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ABSTRACT

A new, novel numerical optimization algorithm is developed, tested, and used

to solve difficult numerical problems from the field of astrodynamics. First, a brief

review of optimization theory is presented and common numerical optimization tech-

niques are discussed. Then, the new method, called the Learning Approach to Sam-

pling Optimization (LA) is presented. Simple, illustrative examples are given to fur-

ther emphasize the simplicity and accuracy of the LA method. Benchmark functions

in lower dimensions are studied and the LA is compared, in terms of performance,

to widely used methods.

Three classes of problems from astrodynamics are then solved. First, the N -

impulse orbit transfer and rendezvous problems are solved by using the LA optimiza-

tion technique along with derived bounds that make the problem computationally

feasible. This marriage between analytical and numerical methods allows an answer

to be found for an order of magnitude greater number of impulses than are currently

published. Next, the N -impulse work is applied to design periodic close encounters

(PCE) in space. The encounters are defined as an open rendezvous, meaning that

two spacecraft must be at the same position at the same time, but their velocities

are not necessarily equal. The PCE work is extended to include N -impulses and

other constraints, and new examples are given. Finally, a trajectory optimization

problem is solved using the LA algorithm and comparing performance with other

methods based on two models-with varying complexity-of the Cassini-Huygens mis-

sion to Saturn. The results show that the LA consistently outperforms commonly

used numerical optimization algorithms.
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1. INTRODUCTION

Many important problems are posed as a mathematical optimization problem.

Optimization is the process of determining the value (or values), from a set of design

variables and constraints, that provide a solution minimizing a cost function which

defines optimality of the given problem.

Numerical optimization is a required tool for solving complex problems in as-

trodynamics,1 including: spacecraft design, mission design, trajectory optimization,

orbit determination, and spacecraft maneuvers, to name a few. Continuous problems

are readily handled, however, traditional, calculus-based optimization techniques be-

gin to fail or become intractable when applied to some problems in astrodynamics,

especially those with numerous local extrema or discontinuities.

Many optimization algorithms exist and are based on different mathematical

concepts. There is no optimization technique that works best across all problems or

all dimensions. Current optimization techniques are classified as follows:

• Analytic: Gauss-Newton, gradient based

• Deterministic: branch methods, algebraic geometry

• Stochastic: Simulated Annealing, Monte-Carlo

• Heuristics: Genetic algorithm, Particle Swarm Optimization

Analytic methods extremize a function by setting the gradient of the function equal

to zero. The resulting set of nonlinear equations is solved and provides the extremal

locations. These methods have been broadly studied are have their strongest appeal

1Astrodynamics is defined as the application of celestial mechanics applied to the problem of
spacecraft motion.

1



in the solid mathematical foundations upon which they have been developed. The

stochastic and heuristic methods are more described in Chapter II.

The problems arising in astrodynamics are, in general, highly nonlinear, poten-

tially discontinuous in time and space variables, and may required both integer and

real values. Furthermore, there are frequently more than one local extremum, so

the issue of local versus global solutions arise often. Thus, classical analytical ap-

proaches are often ill-suited for solving these problems. Given the discontinuous

nature of these problems, it remains unlikely that deterministic algorithms for the

global optimization of general functions can be derived[1]. Non gradient-based nu-

merical optimization approaches have recently seen success in solving complicated

engineering problems. The method developed in this work seeks to bridge the capa-

bility gap between popular heuristic algorithms and applications in astrodynamics.

The motivation for seeking a new method came when Henderson and Mortari

were solving an optimization problem in which the cost function to be minimized

had the shape shown in Fig. 1.1. Figure 1.2 shows a two-dimensional cross-section,

projected to the x − z plane. As can be seen, the minima lies at about x = 3, 100,

however, there exist macro- and micro-scale structure to this function that makes

it very difficult to numerically optimize. In addition, the function is discontinuous

so gradient-based methods were not attempted and many popular heuristic methods

quickly fell into a local minima.

This dissertation is aimed at introducing an unconventional non gradient-based

sampling method for numerical optimization method by developing the theory, demon-

strating the algorithm, and testing the method on a set of problems in astrodynamics.

Here, a new numerical optimization technique called the Learning Approach to Sam-

pling Optimization (LA) is presented. The LA algorithm uses rejection sampling to

recursively learn the distribution from which samples are drawn, forcing the point

2



Figure 1.1: 3-D Cost Function

Figure 1.2: 2-D Cross Section
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selection toward the sought extrema. The theoretical development of the LA and

comparison with other algorithms on a set of benchmark functions is made. Three

significant applications for the aerospace community are then provided. The devel-

opment of the problem and solution is given and performance comparisons are made

with more standard algorithms. The main objectives of the research leading to this

dissertation are:

• To develop a numerical optimization method that is based on a sound mathe-

matical foundation;

• To compare the performance of the algorithm with currently used algorithms;

• To pose new problems in the field of astrodynamics;

• To solve the newly posed problems and compare the solutions with other algo-

rithms where possible.

These goals are achieved by studying three problems from the field of astrody-

namics. The first problem investigates the N -impulse orbit transfer and rendezvous

problem. Here, analytical bounds are derived that constrain the choices of velocities,

which allows an optimization algorithm to find a reasonable solution for a high num-

ber of variables. Examples are given that demonstrate a significant improvement

over currently published results.

The second problem investigated is periodic close encounters in space. This

problem uses the results of the N -impulse transfer in a new application. Periodic

close encounters occur when one spacecraft periodically encounters the orbit of a

second spacecraft under specified conditions. The purpose of this problem is for

observation and mission or rendezvous planning.
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Finally, the new optimization technique is applied to a benchmark spacecraft

trajectory design problem that has been posed by the European Space Agency (ESA)

and has several published solutions. The trajectory studied is similar to that of the

actual trajectory of the Cassini-Huygens spacecraft route to Saturn. Statistics are

given and compared with known solutions.

The dissertation documents the results of the research organized as follows:

Chapter II briefly introduces the basic concepts of optimization and astrodynam-

ics required to understand the theory and applications by a non-specialized reader.

This chapter provides the basic mathematical definitions, a brief review of several

popular numerical optimization algorithms, and a basic introduction to definitions

and equations from astrodynamics. References are given for further study.

In Chapter III, the theoretical development of the Learning Approach method is

given. Once the algorithm is shown, a proof of convergence is given for a specific

set of functions and numerical tests confirm the correctness. A series of benchmark

functions are tested and performance comparisons are made with popular algorithms.

Finally, consideration is given to the implementation of the algorithm.

Chapter IV introduces three applications taken from astrodynamics to be solved.

For each problem, the significance of the problem is given, previous work is discussed,

each problem is defined and then solved. Performance comparisons are again made

with popular algorithms. In addition, new results are given where applicable.

Finally, in Chapter V, the results are summarized and discussed to highlight the

positive aspects and limitations of the new LA algorithm, laying groundwork for

continuation and improvement of the present work.

The main contributions made to the astrodynamics and numerical optimization

communities by this dissertation are a new algorithm, the LA, which is demonstrated

to perform faster and more accurately than several popular heuristic methods, and
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new problems are framed and solved in astrodynamics, and previously studied prob-

lems are pushed to N -dimensions. The LA is used to solve a major benchmark

trajectory optimization design problem to within a few percent of the best known

algorithm using a laptop, whereas the best solutions were found by research groups

with access to small supercomputers and software specifically designed for interplan-

etary trajectory optimization.
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2. REVIEW OF NUMERICAL OPTIMIZATION AND ASTRODYNAMICS

This chapter introduces a variety of numerical optimization-related mathematical

definitions and algorithms along with some fundamentals of astrodynamics which are

required for a complete understanding of the remainder of the dissertation. Termi-

nology and notation will be introduced for the subjects of numerical optimization and

astrodynamics. This chapter provides an introduction to broad areas of numerical

optimization and astrodynamics, specifically involving stochastic algorithms. Refer-

ences for further study are provided as each concept is introduced.

2.1 Introduction to Optimization Theory

Perhaps the most concise and broadly applicable definition of optimization is

given by Rao[2] : “Optimization is the act of obtaining the best result under given

circumstances.” In other words, optimization is the process by which a design point

is found that satisfies given constraint criteria and extremizes (i.e., minimizes or

maximizes) some measure important to the engineer. The mathematical theory of

optimization can be traced back to giants such as Newton, who developed calculus,

Gauss, who developed the steepest descent method, and Lagrange, who introduced

the Lagrange multipliers in early constrained optimization problems.

An optimization problem is formally defined (following the notation in Reference

[3]) by a compact and countable search space, Ω ⊂ <N (with 0 < N ∈ Z), and a cost

function (also commonly called a fitness, loss, or objective function), J(x) : Ω→ <.

Global optimization methods search for the global optimum in a feasible search space

Ω. Many methods encounter difficulty when the optimal value is on an edge of the

search space. This shows how critical the definition of Ω is for solving a problem.

For this work, there are no requirements on the smoothness, convexity (although
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assuming it to be nonconvex is more general), or continuity of the function J(x). In

general, real-world problems, J(x) may not be given in a closed form, meaning J(x)

may be based on a simulation model[4].

The search space, Ω is defined by a set of N -dimensional points, x, of which

one (or more) point(s), x∗ ∈ Ω, exists such that the cost function is optimized.

Here, as in all practical cases, the search space, Ω, is bounded even if, in theory, Ω

does not need to be bounded. For example, the search space may be bounded (i.e.,

discretized) by the number of digits used in a given computer software (e.g., double

precision floating-point). Constraints on the optimization problem may be present

for a given problem in the form of inequality and equality constraints[5] such that

 cj(x) ≤ 0 j ∈ I

cj(x) = 0 j ∈ E
(2.1)

where the functions cj(x) : <n → < for j = 1, ...,mI +mE, the number of constraints

is mI + mE, and I and E are a disjoint set of integers of cardinalities mI and mE

respectively. Usually, in real-world problems, J(x) with constraints is not analytically

treatable[4]. However, for the present discussion, only unconstrained problems are

considered (the ranges of the variables will be considered bounded, defining Ω).

Constraints will be added using a penalty method which will be detailed in the

description of the problem.

The search space Ω may be any arbitrary metric space, whereas for engineering

problems, generally only Ω ⊂ <N is considered. Allowing Ω to be specified as

any metric space allows for more sophisticated data structures to be used in the

optimization process. For example, if real, integer, and Boolean design parameters

could all be used in the same problem, it would be very convenient to define the data
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structure, x, to contain the appropriate values than to transform all parameters to

real values. For this reason, this dissertation will use real-encoding of variables as

opposed to binary encoding as the problems discussed are real-valued.

Remark 2.1.1. Another class of problems is an optimal control problem where the

variable, x, becomes a time-varying trajectory, x(t), for t ∈ [0, T ]. The optimal

control problem is similar to the present formalism after the discretization of [0, T ].

The purpose of the optimization algorithm is to automatically find for the user

the global optimum value(s). Minimization will be considered for the following de-

scriptions, derivations, and application problems. It should be noted, however, that

this does not restrict the generality of the problems shown, or of the algorithms

described since the following obvious identity holds[6]

max{J(x)|x ∈ Ω} = −min{−J(x)|x ∈ Ω} (2.2)

Definition 1. A point is a local minimum if the value of the cost function, J : Ω→

<, is lower than the cost function value of the points in a small, feasible neighborhood

around it.

Mathematically, a point x∗ is a local minimum if

J(x∗) ≤ J(x) ∀x ∈ Nε(x
∗) (2.3)

where

Nε(x
∗) = {x ∈ Ω, ‖x− x∗‖ < ε, ε > 0} (2.4)

defines the ε-neighborhood of x∗ and the norm in Eq. (2.4) is taken to be the
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Euclidean norm. It should also be noted that the requirement exists that

J(x∗) > −∞

For a maximization problem, simply change the ’≤’ sign to ’≥’ in Eq. (2.3) and

similarly the following must be true

J(x∗) <∞

Definition 2. The global minimum is the value of x∗ that gives the minimum value

of the cost function over the entire N-dimensional search domain, Ω.

Mathematically, a point x∗ is the global minimum if

J(x∗) = min
x∈Ω

J(x) (2.5)

In general, numerical optimization methods can be categorized in two ways: de-

terministic and stochastic[7]. Purely deterministic algorithms seek to define a neigh-

borhood in which it is guaranteed that the global minimum is located, and in some

cases find the global minimum by an exhaustive search over Ω. In order to guarantee

the success of a deterministic method, further assumptions on the cost function are

generally required. Deterministic methods are generally gradient based and require

the assumption of continuity and differentiability of the cost function (although not

all methods require these conditions). One popular approach is to assume the Lip-

schitz continuity condition provides an upper bound on the rate of change of the

function over all of the search space, Ω. A constant, L, is given such that for all

10



x, x̃ ∈ Ω such that[8]

|J(x)− J(x̃)| ≤ L ||x− x̃|| (2.6)

This is difficult to guarantee in practice. Deterministic methods are more suitable

for local optimization and require a suitable initial condition within the region of

convergence. The traditional mathematical treatment of global optimization prob-

lems requires restrictive assumptions be made on the problem in order to obtain a

solution. Derivative based minimization obviously implies continuity and an asso-

ciated basin of attraction of a local minimum. When these methods converge, the

frequently are efficient in accurately localing local minima. However, their utility

for multimodal and/or discontinuous problems is limited. Thus, the traditional, de-

terministic solution methods are not very reliable for general global optimization

problems. These requirements and conditions have motivated the recent derivation

and widespread use of highly effective, stochastic methods.

No method or software currently exists to efficiently solve all global optimiza-

tion problems. Thus, it is natural to involve stochastic and heuristic parameters

and methods in the algorithms. Stochastic methods have the downside that only

a probabilistic (asymptotic) guarantee[8] is made that the global minimum value is

found; however, a common practice is to start a local optimization routine starting

from the best point(s) found by the global optimization. These optimization meth-

ods incorporate random elements, generally in the point selection process. Törn

says “The algorithms of multidimensional global minimization are rather compli-

cated. Their realization includes heuristic procedures for solving various auxiliary

subproblems.”[9] The efficiency of many stochastic algorithms is strongly dependent

on the heuristically chosen tuning parameters governing a problem formulation[9].

Unconstrained stochastic methods rely on the following result[7]. A region Ω
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defines an area of interest for the optimization is chosen (i.e., the search space). As

the most typical approach, define upper and lower bounds on each variable to be

optimized such that Ω is an N -dimensional hypercube,

Ω = {x : li ≤ xi ≤ ui, i = 1, ..., N}

Defining S as a subset of Ω with a Lebesque measure of the cost function, J : <N → <

where

J(S)

J(Ω)
≥ α > 0

Let P (S, k) be the probability that one or more points of a sequence of k points,

drawn randomly from a uniform distribution in Ω, lies in the subspace S, then

lim
k→∞

P (S, k) = 1

The derivation of the optimization method presented in this dissertation and the

problems shown is considered a black box scenario where the performance, J(x), can

be readily computed, but gradients are either not available or useful and domain spe-

cific knowledge is used only within the algorithm in the black box. The cost function,

J(x), computed in the black box, is characterized by any or all of the following char-

acteristics: non-smooth, discontinuous, ill-conditioned, nonlinear, non-convex, non-

separable, multimodal, and noisy. Traditional deterministic methods suffer when the

problem exhibits any of these characteristics or is of high dimensionality.

The curse of dimensionality, as described by Richard Bellman[10] in 1961, is as-

sociated with problems of moderate to high dimension. The problem is caused by the

rapid volumetric increase associated with adding extra dimensions to a mathematical

space. The classic example is to consider placing 100 points in a 1-D interval [−1, 1].
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To get the same spacial coverage in 10-D space, [−1, 1]10 would require 10010 points.

A consequence of the curse of dimensionality is that an exhaustive search technique

may be valuable in small dimensional spaces, but becomes unfeasible in moderate to

high dimension spaces.

Definition 3. In discrete set theory, the cardinality of a set is the number of ele-

ments contained in the set.

Definition 4. A function is separable if it can be optimized in a sequence of N

independent 1-D optimization processes.

Mathematically, J(x) is separable if

arg min
x1,...,xN

J(x1, ..., xN) =

(
arg min

x1
J(x1, ...), ..., arg min

xN
J(..., xN)

)
(2.7)

A separable function is frequently made non-separable by a coordinate rotation[11].

A simple example of a separable function is the sphere model,

J(x) =
N∑
i=1

x2
i (2.8)

as each dimension may be optimized independently. For this work, when functions

are separable, this fact is not exploited in the algorithm. This is done in order

to make fair comparisons with other algorithms where the user may not know if

separability exists, or may be exploited.

The remaining optimization review briefly describes current stochastic algorithms

for optimization that are widely used in engineering (see, for example, Reference [12]).

The overview provides a description of the basic workings of the algorithms, with

the understanding that many modifications, by many different researchers, are made

to each algorithm in order to improve a given set of performance parameters.
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Stochastic algorithms all have the following advantages over deterministic opti-

mization methods (adapted from References [3, 6, 13, 14, 15, 16, 17]):

• Wide applicability (continuity and differentiability may not be known);

• Able to handle multi-modalities, discontinuities, constraints, and noisy func-

tions;

• No assumptions are made about the underlying problem or search space;

• Algorithms generally do not get stuck in suboptimal extrema;

• No initial or tentative solutions required (other than the definition of Ω);

• Low application and development cost (i.e., good ratio of effort to perfor-

mance);

• Easily incorporated into other methods (or can be hybridized with other meth-

ods);

• Can be run interactively, allowing user-proposed solutions at any stage;

• Generally can provide multiple alternative solutions;

• Generally acknowledged as good solvers for tough problems;

• Easily parallelized for faster computation;

• Adaptability to new problems requires relatively low tailoring.

On the other hand, the stochastic algorithms described all have the following

disadvantages:

• No clear stopping criteria;
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• Weak or no theoretical basis;

• No guarantee of converging to the global optimal point;

• Can be computationally expensive;

• Difficult to make fair comparisons;

• Works best when user able to narrow the search space while maintaining di-

versity of samples;

• Difficult to predict movements of sample populations;

• Required tuning based on the problem.

The general lack of a solid theoretical basis for the evolutionary algorithms (a

subset of stochastic algorithms) has affected their acceptance in some circles, al-

though their use is widespread, as nothing better is available. With little theory, the

user is left only a set of rules-of-thumb for choosing and tuning the algorithms, and

in more complicated problems, the tuning is itself an optimization problem. Thus,

a methodology where tuning is not required is sought.

Of all of the optimization algorithms developed to date, Fogel’s no free lunch the-

orem states that there is no algorithm that is best to solve any general problem[18].

The remainder of this chapter is dedicated to an overview of several popular stochas-

tic algorithms.

2.2 A Brief Historical Tour

The most general methods to optimize a function with a high degree of compu-

tational efficiency are gradient based methods. However, these methods require a

continuous cost function where gradient information is available. Since these meth-

ods seek to ascend or descend from a starting point based on a local Taylor series
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approximation, we should anticipate several convergence issues. When the cost func-

tion has a large number of variables, has discontinuities, has discrete variables, or is

multimodal, gradient methods are no longer the best choice of algorithm (or at best,

need assistance to locate the neighborhood of the solution). For the applications,

probabilistic methods are developed.

Since 1944, the science and engineering communities have known that many

important and practical problems may be posed as a mathematical optimization

problem[7] for sampling methods. Numerical minimization is much older, dating

back to the time of Gauss or earlier. Stochastic optimization started in 1952 with

the work of Robbins and Monro[19] with their stochastic approximation method. In

1966 Fogel, et. al., published evolutionary programming[20] (although the work be-

gan in 1960) which uses a simulation of the evolutionary process as a learning process.

Evolutionary algorithms are a subset of stochastic algorithms where a population of

sample points (of fixed size) is evolved through some processes, producing new gen-

erations of the population. Haataja says, “Evolution is a collective phenomenon of

adapting to the environment and passing genes to the next generations.”[21] Evolu-

tion is in and of itself not optimization. Hastings developed the Metropolis-Hastings

algorithm in 1970[22], as a sampling method used to obtain a sequence of random

samples from a probability density function which is generally difficult to sample

from. The first genetic algorithm was proposed by Holland in 1975[23]. Kirkpatrick,

et. al., proposed the simulated annealing algorithm in 1983[24] based on Hasting’s

work. As the algorithms are introduced in the next section, important dates and con-

tributors are highlighted. Evolutionary algorithms mimic some observed biological

process, but in general do not have a strong mathematical basis.
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2.3 Overview of Popular Stochastic Algorithms

Recent solutions to numerical optimization problems in large dimensional spaces

have been found using stochastic methods such as evolutionary algorithms (EAs).

Stochastic algorithms have three fundamental parts: sample, optimize, and check [25].

Sampling involves generating random points, x ∈ Ω, and computing the associated

cost value, J(x). Optimization applies a set of rules which drives the new selection

of points. Check decides if a stopping criteria is met. The check is called the most

important part of the optimization algorithm by many authors, including Ref. [25].

The algorithms developed in this dissertation are assumed to be stochastic in nature,

meaning the observations are placed based on generating random points. The model

in each application presented is assumed to not be stochastic. An overview of some

of the most popular methods is now be given for understanding and comparison.

In several of the approaches presented, it will be evident that they all share a

common feature: namely all use some heuristic adaptation process that governs both

global and local sampling to seek the extreme value of a function. In all cases, a time-

varying sampling density function is implicitly invoked and it has been hypothesized

[26] that it may be possible to unify many of these approaches by focusing on the

underlying sample density function evolution.

2.3.1 Random Search

The Random Search technique (also known as the Monte Carlo Method) is the

simplest of the algorithms in this section and lends itself to more rigorous theoretical

analysis. By definition, the random search is not an evolutionary algorithm[9, 27, 7],

but it is a stochastic algorithm. It is included for completeness and a comparison is

made with the newly derived optimization method that is the focus of this disserta-

tion. In the pure random search method, a specified number of points are randomly
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chosen (from some distribution, usually a uniform distribution) within the search

space. The cost function is evaluated at each of these points and the point with the

best value is considered the optimal point. The pure random search algorithm is

shown in Algorithm 1.

