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ABSTRACT 

 

The circadian system provides living organisms a means to adapt their internal 

physiology to constantly changing environmental conditions that exists on our rotating 

planet, Earth. Clocks in peripheral tissues are referred to as peripheral which may 

participate in tissue-specific functions. The first step to investigating the circadian 

regulation in the peripheral tissues of avians was to examine for the presence of avian 

orthologs of core components of the molecular clock using Quantitative real time (qRT-

PCR) assays.  

We investigated the avian spleen for daily and circadian control of core clock  

genes and regulation of the inflammatory response by the spleen clock. The core clock  

genes, bmal1, bmal2, per2, per3 and clock displayed both daily and circadian rhythms. 

Proinflammatory cytokines TNFα, IL-1β, IL-6 and IL-18 exhibited daily and circadian 

rhythmic oscillations. A differential expression of proinflammatory cytokine induction 

was observed in the spleen undergoing lipopolysaccharide (LPS)-induced acute 

inflammation. Exogenous melatonin administration during inflammation seems to enhance 

some and repress a few inflammatory cytokines, implying that melatonin is pleiotropic 

molecule. 

To compare and contrast the role of peripheral clocks in regulating energy balance 

and reproduction in layer vs. broiler chicken, the visceral adipose tissue (VAT), ovary and 

hypothalamus were examined for the presence of core clock genes were investigated in 

these two lines of poultry birds. Quantitative RT-PCR was employed to examine daily 



 

iii 

 

control of core clock genes in these three peripheral tissues over a 24hr period. The layer 

hens exhibit rhythmic oscillations in the mRNA abundance of the core clock genes in the 

VAT, ovary and the hypothalamus. The hypothalamus and VAT of the broiler hens exhibit 

rhythmic mRNA abundance of the core clock genes. However, the clock genes in the 

ovary of the broiler pullets exhibit marked reduction in their amplitude and rhythms over a 

24hr period. The broiler hens are prone to poor energy balance, obesity and reproductive 

capacity.  In summary, these data provide evidence for a functional link between the 

circadian clock and the ovary by determining clock gene regulation under conditions of 

disrupted or eliminated reproductive function vs. normal reproductive output.  
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NOMENCLATURE  

 

5HT  5-hydroxy tryptamine, serotonin 

neurotransmitter 

ACTH Adrenocorticotropic hormone 

AC Adenylate cyclase 

AANAT Arylalkylamine N-acetyltransferase 

ANS Autonomic nervous system 

ANOVA Analysis of variance 

AR alpha, beta Adrenergic receptors alpha, beta 

B cells Bursal lymphocytic cells 

bHLH Basic-helix-loop-helix 

BMAL1 (Bmal1) Brain and muscle ARNT-like protein 

bmal1 Brain and muscle ARNT gene or mRNA 

bZIP  Basic leucine zipper (Transcription factor 

E4BP4/NFIL3) 

C-box Clock box 

CAMK1  Calcium/calmodulin-dependent protein kinase 

- 1 

CBS CCA1-binding site 

CCA1 Circadian clock associated 1 

CCG/CCGs/ccgs Clock controlled gene/genes 



 

vii 

 

CCS Central clocking system 

cDNA Complementary Deoxyribonucleic acid 

cAMP Cyclic adenosine monophosphate 

ChiP Chromatin immunoprecipitation 

CK (1, 2) Casein Kinase (1, 2) 

CLOCK  (Clock/CLK) Circadian Locomotor Output 

Cycles Kaput protein 

clock Circadian Locomotor Output Cycles Kaput 

gene or mRNA 

clock Refers to core clock genes and/or circadian 

clock 

CLOCK/BMAL1 (Clock/Bmal1) heterodimer 

protein/transcription factor 

clock/bmal1 Clock/Bmal1 genes  

CNS Central nervous system 

CRE Cyclic-AMP response element 

CREB CRE binding protein 

CRY (Cry) Cryptochrome protein 

cry Cryptochrome gene or mRNA 

CT Circadian times 

DC Dendritic cells 

DD Constant darkness 
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DM Dim light 

DMH Dorsal medial hypothalamus 

DMV Dorsal motor nucleus of the vagus 

EtBr Ethylene bromide 

FEO Feed-entrainable oscillators 

FRP Free-running period 

FRQ Frequency protein 

frq Frequency gene or mRNA 

Fw Forward primer 

GABA Gamma-amino butyric acid 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GC Glucocorticoid 

GnRH Gonadotropin-releasing hormone 

GR Glucocorticoid receptors 

HPA Hypothalamic-pituitary-adrenal axis 

HPG Hypothalamus-pituitary gland-gonad 

Hr/hr/hrs Hour/Hours 

IML Intermediolateral cell column 

LD Light-dark cycle 

LH Luteinizing hormone 

LL Constant light 

LPS Lipopolysaccharide 
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LBP LPS-binding protein 

MAPK Mitogen activated protein kinase 

Mel1a, Mel1b Melatonin receptors type1a, type1b 

mRNA Messenger ribonucleic acid 

mSCN Medial suprachiasmatic nucleus 

NAD/NADP Nicotinamide adenine dinucleotide/phosphate 

Nampt Nicotinamide phosphoribosyltransferase 

NE Norepinephrine neurotransmitter 

NIH-3T3 Mouse embryonic fibroblast cell line 

NK Natural killer cells  

NR Nuclear receptors 

NPAS2 Neuronal PAS domain-containing protein 2 

O-GC Ovarian granulosa cells 

O-TC Ovarian theca cells 

PARP-1 Poly (ADP-ribose) polymerase-1 

PCOS Polycystic ovarian syndrome 

PER (Per) Period protein 

per Period gene or mRNA 

pGEMT  Parental vector for TA cloning of PCR 

products 

PKA Protein kinase A (cAMP dependent) 

