal Finite Element Model (FEM) gravity approximations, the

Chebyshev-Picard path approximation enables truly revolutionary speedups in orbit

propagation without accuracy loss.

We first review classical discrete polynomial approximation results for one and

two dimensions and introduce a convenient array algebra means to extend the one

dimensional orthogonality results to higher dimensions; this path avoids the curse of

dimensionality and establishes the results needed for efficient computation. Several

simple examples are provided to so that the efficacy and utility of the methodology

can be appreciated heuristically. Secondly, we use these ideas to solve the problem

6

of piecewise approximation of high degree and order gravitational potential models,

for use in orbit propagation. Specifically, we replace the GRACE [34, 35] (156, 156)

spherical harmonic model by a global family of local orthogonal polynomial approx-

imations. We also replace the (200, 200) Earth Gravitational Model EGM 2008 [36],

using the same FEM orthogonal approximation approach to observe the dependence

of the relative computational advantage on higher order gravity terms. Finally, we

consider the impact of using the gravitational field approximation models on the ef-

ficiency of Chebyshev-Picard methods [17] for solving the corresponding initial value

problems.

Interestingly and importantly, the basic methodology researched in this dis-

sertation is of a fundamental nature, and thus of much broader utility than more

efficient orbit prediction. It is anticipated these methods still find use wherever we

need precise long time interval solutions of nonlinear initial and two point boundary

value problems in applied mathematics, physics and engineering. We therefore rec-

ommend this approach and related methods be evaluated for solving other physically

important problems that have a similar structure.

I.B. Finite Element Representations of the Geopotential

The classical solution to Laplace’s equation for gravity is adopted using the glob-

ally valid spherical harmonic gravity potential model, where the spherical harmonic

(SH) approach is slow and reveals the three main challenges [25,34,37–40]:

1. Choosing a finite upper limit of the series defines the accuracy (the more we

know about gravity, the more terms are required and the more it costs to

7

compute acceleration)

2. Convergence is very inefficient and slow for n > 2, so, for the current state of

the art, tens of thousands of terms are required to obtain a sufficiently high

accuracy global gravity representation

3. The north and south poles represent non-free singularities of the usual spherical

coordinates

In view of the slow convergence of global gravity models, we are motivated to trun-

cate the classical expansion at n = 2 and introduce a finite element model (FEM)

local gravity representation of the higher order perturbation in the anticipation that

much lower degree locally valid functions can be used to efficiently model and com-

pute local gravity perturbations. The literature on this subject was initiated with the

classical developments [25] and has recently been explored by other others [41–43].

Applicable to both irregular and near-spherical shaped bodies, methods in this class

expedite computations by effectively trading computer memory for runtime speed.

First proposed by Junkins in 1976 [25], geopotential FEM interpolation methods

have been bolstered recently by the extraordinary memory resources of common

computers. A variety of approximation techniques and basis functions have been

employed for gravity field representation, including weighting functions [23–26, 44],

wavelets [45], splines [45, 46], octrees [47], psuedocenters [48] and 3D digital mod-

eling [49]. Each interpolation method balances accuracy with efforts to minimize

runtime speed and memory footprint cost while achieving exactness, continuity and

smoothness as appropriate.

8

In the developments herein, we have solved a key historical challenge implicit in

this class of methods for geopotential representation: How do we structure the FEM

models to render them radially adaptive and efficient, so that the resulting algorithms

“automatically know” traditional methods about the rapid radial decay of the high

frequency terms and more to the point, which terms in the FEM representation to

retain, as a function (mainly) of radial distance from geocenter. Addressing this issue

herein, we have enabled a much improved efficiency.

I.C. Picard Iteration, Chebyshev Polynomials and Chebyshev-Picard

Methods

During the 19th century Emile Picard, a French mathematician, introduced a

classical successive path approximation method for solving differential equations of

the form

ẋ(t) = f(t,x(t)), x(t0). (1.1)

This can be rearranged without approximation to obtain the following integral equa-

tion

x(t) = x(t0) +

∫ t

t0

f (τ,x(τ)) dτ. (1.2)

Motivated by the exact integral equation form of Eq. (1.2), Picard hypothesized a

sequence of trajectory approximations (Picard Iteration) generated by

xi(t) = x(t0) +

∫ t

t0

f
(
τ,xi−1(τ)

)
dτ, i = 1, 2, ... (1.3)

Picard also published formal Lipshitz conditions for convergence of this sequence

to the solution of Eq. (1.1). The essence of his convergence theorem is that if the

9

function f(t,x) and jacobian [∂f(t,x)/∂x] are continuous and bounded over the finite

region {| t− t0 | < δ, ‖ x0(t) − x(t) ‖∞< 4}, then a unique solution of Eq. (1.1)

exists. The sequence of trajectories converges to the solution of Eq. (1.1) for some

finite bounds {δ,4} defining the finite region of convergence. Furthermore, under

these the same conditions on f(t,x) and [∂f(t,x)/∂x], [50–57] establish the conditions

under which the Picard Iteration operator is a contraction mapping: the sequence

converges to the unique solution if t−t0 is smaller than δ, and the starting trajectory

is in the region bounded by 4. The (δ,4) bounds for guaranteed convergence are

generally difficult to estimate without a computational investigation over the vol-

ume of state space where the starting approximations and the unique solution lie.

Even difficult to compute, highly conservative bounds on (δ,4) are of theoretical

importance, but they may be of limited computational utility. While means for com-

puting practical convergence bounds that are useful in general-purpose algorithms

have proven elusive, as we will show for the case of a linear system where MCPI is

implemented, convergence analysis leads to very interesting results and practical con-

vergence insight. When an excellent starting trajectory approximation x0(t) exists,

then the convergent successive trajectories must be close neighbors, and the general

nonlinear contraction mapping theory can be replaced approximately by the linear

MCPI contraction mapping and convergence analysis. Furthermore, for those prob-

lems where a good starting approximation can be generated using prior approximate

insight, Picard Iteration is obviously accelerated.

Apparently, and importantly, prior to the work of [17], it was not known that

the time interval over which convergence of Picard Iteration is achieved for comput-

10

ing satellite trajectories in Earth orbit approaches 20, 000 s. This is well over three

periods of a typical LEO orbit. Since all known numerical integrators for high pre-

cision solutions cannot take steps of more than a small fraction of an orbit [17], the

feasibility of high precision multiple orbit solution arcs via Picard Iteration is sur-

prising (in view of the long legacy of methods developed and implemented for orbit

integration). Evidently this is a game-changing truth for many problems of modern

interest. The classical Picard Iteration, with regard to orbit integration, has until

recently been a “museum piece” of limited computational utility. This is due to the

fact that it implicitly trades the well-established family of methods for a numerical

solution of nonlinear differential equations with an apparently less well-understood

set of methods for resolving the actual convergence domain of the Picard sequence.

This of course introduces the need for high precision, efficient and reliable methods

to carry out the numerical quadratures of Eq. (1.3).

Several researchers over the past half-century have pursued the goal of rendering

Picard Iteration a more practical approach for computing solutions of Eq. (1.1).

Some degree of success has been achieved. For example, Parker and Sochacki have

studied the use of Picard Iteration to generate solutions of IVPs in the form of a

family of local Taylor series [58]. However, convergence of these series is not generally

attractive compared with the methods we present below.

Bringing together approximation theory with Picard Iteration has proven a key

to recent progress, and the use of orthogonal polynomials as basis functions to ap-

proximate both the trajectories xi(t) and the integrand of Eq. (1.3) along each

iterative trajectory have proven to be important steps to achieve both precision

11

and efficiency. Chebyshev polynomials are but one set of orthogonal functions that

might be used in an analogous way, however this choice has been widely adopted

for function approximation and they have been found especially attractive to ap-

proximate the trajectories and integrands in Picard Iteration. When the zeros of

Chebyshev polynomials are used as the nodes for polynomial interpolation, the re-

sulting approximation has been shown to minimize the Runge’s phenomenon and

provide the best approximation under the minimax norm [17]. Many researchers

have contributed to the research on using Chebyshev polynomials to solve IVPs and

BVPs, but typically not adopting Picard Iteration [25, 31, 37] as the basis for the

solution process. Note that the most straightforward approach of parameterizing the

trajectory in terms of basis functions leads to a nonlinear programming problem if

the trajectory x(t) is expanded in a linear combination of basis functions and sub-

stituted into f(t,x(t)). Several traditional methods introduce collocation nodes in

order to obtain a sufficient number of nonlinear equations to iteratively determine

the basis function amplitudes. However, using nonlinear programming to find the

required large number of basis function coefficients, while employing this approach,

has proven computationally inefficient for higher dimensioned state spaces. In ad-

dition, the curse of dimensionality and associated numerical difficulties frequently

limits practical convergence. Both these assessments agree with the discussion by

Vlassenbroeck and Dooren [59]. Therefore this approach is not considered a viable

competitor to traditional existing methods such as the high order Runge-Kutta or

multi-step methods for precisely solving problems in celestial mechanics.

As is evident from the literature, with a few exceptions, the classical Picard

12

Iteration has been realized in very few algorithms for solving IVPs. An important

advance that changed the flow of research in this area was made by Clenshaw and

Norton [21]. They first proposed solving IVPs and BVPs using both Picard itera-

tion and Chebyshev polynomials (Chebyshev-Picard methods). Their new method

approximated both the trajectory and the integrand along each trajectory by the

same set of discrete Chebyshev polynomials. The basis functions were integrated

term-by-term to establish a recursive trajectory approximation technique that inher-

ently contained the new basis function coefficients linearly on each iteration, without

Taylor-series linearization. Using Picard Iteration with no necessity for nonlinear

programming turns out to allow solution of high order differential equations and

thus enables applications to a large class of nonlinear dynamical systems. Their

keystone contribution indicates the Chebyshev polynomials, when linearly approxi-

mating the integrand along the (i− 1)th Picard iterate prior to integration, result in

both efficient and accurate approximation of the integrals needed in the Picard Iter-

ation. Notice this process completely avoids differentiation of approximations, and

associated precision loss, in contrast to most collocation methods. The feasibility

of parallel computation using the Chebyshev-Picard methods has also been stud-

ied by Feagin [18, 19], Shaver [20] and Fukushima [60, 61]. Feagin [19] presented a

vector-matrix form of the Chebyshev-Picard method that is closely related to MCPI

methods refined in [17,22,62]. Shaver [20] did a significant numerical study and made

the first serious study of parallel computation with a variant of MCPI. Fukushima

implemented a Chebyshev-Picard algorithm on a vector computer [60]. However, for

one example problem, the vector code of Fukushima was shown to be slower than

13

the scalar code, thus leading the author to surprisingly conclude that his vector-

ized code led to additional overhead and an inefficient implementation. In summary,

important historical contributions that fused Picard Iteration with approximation

theory were made by Clenshaw and Norton [21], Shaver [20], and Feagin [18,19], and

Bai [17,22,62]. Our proposed approach builds directly on these important historical

formulations. Prior to discussing these developments in detail, we address the state

of the art for solving the differential equations of orbit mechanics.

I.D. State of the Art Methods for Numerical Solution of Satellite Orbits:

RKN12(10)

We focus on three important sets of competing methods that have been broadly

adopted for modern orbit integration. Most of the numerical methods presently

in routine use for solving the IVPs can be categorized as either Runge-Kutta type

single-step methods, multi-step extrapolation methods, or Taylor series (analytical

continuation) methods. All of these methods owe their heritage to Euler’s original

(late 1700’s) first order analytical continuation method and/or Gauss’ (mid 1800s)

predictor-corrector method. In essence, given a point x(tk) on the trajectory, the

entire family of currently used single step Runge-Kutta methods seek to approxi-

mately replace an nth order Taylor series (analytical continuation) to within O(hn+1)

without the necessity of taking higher derivatives of f(t,x). This is accomplished

by linearly combining a set of neighboring local evaluations of f(t,x) in such a way

that produces an approximation of x(tk +h), which can be shown to match a Taylor

series with an error of ∼ O(hn+1). The currently used multi-step predictor-corrector

14

methods are all descendants of Gauss’ original “second sum method” which uti-

lize extrapolations derived from the calculus of finite differences to construct two

or more iterative extrapolation formulas based on high order differences and sums

formed from a table of immediately previous values of x(t) and f(t,x). The most

commonly used predictor-corrector method for orbit computation is essentially iden-

tical to Gauss’ method, but widely known as the Gauss-Jackson [34] algorithm. As

discussed in [17], the high order Runge-Kutta methods such as RKN12(10) utilize

two orders to implement automatic step size control, (e.g., 10th and 12th order). A

detailed discussion is presented in [17]. These step-by-step methods are less efficient

for low eccentricity orbits, but are superior for moderate to high eccentricity orbits

when compared to the Gauss-Jackson integrator. Until the early 1960’s most of the

work on Runge-Kutta methods focused on explicit methods which are unsuitable for

the solution of stiff equations, but Butcher [63] introduced a framework to study the

Implicit Runge-Kutta (IRK) methods, which are robust, adaptive and stable but

frequently computationally expensive. The IRK methods require solving a system

of algebraic equations at every step, which increases the computational cost con-

siderably. Some of these and other methods are presented in [64–68]. No existing

step-by-step method is well-suited for massive parallelization. We will see later that

the Chebyshev-Picard Methods are ideally suited to parallelization.

15

CHAPTER II

ORTHOGONAL APPROXIMATION

II.A. Introduction

We unify and extend classical results from function approximation theory and

consider their utility in astrodynamics. Least square approximation, using the clas-

sical Chebyshev polynomials as basis functions, is reviewed for discrete samples of

the to-be-approximated function. We extend the orthogonal approximation ideas to

n-dimensions in a novel way, through the use of array algebra and Kronecker op-

erations. Approximation of test functions illustrates the resulting algorithms and

provides insight into the errors of approximation, as well as the associated errors

arising when the approximations are differentiated or integrated. We first review

classical discrete polynomial approximation results for one and two dimensions and

introduce a convenient array algebra means to extend the one dimensional orthog-

onality results to higher dimensions. This path avoids the curse of dimensionality

and establishes the results needed for efficient computation. Several simple examples

are provided to enable the efficacy and utility of the methodology to be appreciated

heuristically.

II.B. Orthogonal Approximation with One Independent Variable

There are several treatments of discrete approximation using Chebyshev poly-

nomials [17,24,27–33]. Among the more comprehensive of these are the texts [28,30].

16

In [27], orthogonal approximation is placed in a broader context of multi-resolution

approximation via linear and nonlinear input/output maps. In Appendix A, we sum-

marize a few most relevant aspects of approximation using Chebyshev polynomials

that we utilize in this dissertation.

Let us first set the context by considering the approximation of a single-valued

function of one independent variable, x:

g(x), {xmin ≤ x ≤ xmax} (2.1)

To put the problem in a non-dimensional framework, we first introduce a new in-

dependent variable ξ such that {−1 ≤ ξ ≤ 1}. It is easy to verify the forward and

inverse transformations:

ξ(x) = 2 (x− xmin) / (xmax − xmin)− 1,

and, (2.2)

x(ξ) = xmin + (ξ + 1) (xmax − xmin) /2.

Substituting the second of Eqs (2.2) into Eq. (2.1), we wish to approximate the

function

f(ξ) , g(x(ξ)) = g (xmin + (ξ + 1) (xmax − xmin) /2) . (2.3)

In the case of general basis functions φn(ξ) with ξ ∈ {−1, 1}, we seek to approximate

f(ξ) as a linear combination of a prescribed set of N + 1 linearly independent basis

functions {φ0(ξ), φ1(ξ), ..., φN(ξ)} as

f(ξ) ≈
N∑
n=0

anφn(ξ). (2.4)

17

For the case of discrete measurement samples, we introduce a set of sample points

(nodes) as {ξ0, ξ1, ..., ξM ;M ≥ N}; the residual approximation error at each measure-

ment node is

rj = f(ξj)−
N∑
n=0

anφn(ξj); j = 0, 1, ...,M, (2.5)

or in vector-matrix notation

r = f− Φa, (2.6)

where

f =

f(ξ0)

f(ξ1)

...

f(ξM)

, Φ =

φ0(ξ0) φ1(ξ0) · · · φN(ξ0)

φ0(ξ1) φ1(ξ1) · · · φN(ξ1)

...
...

. . .
...

φ0(ξM) φ1(ξM) · · · φN(ξM)

, a =

a0

a1

...

aN

. (2.7)

The method of least squares seeks the coefficient vector (a) that minimizes the

weighted sum square of the residuals

J =
1

2
(f− Φa)T W (f− Φa) ; W = W T (positive definite weight matrix). (2.8)

It follows [69] that the least square minimization solution for a leads to the normal

equations

a =
(
ΦTWΦ

)−1
ΦTWf . (2.9)

Restricting W to be diagonal hereinafter, and choosing a special class of orthogonal

basis functions, ΦTWΦ can be rendered a diagonal matrix so the matrix inverse in

Eq. (2.9) is trivial. So for the orthogonal basis function we obtain

(
ΦTWΦ

)−1
= diag

{
1/
(
ΦTWΦ

)
ii

}
, diag

{
1/m00 1/m11 · · · 1/mNN

}
.

(2.10)

18

The typical element of ΦTWΦ is a discrete inner product denoted mαβ = mβα and

invoking the requirement that ΦTWΦ be a diagonal matrix directly gives rise to

the orthogonality conditions, requiring the typical pair of orthogonal basis functions’

inner products obey:

mαβ = mβα , 〈φα(ξ), φβ(ξ)〉 ≡
M∑
j=0

Wjφα(ξj)φβ(ξj) =

 0, for α 6= β

mαα = cα > 0, for α = β

 .

(2.11)

The orthogonality conditions depend jointly on the set of basis functions, the set

of node locations and the weight matrix (more generally, W = W T may be fully

populated).

For the case that the above orthogonality conditions are satisfied, the explicit

solution for the coefficients of Eq. (2.9) is given by the independent (uncoupled)

ratios of inner products as

aα =
〈φα(ξ), f(ξ)〉
〈φα(ξ), φα(ξ)〉

≡

M∑
j=0

Wjφα(ξj)f(ξj)

M∑
j=0

Wjφ2
α(ξj)

≡ 1

cα

M∑
j=0

Wjφα(ξj)f(ξj), for α = 0, 1, 2, ..., N.

(2.12)

An important special case arises when we make a specific choice of orthogonal basis

functions, namely {φ0(ξ), φ1(ξ), ..., φN(ξ)} = {T0(ξ), T1(ξ), ..., TN(ξ)}, i.e., we choose

the classical Chebyshev polynomials {T0(ξ), T1(ξ), ..., TN(ξ)}, as discussed in refer-

ences [17, 27–30] and the Appendix A as the basis functions. We also choose the

N + 1 cosine sample points (also known [17, 27–30] as the CGL nodes in honor of

Chebyshev-Gauss-Lobatto):

ξj = −cos(jπ/M), j = 0, 1, 2, ...,M. (2.13)

19

Consistent with the classical orthogonality conditions for Chebyshev polynomials,

we adopt the weight matrix W = diag
{

1
2
, 1, 1, ..., 1, 1, 1

2

}
. Upon substituting the

sample points of Eq. (2.13) and the chosen weight matrix, it is easy to verify that

orthogonality conditions of Eqs (2.11) are satisfied and the least square coefficients

of Eqs (2.12) are specifically

aα =
1

cα

{
M∑
j=0

WjTα(ξj)f(ξj)

}

=
1

cα

{
1

2
Tα(ξ0)f(ξ0) + ...+ Tα(ξM−1)f(ξM−1) +

1

2
Tα(ξM)f(ξM)

}
, (2.14)

where the denominators cα in Eq. (2.14) are the positive constants

cα =
M∑
j=0

WjT
2
α(ξj) =

{
1

2
T 2
α(ξ0) + T 2

α(ξ1) + ...+ T 2
α(ξM−1) +

1

2
T 2
α(ξM)

}
, α = 0, 1, ..., N,

(2.15)

More explicitly it can be verified that the denominator inner products reduce to

c0 = 〈T0(ξ), T0(ξ)〉 = M

cα = 〈Tα(ξ), Tα(ξ)〉 = M/2, α = 1, 2, ..., N − 1

c
N

= 〈TN(ξ), TN(ξ)〉 = M, if M = N (interpolation case)

c
N

= 〈TN(ξ), TN(ξ)〉 = M/2, if M > N (least squares case)

. (2.16)

Thus the final coefficients for least square approximation are computed directly from

20

the discrete inner products of Eq. (2.14) as

α0 = 〈T0(ξ),f(ξ)〉
〈T0(ξ),T0(ξ)〉 = 1

M { 1
2
T0(ξ0)f(ξ0)+...+T0(ξM−1)f(ξM−1)+ 1

2
T0(ξM)f(ξM)}

αα = 〈Tα(ξ),f(ξ)〉
〈Tα(ξ),Tα(ξ)〉 = 2

M { 1
2
Tα(ξ0)f(ξ0)+...+Tα(ξM−1)f(ξM−1)+ 1

2
Tα(ξM)f(ξM)}, α=1,2,...,N−1

αN = 〈TN (ξ),f(ξ)〉
〈TN (ξ),TN (ξ)〉 = 1

c
N
{ 1

2
TN (ξ0)f(ξ0)+...+TN (ξM−1)f(ξM−1)+ 1

2
TN (ξM)f(ξM)},

cN=M,M=N

cN=M
2
,M>N

.

(2.17)

Note that the coefficients of Eq. (2.17) are computed independently of each other,

and the absolute value of each coefficient is the maximum contribution of that term

– this enables convenient means for obtaining efficient and accurate truncated ap-

proximations, as well as insight for adapting the order of the approximation. If a

vector-matrix form is desired for the least squares solution for the coefficients, we

can rearrange Eqs (2.17) in the form

a = Cf, (2.18)

where the Chebyshev least square operator matrix is simply

C =
1

M

T0(ξ0)/2 T0(ξ1) · · · T0(ξM−1) T0(ξM)/2

T1(ξ0) 2T1(ξ1) · · · 2T1(ξM−1) T1(ξM)

...
...

. . .
...

...

TN−1(ξ0) 2TN−1(ξ1) · · · 2TN−1(ξM−1) TN−1(ξM)

TN(ξ0) 2TN(ξ1) · · · 2TN(ξM−1) TN(ξM)

. (2.19)

The flowchart explaining the 1-D approximation is shown in Figure II.1. We

mention that the cosine nodes of Eq. (2.13) locate all N−1 extrema of the Chebyshev

21

Figure II.1: 1-D Approximation.

polynomials, as well as the two end points of the approximation interval. Also note

the extrema of these polynomials, and therefore the sample points, cluster near the

±1 boundaries as the degree N of the approximation increases. The first six Tα(ξ) are

graphed in Figure A.1 in Appendix A. Note that the particular weight matrix W =

diag
{

1
2
, 1, 1, ..., 1, 1, 1

2

}
can be shown to be consistent with the classical Chebyshev

polynomials satisfying the orthogonality conditions of Eq (2.11). The choice of an

identity matrix, for example, together with the Gramm-Schmidt process [27], gives

rise to a related set of orthogonal polynomials. The approximation properties of

the Chebyshev polynomials are well-researched and a substantial literature exists

related to this choice, therefore we adopt the slight modification of the identity

weight matrix. Observe the unit weights apply to all interior maxima and minima,

whereas the 1
2

weights apply to the two boundary points. We also mention that Bai’s

recent dissertation and some of the related historical literature are consistent with

22

the above, but care must be taken in reading these references due to a factor of 1
2

applied to the zeroth and/or the N th terms of the summations, depending on whether

M > N or M = N . In particular, the second of Eqs (2.17) is frequently used [70] to

compute all N + 1 aα’s, and this is then compensated by the introducing a 1
2

factor

into the zeroth and N th terms of Eq. (2.4). The somewhat unusual “sigma prime

and sigma double prime” inner product notations in the literature are eliminated by

the notations above. While the competing conventions and inner product definitions

(which implicitly incorporate the weights and cα terms) are not wrong, we believe

the above formulation leads to a logical path to generalize the classical weighted least

square formulations to the analogous developments for approximating functions of n

variables, as we show below.

The first four Chebyshev polynomials and the three term recurrence relationship

for arbitrary Tk, k > 0 are given by

T0(ξ) = 1,

T1(ξ) = ξ,

T2(ξ) = 2ξ2 − 1,

T3(ξ) = 4ξ3 − 3ξ,

...

Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ).

(2.20)

The first few Chebyshev polynomials are plotted in Appendix A. AsM andN become

large, the Chebyshev Polynomials constitute a complete set of basis functions, and

therefore, theoretically, a linear combination of these basis functions can represent to

23

arbitrary precision a continuous function f(ξ) on the interval from {−1 ≤ ξ ≤ +1},

given a sufficiently high M and N in Eq. (2.4). Some functions “submit” to accurate

approximation for a small M and N , and in some unusual cases, very large M

and N are required to achieve a small approximation error. Note the absence of a

matrix inverse allows great flexibility and efficiency, analogous to other orthogonal

approximation techniques, such as Fourier series.

The above Chebyshev polynomial formulation is known to be relatively immune

to the so-called Runge Phenomena wherein the approximation errors near the end of

the data at ±1 can become unacceptably large. The dense sampling near the ends

of the approximation interval associated with Eq. (2.13) implicitly reduces errors

near the boundary. Also, the fact that no numerical matrix inversion is required

for orthogonal polynomials means that approximation can be robustly computed at

any desired or required order. These advantages are best illustrated by numerical

examples.