Algorithm 1 Pure Random Search Algorithm

1: Set J∗ := +∞
2: while Not Terminate do
3: choose x ∈ U(Ω) as a uniform random vector in Ω
4: if J∗ > J(x) then
5: let J∗ = J(x) and x∗ = x
6: end if
7: end while
8: (optional) begin local optimization starting from x∗

The random search provides better solutions than a simple grid search[9] (which

covers the search space with a specified number of equidistant points). Brookes[28]

showed in 1958 that given a measure, J , then if

J(S)

J(Ω)
= α (2.9)

then the probability of finding a point in S in k points is

P (S, k) = 1− (1− α)k (2.10)

As such, the set S is made arbitrarily small at the cost of requiring a larger number

of points.

Equation (2.10) shows that a large number of points are required to reach a

small region with high probability around the global minimum. For this reason,
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many combinations of the Random Search method and deterministic methods have

been proposed. Two modifications are shown in Algorithms 2 and 3 below [7]. The

Multistart algorithm is very popular in the literature[7].

Algorithm 2 Multistart Random Search Algorithm

1: while Not Terminate do
2: Select a random x ∈ Ω
3: Start a local minimization algorithm from x with given stopping criteria
4: if x is probably a global minimum then
5: STOP
6: else
7: Return to Step 1
8: end if
9: end while

Algorithm 3 Hartman’s S2 Algorithm

1: Set v =∞
2: while Not Terminate do
3: Select a random x ∈ Ω
4: if J(x) > v then
5: Return to Step 2
6: else
7: Start local minimization from x to Mj

8: Set v = J(Mj)
9: Return to Step 2

10: end if
11: end while

One drawback of the simple random searches presented here is that no cost func-

tion information is used to adaptively guide the searches. In other words, the method

19



has no memory and does not learn from previous experience. Each point is chosen

independently from the previous set of points.

2.3.2 Genetic Algorithm

The Genetic Algorithm (GA) is a widely used and well known algorithm that has

been a staple in numerical optimization problems for three decades[23, 29] due to its

general ease of use and solving power. The GA is a part of evolutionary computing,

which mimics, to some degree, the biological evolutionary process as described by

Darwin. As such, the general terminology is taken from biology. The variables to be

optimized are mapped into a genome which is then evolved throughout the process

of optimizing the problem. The GA randomly creates a population consisting of

individuals, computes the cost associated with each individual, selects individual

elements to reproduce, performs crossover and mutation operations, and creates

offspring which replace the worst ranked portion of the population. This process

repeats until the convergence criteria is met. Algorithm 4 shows pseudocode for the

GA.

Algorithm 4 Genetic Algorithm Pseudocode

1: Initialize xi for i = 1, ...,m
2: Compute J(xi) for i = 1, ...,m
3: while Not Terminate do
4: Select individual members for reproduction based on best fitness values
5: Generate new individuals (i.e., offspring) through crossover and mutation op-

erations
6: Compute J(xj) for the offspring
7: Replace individuals with worst fitness values with offspring
8: if Converged then
9: STOP

10: end if
11: end while
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The collection of independent variables, x, of the problem are called chromosomes

and a given single variable is called a gene[30]. The crossover operation takes the

first section of a chromosome from one parent and the second section of a chromo-

some from the other parent to reproduce an offspring. The probability of crossover

is typically between 0.6 and 0.8. The mutation operation selects one gene in a chro-

mosome and changes the value of that gene. The probability of mutation is generally

between 0.1 and 0.2. These operations keep the offspring from being exact copies

of the parents. Combinations of genes in the population may survive to the next

generation even if the combination is not optimal because the process is based on

probability[21]. Obviously, genome, chromosome, parents, offspring, crossover, and

mutation are heuristic labels used to describe the adaptive learning process. These

heuristic labels have appeal but there is no underlying biological or mathematical

proof of their uniqueness or optimality.

For a real-coded GA (as opposed to binary coded), the crossover is applied to the

individual variables according to the following probability distribution

P (β) =

 0.5(η + 1)βη for β ≤ 1

0.5(η + 1)/βη+2 otherwise
(2.11)

with η = 2 being suggested as η controls how close the parent and offspring solu-

tions are. However, most implementations (MATLAB included) do not allow this

parameter η to be tuned.

Much discussion has arisen about the role of mutation and crossover[13]. The

mutation plays more of a role of creating diversity (global search) in the population

while crossover tends to exploit good solutions to find better solutions in a neigh-

borhood of the good solutions found already (local search). General strategies in
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GAs (and other EAs) include having the role of mutation diminish and the role of

crossover increase as the number of generations grows. This ensures a diverse popu-

lation at the beginning and an exploitation of the good solutions towards the end of

the run.

Of the algorithms described in this section, the GA is the most widely, and suc-

cessfully, applied to problems in engineering. Researchers have found that small

changes in the crossover fraction or mutation rate lead to significantly different an-

swers on many problems, thus making tuning the GA both difficult and necessary.

For some problems, finding the proper values of the tuning parameters becomes itself

an optimization problem[14]. The crossover and mutation operators are heuristically

and operationally well described but not generally well understood from a mathe-

matical standpoint.

2.3.3 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is a stochastic method which

is inspired by the social behavior and movements of birds and fish in formation

and takes advantage of information sharing among the swarm, called “collective

intelligence”. The PSO algorithm has received considerable attention recently[31,

32, 33, 34, 35, 36, 37]. Like the GA, the PSO is a population-based algorithm. Each

element in the population set has a position and velocity in the search space. In this

sense, the position represents the N -D state value of a point in the search space, with

an associated cost function value and the velocity determines the position update.

Every individual also has a memory of their personal best position (i.e., best cost

function value) as well as the best global position (including current global best cost

function value). The algorithm moves the particles based on a combination of best

global and individual positions as well as the velocity of an individual. In this way,
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the elements (or particles) swarm to the global optimal location. It should be noted

that the PSO requires at least two particles to function, but the power is in the social

interaction of a large number of particles.

The PSO has three parameters to tune where each is proportional to: an indi-

vidual’s previous velocity; the personal best position; and the global best position.

Varying these values drastically impacts the convergence speed and accuracy.

The PSO algorithm pseudocode is shown in Algorithm 5. Let x ∈ <N and

v ∈ <N . Define x̂i as the best position for the ith particle and ĝ be the global

best position (with best position defined as the position that gives the minimum cost

function value). Finally, let m be the number of particles in the swarm. In the

Algorithm 5 Particle Swarm Optimization Algorithm Pseudocode

1: Initialize xi and vi for i = 1, ...,m
2: x̂i ← xi and ĝ = min

xi

J(xi) for i = 1, ...,m

3: while Not Terminate do
4: for i = 1 to m do
5: Randomly generate r1, r2 ∈ U [0, 1] for j = 1, ...,m
6: Update particle velocities: vi ← ωvi + c1r1(x̂i − xi) + c2r2(ĝ − xi)
7: Update particle positions: xi ← xi + vi
8: Update particle best positions:
9: if J(xi) < J(x̂i) then

10: x̂i ← xi
11: end if
12: Update global best position:
13: if J(xi) < J(ĝi) then
14: ĝi ← xi
15: end if
16: end for
17: end while

algorithm, the value ω is the inertial constant. Generally, this value is slightly less
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than 1, but it can be a random value for each particle. The random values c1 and

c2 are the cognitive and social components, respectively. These values determine the

influence on the movement of particles based on the particle’s personal best position,

c1, and the global best position, c2. Typical values of c1 and c2 are very near 2.

2.3.4 Differential Evolution

Differential Evolution (DE) is an algorithm based on a parallel direct search

method in which each element of the population is updated by a weighted difference

of two or more randomly selected population elements[38, 39, 40]. This updated value

replaces the old element when it has a better cost function value (i.e., J(x) is lower).

The DE algorithm has found recent use in interplanetary mission design[39, 41].

Differential Evolution requires a non-zero crossover probability and strategy in order

to ensure the algorithm does not get stuck in local extrema, however many practical

variants of the DE exist based on varied crossover strategies.

The DE uses a mutation weight, F , ranging between 0 and 2, which serves to

amplify the difference between the trial vectors. The crossover ratio is set by the user

and bounded by [0, 1]. DE requires a population greater than 4 in order to begin

iteration. For each dimension of a trial vector, if a random number (in [0, 1]) is less

than the crossover ratio, the value of the mutant vector becomes the value of the

trial vector. If the random number is greater than the crossover ratio, then the trial

vector maintains its value. Reference [40] suggests six variants of the DE as listed

below as DE/x/y. To interpret these values, x specifies the vector to be mutated

(either random, best cost function value, or rand-to-best meaning the perturbation

is placed between a random vector and the vector with the best cost function value)

and y specifies the number of difference vectors to be used. Further work[38] added

a crossover scheme option of binary and exponential.
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1. DE/best/1:

y = xbest + F (x1 − x2)

2. DE/rand/1:

y = x1 + F (x2 − x3)

3. DE/rand-to-best/2:

y = x1 + Fxbest + x2 − x3)

4. DE/best/2:

y = xbest + F (x1 + x2 − x3 − x4)

5. DE/rand/2:

y = x5 + F (x1 + x2 − x3 − x4)

6. DE/rand-to-best/1:

y = x1 +G(xbest − x1) + F (x2 − x3)

where F and G are weights, xi are the randomly chosen N -dimensional values for

j = 1, ..., 5, xbest is the state value of the individual in the population with the

best cost function value. The value of f is generally randomly chosen[39] as f ∈

U [−1, 1] and the crossover probability is generally 0.8[40]. Price suggests a highly

beneficial method, and thus the most widely used, is DE/rand/1 with a binary

crossover scheme[40].

A pseudo-code for the Differential Evolution scheme is presented in Algorithm 6.
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Algorithm 6 Differential Evolution Algorithm Pseudocode

1: Initialize population xi and compute cost value J(x)
2: while Not Terminate do
3: for i = 1 to Number of Iterations do
4: Randomly select parents, pi, for i = 1, 2, 3
5: Create initial candidate combining genes from the parents
6: Create final candidate, ci, by crossing over genes from parents and initial

candidate
7: Evaluate the associated cost of the candidate, ci
8: if J(ci) < J(pi) then
9: p′i = ci

10: else
11: p′i = pi
12: end if
13: pi = p′i
14: end for
15: end while

2.3.5 Simulated Annealing

The Simulated Annealing[24, 42, 43, 44] (SA) algorithm is a variant of the Monte

Carlo technique that is based on annealing from metallurgy. Annealing is a technique

of heating a material until it melts and then gradually cooling the material at a

controlled rate in order to form a perfect lattice of particles, increase the size of

the crystals, and reduce the crystalline defects. This final state is a minimum energy

configuration of the solid. The SA algorithm is of course based on a heuristic analogy

to annealing. The method seeks to drive the physical system to a minimum energy

configuration by carrying out the “cooling” slowly. For a given temperature, T , the

probability of a material being in a state w is defined Boltzmann’s distribution

P (w) ∝ e−E(w)/kbT (2.12)
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where E(w) is the energy of the state w and kb is Boltzmann’s constant. The state

with the highest probability at equilibrium is the state with the lowest energy.

The algorithm picks a neighbor of the current point and computes the energy

(i.e., cost function value) at the chosen point. The neighboring point is accepted if

the cost function value is improved. The SA algorithm avoids becoming trapped in

local minima by probabilistically accepting state transitions which correspond to a

deterioration in the cost function value (i.e., accepting an uphill move) according to a

Metropolis criteria[45] and the Boltzmann distribution. As the optimization process

continues, the probability of accepting an inferior point goes to zero. This is called

the annealing schedule and is an input parameter by the user. The pseudocode in

Algorithm 7 shows the flow of the SA algorithm.

It should first be noted that the Metropolis criterion for accepting a new config-

uration, x2, in place of the current configuration, x1, is

βT (x1,x2) = min
(
1, e−[J(x1)−J(x2)]/T

)
(2.13)

The SA algorithm is not population based but instead generates a sequence of

directional searches. One main drawback to the SA algorithm is that it (in the most

basic form) requires the cost function to be continuous in the search space. However,

the SA is successfully used in discrete optimization problems and solved the Traveling

Salesman Problem for 400 cities[24].

The choice of initial temperature, T0, is critically important to the SA algorithm.

A value too high considerably slows the computational speed while a value too close

to 0 excludes a global search in favor of a local search. The temperature decrement

strategy is also an important factor. If the temperature decreases too quickly, the

algorithm risks becoming trapped in a poor local minimum. However if the algorithm
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Algorithm 7 Simulated Annealing (Hide-and-Seek) Algorithm Pseudocode[43]

1: while Not Terminate do
2: Choose a starting point, x0 ∈ Ω
3: Choose a high enough starting temperature, T0 > 0
4: while T 6= 0 do
5: Choose a search direction gj ∈ Ω with a uniform distribution
6: Choose a step size, λj, from a uniform distribution such that x̄j = xj+λjgj ∈

Ω
7: Choose cj ∈ U [0, 1]
8: Determine the next search point xj+1 from

xj+1 =

{
x̄j if cj ∈ [0, βT (xj, x̄j)]
xj if cj ∈ [βT (xj, x̄j), 1]

(2.14)

9: if J(xj+1) is less than all previous function values then
10: Update temperature, T
11: else
12: Go back to Step 2
13: end if
14: end while
15: end while

decreases to slowly, the computational burden greatly increases. Finally, the method

of choosing an appropriate neighborhood for the next search direction and point has

not been well studied[25].

2.3.6 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDA) is a general term that covers a

class of many different optimization methodologies. For simplicity, the general form

of the EDA is considered here. In it’s simplest form, the EDA[15, 46] is a population

based method that generates a population, evaluates the cost function value associ-

ated with each member in the population, and uses selected individuals to estimate a

probability distribution from which the next generation is sampled. In this way, the

crossover and mutation operators are not necessary and the relationships between
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variables representing the individuals are explicitly expressed through the probabil-

ity distribution. The difficulty of tuning the parameters[14], such as crossover and

mutation, along with the fact that the movement of a population is very difficult

to predict in the search space[15] have motivated the development of EDAs. EDAs

benefit from having some theoretical backing [47].

For EDAs, the computational bottleneck is in computing the probability density

function[15] after a population is generated. One drawback of the EDA is choosing

the basis for mathematically describing the probability density function (this is most

simply a curve fitting exercise, but generally is an expression of the joint probability

distribution where every variable is considered independent of the rest) and choosing

which points in the database to use. Algorithm 8 shows a pseudocode for a general

EDA.

Algorithm 8 Estimation of Distribution Algorithm[15]

1: Generate at random xj ∈ Ω for j = 1, ...,m
2: Evaluate the cost for all xj
3: while Not Terminate do
4: Select k ≤ m individuals from xj based on a given selection method
5: Estimate the probability distribution based on the selected sample of k points
6: Sample the probability distribution to obtain a new xj for j = 1, ...,m
7: end while

The EDA is not used in comparisons in any of the applications, but is here shown

because of it’s similarity to the optimization algorithm developed in the next chapter

which is the focus of this dissertation. The reader will see specific differences as the

algorithm is developed.
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2.4 Brief Review of Astrodynamics

The remainder of this chapter is meant to serve as a brief introduction to as-

trodynamics. This discussion is deemed to be necessary in order to understand the

applications presented in the dissertation. Many excellent texts exist that allow for

a deeper study, including those by Battin [48], Vallado [49] and Schaub and Junkins

[50], just to name a few that are readily available.

The most relevant equations for the applications presented are those concerned

with Keplerian two body motion. Although a significant amount of research has been

devoted to solving the orbit problem with perturbations, such as J2, the main term

of the spherical harmonic expansion of the Earth’s gravitational field, the problems

solved in the next chapter are not concerned with any perturbations.

Keplerian two body motion is the approximation of satellite orbits with conic

sections (i.e., straight line, circle, ellipse, parabola, and hyperbola). The central

gravitational body occupies on of the foci.1 The conic section approximation is

accurate enough to study the general characteristics of satellite motion. For a more

accurate analysis of satellite motions, higher order perturbations must be included

which make the analysis expensive to perform.

Keplerian motion is governed by Kepler’s three laws of planetary motion which

approximate the motion of the planets around the Sun:

1. The planets orbit the Sun in an ellipse with the Sun at one of the foci.

2. The radius vector from the Sun to each planet sweeps out equal areas during

equal intervals of time.

3. The square of the orbital period of a planet is proportional to the cube of the

1The Latin word focus translates as fire as the Sun occupies one focus of the planets’ orbits.
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semimajor axis of its orbital ellipse.

These laws were discovered empirically by Johannes Kepler (1571-1630) around 1605

and published over a span of subsequent years. Kepler derived the laws using obser-

vational data of Mars taken by Tycho Brahe (1546-1601).

Roughly a century after Kepler’s discoveries, Sir Isaac Newton (1643-1727) de-

rived his law of universal gravitation and law of motion2. From Kepler’s second law,

it follows that the force (acceleration in this case) is directed towards the Sun. From

Kepler’s second and third laws, it follows that the magnitude of the force is inversely

proportional to the square of the distance to the Sun. These two facts suggest that

the Sun is the physical cause of the force (i.e., acceleration) on the planets. Newton’s

law of universal gravitation is in fact remarkably simple. Following the definition of

force as mass multiplied by acceleration, Newton derived

F =
−Gm1m2

r3
r (2.15)

where G = 6.67428·10−11 N-m/kg2 is the universal gravitational constant, m1 and m2

are the masses of the two spherically symmetric bodies, and r is the vector from the

center of mass of body 1 to the center of mass of body 2, and F is the gravitational

force between the two bodies. Newton’s law of motion is then derived as

r̈ = − µ
r3

r (2.16)

where µ = G(m1 + m2) is the planetary gravitational constant. For spacecraft

orbiting the Earth, m2 � m1 and the the approximation µ = Gm1 is used, which

is independent of the spacecraft mass. For the Earth, µ = 398600.441 km3/s2.

2Newton published Philosophiae Naturalis Principia Mathematica on July 5, 1687.
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Newton generalized Kepler’s laws by assuming that all bodies with mass in the solar

system attract each other through the gravitational force and this force is directly

proportional to the masses and distance between the bodies. As the mass of the Sun

is much larger than the mass of any of the planets (or the planets combined for that

matter), Kepler’s model well approximates the motion.

The two body problem is valid for the developments and applications in this

dissertation as the following assumptions are made. First, the motion of one body is

studied (as the mass of the spacecraft is much smaller than the mass of the Earth). In

addition, the motion of the spacecraft is assumed to be within the sphere of influence

of a massive body, meaning that interference of other gravitational bodies and other

disturbances (e.g., atmospheric drag or solar pressure) do not greatly influence the

spacecraft’s motion. Within the sphere of influence of the planet, the two body

approximation is remarkably accurate. For the Earth, the sphere of influence is

approximately RSOI = 1.5 · 106 km = 0.01 AU.3

2.4.1 Conservation of Angular Momentum

By taking the cross product of Eq. (2.16) with the position vector, the conserva-

tion of angular momentum is easily proven as follows

ḣ = r× r̈ =
d

dt
(r× ṙ) = 0 (2.17)

This states the angular momentum per unit mass, h, is constant (when no external

forces are acting on the body). Thus, the motion occurs on a plane defined by r and

ṙ, the position and velocity vectors, respectively. In polar coordinates this is written

31 AU or astronomical unit is the mean distance between the Sun and the Earth, 149,598,000
km.
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as

h = r2ϕ̇îh (2.18)

where îh is the vector perpendicular to the r, ṙ plane. Note that Kepler’s second law

is proven in that the rate at which the radius vector sweeps out area is 1/2r2ϕ̇.

2.4.2 Energy Integral

Beginning with the eccentricity vector, which is a constant of the orbital motion,

µe = ṙ× h− µ

r
r (2.19)

the orbit energy can be derived. It should be noted that e is always directed at

the periapsis and the magnitude, e is a constant known as the orbit eccentricity.

Investigating the square of the magnitude of 2.19,

||e||2 = e · e = 1− e2 =
h2

µ

(
2

r
− v2

µ

)
(2.20)

From the geometry of conic sections, the semilatus rectum is defined as p = h2/µ

and the semi-major axis as

a =
1

α
=

(
2

r
− v2

µ

)−1

which also gives p = a(1− e2). The sum of the kinetic and potential energy per unit

mass is

E =
v2

2
− µ

r
= − µ

2a
(2.21)

which is in fact a constant of the motion.
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2.4.3 Conic Equation in Polar Form

By taking the dot product of the position and eccentricity vectors

r · e =
h2

µ
− r (2.22)

r =
p

1 + e cos(ϕ)
(2.23)

where ϕ is defined as the true anomaly which is defined as the angle between the

eccentricity vector and the radius vector. The orbit is defined by a conic depending

on the value of e as shown in Table 2.1.

Table 2.1: Value of e Defining Conic Sections

e Value Conic Section
e=0 Circle

0 < e < 1 Ellipse
e=1 Parabola
e > 1 Hyperbola

These conic sections are visualized by imagining the intersection of a plane with

a cone at different angles. For elliptical orbits (of which circular are a special case),

the semi-major axis, a, is positive. For hyperbolic orbits, the semi-major axis, a, is

negative, and for parabolic orbits a→∞.

2.4.4 Orbital Elements

The orbit of a spacecraft is completely determined if at any given time, t, the

three-dimensional position and three-dimensional velocity are known. Thus, six pa-
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rameters are required to completely identify the state of the orbit at any given time.

The choice of the parameters is not unique, however. The classical orbital elements

are the most well known set defining the orbit through:

• semi-major axis, a

• eccentricity, e

• inclination, i

• right ascension of the ascending node, Ω

• argument of perigee, ω

• mean anomaly (related to true anomaly through Kepler’s equation), M

The first two parameters define the shape of the orbit. The orientation of the orbit

plane is defined by the third through fifth parameters. The sixth element defines the

position of the spacecraft on the orbit and is a time parameter. The transformation

between orbital elements and and Earth-centered inertial Cartesian frame is well

documented[49, 50]

2.4.5 Lambert’s Problem

Lambert’s problem is the time constrained, two-point boundary value problem

for Eq. (2.16):

r̈ = − µ
r3

r

The problem statement is: given two positions at two times, r(t1) and r(t2), find the

solution for r(t) that satisfies Eq. (2.16). The position and velocity as a function of

time are then known, and thus, the orbit is completely defined for all times. Many

solution methods exist to solve Lambert’s problem[48, 51]. Battin’s method is used

in the examples shown in this dissertation.
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2.4.6 Definition of ∆v

The change in velocity required to move between two orbits is called ∆v. To be

complete, a velocity change could be imparted that moved a spacecraft between two

points in the same orbit, but this case is not considered in this dissertation. Equation

(2.21) allows

v2 = µ

(
2

r
− 1

a

)
(2.24)

and thus at any point in the orbit the velocity can easily be computed. If two points

in two different orbits are given, the required velocity change can be computed. ∆v

values are used as a general description as fuel consumption requires specific metrics

of an engine to be known. Thus, ∆v is a more general term dictating the energy

requirement to move between two orbits.