PKC Protein kinase C 
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PPARγ  Peroxisome proliferator-activated receptor 

(gamma) 

PPRE PPARγ response elements 

PRC Phase response curve 

qRT-PCR  Quantitative real-time polymerase chain 

reaction 

qPer Quail Period gene 

Rev Reverse primer 

Rev-erb-alpha Orphan nuclear receptor 

RHT Retino-hypothalamic tract 

RGCs Retinal ganglion cells 

RORE ROR element 

RGZ Rosiglitazone 

SCN Suprachiasmatic nucleus 

SCG Superior cervical ganglion 

SIRT1  Silent mating type information regulation 2 

homolog-1 

SNS Sympathetic nervous system 

T cells Thymic lymphocytic cells 

TLR Toll-like receptors 

UPC2 Uncoupling protein2 

VAT Visceral adipose tissue 



 

xi 

 

vSCN Visual suprachiasmatic nucleus 

WT Wild type 

ZT Zeitgeber time 

 

List of cytokines:  

Interleukin 2-IL2  

Interleukin 6- IL6  

Interleukin10- IL10  

Interleukin 18-IL18  

Interleukin 1beta - IL-1β  

Tumor necrosis factor alpha-TNF-α  

Granulocyte-macrophage colony-stimulating factor-GM-CSF 

 Interferon-gamma-IFN-γ  

The interferon-α/β receptor-IFNRs  

Chemotactic cytokine receptors-CCRs  
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1. INTRODUCTION 

 

1.1 General overview  

Living organisms on earth have to compete for limited resources within the 

environment; hence they have evolved adaptations which enable them to occupy distinct  

niches. The environment of these niches is dynamic in nature, which force the organisms  

to evolve adaptation strategies in order to thrive. Some of the environmental factors that  

create specific niches include day/night cycles, fluctuation of temperature, rainfall, and  

ocean tides etc. Organisms capable of sensing and processing changes in their external  

environmental factors may evolve endogenous mechanisms which help them anticipate  

and adapt to these changes. Changes in an external environment may be a daily event 

(occurring over a period of 24 hours, viz day/night cycles), a monthly event or an annual  

event (viz fluctuations of temperature, rainfall etc.). Depending on the external periodic  

event it is sensitive to, a physiological event in an organism may evolve a cycle/rhythm  

whose period matches the length of the cycle of the external event. Hence, a physiological 

event may exhibit a period length of about a day (circadian), about a month (circalunar), 

about a year (circannual), or about a tidal cycle (circatidal). The word circa is of Latin 

origin meaning “about” or “approximately”.  Rhythms/cycles of  a physiological event in a 

living organism are referred to as “biological rhythms”, and an internal time-keeping 

system which helps generate and/or maintain these rhythms is referred to as a “biological 

clock”. The study of biological clocks is known as “chronobiology” (chrónos comes from 

Ancient Greek meaning “time”).  



 

2 

 

Chronobiology attempts at exploring and understanding the components, properties 

and organization of biological clocks within various species of organisms at molecular and 

organismal level. Scientists believe that biological clocks help living organisms to 

proactively organize their physiology and behavior than in a responsive manner to the 

external time cues (Lowrey and Takahashi, 2004; Reppert and Weaver, 2002; Takahashi et 

al., 2008). A periodic event known to have remarkable influence on almost all living  

organisms inhabiting the surface of planet earth is the “day/night cycle”. This is because, 

for billions of years earth has been rotating on its axis with a period of approximately  

24hrours (hr)/rotation resulting in a daily rhythm of ~ 12 hr of sunlight and 12 hr of  

darkness. Therefore, organisms have been exposed to day/night cycles since their origin  

on the surface of planet earth. The day/night cycles have exerted selective pressure on  

living organisms resulting in the evolution of some form biological time keeping 

machinery/mechanisms which help them anticipate, sense, process, utilize and eventually 

adapt to in these 24 hr daily solar cycles.  

Studies on timekeeping mechanisms indicate that they are fundamental and 

ubiquitous phenomena found in living organisms at almost all levels of phylogeny  

ranging from single-cell organism to highly complex multicellular organisms. In fact,  

Jean Jacques d’Ortous deMairan a french astronomer was the first scientist who pointed  

out the evolutionary relationship between the external solar cycles and internal 

physiological events in 1729. He observed daily leaf movements in the plant Mimosa 

pudica (a heliotrope) and noticed that these movements continued under constant darkness 

(Sweeney, 1987; DeCoursey, 2004). This implied that the leaf movement cycles were 
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endogenous in nature and did not require light cues to remain rhythmic. 

Biological rhythms expressing a period of ~ 24 hr are referred to as circadian  

rhythms (circadian comes from Latin circa, meaning “about” and diem, meaning “day;  

coined by Franz Halberg). It is necessary to emphasize that circadian rhythms are  

endogenously generated rhythms that continue to oscillate in absence of any external  

input/cues (constant condition e.g. constant darkness, constant light) (Chandrashekaran, 

1998). The time required for one circadian oscillation to occur in constant condition is  

known as “free-running period” (FRP). Under normal circumstance circadian rhythms  

are not free-running as constant conditions are not maintained. Thus, rhythms need to be  

synchronized to the external environment by a process known as “entrainment”. 