Prior to considering these examples, let us compare the location of the nodes

(sample points) of Eq. (2.13), to the most elementary alternative of uniformly spaced

samples given by ξj = −1 + 2(i/M), i = 0, 1, 2, ...,M . See Figure II.2 for the cases

of M = 2, 3, 4, and 20 samples, showing the cosine sample point density of Eq.

(2.13) versus the uniform sample density. Note the clustering near the ±1 ends of

the interval and the increasing sparseness as approaching zero (the center of the

interval).

24

Figure II.2: Cosine Nodes.

II.C. Numerical Examples for Illustrative Test Functions of One Variable

To appreciate the practical application and utility of the above developments,

let us approximate the test function (Test Function 1)

f(ξ) ≡ ξ

2
+

[(
1
10

+ ξ
)

sin (5ξ − 1)
][

1 + ξ2sin2
(
ξ − 1

2

)] , (2.21)

and use Eq (2.13) to generate measurements with either M = 300 or M = N , with

N swept. The true function is shown in Figure II.3a, and Figures II.3b to II.3d,

along with Figure II.4, display several approximations. For reference, in addition

to the orthogonal Chebyshev orthogonal approximation using the basis functions

{T0(ξ), T1(ξ), ..., TN(ξ)} and the cosine nodes, we also show least square approxima-

tions with the power series polynomial basis functions
{

1, ξ, ξ2, ..., ξN
}

of the same

(M,N) and uniform nodes.

25

The Runge Phenomena is evident in Figure II.3d (note large boundary errors

for the power series approximation versus the more uniform errors of the Chebyshev

approximation). Furthermore, we see in Figure II.4, for the case of high degree

approximation using Chebyshev polynomials, we approximate Test Function 1 with

a residual error approaching a machine zero. All computations are performed using

MATLAB R© with ∼ 16 digit floating point arithmetic.

(a) Test Function 1. (b) Approximations of Test Function 1.

(c) Approximations of Test Function 1. (d) Approximations of Test Function 1.

Figure II.3: Test Function 1.

26

Figure II.4: Approximation Error of Test Function 1 (N = 50,M = 300).

Figure II.5a and II.5b show the maximum errors that result from least square

approximation when M = 300 measurement nodes are used, for the case of the

Chebyshev and power series polynomial approximation of Test Function 1. As is

evident, convergence of the Chebyshev approximation again approaches machine

precision by N = 50, with the maximum error decreasing about one order of magni-

tude when the degree N is increased by ∆N = 3; the linear slope on a log-log scale

permits insight on the N required for given accuracy. This behaviour shows that

spectral accuracy is obtained, limited only by machine precision. On the other hand,

the error slope versus N is much smaller with N < 15 for the power series case (due

to the Runge Phenomena), and the power series can’t be computed accurately for

N > 15 due to poor conditioning of the normal Eqs (2.9), which must be inverted

numerically since power series are non-orthogonal basis functions.

Other issues that frequently arise are the associated accuracy of: (i) differentia-

tion or (ii) integration of the approximating polynomial. The approximation errors

associated with these fundamental processes are of obvious importance in many en-

27

(a) Chebyshev Maximum Approximation

Error.

(b) Power Series Maximum Approximation

Error.

Figure II.5: Chebyshev and Power Series Approximations.

gineering applications. Figure II.6a shows the differentiation errors (derivative of the

approximation minus the analytical derivative of the true Test Function 1); it is ev-

ident that the derivative errors are two orders of magnitude larger (10−13 derivative

approximation error, compared to 10−15 function approximation error). On the other

hand, with reference to Figure II.6b, the definite integral (starting with a zero left

boundary condition) of the approximation minus the true definite integral of Test

Function 1, reveals that the integration errors of 10−16 are an order of magnitude

smaller than the zero mean 10−15 errors in the underlying function approximation.

As is well known, integration is a smoothing process and the zero mean oscilla-

tory errors of least square approximation are averaged out to a degree (an order

of magnitude in this case). On the other hand, differentiation invariably amplifies

the function approximation error. The “take away message” is clear and important;

whenever one has the option, it is better to qualitatively integrate than to differenti-

28

(a) Chebyshev Differentiation Errors

(N = 50).

(b) Chebyshev Integration Errors

(N = 50).

Figure II.6: Differentiation and Integration Errors.

ate, if high precision is sought. The spectral accuracy and integration/differentiation

properties extent fully to approximation of multi dimensional functions as is evident

in the study below.

29

While we do not show the corresponding results for power series approximation,

the advantage lies with the Chebyshev approximation by several orders of magnitude

for intermediate N , and of course, the ∼ 16 digit precision approximation of Test

Function 1 by power series is not computationally feasible unless one resorts to

extended precision arithmetic.

II.D. Orthogonal Approximation: More Than One Variable

Let us consider the approximation of a function of two independent variables

g(x, y), {xmin ≤ x ≤ xmax} , {ymin ≤ y ≤ ymax} , (2.22)

ξ(x) = −1+2 (x− xmin) / (xmax − xmin) , and η(y) = −1+2 (y − ymin) / (ymax − ymin) ,

(2.23)

x(ξ) = xmin + (ξ + 1) (xmax − xmin) /2, and y(η) = ymin + (η + 1) (ymax − ymin) /2.

(2.24)

Substituting Eqs (2.24) into Eq (2.22), we see that we wish to approximate the

function

f(ξ, η) , g (x(ξ), y(η))

≡ g

xmin + (ξ + 1) (xmax − xmin) /2,︸ ︷︷ ︸
x(ξ)

ymin + (η + 1) (ymax − ymin) /2︸ ︷︷ ︸
y(η)

. (2.25)

In the general case, we seek to approximate f(ξ, η) as a linear combination of a

prescribed set of linearly independent basis functions of two variables

{φ00(ξ, η), φ01(ξ, η), ..., φNxNy(ξ, η)}

30

as

f(ξ, η) ≡
Nx∑
α=0

Ny∑
β=0

aαβφαβ(ξ, η). (2.26)

For the case of discrete measurement samples, we introduce a set of sample points

(nodes) as {ξ0, ξ1, ..., ξMx ;Mx > Nx},
{
η0, η1, ..., ηMy ;My ≥ Ny

}
. The residual ap-

proximation error at each measurement node is

rij = f(ξi, ηj)−
Nx∑
α=0

Ny∑
β=0

aαβφαβ(ξi, ηj); {i = 0, 1, ...,Mx; j = 0, 1, ...,My} . (2.27)

or in vector-matrix notation, r = f− Φa, with:

fT =
[
f(ξ0, η0) f(ξ0, η1) · · · f(ξ0, ηMy)

... f(ξ1, η0) f(ξ1, η1) · · · f(ξ1, ηMy)
... · · ·

· · · ... f(ξMx , η0) f(ξMx , η1) · · · f(ξMx , ηMy)
]

aT=

[
a00 a01 · · · a0Ny

... a10 a11 · · · a1Ny

... · · · ... aNx1 aNx2 · · · aNxNy

]
,

31

Φ
=

 φ
0
0
(ξ

0
,η

0
)

φ
0
1
(ξ

0
,η

0
)
··
·

φ
0
N
y
(ξ

0
,η

0
)

φ
1
0
(ξ

0
,η

0
)

φ
1
1
(ξ

0
,η

0
)
··
·

φ
0
0
(ξ

0
,η

1
)

φ
0
1
(ξ

0
,η

1
)
··
·

φ
0
N
y
(ξ

0
,η

1
)

φ
1
0
(ξ

0
,η

1
)

φ
1
1
(ξ

0
,η

1
)
··
·

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ
0
0
(ξ

0
,η
M
y
)

φ
0
1
(ξ

0
,η
M
y
)
··
·

φ
0
N
y
(ξ

0
,η
M

)
φ

1
0
(ξ

0
,η
M
y
)

φ
1
1
(ξ

0
,η
M
y
)
··
·

φ
0
0
(ξ

1
,η

0
)

φ
0
1
(ξ

1
,η

0
)
··
·

φ
0
N
y
(ξ

1
,η

0
)

φ
1
0
(ξ

1
,η

0
)

φ
1
1
(ξ

1
,η

0
)
··
·

φ
0
0
(ξ

1
,η

1
)

φ
0
1
(ξ

1
,η

1
)
··
·

φ
0
N
y
(ξ

1
,η

1
)

φ
1
0
(ξ

1
,η

1
)

φ
1
1
(ξ

1
,η

1
)
··
·

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ
0
0
(ξ

1
,η
M
y
)

φ
0
1
(ξ

1
,η
M
y
)
··
·

φ
0
N
y
(ξ

1
,η
M
y
)

φ
1
0
(ξ

1
,η
M
y
)

φ
1
1
(ξ

1
,η
M
y
)
··
·

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ
0
0
(ξ
M
x
,η

0
)

φ
0
1
(ξ
M
x
,η

0
)
··
·

φ
0
N
y
(ξ
M
x
,η

0
)

φ
1
0
(ξ
M
x
,η

0
)

φ
1
1
(ξ
M
x
,η

0
)
··
·

φ
0
0
(ξ
M
x
,η

1
)

φ
0
1
(ξ
M
x
,η

1
)
··
·

φ
0
N
y
(ξ
M
x
,η

1
)

φ
1
0
(ξ
M
x
,η

1
)

φ
1
1
(ξ
M
x
,η

1
)
··
·

. . .
. . .

. . .
. . .

. . .
. . .

. . .

φ
0
0
(ξ
M
x
,η
M
y
)
φ

0
1
(ξ
M
x
,η
M
y
)
··
·

φ
0
N
y
(ξ
M
x
,η
M
y
)
φ

1
0
(ξ
M
x
,η
M
y
)
φ

1
1
(ξ
M
x
,η
M
y
)
··
·

32

··
·

φ
1
N
y
(ξ

0
,η

0
)
··
·

φ
N
x
0
(ξ

0
,η

0
)

φ
N
x
1
(ξ

0
,η

0
)
··
·

φ
N
x
N
y
(ξ

0
,η

0
)

··
·

φ
1
N
y
(ξ

0
,η

1
)
··
·

φ
N
x
0
(ξ

0
,η

1
)

φ
N
x
1
(ξ

0
,η

1
)
··
·

φ
N
x
N
y
(ξ

0
,η

1
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .

··
·

φ
1
N
y
(ξ

0
,η
M
y
)
··
·

φ
N
x
0
(ξ

0
,η
M
y
)

φ
N
x
1
(ξ

0
,η
M
y
)
··
·

φ
N
x
N
y
(ξ

0
,η
M
y
)

··
·

φ
1
N
y
(ξ

1
,η

0
)
··
·

φ
N
x
0
(ξ

1
,η

0
)

φ
N
x
1
(ξ

1
,η

0
)
··
·

φ
N
x
N
y
(ξ

1
,η

0
)

··
·

φ
1
N
y
(ξ

1
,η

1
)
··
·

φ
N
x
0
(ξ

1
,η

1
)

φ
N
x
1
(ξ

1
,η

1
)
··
·

φ
N
x
N
y
(ξ

1
,η

1
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .

··
·

φ
1
N
y
(ξ

1
,η
M
y
)
··
·

φ
N
x
0
(ξ

1
,η
M
y
)

φ
N
x
1
(ξ

1
,η
M
y
)
··
·

φ
N
x
N
y
(ξ

1
,η
M
y
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .

··
·

φ
1
N
y
(ξ
M
x
,η

0
)
··
·

φ
N
x
0
(ξ
M
x
,η

0
)

φ
N
x
1
(ξ
M
x
,η

0
)
··
·

φ
N
x
N
y
(ξ
M
x
,η

0
)

··
·

φ
1
N
y
(ξ
M
x
,η

1
)
··
·

φ
N
x
0
(ξ
M
x
,η

1
)

φ
N
x
1
(ξ
M
x
,η

1
)
··
·

φ
N
x
N
y
(ξ
M
x
,η

1
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .

··
·

φ
1
N
y
(ξ
M
x
,η
M
y
)
··
·

φ
N
x
0
(ξ
M
x
,η
M
y
)
φ
N
x
1
(ξ
M
x
,η
M
y
)
··
·

φ
N
x
N
y
(ξ
M
x
,η
M
y
)

(2
.2

8)

33

In general, the weighted least square solution is of the same matrix form as

Eq. (2.9), however, the curse of dimensionality is a significant consideration – unless

some special structure is present, the normal equations “blow up” quickly in two

and higher dimensioned spaces, making the computation of high polynomial degree

least square approximation in high dimensioned spaces have to “pass through” a

frequently poorly conditioned large matrix inverse. Fortunately, a number of special

choices of basis functions and associated sample point patterns exist that render

these higher dimensioned approximations tractable.

As a preface to further developments, consider a specific example (from Chapter

1 of Crassidis & Junkins [69] and [31]). Choose the power series as basis functions

φpq(ξ, η) = ξpηq, so we seek best fitting coefficients apq in the approximation

f(ξ, η) ≡
Nx∑
p=0

Ny∑
q=0

apqξ
pηq, over the region : {−1 ≤ ξ ≤ +1} and {−1 ≤ η ≤ +1}.

(2.29)

In particular, if the x and y degrees are chosen Nx = 2 and Ny = 1, and if we select

a uniform grid of points
{
ξi = −1 + 2i

3
, i = 0, 1, 2, 3; ηj = −1 + 2j

3
, j = 0, 1, 2, 3.

}
,

34

then Eqs (2.29) become

f =

f(ξ0, η0)

f(ξ0, η1)

f(ξ0, η2)

f(ξ0, η3)

................

f(ξ1, η0)

f(ξ1, η1)

f(ξ1, η2)

f(ξ1, η3)

................

f(ξ2, η0)

f(ξ2, η1)

f(ξ2, η2)

f(ξ2, η3)

................

f(ξ3, η0)

f(ξ3, η1)

f(ξ3, η2)

f(ξ3, η3)

, Φ =

1 η0 ξ0 ξ0η0 ξ2
0 ξ2

0η0

1 η1 ξ0 ξ0η1 ξ2
0 ξ2

0η1

1 η2 ξ0 ξ0η2 ξ2
0 ξ2

0η2

1 η3 ξ0 ξ0η3 ξ2
0 ξ2

0η3

...

1 η0 ξ1 ξ1η0 ξ2
1 ξ2

1η0

1 η1 ξ1 ξ1η1 ξ2
1 ξ2

1η1

1 η2 ξ1 ξ1η2 ξ2
1 ξ2

1η2

1 η3 ξ1 ξ1η3 ξ2
1 ξ2

1η3

...

1 η0 ξ2 ξ2η0 ξ2
2 ξ2

0η0

1 η1 ξ2 ξ2η1 ξ2
2 ξ2

0η1

1 η2 ξ2 ξ2η2 ξ2
2 ξ2

0η2

1 η3 ξ2 ξ2η3 ξ2
2 ξ2

0η3

...

1 η0 ξ3 ξ3η0 ξ2
3 ξ2

3η0

1 η1 ξ3 ξ3η1 ξ2
3 ξ2

3η1

1 η2 ξ3 ξ3η2 ξ2
3 ξ2

3η2

1 η3 ξ3 ξ3η3 ξ2
3 ξ2

3η3

, a =

a00

a01

.......

a10

a11

.......

a20

a21

.

(2.30)

35

It then follows that the identity weighted least square solution in the form f ∼= Φa

with a chosen to minimize J = 1
2
rTr = 1

2
(f− Φa)T (f− Φa) is as before

a =
(
ΦTΦ

)−1
ΦT f. (2.31)

In reflecting on the above, notice that the typical two dimensional basis function

is just a simple product of a typical pair of one dimensional basis functions, as

in φij(ξ, η) = φi(ξ)φj(η); this basis function factorization property, together with

some constraints on the location of the measurements, gives rise to some important

opportunities for efficiency and high accuracy. Following Section 1.6.2 of Crassidis &

Junkins [69], and in [31], and Appendix B, it turns out that Φ of Eq (2.30) is formed

as the Kronecker product of two elementary matrices (where is associated with one

dimensional approximation using the same grid intervals

Φ =

1 ξ0 ξ2
0

1 ξ1 ξ2
1

1 ξ2 ξ2
2

1 ξ3 ξ2
3

⊗

1 η0

1 η1

1 η2

 = Φx ⊗ Φy, (2.32)

where the Kronecker matrix product operation is defined as

C = A⊗B =

a11B a21B · · · a1βB

a21B a22B · · · a2βB

...
...

. . .
...

aα1B aα2B · · · aαβB

. (2.33)

The Kronecker product C = A⊗B is implemented in MATLAB R© via the command

C = kron(A,B). As discussed in Crassidis and Junkins, the fact that the above Φ

36

matrix is “Kronecker-factorable” as in Eq (2.33) is immediately verified, because Eq

(2.32) generates Eq (2.30). There are important consequences: The un-weighted least

squares solution of Eq (2.33) is alternatively computed from a Kronecker product of

two smaller least square operator matrices as

a =
(
ΦTΦ

)−1
ΦT f =

{[(
ΦT
xΦx

)−1
ΦT
x

]
⊗
[(

ΦT
y Φy

)−1
ΦT
y

]}
f. (2.34)

As proven in Appendix B, Eq (2.34) holds for any Kronecker factorable Φ, as

Φ = Φx ⊗ Φy, not just the above special case (i.e., Eq (2.34) holds for general

maximum rank matrices Φx,Φy, not merely for the special case definitions evident in

Eq. (2.32)). The consequences of Eq (2.34) are immediate: We can solve a larger two

dimensional least squares problem by taking Kronecker matrix product of the “least

squares operators” for two corresponding one dimensional least squares problems.

The dimensions of the matrices that need inverting in Eq (2.34) are qualitatively

the “square root” of the dimensions of the matrix that needs inverting in Eq (2.31).

While this is generally significant, the implications for orthogonal approximation are

even more significant. It can be shown that this result generalizes to higher dimen-

sioned cases, as follows: If Φ = Φx ⊗ Φy ⊗ Φz then the generalization of Eq. (2.34)

to a three dimensional approximation space (x, y, z) or (ξ, η, ζ) can be verified to be

a =
(
ΦTΦ

)−1
ΦT f =

{[(
ΦT
xΦx

)−1
ΦT
x

]
⊗
[(

ΦT
y Φy

)−1
ΦT
y

]
⊗
[(

ΦT
z Φz

)−1
ΦT
z

]}
f.

(2.35)

In using the Kronecker product of three small least square operators to produce

the larger least square operator, we are approximately taking the cube root of the

size of matrices that have to be inverted. Thus, for once, the power of an idea

increases dramatically as the dimension (of the space in which we are approximating

37

f) increases! The generalization to n-dimensions is evident and qualitatively, the

nth root of the matrix dimension (we must invert) is taken. Before addressing the

further advantages of selecting orthogonal basis functions, judicious weighting and

nodes, let us consider how to modify the above to accommodate a positive definite

weight matrix. For the case of weighted least squares:

a =
(
ΦTWΦ

)−1
ΦTW f ≡ Cf ≡

(
Φ
T

Φ
)−1

Φ
T
f ≡ C f. (2.36)

Where we introduce the Cholesky square root W
1
2 of the weight matrix W =

W
1
2W

1
2 , for the diagonal case W = diag

{
W0 W1 W2 ···

}
, it is clear that W

1
2 =

diag

{
W

1
2
0 W

1
2
1 W

1
2
2 ···

}
and the

(
C,C

)
matrices in Eqs (2.36) are defined as

C =
(
ΦTWΦ

)−1
ΦTW, C ≡

(
Φ
T

Φ
)−1

Φ
T
, (2.37)

where Φ̄ ≡ W
1
2 Φ, f = W

1
2 f.

Thus, if Φ is Kronecker factorable, then essentially the same advantages are

enjoyed as in the identity weight matrix case. Now let us consider the weighted

version of Eq. (2.35)

a =
(
ΦTWΦ

)−1
ΦTW f

=
{[(

ΦT
xWxΦx

)−1
ΦT
xWx

]
⊗
[(

ΦT
yWyΦy

)−1
ΦT
yWy

]
⊗
[(

ΦT
zWzΦz

)−1
ΦT
zWz

]}
f,

a =
(

Φ
T

Φ
)−1

Φ
T
f =

{[(
Φ
T

xΦx

)−1

Φ
T

x

]
⊗
[(

Φ
T

y Φy

)−1

Φ
T

y

]
⊗
[(

Φ
T

z Φz

)−1

Φ
T

z

]}
f̄,

(2.38)

where Φ ≡ W
1
2 Φ,Φx ≡ W

1
2
x Φ, Φy ≡ W

1
2
y Φ, Φz ≡ W

1
2
z Φ, f ≡ W

1
2 f.

38

The question naturally arises: What is the relationship between the weight matrices

{W,Wx,Wy,Wz}? Consider the diagonal special case:

Wx = diag {Wx0,Wx1, ...,WxMx}

Wy = diag
{
Wy0,Wy1, ...,WyMy

}
(2.39)

Wz = diag {Wz0,Wz1, ...,WzMz} .

Substitution of Eq (2.39) into Eq (2.38) and some algebra leads to the conclusion

that

W = diag

{
Wx0Wy0Wz0,Wx0Wy0Wz1, ...,Wx0Wy0WzMz

...Wx0Wy1Wz0,Wx0Wy1Wz1, ...

,Wx0Wy1WzMz

... · · · ...WxMxWyMyWz0,WxMxWyMyWz1, ...,WxMxWyMyWzMz

}
or W = Wx ⊗Wy ⊗Wz. (2.40)

As an example, if we have the special case (for Mx = My = 3, anticipating subsequent

applications, we use weights and sample locations corresponding to the Chebyshev

polynomials):

Wx = diag

{
1

2
, 1, 1,

1

2

}
; Wy = diag

{
1

2
, 1, 1,

1

2

}
;

W = Wx ⊗Wy = diag

{
1

4
,
1

2
,
1

2
,
1

4

...
1

2
, 1, 1,

1

2

...
1

2
, 1, 1,

1

2

...
1

4
,
1

2
,
1

2
,
1

4

}
. (2.41)

With these insights, we now generalize to two dimensions the developments leading

up to Eq (2.19), for approximation using Chebyshev orthogonal polynomials. In

particular, we seek a least square approximation of the form

f (ξ, η) ∼=
Nx∑
p=0

Ny∑
q=0

apqφp(ξ)φq(η), over the region : {−1 ≤ ξ ≤ +1} and {−1 ≤ η ≤ +1} .

(2.42)

39

Let the data be denoted f(ξi, ηj) where {−1 ≤ ξi ≤ +1} and {−1 ≤ ηj ≤ +1} with

the sample points located according to the two dimensional cosine grid point distri-

bution:

{ξi = −cos(iπ/Mx), i = 0, 1, 2, ...,Mx and ηj = −cos(jπ/My), j = 0, 1, 2, ...,My} .

(2.43)

Then we have

f =

f(ξ0, η0)

f(ξ0, η1)

...

f(ξ0, ηMy)

................

f(ξ1, η0)

f(ξ1, η1)

...

f(ξ1, η1My)

................

...

................

f(ξMx , η0)

f(ξMx , η1)

...

f(ξMx , ηMy)

, and

Φx =

φ0(ξ0) φ1(ξ0) · · · φNx (ξ0)

φ0(ξ1) φ1(ξ1) · · · φNx (ξ1)

.

..
.
..

. . .
.
..

φ0(ξMx) φ1(ξMx) · · · φNx (ξMx)

 Φx = W
1
2
x Φx

Φx =

φ0(η0) φ1(η0) · · · φNy (η0)

φ0(η1) φ1(η1) · · · φNy (η1)

...
...

. . .
...

φ0(ηMy) φ1(ηMy) · · · φNy (ηMy)

 Φy = W
1
2
y Φy

Φ = Φx ⊗ Φy , Φ = W
1
2 Φ

Wx = diag
(
1
2
, 1, 1, ..., 1, 1

2

)
, anMx ×Mx matrix

Wy = diag
(
1
2
, 1, 1, ..., 1, 1

2

)
, anMy ×My matrix

W = Wx ⊗Wy

= diag

{
1
4
, 1
2
, 1
2
, ... 1

2
, 1
4
,
... 1
2
, 1, 1, ..., 1, 1

2

... 1
4
, 1
2
, 1
2
, ..., 1

2
, 1
4

}

(2.44)

For specificity, we adopt the case that Mx > Nx,My > Ny.

Note that the least squares solution is given by any of Eqs (2.36)-(2.38), with

or without making use of the Kronecker factorization. However, these numerical

solutions take no advantage of the orthogonality of the solution process, and the

one dimensional least square operators assume especially attractive forms for the

case of orthogonal basis functions. In particular, it is evident from considering all

of the above that the least square solution in two dimensions is “constructed” with

no matrix inverse from orthogonal least square operators corresponding to two one-

40

dimensional Chebyshev least square operators as follows:

a = Cf ≡
(
ΦTWΦ

)−1
ΦTW︸ ︷︷ ︸ f

≡C

=
(

Φ
T

Φ
)−1

Φ
T︸ ︷︷ ︸ f

≡C

= C f, (2.45)

where f = W
1
2 f and the Kronceker product recipe for constructing the two dimen-

sional Chebyshev least square operator matrix is the right-most of the following

equations:

C ≡
(

Φ
T

Φ
)−1

Φ
T

=
(
ΦTWΦ

)−1
ΦTW

1
2 = CW− 1

2 ≡ Cx ⊗ Cy, (2.46)

and where Cx =
(

Φ
T

xΦx

)−1

Φ
T

x ≡
(
ΦT
xWxΦx

)−1
ΦT
xW

1
2
x ≡ CxW

− 1
2

x , Cx is from Eq

(2.19), leading to:

Cx =
1

Mx

1
2
T0(ξ0) T0(ξ1) · · · T0(ξMx−1) 1

2
T0(ξMx)

T1(ξ0) 2T1(ξ1) · · · 2T1(ξMx−1) T1(ξMx)

...
...