The value of ∆v is generally given as the modulus of the corresponding change in

the velocity vector, but for the applications in Chapter IV, the modulus and direction

is investigated. In the case where the vector values are required, the change in velocity

is given as ∆v, where each component is listed.
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3. LEARNING APPROACH THEORY AND EXAMPLES

This chapter provides the theory and several numerical examples of benchmark

problems to validate the Learning Approach to Sampling Optimization method. The

Learning Approach (LA) is based on rejection sampling (also called the accept-reject

method)[52]. This new stochastic optimization method will be demonstrated to

converge rapidly to an accurate solution and to more thoroughly search the proper

extrema (minima or maxima) across the entire space than existing methods. A

qualitative motivation is to use both global and local information learned by the

algorithm to recursively shape the sampling density function such that the “best”

regions identified are sampled more densely.

As evolutionary algorithms (EAs), a particular subset of stochastic algorithms,

have been shown to outperform classical deterministic optimization techniques[53],

the LA will be compared to the widely applied Genetic Algorithm (GA) on several

benchmark problems in multiple dimensions (although purely for comparison in this

chapter, as the next chapter introduces applications in astrodynamics and more

rigorous comparisons are made).

This chapter introduces rejection sampling followed by the LA theory and de-

velopment. Then several benchmark problems are solved with comparisons where

appropriate.

3.1 Rejection Sampling

Rejection sampling, as proposed by John von Neumann in 1951[52], is typically

used to generate a random set of observations from a distribution and is of particular

use when the form of the probability density function (PDF) makes sampling difficult.

If a target density, f(x|y), is difficult to sample from, one can sample from a density
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function that is an integral envelope function, f(x|y) < M G(x|y) with M > 1,

much more quickly. To get a random draw from the density f(x|y), simply generate

a sample from within G(x|y) and accept or reject it according to an acceptance

probability, α(x|y). In his paper, von Neumann[52] showed that the choice

α(x|y) =
f(x|y)

G(x|y)
(3.1)

will correctly produce Independent Identically Distributed (IID) samples from the

sample space f(x|y).

The rejection sampling algorithm as used in the rest of this dissertation assumes

that appropriate bounds on the distribution are known–meaning that the function

G(x) is known. (Methods of bounding the function are discussed in this chapter.)

The rejection sampling algorithm is, in-and-of-itself, very simple. The problem

starts with a given function to be sampled from, f(x), with bounds on x and an

expected bound on f(x), and provides a randomly distributed sample set from the

distribution f(x). The rejection sampling algorithm then follows in the pseudocode

shown in Algorithm 9.

Algorithm 9 Rejection Sampling Algorithm

1: while Not Terminate do
2: Randomly choose (within the given bounds) x ∈ <N and y ∈ <
3: if y ≤ f(x) then
4: Accept x
5: else
6: Reject x
7: end if
8: end while
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Algorithm 9 will be shown again as the backbone of the optimization algorithm

being developed in this chapter. Rejection sampling is the tool which allows the

selection of points in a novel way inside of the optimization technique.

Rejection sampling itself provides only a uniformly, randomly distributed set of

points bounded by f(x), and thus in the purest form cannot be used for optimization.

However, it will be shown to be extremely powerful in the selection of points inside

of an optimization algorithm. Figures 3.1 and 3.2 show a simple example of a two-

dimensional reconstruction of the continuous function

f(x, y) =
∣∣∣ cos(x2) sin(y3) +

x y

10

∣∣∣
Figure 3.1 is the prescribed 2-D function and Figure 3.2 is the reconstructed 2-D

histogram by the rejection sampling method.

Figure 3.1: Prescribed 2-D PDF

The rejection sampling approach is used in many different applications. Just

to highlight one (discrete) example, the top plot of Figure 3.3 represents a portion

of the background noise histogram of a camera with a broken bit in the analog-to-
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Figure 3.2: Simulated 2-D PDF (from Histogram)

digital converter readout register. The rejection sampling reconstruction is given

in the bottom plot. The reconstructed PDF allowed an accurate simulation of the

camera’s noise characteristics based on an actual imagery. This example is just a

simple application to show the power of rejection sampling in a real-world situation.

3.2 Learning Approach to Sampling Optimization: Theory

The ideal optimization approach is able to:

• adapt to a wide class of possible applications

• provide consistent and reliable convergence

• able to locate multiple satisfactory near-optimal points (including the global

optimal)

• easy to implement

Based on the characteristics of the ideal optimization approach, a scheme to

a) determine state values, x, that optimize the cost function and to b) intelligently

weight the random selection of points toward the optimal solution of the cost function
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Figure 3.3: Example of prescribed and simulated 1-D discrete PDF.

is required in order to rapidly converge to the desired extrema is sought. A modified

rejection sampling scheme is implemented to sample from the given cost function,

J(x). While this is not a purely random selection of points, it allows a pseudo-

random selection, weighting the selection of points toward the extrema but also

allowing the entire search space to be explored with some probability. This is the

first place where the LA algorithm deviates from any random (including adaptive

random) search techniques.

The claim of weighting the selection of points toward the extreme values is based

on the rejection-sampling method itself, which probabilistically accepts points based

on the PDF function. It is shown that the PDF is approximated by the cost function,

increasing the probability of accepting an extreme point.
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Previous versions of the LA algorithm[54, 55], present improvements to increase

computational speed and make memory usage more efficient in the computer imple-

mentation. The final version of the algorithm is presented here. The backbone of

the algorithm is still rejection sampling [52] (as shown in Algorithm 9), and the flow

of the N -dimensional Learning Approach to Sampling Optimization is presented in

Algorithm 10.

Algorithm 10 Learning Approach to Sampling Optimization Algorithm for Mini-
mization

1: Select a number of random points of x ∈ Ω (2N–twice the dimension–random
points were used unless otherwise specified)

2: Compute the associated cost function, J(x), for each of the selected points
3: while Not Terminate do
4: Randomly choose a point (xran, y) where xran ∈ Ω and y ∈ J(x)
5: Identify the nearest neighbor to xran, call this point x̄
6: if y ≥ J(x̄) then
7: Add xran to the sample database (i.e., accept xran)
8: else
9: Return to Step 4 (i.e., reject xran)

10: end if
11: end while

The algorithm starts by distributing some number of points, x, throughout the

search space, Ω. These points need not be uniformly distributed, especially if some

a priori information exists about the cost function. Only one point need be chosen

to start the algorithm, but for all of the examples shown in this dissertation, the

initial number of points was taken as 2N , unless otherwise specified. The associated

cost function, J(x), is computed for each point. These steps initialize the LA by

building an initial database. The points in the database serve to approximate the

cost function and are used in the rejection-sampling acceptance criteria.
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Once the initial database is constructed, the optimization loop starts. Until the

termination condition is met, the following steps are taken. A single N -dimensional

random value of x is chosen and single 1-dimensional random value of y is chosen,

where y is bounded by the cost function (methods of bounding the cost function are

discussed in Section 3.6). The nearest neighbor to the vector x ∈ Ω is determined

and labeled x̄. The rejection sampling method is then employed to determine if the

point satisfies the criteria for being added to the database. For minimization, x is

kept if y ≥ J(x̄), while for maximization, x is kept if y ≤ J(x̄). If x is rejected, then

a new pair (x, y) is chosen. If x is accepted, then the value y is discarded and the

cost function, J(x), is evaluated at the accepted value of x. The data points x and

J(x) are then added to the database of points. Then another pair (x, y) is chosen.

This process continues until the stopping criteria is met, which consists of a number

of total points, function calls, or accuracy measure met.

As the random points are accepted based on the relation of y with respect to

J(x̄), the selection of points are weighted more toward the appropriate extrema–

this is better understood through the following examples. However, since the cost

function is evaluated at every accepted value of x (and the random choice of y is

discarded), the entire cost function is explored with the proper extrema (i.e., maxima

or minima) being more heavily sampled. Thus, the criteria for accepting or rejecting

the randomly chosen point is approximately the cost function itself as more points

are accepted.

As can be seen from Algorithm 10, the technique is implemented in only a few

lines of code. The fact that only accepted points require a cost function evaluation

makes the algorithm very fast in terms of computation (assuming that the cost

function evaluation requires significantly more operations than generating a random

number). Also it is important to highlight that there are no tuning parameters as
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in the algorithms reviewed in Chapter 2. While the algorithm is fairly simple, it is

shown to be extremely powerful and robust.

3.3 A Simple Example

The following example provides a simple problem to illustrate the LA algorithm.

The objective is to minimize a multi-minima, 1-D function, and the results are shown

in Figures 3.4 through 3.6. The cost function for this example is taken from Reference

[9] as a ”difficult” 1-D test function that represents a practical problem. The function

is written as

J(x) = −
5∑

k=1

sin((k + 1)x+ k) (3.2)

The bounds are −10 ≤ x ≤ 10 and roughly −4 ≤ J(x) ≤ 5. As the function

is periodic with period of 2π, there are twenty total minima, three of which are

equivalent global minima in the range.

Figure 3.4 shows the cost function J(x) and the first ten points (of which two

were randomly chosen to start the algorithm). Figure 3.5 shows the first 100 accepted

points. Note that in Figure 3.6, after only 200 points, most of the minima (local and

global) are well explored with a large number of points near each of the global

minima.

For this example, the three global minima are located at (x, y) = (−6.7211,−3.3729),

(−0.4369,−3.3729), and (5.8463,−3.3729). The errors achieved for this particular

run, where only 200 points are accepted, are less than 0.01%. However, these re-

sults cannot be guaranteed to be repeatable as the algorithm still contains a random

selection of points (this is only an example to illustrate the algorithm, statistics of

multiple runs are given later).
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Figure 3.4: Simple Example: Initial 10 Samples

Figure 3.5: Simple Example: 100 Points
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Figure 3.6: Simple Example: 200 Points

Table 3.1 shows the number of function evaluations for minimizing Eqn. (3.2) us-

ing a series of deterministic (Pijav and Batish) and statistical (Z̆il 1 & 2, Strong, and

Brent) algorithms, given the necessary derivatives (to second order), bounds on all

of the derivatives given, and the Lipschitz constant. The algorithms are thoroughly

described in Ref. [9] and the table below is a modification of Table 8.4 in Ref. [9].

Törn noted that if the estimates of the Lipschitz parameter or other limiting val-

ues are too high, the algorithms listed in Table 3.1 are very inefficient or the global

minimum is not found if the estimates are too low[9].

Table 3.1: Number of Evaluations Required to Minimize Simple Example

Z̆il 1 Z̆il 2 Strong Pijav Brent Batish
125 165 150 3817 161 816
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The LA is able to accurately determine all three global minima with as few as

100 points (i.e., function evaluations) as shown in the figures, whereas the best deter-

ministic algorithm (with significant extra information) took 125 function evaluations.

The goal of the results presented in Table 3.1 are to find all three equivalent global

minima to within a given x position tolerance of ε = 0.015.

3.4 Comparison to Random Search

A numerical example is provided showing faster convergence than random sam-

pling for a simple function. While the chosen function is simple, it should be noted

that most algorithms mentioned in the overview provided in Chapter II have no

mathematical proof of convergence for any function due to the probabilistic nature

and the “black box” structure of the algorithms.

The major difference between the proposed Learning Algorithm and a purely

random search is that the Learning Algorithm weights the point selection such that

the extrema found so far are more thoroughly explored thanks to the rejection sam-

pling base and successive approximation of the cost function in the LA. The random

search only guarantees that a certain number of points in the space are evaluated

and requires a very large number of points for a sufficient probability of obtaining

the correct optimal value.

The cost function, J(x) = |x|, is evaluated for 25 points using the pure random

search and the LA algorithm. Figure 3.7 shows the results of each method applied

to the absolute value and the histogram of the points. The LA chooses numerous

points near the minimum whereas the purely random selection does not. Therefore,

the point selection method (rejection sampling) used in the Learning Algorithm,

which weights the selection of points toward the minimum value is superior.

A Monte Carlo simulation of 1,000 tests is performed allowing 50 points each to

47



Figure 3.7: Comparison of LA and Random Search for |x| with 25 Points

the Pure Random Search and the Learning Approach. The statistics of the results

are showing in Table 3.2. The LA provides superior results in that the mean solution

is significantly closer to the true value and the small standard deviation shows a tight

grouping around the minimum.

Table 3.2: Statistics of 1,000 Trials on |x|

Statistic Random Search Learning Approach
Mean min{J(x)} 0.0191 4.6856 · 10−6

Standard Deviation of J(x) 0.0202 0.0006
Best J(x) 2.0128 · 10−5 1.0852 · 10−16

Worst J(x) 0.1718 0.0026
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A different metric is to determine how many function evaluations (i.e., points)

are required to guarantee the solution lies in some small region, −ε ≤ x ≤ ε, near

the known minimum, where ε is an arbitrary small number.

Lemma 3.4.1. The expected number of iterations of the random selection algorithm

is 1/ε.

Proof. All our choices are independent from each other and the probability of

selecting a point in the interval (−ε, ε) is ε. Therefore, the probability of stopping

after exactly n iterations is

Pn = ε (1− ε)n−1 (3.3)

The expected number of iterations is given by the summation

∞∑
n=1

nε(1− ε)n−1 = −ε

(
∞∑
n=1

(1− ε)n
)′

= −ε
(

1− ε
ε

)′
=

1

ε
(3.4)

�

To show the LA converges faster than the pure random search for the absolute

value function, another series of Monte Carlo tests are performed and results (average

of 10,000 Monte Carlo trials) are shown in Table 3.3. The results show roughly a

30% decrease for larger ε, and a significant decrease in the number of function calls

for smaller ε. This means that as the tolerance, ε, is tightened, the LA performs

better than the random search, and in general, outperforms the pure random search.

The same numerical test is performed on the function y = x2 as another example.

For this case, the distance from ε is computed in the independent variable, x. In

other words, error = min{|x|} and the goal is to have obtain a point such that

−ε ≤ min{|x|} ≤ ε. (Note for the absolute value example above, the distance from
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Table 3.3: Numerical Tests for LA and Random Search Applied to |x|

ε Random Search Random Search Learning Approach
(Expected) (Numerical)

0.1 10 10 7
0.01 100 96 43
0.001 1,000 1012 194

zero in the x and y variables is the same.) The results of numerical tests (average of

10,000 Monte Carlo trials) on the function show roughly a 35% decrease for larger ε,

and roughly a 64% decrease in the number of function calls for smaller ε as shown

in Table 3.4. These results show numerically that the LA performs better than the

random search for two simple functions.

Table 3.4: Numerical Tests for LA and Random Search Applied to x2

ε Random Search Random Search Learning Approach
(Expected) (Numerical)

0.1 10 10 6
0.01 100 106 67
0.001 1,000 1005 360

Previously, the LA theory included using a linear interpolation between the near-

est points instead of the nearest neighbor. This caused the implemented code to

run much slower (as many more computations are necessary) and did not seem to

provide an improved increase in performance in terms of accuracy. A comparison of

the random search and LA to obtain the minimum of J(x) = |x| with accuracy ε > 0
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was developed analytically[56]. The proof using the nearest neighbor in the LA, as

shown in Algorithm 10 remains a topic for future research.

3.5 Benchmark Problems

It is difficult to define a widely useful benchmark problem that does not implicitly

favor one algorithm. There is no agreement within the literature on the definition

of a benchmark. Thus, it is useful to consider a family of benchmark functions to

appreciate the relative merit of competing approaches.

The LA algorithm is used to solve several published, low-dimensional functions.

The goal of these applications is to demonstrate that the LA methodology works and

make initial performance comparisons with other methods.

It is also difficult to find agreement on how to compare the results of different

algorithms. One standard method of making the comparisons as fair as possible is to

simply compare the number of function evaluations required by the method as the

cost function is typically the most computationally costly portion of the optimization

problem. To this end, the comparisons given in this dissertation consist of the number

of cost function evaluations and/or the accuracy achieved after a given, fixed number

of function evaluations. These results demonstrate that the LA’s costs are equivalent

to the number of points accepted.

Comparisons are made (given a fixed number of cost function evaluations) with

the widely used genetic algorithm (GA) on each 2-D problem. The GA used for

these problems is in MATLAB (R2007a) [57] with the default parameter set–the

population size and number of iterations are specified per problem. It should be

emphasized that the GA in MATLAB is highly optimized, built-in code making the

timing comparisons difficult. For more general information on the GA, the reader

may refer to Reference [29].
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Further information on benchmarking the performance of competing algorithms

can be found in Refs. [3, 12, 58, 59, 60]. Most of the problems shown are 2-D

with extensions to higher dimensions, with some examples in higher dimensions, but

the 2-D problems illustrate well the power of the LA as the results can be shown

graphically and the reader can visually see the results. The purpose of this section

is to test the LA on a number of functions that are considered benchmark problems

with various characteristics in order to validate the LA against the known functions

and other optimization algorithms. Higher dimensional problems (some with no

known solutions) are examined in the next chapter.

3.5.1 Spherical Cost Function

A very simple test problem is the sphere model[7], also known as DeJong’s First

Function. No matter the dimensional size, this function always has a single minimum

located at the origin, x = 0, with an associated cost value of J(x) = 0. The simplicity

of this function allows it to be tested in any dimension. The function is written as

J(x) =
N∑
i=1

x2
i (3.5)

with variable bounds −5 ≤ xi ≤ 5, where in 2-dimensions, x1 = x and x2 = y.

Although this function is separable, this is not taken advantage of in the LA. In

addition, the spherical cost function is tested in higher dimensions below.

Figure 3.8 shows the function while Fig. 3.9 shows the contour plot with accepted

points from the LA algorithm (note the global minima are in black).
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Figure 3.8: Sphere Function 3-D Plot

Figure 3.9: Sphere Function Contour Plot
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Table 3.5 shows the results of a Monte Carlo analysis where 1,000 tests are run.

The LA is compared to a Genetic Algorithm with different population and number

of generations. As the GA requires parameters to be tuned, two different parameter

sets are used. In the table, the population size is the first number in parenthesis

followed by the number of generation (e.g., GA (population/generations)). The LA

is allowed 500 function calls (i.e., points), as the GA is allowed as many (population

multiplied by generations is equal to the number of function calls). The mean,

standard deviation, best, and worst values are shown from the Monte Carlo results.

Table 3.5: Results of Monte Carlo Analysis of Sphere Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) 0.0016 1.1285 · 10−4 1.0357 · 10−7

1σ of J(x) 0.0031 4.0673 · 10−4 1.1801 · 10−6

Best J(x) 4.3747 · 10−8 2.9393 · 10−7 3.1430 · 10−11

Worst J(x) 0.0016 0.0033 4.3012 · 10−4

Mean CPU Time (sec) 0.1220 0.1262 0.1256
Max CPU Time (sec) 0.4863 0.4524 0.2028

The CPU time is computed using the MATLAB built in timing function cputime

which returns the elapsed time used by the CPU during the optimization process.

While this method may be neither exact nor optimal, it does provide an initial com-

parison. The computer specifications included a Pentium Dual-Core T4300 at 2.10

GHz and 4 GB or RAM. The GA used in the comparison is the built in MATLAB

GA, which is highly optimized and efficient. Thus, the fact that the LA competes in

mean speed and is 50% better in maximum speed is an indication of the efficiency

of the LA algorithm. As this section is meant to demonstrate the LA theory ap-
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plied some benchmark functions, the timing is not considered in all cases. In the

applications in Chapter 4, the timing is considered where appropriate.

3.5.2 Goldstein and Price Function

The Goldstein and Price Function, as adopted from Dixon and Szegö [7], is written

as

J(x) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)]×

[30 + (2x− 3y)2(18− 32x+ 12x2 − 48y − 36xy + 27y2)] (3.6)

This equation is difficult for many optimizers because there is a large hill in a portion

of the search space, but most of the search space is a large, flat plateau around the

global minimum.

The bounds used are −2 ≤ x, y ≤ 2. The known global minimum is at (x, y) =

(0,−1) with J(x, y) = 3. The LA found a value of (x, y) = (−0.0440,−0.9762) which

gave J(x, y) = 3.8951 on a single run of 200 accepted points (shown). Figure 3.10

shows the function with the accepted points and Figure 3.11 shows the contour plot

with the accepted points. This function has a broad, weak minimum and is useful

to discriminate effectiveness of sample (or other) optimization algorithm’s ability to

accurately isolate weak extrema.
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Figure 3.10: Goldstein and Price Function 3-D Plot

Figure 3.11: Goldstein and Price Function Contour Plot

56



Table 3.6 shows the results of a Monte Carlo analysis where 1,000 tests are run.

Statistics of the Monte Carlo optimization are shown with the same parameter mean-

ing as in Table 3.5.

Table 3.6: Results of Monte Carlo Analysis of Goldstein and Price Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) 7.1553 17.9021 3.0687
1σ of J(x) 7.8116 30.4037 0.3472
Best J(x) 3.0011 3.0010 3.0000

Worst J(x) 38.2222 93.9786 4.2602
Mean CPU Time (sec) 0.1236 0.1273 0.1238
Max CPU Time (sec) 0.4306 0.4457 0.1716

3.5.3 Rosenbrock’s Function

Rosenbrock’s function (also known as Rosenbrock’s banana function) is a well-

known and widely-used test function for optimization techniques[61, 7]. The global

minimum lies in a parabolic shaped valley at (x, y) = (1, 1). Many optimization

methods (both deterministic and stochastic) have success in identifying the valley as

the region of the global optimum, but have great difficulty in finding a point near

the global optimum due to the sharp horseshoe canyon, nonlinear behavior. The

function is written

J(x) = (1− x)2 + 100(y − x2)2 (3.7)

with the bounds −2 ≤ x ≤ 2 and −1 ≤ y ≤ 3.

The LA was applied to Rosenbrock’s function and in one particular run of the

algorithm which accepted 200 points, the (geometrically) closest point to the known
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minimum is (x, y) = (1.0314, 0.9991) with a cost function value of J(x, y) = 0.4211.

However, the point found with the lowest cost function was (x, y) = (0.8496, 0.7130)

with a cost function value of J(x, y) = 0.0305. Figure 3.12 shows Rosenbrock’s

function and the accepted points from the LA while Figure 3.13 shows a contour

plot of the function and the accepted points (the black point at (x, y) = (1, 1) is the

known global minimum).