Endogenously generated biological rhythms are a reflection of adaptations made to 

take advantage of the physical changes generated by the movements of the earth and moon 

and their revolutions around the sun. An internal time-keeping system that generates and/or 

maintains circadian rhythms in an organism is known as a “circadian clock.” Circadian 

clocks have evolved owing to the presence of persistent rhythms in environmental 

conditions that organisms are exposed to. One such persistent event is the rotation of 

planet earth on its own axis resulting in daily cycles of light and dark of ~ 24 hr. Circadian 

clocks are not capable of measuring 24hr cycle with high precision and need to be 

synchronized periodically to the geophysical time. An external factor that acts as a timing 

cue for a circadian clock and helps synchronize length and phase of an endogenous rhythm 

to that of the external factor is referred to as a “zeitgeber” (from German, zeit meaning 

“time” and geber, meaning “giver”; synchronizer; coined by Aschoff, 1965. 
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There are several different zeitgebers including light, temperature and food that are 

capable of resetting a circadian clock. Light is one of the most powerful zeitgebers capable 

of entraining and synchronizing circadian clock in light-sensitive organisms such that the 

period and phase of the circadian rhythms are approximately same as those of external 

light/dark cycles. Some organisms are directly responsive to sunlight such as, single-cell 

algae, cynobacteria, fungi and plants (Sweeney & Hastings, 1960; Lee et al., 2000; Sommer 

et al., 1989). In higher order organisms light can reach and influence (or entrain) clock 

containing cells either directly or indirectly (Plautz et al., 1997). In organisms with highly 

complex nervous system, light receptive elements have evolved in such a way that cells 

containing circadian clocks are concentrated in areas of nervous system containing light-

transducing cells (Buijs et al., 2003). For instance, in birds the retina and pineal gland 

possess light receptive cells or photoreceptors (Binkley et al., 1971) that are sufficiently 

sensitive to respond to amounts of light passing through the skull (Foster et al., 1984; 

Menaker and Underwood, 1976).  

However in mammals, the central nervous system (CNS) receives light signals 

only after they have been transported from the retina through the retino-hypothalamic tract  

(RHT).The light is transduced into chemical energy in the form of glutamate secretion 

(Moore and Lenn 1972; Morin 1994; Ding et al., 1997). An important group of light 

receptive proteins called cryptochromes (Cry) is an essential part of the mammalian 

molecular clockwork machinery. Cryptochromes are highly conserved across plants and 

animals with similar function i.e. light reception (Van der Horst et al., 1999).
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Biological clocks are ubiquitously present in living organisms across almost all 

levels of phylogeny and the molecular make up is almost fundamentally similar. These 

two findings indicate that biological rhythms have evolved to provide significant advantages 

over the course of time. Scientists believe that there are two primary adaptive reasons for 

the evolution of biological clocks. Firstly, they provide temporal organization of 

physiological functions in an organism which help in optimizing the efficient balance of 

energy acquisition and consumption. Secondly, temporal organization may synchronize the 

organism with changes in the external environment.  

For instance, diurnal animals synchronize their sleep-wake cycles with the sunrise-

sunset cycles such that “early risers” have a higher probability of finding food, mating 

partners, escape from predators, reduced competition for resources with species sharing 

their niches etc. Additionally, different biological processes within an organism require 

temporal organization for normal functioning. A functional internal clock helps in 

production of physiological and behavioral rhythms which match the external 

environmental cycles ensuring increased chances of survival (Hurd and Ralph, 1998; 

Klarsfeld and Rouyer, 1998; Miller et al., 2004; Pittendrigh and Minis, 1972).  

Although the anatomical location of a clock varies among species, a circadian 

system can be generalized as a “three-component model” comprising of, 1) an input signal 

2), a circadian pacemaker and 3), an output signal. Input signals are timing cues 

(zeitgebers) received from the external environment. These are either directly or 

indirectly conveyed to second component of the model, the pacemaker. The pacemaker 

then sends signals to rest of the body and synchronizes the overall physiological and 
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behavioral events. A circadian clock is also defined as a system of components which 

interact to produce a rhythm with a defined length of period (τ).  

Systems such as these are also known as “circadian oscillators”, and often referred 

to as an “oscillator.” In higher organisms almost all cells have an oscillator/ clock as a 

part of their cellular machinery. These cell-autonomous clocks are capable of generating 

their own rhythms. Thus, complex multicellular organisms host multiple oscillators 

arranged in a hierarchy. On top of this hierarchy is an oscillator carrying a molecular 

clock capable of generating a rhythm of ~ 24 hr even in absence of a zeitgeber and is 

known as a “pacemaker.” A pacemaker is sometimes referred to as “master 

clock/oscillator”. Master clocks send neuronal and hormonal signals that act as coupling 

signals for the rest of the oscillators. Master clocks get this name because their disruption 

or destruction results in the disruption or loss of biological rhythms making several 

physiological and behavioral events fall out of rhythm. Organisms with disrupted clock 

synchrony may have reduced fitness or survival. Cell-autonomous clocks which are 

under the regulation of master clock are referred to as “peripheral oscillators or peripheral 

clocks.” In the current dissertation, for easy clarification we will use the term “peripheral 

clocks” to describe peripheral oscillators. 