. . .
...

...

TNx−1(ξ0) 2TNx−1(ξ1) · · · 2TNx−1(ξMx−1) TNx−1(ξMx)

TNx(ξ0) 2TNx(ξ1) · · · 2TNx(ξMx−1) TNx(ξMx)

×

1
2

0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0

0 0 · · · 0 1
2

− 1
2

41

or finally

Cx =
1

Mx

√
2

2
T0(ξ0) T0(ξ1) · · · T0(ξMx−1)

√
2

2
T0(ξMx)

√
2T1(ξ0) 2T1(ξ1) · · · 2T1(ξMx−1)

√
2T1(ξMx)

...
...

. . .
...

...

√
2TNx−1(ξ0) 2TNx−1(ξ1) · · · 2TNx−1(ξMx−1)

√
2TNx−1(ξMx)

√
2TNx(ξ0) 2TNx(ξ1) · · · 2TNx(ξMx−1)

√
2TNx(ξMx)

,(2.47)

with

 x −→ y

ξ −→ η

,

Φx = W
1
2
x Φx, Φy = W

1
2
y Φy, Φ = Φx ⊗ Φy. (2.48)

The final row in the matrix Cx of Eq (2.48) holds for the over-determined (least

square) case (M > N), alternatively, and for the determined (square) M = N case,

the last row of Cx is replaced by[
√

2
2
TNx(ξ0) TNx(ξ1) · · · TNx(ξMx−1)

√
2

2
TNx(ξMx)

]
. (2.49)

We mention, without going through the details, that this formulation readily extends

to n-dimensions, for example for approximating a function in three dimensions, Eq.

(2.46) are simply

C =
(
ΦTWΦ

)−1
ΦTW = Cx ⊗ Cy ⊗ Cz, W ≡ Wx ⊗Wy ⊗Wz, f = W

1
2 f, (2.50)

where Cz has the same form as Eqs (2.48,2.48) and the coefficients are given by Eq.

(2.34). The flowchart explaining the 2-D approximation is given in Figure II.7

In general, let us consider a function of n independent variables

g(x1, x2, · · · , xn), {ximin
≤ xi ≤ ximax} , {i = 1, 2, · · · , n} , (2.51)

42

Figure II.7: 2-D Approximation.

ξi(xi) = −1 + 2 (xi − ximin
) / (ximax − ximin

) , (2.52)

xi(ξi) = ximin
+ (ξi + 1) (ximax − ximin

) /2. (2.53)

Substituting Eqs (2.53) into Eq (2.51), we see that we wish to approximate the

function

f(ξ1, ξ2, · · · , ξn) , g (x1, x2, · · · , xn)

f(ξi) , g (xi(ξi)) ≡ g

ximin
+ (ξi + 1) (ximax − ximin

) /2︸ ︷︷ ︸
xi(ξi)

. (2.54)

In the general case, we seek to approximate f(ξi) as a linear combination of a pre-

scribed set of linearly independent basis functions of two variables

{
φ00···0(ξi), φ00···1(ξi), ..., φNx1Nx2 ···Nxn (ξi)

}
as

f(ξi) = f(ξ1, ξ2, · · · , ξn) ≡
Nx1∑
α1=0

Nx2∑
α2=0

· · ·
Nxn∑
αn=0

aα1α2···αnφα1α2···αn(ξ1, ξ2, · · · , ξn). (2.55)

43

For the case of discrete measurement samples, we introduce a set of sample points

(nodes) as
{
ξi0 , ξi1 , ..., ξiMxi

;Mxi > Nxi

}
. The residual approximation error at each

measurement node is

rik = r1k2k···nk = f(ξ1k , ξ2k , · · · , ξnk)−
Nx1∑
α1=0

Nx2∑
α2=0

· · ·
Nxn∑
αn=0

aα1α1···αnφα1α2···αn(ξ1k , ξ2k , · · · , ξnk),

(2.56)

where the indices {ik =(1k, 2k, · · · , nk)= 0, 1, ..., (Mx1 ,Mx2 , · · · ,Mxn)} and k indi-

cates the kth measurement for the ith variable. Eq. (2.56) is alternatively written in

vector-matrix notation, r = f−Φa. The weighted least squares solution is computed

from a Kronecker product of n smaller least square operator matrices as:

a =
(
ΦTWΦ

)−1
ΦTW f ≡ Cx1 ⊗ Cx2 ⊗ · · · ⊗ CxnW

1/2f, (2.57)

where Cxi = CxiW
−1/2
xi , W = Wx1 ⊗Wx2 ⊗ · · · ⊗Wxn , and a = vec {a1k2k···nk}, and

f = vec {f1k2k···nk}. The flowchart explaning the n-D approximation is shown in

Figure II.8

44

Figure II.8: n-D Approximation.

II.E. Numerical Examples for Illustrative Test Functions of Two Vari-

ables

To construct some two dimensional test cases that relate closely to the above

one dimensional examples, we define Test Function 2: f(ξ, η) ≡ G(ξ)G(η) where

G(x) =
x

2
+

([(
1
10

+ x
)
sin(5x− 1)

][
1 + x2sin2

(
x− 1

2

)]) . (2.58)

Below in Figure II.9 is an illustration of the cosine nodal distribution in one, two

and three dimensional spaces; the generalization to a hypercube is straightforward.

We now consider several cases analogous to the one dimensional case, but we omit

detailed but straightforward discussions and focus on approximation ideas to vitally

important problems in astrodynamics. Similar experiments as in the Test Func-

tion 1 case are performed using Eq (2.42) to generate measurements with either

Mx = My = M = 80 or Mx = My = M = N , with N swept. The true function

45

is shown in Figure II.10 and in Figures II.11 and II.12 are several approximations.

The Runge Phenomena as evident in Figure II.12b and II.12d (note large bound-

ary errors for the power series approximation versus the more uniform Chebyshev

approximation, which is concentrated in the center) can be expected to generalize

for higher dimensioned cases. We approximate Test Function 2 (Figure II.10) with

a residual error approaching a machine zero. All computations are performed using

MATLAB R© with 16 digit floating point arithmetic.

Figure II.9: Multidimensional Cosine Meshes for Discrete Orthogonality Chebyshev

Polynomials in n Dimensional Approximation.

Figure II.11 shows the approximation results for the Chebyshev and power se-

ries polynomial approximation of Test Function 2 for (M = N = 5, 10, 30). The

power series experienced large Runge errors near the boundary and the least square

solutions “died” altogether due to ill-conditioning around N ∼ 15. Figure II.12a to

46

Figure II.10: Test Function 2.

II.12d show the approximation error for the Chebyshev and power series polynomial

approximation of Test Function 2 for (M = N = 10, 30). Note for low degree ap-

proximation that the power series works fairly well in the center of the interval, but

encounters large errors near the boundary (see Figures II.12b, II.12d). The maximum

errors are shown in Figure II.12e and II.12f that result from least square approxima-

tion when M = 80 measurement nodes are used, for the case of the Chebyshev and

power series polynomial approximation of Test Function 2. The Chebyshev approx-

imations converged to 8 digit accuracy around N = 20, and ∼ 15 digit accuracy is

obtained (essentially a machine zero approximation error) around N = 50.

The uniform convergence of the Chebyshev approximation again approaches

machine precision by N = 50, with the maximum error decreasing about one order

of magnitude every time the degree N is increased by ∆N = 3. On the other

hand, the slope is much less for N < 15 for the power series case (due to the Runge

Phenomena), and the power series cannot be computed accurately above N ∼ 15 due

47

to poor conditioning of the normal Eqs (2.9), which must be inverted numerically

for the case of non-orthogonal basis functions.

The numerical examples for illustrative test functions of three variables, Test

Function 3, is discussed in Appendix D. Test Function 3 is defined as f(ξ, η, ζ) ≡

G(ξ)G(η)G(ζ) where

G(x) =
x

2
+

([(
1
10

+ x
)
sin(5x− 1)

][
1 + x2sin2

(
x− 1

2

)]) .

48

(a) Chebyshev Approximation. (b) Power Series Approximation.

(c) Chebyshev Approximation. (d) Power Series Approximation.

(e) Chebyshev Approximation.

(f) Contours of Chebyshev Approximation

Superimposed on True Contours

Figure II.11: Approximation of Test Function 2.

49

(a) Chebyshev Error. (b) Power Series Error.

(c) Chebyshev Error. (d) Power Series Error.

(e) Chebyshev Maximum Approximation

Error.

(f) Power Series Maximum Approximation

Error.

Figure II.12: Approximation Error of Test Function 2.

50

CHAPTER III

ORTHOGONAL FINITE ELEMENT REPRESENTATIONS OF THE

GEOPOTENTIAL

III.A. Introduction

In the following discussion we first consider the construction of an orthogonal

FEM approximation to the gravity potential field model determined from the Gravity

Recovery And Climate Experiment (GRACE). The GRACE Gravity Model has been

publicly released [34,35,71]. Access to the model’s coefficients and other descriptive

files about GRACE were obtained from [35, 71]. After presenting the results for the

GRACE gravity model, we then consider the analogous FEM approximation of the

(200, 200) EGM 2008 gravity model [36], in order to see the effects of including the

higher order gravitational anomalies.

The classical solution to Laplace’s equation for gravity is adopted using the

globally valid spherical harmonic gravity potential model, defined by [25,34,37]:

U(r, λ, φ) ≡ µ

r

∞∑
n=0

n∑
m=0

(
R⊕
r

)n
Pm
n (sinφ) [Cm

n cosmλ+ Smn sinmλ] , (3.1)

where the coordinate r is the geocentric radius (i.e. distance from the Earth’s center

to the typical point near the Earth), λ and φ are the geocentric (geographic) latitude

and longitude respectively, and µ = GM is the Earth’s gravitational-mass constant,

and R⊕ is the Earth equator radius, and Cm
n and Smn are spherical harmonic gravity

coefficients, Pm
n are the fully normalized associated Legendre polynomials of degree n

and order m. The acceleration coordinate systems can be obtained from the potential

51

using the classical gradient relationships in spherical or rectangular coordinates as

follows.

Spherical Rectangular

South : GS = −1

r

∂U

∂φ

East : GE = − 1

r cosφ

∂U

∂λ

Radial : GR =
∂U

∂r

⇐⇒

Gx =

∂U

∂x

Gy =
∂U

∂y

Gz =
∂U

∂z

The spherical harmonic gravity model has obvious utility, but if used to represent

the gravity field to high precision, one encounters three main challenges:

1. Choosing a finite upper limit of the series defines the accuracy (the more we

know about gravity, the more terms are required and the more it costs to

compute acceleration)

2. Convergence is very inefficient and slow for n > 2, so tens of thousands of terms

are frequently required to obtain a sufficiently high accuracy representation

3. The north and south poles represent non-free singularities of the usual spherical

coordinates (longitude is undefined at the north and south poles)

In view of the slow convergence of global gravity models, we are motivated to intro-

duce a finite element model (FEM) local gravity representations in the anticipation

that much lower degree functions can be used to efficiently model and compute

local gravity. The literature on this subject initiated with Junkins’ classical devel-

opments [24–26, 44] and has recently been explored by other others [41–43]. In our

developments herein, we have solved a key historical challenge implicit in this class

of methods for geopotential representation: How do we structure the FEM models to

52

render them radially adaptive and efficient, so that the resulting algorithms “auto-

matically know” about the rapid radial decay of the high frequency terms and more

to the point, which terms in the FEM representation to retain, as a function (mainly)

of radial distance from geocenter. Addressing this issue herein, we show below that

a much improved efficiency can be achieved.

We consider the total gravity potential model split into reference and disturbance

gravity terms, where, as the most usual example, the global reference gravity term

includes the O(1) 2-body and the O(10−3) J2 oblateness terms whereas “everything

else” (all the higher degree and order terms) are considered pertubative gravity

disturbance to the reference model. The potential and the acceleration are

U(r, λ, φ)︸ ︷︷ ︸
Total

= U2B(r, λ, φ) + UJ2(r, λ, φ)︸ ︷︷ ︸
Reference

+4U(r, λ, φ)︸ ︷︷ ︸
Disturbance

,

r̈ = −∂U
∂r︸ ︷︷ ︸

Total

= − ∂

∂r

{
GM

r

[
1− 3

2
J2

(
R⊕
r

)2 (
3 sin2(φ)− 1

)]}
︸ ︷︷ ︸−

∂

∂r
{4U}︸ ︷︷ ︸

Disturbance
Reference

. (3.2)

Since the reference potential is compact and efficient, and contains the macro-

scopic global gravity model, our finite element model approximation is applied only

to the perturbative disturbance gravity.

III.B. Finite Element Model

As a specific example FEM grid, a sphere of radius R⊕ is covered by a 2-D mesh

(4 × 4) degree (λ, φ) : 0 ≤ λ ≤ 360◦;−88◦ ≤ φ ≤ 88◦ cellular grid, except for the

polar caps of angular radius 2 degrees. We mention that this is a for example FEM

grid for illustration purposes. At arbitrary r {rmin = R⊕ ≤ r ≤ rmax = 7R⊕}, a large

53

family of spherical shells is sampled using the cosine distribution Eq.(3.3), (3.4). Let

the gravity data U(r = constant, λ, φ) on a given spherical shell be transformed into

U(ξ = constant, ζi, ηj) where {−1 ≤ ζi ≤ +1} and {−1 ≤ ηj ≤ +1} with the sample

points located according to the cosine distribution. We can conceive of the the gravity

modeling as representing gravity U(ζ, η) accurately on a ”sufficiently dense” set of

concentric spherical surfaces. The radial coordinate variation is unique (compared

to λ, φ) because of the 1/rn terms.

III.B.1. Radial Smart Sampling

The transformed position (r) obeys smart “cosine-like” transformation as a func-

tion of the transformed radial variable ξ:

r = rmin + (rmax − rmin)
[
1− cos

(π
4

(1 + ξ)
)]
, ξ =

4

π
cos−1

(
1− r − rmin

rmax − rmin

)
− 1,

(3.3)

where

 −1 ≤ ξ ≤ +1

rmin ≤ r ≤ rmax

where and rmin = R⊕ and rmax = 7R⊕. This transformation is intended, for uniform

samples, to generate much denser r samples on the left (near rmin) and less dense

on the right (near rmax) than the classical cosine sampling, see Figure III.1. The

dense sampling near ξ = −1, r = rmin = R⊕ ensures more dense measurements

where the gravity perturbations are maximum and have the largest local significant

differential changes. Since the gravity anomalies “die out” rapidly with increasing

radius, less dense sampling is anticipated for increasing r. The transformed radius

variable ξ of Eq. 3.3 was developed heuristically and is adopted in lieu of r as the

independent variable. In order to satisfy the Chebyshev orthogonality conditions for

54

radial approximations, ξ is actually sampled non-uniformly using the further cosine

transformation:

ξj = −cos(jπ/2M), j = 0, 1, 2, ...,M. (3.4)

III.B.2. Radial Adaption

It is important to determine the required polynomial order, as a function of

radius, to adaptively maintain an approximation error tolerance. Radial order adap-

tation enables enormous speedups in the computation of the state of the art gravity

models. For this insight, the required acceleration error tolerance is determined as a

function of the polynomial order N . For instance, a (4×4) degree square area at the

Earth’s surface is sampled using 2D Chebyshev distribution. The convergence error

is defined by the maximum absolute error between the truth (GRACE or EGM2008

model) and the approximation acceleration. It is chosen to be constrained by a

maximum approximation error of 10−9 m s−2.

Figure III.1: Cosine-like Sampling for the Radial Distance. Note Density of Nodes

is Highest Near rmin.

55

III.B.3. Orthogonal Approximation of the Gravitational Acceleration

Let the gravity data U(r, λ, φ) be transformed into U(ξi, ζj, ηk) where −1 ≤

ξi, ζj, ηk ≤ +1 with the sample points located according to the cosine distribution.

Note that the transformed position (r) obeys smart cosine-like transformation as a

function of the transformed radial variable (ξ). We first review the approximation

of the three components of the gravity acceleration:

gx(ξi, ζj, ηk) ∼=
Nx∑
α=0

Ny∑
β=0

aαβ(ξi)φαβ(ζj, ηk) = ΨT
x (ζj, ηk)ax(ξi)

gy(ξi, ζj, ηk) ∼=
Nx∑
α=0

Ny∑
β=0

aαβ(ξi)φαβ(ζj, ηk) = ΨT
y (ζj, ηk)ay(ξi) (3.5)

gz(ξi, ζj, ηk) ∼=
Nx∑
α=0

Ny∑
β=0

aαβ(ξi)φαβ(ζj, ηk) = ΨT
z (ζj, ηk)az(ξi)

where (i, j, k)= 0, 1, · · · ,(Mr,Mλ,Mφ). If we assume that we use the same basis

functions for the acceleration components; i.e. Ψ = Ψx = Ψy = Ψz, then Eq. (3.5)

is written in the following compact form:

g(ξi, ζj, ηk) =

gx(ξi, ζj, ηk)

gy(ξi, ζj, ηk)

gz(ξi, ζj, ηk)

 =

[
(Ψ(ζj, ηk)⊗ In)⊗ In

]
︸ ︷︷ ︸

[Υ]

ax(ξi)

ay(ξi)

az(ξi)

︸ ︷︷ ︸

ρ

(3.6)

or

g(ξi, ζj, ηk) = [Υ(ζj, ηk)]ρ(ξi) (3.7)

III.B.4. Orthogonal Approximation of the Gravitational Potential

Here we consider approximating the gravity potential instead of the accelera-

tion vector. We use the approximated potential to generate the higher derivatives

56

(including the acceleration). Let us first discuss the consequences of this approach:

1. Accuracy: Approximation error increases by performing derivatives. This issue

is treated by imposing a tolerance on the coefficients approximation. However,

this is not a solution.

2. Memory: Approximating one variable (gravity potential) is much easier (and

requires less memory) than approximating three variables (acceleration vector).

3. Speed: Fast approximation (as less coefficients are needed).

The approximation of the gravity potential is given by

U(ξi, ζj, ηk) ∼=
Nx∑
α=0

Ny∑
β=0

aαβ(ξi)φαβ(ζj, ηk) = ΨT (ζj, ηk)a(ξi) (3.8)

where the coefficients aαβ(ξi) are also fitted in the radial direction using the following

approximation

aαβ(ξi) ∼=
Nz∑
γ=0

bαβγ φγ(ξi) = ΦT (ξi)b
αβ (3.9)

Equation (3.9) is written as

U(ξi, ζj, ηk) ∼=
Nx∑
α=0

Ny∑
β=0

{
Nz∑
γ=0

bαβγ φγ(ξi)

}
φαβ(ζj, ηk) = ΨT (ζj, ηk)Φ

T (ξi)b
αβ (3.10)

Then higher derivatives are obtained by differentiating the approximation/polynomials

in Eq. (3.10). For example, the acceleration coordinate systems are obtained from

the potential using the classical gradient relationships in spherical or rectangular

57

coordinates as

Spherical Rectangular

South : GS = −1

r

∂U

∂φ

East : GE = − 1

r cosφ

∂U

∂λ

Radial : GR =
∂U

∂r

⇐⇒

Gx =

∂U

∂x

Gy =
∂U

∂y

Gz =
∂U

∂z

III.C. GRACE Finite Element Representations

The Gravity Recovery And Climate Experiment (GRACE) has been publicly

released [34, 35, 71]. Access to the model’s coefficients and other descriptive files

about GRACE were obtained from [35, 71]. For high precision orbit computation,

we consider all 12, 246 terms out to (m,n) = (156, 156) in the GRACE spherical

harmonic model. We note that the gradient of Eq. (3.2), when computed using the

spherical harmonic series for ∆U , generates almost 40, 000 terms to evaluate each

local acceleration, and this is the motivation for local approximations. We further

note, when we consider the (200, 200) EGM 2008 model, 20, 100 terms are required

to model the potential, whereas, representing the three components of acceleration

requires over 60, 000 terms, an increase of 50% compared to the Grace Model.

As mentioned above, we selected a conservative maximum approximation er-

ror of 10−9 m s−2 as the tolerance for errors in replacing the high degree and order

gravity model by FEM approximation. Figure III.2 below shows maximum abso-

lute error of the approximated “disturbance” acceleration (x, y, and z components)

as function of Chebyshev polynomial order N . In this case, the reference gravity

potential is simply the point mass term and the J2 perturbation, everything else is

58

approximated and plotted in (Figure III.4). The (156, 156) GRACE model is adopted

as the truth and the errors between the FEM approximation error are reduced by

adjusting the degree of the Chebyshev polynomials to achieve convergence to an er-

ror smaller than the tolerance 10−9 m s−2. At the Earth’s surface, with the (4 × 4)

degree FEM cell size, this is achievable at N = 10, whereas at rmax = 7R⊕, the

worst case error 10−9 m s−2 is achieved with only a first degree (N = 1) model for

the gravity disturbance acceleration (as an additive local correction to the reference

global model). This indicates that the local gravity perturbation potential at the

Earth’s surface is approximated by 121 orthogonal polynomial terms, whereas only

a linear approximation of local disturbance acceleration is required at rmax = 7R⊕.

It is to be expected that the required polynomial order decreases monotonically as

we move from the Earth’s surface rmin = R⊕ out to rmax = 7R⊕, outside of the GEO

radius: r
GEO

= 6.623R⊕; we found that only first degree polynomials are required at

rmax = 7R⊕, and thus only 4 polynomial terms are needed for all three components

of acceleration. On a serial machine, the FEM approach is 2 orders of magnitude

more computationally efficient at the Earth’s surface than the (156, 156) spherical

harmonic expansion, and due to the radial adaptation feature of this approach, the

FEM computational cost is, remarkably, reduced an additional ∼ 2 orders of magni-

tude for 1.02R⊕ < r < rmax = 7R⊕. This means for routine exo-atmosphere orbit

calculations, the FEM gravity model is computed with 9 to 10 digit accuracy with

a 4 order of magnitude reduction in CPU time, relative to using the correspond-

ingly accurate spherical harmonic representation. Radial adaptation of the FEM

computation is readily implemented by a one-time a priori computational process

59

(at the time the FEM model is established) to find the maximum degree to main-

tain a prescribed accuracy tolerance, as a function of radial displacement through

each FEM element. For redundant least squares representation using the Chebyshev

methods developed earlier in chapter II, the residuals associated with approximation

of gravity on the family of spherical shells, together with the numerical size of the

coefficients, are readily exploited to establish N(r) that guarantees the prescribed

accuracy when computing acceleration from formulas analogous to Eq (2.42). The

results for are shown in Figures III.5a and III.5b, so the maximum degree required

quickly decreases from 10 at the surface of the Earth down to 2 at radial distances

greater than 1.04R⊕.

The ∼ 4 order of magnitude computational speedup by this approach can be

even further enhanced by introduction of parallelization in conjunction with the

Chebyshev-Picard methods discussed below where many gravitational acceleration

evaluations at judicious nodal points along a known approximate path can be simul-

taneously computed in an iterative path approximation algorithm. In most cases,

these path approximations are found to converge over 2 to 3 orbits and therefore

allow 2 or more orders magnitude additional speedup. Supercomputer orbit compu-

tation performance with a desktop computer is therefore possible by using a fusion

of adaptive orthogonal FEM gravity approximation and the Chebyshev-Picard orbit

path approximation method.

Figure III.3 shows radial disturbance acceleration on the Earth’s surface from

a FEM representation with 4 × 4 degree square using N = 10th degree approxima-

tion. The FEM model agrees with 10 significant digits everywhere with the parent

60

(156, 156) spherical harmonic model and the GRACE coefficients. Figure III.4 is the

corresponding FEM disturbance potential on the Earth’s surface which replaces the

parent spherical harmonic series everywhere with > 10 accurate digits.

Figure III.2: (GRACE 156× 156) Maximum Error of Chebyshev FEM Gravity

Approximation (m s−2) as a Function of Polynomial Order N , for Various Radial

Distances.

We discuss some other details of the FEM representation. As previously men-

tioned, a key step is using the classical cosine distribution for the transformed radius

variable ξ, which is then mapped through the smart densification formula into r

to satisfy the Chebyshev orthogonality conditions for radial approximations. This

61

Figure III.3: (GRACE 156× 156) Radial Perturbative FEM Gravity

Approximation at the Earth’s Surface (m s−2).

step is highly desirable to efficiently and accurately compute Chebyshev polynomial

coefficients fits aij(ξ(r)) as a function of radius using the standard equations for

the orthogonal Chebyshev functions. Observing Figure III.2, since, the gravity field

within the range of interest [rmin = R⊕ up to rmax = 7R⊕] has significant variation

as r varies, it becomes useful to divide the model into two concentric spherical shell

regions for the sake of FEM representation:

Region I Atmospheric region r ∈ [R⊕, 1.02R⊕]

Region II The mostly exo-atmospheric region r ∈ [1.02R⊕, 7R⊕].

To establish FEM gravity modeling, each region is sampled on a family of spher-

ical shells in each region using cosine-like measurement distribution of radii and a

62

Figure III.4: (GRACE 156× 156) Global FEM Gravity Potential Approximation

(m2 s−2).

family of 4◦ × 4◦ (λ, φ) FEM elements are approximated over each spherical corre-

sponding to a given r. The coefficients of the (λ, φ) FEM approximations of gravita-

tional acceleration on each spherical surface boundary are considered a function of

r, and this gives rise to a natural way to accomplish radial adaptation.