Figure 3.12: Rosenbrock Function 3-D Plot

A Monte Carlo simulation, where 1,000 tests are conducted in which the stopping

criteria is 500 accepted points for the LA (or 25 generations of 20 points each for the

GA) was performed. Figure 3.14 shows a histogram of the minimum cost function

value for the 1,000 trials comparing the results of the LA with the GA.
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Figure 3.13: Rosenbrock Function Contour Plot

Figure 3.14: Rosenbrock Function Monte Carlo Comparison of GA and LA
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Statistics comparing the LA and GA in a Monte Carlo analysis where 1,000 tests

are run are shown in Table 3.7. The meaning of the parameters is the same as in

Table 3.5.

Table 3.7: Results of Monte Carlo Analysis of Rosenbrock’s Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) 0.0285 0.0462 0.0048
1σ of J(x) 0.0379 0.0548 0.0035
Best J(x) 6.4974 · 10−5 1.9567 · 10−6 6.0010 · 10−6

Worst J(x) 0.2186 0.2542 0.0900
Mean CPU Time (sec) 0.1530 0.1426 0.1423
Max CPU Time (sec) 0.4386 0.4140 0.1716

3.5.4 Rastrigin Function

The Rastrigin Function, first published by Rastrigin in 1974 (in Russian) and

here as adopted from Reference [9], is written as

J(x) = x2 + y2 − cos(18x)− cos(18y) (3.8)

in the range −1 ≤ x, y ≤ 1. The known global minimum is at (x, y) = (0, 0) with

J(x, y) = −2.

There are fifty local minima arranged in a lattice configuration in the search

space, which makes this function difficult for many algorithms which quickly get

caught in a local, non-optimal minimum. Figures 3.15 and 3.16 show the results

when the LA was used with 200 accepted points. Note that the global optimum is

well searched as are several of the near-global values. This function is difficult to
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find all local minimum values with only 200 points, but the LA performs well.

Figure 3.15: Rastrigin Function 3-D Plot

Table 3.8 shows the results of a Monte Carlo analysis where 1,000 tests are run

and compares the LA and GA with two different parameter sets.

Table 3.8: Results of Monte Carlo Analysis of Rastrigin Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) -1.8979 -1.8660 -1.9975
1σ of J(x) 0.0857 0.1149 0.0156
Best J(x) -2.0000 -2.0000 -2.0000

Worst J(x) -1.6447 -1.3942 -1.9840
Mean CPU Time (sec) 0.1236 0.1329 0.1466
Max CPU Time (sec) 0.4221 0.4297 0.2496

Reference [9] provided results of minimizing the Rastrigin function with the fol-
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Figure 3.16: Rastrigin Function Contour Plot

lowing algorithms with a stopping accuracy of x2 + y2 ≤ 2.1518 · 10−4:

1. Pure Random Search (PRS)

2. Multistart Random Search (MS)

3. Competing points with random local search (CRS)

4. Multistart with gradient local search (MSG)

5. Competing points with gradient local search (CG)

6. Strongin’s approach (1972) based on a statistical local algorithm with a model

reduction[9].1 (ST)

7. P ∗-algorithm of Z̆ilinskas, a statistical based method[9] (Z̆il 1)

1The search space and required accuracy were reduced
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Table 3.9, below, is partially reproduced from and adapted from Table 8.10 and

other results presented in Section 8.2.3 of Ref. [9] and shows the average number

of function evaluations required to minimize the Rastrigin function. The LA is run

1,000 times and the average number of points (i.e., function calls) is reported as well.

The Z̆il 1 algorithm (P ∗-algorithm of Z̆ilinskas) was stopped after 150 iterations

Table 3.9: Average Number of Function Evaluations to Minimize Rastrigin Function

PRS MS CRS MSG CG ST Z̆il 1 LA
5917 1176 184 556 111 240 179 89

and refined by a local search which required an average of 29 iterations to reach a

tolerance within 0.0015 of the known global minimum.

3.5.5 Modified Ackley Function

The Modified Ackley Function[3, 62], as generalized by Bäck[6] is a widely used

benchmark function for numerical optimization as it can easily be extended into a

large number of dimensions (which is shown at the end of this section) and it has

multiple minima. The equation is written as

J(x) = −c1 exp

−c2

√√√√ 1

N

N∑
i=1

x2
i

− exp

(
1

N

N∑
i=1

cos(c3 xi)

)
+ c1 + e (3.9)

For now, only N = 2 will be considered so that the reader can visualize the results

through the figures. Common values of the constants are given as in Ref. [3] and are
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used for this simulation

c1 = 20 c2 = 0.2 c3 = π.

Note that the global minimum occurs at (x, y) = (0, 0).

The LA applied to the Modified Ackley Function is shown in Figs. 3.17 and 3.18

over the range −4 ≤ x, y ≤ 4. In this particular run of the algorithm, the minimum

cost function value found is (x, y) = (−0.0053, 0.0156) with J(x, y) = 0.0484.

Figure 3.17: Modified Ackley Function 3-D Plot

The literature disagrees on what the search space bounds, Ω, should be for the

Ackley function. As such, two different sets are studied. The reason for increasing

the bounds is to add a significant number of local minima. When the bounds are

increased to 10 ≤ x, y ≤ 10, the LA found a value of J(x, y) = 0.0619. Figures 3.19

and 3.20 show those results.
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Figure 3.18: Modified Ackley Function Contour Plot

Figure 3.19: Modified Ackley Function 3-D Plot, Extended Bounds
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Figure 3.20: Modified Ackley Function Contour Plot, Extended Bounds

Again, a Monte Carlo simulation is run with 1,000 trials with 500 allowed function

calls. The minimum cost function value achieved by the LA and GA (with population

25 and 20 generations) are compared in the histogram shown in Fig. 3.21.

Table 3.10 shows the statistical results of the Monte Carlo analysis. The data in

the table represents Ackley’s function investigated over the search space −4 ≤ x, y ≤

4.

Table 3.10: Results of Monte Carlo Analysis of Modified Ackley Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) 0.0756 0.0177 0.0076
1σ of J(x) 0.0509 0.0219 0.0031
Best J(x) 0.0027 1.9684 · 10−5 2.7037 · 10−8

Worst J(x) 0.2699 0.1576 0.1309
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Figure 3.21: Modified Ackley Function Monte Carlo Comparison of LA and GA

3.5.6 Adjiman Function

One difficulty faced by many stochastic algorithms is when the global minimum

is on an edge of the search space. The function attributed to Adjiman is a simple

sine and cosine function[7, 63] which is written as

J(x) = cos(x) sin(y)− x

y2 + 1
(3.10)

with variable bounds −5 ≤ x, y ≤ 5. The global minimum value occurs at (x, y) =

(5, 0) with a cost function value of J(x, y) = −5. The interesting fact about this

function is that independent from the range selected, the global minimum always

occurs at the upper bound of x and at y = 0, while the global minimum value

is J(x, y) = −[max(x)]. Thus the scale of the problem is changed without losing

information on the global minimum position and value.

Figure 3.22 shows the function while Figure 3.23 shows the contour plot with
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accepted points from the LA algorithm (note the global minimum is in black). It

can be seen from the figures that the LA collapses quickly to the global minimum in

this case. Table 3.11 shows the results of a Monte Carlo analysis where 1,000 tests

Figure 3.22: Adjiman Function 3-D Plot

are run. The mean, standard deviation, best, and worst values are shown and the

labels are the same as in Table 3.5.

Table 3.11: Results of Monte Carlo Analysis of Adjiman Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) -4.4955 -4.8016 -4.9363
1σ of J(x) 0.4190 0.2384 0.0347
Best J(x) -4.9938 -5.0000 -5.0000

Worst J(x) -3.1585 -3.7180 -4.8802
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Figure 3.23: Adjiman Function Contour Plot

3.5.7 A Discontinuous Function

Deterministic algorithms frequently fail when the function being optimized is dis-

continuous. A one-dimensional test function is generated where the global minimum

is located at (x, y) = (6,−1.1591). The function is written as

J(x) =


x

3
sinx cosx x ∈ [0, 6)

x

4
sin 0.9x x ∈ [6, 10]

(3.11)

The bounds used are 0 ≤ x ≤ 10 and −1.5 ≤ y ≤ 2.5. As seen in Figs. 3.24

and 3.25, the LA is able to find the correct minimum with as few as 25 points.

The minimum point found after only 25 iterations is (x, y) = (6.0001,−1.1591). In

addition to identifying the correct location of the global minimum, the local minimum

near x ≈ 2.5 and x ≈ 5.5 are identified, as can be seen in the figures.
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Figure 3.24: Discontinuous Function, 25 Accepted Points

Figure 3.25: Discontinuous Function, 100 Accepted Points
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A standard GA is run on the discontinuous function shown in Eq. 3.11. Figure

3.26 shows the final population (of size 100) after 10 generations (i.e., 1,000 function

calls). A Monte Carlo test is run for 1,000 trials of the GA with the population of 100

and 10 generations. Figure 3.27 shows a histogram of the x position that produced

the minimum value of J(x). It should be noted that 980 of the 1,000 Monte Carlo

trials ended with the GA finding the non-global optimal location of x ≈ 2.5, six

trials ended at the non-global location of x ≈ 5.5, and only 13 of the trials found the

correct global minimum of x = 6 (and one value ended at x ≈ 5). Comparatively,

the LA Monte Carlo analysis with 1,000 trials ended with all 1,000 trials identifying

the correct global minimum at x = 6, to four significant decimal places, using only

100 points–an order of magnitude less function calls than the GA.

Figure 3.26: Discontinuous Function, Final GA Population
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Figure 3.27: Discontinuous Function, GA Monte Carlo Results

3.5.8 Camel Back Functions

The Camel Back Functions (with three and six Humps) are lesser known bench-

marks taken from Ref. [63]. The functions are described below.

3.5.8.1 Three Hump Camel Back Function

The Three Hump Camel Back Function is written as

J(x) = 2x2 − 1.04x4 +
x6

6
− xy + y2 (3.12)

Common variable bounds are −2 ≤ x, y ≤ 2 and the global minimum value occurs

at (x, y) = (0, 0) with a cost function value of J(x, y) = 0.

Figure 3.28 shows the function while Fig. 3.29 shows the contour plot with

accepted points from the LA algorithm (note the global minimum is in black).
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Figure 3.28: Three Hump Camel Back Function 3-D Plot

Figure 3.29: Three Hump Camel Back Function Contour Plot
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Table 3.12 shows the statistical results of a Monte Carlo analysis where 1,000 tests

are run comparing the LA and GA. For this function, the GA with population 25

and 20 generations gave a smaller (i.e., more accurate) mean than the LA. However,

this difference is in the fourth decimal place. The LA shows a tighter grouping or

solutions in that the standard deviation is smaller and the worst cost function out

of the 1,000 trials is lower for the LA than the GA.

Table 3.12: Results of Monte Carlo Analysis of Three Hump Camel Back Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) 0.0013 2.4237 · 10−4 3.4587 · 10−4

1σ of J(x) 0.0028 7.5156 · 10−4 4.2381 · 10−5

Best J(x) 4.8918 · 10−6 9.4629 · 10−9 1.2101 · 10−9

Worst J(x) 0.0218 0.0057 0.0012

3.5.8.2 Six Hump Camel Back Function

Branian published the Six Hump Camel Back Function in 1972, and it is a bi-

modal benchmark function[7, 63] written as

J(x, y) =

(
4− 2.1x2 +

x4

3

)
x2 + xy +

(
−4 + 4y2

)
y2 (3.13)

with variable bounds −1.9 ≤ x ≤ 1.9 and −1.1 ≤ y ≤ 1.1. The equivalent global

minima values occur at (x, y) = (−0.0898, 0.7126) and (0.0898,−0.7126) with a cost

function value of J(x, y) = −1.0316. Note that the function is symmetric about the
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a point, in particular the origin, meaning that

J(x, y) = J(−x,−y)

Figure 3.30 shows the function while Fig. 3.31 shows the contour plot with

accepted points from the LA algorithm (note the global minima are in black).

Figure 3.30: Six Hump Camel Back Function 3-D Plot

The difficulty in comparing the LA with the GA for this function is that the GA

is strongly polarized by the best point in the population in a given iteration. The

standard GA is not well designed for finding multi-minima, as is demonstrated with

this example.

In 10,000 trials of the GA as applied to the Six Hump Camel Back Function, 3,124

trials went to the minimum value at (x, y) = (−0.0898, 0.7126) and the remaining

6,876 trials found the minimum value located at (x, y) = (0.0898,−0.7126). This
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Figure 3.31: Six Hump Camel Back Function Contour Plot

result shows that the standard GA is biased toward the region of the minimum

whose vicinity was sampled first.

Table 3.13 shows the statistical results of a Monte Carlo analysis where 1,000

tests are run and the GA and LA are compared. The comparison reported in the

table is made by finding the single best cost function value, meaning the point which

provides a solution closest to J(x, y) = −1.0316.

Table 3.13: Results of Monte Carlo Analysis of Six Hump Camel Back Function

Statistic GA (50/10) GA (25/20) LA
Mean J(x) -1.0253 -1.0312 -1.0315
1σ of J(x) 0.0096 0.0018 0.0009
Best J(x) -1.0316 -1.0316 -1.0316

Worst J(x) -0.9718 -1.0154 -1.0297
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3.5.9 Higher Dimensional Functions

Two previously tested functions and two new functions are now investigated in

higher dimensions. Results of the Sphere Function and Modified Ackley Function in

higher dimensions and the three and six dimensional Hartman functions are shown

in the remainder of this section. The purpose of this exercise is to show the LA

in higher dimensions (up to 6). The examples of the next chapter show the LA

algorithm used on significantly higher dimensional problems.

3.5.9.1 Sphere Function in Higher Dimensions

Although the Sphere Function is simple, it allows for any dimension, N , to be

investigated quickly. Equation (3.5) has the global minimum value at x = 0 and

J(x) = 0 for any dimensional space. Table 3.14 shows the results of 1,000 runs of

the LA algorithm in higher dimensions.

Table 3.14: Minima of Sphere Function in Higher Dimensions

Dimension Accepted Points mean J(x) 1-σ
3 500 0.0150
3 1,000 0.0106
3 3000 0.0013
4 1,000 0.0226
4 4000 0.0084
5 5000 0.0321

3.5.9.2 Ackley’s Function in Higher Dimensions

Similar to the Sphere Function, the Modified Ackley’s function as written in Eqn.

(3.9) is written in any dimension. For any dimensional size, the global minimum is
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located at x = 0 and J(x) = 0. Table 3.15 shows the results of 1,000 runs of the LA

algorithm in higher dimensions.

Table 3.15: Minima of Modified Ackley Function in Higher Dimensions

Dimension Accepted Points mean J(x) 1-σ
3 500 0.9845 0.0185
3 1,000 0.5471 0.0054
3 3,000 0.1032 0.0011
4 1,000 0.7076 0.0124
4 4,000 0.0846 0.0012
5 5,000 0.2114 0.0237

3.5.9.3 Hartman 3-D

The three dimensional function, as taken from Dixon and Szegö [7], has as the

global minimum x = (0.114614, 0.555649, 0.852547) and J(x) = −3.86278. The

function is written as

J(x) = −
4∑
i=1

αi exp

[
−

3∑
j=1

Aij(xj − Pij)2

]
(3.14)

with the following values

α = [1, 1.2, 3, 3.2]T A =



3 10 30

0.1 10 35

3 10 30

0.1 10 35


P = 10−4 ·



3689 1170 2673

4699 4387 7470

1091 8732 5547

381.5 5743 8828
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in the search space 0 ≤ xi ≤ 1 for i = 1, 2, 3. Over the search space, there are four

local minima, and the single global minimum listed above. The table below shows the

number of function evaluations (i.e., points) required to minimize the 3-dimensional

Hartman function as shown by Boender[8]. The LA is tested 1,000 times and the

average number of function calls to find the global minimum to 6 significant figures

is shown.

Table 3.16: Number of Function Evaluations for Hartman 3-D

Method Function Calls
Törn 2584

De Biase 732
Price 2400
LA 461

3.5.9.4 Hartman 6-D

The six dimensional Hartman function, as taken from Dixon and Szegö [7], has as

the global minimum x = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)

and J(x) = −3.32237. The function is written as

J(x) = −
4∑
i=1

αi exp

[
−

6∑
j=1

Bij(xj −Qij)
2

]
(3.15)
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with the following values

α = [1, 1.2, 3, 3.2]T B =



10 3 17 3.05 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14



Q = 10−4 ·



1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


in the search space 0 ≤ xi ≤ 1 for i = 1, 2, 3. Over the search space, there are six

local minima. The table below shows the number of function evaluations (i.e., points)

required to minimize the 6-dimensional Hartman function as shown by Boender[8].

The LA was tested 1,000 times and the average number of function calls to find the

global minimum to 6 significant figures is shown.

Table 3.17: Number of Function Evaluations for Hartman 6-D

Method Function Calls
Törn 3447

De Biase 806
Price 7600
LA 710

As can be seen from Tables 3.16 and 3.17, the LA requires fewer function calls

than methods previously tested in the literature.
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3.5.10 Comments on Benchmark Functions

In this section, examples of popular benchmark functions taken from multiple

sources in the literature are shown. The LA algorithm is tested against eight 2-D

functions, a discontinuous 1-D function, and four higher dimensional functions. In all

cases, the LA is compared with the GA, and in some cases, results of other methods

were taken from the literature.

From the analysis of the testing, the LA performed better in terms of accuracy

(given a fixed number of points) and generally performed comparable or better in

computational speed. When compared to other methods, the LA is able to find a

minimum value (to within tolerance) in significantly fewer cost function evaluations.

3.6 Modifications for Local Search

One of the unstated goals of this research is to develop an optimization technique

that did not require tuning of parameters, which given different values in EAs can

greatly effect the result. For example, many experienced practitioners of genetic

algorithms run a Monte Carlo simulation with varying mutation and crossover rates

and choose the best values. Thus, the tuning of parameters in certain EAs is itself an

optimization problem[60]. Then the genetic algorithm is run with more points and/or

tighter tolerances on the problem. The “mysticism of numbers” artistic tuning of

various methods leads to frustration when attempting to compare various methods.

Reducing the need for artistic tuning was an implicit motivation for the LA approach.

Now, consideration is given to methods allowing a global search of the space,

or equivalently forcing point selection near the located optimal points (i.e., a local

search). This requires a mixture of global and local searching. Mathematically, this

is written as

g(x) = α gG(x) + (1− α) gL(x) (3.16)
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where α is the acceleration parameter and α ∈ [0, 1], gG is the global search, and gL

is the local search. A value of α close to zero focuses on a sharp, local search for

minima, while α close to one focuses on a broad, global search across all minima.

Techniques are investigated to emphasize the local search (i.e., guarantee more

points in the region of the minima). The remainder of this section describes the

techniques.

3.6.1 Choices of PDF

The idea in developing the LA algorithm was to have a technique that spent most

of the initial effort on a global search, identifying regions of interest, and the final

effort on refining the search around the found minima. The uniformity of selecting y

is not mandatory and choices other than uniform random give different characteristics

which will here be analyzed.

The choice of PDF from which the random values are chosen is not unique as

the LA method is probabilistic (in both the N -dimensional search space, x, and the

1-dimensional variable, y). However, the choice greatly influences the emphasis of

global versus local search. Figure 3.32 shows various PDFs which emphasize local

and global searches. The uniform search does not emphasize the global or the local

search.

A linear function will allow the PDF to be more concentrated on the global or

local search. Consider

PDF (y) =
γ [(Jmax(x) + Jmin(x)) / (Jmax(x)− Jmin(x))] + 1

Jmax(x)− Jmin(x)
(3.17)

where the parameter γ ∈ [−1, 1] defines what type of search is being performed. As

γ → −1, a global search is performed while as γ → 1, a local search is performed.

As γ → 0, the search is uniform. Figure 3.33 shows some example PDF functions
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Figure 3.32: Example Probability Density Function Shapes

with arbitrarily chosen values of Jmin(x) = 0 and Jmax(x) = 10 for the linear PDF

(on the left). Note that the integral of the PDF is equal to 1.

An exponential function will similarly allow a PDF, from which random points

are chosen, to emphasize the local search or a uniform search throughout the space.

Consider the function

PDF (y) = ke

γ(1− y)

1− γ (3.18)

where the constant k normalizes the integral when taken from Jmin(x) to Jmax(x)

and is written as

k =
d

ed(1−Jmin(x)) − ed(1−Jmax(x))
(3.19)

where d = γ/(1 − γ). The value of γ ∈ [−1, 0) ∪ (0, 1] is a tuning parameter which

when γ → 0 constitutes a uniform search and when γ → 1 approaches a sharp, step

function where only the minimum value, Jmin(x), is chosen. To emphasize global

searching, allow γ < 0. Example exponential functions are shown on the right in

Figure 3.33.
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Figure 3.33: Linear and Exponential PDF Examples

As an example, the following three figures show different results using various

PDFs. For this example, the sphere function, Eq. (3.5), in two dimensions is used

with the bounds −4 ≤ x ≤ 4. First, Fig. 3.34 shows the results using a uniform

distribution. Note that the results are similar to those shown in Fig. 3.9, but the

bounds are different. Next, Fig. 3.35 shows the results of a global search, meaning

a linear search with γ = −1. This figure shows that there are three values near

the minimum, but most of the points are spread away from the minimum. Finally,

Fig. 3.36 shows the results of a steep local search, using an exponential search with

γ = 0.5. This figure shows that many values are placed near the minimum, with a

few points spread around the higher cost function values.
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Figure 3.34: Uniform Search, γ = 0

Figure 3.35: Linear Global Search, γ = 1
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Figure 3.36: Exponential Local Search, γ = 0.5

Randomly sampling the chosen PDF function becomes quite easy as it is in one

dimension. Inverse transform sampling[64] is a method that generated random num-

bers from a PDF based on the cumulative distribution function (CDF), subject to

the constraint that the distribution is continuous and that the integral of the PDF

may be inverted. This method is highly efficient when the CDF is analytically invert-

ible (as is the case with the linear and exponential functions). The method follows:

first, choose a random area (as the functions are PDFs, the area integral is bound by

[0,1]). Then solve the inverse problem (of the PDF function) for the value of y that

gives the selected area. Finally, use y as a random number chosen from the PDF.