Although peripheral clocks are capable of generating their own rhythms, their 

phase and period are synchronized at organismal level by the master clock. Hence, there 

seems to be a hierarchy in the arrangement and regulation of clocks in complex organisms. 

(Welsh et al., 2004; Yoo et al., 2004; Ko and Takahashi, 2006; Lowrey and Takahashi, 
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2004; Reppert and Weaver, 2002) with master clocks “helping” the peripheral clocks remain 

synchronized at the organismal level.  

Circadian clocks prepare an organism for tasks that occur over a course of 24hr. 

For instance, predator animals require that energy-generating organs and muscles are  

primed in order to successfully hunt prey. Hence, a wide spectrum of physiological  

parameters including sleep-wake cycle, hormone secretion (e.g. adrenocorticotrophic 

hormone, cortisol etc.), heart beat and body temperature fluctuate over a period of 24hr. 

To hunt a prey, a predator requires simultaneous optimization of alertness (via its sense 

organs and brain) and agility (via muscles and skeleton). Function of each of these 

peripheral organs is under the regulation of their respective peripheral clock. The master 

clock senses timing cues from external environment and sends out synchronizing signals 

to the peripheral clocks in rest of the body. This results in synchronization of all the 

physiological events in a temporal manner enabling a predator to be awake and alert  

when the probability of finding its prey is highest.  

Output signals from a circadian clock are often referred to as “overt rhythms” or  

“overt outputs” seen as physiological/behavioral patterns that are indirect markers of an  

internal clock. Some of these overt outputs are observable and/or measurable. Depending  

on the species of animal, different types of overt rhythms can be recorded and studied as  

an indicator of an operating functional circadian clock. Some commonly assayed rhythms 

in laboratory animals are, wheel-running activity, feeding-activity, drinking-activity, 

perching -activity in birds capable of flying, oviposition, body temperature fluctuations, 
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circulating levels of hormones in blood, transcription and translation of clock controlled 

genes (CCGs/ccgs).  

While some assays require manual collection and processing of data, there are a  

few assays which are collected using standardized automated techniques.  For example,  

wheel-running activity in mammals (viz mice, hamsters, guinea-pigs) is measured by 

counting number of revolutions of the wheel. The wheels have microswitches which get 

activated when the animal starts to run on the wheel. These microswitches feed the counts 

to a computer through a data acquisition board. The data collected is processed using 

computer software programs such as ClockLab software (Actometrics, Evanston NJ) and 

printed out as an actogram. An actogram may be single- plotted (Figure 1A) or double 

plotted (Figure 1B). In a single plotted actogram, each horizontal line represents 24hr 

period (Figure 1A) while in a double-plotted actogram (Figure 1B) two consecutive 24 hr 

periods are stacked next to each other. In Figure 1B the first horizontal line represents day 

1 and day2. Activity bouts are represented as histogram bars (sum of wheel revolutions per 

discrete time interval) in a 24hr period (Figure 1A and B).  Depending on experimental 

requirements, animals may be housed in different types of light cycle regimens for various 

lengths of time (LD, light:dark cycle; DD, constant darkness; LL, constant light; DM: dim 

light etc.) in order to study the pattern of their physiological and behavioral rhythms.  
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Figure 1.  Actogram of wheel-running activity in mice. (A) Actogram of wheel-running activity of mice 
housed in 7 days of LD followed by 9 days in DD. The bar at the top of the actogram represents the light 
cycle of the LD portion of the experiment. The lights are on at 5:00 hr and off at 17:00 hr. Bouts of activity 
are represented as histogram bars (sum of wheel revolutions per discrete interval of time) across a 24hr 
period of the experiment. Each horizontal line is a single 24hr period of experiment. (B) Graph represents 
wheel-running activity of mice housed in DD for 15 days (Jud et al., 2005). 
 

 

 

The light cycles are represented in form of a bar at the top of an actogram where 

in, an open bar represents light while a closed bar represents dark period of lighting 

regimen (Figure 1A). Plotting wheel running activity for consecutive days and stacking 

them reveals the pattern of locomotor activity of an animal model housed in a specific 

light cycle over an entire period of experiment.   In Figure 1B, red lines are drawn passing 

through the points of daily onset of wheel-running activity. The space between the red 

lines of the double plot corresponds to the circadian period length “tau” (τ). To test if light 

really has the capability of resetting a clock, light pulses applied during early subjective 

1A 1B 
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night or late subjective night should change the phase of a circadian rhythm. The phase 

shifts due to light pulses is represented in actograms of wheel-running activity of mice 

housed in 12:12hr LD for 7 days (Figure 2).  

 

1.2 Fundamental properties of circadian rhythms  

Presence of circadian clocks across almost all phylogeny implies that they did 

provide an adaptive advantage during the course of evolution although the ancestral 

origins and entire evolutionary history is still not completely known. Despite their 

disparate origins, structural organization and molecular composition among 

phylogenetically diverse organisms (Dunlap 1999, Bell-Pederson et al., 2005) biological  

clocks share three common fundamental characteristics that define the formal properties  

of circadian rhythms.  