Figures III.5a and III.5b show the polynomial order required as a function of

spherical shell radius r, over each of the two regions, to achieve maximum approxi-

mation error of 10−9 m s−2. For Region I, the maximum polynomial order is found

sufficient in the most anomalous spherical shell at the Earth’s surface, while in Region

II the maximum polynomial order N = Nmax = 7 is needed nearest the Earth, but a

much smaller N is required at large r. To compute acceleration from the FEM model,

63

we use the maximum polynomial order that ensures consistency with the full poly-

nomial model, but retain for orbit computation only the Nrqrd(r) < Nmax terms that

contribute at that r. So for larger r, an order of magnitude of further computational

speed improvement is achieved by only including the significantly non-zero terms.

The inherent cosine sampling of the radial position allows us to use the standard

equations for orthogonal least square Chebyshev approximation to obtain the poly-

nomial coefficients. To demonstrate by example, Figures III.5e and III.5f show the

polynomial coefficient a00(r) as a function of the radial position, @ λ = 120◦, φ = 0◦.

This first term follows the same behavior as the average disturbance acceleration

x, y, and z components respectively, since all other basis functions have an average

value of zero, see Figures III.5c and III.5d. All coefficients exhibit smooth behavior

and are fit easily with low-polynomial order functions of ξ.

The computational speed of the FEM versus typical spherical harmonic GRACE

(156, 156) [35, 71] favors the highly accurate FEM approximation by about four or-

ders of magnitude. Figure III.6 shows the more detailed computational comparison

between the two representations of gravity. It is obvious that the computational

speed of the FEM decreases as the required polynomial order decreases (i.e. further

dramatic computational reduction as r increases).

Alternative to approximate the gravity acceleration, one can interpolate the

geopotential using the same approach, as discussed in subsection III.B.4. The

GRACE 156 × 156) Global FEM Gravity Potential Approximation (m2 s−2), at the

earth’s surface, is shown in Figures III.4 and C.1.

64

(a) Polynomial Order N versus r. (b) Polynomial Order N versus r.

(c) Approx. Acceleration Components. (d) Approx. Acceleration Components.

(e) Polynomial Coefficients a00 versus r.

r ∈ (R⊕, 1.02R⊕).

(f) Polynomial Coefficients a00 versus r.

r ∈ (1.02R⊕, 7R⊕).

Figure III.5: (GRACE 156× 156) Global FEM Gravity and Associated Polynomial

Coefficients Approximation.

65

(a) Computational Speed. (b) Computational Speed.

Figure III.6: (GRACE 156× 156) Computation Speed of the FEM versus Spherical

Harmonic.

66

Figure III.7: (EGM2008 200× 200) Maximum Error of Chebyshev FEM Gravity

Approximation (m s−2) as a Function of Polynomial Order N , for various Radial

Distances.

III.D. The EGM2008 Finite Element Representations

As another example, the Earth Gravity Model EGM2008 (200, 200) FEM model

has also been generated and the results, including detailed comparisons, are pre-

sented in Figures III.7-III.11. The official Earth Gravitational Model EGM2008 has

been publicly released by the National Geospatial-Intelligence Agency (NGA) EGM

Development Team. This gravitational model is complete to spherical harmonic de-

67

gree and order 2159, and contains additional coefficients extending to degree 2190

and order 2159 [36]. Full access to the model’s coefficients and other descriptive

files about EGM2008 are obtained using the MATLAB R© Aerospace toolbox. The

(200, 200) EGM2008 model was adopted as the truth and the errors between the FEM

approximation error are reduced by adjusting the degree of the Chebyshev polynomi-

als to achieve convergence to an error smaller than the tolerance 10−9 m s−2. Figure

III.7 below shows maximum absolute error of the approximated “disturbance” ac-

celeration (x, y, and z components) as function of Chebyshev polynomial order N .

At the Earth’s surface, with the (4 × 4) degree FEM cell size, this is achievable

at N = 16, whereas at rmax = 7R⊕, the worst case error 10−9 m s−2 is achieved

with only a second degree (N = 2) model for the gravity disturbance acceleration.

This indicates that the local gravity perturbation of the point mass potential at the

Earth’s surface is approximated by 289 orthogonal polynomial terms, whereas only

a quadratic approximation is required at rmax = 7R⊕. Also, we found that only

N = 2 second degree polynomials are required at rmax = 7R⊕, and thus only 9 poly-

nomial terms are needed for all three components of acceleration. For redundant

least squares representation using the Chebyshev methods developed earlier in this

dissertation, the residuals associated with approximation of gravity on the family of

spherical shells, together with the numerical size of the coefficients can be readily

exploited to establish N(r) to guarantee the prescribed accuracy when computing

acceleration from formulas analogous to Eq (2.42). The results for are shown in

Figures III.10a and III.10b, so the maximum degree quickly decreases from 16 at the

surface of the Earth down to 2 at radial distances greater than 1.04R⊕. Figure III.9

68

shows the global FEM gravity perturbative acceleration on the Earth’s surface using

N = 16. Of course, as r increases, the gravitational topography quickly becomes

much smoother.

Observing Figure III.8, since, the gravity field within the range of interest

[rmin = R⊕ up to rmax = 7R⊕] results in significant differential changes along the ra-

dial position r, it becomes elegant to subdivide the problem into spherical shells based

on the spectral content of gravity perturbations in each region. For instance, nearest

the earth and within the Earth’s atmosphere (r ≤ 1.02R⊕), the gravity perturba-

tions are strongest and due to the atmospheric drag, the overwhelming majority of

orbit computations occur outside this spherical shell. This observation motivates the

adopting of two spherical shells: (1) Atmospheric region r ∈ [R⊕, 1.02R⊕], and (2)

exo-atmospheric region r ∈ [1.02R⊕, 7R⊕]. For modeling the gravity perturbations,

each region is sampled using cosine-like distribution to define a family of spherical

shells and on each r = constant shell a family of 4×4 degree FEM shells are approxi-

mated over each surface. While we can conceive of the number of such surfaces must

approach infinity, we find that modeling surface gravity a finite number of spherical

shells (< 50) and then using radial interpolation of the surface gravity coefficients

provides excellent 3D approximation of gravity, approaching machine precision. We

adopted 10 digit accuracy tolerance for the computations described below. Figures

III.10a and III.10b show the polynomial order required for each region to achieve

maximum approximation error of 10−9 m s−2. For region I, the maximum polyno-

mial order N = Nmax = 16 is used, while in region II the maximum polynomial order

N = Nmax = 13 is used. We remark that the two dimensional approximations on

69

each surface are “promoted” to three dimensional by considering their coefficients to

be a function of radius and representing each coefficient as an orthogonal Chebyshev

function of radius. However, as radius increases there are only some lower-order

terms that are contributing when Nreqd(r) < Nmax. This provides the motivation for

radial adaption to retain only those terms that contribute significantly and enable

another important computational speed improvement. The inherent cosine sampling

of the radial position allows us to use the previously derived equations for orthogo-

nal approximation of each the polynomial coefficients as a function of (transformed)

radius. To capture qualitatively the rapid radial decay of the gravity anomalies in a

typical finite element, refer to Figure III.8, where we show the radial gravitational

acceleration perturbation contoured on three surface slices of a typical finite ele-

ment, where the three spherical shell surface slices have radii r = 1, 2, and 3R⊕.

As a further illustration, Figures III.10e and III.10f show the free term polynomial

coefficient a00(r) as a function of the radial position, @ λ = 120◦, φ = 0◦. This free

term is found to qualitatively follow the same asymptotic behavior of the average

disturbance acceleration x, y, and z components respectively, see Figures III.10c and

III.10d. All higher non-zero coefficients aαβ have been found to be analogous smooth

functions that are fit easily with low-polynomial order orthogonal functions of ξ(r).

Observe that not only the irregularity of the gravity variations decays rapidly, but

also, the norm of the gravity decays rapidly. This means, for example, that at most

3 significant figure approximation of the small radial gravity perturbations evident

at r = 3R⊕ are required to achieve the 10−9 m s−2 accuracy tolerance.

The computational speed of the FEM versus typical spherical harmonic EGM2008

70

(200, 200) [36] favors the FEM by about five orders of magnitude. Figure III.11 shows

the comparison between the two computational methods. It is obvious that the com-

putational efficiency of the FEM increases as the required polynomial order decreases.

As is evident, comparing Figures III.6 and III.11, the relative advantage of using the

FEM representation is greater by almost one order of magnitude for the (200, 200)

model than for the (156, 156), due to the expense of evaluating 60, 000 terms of the

(200, 200) model versus 30, 000 terms of the (156, 156) model.

Figure III.8: (EGM2008 200× 200) Radial Gravity Contoured on Three Spherical

Shells.

71

Figure III.9: (EGM2008 200× 200) Radial Perturbative FEM Gravity

Approximation at the Earth’s Surface [m s−2].

72

(a) Polynomial Order N versus r. (b) Polynomial Order N versus r.

(c) Approx. Acceleration Components. (d) Approx. Acceleration Components.

(e) Polynomial Coefficients a00 versus r,

r ∈ (R⊕, 1.02R⊕).

(f) Polynomial Coefficients a00 versus r,

r ∈ (1.02R⊕, 7R⊕).

Figure III.10: (EGM2008 200× 200) Global FEM Gravity and Associated

Polynomial Coefficients Approximation.

73

(a) Computational Speed. (b) Computational Speed.

Figure III.11: (EGM2008 200× 200) Computation Speed of the FEM versus

Spherical Harmonic.

III.E. Memory Saving

One way to generate the finite element volumes on a sphere is to begin with

uniform (∆λ,∆Φ) region using the classical spherical coordinate system. Figure

III.12 shows uniform (∆λ,∆Φ) patches and the coordinate system on which the

spherical coordinates are based. Note that φ is constrained to vary over π, i.e. the

difference between φmax and φmin is no more than π. In a similar manner, λ is

constrained over 2π and as such the difference between λmax and λmin is no more

than 2π.

The spherical patch size (∆φ×∆λ) of the finite-element base over the Earth’s

surface together with the accuracy tolerance, determine the number of the polynomial

order required. This indicates that the number of coefficients in each cell is also

a function of the cell size. Figure III.13 shows the required polynomial order N

74

to maintain a certain approximation error tolerance for a finite element size. It

is clear that at certain error tolerance, the number of approximating coefficients

increases as the size of the finite-element cell increases. This is basically the key

factor to determine how many coefficients for each cell are required to approximate

the gravity model (truth), maintaining the maximum approximation error below a

specific tolerance. Therefore, we require more memory for the coefficients as we

decrease the approximation tolerance. Note that near the poles, the finite element

size is smaller in the east-west direction than near the equator. For example, if

we set the size at the equator to produce approximation error less than a specific

tolerance, then the approximation error will further decrease as we move north or

south. In other words, near the poles we may need not need to use the same number

of coefficients as we use near the equators. For the finite element model, the total

number of cells over the Earth’s is 90 × 44 = 3960, if the classical spherical

coordinate systems is used. To save memory, this number of cells needs be reduced,

while the required approximation tolerance is maintained. This motivated us to

explore the following two directions: (1) Map equalled-area cells all over the earth’s

surface, and (2) Perform north/South adaption.

III.E.1. Equalled-Area Shells

A new method for partitioning a unit sphere into regions of equal area is pre-

sented by Leopardi [72]. His paper describes the recursive zonal equal area (EQ)

partition of the unit sphere Sd ⊂ Rd+1, where d is the dimension. The unit sphere

75

Figure III.12: Coordinate System.

Figure III.13: (EGM2008 200× 200): Polynomial Order N versus Finite Element

Size at Various Approximation Tolerances.

76

Sd is defined as

Sd = {x ∈ Rd+1 |
d+1∑
k=1

x2
k = 1} (3.11)

The partition EQ(d;N) is a partition of the unit sphere Sd into N regions of equal

area and small diameter. The EQ algorithm is shown in Figure III.14. Examples of

Figure III.14: Outline of the EQ Algorithm.

equalled shells are shown in Figure III.15.

Note that the sphere is divided into equal area collars in the latitude direction

(88 + 88 degree
4 degree

= 44 collar + North Pole cap + South Pole cap = 46). Each collar

is divided into equal areas cells that are equal to theareaof the North Pole cap

77

Figure III.15: Examples of EQ Shells for N = 9, N = 17, N = 33.

(and South Pole cap). So, each cell on the sphere occupies the same area as

the North Pole cap (and South Pole cap).We modified Leopardi’s [72] algorithm

to align the south/north cell boundary with the Greenwich meridian, at λ = 0.

Equal area mapping versus classical spherical mapping is shown in Figure III.17.

In order to evaluate the memory saving, we assume that the spherical size of the

finite-element cell near the equator in the Earth’s surface is chosen to be (∆φ ×

∆λ, 4 degree × 4 degree). This results in the number of finite elements at the

equator being 360/4 = 90. This number of finite elements will decrease gradually

as latitude increases. The number of cells in each collar is plotted in Figure III.16.

Thus, the total number of cells to cover the earth’s surface is 2578.

III.E.2. North-South Adaption

Similar to the radial adaption, we can perform North-South adaption, where the

required polynomial order decreases in these directions. A simple test is performed

at the greenwich meridian for cells between λ = 0 to 4 degrees. Figure III.18 shows

the number of required polynomial order Nφ as a function of the latitude direction

78

Figure III.16: Number of Cells in Each Collar.

Figure III.17: Equal Areas Mapping versus Classical Spherical Mapping.

at the earth’s surface. It is obvious that the polynomial order varies along the

north-south direction. This implies that less coefficients are needed to get the same

79

approximation accuracy as we move towards the poles.

Figure III.18: Number of Required Polynomial Order Nφ as a Function of the

Latitude at the Earth’s Surface.

III.F. Accessing the FEM Coefficients

After performing the finite element approximation, we save the radial coeffi-

cients, the ones that we fit the Longitude/Latitude coefficients, aαβ(ξi). For exam-

ple, for the EGM2008 FEM we use Nλ = Nφ = 16; which indicates that we need

(16+1)2 = 289 coefficients to fit the gravitational accelerations over the earth surface.

For the region (I): r ∈ [R⊕, 1.02R⊕], the required radial polynomial to maintain the

approximation error tolerance 10−9 is Nr = 9. For the region (II): r ∈ [1.02R⊕, 7R⊕],

the required radial polynomial to maintain the approximation error tolerance 10−9

is Nr = 37. Thus the total number of coefficients required to be saved for each

80

acceleration component is calculated as follows:

1. For Region(I): Number Of Coefficients = (90 × 44 Cells) × (17 × 17 Coeffi-

cients/Cell) × (10 Radial Coefficients)

2. For Region(II): Number Of Coefficients = (90 × 44 Cells) × (14 × 14 Coeffi-

cients/Cell) × (38 Radial Coefficients)

The radial coefficients are stored in a block form (as shown in Figure III.19),

where at each cell (λ, φ) on the earth’s surface, we store the radial coefficients; 10

for region (I), and 38 for region (II). This structure enables us to easily look up the

corresponding coefficients at each 3-D location. For example, for a given position

Figure III.19: Radial Coefficients Look-up Data Structure.

[X, Y, Z], the corresponding [r, λ, φ] is calculated. This is used to determine the

81

finite cell ”storing” the required coefficients for the approximation. [λIndex, φIndex]

are identified by applying the following formula (note that the finite element size is

4 degree × 4 degree):

λIndex = floor(
λ

4
)

φIndex = floor(
φ

4
)

where the floor(a) is a function that rounds object (a) to the nearest integer in the

direction of negative infinity.

III.G. Post-processing the FEM Coefficients

It is clear that interpolating the gravitational acceleration trades large memory

compared to interpolating the geopotential. Our goal is to efficiently trade higher

memory for faster runtime. In addition to the methods discussed in III.E, one can

perform a screening check to remove noncontributing coefficients; i.e. removing all

the coefficients that have absolute values less than a given tolerance. If tol. = 10−9

is considered, then there is about a 79% coefficient saving for each component in

the first region, r ∈ [R⊕, 1.02R⊕], and about an 88% coefficient saving for each

component in the second region, r ∈ [1.02R⊕, 7R⊕]. The total number of coefficient

saving is shown in Figure III.20 and Tables III.1 and III.1. This is a huge memory

saving when only 21% of the original set of coefficients for first region, and 12% for

the second region are required producing an approximation that satisfies the desired

accuracy level.

The benefit of this optimization is efficiently reducing the memory size associated

with the interpolating coefficients, and subsequently reducing the runtime cost. The

82

Table III.1: Number of Coefficients Saved, r ∈ [R⊕, 1.02R⊕].

Total Number of Coefficients x component y component z component

All coefficients: 11444400 11444400 11444400

Coefficients < 10−9 : 8987021 8991224 8980165

Coefficients ≥ 10−9 2457379 2453176 2464235

Saving % 78.53 78.56 78.47

Table III.2: Number of Coefficients Saved, r ∈ [1.02R⊕, 7R⊕].

Total Number of Coefficients x component y component z component

All coefficients 29494080 29494080 29494080

Coefficients < 10−9 25850543 25862276 25832960

Coefficients ≥ 10−9 3643537 3631804 3661120

Saving % 87.65 87.69 87.59

coefficients storage is reduced to 136 MB. The plots shown in Figure III.20 exhibit

the interpolating coefficients viewed in the longitude/latitude direction versus radial

direction. The figures show that a big portion of the interpolating coefficients has

an absolute magnitude less than 10−9, which is represented by dotted red line plane.

The coefficients in the first region can be interpolated by chebyshev polynomials of

order nine. In the second region, the approximation can be truncated at Nr = 35.

All extra coefficients are removed form the final look up table.

83

Figures III.21, III.22, and III.23 show the distribution of radial coefficients that

interpolate the x-component, y-component, and z-component acceleration, respec-

tively, in the region r ∈ (R⊕, 1.02R⊕). Figures III.24, III.25 and III.26 show the

distribution of radial coefficients that interpolate the x-component, y-component,

and z-component acceleration, respectively, in the region r ∈ (1.02R⊕, 7R⊕). Each

FEM cell is plotted in the (λ, φ) coordinate. As previously mentioned, the Nλ ×Nφ

coefficients within each cell are fitted in the radial direction. Although the location

of each cell is spatially dependent on λ and φ, the value of required coefficients to

approximate the radial direction is not spatial dependent. Thus the color coding in

each cell represents the variance of the required number of coefficients at all points

tested within that cell for approximating the radial direction. This ranges from blue

(minimum number of coefficients) at the lower left of each cell to red (maximum

number of coefficients) at the upper right, hence forming a surface displaced in each

cell.

84

(a) x-component. (b) x-component.

(c) y-component. (d) y-component.

(e) z-component.

r ∈ (R⊕, 1.02R⊕)

(f) z-component.

r ∈ (1.02R⊕, 7R⊕)

Figure III.20: Number of Polynomial Coefficients.

85

F
ig

u
re

II
I.

21
:

D
is

tr
ib

u
ti

on
of

N
u
m

b
er

of
R

ad
ia

l
C

o
effi

ci
en

ts
In

te
rp

ol
at

in
g

th
e

x
C

om
p

on
en

t
A

cc
el

er
at

io
n

r
∈

(R
⊕
,1
.0

2
R
⊕

).

86

F
ig

u
re

II
I.

22
:

D
is

tr
ib

u
ti

on
of

N
u
m

b
er

of
R

ad
ia

l
C

o
effi

ci
en

ts
In

te
rp

ol
at

in
g

th
e

y
C

om
p

on
en

t
A

cc
el

er
at

io
n

r
∈

(R
⊕
,1
.0

2
R
⊕

).

87

F
ig

u
re

II
I.

23
:

D
is

tr
ib

u
ti

on
of

N
u
m

b
er

of
R

ad
ia

l
C

o
effi

ci
en

ts
In

te
rp

ol
at

in
g

th
e

z
C

om
p

on
en

t
A

cc
el

er
at

io
n

r
∈

(R
⊕
,1
.0

2
R
⊕

).

88

F
ig

u
re

II
I.

24
:

D
is

tr
ib

u
ti

on
of

N
u
m

b
er

of
R

ad
ia

l
C

o
effi

ci
en

ts
In

te
rp

ol
at

in
g

th
e

x
C

om
p

on
en

t
A

cc
el

er
at

io
n

r
∈

(1
.0

2
R
⊕
,7
R
⊕

).

89

F
ig

u
re

II
I.

25
:

D
is

tr
ib

u
ti

on
of

N
u
m

b
er

of
R

ad
ia

l
C

o
effi

ci
en

ts
In

te
rp

ol
at

in
g

th
e

y
C

om
p

on
en

t
A

cc
el

er
at

io
n

r
∈

(1
.0

2
R
⊕
,7
R
⊕

).

90

F
ig

u
re

II
I.

26
:

D
is

tr
ib

u
ti

on
of

N
u
m

b
er

of
R

ad
ia

l
C

o
effi

ci
en

ts
In

te
rp

ol
at

in
g

th
e

z
C

om
p

on
en

t
A

cc
el

er
at

io
n

r
∈

(1
.0

2
R
⊕
,7
R
⊕

).

91

CHAPTER IV

PICARD ITERATION, CHEBYSHEV POLYNOMIALS AND

CHEBYSHEV-PICARD METHODS

IV.A. Introduction

During the 19th century Emile Picard, a French mathematician, introduced a

classical successive path approximation method for solving differential equations of

the form

ẋ(t) = f(t,x(t)), x(t0). (4.1)

This can be rearranged without approximation to obtain the following integral equa-

tion

x(t) = x(t0) +

∫ t

t0

f (τ,x(τ)) dτ. (4.2)

Motivated by the exact integral equation form of Eq. (4.2), Picard hypothesized a

sequence of trajectory approximations (Picard Iteration) generated by

xi(t) = x(t0) +

∫ t

t0

f
(
τ,xi−1(τ)

)
dτ, i = 1, 2, ... (4.3)

Picard also published formal Lipshitz conditions for convergence of this sequence

to the solution of Eq. (4.1). The essence of his convergence theorem is that if the

function f(t,x) and it’s Jacobian [∂f(t,x)/∂x] are continuous and bounded over the

finite region {| t− t0 | < δ, ‖ x0(t) − x(t) ‖∞< 4}, then a unique solution of Eq

(4.1) exists and the sequence of Eq. (4.3) converges to the unique solution. The

sequence of trajectories from Eq. (4.3) converges to the solution of Eq. (4.1) above

92

for some finite bounds {δ,4} defining the finite region of guaranteed convergence.

Furthermore, under these the same conditions on f(t,x) and [∂f(t,x)/∂x], [50–57]

establish the conditions under which the Picard Iteration operator is a contraction

mapping: the sequence converges to the unique solution if t − t0 is smaller than

δ, and the starting trajectory is in the region bounded by 4. The (δ,4) bounds

for guaranteed convergence of the Picard sequence are generally difficult to estimate

without extensive computational investigation over the volume of state space where

the starting approximations and the unique solution lie. Even though difficult to

compute, and frequently, the (δ,4) bounds are highly conservative, they remain of

theoretical importance. While means for computing practical convergence bounds

that are useful in general-purpose algorithms have proven elusive, as we will show

for the case of a linear system where MCPI is implemented, convergence analysis

leads to very interesting results and practical convergence insight. When an excel-

lent starting trajectory approximation x0(t) exists, then the successive trajectories

are close neighbors, and the general nonlinear contraction mapping theory can be

replaced approximately by the linear MCPI contraction mapping and convergence

analysis. Furthermore, for those problems where a good starting approximation can

be generated using prior approximate insight, Picard Iteration is obviously acceler-

ated.

IV.B. OCPI: Orthogonal Chebyshev Polynomial Integrator

Before we discuss the Modified Chebyshev Picard Iteration (MCPI), let us first

introduce a conventional orthogonal polynomial integrator, where no Picard iteration

93

is performed. The Orthogonal Chebyshev Polynomial Integrator (OCPI) is used

when the force function, g(τ), only depends on time; i.e. no trajectory dependance.

Let us define our first order differential equation as

dx

dτ
= g(τ) (4.4)

where τ is defined on the valid range (the closed interval [−1, 1]) of Chebyshev

polynomials. The force function can be approximated by N order of orthogonal

polynomial

g(τ) ∼=
N∑
n=0

anφn(τ) (4.5)

where an is the nth approximation coefficient. The basis function φ(τ) is chosen to

be the classical Chebyshev polynomial, namely

{
φ0(τ), φ1(τ), · · · , φN(τ)

}
=
{
T0(τ), T1(τ), · · · , TN(τ)

}
(4.6)

The Chebyshev polynomial of degree k is denoted by Tk(τ) and the (M + 1) discrete

nodes that are used to approximate the force function are the Chebyshev-Gauss-

Lobatto (CGL) nodes are given by

τj = −cos(jπ/M), j = 0, 1, 2, ...,M. (4.7)

Substituting Eq. (4.6) in Eq. (4.5) yields

g(τ) ∼=
N∑
n=0

anTn(τ) (4.8)

Using the discrete orthogonality property of Chebyshev polynomials, the coefficient

an can be calculated immediately through the weighted inner product

an =
1

cn

M∑
k=0

wkg(τk)Tn(τk), (4.9)

94

where c0 = N ; {cn = N/2; for n = 1, 2, ...N} ; w0 = wN = 1
2
; {wk = 1; for k = 1, 2, ...N}.