3.6.2 Limiting ymax

The simplest technique investigated is to limit the maximum value from which

the random values are sampled (the limiting value could be considered a tuning
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parameter with a relationship to α in Eq. (3.16)). Limiting ymax allowed a uniform

distribution to still be used but emphasized the local search.

As an example, consider the absolute value function, J(x) = |x| over the range

−1 ≤ x ≤ 1. Instead of allowing the value of y in Algorithm 10 to vary over

the full, known range y ∈ [0, 1], a user could limit the searched values of y to

focus on the minimum, such as only allowing y ∈ [0, 0.5]. This method limits the

allowable space of the point selection, forcing the minimum values to be explored

with a larger number of points. However, based on probability theory, points above

the line J(x) = 0.5 may be accepted, especially early in the optimization process

when there are only a few points in the database.

On the other hand, allowing y to have a larger range such as y ∈ [0, 5] will focus

on the global search as the probability of accepting a point is much greater (as y

will probabilistically be greater than or equal to J(x) = |x| which will lead to more

points being accepted away from the minimum value).

The downside of this method is that the probability density function (PDF) is

not continuous, but instead is a step function where the value of the PDF above the

chosen maximum of y is equal to zero. For this example, J(x) = |x|, if the user

chose y ∈ [0,+∞] the LA effectively becomes the pure random search, assuming the

x values are bound.

3.6.3 Log-Normal Distribution

Another technique is to use a log-normal distribution instead of a uniform random

distribution in point selection. A log-normal distribution is a continuous distribution

in which the logarithm of the random variable is normally distributed. The notation

for the log-normal distribution is lnN(µ, σ2) and the probability density function is
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given by

fX(x;µ, σ) =
1

xσ
√

2π
e
−

(lnx− µ)2

2σ2 , x > 0 (3.20)

where the parameters σ2 > 0 and µ ∈ <.

The values of σ and µ then become tuning parameters to force the PDF into a

shape that is suitable for the user. The PDF defines the amount of global and local

search in the algorithm.

In a minimization problem, this is obviously useful, and thus the log-normal

distribution is implemented to force more focused searching of the minima while still

exploring the entire search space with some non-zero probability. The parameters

defining the log-normal distribution, σ and µ, are the tuning parameters in this case.

Neither technique described in this section is implemented in the examples shown in

this chapter, but they are shown to be effective in speeding up point selection near

the optimal points in recent papers [54, 55].

A similar method is to take the absolute value of the normally distributed random

numbers in the range of the minimum and maximum cost function values.

3.6.4 Adaptive Bounding of J(x)

The methodology of selecting a priori the PDF for y is a challenging subject.

By tightening the bounded values of y ∈ J(x) in the LA algorithm, the search

emphasizes the local search. If the bounds are reduced too much, too many points

are rejected, rendering the algorithm computationally inefficient. On the other hand,

if the bounded values of y are too large, the global search is very broad and points

are wasted. In the extreme case, the LA resembles a purely random search when

the bounds on y are excessively large. Thus, an adaptive scheme is implemented

as well in which the PDF changes as the number of points accepted increases. The
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PDF function may even be a morphing (i.e., adaptive) function which changes from

uniform, or global, search to a local search as the number of points accepted increases.

The bounds of y should be adaptively changed based on two criteria:

1. the largest and smallest cost function value of the points accepted, and

2. the number of points rejected.

If a new point has a cost function value lower than all of the points currently in

the sample database, then ymin should be decreased to the new minimum value.

Similarly, the value of ymax should be increased when a new point has a cost function

value that exceeds the values currently in the sample database.

If the number of points rejected in the LA algorithm grows exceedingly large,

this means that the algorithm is focusing on too narrow of a local search and the y

range is too small. By monitoring the number of points rejected, the range of y can

be adaptively changed based on the user’s requirements of computational efficiency

and local search capability.

3.6.5 Known and Unknown Bounds on J(x)

For the benchmark function examples given above, the bounds on y were set

to exactly the minimum and maximum values of the cost function, J(x), as the

cost function is easily evaluated (especially in the 2-D cases). However, for general

optimization problems, J(x) cannot be analytically bound, especially before the

optimization process. Physical bounds are implemented where and when available.

For example, in engineering applications, the minimum cost function value may be

zero if we know that the cost function must be positive. Thus, the minimum allowed

value of y is initially set to 0 and then adaptively increased according to the number

of points rejected.
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When the bounds are unknown, the cost function values of the initial 2N points

are used as the initial bounds on y. As more points are added, the range of y is

adaptively modified.

For the applications in the next chapter, the bounds on y cannot be analytically

determined. Therefore, an adaptive method of bounding y is implemented. The

cost function values of the initial 2N points served as the initial bounds on y. For

the first one-half of the maximum number of points (i.e., function evaluations), the

upper and lower bounds are a constant multiplied by the largest and smallest cost

function values, respectively, of the points selected so far in the process. In other

words, if the cost function value of the (2N+1)th point is the largest out of the 2N+1

points, then the bounds on y are increased to match the value of the cost function.

From there, at specified intervals of the maximum allowed number of points, the

maximum value is decreased in order to require a more local search as more points

are accepted. This procedure made the PDF from which the values of y are chosen

a series of (discontinuous) step functions.

Sanity checks are also used, limiting the number of rejected points. For example,

if the number of rejected points exceeded a given value, then the value of ymax is in-

creased. This made the algorithm more computationally efficient and broadened the

search to a more global search while simultaneously avoiding allowing the algorithm

to get stuck and not add points to the database.

3.7 Database Management and Nearest Neighbor Search

Consideration is now given to memory management and nearest neighbor search

aspects of the LA algorithm. As written in Algorithm 10, the database of N -

dimensional samples grows as each new sample is added. The maximum size of the

database is restricted only by the user (e.g., the total number of accepted points).
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Algorithm 10 does not specify the nearest neighbor search method.

3.7.1 Database Management

The first database idea implemented made the LA look more like an evolutionary

algorithm and is referred to as the cyclical database method. The size of the database

is restricted to a given number which is less than the maximum number of points.

As a new point is added, an old point was removed. As an example, consider the

database size to be restricted to 1,000 points, and 5000 function calls allowed to

solve an optimization problem. When the 1001th point is accepted, the point with

index 1 is removed from the database and the rest of the points are moved up one

index (i.e., index 2 becomes index 1, index 3 becomes index 2, etc.). However, if the

point at index 1 has the best cost function value in the database, it is removed and

put back in the database at index 1,000 and point 2 is removed. The pseudocode in

Algorithm 11 shows the flow of this method.

Algorithm 11 Pseudocode of Cyclical Database Method

1: Specify K > 2N , the number of points in the database
2: Specify M , the total number of points (i.e., function calls) in the search
3: Generate (and index) 2N points in the search space
4: while Number of points < K do
5: Generate and add point to database at next available index
6: end while
7: while Number of points < M do
8: Generate a point and add to database at index=(K + 1)
9: if index=1 has best value of J(x) then

10: Move point from index=1 to index=(K + 2)
11: Decrement all indices by 2 (i.e., index=3 becomes index=1, etc.)
12: else
13: Delete point at index=1
14: Decrement all indices by 1 (i.e., index=2 becomes index=1, etc.)
15: end if
16: end while
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The idea behind this cyclical database method was to make memory usage more

efficient, to allow the members of the population to adaptively bound y, and to

gradually change from global to local search based on the dynamic population in the

database. First, the memory usage became more efficient as the number of points

could not grow larger than a given size (which by design is smaller than the maximum

number of allowed points). This allowed for faster searches in the nearest neighbor in

Step 5 of Algorithm 10. Next, the value of y was simply–yet adaptively–bounded by a

constant multiplied by the best and worst cost function values in the database which

broadened the range of acceptable y values. Finally, as more points are accepted,

they are near the extremal points. This means that the probability of accepting a

point nearer the extremal point is greater than that of accepting a point farther from

the extremal point. Thus, as more points are accepted near the extremal points, the

more localized the search becomes.

A different idea is to keep all of the points, but only do the nearest neighbor

comparison on a subset of points taken from the database. This method is not

investigated beyond recognizing it as a possibility for future research.

The most important idea behind the cyclical database method was to allow the

LA to be flexible about locating the minimum. This gives the LA the possibility to

track the minimum in time-varying systems, as discussed below.

3.7.2 Nearest Neighbor Search Techniques

The organization of the data is critical to the computational efficiency of the

overall optimization process. An unorganized database will generally slow down

the process significantly. The data is generally a non-uniform distribution and new

samples are continuously added (and at times deleted or modified), making the

database dynamic. The remainder of this section is devoted to methods of proximity
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searching, known as the nearest neighbor search (NNS).

The problem description follows: given a set S of points in a given metric space

M , and a specified point, in computer science called a query point, p ∈ M , find the

closest point in S to p. For this dissertation, S is the database of sample points

where the closest point is defined by the N -dimensional Euclidean distance.

The simplest, and slowest, method of determining the nearest neighbor to a given

point in a database is a brute force search where the Euclidean distance between ev-

ery point is compared and the minimum is extracted. Computer scientists call this a

linear search. The execution time is of order O(Nd) where d is the cardinality of the

database (i.e., number of elements in the database), S, and N is the dimensionality

of S. The method is extremely robust to data clustering or other database nonlin-

earities. Weber, et. al., showed that the brute force method outperforms many other

approaches in higher dimensional spaces[65].

The N -dimensional k-vector approach developed by Spratling and Mortari[66]

is a searchless algorithm–making it extremely fast. However, it requires that the

dataset be well-distributed (or uniform) and much of the efficiency is based on a

pre-computed database catalog. Thus, as the k-vector approach works best on a

static database, it is not pursued for this work.

Another method that stands out to handle non-uniform and dynamic datasets

is Delaunay triangulation[67]. Delaunay triangulation easily handles non-uniform

and dynamic datasets and is unaffected by clustering. In <2, Delaunay triangulation

takes points and generates a edges connecting the points creating triangles. In higher

dimensions, Delaunay tessellation forms hyper-triangles with a similar methodology.

When using Delaunay triangulations, the three vertices of a triangle are often the

nearest neighbors as the method of Delaunay perfers equilateral triangles. A good

estimate of the three nearest neighbors would always be the vertices of the triangle. A
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previous version of the LA (used by Davis[68]) required a linear interpolation forming

a hyper-plane between the N+1 nearest neighbors in <N . However, this is discarded

for speed and it is shown in examples that the piecewise constant method–instead of

the piecewise linear interpolation–presented in Algorithm 10 worked as well as the

linear interpolation method and improved the computational speed of the algorithm.

A kd-tree is essentially a binary tree in which every leaf is an N -dimensional

point[69, 70]. This method is extensively used in computer science as it performs

well for multidimensional searches. This method partitions the space by iteratively

bisecting the search into regions containing half of the points of a parent region. In

general, tree methods start with a balanced tree and lose computational efficiency

as points are added and/or deleted from the database. The inefficiency comes from

re-balancing operations. Searches in the tree are performed by traversing the tree

from the root to the proper leaf. A kd-tree can be built (with cardinality d) in order

O(d log2 d) time. A nearest neighbor search in the tree averages order O(log2 d), or

in a balanced tree is order O(Nd1−1/N). Note that as N gets large, this approaches

the brute force search. For the LA application, the kd-tree becomes difficult because

it must be re-balanced often.

Grover’s quantum search algorithm[71] is a probabilistic search method and gives

the solution with high probability of it being the correct solution. One advantage

of the quantum algorithm is that the database need not be sorted and can be non-

uniform. Whereas the linear search requires order O(Nd) time to search a database of

cardinality d, Grover’s algorithm (and all quantum algorithms) search the database

in order O(
√
Nd) time. The quantum algorithm is asymptotically the fastest search

for an unsorted database. Thus, for dimensions 4 to 16, Grover’s algorithm is faster

than the kd-tree (in the worst case).

There exist applications where it is acceptable to return a probabilistic good guess
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of the nearest neighbor. Approximate nearest neighbor algorithms do not guaran-

tee that the actual nearest neighbor is returned in every case, but may drastically

increase speed and memory efficiency. However, the actual nearest neighbor is re-

turned in a majority of cases, depending on the dataset. The goal is to find a point

(or points) whose metric distance is at most (1 + ε), with ε� 1, times the distance

to the actual nearest neighbor.

The kd-tree storage requirements approach that of a linear (i.e., brute force)

search as the dimensionality of the search space gets large. In order to use a high

dimensional search space (i.e. N > 20), a Locality Sensitive Hashing (LSH) technique

can be used [72]. The LSH method performs a probabilistic reduction of dimensions

by mapping data into the same bins with high probability based on some distance

metric. With a properly defined family of hashing functions, LSH performs insertions,

deletions, and approximate nearest neighbor searches in constant time.

For the applications presented in the next chapter, the linear search is imple-

mented along with the cyclical database method. This ensured that a broad selection

of points are evaluated, but the database would not grow to an unmanageable size.

3.8 Parallelization of the Learning Approach Algorithm

Parallelization of the LA is considered, but not implemented. A simple way

to parallelize any optimization method is to split the search space, Ω into smaller

sub-regions, Ωi, and allow each processor (or core) to perform the search within a

given sub-region. This would, however, require a supervisor that provided cross-talk

between the sub-regions in the case of the nearest neighbor being in an adjacent

sub-region. The parallelization of the LA is an area for future work.
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3.9 Application to Time-Varying Systems

The Learning Approach is applied to “slowly” time-varying systems. By slowly,

we assume that points are added more quickly than the system changes due to the

dynamics, the cyclical database method allows for the LA to track the minimum

value as it moves through time. The LA is shown to successfully track a minimum

of a time-varying system[54].
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4. APPLICATIONS IN ASTRODYNAMICS

This chapter will include three applications where the Learning Approach to

Sampling Optimization is applied to difficult problems in astrodynamics and com-

pared with traditional optimization techniques in terms of performance. The three

problems to be investigated are:

1. N -impulse orbit transfer and rendezvous;

2. Periodic close encounters in space; and

3. A comparison of optimization methods as applied to two Cassini spacecraft

trajectory models.

For each problem, a brief introduction is given, followed by the problem set up

(including necessary derivations), and finally a number of examples and comparisons.

Proper conclusions are given for each application.

4.1 N -Impulse Orbit Transfer and Rendezvous

4.1.1 Introduction

Consider the problem of impulsive thrust only with a constrained total time

of flight. Impulsive transfers are viewed as a succession of coast arcs separated

by thrust points[73]. The problem of fuel-optimal transfers has been studied by

such well-known researchers as Goddard, who proposed rocket trajectories to high

altitudes, and Hohmann[74], who solved the (two-impulse) minimum-fuel transfer

between two circular co-planar orbits. Hohmann’s transfer is generalized to el-

liptic orbits by Marchal[75]. The three-impulse transfer is introduced by Hoelker

and Silber[76]. Other important works include those by Lawden[77], who developed
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primer vector theory, and Prussing[78], with a novel application to the transfer prob-

lem. Jezewski[79] developed the necessary conditions using the primer vector. These

conditions were[77, 79]:

1. the primer vector and its first derivative are continuous everywhere,

2. when an impulse occurred, the primer vector has unit magnitude and is aligned

with the impulse,

3. the primer vector magnitude never exceeded unity on a coast arc, and

4. the time derivative of the primer vector magnitude must be zero at all interior

points separating coast arcs.

Indirect methods are proposed to solve the impulsive transfer problem[80, 81],

but have the limitations of requiring the initial and final points known as well as

the convergence domain generally being small. Indirect methods as those based

on the calculus of variations which formulate the problem as a two-point boundary

value problem (or set of problems) solved by terminal conditions. Thus, numerical

optimization techniques should be employed. The GA has been thoroughly studied

for optimizing orbit transfers [82, 83] and were shown to be well suited to numerically

solve aspects of the orbit transfer problem, including interplanetary trajectories.

Significant work has been given to solving the minimum ∆v orbit transfer and

rendezvous problem for N -impulses [84, 85, 86, 87]. When N > 2, an analytical

solution is difficult (if not impossible) to find, except in very special cases. This is

due to the fact that the problems have many local minima–and generally numerous

discontinuities in both the function and derivative, assuming the derivative can even

be computed–which inhibit convergence to the global minimum value by traditional,

calculus-based optimization methods.
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A major limitation of previous work is that for N > 3 the orbit transfer problem

becomes computationally intractable [86], resolution of the bit-encoded GA caused

noticeable error, or convergence tolerances are necessarily large to make the prob-

lem solveable [85]. More importantly, only up to a three impulse transfer or two

impulse rendezvous example is given in Refs. [86, 85]. The infeasible computation

problem is due to the random selection of ∆v values inside of the Genetic Algorithm.

Another method is devised by Mortari and Henderson [88] that randomly selected

radii and minimized the ∆v between the radii. However, even this method becomes

computationally unfeasible. Thus, this method is not further pursued. The question,

then, became how to analytically bound the ∆v components such that the N -impulse

problem is solved.

This section introduces new, novel constraints on the N -impulse selection which

strongly bound the size of the search space, Ω. This reduction makes the N -impulses

problem affordable for most of the algorithms reviewed in Chapter II as well as the

Learning Approach presented in Chapter III.

The outline of this section follows: first a presentation of limitations on the

velocity that guarantee that after each impulse, the new orbit does not intersect

the Earth (plus altitude constraint) is given. This allows the choice of velocity

components to be bounded. The algorithm for orbit transfer and rendezvous is

then developed. Finally, this section compares the performance of the GA and LA

optimization techniques in terms of performance for a set of examples using real

spacecraft. Orbit transfers using N > 5 impulses is shown to be easily computed by

a the LA and GA when the velocity constraints are used.
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4.1.2 ∆v Limitations

In order to find the minimum ∆v solution in a more efficient manner, either

the dimension is decreased, or the search space is more tightly constrained. As

the problem to be solved involves constructing the method to solve the N -impulse

problem, the dimensionality of the problem cannot be decreased and thus the search

space must be constrained. Here, the limitations on the impulse, ∆v, in order to

obtain an orbit whose perigee radius is greater than the minimum given value, rp,

are analyzed. The value rp represents a minimum radius from the Earth that the

spacecraft is allowed to obtain. In order to derive the analytical bounds for this

problem, the impulsive ∆v is split into the following, generally non-orthogonal, three

components:

∆v = ∆vr r̂ + ∆vv v̂ + ∆vh ĥ (4.1)

where r̂, v̂, and ĥ, are the unit-vector directions of radial, velocity, and angular

momentum components, respectively. The ∆v components appearing in Eq. (4.1)

are bounded as follows and the bounds are derived.

∆vrmin ≤ ∆vr ≤ ∆vrmax (4.2)

∆vvmin ≤ ∆vv ≤ ∆vvmax (4.3)

∆vhmin ≤ ∆vh ≤ ∆vhmax (4.4)

Let r and v the position and velocity of an Earth-orbiting satellite at a given time,

t. Classical Keplerian motion gives the following expression for angular momentum

h = r× v = h ĥ =
√
µ p ĥ (4.5)
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where h is the angular momentum modulus, µ the gravitational constant of Earth,

and p the semi-latus rectum. Equation (4.5) leads to p = h2/µ, while the energy

equation

v2

2
− µ

r
= − µ

2 a
(4.6)

gives an expression for the semi-major axis, a = µ/(2µ/r− v2). Additional relation-

ships that are used in the development are

p = a(1− e2), e =

√
1− p

a
, and rp = a(1− e) (4.7)

relating the eccentricity, e, and the perigee radius, rp. For further definition of

the orbital parameters, see the Section entitled Brief Review of Astrodynamics in

Chapter II or one of the many excellent texts on orbital mechanics such as Refs.

[50, 48, 49]. In the following derivations, it is assumed that the orbit of the satellite

is elliptical (i.e. a > 0 and 0 ≤ e < 1). This is equivalent to a statement about the

orbit energy, r v2 < 2µ.

4.1.2.1 Limitation on ∆vvmax

It is intuitive that any increase along the velocity vector direction does not de-

crease the radius of perigee, but will, in general, increase the perigee altitude. The

worst case occurs when the impulse is applied exactly at the perigee, in which case

the radius of perigee will remain the same after a positive ∆vv but the semi-major

axis and eccentricity will increase.

A short mathematical proof is here provided that shows ∆vvmax is unbounded (in

practice, the value is bounded by the user as shown later). The proof investigates

what happens to rp, the radius of perigee, when the velocity vector is increased by
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an infinitesimal amount. The new velocity can be written as

v′ = λv = (1 + ε) v (4.8)

where 0 < ε � 1 and the ( )′ notation identifies the value after the infinitesimal

impulse. Only the first order approximation of the perturbed orbital parameters as

a function of the original parameters and the small variation (i.e., differential) ε are

considered.

It is clear from Eq. (4.5) that p′ = λ2 p and then

p′ ≈ (1 + 2ε) p (4.9)

Equation (4.6) is used to obtain an expression for the ratio a′/a

a′

a
=

2µ/r − v2

2µ/r − λ2 v2
≈ 1

1− 2ε v2 a/µ
≈ 1 +

2v2 a

µ
ε

from which is obtained

a′ ≈ a

(
1 +

2 v2 a

µ
ε

)
(4.10)

Using Eqs. (4.9), (4.10), and (4.7), the following expression is derived

p′

a′
≈ p

a

(
1 + 2ε

1 + 2v2aε/µ

)
≈ p

a

[
1 +

(
2− 2v2a

µ

)
ε

]

which gives

(e′)2 = 1− p′

a′
≈
[
1− p/a

1− p/a

(
1− v2a

µ

)
ε

]
(4.11)
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which implies

1− e′ ≈ (1− e)
[
1 +

e

1− e
p/a

1− p/a

(
1− v2a

µ

)
ε

]

Finally [after simplification using Eqs. (4.6) and (4.7)], the expression for r′p is

obtained

r′p ≈ rp

[
1 +

2

e

(
1− rp

r

)
ε

]
(4.12)

It is clear from Eq. (4.12) that as long as r > rp (i.e., not at the perigee),

then r′p > rp. Obviously, when r = rp the velocity vector, v, is orthogonal to the

position vector, r, and the perturbed velocity, v′, does not modify the perigee. Thus,

∆vvmax cannot be analytically bounded as expected, but will however, be practically

bounded based on operation constraints.