 

1.2.1 Endogenous nature  

The first defining characteristic of circadian rhythms is that they are generated 

endogenously with a period (τ) of approximately 24 hr under constant conditions 

(Pittendrigh, 1961). True circadian rhythms are intrinsic in nature, and persist under constant 

conditions when no external zeitgebers/stimuli are present to influence them. Under such 

conditions the circadian rhythms exhibit an FRP close to but not exactly 24 hr. The length 

an FRP depends on the molecular properties running the clock and species of the organism 

(Bünning, 1977; Pittendrigh, 1981).  
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Figure 2: Effect of light pulse on phase of activity in mice. Applying light pulse during the activity phase 
(night) alters onset of the subsequent locomotor activity cycles. Applying a light pulse applied in the early 
part of the night (arrow in left panel) delays onset of the subsequent activity cycle resulting in a ‘phase delay’ 
characterized by a negative ∆φ (phase angle difference). By contrast, a light pulse applied in the late portion 
of the activity phase (night) induces phase advances characterized by a positive ∆φ (arrow in right panel). 
These alterations in circadian phase implies that light is capable of entraining (resetting) the clock (Jud et al., 
2005). 
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1.2.2 Entrainment  

Another fundamental property of circadian rhythms is their ability to be 

“entrained”, or synchronized to external zeitgebers of certain period (T) range. There are  

several environmental stimuli that can act as zeitgebers including light, temperature, food 

and social interaction to name a few (Pittendrigh and Minis, 1964; Aschoff et al., 1971; 

Stephan, 2002). Photic entrainment pathways are the most extensively studied circadian 

clock inputs as light appears to be the most ubiquitous and effective zeitgeber (Pittendrigh, 

1981). Circadian rhythms capable of entraining to external zeitgebers seem to confer 

adaptive benefits to the organism. These types of circadian rhythms enable necessary 

levels of plasticity that help the organism to adapt/tune its internal rhythms to the external 

dynamic environment. Although circadian oscillators can sustain their own rhythms, they 

cannot operate independently. They need help from other oscillators to remain functional 

and/or entrain properly. Yet, there are special set of circadian oscillators known as the 

“pacemakers” that generate and sustain their own rhythms. A pacemaker can synchronize 

rhythmic outputs from other oscillators and can be entrained to external cues. In 

chronobiology, circadian clock is sometimes interchangeably used for circadian oscillator 

by several authors.  

Having an entrainable circadian clock helps the organism adjust and to thrive in 

relation to its niche. However, the mechanisms by which entrainment occurs are not 

completely understood. There are two different theories that propose two different 

mechanisms of entrainment for circadian clocks namely, parametric and non-parametric 

entrainment (Pittendrigh, 1981). In parametric model, the zeitgeber (classic e.g. light) 
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entrainment occurs continuously such that a constantly changing angular velocity results in 

a new phase trajectory. This model predicts that a light pulse/stimulus will shift the phase of 

a circadian rhythm by altering the τ. The non-parametric model, on the other hand, states 

that it’s the timing of the exposure to a light stimulus is key to which shifts the phase of 

the circadian rhythm without changing its velocity (Pittendrigh, 1981).  

Although both mechanisms play a role in entrainment of the circadian clocks, 

studies show that non-parametric mechanism is sufficient to entrain animals, (Pittendrigh, 

1981). There is substantial quantitative data to prove the relationship between the direction 

of phase-shift and time of light pulse applied to entrain a circadian rhythm. This 

relationship is generally illustrated in form a graph referred to as the “phase response 

curve” (PRC) (DeCoursey PJ, 2000). In PRC experiments, animals are maintained under 

constant conditions where their circadian rhythms “free-run” in absence of external 

zeitgeber. Animals are exposed to short pulses of light either during early subjective night or 

late subjective night. These light pulses may reset the phase of the circadian rhythms, 

referred to as “phase-shift” (Φ∆).The phase shifts are measured in form a graph known as 

“phase response curve (PRC).  In PRC, the extent of phase shift is plotted as a function of 

the time at which light pulse was applied under a free-running condition (circadian time or 

CT). PRC results from several studies show that there is differential effect of light when 

applied at different phases of a circadian cycle (Daan and Pittendrigh, 1976). A light pulse 

during subjective day in constant darkness (DD) has little/no effect on length of the 

circadian period. A light pulse during early subjective night (scotophase) leads to a phase-

delay, while applying a light pulse during late subjective night causes a phase-advance. In 
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addition to phase-advance and phase-delay, the magnitude with which a phase can shift 

depends on the time at which the light pulse was applied. The PRC graphs measuring the 

magnitude of phase-shifts can have either of two distinct shapes, Type1 or Type 0 curves. 

Each animal species exhibit a PRC graph of either Type 1 (small shifts in phase) or Type 0 

curves (large shifts in phase) depending on their circadian evolutionary history (Daan and 

Pittendrigh, 1976).  

 

1.2.3 Temperature compensation  

Third fundamental feature of a circadian clock is their ability to maintain a near 

constant period of oscillations over a relatively broad range of temperatures. The rates of  

biochemical reactions hence, physiological processes are highly dependent on temperature. 