The solution is now obtained by integrating the approximation, which is ex-

pressed by

x(τ) ∼= constant+
N∑
n=0

an

∫
Tn(τ)dτ (4.10)

where
∫
Tn(τ)dτ is calculated using the following identity

∫
Tn(τ)dτ =

1
2

(
Tn+1(τ)
n+1

− Tn−1(τ)
n−1

)
+ constant if n ≥ 2

1
4
T2(τ) + constant if n = 1

T1(τ) + constant if n = 0

(4.11)

IV.B.1. Example: Ballistic Projectile Problem

In this example, the attitude dynamics, described by the pitch (θ) and the yaw

(ψ), of an inertially and aerodynamically symmetric projectile are modeled by the

following algebraic equations [69]

θ(t) =
3∑
i=1

kie
λitcos(ωit+ δi) + k4,

θ̇(t) =
3∑
i=1

kie
λit{λicos(ωit+ δi)− ωisin(ωit+ δi)} (4.12)

ψ(t) =
3∑
i=1

kie
λitsin(ωit+ δi) + k5,

ψ̇(t) =
3∑
i=1

kie
λit{λisin(ωit+ δi) + ωicos(ωit+ δi)}

where t is given time in seconds [0, 25], which is replaced by the normalized τ ∈

[−1, 1]. The constants ki, ωi, λi, and δi are related to the aerodynamic and mass

characteristics of the projectile and to the initial motion conditions. In this test, these

constants are selected randomly to generate an arbitrary trajectory that only depends

95

on time. The pitch and yaw projectiles are shown in Figure IV.1. The goal here is to

approximate (θ̇(t) and ψ̇(t)) using the Orthogonal Chebyshev Polynomial Integrator

(OCPI) to approximate the derivatives and then integrate the approximation to

compare with the exact (θ(t) and ψ(t)). A machine error is achieved for both the

function approximation and its integration, for N = 50, as shown in Figure IV.2.

We show only the pitch trajectory approximation θ and θ̇. The yaw trajectory

approximation ψ and ψ̇ give exactly analogous results.

Figure IV.1: Ballistic Projectile Problem.

This example is implemented in C/C++, for the serial computation, and CUDA,

for the parallel computation, see Figure IV.3a. It is intended also to understand the

computation runtime cost when the code is run on a serial processor against parallel

processor. The parallel structure is performed by carrying out each node calculation

on a GPU thread, then passing the individual results into the host device (CPU).

96

Figure IV.2: Approximation Error (N = 50).

Speedup over Serial is about one order of magnitude for small N and increases to

over 2 orders of magnitude for large N , as shown in Figure IV.3b. In this case, the

results for large N are simply for illustration of efficiency of parallel computation

versus N , since N = 50 gives machine precision accuracy.

IV.C. MCPI: Modified Chebyshev Picard Iteration

Following the approach of [17], the first step of MCPI methods is to transform

the generic independent variable t to a new variable τ , which is defined on the valid

range (the closed interval [−1, 1]) of Chebyshev polynomials.

t = w1 + w2τ, w1 = (tf + t0)/2, w2 = (tf − t0)/2, −1 ≤ τ ≤ 1 (4.13)

Introducing this time transformation of Eq. (4.13) into Eq. (4.1), it is re-written as

dx

dτ
= g(τ,x) ≡ w2f(w1 + w2τ,x), (4.14)

97

(a) Computation Flowchart. (b) Computation Time.

Figure IV.3: Computation Cost Serial vs Parallel.

and Picard Iteration for this transformed system is written by analogy with Eq. (4.3)

as

xi(τ) = x0 +

∫ τ

−1

g(s,xi−1(s))ds i = 1, 2, ... (4.15)

Now, we introduce Chebyshev polynomial approximations of both the unknown tra-

jectory and the integrand of Eq. (4.15) along each trajectory xi(t). The path ap-

proximation sequence xi(t) is frequently convergent under surprisingly large (tf − t0)

intervals; in fact intervals exceeding one orbit period for low earth orbits are typical.

The Chebyshev polynomial of degree k is denoted by Tk(τ) and the (N + 1) discrete

nodes that are used to approximate the states are the Chebyshev-Gauss-Lobatto

(CGL) nodes are given by

τj = −cos(jπ/N), j = 0, 1, 2, ..., N. (4.16)

98

Assume the force function vector is approximated by an N th order Chebyshev poly-

nomial

g(τ,xi−1(τ)) =
N−1∑
k=0

Fi−1
k Tk(τ) ≡ Fi−1

0 T0(τ)+Fi−1
1 T1(τ)+Fi−1

2 T2(τ)+...+Fi−1
N−1TN−1(τ).

(4.17)

Note that in Eq. (4.17) the summation is to N − 1 rather than to N . This is

because the summation is within the integral and after integration the order of the

polynomial will be increased from N − 1 to degree N as a convergance of analytical

integration TN−1(τ). This is a slight modification from Bai’s PhD dissertation [17].

Using the discrete orthogonality property of Chebyshev polynomials, the coeffi-

cient vectors Fi−1
k are calculated immediately through

Fi−1
n =

1

cn

N∑
k=0

wkg(τk,x
i−1(τk))Tn(τk), (4.18)

where c0 = N ; {cn = N/2; for n = 1, 2, ...N} ; w0 = wN = 1
2
; {wk = 1; for k = 1, 2, ...N}.

Notice each coefficient of Fi−1
k is obtained through the summation of (N+1) inde-

pendent terms, each of which is an inner product of the force function g(τ,x(τ)) and

the Chebyshev polynomials Tk(τ) evaluated at the CGL points of Eq. (4.16). Fur-

thermore, all the coefficient vectors are independent of each other, and can therefore

be computed in parallel processors. Also, and most importantly, for problems where

calculating the force vector function g(τ,x(τ)) is time consuming, significant time

performance improvement is achieved by simultaneous computation of g(τj,x(τj)) at

the nodes of Eq. (4.16) on N + 1 parallel processors. Assuming the solution at the

ith path approximation is denoted xi(t), the Picard Iteration provides the recursion

to calculate xi(t) as a Chebyshev polynomial approximation over the entire time

99

interval as

xi(τ) = x0 +
N−1∑
r=0

Fi−1
r

∫ τ

−1

Tr(s)ds ≡
N∑
k=0

βikTk(τ). (4.19)

The coefficient vectors for this new trajectory expressed below in Eq. (4.20),

are obtained directly from recollecting the term-by-term analytical integration of Eq.

(4.19), and imposing the initial boundary conditions.

βir = 1
2r

(Fi−1
r−1 − Fi−1

r+1), r = 1, 2, ..., N − 1,

βi0 = x0 +
N∑
k=1

(−1)k+1βik,

βiN−1 =
Fi−1
N−2

2(N−1)

and

βiN =
1

2N
Fi−1
N−1. (4.20)

The third equation of Eqs. (4.20) is added to the original set published by Bai [17].

This incorporates the N − 1 summation change mentioned previously.

The updated coefficient vectors define the new trajectory approximation for

use in the integrand for the next step (i + 1). Figure IV.4 displays an overview

of the algorithm. Thus the solutions are iteratively improved until some accuracy

requirements are satisfied.

To account for the occasional non uniform convergence errors, a conservative

stopping criterion we choose is to require both the maximum difference (among

all the N + 1 CGL nodes) between the solutions xi(τ), xi−1(τ),and the maximum

difference between the solutions xi(τ), xi+1(τ) are less than some tolerance.

100

Instead of term by term scalar process to solve for the state value at the (N +1)

CGL nodes, the (N + 1) Chebyshev coefficients, and the updated (N + 1) Cheby-

shev coefficients, we have developed a compact matrix-vector approach to implement

MCPI methods, which is shown in Figure IV.5. The position vector is written in

matrix-vector form as follows:

X i = TCαG(X i−1) + TΘx0, (4.21)

where X i = col {xi (τ0) , ..., xi (τN)}, and G is the vector representation of the forcing

function g. The initial conditions are contained in the vector Θx0 = col [x0, 0, 0, ..., 0]

εRN+1.

The derivation of the matrices is found in Bai’s dissertation [17]. The basis

functions and constants arising from the process are collected in the matrices

T =

T0(τ0) T1(τ0) · · · TN(τ0)

T0(τ1) T1(τ1) · · · TN(τ1)

...
...

...
...

T0(τN) T0(τN) · · · T0(τN)

, Cα = RSTV,

where the matrices are defined as

S =

1 −1
2

S(1, 3) S(1, 4) S(1, 5) · · · 0

1 0 −1 0 0 · · · 0

0 1 0 −1 0 · · · 0

...
...

...
...

...
...

...

0 0 · · · 1 0 −1 0

0 0 0 · · · 1 0 0

0 0 0 0 · · · 1 0

101

and
R = diag

([
1, 1

2×r , ...
])
, r = 1, 2, ..., N

V = diag
([

1
N
, 2
N
, ..., 2

N
, 1
N

])

. (4.22)

The kth (k = 3, ..., N) column of the 1st row of S has the form: S(1, k) =

(−1)k
(

1
k−2
− 1

k

)
. Notice that the T and Cα matrices and the product TCα are

constant (once N is selected), and so all computations of inner products are efficiently

implemented. The eigenstructure of the matrix product TCα is of crucial importance

in analyzing convergence of the Picard Iteration. For the linear case, the “complete

story” on convergence can be obtained readily based on the eigenvalue analysis of

TCα. The structure of these eigenvalues is remarkably elegant and is discussed in

the convergence analysis that follows.

IV.C.1. Some Remarks, for Perspective:

We emphasize that the proposed MCPI methods are different from the colloca-

tion Implicit Runge-Kutta (IRK) methods [17], although both utilize discrete nodes

and frequently, orthogonal functions, to approximate the state trajectories. In the

collocation IRK methods, N+1 collocation points are chosen, and an N th order poly-

nomial approximation that satisfies the differential equations to some tolerance at

the collocation points is sought by solving N + 1 nonlinear algebraic equations. The

derivative of the trajectory approximation is substituted on the L.H.S of Eq. (4.1),

and the trajectory is substituted into the argument of the R.H.S of Eq. (4.1). When

evaluated at the nodes, this provides the system of nonlinear algebraic equations to

102

iteratively solve for the basis function coefficients. However, for the MCPI methods,

the same polynomial basis function set (Chebyshev polynomials in the current dis-

cussion) is used to approximate both the solutions of the differential equations and

the force functions along each trajectory approximation. Note, the approximation is

never differentiated in MCPI, having the force function approximated as linear com-

bination of basis functions (along the previous trajectory approximation), permits

the Picard integrals of Eq (4.3) to be done term by term, and as a consequence, there

is no nonlinear iteration involved. In the case of the collocation methods, includ-

ing IRK algorithms, local linearization in the parameter space of the basis function

amplitudes is required to generate the successive approximation iterations. In the

case of MCPI, no linearization is required even though the differential equation is

nonlinear and the new amplitudes appear linearly, with no further approximation.

The sole basis for successive iterations is the Picard Iteration itself.

Furthermore, since all unknowns appear linearly with no further approximation

beyond adopting the Picard Iteration, and an appropriate number of free constants

arise in the integration to linearly impose all boundary conditions, no local Jacobian

need be evaluated and no shooting method type iteration is required. Further, other

than the N + 1 function evaluations that can be performed in parallel, all other

operations are only vector-matrix multiplication operations with most of the matrices

computed only once. Additionally, although currently for an N th order Chebyshev

polynomial we use N + 1 CGL nodes to approximate both the solution and the

integrand, the fundamental MCPI algorithm only requires that the number of nodes

to be no less than the order of the polynomials and located at points consistent with

103

the discrete orthogonality conditions. This is due to our choice to use the discrete

least-square formulation to approximate the functions, which offers some flexibility

for choosing nodes and polynomial orders.

Fox [30] proved that if a continuous function f(τ) is approximated by a nth order

Chebyshev polynomial pn(τ) =
N∑
k=0

αkTk(τ), as a consequence of the orthogonality of

the basis functions for the selected nodes, the error en(τ) = f(τ)−pn(τ) is guaranteed

to satisfy the discrete least-squares criterion S =
N∑
r=0

e2(τj) = minimum, and the

explicit error bound is Smin =
N∑
j=0

| f 2(τj)−
N∑
r=0

a2
rT

2
r (τj) | .

IV.D. Second Order MCPI Approach

Consider a second order problem:

d2x

dt2
= f (t,x(t), ẋ(t)) , x(t)εRn, {x(t0) = x0 & ẋ(t0) = ẋ0.} (4.23)

The first order Picard Iteration formulation presented in the last section can

solve this problem after we introduce a new state variable z = col {x, ẋ} εR2n to

transform Eq. (4.23) to a system of 2n first order equations. Bai [17] developed a

straightforward cascaded MCPI formulation, i.e., a second order MCPI approach,

that is generalized to systems described by higher order differential equations. Im-

portantly, this approach solves problems with differential equations dependent on

the velocity, whereas many of the most efficient RKN methods cannot. Thus in lieu

of Eqs (4.14)-(4.15), we have the transformed version of Eq. (4.23):

dv

dτ
= g(τ,x, v),

dx

dτ
≡ v. (4.24)

104

Given a starting iterative {x0(τ), v0(τ)}, Picard Iteration for this pair of equa-

tions is by analogy given as

vi(τ) = v0 +

∫ τ

−1

g(s,xi−1(s), vi−1(s))ds, i = 1, 2, ... (4.25)

Similar to Eq. (4.15), the acceleration along the (i − 1)th trajectory approxi-

mation is integrated to velocity from Eq. (4.25). Importantly, the position vector is

obtained, not from Picard Iteration, but by direct integration of vi(τ) to position by

using exact kinematic equation {the 2nd of Eq. (4.25)}:

xi(t) = x(t0) +

∫ τ

−1

vi(s)ds. (4.26)

Notice the approximation errors incur only at the velocity level in Eq. (4.26).

When we expand the velocity trajectory and the integrand of Eqs. (4.25) in Cheby-

shev basis functions and we carry out the integrals of Eq. (4.26) term by term,

then no further approximation is required. An exactly kinetically consistent position

approximation is derivable from term by term integration of the linearly contained

velocity in the integrand of Eq. (4.23). In the equivalent first order Picard Itera-

tion, the position is obtained by modeling the position and velocity independently

by linearly combining Chebyshev polynomials resulting in 2n approximations in the

integrand of Eq. (4.15) with {{x} εRn =⇒ {z} εR2n}, constrained through the state

variable definitions. Thus the velocity approximations implicitly know that they are

the derivative of position (more importantly, the position implicitly knows it is the

integral of velocity!). However, in the above cascaded formulation the velocity vector

approximation directly dictates the corresponding coefficients for the position vector

through the kinematic constraint implicit in taking the integral of Eq (4.23). In the

105

above second order MCPI approach, when we introduce the Chebyshev approxima-

tions of all variables, computation of position approximation from velocity simply

amounts to a matrix multiplication with and addition of invariant (computed once)

coefficient matrices T , Cα as follows:

−→
V i = TCαG

(−→
V i−1

)
+ TΘv0 (4.27)

and

−→
X i =

tf − t0
2

TCα

(−→
V i
)

+ TΘx0, (4.28)

where the ith step Picard iterate evaluated at the N + 1 CGL nodes are represented

by vectors

−→
X i = col [x(τ0), x(τ1), x(τ2), ..., x(τN)] and

−→
V i = col [v(τ0),v(τ1),v(τ2), ...,v(τN)].

The initial conditions are contained in the vector Θv0 = col [v0, 0, 0, ..., 0] εRN+1.

The difference between using (i) an Picard Iteration simultaneously for both

position and velocity or (ii) a cascaded Picard Iteration for velocity Eqs (4.23 and

4.26) and subsequent integration to get position {Eqs (4.27), (4.25)} may at first

blush look minor, however, this approach is computationally much more attractive

because the dimensionality of the approximation space is reduced by a factor of two.

It is also more accurate. Note – this efficiency and accuracy advantage is enjoyed

on each step, and therefore the entire Picard Iteration efficiency and accuracy are

accelerated accordingly.

106

IV.E. MCPI Convergence Analysis

The accumulation of round off and approximation errors during the iterations

(when a finite order of Chebyshev polynomial is used to approximate solutions) lead

to the convergence domain of MCPI methods being different from the ideal con-

ditions under which Picard iteration theoretically converges (Lipschitz continuity).

However, the general bounds in the literature have been found very conservative in

predicting the actual convergence domain; establishing the rigorous convergence do-

main of MCPI methods applicable for general nonlinear systems is not possible by

any known approach. To obtain some essential insight we first use a linear scalar

problem as an example to show that the global convergence of MCPI methods is not

generally guaranteed, and we then address the practical issue of checking the con-

vergence, and importantly, various approaches to enlarge the convergence domain.

Obviously, the Picard Iteration is not proposed for actually solving linear problems,

this exercise is presented simply to establish insights on convergence in the ideal case.

Consider a scalar linear dynamic system

dx(t)

dt
= cx(t). (4.29)

The ith step Picard iterate evaluated at the N + 1 CGL nodes is represented by a

vector Θ0 = col [2x0, 0, 0, ..., 0] εRN+1.

107

Figure IV.4: MCPI Iterations for Solution of Initial Problems.

108

F
ig

u
re

IV
.5

:
F

lo
w

ch
ar

t
of

th
e

M
at

ri
x
-v

ec
to

r
F

or
m

of
th

e
M

C
P

I
A

lg
or

it
h
m

.

109

The matrix-vector form of MCPI (Figure 4.1) leads to the recursive solution

−→
X i =

[
tf − t0

2
cTCα

]
−→
X i−1 + TΘ0. (4.30)

It is known from linear system theory that this sequence is convergent to a fixed

point only if all the eigen-values of the matrix [((tf − t0)c/2)TCα] are within a unit

circle (i.e., Eq. (IV.5) must be a contraction mapping, to converge to a fixed point).

Notice that the scalars {(tf − t0)/2, c} appear multiplicatively and therefore simply

scale the maximum eigenvalues of TCα and lead to an attractive analysis for this

simplest case of a linear problem. Thus the convergence of the MCPI method is

dependent on both the dynamical system characteristics c, the length of the time

interval tf − t0, and the matrix TCα, which is only dependent on the order of the

Chebyshev polynomials used. For convergence, we require

|
(
tf − t0

2

)
cλmax (TCα) |< 1, or | tf − t0 |<

2

| cλmax(TCα) |
. (4.31)

Remarkably, we see that this identical invariant (given N) matrix TCα appears

multiplicatively in the nonlinear generalization in vector-matrix notation (see Figure

IV.5). Therefore during the terminal iterations of a convergent solution process, we

can expect this type of eigenanalysis to give approximate behavior useful in a more

general setting. In fact, for a vector time varying nonlinear system, the above bound

changes only with the scalar c being replaced by the infinity norm of the Jacobian

- an elegant result. Notice that TCα depends solely on the choice of Chebyshev

basis functions, the nodal pattern selected, and the degree of the approximation.

Therefore TCα is invariant, can be computed once, and the eigenanalysis may be

studied once for all N and applies in all subsequent MCPI solutions.

110

The eigenvalues of TCα are shown in Figures IV.6-IV.7 and the maximum eigen-

values are shown in Figure IV.8. We found for small N (N < 40), this value decays

approximately from 0.7 to 0.054, almost linearly on a log-log scale. Thereafter, for

N > 40, this value remains approximately constant at 0.054. This gives rise to the

maximum interval length as (tf − t0)max = (2/c) (1/λmax(TCα)) = 37/c. While this

condition guarantees convergence of the Picard iterations, for a fixed N , it does not

guarantee that N is sufficiently high to give an accurate approximation of the solu-

tion. It is fortunate, as is evident in Figure IV.8, that convergence does not degrade

for large N , or put another way, N > 40 can be adjusted to achieve high solution

precision without affecting the rate of Picard iteration convergence. Thus, the most

fundamental truth, we are guaranteed a significant finite time interval over which

Picard iteration will converge. For longer time intervals, this suggests “patching”

converged sub arcs together.

The remarkable asymptotic behavior of the maximum eigenvalue of TCα is re-

lated to an even more unusual behavior of the locus of eigenvalues of TCα with

increasing N . As is evident in Figures IV.6 and IV.7, we show the eigenvalue lo-

cus results that are new and are reported in this proposal for the first time. For

N < 100, as seen in Figure IV.6, all eigenvalues are comfortably within the unit cir-

cle, and distributed along elliptical shaped loci that decrease in size and eccentricity

as N increases. For each N , there are two sets, one set near the origin, and another

locus that loops to the right in Figure IV.6. As N increases, a very surprising and

beautiful pattern emerges. Note in Figure IV.7 that the eigenvalues are apparently

attracted to distinct locations along a circle of radius 0̃.027 which touches the origin.

111

Note further that the right most eigenvalues lie at distinct points on this circle for

N > 100, while the remaining eigenvalues of TCα, including all “new” ones as N

increases and the (N + 1)× (N + 1) dimensions of TCα increases - all cluster on the

circular locus near the origin. Based on this root locus study, we hypothesize that

as N → ∞, an infinite number of eigenvalues cluster approaching zero separation

tangent to the circle at the origin. Thus the new eigenvalues for N > 40 cluster ever

nearer the origin, while the larger eigenvalues converge to distinct positions on the

right-most part of the circular locus in Figure IV.7. The right most pair’s conver-

gence to their position with increasing N is responsible for the asymptotic behavior

in Figure IV.8. We have studied these remarkable loci carefully and confirmed this

behavior, but explaining the cause of these beautiful loci has proven elusive to this

point. In addition to gaining fundamental insights on the eigenstructure, we seek to

learn how these characteristics depend upon the choice of the Chebyshev polynomials

and the CGL non-uniform nodes.

For convergence insight for the case of 2nd order differential equations, we con-

sider d2x(t)
dr2

= cx(t). We find the velocity update equation is similar to Eq (4.28),

whereas the position updated equation is

−→
X i = c

(
tf − t0

2

)2

TCαTCα
−→
X i−1 +

tf − t0
2

TCαTΘv0 + TΘx0. (4.32)

We found out that the maximum eigenvalues of TCαTCα decreases from 0.038

to 0.003 as N increases from 10 to 40, and analogous to the case for the first order

system, for all the N > 40, the maximum TCαTCα eigenvalues are asymptotically

approach about 0.003. Thus the convergence condition for Picard Iteration (MCPI)

is approximately c(tf − t0)2 < 4/(0.003) ≈ 1333; we mention the significant truth

112

that this represents a two order of magnitude increase over the size of the classical

estimate of the convergence region {c(tf − t0)2 < 12} [17], i.e. the classical estimate

is highly conservative.

Although this linear analysis tells us that the Chebyshev-Picard iteration algo-

rithm only converges on a finite interval, we can anticipate using a piecewise approach

over longer intervals to solve a significant family of IVPs over an arbitrarily large

time domain. The initial conditions on the subsequent segments should be the final

state values from the previous segment. This may sound similar to the concept of

the step size control used in forward integration methods such as Runge-Kutta, or

analytical continuation methods. However, the step size used by MCPI methods

is typically a much larger finite interval than the steps used by the typical numer-

ical methods, as will be shown in the examples. Furthermore, compared with the

forward integration methods in which the integration errors are typically increasing

with time in a secular unstable fashion, we anticipate that better stability/accuracy

can be achieved from using MCPI methods because, qualitatively the largest errors

from MCPI methods usually appear in the middle of the interval and the smallest

errors are at the ends where adjacent (successive) segments are joined. The fun-

damental reason for this special characteristic of MCPI methods is a result of the

chosen Chebyshev basis functions and CGL nodes that are denser at the boundaries

and sparser in the middle.

113

Figure IV.6: Eigenvalue Locus of TCα, N < 100.

IV.F. ACPI: Adaptive Chebyshev Picard Iteration

Chebyshev polynomials are used to approximate both the state trajectory and

the integrand, on the L.H.S. and R.H.S. of Eq. (4.19), respectively. It is important

to note that the entire trajectory is approximated at each iteration. That is, for

each iteration i all sample points τj are used for the trajectory approximation. Since

the approximation of the R.H.S. of Eq. (4.19) is done within the integral, the upper

index of the summation is only performed to N − 1 instead of N , as on the L.H.S.

Integration increases the degree of the polynomial and therefore care must be taken to

ensure that post integration leads to the same degree polynomial on either side of the

Picard iteration expression Eq. (4.19). In Bai’s dissertation [17] the summation was

performed from 0 to N for both the unknown trajectory (R.H.S.) and the integrand

114

Figure IV.7: Maximum Eigenvalue Locus of TCα, N >= 100.

(L.H.S.). After performing several examples using both definitions, we do not see

any significant impact on the solution accuracy; specially for large N .

The confusion associated with these settings led us to consider a more relaxed,

controllable and adaptive approach that could eliminate the confusion and still retain

the same principals. This approach, Adaptive Chebyshev Picard Iteration (ACPI),

is introduced in this section. The key is utilizing the least squares solution of the

orthogonal chebyshev polynomial approximation at both sides of the picard equation.

Let M represent the number of sample points (nodes), NL.H.S represent the degree of

the chebyshev polynomial to approximate the trajectory x(τ), and NR.H.S represent

the degree of the chebyshev polynomial to approximate the force function g(τ,x(τ)).