4.1.2.2 Limitation on ∆vvmin

Now, the limitation on ∆vvmin is derived. Setting v′ = v − ∆v leads to an

expression for the semi-major axis, a, as a function of ∆v from the energy equation

(v′)2

2
− µ

r
= − µ

2 a′
→ a′ =

µ r

2µ− r (v′)2
(4.13)

while the angular momentum allows (v′ and v are parallel at the instant of the

impulse)

h′ = h
v′

v
=
√
µ a(1− (e′)2) (4.14)

Note that r = r′ as the maneuver is impulsive. An expression for e′ as a function of

∆v is then obtained

h2 (v′)2

v2
= µ a′(1− (e′)2) =

µ2 r (1− (e′)2)

2µ− r (v′)2
(4.15)

103



and

e′ =
1

µ v

√
µ2 r v2 − h2(v′)2 (2µ− r (v′)2)

r
(4.16)

Hence, the ∆v associated with the new minimum perigee, rp = a′(1− e′), is

rp =
µ r

2µ− r (v′)2

(
1− 1

µ v

√
µ2 r v2 − h2(v′)2 (2µ− r (v′)2)

r

)
(4.17)

Solving Eq. (4.17) for v′, we obtain

[
r2
p v

2 (2µ− r (v′)2) + r h2 (v′)2 − 2r v2 rp µ
]

(2µ− r (v′)2) = 0 (4.18)

from which the trivial solutions (associated with hyperbolic solutions) are obtained

∆vv = v ±
√

2µ

r
(4.19)

and the two searched equations

∆vvmin = v ± v

√
2µrp(r − rp)
r(h2 − r2

pv
2)

(4.20)

Using Eq. (4.20), a numerical test was performed to prove the correctness of the

equation. The orbit was selected has classical Keplerian orbit elements shown in

Table 4.1.

Table 4.1: Orbital Elements Used for ∆vvmin Test

a e i ω Ω ϕ
8000 km 0.05 0 deg 0 deg 0 deg 0 deg
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The constraint of minimum allowed altitude was 350 km. For the test, 1,000 im-

pulsive velocity changes using Eq. (4.20) are applied equally spaced around the orbit

(in terms of true anomaly). The resulting difference in computed and constrained

radius of perigee are plotted in Figs. 4.1 and 4.2 for the positive and negative values

of ∆vv, respectively.

Figure 4.1: Results of Validation Tests for ∆vv > 0

4.1.2.3 Limitation on ∆vr

Now, the effects of impulses along the radial direction are derived. Radial im-

pulses do not change the angular momentum vector as

h′ = r× (v + ∆vr r̂) = r× v = h (4.21)
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Figure 4.2: Results of Validation Tests for −∆vv < 0

The energy equation, Eq. (4.6), becomes

v2 + ∆v2 + 2 ∆v v · r̂
2

− µ

r
=
v2 + ∆v2 + 2 v∆v cosα

2
− µ

r
= − µ

2 a′
(4.22)

where α is the angle between the radius and velocity vectors. From the above equa-

tion, an expression for a′ is computed as

a′ =
µ r

2µ− r (v2 + ∆v2 + 2v∆v cosα)
(4.23)

The angular momentum equation, as written in Eqs. (4.5) and (4.7), allows an

expression for e as a function of ∆v to be obtained

h2 = µ a′(1− (e′)2) =
µ2 r (1− (e′)2)

2µ− r (v2 + ∆v2 + 2v∆v cosα)
(4.24)
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The value of ∆v associated with minimum perigee is then

rp =
µ r

2µ− r (v2 + ∆v2 + 2v∆v cosα)

1−

√
1− h2[2µ− r (v2 + ∆v2 + 2v∆v cosα)]

µ2 r


(4.25)

Setting x = 2µ− r (v2 + ∆v2 + 2v∆v cosα), Eq. (4.25) is written as

x (r2
p x− 2 rp µ r + h2 r) = 0 (4.26)

Solving the equation for the non-trivial solution gives

∆v2
r + 2v∆vr cosα + v2 − 2µ

r
+

2µ

rp
− h2

r2
p

= 0 (4.27)

which has solutions

∆vr = −
√
µ

p
e sinϕ±

√(
1

r
− 1

rp

)[
2µ− h2

(
1

r
+

1

rp

)]
(4.28)

where ϕ is the true anomaly.

Again, an orbit, whose elements are shown in Table 4.1, is generated with the

minimum altitude constraint of 350 km. For the test, 1,000 impulsive velocity changes

along the radial direction (both positive and negative) are applied equally spaced

around one orbit (in terms of true anomaly) according to Eq. (4.28). The resulting

difference in computed and constrained radius of perigee is plotted are given in Figs.

4.3 and 4.4 for the case of positive and negative ∆vr, respectively.
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Figure 4.3: Results of Validation Tests for ∆vr > 0

Figure 4.4: Results of Validation Tests for ∆vr < 0

108



4.1.2.4 Limitation on ∆vh

It is shown, via analytical proof, that neither positive nor negative ∆vh decrease

the perigee altitude. In particular, the effects of ∆vh on rp are investigated when the

velocity, v, is changed by v′ = v + λh/r with 0 < ‖λ‖ � 1. Note that λ can be a

positive or negative value. Let α denote the angle between r and v. Since v and h

are orthogonal,

v′ = v
√

1 + λ2 sin2 α ≈ v

(
1 +

λ2 sin2 α

2

)
. (4.29)

Similarly,

h′ = h
√

1 + λ2 ≈ h

(
1 +

λ2

2

)
. (4.30)

Now the ratio r′p/rp is computed following the same procedure as previously used

p′ =
h′

µ
≈ h

µ

(
1 +

λ2

2

)2

≈ p
(
1 + λ2

)
(4.31)

then

a′ ≈ a

(
1 + λ2 sin2 α

v2a

µ

)
(4.32)

and

1− e′ ≈ (1− e)
[
1 +

e

1− e
p/a

1− p/a

(
1− v2a sin2 θ

µ

)
λ2

2

]
(4.33)

yielding to

r′p ≈ rp

{
1 +

λ2

2e

[
(1− e) sin2 α

(
2a

r
− 1

)
+ (1 + e)

]}
(4.34)

It is clear from this equation that for any infinitesimal perturbation (positive or

negative) in the direction of the angular momentum, h, the radius of perigee can not

decrease.
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Note that the bounds computed are not independent. It is clear that if we select

a value for ∆vv (e.g., defined by one gene of the chromosome), then the bounds

for ∆vrmin and ∆vrmax have to be computed using the new velocity vector v′i =

vi + ∆vv v̂i, rather than vi.

4.1.3 Orbit Transfer Problem

The orbit transfer and orbit rendezvous problems are set up in much the same

way. In previous work, Abdelkhalik [86] used the true anomaly of the initial and final

orbits and the flight time as variables that are input into a Lambert solver [48] for

each transfer leg. The cost function minimized was simply the sum of the required

impulsive ∆v values for the entire maneuver.

For the current work, the Lambert solver is used only to compute the velocities

for the final transfer leg (i.e., the final two impulses). The previous N − 2 impulses

are generated using the derived constraints presented. The variables required are the

times of each impulse (N variables), the ∆v magnitude of each component for the

first N − 2 impulses in the sequence (3(N − 2) variables), and the final orbit true

anomaly (1 variable). This means for N impulses, there are 4N − 5 total variables.

For the special case of N = 2, the three variables are the (two) times of the

impulses and the final orbit true anomaly, which means the derived constraints are

not used, but the Lambert solver provides the solution based on the chosen times of

impulses and anomaly. Table 4.2 lists the variables for a 3-impulse maneuver, where

the ∆v components are for the first impulse and represent the fraction of magnitude

between the derived upper and lower bounds allowed. The extension to determine

the variables with a larger number of impulses is then easily made.

All of the variables are normalized such that the values are in [0, 1]. The time

is normalized by a maximum time of maneuver supplied by the user. This allows
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Table 4.2: Variables for 3-Impulses

x1 x2 x3 x4 x5 x6 x7

t1 t2 t3 ∆vv ∆vr ∆vh ϕf

a guarantee that ti+1 > ti. The variables associated with velocities are the fraction

between the maximum and minimum value bound by the constraints derived in Eqs.

(4.20) and (4.28), and a maximum allowed ∆v value per impulse. The final variable

is a fraction of 2π which represents the final orbit true anomaly.

The basic flow of the solution method for the orbit transfer is shown in Algorithm

12.

Algorithm 12 Orbit Transfer/Rendezvous Pseudo-code

1: Given initial and final orbits, N, rp, tmax, and ∆vmax

2: Generate t1 and ti = ti−1 + x, i = 2, ..., N
3: Generate components of ∆v1

4: Propagate orbit
5: for i = 2 to N − 2 do
6: Generate components of ∆vi
7: Propagate orbit
8: end for
9: Generate ϑf

10: Solve Lambert problem
11: Compute ∆vtotal

For the examples shown in the remainder of this section, the parameters set in

the GA are shown in Table 4.3. While these values may be sub-optimal for the

examples presented, they are based on practices recommended by De Jong[89] and

used by Kim[85], thus allowing a better comparison with previous work.
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Table 4.3: Genetic Algorithm Parameters

Parameter Selected Value
Population Size 150
Generations 100
Crossover Probability 0.8
Elite Count 2

The LA is run keeping all of the points in the database and adaptively changing

the bounds of J(x). For the first 50% of the points added to the database, the

minimum and maximum cost function values are used as the bound. From there,

the maximum bound of J(x) is decreased incrementally to one-half of the maximum

value in the database. This allowed the LA to have a broad, global search for the

first half of the test, while slowly focusing on a local search during the second-half

of the test.

4.1.3.1 Problem 1: Hohmann Transfer

The new, constrained algorithm is first verified by solving two problems with

known solutions. The first problem investigated was a Hohmann transfer[74] in Earth

orbit from low Earth orbit (LEO) to a geosynchronous orbit (GEO). A satellite in an

equatorial, circular orbit with radius r1 = 7, 000 km was transferred to an equatorial,

circular orbit with radius r2 = 42, 164 km (GEO). The Hohmann transfer requires

two impulses

∆v1 =

√
µ

r1

(√
2r2

r1 + r2

− 1

)
and ∆v2 =

√
µ

r2

(
1−

√
2r1

r1 + r2

)
(4.35)

and the total required impulsive ∆v for the Hohmann transfer is then simply ∆v =

∆v1 + ∆v2.
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For this example, the analytical solution is ∆v1 = 2.3368 km/s and ∆v2 = 1.4339

km/s, giving a total ∆v = 3.7707 km/s. The initial optimization result by the

LA provided a solution of ∆v = 3.7719 km/s while the GA provided a solution of

∆v = 3.7783 km/s. In this case, the GA exited well before the total number of

generations is reached due to the cost function tolerance between generations being

met. In total, only 12 generations were used. This shows that the GA became

attracted to a local minima that lies near the correct solution.

The LA then used the same number of function evaluations to make a fair com-

parison. The LA outperformed the GA for the Hohmann transfer and a GA reported

in previous work by Kim [85] (∆v = 3.774 km/s). As another verification, the an-

gle between the position vectors where the impulses took place were computed and

found to be 179.98◦ for the LA and 178.75◦ for the GA. Figure 4.5 shows the orbit

transfer.

Figure 4.5: Representation of Hohmann Transfer
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A Monte Carlo test is performed where the GA and LA are each run 100 times

(independent of the previous results and with the same number of points, with the

GA determining the number of points). Figures 4.6 and 4.7 show the results. Clearly,

the LA outperformed the GA on the whole.

Figure 4.6: Monte Carlo Hohmann Transfer ∆v Results

In addition, to prove the validity of the transfer algorithm, a test (using the

LA only with 2,000 function calls) is performed where 3 and 4-impulses are given

and the time is constrained to 0.75 days–roughly twice that of the actual Hohmann

transfer. Given that the Hohmann transfer is optimal for the 2-impulse case, the 3

and 4-impulse cases should show one or two impulses with near zero ∆v (i.e., still use

the 2-impulse transfer). As can be seen in Figs. 4.8 and 4.9, and in Tables 4.4 and

4.5, this is indeed the case as some of the ∆v values are indeed very small exhibiting
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Figure 4.7: Monte Carlo Hohmann Transfer Angular Results

a Hohmann-like transfer. Note that Table 4.4 has a total velocity of ∆v = 3.7708

km/s. This verifies that the orbit transfer algorithm will not necessarily use all of

the allowed impulses and yields the optimal transfer.

Figure 4.8: 3-Impulse Representation of Hohmann Transfer
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Figure 4.9: 4-Impulse Representation of Hohmann Transfer

Table 4.4: 3-Impulse Hohmann-like Transfer Parameters

|∆v1| = 2.3368 km/s Time (UTC): 19-Dec-2008, 08:56:09
Position (km) Rx = −2, 007.4 Ry = 6, 706.0 Rz = 0
Velocity (km/s) Vx = −7.2291 Vy = −2.1640 Vz = 0
∆v (km/s) ∆vr = −0.0093 ∆vv = 2.3368 ∆vh = −0.0013

|∆v2| = 1.7 · 10−6 km/s Time (UTC): 19-Dec-2008, 10:04:59
Position (km) Rx = −12, 422.0 Ry = −17, 203.1 Rz = −2.2
Velocity (km/s) Vx = 0.72597 Vy = −4.5638 Vz = −7.9 · 10−5

∆v (km/s) ∆vr = 7.9 · 10−7 ∆vv = −1.4 · 10−6 ∆vh = 4.9 · 10−7

|∆v3| = 1.434 km/s Time (UTC): 19-Dec-2008, 14:14:27
Position (km) Rx = 12, 054.1 Ry = −40, 404.2 Rz = 2.1 · 10−10

Velocity (km/s) Vx = 1.576 Vy = 0.4565 Vz = 0.0002
∆v (km/s) ∆vr = −0.0131 ∆vv = 1.4339 ∆vh = −0.0004

Table 4.5: 4-Impulse Hohmann-like Transfer Parameters

Impulse |∆v| (km/s)
1 0.0137
2 2.3425
3 0.0216
4 1.3946

Total 3.7724
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4.1.3.2 Problem 2: Inclined 2-Impulse Transfer

In his text, Vallado[49], presented a more challenging 2-impulse problem involving

orbit transfer combined with a plane (or inclination) change. Consider a satellite

in a circular orbit with initial radius r1 = 6, 671.53 km and inclination i = 28.5◦

(equivalent to launching from Cape Canaveral). The final orbit is circular with

radius r2 = 26, 558.56 km and i = 0◦. If the entire plane change is performed at

r2, then the total ∆v for the maneuver required is 4.2120 km/s. However, if the

first impulse includes an inclination change of 3.305◦ and the second impulse takes

the remainder of the plane change, the total required ∆v for the maneuver becomes

4.05897 km/s. The transfer is represented in Fig. 4.10.

Figure 4.10: Vallado’s 2-Impulse, Inclined Transfer Problem

For this example, the initial run of the LA computed a value of 4.0591 km/s and

the GA computed a value of 4.0624 km/s. A Monte Carlo test is performed where

100 tests are run. Table 4.6 shows that the LA outperformed the GA in terms of

accuracy for the same number of function calls. Again, the GA only used on average

14 generations (2,100 points) and therefore the LA used the same number of points.

Note the standard deviation of the LA is more than three times less than the GA,

showing that the LA gives a more accurate and repeatable solution.
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Table 4.6: Results of Monte Carlo Test on Vallado’s 2-Impulse Problem

Method Mean ∆v (km/s) 1σ of ∆v (km/s)
GA 4.0627 0.0039
LA 4.0593 0.0012

4.1.3.3 Problem 3: Inclined 6-Impulse Transfer

This problem doubled the number of allowed impulses compared to previous

publications [85, 86], and shows the power of the N -impulse admissible constraints

in allowing high values of N . The example shown is a transfer from an orbit with

r1 = 8, 000 km and i = 45◦ to a GEO orbit and is represented in Fig. 4.11.

Figure 4.11: Representation of 6-Impulse Transfer

In order to obtain a feasible solution in the larger dimensional search space, more

points are used. The GA is modified to use 200 generations with a population of 400.

Not all of the generations are used, however, as the GA exited because the minimum

function value changed less than the tolerance generally before 200 generations are
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used. The LA then used the same number of points as the GA in order to make

a fair comparison. In a Monte Carlo test of 100 trials, the LA found an average

minimum ∆v value of 4.3237 km/s while the GA found an average minimum ∆v

value of 4.3482 km/s.

4.1.4 Orbit Rendezvous Problem

The orbit transfer and orbit rendezvous problems are purposefully set up to be

very similar, where the only difference is that in the rendezvous problem, the phasing

of the orbits matter in order that the chase spacecraft meet with the target spacecraft

(position and velocity at a given time are the same). Previous work by Kim [85] used

the magnitude of the ∆v, true anomaly at the time of the maneuver, and the direction

of the vector impulse as variables. The cost function used by Kim is a weighted sum

of matching position and velocity components of the two spacecraft in the final orbit

where the weight values are set by trial and error experimentation (Kim allowed a

1% error in position and velocity as stopping criteria). Kim’s examples included only

co-planar orbits with a 2-impulse orbit rendezvous (with an augmented cost function

to include minimizing the ∆v along with the position and velocity component errors).

For this application, the orbit rendezvous problem has the same variables as the

transfer problem (time of each impulse, ∆v fraction based on derived constraints,

and final orbit true anomaly). The requirement in the rendezvous problem is that

the chase spacecraft arrives in the final orbit at a given time with the same position

and velocity vectors as the target spacecraft. This is derived and used in the Lam-

bert solver, and therefore neither weighted nor included in the cost function. The

cost function for the rendezvous problem is simply the total ∆v, which we wish to

minimize. The basic flow of the solution method for the orbit rendezvous is the same

as the orbit transfer problem (Algorithm 12) with the only difference of propagating
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the target spacecraft to find the final true anomaly value. This makes the software

package simple, as only a switch is needed to perform either transfer or rendezvous.

4.1.4.1 Hohmann Rendezvous

The orbit rendezvous problem is verified using a Hohmann transfer. The elapsed

time before the first impulse, ∆v value, and angular separation between the impulses

matched the analytical values very well (the ∆v is accurate below the m/s level) when

using the LA with 1,500 points. Table 4.7 shows the results of the rendezvous.

Table 4.7: Hohmann Rendezvous Parameters

|∆v1| = 2.3368 km/s Time (UTC): 19-Dec-2008, 06:07:58
Position (km) Rx = −6, 424.6 Ry = −2, 779.4 Rz = 0

Velocity (km/s) Vx = 2.9962 Vy = −6.9257 Vz = 0
∆v (km/s) ∆vr = 6.8 · 10−6 ∆vt = 2.3368 ∆vn = 0

|∆v2| = 1.4339 km/s Time (UTC): 19-Dec-2008, 11:27:36
Position (km) Rx = 38, 697.9 Ry = 16, 741.5 Rz = 0

Velocity (km/s) Vx = −0.65147 Vy = 1.5059 Vz = 0
∆v (km/s) ∆vr = 5.9 · 10−6 ∆vt = 1.4339 ∆vn = 0

4.1.4.2 N-Impulse Rendezvous Examples

The GA is only compared for one example: the 4-impulse rendezvous. A true

value is not known for the general problem. Figures 4.12 to 4.14 show the results

of testing the LA on an example rendezvous mission. The example shown is a

rendezvous starting from an orbit with r1 = 8, 000 km and i = 45◦ to a GEO orbit

(all other orbital element values considered to be 0 at the initial time).
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Figure 4.12: 4 Impulse Rendezvous

Figure 4.13: 6 Impulse Rendezvous

Figure 4.14: 8 Impulse Rendezvous
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The plots show the progression of the impulses and exhibit a spiraling effect

where a small amount of the inclination change is taken at each impulse until the

final impulse where the majority of the inclination is removed. For a Monte Carlo

test of 100 runs of the LA, the values obtained for the mean ∆v value are shown in

Table 4.8. Note that the values are all very similar, showing little (if any) gain by

increasing the number of impulses.

Table 4.8: Orbit Rendezvous Mean ∆v Values

Number of Impulses Mean ∆v Value
4 4.4438 km/s
5 4.4369 km/s
6 4.4501 km/s
7 4.4417 km/s
8 4.4302 km/s

Notice that the 6-impulse case exhibits a larger ∆v value than the others, but

that all cases are similar to within 20 m/s. Table 4.8 should not be interpreted

as suggesting that more impulses provides a better solution (as this would unfairly

imply that the optimal continuous thrust always provides the minimum ∆v, which

is known not to be the case). In the case of the 8-impulse rendezvous shown in Fig.

4.14, the 7th impulse gets the spacecraft nearly into the correct orbit and requires

just a very small (relative) final impulse to correct the phasing. This shows that the

maneuver could be efficiently handled in fewer impulses.

A single case of the 4-impulse transfer is shown in Fig. 4.15. This behavior

is more like a bi-elliptic transfer and produced a ∆v value of 4.5198 km/s. Even

though this value is larger, the algorithm did seek solutions that are outside of spiral
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trajectories only.

Figure 4.15: 4 Impulse Rendezvous

For the 4-impulse rendezvous example, a Monte Carlo test is performed and the

statistics are shown for the GA and LA over 1000 tests in Table 4.9.

Table 4.9: Orbit Rendezvous Minimum ∆v Values

Statistic GA LA
Mean ∆v (km/s) 4.4682 4.4315
3σ of ∆v (km/s) 0.1281 0.0401
Best ∆v (km/s) 4.4391 4.4290

Worst ∆v (km/s) 4.6912 4.4971
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4.1.5 Final Numerical Local Minimization

As the Genetic Algorithm and Learning Approach are generally used as global op-

timizers, the addition of a numerical, local minimization technique was investigated.

The built-in MATLAB function fminunc is used at the end of an optimization run

with the best solution of the global minimization process being used as the starting

point in the local minimization routine. This procedure met with limited success

on all scenarios tested in this section. Generally, the improvement in the ∆v value

was at the cm/s level or smaller, and thus is not further reported. This verified that

both the GA and LA functions performed well in finding a (at least locally) optimal

solution.