It implies that rate of a reaction should either significantly increase or rapidly decrease with 

a rise or fall in temperature respectively. The relationship of the rate of reaction versus the 

temperature is referred to as Q10. Generally the Q10 value of most of the biochemical reaction 

is around 2-3, which implies that for every 10°C change in temperature the reaction rate 

changes 2-3 folds respectively. If this is true for circadian rhythms as well, then on a very 

hot or a very cold day the circadian clock should function very rapidly or very slowly 

respectively. A circadian clock of this type has not been observed in nature and so seems 

not to be beneficial to an organism. Interestingly, the average Q10 for circadian rhythms is ~ 

1.1, which is significantly less than what is observed for most of the other biological 

processes within physiological temperature ranges (Kalmus, 1940; Pittendrigh, 1954; 

Pittendrigh, 1961).This property allows the circadian clock  to function normally over a 
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wide range of varying temperatures and is hypothesized to represent a fundamental 

homeostatic mechanism. This phenomenon has adaptive benefits for the organism but the 

mechanism of temperature compensation is largely unknown (Pittendrigh et al., 1973).  

 

1.3 Adaptive advantages of circadian clock  

Time has a cyclic nature on earth and it impinges its effect on all its animate and  

inanimate objects For instance, organisms living on high latitude and temperate zones  

are exposed to annual cycles of cold winters and warm summers with varying lengths of  

photoperiod throughout the year (Pianka, 1973; Pittendrigh, 1993). Similarly, organisms  

at the sub-tropical and tropical zones face annual cycles in rainfall, atmospheric pressure  

and wind (Pianka, 1973). The abiotic environment exhibit daily cycles too, such as daily  

change in the intensity and quality of sunlight, which influences the photosynthetic activity 

of photo-receptive living organisms. Daily cycles also exist in the electromagnetic 

spectrum of sunlight, for instance cyclical changes are seen in the levels of ultraviolet, 

infra-red and gamma radiation to which the living organisms are exposed. Hence, living 

organisms are continuously exposed to rhythmic selective pressures from the 

environmental factors, limited resources required for sustenance, competitors, predators, 

prey, mates; all of which keep changing on a daily and annual basis.  

Owing to selective pressures, biological clocks are believed to have evolved for 

two primary adaptive reasons. Firstly, they provide temporal organization of important 

biological and physiological functions e.g. cell division, cell repair, energy consuming 

cellular processes are compartmentalized into specific times of the day when energy 
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demands are lower for efficient use of energy and balance. Secondly, temporal 

organization of internal functions helps synchronize the organism to its external 

environment. For instance, predators are most active when their prey is out foraging, 

thereby increasing their chance of finding food and preventing wastage of energy by 

hunting at wrong times of the day. Within an organism, all biological processes are 

temporally organized to optimize energy usage and proper physiological functioning. 

Studies show that loss of clock function results in significantly reduced fitness with 

reduced life span and poor reproductive function (Hurd and Ralph, 1998; Klarsfeld and 

Rouyer, 1998; Miller et al., 2004; Pittendrigh and Minis, 1972).  

The ~ 24 hr rotation of earth on its axis exposes its living organisms to exceedingly 

periodic environmental conditions such as, 24 hr cycles of predictable light and 

temperature cycles. Hence, life on earth has had to adapt its physiology to these  

geophysical cycles by evolving circadian clocks (Avivi et al., 2002). Functional clocks  

allow organisms to keep track of time and the ability to control the timings of their 

physiological, metabolic and behavioral cycles on a daily basis. Biological clocks are  

ubiquitously present in almost all living organisms. A set of genes and proteins form the  

genetic basis of clock, which carryout almost similar functions across different species  

of living organisms (Woelfle et al., 2004).  Owing to their genetic basis and the presence  

of variation, circadian clocks are heritable in nature and are subject to natural selection  

(Paranjpe et al., 2005).  Although the evolutionary origin of clocks is still unknown, their  

ubiquitous presence in nearly all living organisms implies that they have been positively  

selected via natural selection over millions of years (Paranjpe et al., 2005). Hence, 
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presence of a functional clock must have conferred certain fitness advantages to organisms 

which may be helping them to out-compete organisms with dysfunctional or no clock. 

Recent experiments elucidate the adaptive qualities of clock and these studies propose two 

theories to explain how organisms have gained a fitness advantage from possessing 

functional clocks, namely, the internal synchronization and the external synchronization 

value (Sharma, 2003; Paranjpe et al., 2005).  

The internal synchronization theory posits that circadian clocks allow organisms  

to temporally organize their multiple internal metabolic and physiological processes  

through endogenously generated oscillations (Sheeba et al., 2002; Sharma, 2003). For  

instance, clocks help in controlling the timings of incompatible internal processes which  

require different temporal conditions in order to function properly (Sharma, 2003). In  

cyanobacteria, nitrogen fixation and photosynthesis are incompatible biochemical  

processes, the former being oxygen sensitive and the latter one generating oxygen.  

Cyanobacteria is a unicellular organism therefore, it does not have 

compartments/organelles to physically separate these processes. Thus, these must occur  

at two different times of the day. This is made possible by generation of endogenous  

oscillations which ensure that these two phenomenons do not co-occur (Woelfle et al.,  

2004).  Thus, the coordinating force behind the alternating nitrogen fixation and 

photosynthesis cycles in Cyanobacteria is the internal circadian clock.  