Note that NL.H.S and NR.H.S are not required to be equal, but both should take on

115

Figure IV.8: Maximum Eigenvalue Locus of TCα versus Polynomial Order N .

a form where NL.H.S ≤M and NR.H.S ≤M . Eq. (4.19) is written as

xi(τ) =

NL.H.S∑
k=0

βikTk(τ) ≡ x0 +

NR.H.S∑
r=0

{[∫ τ

−1

Tr(s)ds
]
F i−1
r

}
(4.33)

where τ is the normalized time which is sampled using τj = −cos(jπ/M), j =

0, 1, 2, · · · ,M . The chebyshev integration term between the square bracket [] is

evaluated by

Ωr(τ) =

∫ τ

−1

Tr(s)ds =

1
2

[
Tr+1(τ)−Tr+1(−1)

r+1
− Tr−1(τ)−Tr−1(−1)

r−1

]
if r ≥ 2

1
2
(τ 2 − 1) if r = 1

τ + 1 if r = 0

(4.34)

Eq. (4.33) becomes

NL.H.S∑
k=0

βikTk(τ) = x0 +

NR.H.S∑
r=0

F i−1
r Ωr(τ) (4.35)

116

Using the discrete orthogonality property of Chebyshev polynomials, the coefficient

F i−1
r can be calculated immediately through

F i−1
r =

1

cr

M∑
j=0

wjg(τj,x
i−1(τj))Tr(τj) (4.36)

where c0 = M ; {cr = M/2; for r = 1, 2, ...NR.H.S − 1}; {cNR.H.S = M ; if NR.H.S = M};

{cNR.H.S = M/2; if NR.H.S < M}; w0 = wM = 1
2
; {wj = 1; for j = 1, 2, ...M}. Notice

each coefficient F i−1
r is obtained through the summation of (M + 1) independent

terms, each of which is an inner product of the force function g(τ,x(τ)) and the

Chebyshev polynomials Tr(τ) evaluated at the CGL points. Furthermore, all the

coefficient vectors are independent of each other, and can therefore be computed in

parallel processors. Also, and most importantly, for problems where calculating the

force vector function g(τ,x(τ)) is time consuming, significant time performance im-

provement can be achieved by simultaneous computation of g(τj,x(τj)) at the nodes

on M + 1 parallel processors.

Note that the two terms of the R.H.S of Eq. (4.35) are known at every previous

iteration (i − 1). Therefore, we can define the variable Gi−1(τ) to represent those

two terms at (i− 1)th iteration. Then Eq. (4.35) is written as

NL.H.S∑
k=0

βikTk(τ) = x0 +

NR.H.S∑
r=0

F i−1
r Ωr(τ)︸ ︷︷ ︸

Gi−1(τ)

NL.H.S∑
k=0

βikTk(τ) = Gi−1(τ) (4.37)

Since Gi−1(τ) is calculated at the (i − 1)th, then we can calculate the coefficient βik

using the discrete orthogonality property of Chebyshev polynomials

βik =
1

ck

M∑
j=0

wjTk(τj)G
i−1(τj) (4.38)

117

Not only does this approach eliminate the confusion regarding the degree of the

force function approximation, N versus N − 1, but it also allows freedom to choose

different polynomial degree to approximate the trajectory and the force function;

i.e. NL.H.S ≤ M can be different than NR.H.S ≤ M . Since both of the polynomial

degree NL.H.S and NR.H.S can be less than the time sampling points M , it results

in the vectorized T and Cα having a smaller size compared to the original MCPI

approach [17]. This reduces the computation cost as less operations are performed

during iteration due to the reduced matrix sizes. In addition, the different choices

of the approximation degree can be utilized to adapt the iteration process by tuning

NL.H.S andNR.H.S. The cost benefit of this approach depends strongly on the problem

that we solve. Some examples showed that a speed up of greater than 1.5X can be

achieved compared with the original MCPI approach [17].

IV.F.1. VACPI: Vectorized Adaptive Chebyshev Picard Iteration

A compact vector-matrix approach, initially described by Bai [17] can be used

to reformulate the Adaptive Picard Chebyshev Iteration to make it compatible to

parallel implementation. We start by vectorizing the trajectory and the force function

approximation, as given in Eq. (4.19) and Eq. (4.17) respectively,

xi(τ) =

NL.H.S∑
k=0

βikTk(τ) ≡ ΦT
L.H.Sβ

i (4.39)

g(τ,xi−1(τ)) =

NR.H.S∑
r=0

F i−1
r Tr(τ) ≡ ΦT

R.H.SF
i−1 (4.40)

118

where

βi =
[
βi0 βi1 βi2 · · · βiNL.H.S

]T
(4.41)

F i−1 =
[
F i−1

0 F i−1
1 F i−1

2 · · · F i−1
NR.H.S

]T
(4.42)

ΦL.H.S =
[
T0(τ) T1(τ) T2(τ) · · · TNL.H.S(τ)

]T
(4.43)

ΦR.H.S =
[
T0(τ) T1(τ) T2(τ) · · · TNR.H.S(τ)

]T
(4.44)

Using the discrete orthogonality property of Chebyshev polynomials, the coefficient

F i−1 can be calculated through

F i−1 = (ΦT
R.H.SWΦR.H.S)−1ΦT

R.H.SWg(τ,xi−1(τ))

= (ΦT
R.H.SWΦR.H.S)−1ΦT

R.H.SWg
i−1 (4.45)

Consistent with the classical orthogonality conditions, presented in Chapter II, for

the chebyshev polynomials, we adopt the weight matrixW = diag{1
2
, 1, 1, · · · , 1, 1, 1

2
}.

The typical element of (ΦT
R.H.SWΦR.H.S) is a discrete inner product denoted mαβ.

The typical pair of orthogonal basis functions’ inner products obey

mαβ = 〈φα, φβ〉 ≡
M∑
j=0

wjφα(τj)φβ(τj) =

 0 , for α 6= β

cα , for α = β

(4.46)

The orthogonal basis functions (chebyshev polynomials) reduces the matrix inverse

to the division of their scalar diagonal terms; leading to

VR.H.S = (ΦT
R.H.SWΦR.H.S)−1 = diag

{
1/c0, 1/c1, , · · · , 1/cNR.H.S

}
(4.47)

Therefore Eq. (4.45) becomes

F i−1 = VR.H.SΦT
R.H.SWg

i−1 (4.48)

119

Vectorizing the second term in Eq. (4.35)

NR.H.S∑
r=0

F i−1
r Ωr(τ) ≡ ΩTF i−1 (4.49)

where

Ω =
[
Ω0(τ) Ω1(τ) Ω2(τ) · · · ΩNR.H.S(τ)

]T
(4.50)

Substituting Eq.(4.48) into Eq. (4.49) yields

NR.H.S∑
r=0

F i−1
r Ωr(τ) = ΩTF i−1 (4.51)

= ΩTVR.H.SΦT
R.H.SWg

i−1 (4.52)

Analogous to the MCPI development, let us define the matrixAα = ΩTVR.H.SΦT
R.H.SW .

Then Eq. (4.52) becomes

NR.H.S∑
r=0

F i−1
r Ωr(τ) = Aαg

i−1 (4.53)

Substituting Eq. (4.39) and Eq. (4.53) into Eq. (4.35)

ΦT
L.H.Sβ

i = x0 + Aαg
i−1 (4.54)

For NL.H.S = M , Eq. (4.54) leads to the original MCPI derivation. However, for

general adaptive case, when NL.H.S ≤M , we calculate the coefficient vector βi using

the discrete orthogonality property of Chebyshev polynomials. Note that the R.H.S

terms are known at the (i − 1)th iteration. The coefficient vector βi is calculated

through

βi = VL.H.SΦT
L.H.SW

{
x0 + Aαg

i−1
}

(4.55)

where

VL.H.S = (ΦT
L.H.SWΦL.H.S)−1 = diag

{
1/c0, 1/c1, , · · · , 1/cNL.H.S

}
(4.56)

120

Similarly, let us define the matrix Ax = VL.H.SΦT
L.H.SW . Then Eq. (4.55) becomes

βi = Ax

{
x0 + Aαg

i−1
}

(4.57)

Thus, the trajectory algorithm follows as

xi(τ) = ΦT
L.H.Sβ

i (4.58)

= ΦT
L.H.SAx

{
x0 + Aαg

i−1
}

(4.59)

Figure IV.9 illustrates the flowchart of the matrix-vector form of the ACPI algorithm.

The flowchart takes the same flow as the MCPI except the coefficients are different

here. This indicates the implementation is very similar. Note that the coefficients

calculations are computed once and then used during the iteration process.

This new approach can be also utilized in modifying the current MCPI [17] to

solve the Boundary Value Problems. The benefit would be improving the convergence

speed.

121

F
ig

u
re

IV
.9

:
F

lo
w

ch
ar

t
of

th
e

M
at

ri
x
-v

ec
to

r
F

or
m

of
th

e
A

C
P

I
A

lg
or

it
h
m

.

122

IV.G. Numerical Examples

Computations for the first five numerical examples (other than the parallel com-

putations) are performed on a conventional PC. The settings of the computer and

the development environment used are the following

• Intel(R) Pentium(R) D CPU 3.4GHz, 3.4GHz, 2.0GB of RAM

• Windows XP Operating System

• MATLAB R2009b

• NVIDIA GeForce 9400GT Graphics Card

• Microsoft Visual Studio 2005

IV.G.1. Review Bai’s Examples

In this section we review a few simply examples that were previously presented

in Bai’s work [17,22,62,73]. These are reintroduced here in order to set a framework

for the more complex analysis that follows in the latter part of this chapter.

IV.G.1.a. Example 1: A First Order Nonlinear System

Consider a dynamic equation

dy

dt
= f(t, y) = cos(t+ εy), t0 = 0, tf = 256π, y(t0) = 1, ε = 0.001. (4.60)

Fukushima [60] suggested this problem, that has an analytical solution, as a bench-

mark with a known true value for conducting convergence accuracy studies. We first

123

solve an IVP for Eq (4.1) by comparing the MCPI method implemented in MAT-

LAB, and a “garden variety” solver ODE45 (i.e. a Runge-Kutta 4− 5 method also

implemented in MATLAB). For more significant nonlinear problems we use more

sophisticated (and efficient) integrators as the basis for comparison. The results are

shown for this first example in Figure IV.10. The immediately following conclusions

are drawn.

1. For this tuning, the MCPI solutions have about one order of magnitude better

accuracy than the ODE45 solutions. The CPU time using ODE45 is about 40

times slower than the CPU time using MCPI methods. We further note that

orders (N) up to of several thousand are feasible with MCPI, without numer-

ical difficulty, owing to the orthogonality (no matrix inverses) and, especially,

highly efficient recursions based on simple inner products. The optimal order

is typically much less, but obviously high order approximation in numerical

integration now takes on a new meaning.

2. As we show later, these solutions have not taken advantage of the fact that the

long intervals are subdivided which will reduce the order of the required polyno-

mials, thus more speedup is achieved by the MCPI methods when implemented

on a serial machine. Furthermore, if parallel computation environment is avail-

able, further speedup is obtained because the uncoupled function evaluations

matrix operations are distributed to different processors.

3. While the errors from the reference ODE45 solution display a typical secular

increase, which is a pattern common to all forward integration methods, the

errors using MCPI method have the maximum values near the middle of the in-

124

terval and the smallest errors at the boundaries. To graphical precision on a log

scale there is negligible secular error growth in this example. The fundamental

reason is due to the positioning of the CGL nodes, dense at the boundaries

and sparse in the middle. Notice this special feature makes MCPI methods

more attractive than the forward integration methods in reducing the global

errors for long time integrations, where different segments have to be patched

together at the terminal points of each solution interval where the errors are

typically smallest.

4. We note convergence is obtained up to some problem dependent-maximum final

time. For linear problems this is determined. For nonlinear problems, approx-

imation or adaptive tuning is required. The interval for practical convergence

is greater than 256π (∼ 128 oscillation periods).

(a) MCPI. (b) ODE45.

Figure IV.10: Integration Errors for Example 1. The CPU Time is 0.042 s and

1.722 s Respectively.

125

For qualitative purpose, we note that expanding the dynamic equation in ε

leads to the approximate equation dy
dt

= cos(t) − εsin(t)y + ... so the linear (in y)

coefficient is bounded by ± ε. Though not rigorous, we estimate from the above

analysis of the analogous constant coefficient linear system that convergence might

be expected if H < 2
ε

1
λmax(CxCα)

. Thus with the polynomial order N > 100, the

idealized convergence analysis suggests that H should be less than 2
(0.001)(0.05)

∼

40, 000 s. These approximations are typically useful for starting estimates. In this

case we verified excellent convergence for the nonlinear system was actually achieved

if H < 800 × 2π ≈ 5026.5, so the linear estimate is optimistic in this example.

Perhaps the most striking feature of this example is that high precision is achieved

over long time periods including many main period oscillations of a nonlinear system,

whereas many time steps per period are required by all step-by-step solvers known

to achieve comparable precision.

IV.G.1.b. Example 2: Second Order Nonlinear System

The following second order differential equation has the same analytical solution

as the above first order example, but allows us to conduct convergence studies for

integrators designed for second order systems.

d2y

dt2
= f(t, y) = −sin(t+εy)−1

2
εsin(2t+2εy), t0 = 0, tf = 256π, y(t0) = 1, ẏ(t0) = 1

(4.61)

Among the many convergent possibilities, we have tuned the second order MCPI

methods to use a Chebyshev polynomial of order 130 to approximate the solution

126

over an interval length of 16π (8 periods of unperturbed oscillations), and found con-

vergent solutions on the sixteen segments of 16π duration that are patched together

to generate the final solution. At the starting iteration, all the positions and veloci-

ties at the N + 1 CGL nodes are simply chosen as the straight line ensuing from the

initial position and the initial velocity, thus a very poor starting guess is provided

for the MCPI methods so that the timing results are very conservative. To provide

a more meaningful comparison vis-a-vis relative efficiency, we adopt the 12th order

Runge-Kutta-Nystrom algorithm RKN12(10) with adaptive step size control. The

errors of MCPI and RKN12(10) are shown in Figures IV.11a, IV.11b. We can see

the slightly better accuracy achieved by the MCPI solution. MCPI also obtained a

speedup of about 32X relative to RKN12(10). This speedup is in spite of the vector-

matrix nature of the MCPI algorithm. As the force model becomes complicated,

this speedup advantage on a serial machine might be expected to be smaller. The

RKN12(10) algorithm calls the function evaluation routine 14, 974 times, whereas

totally MCPI takes 113 Picard iterations, which leads to 113 × (130 + 1) = 14, 803

function evaluations (remarkably, almost the same number in this case). Thus on

a serial machine, even with a very poor starting solution estimate, MCPI requires

essentially the same number of function evaluations as does RKN12(10). However,

it is vitally important to recognize that the MCPI acceleration evaluations are in-

dependent, since the entire path approximation is available at once on each Picard

path approximation iteration, so in an ideal parallel environment where we can dis-

tribute the function evaluations on the N+1 CGL nodes onto N + 1 processors, the

theoretical speedup a factor is 131. We can approach that limit if 131X or more

127

cores are available since little shared memory is involved. Additionally, comparing

the computational time and accuracy of this tuned second order MCPI with the

previous first order MCPI using one segment, we see the benefit to use the second

order formulation and also the potential for even better accuracy and more speedup

when careful tuning is applied to the MCPI methods.

Figures IV.11a and IV.11b show the errors are in the 11th significant figure

for both solutions, although the MCPI solution has about 1
4

the error norm of the

RKN12(10) solution. The speedup achieved on a serial processor was 32X. The

theoretical speedup on a parallel processor with over 130 cores is two additional

orders of magnitude for this problem. Impressive potential obviously exists, if these

results for “toy” idealized problems extend to the problems of orbit mechanics. In

the results presented below, the test cases to date indicate that these speedups are

typical for the more nonlinear problems of central practical interest.

(a) MCPI Error History, Serial CPU Time

Cost = 0.028 s.

(b) RKN12(10) Error History, Serial CPU

Time Cost = 0.856 s.

Figure IV.11: Second Order MCPI and RKN12(10) Error History.

128

IV.G.1.c. Example 3: Integration of Unperturbed Keplerian Motion (Natural Sec-

ond Order System Example)

The two-body problem is a classic example problem that has been used to fre-

quently quantify and compare the performance of ODE solvers [21,59,74–76], because

while nonlinear, it has an exact analytical solution and it is a physically important

problem. We choose to use an example that integrates a three dimensional near

circular orbit for one week to allow us draw more practical insight. The dynamic

equations are

d2x

dt2
= − µ

r3
x;

d2y

dt2
= − µ

r3
y;

d2z

dt2
= − µ

r3
z; r2 = x2 + y2 + z2. (4.62)

We look at a low eccentricity problem, see Table IV.1 as well as a high eccen-

tricity problem, see Table IV.2. The six classical unperturbed orbital elements are:

1. Both the MCPI methods and RKN12(10) are tuned such that sub-millimeter

position accuracy, relative to the exact analytical solution, is achieved for the

whole week. A Chebyshev polynomial of order 40 is chosen for the MCPI

method and the (convergent) segment length is selected to be 5400 s (about one

orbit period). The classical F&G solution [77] provides an analytical truth that

is used to calculate the solution relative errors, which are smaller than 10−11.

Several observations are summarized in this section. The computational time

is 0.2639 s for MCPI and 1.8882 s for RKN12(10). Thus with slightly better

accuracy in both position and velocity, MCPI achieved a speedup factor of

seven.

129

Table IV.1: Classical Orbital Elements for Low Eccentricity Orbit.

EPOCH STATE EPOCH ELEMENTS

rx -464.856 Km a 6644.754 Km

ry 6667.880 Km e 0.01

rz 574.231 Km i 68 deg

vx -2.8381186 Km/sec ω -160 deg

vy -0.7871898 Km/sec Ω 92 deg

vz 7.0830275 Km/sec M 164 deg

PERIOD, Tp 90 mins

2. RKN calls the differential equations 29662 times. Using an initial starting

solution that the position and velocity at all the CGL nodes are the same

as the initial position and velocity, MCPI completed 2465 iterations in total.

Thus on a serial machine, the ratio of function evaluation of RKN over MCPI

is 29662/(2465 × 41) = 0.3. However, in an ideal parallel environment where

we can distribute the function evaluation on the N + 1 CGL nodes to N + 1

processors, the ratio is 29662/2465 = 12.

3. The reason for the speedup of MCPI over RKN in a serial implementation lies

in two aspects. The first is that the matrix-vector form of the MCPI approach

is computationally very efficient, and the second attributes to the large step size

that can be used with MCPI. For RKN12(10), the maximum is 629.4089 s, and

the mean is 363.4615 s. This is approximately 7% of the one full orbit step size

130

that is used during MCPI, and thus a significant qualitative difference exists in

approximating a long time interval dynamical path versus taking small steps

along it!

4. We have gained some preliminary insight about how to tune the polynomial

order and the segment length. Figures IV.12a, IV.12b show the computational

time and accuracy for the MCPI method when the orders are chosen from 40 to

300, and the segment lengths are chosen from about 10% of the orbit periods up

to 2.2 of the orbit period. The computational time is shown in Figure IV.12a

and its contour plot is displayed in Figure IV.12b. The minimum computation

time is 0.1847 s, which is obtained with a choice of N = 50 and segment length

of 10260 s (about 1.9 orbits). Notice, although we currently do not have an

efficient way to find this optimal setting for the minimum computational time,

we have a large region (time intervals and approximation areas) where we can

obtain sub-optimal solutions (the region where the computational time is less

than one second, which is still significantly faster than RKN12(10)). Another

way of looking at this issue, the very flat surface indicates a large family of near

optimal tunings exist. The most time consuming settings are the cases where

an unnecessary high order Chebyshev polynomial is used with many small time

segments to reach a multi-orbit final time.

We also characterize the solution errors as the maximum global relative error

e = max

(
| r(MCPI, t)− r(FG, t) |

| r(FG, t) |

)
+max

(
| v(MCPI, t)− v(FG, t) |

| v(FG, t) |

)
,

(4.63)

131

where the first argument indicates the method to compute the solution, and FG

denotes the classical two-body analytical solution. The significant figures shown in

Figure IV.12c are defined here as −log10(e).

Looking at Figures IV.12a, IV.12b it is clear that there is a large region where

more than eleven significant digits, in less than one second of computational time,

may be obtained. The irregularity of the 11th and especially the 12th significant digit

contour is a consequence of the solution accuracy approaching the noisy precision

limit associated with finite word arithmetic, which in turn are associated with a

machine precision of 16 digit arithmetic. The RKN12(10) algorithm also experiences

similar bumpy convergence when it approaches 12 digit accuracy, but only the step

size tolerance was available for tuning. In this case, we have the choice over a large

space of interval lengths and orders to achieve 12 digit accuracy, but of course, 9

digit accuracy for orbit problems is typically considered sufficient for “engineering

accuracy” since this already corresponds to cm precision. For runtime efficiency, the

optimal region in this tuning space for serial machines is as near the top left boundary

of Figures IV.12b, IV.12d as accuracy allows. However, for parallel machines, it is

near the top boundary but further to the right. We accept the longest practical

convergence interval, since the order is adjusted, by moving right for larger N equal

to the number of cores available (so the number N + 1 of function evaluations along

each iterative trajectory is carried out simultaneously to achieve a theoretical speedup

of (N + 1). The flatness of the efficiency and accuracy surfaces and their large

overlapping sweet spots permit a large space for adjustment to take full advantage

of various parallel architectures.

132

IV.G.1.d. MCPI Preliminary Results for Propagating a Family of Perturbed Orbits

The ability to propagate satellite motion quickly and accurately is one of the

major factors that affect the performance for tasks such as collision avoidance. For

these tasks, numerical integration of the satellite motion with even more accurate and

complicated perturbation force models has become necessary. It is possible that a

degree 200 and order 200 (or higher) gravity model, and a time-varying atmospheric

density model is required to adequately model perturbation accelerations. In the

following preliminary studies we include only the zonal harmonic perturbation forces

up to the fifth order in the dynamic models, and we investigate how the performance

of the algorithms change as the force model becomes more complicated. Including

zonal harmonic perturbations up to the order of k leads to

r̈ = − µ
r3
r +

k∑
i=2

aid, (4.64)

where aid is the ith of k gravity spherical harmonic perturbation terms. We compare

the computational time and the number of function evaluations when using MCPI

and RKN12(10) respectively. Both low eccentricity and high eccentricity problems

are examined using the four perturbed force models below.

• Inverse-square gravity force + J2 perturbation

• Inverse-square gravity force + J2 perturbation + J3 perturbation

• Inverse-square gravity force + J2 perturbation + J3 perturbation + J4 pertur-

bation

• Inverse-square gravity force + J2 perturbation + J3 perturbation + J4 pertur-

bation + J5 perturbation

133

The purpose of considering the perturbations in this way is to assess the role that

model complexity plays on the relative efficiency and accuracy of MCPI in compar-

ison to existing methods. The eccentricity is varied for orbits near circular to very

eccentric, in order to assess the degree to which rapidly varying nonlinearity impacts

the relative merits of several algorithms. MCPI results are presented for both low

and high eccentricity orbits.

(a) MCPI CPU Computational Time. (b) Time Efficiency Sweet Spot.

(c) MCPI Significant Figures. (d) Accuracy Sweet Spot.

Figure IV.12: Computation Time and Significant Figures for MCPI.

134

IV.G.1.e. Example 4: Integration of Perturbed Orbits with Low Eccentricity (e =

0.01)

The initial conditions for this example are the same as those used in Example

2. For the MCPI method, the Chebyshev polynomial order is 40 and the segment

length is 5400 seconds, which have been tested in the unperturbed problem to pro-

vide sub-millimeter position accuracy. For the four perturbed cases, although no

analytical solutions are available, we have verified that the relative energy changes

(kinetic & potential) for both methods are in the range of 10−13. The computational

times for the two methods are shown in Figure IV.13a and the comparison results

are shown in Figures IV.13b-IV.13f. Using the energy check avoids the necessarily of

interpolating the solution to match the points, if the absolute position and velocity

error integrated by the two methods is calculated. The order “1” case is the un-

perturbed Example 2 that we studied before and we include it here to illustrate the

performance trend with respect to the complication level of the perturbation mod-

els. Figure IV.13b shows that the MCPI method achieved six to eleven speedup over

RKN12(10). Figure IV.13c shows that RKN12(10) calls about 30% of the number of

function evaluations required by the MCPI method. Figure IV.13d shows that in an

ideal parallel computation environment where we can distribute the force evaluation

on the (N + 1) CGL nodes onto (N + 1) processors, RKN12(10) calls about twelve

times of the number of function evaluations required by the MCPI method. Although

the speedup achieved by the MCPI is shown to be decreasing on Figure IV.13b in a

serial implementation, we anticipate that the trend will change to be beneficial to the

MCPI method on an advanced parallel machine due to the following three reasons:

135

1. Figure IV.13a and IV.13b show that as more perturbation terms are included,

the function call ratio of RKN12(10) over MCPI is increasing.

2. Figures IV.13e and IV.13f show some preliminary results regarding the speedups

obtained from the GPU-accelerated MCPI over the MATLAB MCPI when used

with INVIDIA GeForce 9400GT. These demonstrate that the speedup achieved

by the parallel MCPI code increases significantly, as either the perturbation

forces become more complicated or higher order polynomials are used.

3. As we discussed earlier, the parameters for the MCPI method used here are

not claimed as the optimal settings; further optimizations are possible. The

current MCPI implementation does not utile step size adaptation. However,

there could be a possible implementation where the time segment (step size)

can be adapted in a such way to optimize the computation and maintain a

specific tolerance.

As mentioned before, these examples were previously presented in Bai’s work

[17,22,62,73]. These are reintroduced here in order to set a framework for the more

complex analysis that follows in the sext sections.

136

(a) Computational Time of MCPI and

RKN12(10) (e = 0.01).

(b) Speedup of MCPI over RKN12(10)

(e = 0.01).