4.1.6 Conclusions of N-Impulse Application

This section presented an algorithm for determining the minimum ∆v in the N -

impulse orbit transfer and rendezvous problems. The algorithm is based on novel

constraints on the ∆v selection which bound the choice of ∆v such that the orbit

after each impulse does not intersect the Earth (plus some altitude constraint) and

a maximum, user-defined ∆v value is not exceeded. The algorithm is shown to eas-

ily provide solutions for up to N = 8, which is significantly higher than previous

examples, using the GA and the LA. The Learning Approach to Sampling Opti-

mization and Genetic Algorithm were compared in terms of performance on several

orbit transfer and rendezvous scenarios, including a Monte Carlo analysis of certain

scenarios. It is shown that the Learning Approach consistently performed better by

finding the lower ∆v solution for all scenarios tested.
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4.2 Periodic Close Encounters

The second application solved in this dissertation is the problem of Periodic

Close Encounters in space. This work builds on the previous application in that the

impulses derived in the previous section will be enforced to ensure that the problem

is tractable.

4.2.1 Introduction

The problem of designing Periodic Close Encounters (PCE), where one space-

craft periodically encounters the orbit of a second spacecraft, is first proposed by

Clocchiatti and Mortari[90]. The initial idea is then expanded and validated in Cloc-

chiatti’s MS thesis[91] and finally reached it’s current version which is reported in

this dissertation. The 2-impulse problem is defined by the geometry shown in Fig.

4.16

Figure 4.16: 2-impulse PCE Geometry and Definitions
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The PCE problem is what can be called an open rendezvous problem, meaning two

satellites arrive very close to each other (with sufficient minimum distance to avoid

an actual collision) in space at the same time. However, the velocity components are

not necessarily equivalent, as this would be a rendezvous.

From the 2-impulse maneuver geometry shown in Fig. 4.16, the PCE problem

is to find an orbit “3” for a satellite (chaser), initially on orbit “1,” which must

periodically encounter a second satellite (target), on orbit “2,” at a to-be-defined

location and time. The goal of the chaser is to arrive in the final orbit “3”, called

the PCE orbit, which meets user-specified requirements, in a fuel-optimal transfer.

The indices 1, 2, and 3, is used as subscript to identify the chase, target, and

PCE orbits, respectively. However, one purpose of using this application in this

dissertation is to extend the work by Clocchiatti and Mortari into N -impulses. As

such, the subscript 3 will denote the final PCE orbit with the understanding that

there may be intermediate transfer orbits. The notation is kept the same as previous

literature for convenience.

The following conditions must be satisfied by the PCE orbit:

1. be sufficiently close (in terms of ∆vtot) to orbit “1”,

2. be compatible (or resonant) with orbit “2”, and

3. encounter the target spacecraft with prescribed distance and observation time

requirements.

Solving the PCE problem is motivated from both civilian and military space asset

needs. A civilian need can be to inspect an asset (or set of assets) to better design an

expensive repair mission. From a military point of view, the capability of performing

PCE in space can be used for intelligence and can be seen as an affordable and

immediate answer to respond to threats to international space assets.
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The original PCE theory[90, 91], consists of only a 2-impulse orbit transfer strat-

egy to allow responsive close-encounters for space surveillance. This technique clearly

provided orbit transfer costs lower than a rendezvous transfer in terms of ∆vtot used

in the maneuver, while complying with assigned minimum observation time/day. In

Refs. [90, 91] a Lambert solver[48] is proposed to find the two impulses, the inte-

gers involved in the compatible PCE orbit are selected using bitstring, and the

optimization problem is solved using GAs. Unfortunately, the resulting optimiza-

tion problem demonstrated slow convergence and, in many cases, converged to some

expensive, undesirable, local minima. It failed because too many chromosomes are

generating Earth-impacting or hyperbolic trajectories due to the method devised to

generate potential solutions.

The PCE problem is a highly non-linear, multi-minima problem requiring a com-

patible orbit. Mathematically, this requires that the variables include both discrete

(i.e., integer) and real design parameters, Z and <, respectively. For this reason, tra-

ditional, analytical optimization tools cannot be adopted and numerical techniques,

such as evolutionary algorithms, appear to be a proper solution tool. In particular,

GAs are selected to solve orbital mechanics problems like spacecraft rendezvous[85],

Earth surveillance problems[92, 93], and trajectory optimization problems[82, 83].

For the problems solved in Refs. [85, 86, 92, 93], as well as for the PCE problem, the

computational load of the fitness function is strongly reduced by minimizing orbit

propagations and by solving the final orbit transfer using Lambert’s solver[48].

Using the previously learned lessons, the initial approach to solve PCE problem[90,

91] is improved on in an AFRL-sponsored study[87] where two important improve-

ments were obtained. The first improvement is making better use of the GA opti-

mization; that is, using it such that no chromosome yields an unfeasible solution.

This led to an analytical study and derivation of generating admissible impulses by
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finding bounds on velocity changes to avoid Earth-impacting and highly eccentric

trajectories as presented in the previous section.

The PCE problem only makes sense when applied to real-world spacecraft. Thus,

operational considerations must be given in the form of constraints. An example

of constraints defined in the PCE problem is shown in Table 4.10 below. These

constraints are adopted in the current version along with some new constraints, as

described below.

Table 4.10: Example PCE Constraints

Parameter Value
Minimum perigee altitude = 350 km

Minimum observation time = 60 s/day
Maximum repetition time = 2 day
Maximum encounter time = 1 day

Maximum ∆v per maneuver = 5 km/s
Maximum observation distance = 10 km
Maximum allowed eccentricity = 0.9

4.2.2 PCE Features and Constraints

The adoption of the analytical velocity bounds greatly reduced the search space

and allowed a proper use of the optimization technique. This update allowed the ex-

tension of the previous 2-impulse version to the N -impulse technique to be described

here. A detailed description of admissible impulses to the N -impulse orbit transfer

and rendezvous problem is given in Ref. [88] and additionally in the previous section.

In addition to the velocity bounds, the current PCE program contains the fol-

lowing new features:
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1. minimum encounter distance,

2. minimum dwell time,

3. user-defined time constraints,

4. illumination requirements are used to pre-process allowable encounter times,

5. GA replaced by Learning Approach (LA) optimization technique.

The following subsections describe the above new features and how they are

implemented. The general flow of the algorithm as well as all the mathematical

proofs and derivations are provided in Ref. [87].

4.2.2.1 Minimum Encounter Distance

The minimum encounter distance (e.g., dmin = 10 m) is enforced by changing the

value of the radius at encounter toward the Sun direction if illumination constraints

are defined. In other words, the encounter radius for the chaser is set

r3e = r2e ± dmin r̂e (4.36)

where the sign is chosen to maximize illumination of the target relative to the chaser

and r̂e is the unit vector in the direction of the radius at encounter.

4.2.2.2 Minimum Dwell Time

The first encounter time is a variable that is optimized during the algorithm.

Once the first encounter time is chosen, the position and velocity of the target orbit,

re and v2e, are determined by orbit propagation. The energy equation then allows

the velocity of the chaser at the first encounter time to be computed as

v3e =

√
2µ

re
− µ

a3

(4.37)
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where a3 is the semi-major axis of the PCE orbit and is known from the compatibility

condition, k2 T2 = k2 T3, where T2 and T3 = 2π
√
a3

3/µ are the orbital periods of the

target and PCE orbits, respectively, and k2 and k3 are two integers.

Figure 4.17: Encounter Geometry

Figure 4.17 shows the relevant geometry. The velocity triangle allows the follow-

ing equation

v2
rel = v2

2e + v2
3e − 2vT

2ev3e (4.38)

Assuming that the observation time is much smaller than the orbital period allows

the relative distance equation to be linearized such that drel = |vrel| t. Therefore, we

have

dmax = |vrel|
∆to
2

(4.39)

and solved for the time gives

∆td = ∆to
86400

T3

≥ ∆tmin d (4.40)

where the notation ∆to is the dwell time per orbit, ∆td is the dwell time per day,
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and ∆tmin d is the minimum required dwell time per day. This leads to

cos ξmax = v̂T

2ev̂3e =
v2

2e + v2
3e − [2 · 86400 dmax/(T3 ∆tmin d)]2

2 v2e v3e

(4.41)

Thus, by specifying a maximum angle, ξmax, between the target and chaser ve-

locities at the encounter, the dwell time requirement is enforced. This requirement

is only met when the minimum dwell time is small when compared to the orbital

period.

There are three cases to investigate:

1. vrel < |v2e − v3e| → ∆td < ∆tmin d: unfeasible solution
2. |v2e − v3e| ≤ vrel ≤ v2e + v3e → ∆td ≥ ∆tmin d: solutions feasible for ξ ≤ ξmax

3. vrel > v2e + v3e → ∆td ≥ ∆tmin d: always feasible solutions

Equation (4.37) provides us the magnitude of the PCE orbit’s velocity at the

encounter time. However, its direction is unknown. To satisfy the observation re-

quirements, the direction of v̂3e must be inside a cone of axis v̂2e and aperture ξmax

as provided by Eq. (4.41). This is done in two steps. First, we define the direction

of v̂∗3e that lie on the plane defined by [r̂e, v̂2e]. This direction is

v̂∗3e = r̂e sin ξ + v̂2e sin(λ− ξ) where cosλ = r̂Te v̂2e (4.42)

and then the velocity vector, v3e is obtained by a rigid rotation about v̂2e by a

to-be-determined angle, α ∈ [0, 2π)

v3e = v3eR (v̂2e, α) v̂∗3e (4.43)
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Figure 4.18 illustrates the relationships of the angles.

Figure 4.18: Geometry of ξ and α to Define the v̂3e Direction

4.2.2.3 Time Constraints

Additional constraints depending on time only, such as illumination requirements

during the observation or a requirement of performing the observation over some

specified regions (for real-time observations such as observing the target spacecraft

from both space and Earth), are implemented by introducing a normalized fictitious

continuous time, δ. The normalized time is generated by expressing the constrained

time by cutting out the time ranges that are not considered. Time constraints

are particularly important to perform surveillance of repeating ground-track target

satellites.

This idea is depicted in Fig. 4.19, where the continuous times, δk, are defined
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Figure 4.19: Admissible Time Ranges and Continuous Normalized Time

according to the following sequence

δk =
t−k − t

+
k−1

Tδ
+ δk−1 where Tδ =

n∑
i=1

t−i − t+i−1 (4.44)

Therefore, we have δ0 = 0 for t = t0 and δN = 1 for t = Tmax.

One possible realization of this capability is to restrict the encounter time to

times when the target satellite is not eclipsed by the Earth (e.g., observation in the

visible spectrum).

The current PCE program also allows to specify the encounter time. This is a

useful option (see third example, Scenario I of the “Numerical Examples” section)

when the encounter has to occur over an assigned Earth region (e.g., for real-time

observations and communications). This feature is simply implemented by normal-

izing all of the (N + 1) times by setting the last one, tN+1, equal to the assigned

encounter time te.

4.2.2.4 Illumination Requirements

Besides being able to specify particular windows of opportunity that provide good

conditions for observation, the cost function is augmented (by using a pre-processor)
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to allow for illumination to play a role in the optimization process. Consider a

satellite with a (passive) camera as the observation instrument with the Sun as

the illumination source. The question is, what constitutes favorable illumination

conditions? A first requirement is that the target satellite not be in eclipse at the

encounter time. But that is only a necessary (not the optimal) condition for sufficient

illumination.

To obtain the optimal condition, we first define a constraint angle indicating

the cone of illumination. Figure 4.20 shows the geometry of the illumination angle

constraint. This involves the velocity v2e, the plane orthogonal to v2e, and the

direction of the Sun, rsun − re. The user defines a maximum value of the angle β̄,

where the angle between the Sun’s rays and v2e directions is
π

2
− β̄. This means

that if β̄ = 0, the Sun’s rays are orthogonal to v2e. The angle β̄ defined in Fig. 4.20

Figure 4.20: Illumination Angle Constraint

is an estimated value of the true angle β that is defined as the angle between the

Sun’s rays direction and the direction orthogonal to the plane where v2e and v3e lie.
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The actual value of β is computed using the PCE orbit velocity which cannot be

pre-computed. However, the angluar value is constrained to be within a user-defined

cone.

As an example, consider an illumination angle constraint of βmax = 30◦. Figure

4.21 shows, for a typical LEO orbit (7000 km semi-major axis, uninclined and circu-

lar), the times when the illumination angle constraint is satisfied. By knowing the

times, the position and velocity vectors can be quickly computed.

Figure 4.21: Illumination Angle Constraint, β = 30 deg

Observing that the chaser satellite is pointing almost entirely within the plane

defined by the two satellites’ velocity vectors throughout the encounter (i.e., a linear

assumption), we define optimal illumination as having the vector to the Sun perpen-

dicular to that plane. Having the Sun lie in that plane guarantees that the chaser is

looking directly into the Sun as much as half of the observation, while having the Sun

perpendicular to it guarantees that at least half the target is fully lit when observed

by the chaser without ever being backlit by the Sun. Figure 4.22 illustrates the angle

of interest, β.
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Figure 4.22: Illumination Angle β at Encounter

From Fig. 4.22 it is seen that the encounter is illuminated by the Sun if

β = cos−1

(
v2e × v3e

|v2e × v3e|
· rsun − re
|rsun − re|

)
≤ βmax (4.45)

The illumination constraints are pre-processed since the times when the target is

illuminated do not change, as the target orbit is fixed. Thus, the times when the

target is illuminated is first computed and those times are constrained by the method

shown in Section 2c.

4.2.3 PCE Algorithm

The N -impulse PCE problem has a search space dimensionality (i.e., number of

independent variables) of (4N − 2). These variables are defined as follows:

1. one variable (or index) identifies the pair of integers, [k2, k3], associated with

the PCE compatibility constants as defined by

k2 T2 = k3 T3 = Trep (4.46)

where Trep is the repetition time of the encounter;
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2. a set of (N + 1) consecutive times defining the impulses, tk, and encounter,

te ≤ temax, times such that

t0 ≤ t1
T1→ t2

T2→ t3 · · · tN−2

T(N−2)→ tN−1

T(N−1)→ tn
PCE→ te ≤ temax

where te is the first encounter time and temax is its maximum allowed value;

3. one angle, ξ, defining the angle between the chaser and target velocities at the

encounter (identifying the dwell time) as shown in Fig. 4.18;

4. one angle, α, identifying how the vector v3e is rotated about v2e (to remain

within the cone of aperture ξmax) as shown in Eq. (4.41); and

5. (3N − 6) variables to define the first (N − 2) admissible impulse components1

To initialize the PCE algorithm, the number of allowed impulses and the con-

straints shown in Table 4.10 must be specified. The constraints placed on illumination

(if any) are pre-computed as the orbit of the target is assumed to be constant (i.e., no

maneuvering takes place) based on the illumination cone defined by the user. Once

the values are set and the illumination computed, the cost function is used with the

LA numerical optimization technique. The cost function value that is minimized is

the total J =
N∑
k=1

|∆vk | of the maneuver from the chaser orbit to the PCE orbit (us-

ing up to N -impulses). The flow of the cost function is shown in Algorithm 13. The

LA is the optimization algorithm that finds the combination of variables to provide

the minimal ∆v value.

1The last two impulse components are provided by the Lambert solver applied for the last
transfer orbit whose time-of-flight is (tN − tN−1). See Ref. [88] for more details.
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Algorithm 13 Cost Function Pseudo-code

1: Select integer index, k ∈ [1, kmax], which defines a3, the semi-major axis of the
PCE orbit using Eq. (4.52)

2: Select impulse and encounter times sequentially, t1, t2, . . . , tN , te
3: Propagate the target orbit from t0 to te
4: Compute re, the position at the encounter
5: Compute the velocity magnitude of the PCE orbit at encounter, v3e, using Eq.

(4.37)
6: Select ξ ∈ [0, ξmax], as defined in Eq. (4.41) and α ∈ [0, 2π), which define the

velocity vector at encounter, v3e

7: if v3e causes perigee to be too low then
8: J =∞
9: else

10: for i = 1 to (N − 2) do
11: Propagate to ti and determine ri and vi
12: Apply admissible impulse ∆vi component values from Eqs. (4.20) and Eq.

(4.28)
13: end for
14: Propagate to tN−1 and determine rN−1 and vN−1

15: Compute ∆vF by solving Lambert’s problem using rN−1, rN , and (tN − tN−1)

16: J = ∆vF +
N−2∑
i=1

∆vi

17: end if
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4.2.3.1 Compatible Orbit Selection

Consider the maximum time interval between two consecutive encounters, Tmax,

as assigned by the user. The compatibility condition is bounded by integer multiples

of the respective orbit periods as

T2 ≤ k2T2 = k3T3 ≤ Tmax (4.47)

where k2 is constrained to the range

1 ≤ k2 ≤ k2max =

⌊
Tmax

T2

⌋
(4.48)

The value of k3 is similarly constrained to the range

1 ≤ k3 ≤ k3max =

⌊
Tmax

T3min

⌋
(4.49)

Thus, all rational values of k2/k3 are chosen as the first variable in the cost function

(Algorithm 13) from the range

T3min

T2

≤ k2

k3

≤ T3max

T2

(4.50)

The normalized times, δi, are then generated sequentially as

δi =
1

N + 1

i∑
j=1

xj i = 0, 1, . . . , N (4.51)

where xj is a random number in [0, 1] and the times have been normalized. From δi,

we can compute the actual time, ti.

The orbital period (and therefore semi-major axis) of the PCE orbit is derived
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from

T3 =
k2

k3

T2 → a3 = 3
√
µ[T3/(2π)]2 (4.52)

The semi-major axis allows a maximum apogee radius of

R3amax = 2a3 −Rpmin ≤ R2e

where R2e is the modulus of the radius at the encounter. By using the first encounter

time, te ∈ [t0, t0 + Tmax], the target orbit is propagated up to te. This allows the

evaluation of re and v2e. The semi-major axis is defined by the compatibility index

as shown in Eq. (4.52). Therefore, the energy equation, Eq. (4.37), is used to derive

the velocity at the encounter. Once the modulus of the velocity at the encounter time

is known, as evaluated in Eq. (4.37), the direction of the velocity at the encounter

is determined using the two variables, ξ and α.

The purpose of the LA is to find the combination of variables that minimizes the

value of the cost function, J , as shown in Step 16 of Algorithm 13. The next section

will show numerical examples using real satellites.

4.2.4 Numerical Examples

This section shows various examples of (impulsive) PCE maneuvers. In order to

highlight the various possibilities offered by this technique, we have selected a com-

mon chaser, the ARIANE-44L (SatID: 28576), a satellite in an elliptical, equatorial

orbit, whose Two Line Elements (TLE) are

ARIANE 44L

1 28576U 91075N 08351.94568414 .00000179 00000-0 64019-2 0 6927

2 28576 006.5534 128.0629 6595687 237.3611 042.0029 02.83587463 72170

and two different target spacecraft

140



1. ALSAT-1 (SatID: 27559), a satellite in a polar orbit, whose TLE are

ALSAT 1

1 27559U 02054A 08259.52685948 -.00000002 00000-0 84653-5 0 6025

2 27559 097.9807 137.4784 0009664 216.5494 143.5047 14.62977897309534

2. COSMOS-2350 (SatID 25315), a satellite in GEO orbit, whose TLE are

COSMOS 2350

1 25315U 98025A 08352.73192245 -.00000078 00000-0 10000-3 0 2950

2 25315 006.9388 064.3948 0002775 320.1585 039.6957 01.00258154 38973

In all of the numerical examples given in this section, the same values of the PCE

constraints have been used. These constraints are given in Table 4.10.

4.2.4.1 Example #1: ARIANE-44L to ALSAT-1

Three different scenarios have been selected for the PCE mission using ARIANE-

44L as the chaser and ALSAT-1 as the target. The main results of these scenarios

are summarized in Table 4.11 and described in detail below. The initial time for

these scenarios was 16-Dec-2008 at 22:41:47 (UTC) as this is when the TLEs were

available.

Table 4.11: ARIANE-44L to ALSAT-1 Example, Results Summary

Scenario Number of Max Illumination ∆vtot Illumination
Impulses angle (deg) (km/s) angle (deg)

I 3 90.0 4.2684 58.2441
II 3 30.0 4.6041 2.1591
III 2 90.0 4.9319 53.2842
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4.2.4.2 Scenario I

Scenario I is 3 impulses with β = 90 deg, meaning the illumination angle is not

involved in the cost function. The LA determined that the first encounter time

(UTC) is 17-Dec-2008 at 15:18:31. The value determined is ∆v = 4.2684 km/s.

Table 4.12 shows the impulses and Fig. 4.23 shows a 3D depiction of the orbits,

including the transfer trajectory.

Table 4.12: ARIANE-44L to ALSAT-1 Example, Scenario I

|∆v1| = 0.6152 km/s Time (UTC): 17-Dec-2008, 04:25:41
Position (km) Rx = −19353.6 Ry = −16744.4 Rz = 2936.5
Velocity (km/s) Vx = 3.4090 Vy = −0.5876 Vz = −0.2669
∆v (km/s) ∆vr = −0.2735 ∆vt = 0.5263 ∆vn = 0.1634

|∆v2| = 2.8945 km/s Time (UTC): 17-Dec-2008, 09:42:05
Position (km) Rx = −28312.6 Ry = 25467.4 Rz = −1181.4
Velocity (km/s) Vx = −2.4198 Vy = −0.7178 Vz = 0.2163
∆v (km/s) ∆vr = −0.8487 ∆vt = −2.0612 ∆vn = 1.8465

|∆v3| = 0.7587 km/s Time (UTC): 17-Dec-2008, 14:58:41
Position (km) Rx = 4267.8 Ry = −3219.1 Rz = 7644.7
Velocity (km/s) Vx = 2.9009 Vy = −3.2035 Vz = −7.0352
∆v (km/s) ∆vr = 0.4054 ∆vt = −0.6031 ∆vn = −0.2181

4.2.4.3 Scenario II

Scenario II is 3 impulses with β = 30 deg, meaning the illumination angle is

constrained. The LA determined that the first encounter time (UTC) is 17-Dec-2008

at 13:45:43. The value determined is ∆v = 4.6041 km/s. The encounter illumination

angle computed by the LA is 0.96804 deg. Table 4.13 shows the impulses and Fig.
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Figure 4.23: 3D view of ARIANE-44L to ALSAT-1 PCE mission (Scenario I)

4.24 shows a 3D depiction of the orbits, including the transfer trajectory.