 Genetic studies in Drosophila melanogaster indicate that traits that are non- 

adaptive tend to disappear within about 100 generations. The rate of disappearance will  

be even faster if the trait was deleterious to the species. If intrinsic theory of 
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synchronization is correct, then possessing a functional clock should prove advantageous 

to organisms living under constant as well as cyclic environmental conditions. Studies in  

D. melanogaster supports this assumption, wherein, flies housed in constant conditions  

for more than 600 generations continued to exhibit strong circadian rhythms in timings  

of oviposition (egg laying) and eclosion (adults emerging from pupal cases) (Sheeba et  

al., 2002). Hence, the persistence of circadian rhythmicity implies that there must be  

some adaptive advantages conferred by the clock to the flies (Sheeba et al., 2002).  

Persistent circadian rhythms have also been noted in animals living under naturally  

constant conditions such as the subterranean mole rat which lives in total darkness for its  

entire life (Avivi et al., 2002).  

In 2002, Beaver et al, studied the regulation of reproductive efficiency by the 

circadian clock in D. melanogaster. They compared the reproductive output of wild-type  

versus the arrhythmic mutant flies (flies with non-functional clock system). A 40%  

reduction of progeny due to fewer egg-laying and higher unfertilized egg-laying was  

seen in the mutant flies. The male mutant flies also expressed reduced release of sperms.  

Thus, the disruption of functional clock in reproductive tissues leads to reduced sperm  

and egg production (Beaver et al., 2002). This decrease in reproductive output in mutant  

flies would have dramatically reduced their fitness and have been selected against this  

trait.  

Another theory that explains the adaptive advantage of having a functional clock  

in terms of better survival rate and reproductive efficiency is the theory of external 

synchronization. According to this theory, clocks allow organisms to coordinate their  
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internal physiological, metabolic and behavioral cycles with the external environmental 

signals (zeitgebers) via a phenomenon termed entrainment (Sharma, 2003). Entrainment  

allows an organism to tailor the timings of internal processes to appropriate times of the  

day. Animals capable of these temporal partitions are better in surviving and passing on  

their circadian clock genes to their offspring (Sharma 2003).  Of the several zeitgebers,  

light-dark cycle is considered as the predominant entrainer of clock because several  

cellular functions seem to be strongly affected by light (Nikaido & Johnson, 2000). For  

instance, Chlamydomonas reinhardtii, unicellular algae have ultraviolet light (UV-light)  

sensitive cellular processes that involved in cell division and DNA replication. These  

processes occur during night time to avoid disruption by UV irradiation. Not surprisingly  

C. reinhardtii is most sensitive to UV light in the evening hours. A functional circadian  

clock in these algae allows them to successfully predict the onset of night hours and  

successfully synchronize their internal processes (Nikaido & Johnson, 2000).  

Synchronization to the external signals not only provide the adaptive advantage of 

synchronizing the internal cellular processes to the correct time of the day, but also the 

capacity to synchronize behavioral patterns to the external zeitgebers. This ability ensures 

that the organisms with a functional clock are more likely to find food, mates and avoid 

predators or competition with species living in the same niche (DeCoursey et la., 2000).  

In 2000, DeCoursey et al., demonstrated how the ability to synchronize behavior to 

external zeitgebers may have provided a fitness advantage to animals. They studied the 

effects of rendering a clock dysfunctional by ablating one of the entraining pacemakers, 

SCN in diurnal eastern chipmunks. The SCN-ablated chipmunks exhibited inability to 
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synchronize their behaviors to external zeitgebers. They then went ahead and compared the 

mortality rates of the SCN-ablated chipmunks to the chipmunks with intact SCN in both, 

laboratory (stress-free) and field conditions. There was no significant difference in 

laboratory groups, implying that entrainment is not required for survival under stress-free 

conditions. However, in field conditions, the SCN-ablated chipmunks survived 

significantly fewer days. About more than 80% of the SCN-ablated chipmunks exhibited 

increased nighttime restlessness, predisposing them to increased predation (field 

condition) to the nocturnal predators when compared to their otherwise normally diurnal 

SCN-intact counterparts(DeCoursey et al., 2000). The inability SCN-ablated chipmunks to 

coordinate their sleep-wake cycles to the external day-light cycles lead to a dramatic 

increase in their mortality rates and reduced fitness when compared to the rodents with 

functional timing systems.  

Hence, studies suggest that circadian clocks have adaptive advantages resulting in 

their positive selection during evolution. These adaptive advantages may fall into either of 

the two categories: the internal synchronization and the external synchronization value. 

Both these theories may hold definite merits and could have easily worked together to give 

animals with functional clock an evolutionary advantage in a highly dynamic environment 

like that of the planet earth’s. These two coordinating forces have helped organisms not 

only synchronize the internal processes to one another, but also to their external zeitgebers. 

 

1.4 The avian circadian clock  

As noted earlier, the circadian clock comprises of three basic components 1), a 
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central pacemaker 2), input pathways capable of modulating pacemaker function and 3), 

output pathways that relay information from the oscillator to biological processes. The 

endogenous nature of a circadian clock and generation of circadian rhythms under constant 

conditions occurs due to the presence of a pacemaker. A pacemaker functions 

autonomously, and dictates the rhythmic output of a circadian system. At its core, a  

pacemaker has molecular feedback loops that are under autoregulation and therefore 

provide “self-sustained” rhythm generation (Dunlap, 1999). The central pacemaker needs 

signals/cues from the external environment or a zeitgeber in order to be synchronized or 

entrained. Sensory structures capture and transfer the information from the zeitgeber 

which are then transduced by the machinery, referred to as the input pathways. After 

receiving the input signals the central pacemaker becomes entrained and exhibits alteration 

in circadian phase. This altered/adjusted circadian phase is then relayed as output 

pathways/signals. The output signals then reach and change the rhythms of downstream 

biological processes generally seen as an alteration in physiological and/or behavioral 

rhythms. Experiments in chronobiology are designed to explore one of the three 

components in circadian clock machinery.  