(c) Ratio of Function Calls in a Serial

Computer (e = 0.01).

(d) Ratio of Function Calls in an Ideal

Parallel Architecture (e = 0.01).

(e) Speedup of GPU-MCPI (N = 127). (f) Speedup of GPU-MCPI (N = 511).

Figure IV.13: MCPI and RKN12(10) Results.

137

(a) Computational Time (e = 0.9). (b) Speedup of MCPI (e = 0.9).

(c) Ratio of Function Calls in a Serial

Computer (e = 0.9).

(d) Ratio of Function Calls in an Ideal

Parallel Architecture (e = 0.9).

Figure IV.14: MCPI vs ODE45.

IV.G.1.f. Example 5: Integration of Perturbed Orbits with High Eccentricity (e=0.9)

For this highly eccentric orbit, the six classical orbital elements is shown in Table

IV.2. For the MCPI method, the Chebyshev polynomial order is chosen as 45, with

the exception of the segment passing perigee during which a polynomial of order

110 is utilized. The segment length is assumed to be 1/20 of the orbit, which has

been tested in the unperturbed problem to provide sub-millimeter position accuracy.

138

Table IV.2: Classical Orbital Elements for High Eccentricity Orbit.

EPOCH STATE EPOCH ELEMENTS

rx 1034.404 Km a 65000 Km

ry -6086.687 Km e 0.9

rz -2032.917 Km i 68 deg

vx 3.673094 Km/sec ω -160 deg

vy 3.795599 Km/sec Ω 92 deg

vz -9.413550 Km/sec M 164 deg

PERIOD, Tp 45.811 hrs

For the perturbed cases, we have verified that the relative energy changes for both

methods are in the range of 10−13. The computational time for the two methods

are shown in Figure IV.14a and the comparison results are shown in Figures IV.14b-

IV.14d. Figure IV.14b shows that the MCPI method achieved more than one order

magnitude of speedup over RKN12(10), and this speedup is higher than the one

achieved for the low eccentric case. Figure IV.14c shows that RKN12(10) calls about

40% of the number of function evaluations required by the MCPI method, whereas

Figure IV.14d shows that in an ideal parallel computation environment where we can

distribute the force evaluation on the (N + 1) CGL nodes onto (N + 1) processors,

RKN12(10) calls about twenty times of the number of function evaluations required

by the MCPI method.

We remark that the tuning of the MCPI algorithm is ad hoc, and even without

139

optimization, the order of magnitude speedup and high precision relative to the

competing RKN12(10) algorithm suggests a strong basis for optimism. This should

become even more apparent as the highly parallel architecture and adaptive tuning

features are fully developed and exploited.

IV.G.2. Energy Jacobi Integral

In order to investigate the accuracy level in the numerical solution, we develop

an energy integral formula (actually, the Hamiltonian, which can be proven to be

constant in the absence of drag or other non-conservative forces) of the perturbed

two body solution in the rotating body frame (derived quite analogously to the

classical Jacobi integral of the restricted three body problem). Therefore, this rig-

orous ”motion constant” accuracy check is carried out based on degree to which the

Hamiltonian is constant rather than simply comparing one slightly incorrect numer-

ical solution to the other. The fact that this integral exists for the most elaborate

gravity models does not appear to be widely appreciated, but it is a quite powerful

referee when validating orbit propagators accuracy and especially, judging relative

efficiency for a given accuracy.

Consider the Earth rotation angle is defined as: θ(t) = θ(tmid−night) + ω(t −

tmid−night) where ω is the earth angular velocity. To develop the Jacobi Integral, we

express the inertial position vector r in a rotating reference frame F : {êr, êθ, ê3},

see Figure IV.15:

r = Xn̂1 + Y n̂2 + Zn̂3 = rxêr + ryêθ + rzê3 (4.65)

140

Figure IV.15: Illustration of the Earth Rotating Frame.

The coordinate mapping
êr

êθ

ê3

 = C(θ(t))

n̂1

n̂2

n̂3

 (4.66)

Note that the angular velocity vector of the F frame relative to some inertial frame

ω = ωê3. Let the time derivative as seen by the F frame can be labeled as:

Fd

dt
x = x′ (4.67)

then the velocity and acceleration vectors as seen by F are given by

r′ =

ṙx

ṙy

ṙz

F

r′′ =

r̈x

r̈y

r̈z

F

(4.68)

by differentiating the position vector and applying the transport theorem, the inertial

141

velocity and acceleration vectors are expressed as:

v =
Nd

dt
r =

Fd

dt
r + ω × r

= r′ + ω × r =

ṙx − ωry

ṙy + ωrx

ṙz

 (4.69)

a =
Nd

dt
v =

Fd2

dt2
r + 2ω ×

Fd

dt
r + ω × (ω × r)

= r′′ + 2ω × r′ + ω × (ω × r) = −∇rV (rx, ry, rz) = −

∂V
∂rx

∂V
∂ry

∂V
∂rz

 (4.70)

Eq. (4.70) can be written as

r′′ + 2ω × r′ = −∇rV (rx, ry, rz)− ω × (ω × r)
r̈x − 2ωṙy

r̈y + 2ωṙx

r̈z

 = −

∂V
∂rx
− ω2rx

∂V
∂ry
− ω2ry

∂V
∂rz

 (4.71)

Assume U(rx, ry, rz) = V (rx, ry, rz)− 1
2
ω2(r2

x + r2
y) then Eq. (4.71) becomes

r′′ + 2ω × r′ =

r̈x − 2ωṙy

r̈y + 2ωṙx

r̈z

 = −∇rU(rx, ry, rz) (4.72)

By performing the vector dot product of Eq. (4.72) by r′ , we find the following

perfect differential equation:

(r′′+ 2ω× r′) · r′ = r′′ · r′ = 1

2

Fd

dt
(r′ · r′) = −∇rU · r′ = −

∂U

∂r
· r′ = −

Fd

dt
U (4.73)

142

Integrating this equation with respect to time yields a perfect integral of the relative

equations of motion:

v2 = r′ · r′ = −2U(rx, ry, rz)− C

or (4.74)

1

2
v2 − 1

2
ω2(r2

x + r2
y) + V (rx, ry, rz) = −C

where the scalar constant C is determined through the initial conditions. The con-

stant C can be thought of as a relative energy measure. This perfect integral of

the relative equations of motion is used to investigate the accuracy of a numerical

integration.

As another interpretation, we use the Lagrange’s equation and the Hamiltonian

formula in the rotating frame to prove the same formula. Lagrange’s Equation is

defined by

L = T (q, q̇)− V (q, q̇) (4.75)

where T is the kinetic energy and V is the potential energy of the system. The

generalized coordinate is chosen to be the position vector in the rotating frame

q =

rx

ry

rz

F

q̇ =

ṙx

ṙy

ṙz

F

(4.76)

143

The kinetic energy per unit mass is calculated by

T (q, q̇) =
1

2
(N ṙ ·N ṙ) =

1

2
(F ṙ + ω ×F r) · (F ṙ + ω ×F r)

=
1

2
(F ṙ ·F ṙ + 2F ṙ · (ω ×F r) + (ω ×F r) · (ω ×F r)) (4.77)

=
1

2
(q̇ · q̇ + 2q̇ · (ω × q) + (ω × q) · (ω × q))

=
1

2
((ṙx − ωry)2 + (ṙy + ωrx)

2 + ṙ2
z)

The potential energy per unit mass is the gravity potential computed in the rotating

frame, which is given by

V (q, q̇) = V (Fr) = V (rx, ry, rz) = V (q) (4.78)

The Hamiltonian is given by

H =
∑
i=x,y,z

piq̇i − L (4.79)

where pi = ∂L
∂q̇i

is the conical conjugate moment such that

px =
∂L

∂ṙx
= (ṙx − ωry), py =

∂L

∂ṙy
= (ṙy + ωrx), pz =

∂L

∂ṙz
= ṙz (4.80)

Substituting Eq.(4.78), Eq.(4.78) and Eq. (4.80) into Eq.(4.79) , the Hamiltonian

becomes

H =
1

2
v2 − 1

2
ω2(r2

x + r2
y) + V (rx, ry, rz) (4.81)

Since the Hamiltonian does not depend on time and all of the working forces are

either conservative or do no work under virtual displacements. Consistent with

constraints, we know [32] that the Hamiltonian is constant. This can be readily

144

proven by formally differentiating Eq. (4.79) and substituting Hamilton’s equations

of motion with H = H(q1, q2, · · · , p1, p2, · · ·) as

q̇i =
∂H

∂pi
(4.82)

ṗi = −∂H
∂qi

H = Eq. (4.81) = constant is exactly the same as the Jacobi integral given in

Eq.(4.75), where H = −C.

IV.G.3. MCPI vs Runge-Kutta 4-5 with EGM2008 Gravity Model in C++ Envi-

ronment

In this section we compare the performance of the MCPI algorithm with the

classical Runge-Kutta (RK45) method. Computations for the final two examples

were performed using a PC with the following settings and environment

• Intel Core i7 3610QM Processor 2.3GHz

• 1500GB 7200rpm Hard Drive

• Nvidia GTX 660M

• Windows 7 Home Premium 64-bit

• Microsoft Visual Studio 2008

The following results represent time (computer execution speed) comparison

between MCPI and RK45. The two propagators are used to integrate perturbed

satellite motion using EGM2008 spherical harmonic 100x100. Both propagators are

implemented in a C++ environment and a speed test is performed to investigate

145

which code is faster. In order to ensure that the two propagators produce the re-

quired accuracy level in the solution, we investigate the exact energy integral (the

Hamiltonian) of the two solutions in the rotating body frame. This rigorous motion

constant accuracy check is carried out based on the degree to which the Hamiltonian

is constant rather than simply comparing one slightly incorrect numerical solution

to the other. The fact that this integral exists for the most elaborate gravity models

does not appear to be widely appreciated, but it is quite a powerful “referee” when

validating orbit propagator accuracy, and especially when judging the relative effi-

ciency for a given accuracy. In this case, we have tuned both methods to maintain

nearly the same level of accuracy for each relative “speed-up” test case. As is evi-

dent, we are maintaining over a 14 digit accuracy in both solutions. This is much

more than needed in most geocentric orbits of interest, and requiring less precision

will likely affect to some degree the relative efficiency.

For this example the number of nodes used in the MCPI calculation is N = 100,

and for the RK45 method the step size is tuned until the same level of accuracy is

achieved. In order to perform a fair comparison the total energy (kinetic + potential)

of each system is calculated and the accuracy is plotted as a function of harmonic

order. The results are for MCPI and RK45 are shown in Figures IV.18a and IV.18b

respectively. It is evident that the accuracy of both methods falls below 1× 10−14.

The respective computation times for harmonic order 1 through to 100 are shown

in Figure IV.17a. For this single orbit propagation example it is clear that the

computation time required for the MCPI computation is over an order of magnitude

faster than the RK45 method. The ratio of the computation times for RK45 and

146

(a) MCPI Accuracy. (b) RK45 Accuracy.

Figure IV.16: Accuracy Check by Hamiltonian for MCPI and RK45.

MCPI is shown in Figure IV.17b for increasing harmonic order.

(a) MCPI and RK45 Computation Times. (b) Ratio of Computation Time.

Figure IV.17: Single Orbit Propagation: MCPI vs RK45 Computation Times.

The MCPI method significantly out-performed the RK45 method. The compu-

tation time required to produce an orbital propagation solution with the same ac-

147

curacy is considerably less for the MCPI method compared with the RK45 method.

The main difference in these algorithms is that MCPI propagates the entire trajec-

tory/orbit at each iterative step whereas RK45 only propagates one point/measurement

during each iteration. Further more, MCPI is extremely well suited for parallelization

and thus one can expect even greater speed ups once the algorithm is implemented

in this form.

IV.G.4. MCPI vs Runge-Kutta 12-10 with EGM2008 Gravity Model in C++ En-

vironment

In this section we compare the performance of the MCPI algorithm with the

Runge-Kutta (RK12(10)) method. The results that follow represent time (speed)

comparison between MCPI and RK12(10). The two propagators are used to inte-

grate perturbed satellite motion (using EGM2008 spherical harmonic 50×50). Both

propagators are implemented in C++ environment. A speed test is performed to

investigate the faster code. Similarly, in order to ensure that the two propagators

produce the accuracy level in the solution, we investigate the energy integral (the

Hamiltonian) of the two solutions in the rotating body frame. As is evident, we

are maintaining over 15 digit accuracy in both solutions, much more than needed

in most geocentric orbits of interest, and requiring less precision will likely affect to

some degree the relative efficiency. Example 1 is for a single orbit case and Example

2 is for a multi orbit case.

148

(a) MCPI Accuracy. (b) RK12(10) Accuracy.

Figure IV.18: Accuracy Check by Hamiltonian for MCPI and RK12(10).

Figure IV.19: Error in Position and Velocity between MCPI - RK12(10).

149

IV.G.4.a. Example 1: Single Orbit Propagation

We first investigate the simulation speed up of the MCPI versus the RK12(10)

for various spherical harmonic order (EGM2008), from 5× 5 to 50× 50. The energy

check tolerance is chosen to be 1e−15, as seen in Figure IV.20 and Figure IV.19. This

tolerance also maintains 1e−8 [m] error in position and 1e−11 [m/s] error in velocity.

The simulation results are presented in Figure IV.20. Note that we increase the

required polynomial order (number of nodes) for the MCPI as we increase the spher-

ical harmonic order. This implies that, in order to maintain the same integration

accuracy (< 1e−15), we are required to include more nodes to fit the trajectory and

capture the extra wrinkles/perturbations added to the classical two-body trajectory.

Figure IV.21 shows that significant figures for the MCPI (EGM2008 50 × 50) en-

ergy check maximum error versus the MCPI order and integration segment. The

simulation speedup curves show that, in the serial machine, the MCPI propagator

(in C++ environment) is about ∼ 40× faster than RK12(10) for 5 × 5 perturbed

motion. While this speed factor decreases gradually to about 20× for 50×50 gravity

perturbed motion.

IV.G.4.b. Example 2: Multi Orbit Propagation

Here we propagate the same initial conditions for 15 orbits using MCPI and

RK12(10) for 50 × 50 EGM2008 perturbed two-body problem. The energy check

tolerance is chosen to be 1e−15, as seen in Figure IV.22. The simulation results

are presented in Figure IV.23. The simulation speedup curves show that, in the

serial machine, the MCPI propagator (in C++ environment) is about one order of

150

(a) MCPI and RK12(10) Computation

Times.

(b) Ratio of Computation Time:

RK12(10) to MCPI.

Figure IV.20: Single Orbit Propagation: MCPI vs RK12(10) Computation Times.

Figure IV.21: Significant Figures for MCPI at EGM2008 50× 50.

magnitude faster than RK12(10) for 50× 50 gravity perturbed motion.

151

(a) MCPI Accuracy. (b) RK12(10) Accuracy.

(c) Error in Position and Velocity. (d) Multi-Orbit in (ECEF).

Figure IV.22: Accuracy Check by Hamiltonian for multi orbits.

IV.G.5. Trajectory Propagations Using FEM Versus Spherical Harmonic Gravity

Model

In this section we compare the performance of the MCPI algorithm with the

classical Runge-Kutta (RK45 or ODE45) method. Computations for the final two

examples were performed using a serial computer with the following configuration

settings and environment

152

(a) MCPI and RK12(10) Computation

Times.

(b) Ratio of Computation Time:

RK12(10) to MCPI.

Figure IV.23: Multi Orbit Propagation: MCPI vs RK12(10) Computation Times.

• Intel Core i7 3610QM Processor 2.3GHz

• 1500GB 7200rpm Hard Drive

• Nvidia GTX 660M

• Windows 7 Home Premium 64-bit

• MATLAB R2010b

• Microsoft Visual Studio 2008

The gravity force EGM2008 200 × 200 is implemented in Matlab and C/C++

to calculate the acceleration using both 1) conventional spherical harmonics (SH)

gravity fields, and 2) the interpolated finite element gravity model (FEM). Figure

IV.24 shows the Hamiltonian check of three different different propagators using

both spherical harmonic gravity field EGM2008 200×200 and the interpolated finite

element model FEM. The subfigures IV.24a through IV.24f demonstrate:

153

• Test #1: Figure IV.24a shows the Hamiltonian check for the solution propa-

gated by Modified Chebyshev Picard Iteration (MCPI) using the conventional

spherical harmonics (SH) gravity fields, EGM2008 200× 200.

• Test #2: Figure IV.24b shows the Hamiltonian check for the solution propa-

gated by Modified Chebyshev Picard Iteration (MCPI) using the interpolated

finite element gravity model (FEM), EGM2008 200× 200.

• Test #3: Figure IV.24c shows the Hamiltonian check for the solution propa-

gated by Adaptive Chebyshev Picard Iteration (ACPI) using the conventional

spherical harmonics (SH) gravity fields, EGM2008 200× 200.

• Test #4: Figure IV.24d shows the Hamiltonian check for the solution propa-

gated by Adaptive Chebyshev Picard Iteration (ACPI) using the interpolated

finite element gravity model (FEM), EGM2008 200× 200.

• Test #5: Figure IV.24e shows the Hamiltonian check for the solution prop-

agated by Runge-Kutta (RK45 or ODE45) method using the conventional

spherical harmonics (SH) gravity fields, EGM2008 200× 200.

• Test #6: Figure IV.24f shows the Hamiltonian check for the solution propa-

gated by Runge-Kutta (RK45 or ODE45) method using the interpolated finite

element gravity model (FEM), EGM2008 200× 200.

The propagated orbits are displayed in Figure IV.25, which shows perturbed prop-

agations for 20 orbits using EGM2008 200 × 200; presented in (a) Earth-Centered

Earth-Fixed (ECEF) coordinates, as shown in IV.25a, and (b) Earth Rotating coor-

dinates, as shown in IV.25b.

154

The computation time CPU cost is shown in Figure IV.26. All tests are per-

formed in MATLAB R2010b. The pre-computed J5 perturbed two body problem

is used to warm-start the iterations. For the spherical harmonic computation, it is

obvious that both MCPI and ACPI are about an order of magnitude faster than

the ODE45 in serial processor. However, this is not the case when the finite element

model FEM is used, as the ODE45 computation speed is better than both MCPI and

ACPI speed. Computation routines in MATLAB are stored in the optimized cache

memory, which allows fast processing if the same routine is called in the runtime.

In other words, the MATLAB environment is designed to make ODE45 smarter for

sequential operations. This speed optimization does not exits if the same code is run

in dry C/C++ or Fortran. Moreover, all methods show that using the interpolated

finite element gravity model (FEM) in the force function improves the overall speed

up of the integrator; e.g. for the ODE45, the FEM speed up reaches four order of

magnitude compared with SH 200× 200. It is evident that there is a slight speed up

of ACPI versus MCPI for both cases: with SH and with FEM. This speed can be

further enhanced by adapting the choice of the polynomial order in the L.H.S and

R.H.S in Eq. 4.33.

To avoid the MATLAB cache memory optimization, both C++ FEM and SH

of the EGM2008 200 × 200 is ported to both MCPI and RK12(10) propagators in

serial processor. The computation time CPU cost is shown in Figure IV.27. The

pre-computed J5 perturbed two body problem is used to warm-start the iterations.

For the spherical harmonic computation, it is obvious that MCPI is over an order

of magnitude faster than the RK12(10) in serial processor. The interpolated finite

155

element gravity model (FEM) in the force function improves the overall speed up of

the both integrators. This speed can be further enhanced by optimizing the FEM

C++ code.

156

(a) MCPI with SH. (b) MCPI with FEM.

(c) ACPI with SH. (d) ACPI with FEM.

(e) ODE45 with SH. (f) ODE45 with FEM.

Figure IV.24: Hamiltonian (or Energy Jacobi) Energy Check.

157

(a) Earth-Centered Earth-Fixed (ECEF). (b) Earth Rotating Coordinates.

Figure IV.25: Perturbed Propagations for 20 Orbits using EGM2008 200× 200;

Presented in (a) Earth-Centered Earth-Fixed (ECEF) Coordinates, (b) Earth

Rotating Coordinates.

Figure IV.26: Computation Time Cost for Test #1 through Test #6.

158

Figure IV.27: Computation Time cost for MCPI and RK12(10).

159

CHAPTER V

SUMMARY AND CONCLUDING REMARKS

We have summarized classical and recent developments from approximation the-

ory, with emphasis on representing given complicated functions by orthogonal poly-

nomials in one, two, and higher dimensions. We have shown that arranging the

regression matrix to be Kronecker factorable allows array algebra identities to gen-

erate the multidimensional orthogonal least square operators directly from the cor-

responding one dimensional operators. We showed that a four order of magnitude

speedup in the computation time to obtain state-of-the-are gravitational accelera-

tion is possible. As a consequence, a new generation of very efficient algorithms

results for orbit integration, regardless of the method used to propagate the orbit.

A number of nonlinear test functions of one and two variables were introduced and

used to show that machine precision approximation results are routinely obtained. It

was further shown that integration of these orthogonal approximations led to espe-

cially attractive accuracy increases, whereby the oscillatory zero mean least square

approximation error amplitudes are smoothed and reduced by one order of magni-

tude through trajectory integration. This has immediate implications and explains

in part the impressive results obtained in the Chebyshev-Picard recently presented

by [22], in solving the boundary value problems of celestial mechanics. Based on

recent contributions from satellite geodesy, we are now in a position to confidently

compute gravity globally with 9 or more significant figures at all orbit altitudes. The

challenge is that the classical spherical harmonic expansion and analogous global

160

models require > 105 terms in a series to compute > 9 digit converged local accel-

eration with a single global expansion. Therefore, it is not attractive to utilize high

order global models to compute local gravity for the purpose of efficient and accurate

trajectory computation. We showed in this dissertation that it is feasible to develop

adaptive finite element approximation methods that inherently answer a heretofore

unanswered question: For FEM gravitational approximation methods, how can we

determine approximations that automatically adapt as a function of radial distance,

so that (for example) the number of terms in the approximation is automatically

minimized to maintain a prescribed accuracy? The results obtained are illustrated

with a number of tests cases that show several orders of magnitude reduction in

computation time in comparison to the correspondingly accurate spherical harmonic

series. The implications are substantial for efficient and accurate propagation of

space object catalogs, efficient Monte Carlo studies, and analogous operations where

orbits must be iteratively computed and propagated over long time intervals.

Both the Modified Chebyshev Picard Iteration (MCPI) and the Adaptive Cheby-

shev Picard Iteration (ACPI) methods are derived for both the first and second order

cases. Flow diagrams of the iteration routines are included and we also present a

vector-matrix representation of the algorithms. The algorithms are executed for a

number of first and second order example problems. The results are discussed and

compared with other differential equations solvers such as Runge-Kutta. The com-

parison leads to the anticipated result that MCPI is a far superior method with

regard to accuracy (one order of magnitude) and computation time (two orders of

magnitude). In addition, the parallel nature of the algorithm allows for further en-

161

hancements as refinements with regard to use of parallel computing generally and

Graphics Processing Units in particular. The applications studied in this disserta-

tion show extremely promising results and illuminate a clear pathway along which

significant future develops can lead to great advancements that are not limited to

the differential equations of astrodynamics. These exciting new derivations leave the

door wide open for the realization of new developments and applications in dynamical

systems and control systems.

162

REFERENCES

[1] Kessler, D. J. and Cour-Palais, B. G., “Collision Frequency of Artificial Satel-

lites: The Creation of a Debris Belt,” J. Geophys. Res., Vol. 83, No. A6, 1978,

pp. 2637–2646.

[2] Kessler, D. J., Stansbery, E. G., Zhang, J., Matney, M. J., Eichler, P., Reynolds,

R. C., and Anz-Meador, P. D., “A Computer-Based Orbital Debris Environment

Model for Spacecraft Design and Observation in Low Earth Orbit,” Tech. Rep.

NASA-TM-104825, NAS 1.15:104825, S-822, NASA-Johnson Space Center, Nov.

1996.

[3] Anselmo, L., Cordelli, A., Jehn, R., Pardini, C., and Rossi, A., “New Results of

the Upgraded SDM Space Debris Modeling Software,” Space Debris , edited by

J. Bendisch, Vol. 100, 1999, pp. 187–203.

[4] Kessler, D. J. and Anz-Meador, P. D., “Critical Number of Spacecraft in Low

Earth Orbit: Using Satellite Fragmentation Data to Evaluate the Stability of

the Orbital Debris Environment,” Space Debris , edited by H. Sawaya-Lacoste,

Vol. 473, 2001, pp. 265–272.

[5] Johnson, N. L., Krisko, P. H., Liou, J. C., and Anz-Meador, P. D., “NASA’s

New Breakup Model of Evolve 4.0,” Advances in Space Research, Vol. 28, No. 9,

2001, pp. 1377 – 1384.

163

[6] Sdunnus, H., Bendisch, J., and Klinkrad, H., “The ESA MASTER’99 Space

Debris and Meteoroid Reference Model,” Space Debris , edited by H. Sawaya-

Lacoste, Vol. 473, 2001, pp. 299–307.

[7] Liou, J. C., Matney, M. J., Anz-Meador, P. D., Kessler, D., Jansen, M.,

and Theall, J. R., “The New NASA Orbital Debris Engineering Model OR-

DEM2000,” NASA STI/Recon Technical Report N , Vol. 2, May 2002, pp. 51086.

[8] Liou, J. C., Hall, D. T., Krisko, P. H., and Opiela, J. N., “LEGEND - a Three-

dimensional LEO-to-GEO Debris Evolutionary Model,” Advances in Space Re-

search, Vol. 34, Jan. 2004, pp. 981–986.