Table 4.13: ARIANE-44L to ALSAT-1 Example, Scenario II

|∆v1| = 0.5095 km/s Time (UTC): 17-Dec-2008, 04:27:38
Position (km) Rx = −18950.9 Ry = −16810.6 Rz = 2904.8
Velocity (km/s) Vx = 3.4622 Vy = −0.5411 Vz = −0.2750
∆v (km/s) ∆vr = −0.4775 ∆vt = 0.1686 ∆vn = 0.05597

|∆v2| = 3.4761 km/s Time (UTC): 17-Dec-2008, 08:06:07
Position (km) Rx = −22088.7 Ry = 20011.7 Rz = 0.5
Velocity (km/s) Vx = −3.3153 Vy = −0.2893 Vz = 0.2815
∆v (km/s) ∆vr = −0.9267 ∆vt = −2.4050 ∆vn = 2.3325

|∆v3| = 0.6185 km/s Time (UTC): 17-Dec-2008, 13:22:48
Position (km) Rx = 5506.3267 Ry = −4142.2545 Rz = 6742.9732
Velocity (km/s) Vx = 1.5288 Vy = −2.3197 Vz = −7.4467
∆v (km/s) ∆vr = 0.3253 ∆vt = −0.4745 ∆vn = −0.2271

4.2.4.4 Scenario III

Scenario III is 2 impulses with β = 90 deg, meaning the illumination angle is not

used in the cost function. The LA determined that the first encounter time (UTC)
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Figure 4.24: 3D view of ARIANE-44L to ALSAT-1 PCE mission (Scenario II)

is 17-Dec-2008 at 03:55:48. The value determined is ∆v = 4.9319 km/s. Table 4.14

shows the impulses and Fig. 4.25 shows a 3D depiction of the orbits, including the

transfer trajectory.

Table 4.14: ARIANE-44L to ALSAT-1 Example, Scenario III

|∆v1| = 4.4290 km/s Time (UTC): 16-Dec-2008, 23:02:50
Position (km) Rx = −16999.4 Ry = 14260.4 Rz = 528.5
Velocity (km/s) Vx = −4.0558 Vy = −0.6246 Vz = 0.4112
∆v (km/s) ∆vr = −0.7696 ∆vt = −3.1099 ∆vn = 3.0581

|∆v2| = 0.5029 km/s Time (UTC): 17-Dec-2008, 03:30:15
Position (km) Rx = 6393.0 Ry = −4323.4 Rz = 6797.5
Velocity (km/s) Vx = 0.9354 Vy = −1.8361 Vz = −7.1055
∆v (km/s) ∆vr = 0.2648 ∆vt = −0.2801 ∆vn = −0.3230

144



Figure 4.25: 3D view of ARIANE-44L to ALSAT-1 PCE mission (Scenario III)

4.2.4.5 Example #2: ARIANE-44L to COSMOS-2350

Three different scenarios are selected for the PCE mission using ARIANE-44L as

chaser and COSMOS-2350 (ID=25315) as target. The main results of these scenarios

are summarized in Table 4.15 and detailed below. The initial time for these scenarios

was 17-Dec-2008 at 17:33:58 (UTC) as this is when the TLEs were available.

Table 4.15: ARIANE-44L to COSMOS-2350 Example, Results Summary

Scenario Number of Max Illumination ∆vtot Illumination
Impulses angle (deg) (km/s) angle (deg)

I 3 0.0 1.7270 69.1054
II 2 0.0 1.7917 69.4127
III 2 10.0 2.3573 0.86442

4.2.4.6 Scenario I

Scenario I is 3 impulses with β = 90 deg, meaning the illumination angle is not

involved in the cost function. The LA determined that the first encounter time
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Table 4.16: ARIANE-44L to COSMOS-2350 PCE, Scenario I

|∆v1| = 0.0039 km/s Time (UTC): 17-Dec-2008, 22:00:36
Position (km) Rx = −9877.2 Ry = −16694.0 Rz = 2075.5
Velocity (km/s) Vx = 4.5883 Vy = 0.8243 Vz = −0.4735
∆v (km/s) ∆vr = 0.0015 ∆vt = 0.0035 ∆vn = 0.0009

|∆v2| = 1.3706 km/s Time (UTC): 18-Dec-2008, 02:46:52
Position (km) Rx = −34441.8 Ry = 728.0 Rz = 3057.0
Velocity (km/s) Vx = −0.4508 Vy = −1.9800 Vz = 0.1811
∆v (km/s) ∆vr = −0.0334 ∆vt = 1.3450 ∆vn = −0.2616

|∆v3| = 0.3525 km/s Time (UTC): 18-Dec-2008, 07:39:34
Position (km) Rx = −3878.0 Ry = −37846.4 Rz = 52.7
Velocity (km/s) Vx = 3.0232 Vy = −0.2503 Vz = −0.2698
∆v (km/s) ∆vr = 0.0331 ∆vt = 0.3459 ∆vn = −0.0595

(UTC) is 18-Dec-2008 at 13:31:54. The value determined is ∆v = 1.7270 km/s.

Table 4.16 shows the impulses and Fig. 4.26 shows a 3D depiction of the orbits,

including the transfer trajectory.

Figure 4.26: 3D view of ARIANE-44L to COSMOS-2350 PCE mission (Scenario I)
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Table 4.17: ARIANE-44L to COSMOS-2350 PCE, Scenario II

|∆v1| = 0.9267 km/s Time (UTC): 18-Dec-2008, 01:33:43
Position (km) Rx = −29127.9 Ry = 8948.2 Rz = 2002.0
Velocity (km/s) Vx = −2.0303 Vy = −1.7264 Vz = 0.3059
∆v (km/s) ∆vr = −0.1256 ∆vt = 0.8937 ∆vn = −0.2106

|∆v2| = 0.86502 km/s Time (UTC): 18-Dec-2008, 05:18:07
Position (km) Rx = −29356.8 Ry = −25106.8 Rz = 2242.9
Velocity (km/s) Vx = 1.6986 Vy = −1.8231 Vz = −0.1082
∆v (km/s) ∆vr = −0.1188 ∆vt = 0.8337 ∆vn = −0.1977

4.2.4.7 Scenario II

Scenario II is 2 impulses with β = 90 deg, meaning the illumination angle is

not involved in the cost function. The LA determined that the first encounter time

(UTC) is 18-Dec-2008 at 13:15:30. The value determined is ∆v = 1.7917 km/s. Table

4.17 shows the impulses and Fig. 4.27 shows a 3D depiction of the orbits, including

the transfer trajectory.

Figure 4.27: 3D view of ARIANE-44L to COSMOS-2350 PCE mission (Scenario II)
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Table 4.18: ARIANE-44L to COSMOS-2350 PCE, Scenario III

|∆v1| = 1.9777 km/s Time (UTC): 18-Dec-2008, 01:25:20
Position (km) Rx = −28054.2 Ry = 9800.0 Rz = 1844.5
Velocity (km/s) Vx = −2.2394 Vy = −1.6578 Vz = 0.3200
∆v (km/s) ∆vr = −1.0810 ∆vt = 1.5763 ∆vn = −0.5078

|∆v2| = 0.3796 km/s Time (UTC): 18-Dec-2008, 07:13:57
Position (km) Rx = −306.3 Ry = −42115.3 Rz = −2186.1
Velocity (km/s) Vx = 2.7645 Vy = −0.3330 Vz = −0.1487
∆v (km/s) ∆vr = −0.2121 ∆vt = 0.3009 ∆vn = 0.0927

4.2.4.8 Scenario III

Scenario I is 3 impulses with β = 30, meaning the illumination angle is used. The

LA determined that the first encounter time (UTC) is 18-Dec-2008 at 13:15:30. The

value determined is ∆v = 1.7270 km/s. Table 4.18 shows the impulses and Fig. 4.28

shows a 3D depiction of the orbits, including the transfer trajectory.

Figure 4.28: 3D view of ARIANE-44L to COSMOS-2350 PCE mission (Scenario III)
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4.2.4.9 Comparison of GA, PSO, and LA

Here, the previous example, ARIANE-44L to COSMOS-2350 with 3 impulses

and β = 90 deg (no consideration is given for the illumination constraint), is further

investigated using the GA, PSO, and LA in a Monte Carlo test. For the Monte

Carlo, 1000 tests are performed and the mean values are shown in Table 4.19.

Table 4.19: Monte Carlo Results of ARIANE-44L to COSMOS-2350.

Method Mean ∆v km/s Best ∆v km/s
GA 1.7729 1.6986
PSO 1.8252 1.7010
LA 1.6991 1.6955

As is seen from Table 4.19, the LA outperforms the traditional GA and PSO for

this scenario.

4.2.5 Conclusions of PCE Application

Periodic Close Encounter (PCE) orbits is used for space surveillance and to better

plan missions to repair damaged space assets. Previous work on PCEs have addressed

the fundamental requirements and algorithms for finding optimal PCEs based on

minimizing the fuel costs of the chaser satellite. The inability of those algorithms to

include N -impulses, illumination, and other time constraints limited their usefulness.

In this section, it is shown how to extend the method to use N -impulses, and to

include time constraints on the encounter to ensure good visibility, allowing any fac-

tor involving the target satellite’s orbit that affects the observation to be accounted

for. Illumination constraints are included by pre-processing the times when the illu-

mination angle falls within a cone of size specified by the user. A minimum encounter
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distance is specified to optimize the observation accuracy, and to avoid direct colli-

sion. Finally, the Learning Approach to Sampling Optimization, was implemented

to replace the Genetic Algorithms and shown to provide a better solution than the

Genetic Algorithm and the Particle Swarm Optimization algorithm.

The next step in the development of the PCE algorithms is to include orbit

perturbations, including Earth oblateness effects and atmospheric drag, as these will

impact not only the encounter position and velocity, but also the compatibility of

the two orbits that provides long-term coverage. Further work is also being done

on implementing the ability to encounter multiple satellites. This requires the PCE

orbit to be compatible with multiple other target orbits.

4.3 Spacecraft Trajectory Optimization – Cassini Mission

The Cassini-Huygens spacecraft launched on October 15, 1997 as a joint mission

between NASA, ESA, and ASI to study Saturn and it’s moons. With a mass of

roughly 6,000 kg, Cassini entered Saturn’s orbit on July 1, 2004. The design of

the Cassini mission included multiple fly-bys of Venus, Earth, and Jupiter on the

trajectory to Saturn in order to lower the total ∆v required by the spacecraft. The

fly-bys were gravity assist maneuvers, which use the gravity of a planet to alter the

velocity of a spacecraft in order to save fuel and/or time. The assist is provided by

the orbital angular momentum of the massive body pulling on the spacecraft as it

moves near the planet. It should be noted that a Hohmann transfer from Earth to

Saturn required roughly 15.7 km/s of ∆ v. Both of the models shown in this section

provide a much lower cost.

The dynamical models and planetary ephemerides (and their propagation) used

for the study were taken from developments provided by the European Space Agency’s

Advanced Concepts Team[94, 95]. Two models, the MGA and the MGADSM, are
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here described. The objective is to launch a spacecraft from Earth and reach Saturn

and be captured by its gravity in an orbit with radius of perigee, rp = 108, 950 km and

eccentricity, e = 0.98. The planetary fly-by sequence is Earth-Venus-Venus-Earth-

Jupiter-Saturn, which is the one used by the actual Cassini spacecraft. Constraints

are given for fly-by perigees as shown in Table 4.20.

Table 4.20: Constraints of Planetary Fly-By Perigee Radius

Planet min rp (km)
Earth 6,778.1
Venus 6,351.8
Jupiter 600,000

4.3.1 Cassini1

The first model is an MGA, meaning Multiple Gravity Assist problem and is

the simpler of the two models. The state is six dimensions which represent the

times of launch and planetary encounter. For the Cassini1 model, the following six

dimensional state vector is used to minimize the total ∆v required are shown in Table

4.21.

The variables are:

• t0, the launch date;

• Ti, i = 1, . . . , 6 are the time of flight along the ith leg, joining planet Bi−1 with

planet Bi

Given the values of the time variables, the positions of each planet, Bi, is com-

puted by propagating the ephemerides. Thus, the solution of the corresponding
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Table 4.21: State Variables for Cassini1

State Variable Lower Bound Upper Bound Units
x(1) t0 -1000 0 MJD2000
x(2) t1 30 400 days
x(3) t2 100 470 days
x(4) t3 30 400 days
x(5) t4 400 2000 days
x(6) t5 1000 6000 days

Lambert arcs (trajectories obtained by solving Lambert’s problem) are computed

along all legs. The ∆v required given the solution to Lambert’s problem at each

leg is then computed. The spacecraft provides a single, impulsive ∆v to transfer

between the Lambert arcs. Therefore, the total cost function is given as

||∆v0||+
5∑
i=1

||∆vi||+ ||∆v6|| (4.53)

and the constraints are given in Table 4.20.

4.3.2 Cassini2

The MGADSM represents a Multiple Gravity Assist Deep Space Maneuver prob-

lem. This model is more flexible and realistic, but also makes the problem necessarily

more complex. In addition to the time variables from Cassini1, the following variables

are required:

• v∞, u, v, the modulus and direction (two angles) of the relative velocity to the

Earth at launch;

• ηi, i = 1, . . . , 5, which defines when the DSM takes place on each leg;

• ri, i = 1, . . . , 4, the perigee radius at each body;
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• bi, i = 1, . . . , 4, the angle of the outgoing velocity

In particular, the value of ηi ∈ [0, 1] is used in the following equation

tDSMi = t0 +
i−1∑
j=1

Tj + ηiTi (4.54)

This way, there are two Lambert arcs in each leg. In addition, the incoming velocity

of and the orbit eccentricity at each planet (in the leg from the previous DSM) defines

a cone, along whose surface the spacecraft outgoing velocity lies. The angle bi defines

where on the surface of the cone the velocity is. The addition of the DSM requires

additional ∆v terms in the cost function.

The problem has dimension N = 6+4(B−2), where B is the number of planetary

bodies. This problem is more complicated and contains 22 states. The problem is

considered a rendezvous problem rather than an orbital insertion problem (as the

MGA model is). Thus, the cost function in the MGADSM problem is expected to

be higher than in the MGA problem. The same fly-by perigees are used (as shown

in Table 4.20). Table 4.22 shows the bounds on the Cassini2 problem.

4.3.3 Results of Numerical Tests

Numerical tests are run in a Monte Carlo fashion for a series of algorithms. As

with previous work[94, 95], no information on the problem (e.g., analytical deriva-

tives) was exploited. This problem is purely a numerical solution. The algorithms

tested include the following:

1. Genetic Algorithm[29]

2. Particle Swarm Optimization[31]

3. Differential Evolution[39]
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Table 4.22: State Variables for Cassini2

State Variable Lower Bound Upper Bound Units
x(1) t0 -1000 0 MJD2000
x(2) vinf 3 5 km/s
x(3) u 0 1 none
x(4) v 0 1 none
x(5) t1 100 400 days
x(6) t2 100 500 days
x(7) t3 30 300 days
x(8) t4 400 1600 days
x(9) t5 800 2200 days
x(10) η1 0.01 0.9 none
x(11) η2 0.01 0.9 none
x(12) η3 0.01 0.9 none
x(13) η4 0.01 0.9 none
x(14) η5 0.01 0.9 none
x(15) rp1 1.05 6 none
x(16) rp2 1.05 6 none
x(17) rp3 1.15 6.5 none
x(18) rp4 1.7 29.1 none
x(19) b1 −π π rads
x(20) b2 −π π rads
x(21) b3 −π π rads
x(22) b4 −π π rads
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4. Simulated Annealing[24]

5. Learning Approach to Sampling Optimization (as described in Chapter III)

The tests are performed 10,000 times with each algorithm allowed 100,000 cost

function calls for Cassini1 and 500,000 cost function evaluations for Cassini2. The

GA parameters are shown in Table 4.23, the PSO parameter values are shown in

Table 4.24, and the DE parameters are shown in Table 4.25. The SA was initialized

with a different random point within the search space for every Monte Carlo run,

which caused the results to suffer. For the SA, the temperature schedule is started

at 100 degrees and cooled to 0 degrees.

The results shown are run on an HP G71 laptop computer with 4 gigabytes of

RAM and a Pentium Dual-Core CPU operating at 2.10 GHz. It should be noted

that few other research groups who have investigated these problems, are forthcoming

with the hardware or algorithm used. However, it is known that many of the groups

have access to clusters, each with many nodes and the algorithms developed are

specialized for spacecraft global trajectory problems, and are also very sensitive to

initial guesses. In fact, some of the methods use a GA to produce a first guess for

their optimization method. The comparisons made here are therefore in that vain,

finding a suitable method as a first guess for a more complex (yet narrowly dedicated)

method.

It was expected that none of the classical algorithms (GA, PSO, DE, and SA)

would accurately and repeatedly find the minima ∆v solution, however, these results

can provide a good starting point for hybrid and/or deterministic based methods.

Based on previous results, the LA was expected to outperform the more traditional

methods in accuracy, repeatability, and computational speed. The statistically im-

portant data is summarized in Table 4.26 for Cassini1 and Table 4.27 for Cassini2.
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Table 4.23: GA Parameters for Cassini Model Testing

Parameter Value Value
Cassini1 Cassini2

Population 500 1,000
Generations 200 500

Crossover Rate 0.6 0.6
Mutation Rate 0.2 0.2

Table 4.24: PSO Parameters for Cassini Model Testing

Parameter Value Value
Cassini1 Cassini2

Population 500 500
Generations 200 1,000

ω 0.65 0.65
η1 2 2
η2 2 2
vmax 0.5 0.5

Table 4.25: DE Parameters for Cassini Model Testing

Parameter Value Value
Cassini1 Cassini2

Population 500 500
Generations 200 1,000

156



Table 4.26: Numerical Test Results for Cassini1

Algorithm Mean J(x) Standard Best J(x) Mean CPU Time
Deviation on J(x)

GA 10.0853 1.0651 6.0659 336 secs
PSO 8.2454 0.9942 5.3715 382 secs
DE 12.1461 1.2923 8.1952 361 secs
SA 8.3289 0.8977 5.4935 369 secs
LA 5.0283 0.0324 4.9308 370 secs

Best Known — — 4.9307 —

Table 4.27: Numerical Test Results for Cassini2

Algorithm Mean J(x) Standard Best J(x) Mean CPU Time
Deviation on J(x)

GA 29.665 0.830 25.551 568 secs
PSO 21.739 0.734 18.511 1213 secs
DE 34.284 0.650 30.863 989 secs
SA 22.239 0.413 20.298 1018 secs
LA 8.918 0.101 8.406 684 secs

Best Known — — 8.383 —

The mean, standard deviation, best solution, and CPU time over the series of com-

putations are reported.

4.3.4 Conclusions of Cassini Mission Models Application

The performance of the LA as a front-end method to provide an initial guess

to a more complex method is shown using two models representative of the Cassini

spacecraft trajectory to Saturn. The LA is shown to perform best when compared

with the other optimization algorithms in terms of accuracy (i.e., lowest cost func-

tion) and is comparable in terms of evaluation speed. This application additionally

extended the LA to a 22-dimensional problem and shows promise that the method

can be applied in even higher dimensions and on more complex cost functions.
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5. CONCLUSIONS

In this dissertation, a new numerical optimization technique was developed and

tested. The purpose of the Learning Approach to Sampling Optimization algorithm

was to be a general numerical optimization algorithm similar to the popular Genetic

Algorithm. However, the LA has fewer parameters to tune and was designed for

simple implementation (e.g., on a laptop instead of a cluster). The general theory

and a mathematical proof for a special case were presented. A study of perfor-

mance against common benchmark functions and popular numerical optimization

algorithms was presented. Then, the LA was applied to problems in astrodynamics.

A set of analytical bounds used in orbit transfer and rendezvous ∆v selection was de-

rived. Finally, the LA was applied to higher-dimensional problems of orbit transfer.

It was shown through the examples that the LA algorithm is capable of generating

results comparable to popular numerical optimization methods.

Overall, the work presented in this dissertation accomplished the goals set out in

the Introduction section:

1. To develop a numerical optimization method that is based on a sound mathe-

matical foundation;

2. To compare the performance of the algorithm with currently used algorithms;

3. To pose new problems in the field of astrodynamics;

4. To solve the newly posed problems and compare the solutions with other algo-

rithms where possible.

The basis of the LA algorithm lies in rejection sampling whereby points are

accepted into the data set based on the current estimate of the probability density
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function. The theory was developed in a general way, not restricted by dimension.

By comparison to the random search for a simple function, a mathematical proof

was presented showing that, statistically, the LA converged faster for an arbitrary

accuracy. A numerical test backed up the proof. Finally a set of benchmark functions

from the computer science literature were tested. While most of these were two-

dimensional functions, they have value in showing the LA algorithm and give positive

preliminary results. The LA was shown to give excellent results for multi-minimum

functions (similar to those seen in astrodynamics and many other fields) as well as

discontinuous functions. Modifications for quicker convergence were then presented,

including allowing the LA to be adaptive (time-varying) as well as parallelized. The

log-normal distribution showed great promise, but had the drawback of introducing

a new parameter to tune.

While examining orbit transfer problems in astrodynamics, it was realized that

many optimization problems fail because of a lack of proper bounds. As such, a

set of analytical bounds was developed for the selection of ∆v values such that

the new orbit neither intersected the Earth (plus a given height of atmosphere)

nor became a parabolic or hyperbolic trajectory away from Earth. The N -impulse

orbit transfer and rendezvous problems were posed in a way conducive to numerical

optimization. Periodic Close Encounters were shown to reduce ∆v requirements

while maintaining user-defined observation metrics. Constraints were introduced to

maximize observation clarity.

Finally, three major applications from astrodynamics were solved with positive re-

sults. The N -impulse orbit transfer and rendezvous problem was solved numerically.

The results matched well with published and analytical solutions and new solutions

were found. Periodic Close Encounters were introduced, which is a particular case of

orbit transfers. Constraints were imposed in the optimization problem and multiple
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examples were solved. Two test cases from the European Space Agency, representing

different fidelity models of the Cassini trajectory, were also tested. While the results

of the LA did not produce a globally optimal result, the cost function was relatively

small compared to the currently best known cost function value. The Cassini results

showed the LA performed well in a high-dimensional problem and the results were

more repeatable than other numerical optimization algorithms.

This leads the author to believe that the LA algorithm would serve well as the

front-end optimization algorithm for other local search algorithms. For example,

the LA could be used to determine regions of interest and the PDF within that

region. Then, other methods could be used to perform the local search within the

regions of interest. Of concern with the LA is finding the nearest neighbors in higher

dimensions and fitting the hyper-plane between the neighbors. Database methods

were out of the scope of the current work, but should be investigated as the LA is

used in more applications of high dimension to speed up the computations.
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