[9] Oswald, M., Wegener, P., Stabroth, S., Wiedemann, C., Rosebrock, J., Martin,

C., Klinkrad, H., and Vörsmann, P., “The Master 2005 Model,” 4th European

Conference on Space Debris , edited by D. Danesy, Vol. 587 of ESA Special

Publication, Aug. 2005, p. 235.

[10] Liou, J. C., “Collision Activities in the Future Orbital Debris Environment,”

Advances in Space Research, Vol. 38, No. 9, 2006, pp. 2102 – 2106.

[11] Ailor, W., “Collision Avoidance and Improving Space Surveillance,” Astropoli-

tics , Vol. 2, No. 2, 2004, pp. 107–120.

[12] Gaposchkin, E., von Braun, C., and Sharma, J., “Space-based Space Surveil-

lance with the Space-Based Visible,” Journal of Guidance, Control, and Dy-

namics , Vol. 23, No. 1, 2000, pp. 148–152.

164

[13] Naka, F., Canavan, G., Clinton, R., Judd, O., and Pensa, A., “Space Surveil-

lance, Asteroids and Comets, and Space Debris. Volume 1: Space Surveillance,”

Tech. Rep. SAB-TR-96-04, United States Air Force Scientific Advisory Board -

DTIC Document, Pentagon, Washington, DC, June 1997.

[14] Wright, D., “Space Debris,” Physics Today , Vol. 60, 2007, pp. 35–40.

[15] Sharma, J., Stokes, G. H., von Braun, C., Zollinger, G., and Wiseman,

A. J., “Toward Operational Space-based Space Surveillance,” Lincoln Labora-

tory Journal , Vol. 13, No. 2, 2002, pp. 309–334.

[16] Sergei, N., de Vries, W. H., Phillion, D., and H. K. Springer, L., “High-Fidelity

Kessler Syndrome Simulations,” private correspondence with J Junkins, 2010.

[17] Bai, X., Modified Chebyshev-Picard Iteration Methods for Solution of Initial

Value and Boundary Value Problems., Ph.D. dissertation, Texas A&M Univ,

College Station, TX, 2010.

[18] Feagin, T., The Numerical Solution of Two Point Boundary Value Problems

Using Chebyshev Series , Ph.D. dissertation, The Universtiy of Texas at Austin,

Austin, TX, 1973.

[19] Feagin, T. and Nacozy, P., “Matrix Formulation of the Picard Method for Par-

allel Computation,” Celestial Mechanics and Dynamical Astronomy , Vol. 29,

No. 2, Feb. 1983, pp. 107–115.

165

[20] Shaver, J., Formulation and Evaluation of Parallel Algorithms for the Orbit

Determination Problem, Massachusetts Institute of Technology, Department of

Aeronautics and Astronautics, 1980.

[21] Clenshaw, C. W. and Norton, H. J., “The Solution of Nonlinear Ordinary Dif-

ferential Equations in Chebyshev Series,” The Computer Journal , Vol. 6, No. 1,

1963, pp. 88–92.

[22] Bai, X. and Junkins, J. L., “Modified Chebyshev-Picard Iteration Methods for

Solution of Initial Value Problems,” Kyle T. Alfriend Astrodynamics Sympo-

sium, No. AAS 10-322, Monterey, CA., May 2010.

[23] Arora, N. and Russell, R., “Fast, Efficient, and Adaptive Interpolation of the

Geopotential,” AAS/AIAA Astrodynamics Specialist Conference, Vol. AAS 11-

501, Girdwood, AK, 2011.

[24] Junkins, J., Miller, G., and Jancaitis, J., “Weighting Function Approach to

Modeling of Irregular Surface,” Journal of Geophysical Research, Vol. 78, No. 11,

1973, pp. 1794–1803.

[25] Junkins, J., “Investigation of Finite-Element Representations of the Geopoten-

tial,” AIAA Journal , Vol. 14, No. 6, 1976, pp. 803–808.

[26] Junkins, J. and Jancaitis, J., “Modeling in n-Dimensions Using a Weighting

Function Approach,” Journal of Geophysical Research, Vol. 79, No. 23, 1974,

pp. 3361–3366.

166

[27] Singla, P. and Junkins, J. L., Multi-resolution Methods for Modeling and Control

of Dynamical Systems , CRC Press, 2009.

[28] Mason, J. and Handscomb, D., Chebyshev Polynomials , Chapman and

Hall/CRC, 2003.

[29] Chebyshev, P. L., “Thorie De Mcanismes Connus Sous Le Nom De Paralllo-

grammes,” Mèmoires des Savants ètrangers prèsentès à l’Acadèmie de Saint-

Pètersbourg , Vol. 7, 1857, pp. 539–586.

[30] Fox, L. and Parker, I. B., Chebyshev Polynomials in Numerical Analysis , Lon-

don, UK: Oxford University Press, 1972.

[31] Snay, R. A., “Applicability of Array Algebra,” Rev. Geophys., Vol. 16, No. 3,

1978, pp. 459–464.

[32] Schaub, H. and Junkins, J. L., Analytical Mechanics of Space Systems , Reston,

VA, AIAA Education Series, 2nd ed., 2009.

[33] Battin, R., An Introduction to the Mathematics and Methods of Astrodynamics ,

Reston, VA: American Institute of Aeronautics and Astronautics, Inc, revised

ed., 1999.

[34] GGM03, “Gravity Recovery and Climate Experiment (GRACE),”

http://www.csr.utexas.edu/grace/gravity/ , Aug 16, 2011.

[35] Russell, R. P., “GRACE Spherical Harmonic Coefficients,” Private Communi-

cation with J Junkins, 2012.

167

[36] EGM2008, “Earth Gravitational Model 2008 (EGM2008),” http://Earth-

info.nga.mil/GandG/wgs84/gravitymod/egm2008/ , May 06, 2013.

[37] Pines, S., “Uniform Representation of the Gravitational Potential and its Deriva-

tives,” AIAA Journal , Vol. 11, 1973, pp. 15081511.

[38] Casotto, S. and Fantino, E., “Evaluation of Methods for Spherical Harmonic

Synthesis of the Gravitational Potential and its Gradients,” Advances in Space

Research, Vol. 40, 2007, pp. 69–75.

[39] Lundberg, J. B. and Schutz, B. E., “Recursion Formulas of Legendre Functions

for Use with Nonsingular Geopotential Models,” Journal of Guidance Control

Dynamics , Vol. 11, Feb. 1988, pp. 31–38.

[40] Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., and

Poole, S., “The GGM03 Mean Earth Gravity Model from GRACE,” AGU Fall

Meeting Abstracts , Dec. 2007, pp. A3.

[41] Fahroo, F. and Ross, I. M., “Direct Trajectory Optimization by a Chebyshev

Pseudospectral Method,” Journal of Guidance, Control, and Dynamics , Vol. 25,

No. 1, Jan.-Feb. 2002, pp. 160–166.

[42] Gong, Q., Fahroo, F., and Ross, I. M., “Spectral Algorithm for Pseudospectral

Methods in Optimal Control,” Journal of Guidance, Control, and Dynamics ,

Vol. 31, No. 3, 2008, pp. 460–471.

168

[43] Fahroo, F. and Ross, I. M., “A Spectral Patching Method for Direct Trajectory

Optimization,” Journal of the Astronautical Sciences , Vol. 48, No. 2/3, 2000,

pp. 269–286.

[44] Junkins, J. L. and Engels, R. C., “Local Representation of the Geopotential

by Weighted Orthonormal Polynomials,” Journal of Guidance, Control, and

Dynamics , Vol. 3, No. 1, 1980, pp. 55–61.

[45] Beylkin, G. and Cramer, R., “Toward Multiresolution Estimation and Efficient

Representation of Gravitational Fields,” Celestial Mechanics and Dynamical

Astronomy , Vol. 84, Sept. 2002, pp. 87–104.

[46] Lekien, F. and Marsden, J., “Tricubic Interpolation in Three Dimensions,” Jour-

nal of Numerical Methods and Engineering , Vol. 63, 2005, pp. 455–471.

[47] Colombi, A., Hirani, A. N., and Villac, B. F., “Adaptive Gravitational Force

Representation for Fast Trajectory Propagation Near Small Bodies,” Journal of

Guidance Control and Dynamics , Vol. 31, 2008, pp. 1041–1051.

[48] Hujsak, R. S., “Gravity Acceleration Approximation Functions,” Advances in

the Astronautical Sciences , Vol. 93, 1996, pp. 335–349.

[49] Oltrogge, D., “AstroHD: Astrodynamics Modeling With a Distinctly Digital Fla-

vor,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit , Honolulu,

HI, August 18-21 2008.

169

[50] Van de Craats, J., “On the Region of Convergence of Picard’s Iteration,”

ZAMM-Journal of Applied Mathematics and Mechanics , Vol. 52, 1971, pp. 487–

491.

[51] Agarwal, R. P., “Nonlinear Two–Point Boundary Value Problems,” Indian Jour-

nal of Pure and Applied Mathematics , Vol. 4, 1973, pp. 757–769.

[52] Coles, W. J. and Sherman, T. L., “Convergence of Successive Approximations

for Nonlinear Two-Point Boundary Value Problems,” SIAM Journal on Applied

Mathematics , Vol. 15, No. 2, Mar. 1967, pp. 426–433.

[53] Bailey, P. B., “On the Interval of Convergence of Picard’s Iteration,” ZAMM -

Journal of Applied Mathematics and Mechanics , Vol. 48, No. 2, 1968, pp. 127–

128.

[54] Bailey, P., Shampine, L. F., and Waltman, P., “Existence and Uniqueness of So-

lutions of the Second Order Boundary Value Problem,” Bulletin of the American

Mathematical Society , Vol. 72, No. 1, 1966, pp. 96–98.

[55] Van de Craats, J., “On the Region of Convergence of Picard’s Iteration,” ZAMM

- J of Applied Math and Mech / Zeitschrift für Angewandte Mathematik und

Mechanik , Vol. 62, 1972, pp. 487–491.

[56] Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations ,

New York, McGraw-Hill, 1955.

[57] Lindelöf, E., “Sur l’Application de la Methode des Approximations Successives

aux Equations Dif-ferentielles Ordinaires du Premier Ordre,” Comptes rendus

170

hebdomadaires des seances de l Academie des sciences , Vol. 114, 1894, pp. 454–

457.

[58] Parker, G. E. and Sochacki, J. S., “Implementing the Picard Iteration,” Neural,

Parallel & Scientific Computations , Vol. 4, No. 1, 1996, pp. 97–112.

[59] Vlassenbroeck, J. and Dooren, R. V., “A Chebyshev Technique for Solving Non-

linear Optimal Control Problems,” IEEE Transactions on Automatic Control ,

Vol. 33, No. 4, Apr. 1988, pp. 333–340.

[60] Fukushima, T., “Vector Integration of Dynamical Motions by the Picard-

Chebyshev Method,” The Astronomical Journal , Vol. 113, No. 6, Jun. 1997,

pp. 2325–2328.

[61] Fukushima, T., “Picard Iteration Method, Chebyshev Polynomial Approxima-

tion, and Global Numerical Integration of Dynamical Motions,” The Astronom-

ical Journal , Vol. 113, No. 5, May. 1997, pp. 1909–1914.

[62] Bai, X. and Junkins, J. L., “Solving Initial Value Problems by the Picard-

Chebyshev Method with NVIDIA GPUS,” 20th Spaceflight Mechanics Meeting ,

No. AAS 10-197, San Diego, CA, 2010.

[63] Butcher, J. C., “Implicit Runge-Kutta Processes,” Math. Comp., Vol. 18, 1964,

pp. 50–64.

[64] Burrage, K., Parallel and Sequential Methods for Ordinary Differential Equa-

tions , Monographs on Numerical Analysis, Clarendon Press, 1995.

171

[65] Butcher, J., Numerical Methods for Ordinary Differential Equations , Wiley,

2008.

[66] Hairer, E., Nørsett, S., and Wanner, G., Solving Ordinary Differential Equations

I: Nonstiff Problems , Solving Ordinary Differential Equations, Springer, 1993.

[67] Hairer, E., Nrsett, S., and Wanner, G., Solving Ordinary Differential Equations

II: Stiff and Differential-Algebraic Problems , Lecture Notes in Economic and

Mathematical Systems, Springer, 1993.

[68] Iserles, A., A First Course in the Numerical Analysis of Differential Equations ,

Cambridge texts in Applied Mathematics, Cambridge University Press, 1996.

[69] Crassidis, John L.; Junkins, J. L., Optimal Estimation of Dynamic Systems ,

New York, NY: CRC Press - Taylor and Francis., 2011.

[70] Lewis, F. L. and Syrmos, V. L., Optimal Control , New York, NY: Wiley-

Interscience, 1995.

[71] Russell, R. and Arora, N., “Global Point Mascon Models for Simple, Accurate,

and Parallel Geopotential Computation,” AAS/AIAA Space Flight Mechanics

Meeting , No. AAS 11-158, 2011.

[72] Leopardi, P., “A Partition of the Unit Sphere into Regions of Equal Area and

Small Diameter,” Electronic Transactions on Numerical Analysis , Vol. 25, 2006,

pp. 309–327.

172

[73] Bai, X. and Junkins, J. L., “Modified Chebyshev-Picard Iteration Methods for

Orbit Propagation,” Journal of the Astronautical Sciences , Vol. 58, Oct.-Dec.

2011, pp. 583–613.

[74] Scraton, R. E., “The Solution of Linear Differential Equations in Chebyshev

Series,” The Computer Journal , Vol. 8, No. 1, 1965, pp. 57–61.

[75] Wright, K., “Chebyshev Collocation Methods for Ordinary Differential Equa-

tions,” The Computer Journal , Vol. 6, No. 4, 1964, pp. 358–365.

[76] Norton, H. J., “The Iterative Solution of Non-linear Ordinary Differential Equa-

tions in Chebyshev Series,” The Computer Journal , Vol. 7, No. 2, 1964, pp. 76–

85.

[77] Schaub, H. and Junkins, J. L., Analytical Mechanics of Space Systems, 2nd ed ,

AIAA Education Series, Reston, VA, 2011.

173

APPENDIX A

CHEBYSHEV POLYNOMIALS

Chebyshev polynomials are a set of orthogonal polynomials developed by the

Russian mathematician Pafnuty Lvovich Chebyshev in 1857 [29, 30]. There are two

kinds of Chebyshev polynomials. The kth Chebyshev polynomials of the first kind

usually are denoted by Tk and the kth Chebyshev polynomials of the second kind

usually are denoted by Uk. In this dissertation, we refer to Chebyshev polynomials of

the first kind as Chebyshev polynomials. The Chebyshev polynomials are computed

through the recurrence relation

T0(x) = 1 T1(x) = x Tk+1(τ) = 2xTk(x)− Tk−1(x), (A.1)

or the Chebyshev polynomial of degree k is defined by the identity:

Tk(x) = cos(kcos−1(x)) : xε[−1, 1].

The continuous orthogonality conditions for Chebyshev polynomials are

∫ 1

−1

w(x)Tn(x)Tm(x)dx =

0 : n 6= m

π : n = m = 0

π/2 : n = m 6= 0

and w(x) = (1− x2)−
1
2 . (A.2)

The discrete orthogonality conditions for the Chebyshev polynomials using the

CGL nodes are

M∑
k=0

wkTn(xk)Tm(xk) =

0 : n 6= m

M : n = m = 0

M/2 : n = m 6= 0

and w0 = wM =
1

2
, wk = 1; k = 1, 2, ...,M−1.

(A.3)

174

The (N + 1) CGL (or “cosine”) nodes for the N th order Chebyshev polynomials

are calculated from

xk = cos

(
kπ

M

)
; k = 0, 1, 2, ...,M. (A.4)

Indefinite integration of the Chebyshev polynomials has the property
∫
Tk(x)dx =

1
2

(
Tk+1

k+1
− Tk−1

k−1

)
.

The first derivative of the Chebyshev polynomials satisfies

dTk(x)

dx
= kUk−1(x) = k(1− x2)−1[−xTk(x) + Tk−1(x)]. (A.5)

Thus integrals and the derivatives are expressed as recursions contiguous degree

Chebyshev polynomials. The first six Chebyshev polynomials are shown in Figure

A.1.

175

Figure A.1: Chebyshev Polynomials of the First Kind.

176

APPENDIX B

KRONECKER FACTORIZATION AND LEAST SQUARE

APPROXIMATION

Proof of the important property regarding Kronecker factorization in Least

squares that if a matrix Φ of rank n with Φ ∈ Rm×n; m ≥ n can be Kronecker

factorized as

Φ = Φx ⊗ Φy, (B.1)

then the classical normal equations

a =
{(

ΦTΦ
)

ΦT
}
f (B.2)

can, amazingly, be rewritten as

a =
{(

ΦT
xΦx

)−1
ΦT
x

}
⊗
{(

ΦT
y Φy

)−1
ΦT
y

}
f. (B.3)

That is, the large “least square operator”
{(

ΦTΦ
)−1

ΦT
}

is rewritten as simply

the Kronecker product of two small matrices:

{(
ΦTΦ

)−1
ΦT
}

=
{(

ΦT
xΦx

)−1
ΦT
x

}
⊗
{(

ΦT
y Φy

)−1
ΦT
y

}
. (B.4)

The matrices
(
ΦT
xΦx

)
,
(
ΦT
y Φy

)
must obviously be non-singular. To prove this

identity, we need the following three properties of Kronecker matrix operations for

square and nonsingular matrices A and B

(A⊗B)T = AT ⊗BT , (B.5)

(A1 ⊗ A2) (B1 ⊗B2) = (A1B1)⊗ (A2B2) , (B.6)

177

(A⊗B)−1 = A−1 ⊗B−1. (B.7)

The property of Eq. (B.4) is proven as follows: Using the assumed factorization

of Eq. (B.1),
{(

ΦTΦ
)−1

ΦT
}

is written as

{(
ΦTΦ

)−1
Φ
T
}

=
(

(Φx ⊗ Φy)
T (Φx ⊗ Φy)

)−1

(Φx ⊗ Φy)
T . (B.8)

Then using Eqs. (B.5), (B.8) re-arranges to

{(
ΦTΦ

)−1
Φ
T
}

=
((

ΦT
x ⊗ ΦT

y

)
(Φx ⊗ Φy)

)−1 (
ΦT
x ⊗ ΦT

y

)
, (B.9)

and using Eq. (B.6), Eq. (B.9) becomes condition

{(
ΦTΦ

)−1
Φ
T
}

=
((

ΦT
x ⊗ Φx

) (
ΦT
y ⊗ Φy

))−1 (
ΦT
x ⊗ ΦT

y

)
. (B.10)

Using Eq. (B.7), Eq. (B.10) is

{(
ΦTΦ

)−1
Φ
T
}

=
((

ΦT
x ⊗ Φx

)−1 (
ΦT
y ⊗ Φy

)−1
) (

ΦT
x ⊗ ΦT

y

)
, (B.11)

and finally, using the property of Eq. (B.6), Eq.(B.11) becomes Eq. (B.4), Q.E.D.

This property extends to high dimensioned Kronecker factorizations, i.e., if

Φ = Φx ⊗ Φy ⊗ Φz, (B.12)

then the large least square operator is written as the Kronecker product of three

small least square operators as

{(
ΦTΦ

)−1
ΦT
}

=
{(

ΦT
xΦx

)−1
ΦT
x

}
⊗
{(

ΦT
y Φy

)−1
ΦT
y

}
⊗
{(

ΦT
z Φz

)−1
ΦT
z

}
. (B.13)

These results are easily extended to include the weighted least square case, as

well. For the special case that the basis functions in 1, 2, and 3 dimensions satisfy or-

thogonality conditions such that the off-diagonal elements of
(
ΦT
xΦx

)
,
(
ΦT
y Φy

)
,
(
ΦT
z Φz

)
178

vanish, then likewise the larger matrix
(
ΦTΦ

)
is diagonal and we see that Eq. (B.12)

and (B.13) also provide very convenient means for generalizing one dimensional or-

thogonal approximation operators to higher dimensions. Care must always be taken

to understand and properly choose the multidimensional nodal sample patterns and

weight matrices, to ensure orthogonality of the basis functions with respect to both

the weight matrices and nodal locations.

179

APPENDIX C

GRACE GEOPOTENTIAL MODEL APPROXIMATION

The reference gravity potential is simply the two point mass term and rhe J2 per-

turbation, everything else is approximated. Figure C.1 shows the perturbed (GRACE

156× 156) Global FEM Gravity Potential Approximation at the Earth’s surface.

180

F
ig

u
re

C
.1

:
A

p
p
ro

x
im

at
io

n
of

th
e

P
er

tu
rb

ed
G

R
A

C
E

G
eo

p
ot

en
ti

al
.

181

APPENDIX D

NUMERICAL EXAMPLES FOR ILLUSTRATIVE TEST FUNCTIONS

OF THREE VARIABLES

To construct some three dimensional test cases that relate closely to the one and

two dimensional examples, we define Test Function 3: f(ξ, η, ζ) ≡ G(ξ)G(η)G(ζ)

where

G(x) =
x

2
+

([(
1
10

+ x
)
sin(5x− 1)

][
1 + x2sin2

(
x− 1

2

)]) . (D.1)

Figure II.9 is an illustration of the cosine nodal distribution in one, two and three

dimensional spaces; the generalization to a hypercube is straightforward. We now

consider several cases analogous to the one and two dimensional cases. Similar

experiments as in the Test Function 1 and Test Function 2 case are performed to

generate measurements with either Mx = My = Mz = M = 25 or Mx = My = Mz =

M = N , with N swept. Because of having three variables, note that we present

the 4-D plots at different locations of the third variable to make the visualization

much easier. The true Test Function 3 Boundary Surfaces are shown in Figure

D.1 and the true Test Function 3 Center Slices Surfaces are shown in Figures D.2.

Figures D.3 through D.6 are several approximations. The Runge Phenomena as (note

large boundary errors for the power series approximation versus the more uniform

Chebyshev approximation, which is concentrated in the center) can be expected to

generalize for higher dimensioned cases. We approximate Test Function 3 with a

residual error approaching a machine zero. All computations are performed using

MATLAB R© with 16 digit floating point arithmetic.

182

Figures D.3 through D.7show the approximation error for the Chebyshev and

power series polynomial approximation of Test Function 3 for (M = N = 5). The

power series experienced large Runge errors near the boundary and the least square

solutions “died” altogether due to ill-conditioning around N ∼ 13. Note for low

degree approximation that the power series works fairly well in the center of the

interval, but encounters large errors near the boundary. The maximum errors are

shown in Figure D.7a and D.7b that result from least square approximation when

M = 25 measurement nodes are used, for the case of the Chebyshev and power

series polynomial approximation of Test Function 3. The Chebyshev approximations

converged to 6 digit accuracy around N = 22, and ∼ 15 digit accuracy is obtained

(essentially a machine zero approximation error) around N ∼= 50.

The uniform convergence of the Chebyshev approximation again approaches

machine precision by N ∼= 50, with the maximum error decreasing about one order

of magnitude every time the degree N is increased by ∆N ≈ 3. On the other

hand, the slope is much less for N < 13 for the power series case (due to the Runge

Phenomena), and the power series cannot be computed accurately above N ∼ 13 due

to poor conditioning of the normal Eqs (2.9), which must be inverted numerically

for the case of non-orthogonal basis functions.

183

(a) Test Function 3 (@ ξ = −1). (b) Test Function 3 (@ ξ = 1).

(c) Test Function 3 (@ η = −1). (d) Test Function 3 (@ η = 1).

(e) Test Function 3 (@ ζ = −1). (f) Test Function 3 (@ ζ = 1).

Figure D.1: Test Function 3 Boundary Surfaces.

184

(a) Test Function 3 (@ ξ = 0). (b) Test Function 3 (@ η = 0).

(c) Test Function 3 (@ ζ = 0).

Figure D.2: Test Function 3 Center Slices Surfaces.

185

(a) Chebyshev Approximation

(@ ξ = −1).

(b) Power Series Approximation

(@ ξ = −1).

(c) Chebyshev Approximation

(@ ξ = 1).

(d) Power Series Approximation

(@ ξ = 1)

Figure D.3: Approximation of Test Function 3 Boundary Surfaces (@ ξ = ±1).

186

(a) Chebyshev Approximation

(@ η = −1).

(b) Power Series Approximation

(@ η = −1).

(c) Chebyshev Approximation

(@ η = 1).

(d) Power Series Approximation

(@ η = 1).

Figure D.4: Approximation of Test Function 3 Boundary Surfaces (@ η = ±1).

187

(a) Chebyshev Approximation

(@ ζ = −1).

(b) Power Series Approximation

(@ ζ = −1).

(c) Chebyshev Approximation

(@ ζ = 1).

(d) Power Series Approximation

(@ ζ = 1).

Figure D.5: Approximation of Test Function 3 Boundary Surfaces (@ ζ = ±1).

188

(a) Chebyshev Approximation (@ ξ = 0). (b) Power Series Approximation (@ ξ = 0).

(c) Chebyshev Approximation (@ η = 0). (d) Power Series Approximation (@ η = 0).

(e) Chebyshev Approximation (@ ζ = 0). (f) Power Series Approximation (@ ζ = 0).

Figure D.6: Test Function 3 Center Slices Surfaces (@ {ξ, η, ζ} = 0).
189

(a) Chebyshev Maximum Approximation

Error.

(b) Power Series Maximum Approximation

Error.

Figure D.7: Approximation Error of Test Function 3.

190