 All organisms that harbor a functional circadian clock contain these fundamental 

clock components. However, the circadian organization at molecular and cellular levels 

may vary from species to species owing to evolution. In some species of organisms, all the 

three components of circadian clock may be localized in the same cell (e.g cyanobacteria, 

fungi). Yet, in highly complex organisms, circadian clocks have distributed themselves 

among physiologically specialized cells. These specialized cells may be spatially 
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segregated, but they interact with each other and act as a circadian clock. This kind of 

arrangement can be seen in several animal species, ranging from Drosophila to human 

beings.  

The generic circadian model can be applied to the avian species as well, but birds  

exhibit a highly specialized and complex circadian system when compared to mammals.  

Mammals have a multiple circadian oscillators with the Suprachiasmatic Nucleus (SCN)  

being the circadian pacemaker also referred to as the master/central clock that sets pace  

for the functional hierarchy. The SCN is self-autonomous and entrains oscillators present  

in remaining parts of the body (Yamazaki et al., 2000). The avians on the other hand  

seem to host not one, but three neural pacemakers and their associated photoreceptors.  

Photoreceptors are located in the pineal gland, retina, lateral septum and tuberal  

hypothalamus. The three independent neural pacemakers that utilize these photoreceptors 

are found in - the hypothalamus (avian SCN), pineal gland and retina (Gwinner et al., 

1978). Each pacemaker-photoreceptor set has its own input pathway-pacemaker-output 

pathway forming an individual clock network. The three individual clocks (the avian SCN, 

pineal gland and retinal clock) interact with one another and function as a single unit, this 

functional unit is also referred to as the central clocking system (CCS) (Vinod et al., 

2004). The degree of coupling between the three clocks varies greatly among the avian 

species. Within an individual bird the coupling is highly dependent on the nature of input 

signals received from an external zeitgeber (Reierth et al., 1999; Brandstätter et al., 2000; 

Underwood et al., 2001). Thus, the avian circadian system is a complex network of three 

mutually coupled pacemakers synchronized to the external LD by associated 
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photoreceptors.  

 

1.4.1 Pineal gland  

Unlike the pineal gland in mammals, the avian pineal gland is a photoreceptive  

pacemaker. The pineal gland secretes melatonin, an indoleamine hormone and thus  

exercises its control not only on the distant cells and tissues expressing melatonin  

receptors but also on the CCS (Underwood, 1990; Cassone, 1998). The position of  

pineal gland in the hierarchy of the CCS varies among the avian species. Removal of  

pineal gland (pinealectomy) totally abolishes locomotor activity in passerine birds (e.g.  

house sparrows) (Ebihara and Kawamura, 1981; Fuchs, 1983; Gaston and Menaker,  

1968; Gwinner, 1978; McMillan, 1972; Pant and Chandola-Saklani, 1992). However, in  

columbiforms (e.g. pigeon), pinealectomy does not entirely abolish the locomotor  

rhythms (Ebihara et al., 1984), and in galliforms (e.g. chicken, quails) there is no effect  

on the locomotor activity (Simpson and Follett, 1981; McGoogan and Cassone, 1999)  

under constant conditions.  

The pineal gland remains rhythmic in-vitro conditions and can be entrained to 

external zeitgebers (Menaker et al., 1997; Oishi et al., 2001; Natesan & Cassone, 2002). 

Each individual pineal cell (pinealocyte) has a clock capable of generating sustained 

circadian rhythm (Nakahara, et al., 1997).Melatonin is synthesized in a rhythmic fashion 

in intact animals and cultured cells held under constant conditions and therefore, are a 

circadian clock output of the pineal gland (Takahashi et al., 1980; Zatz et al., 1988; 

Murakam et al., 1994). 
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 Pineal gland hosts light-input pathways which includes opsin-based photoreceptive 

molecules (e.g., pinopsin, Okano et al., 1994; melanopsin, Natesan & Cassone, 2002), 

photoisomerases and signal transduction mechanisms (Kasahara et al., 2002). The chick 

pineal expresses clock, bmal1, bmal2, cry1, cry2, per2 and per3 genes (Larkin et al., 1999; 

Chong et al., 2000; Okano et al., 2001; Yamamoto et al., 2001; Bailey et al., 2002). The 

chick pineal does not express per1, instead a transcription factor, E4bp4 (basic leucine 

zipper (bZIP) transcription factor) capable of suppressing transcription of per2 and is 

expressed in opposite phase of per2 in LD and DD.  

 Melatonin is the most reliable circadian output of the pineal gland. Melatonin 

levels are lowest during subjective day, and reach a peak at night in LD, and in  

subjective night in DD and LL. The duration and amplitude of melatonin secretion by  

pineal gland is controlled by the intensity and length of light period in LD cycle. Hence,  

melatonin rhythms can provide daily and annual information to birds (Kumar & Follet,  

1993; Brandstatter et al., 2000; Kumar, 2002).  

The clock in pinealocytes regulates melatonin biosynthesis at transcription and 

post-translation levels. Pineal transcriptome studies reveal that around 382 genes in LD 

and 128 genes in DD express rhythmic oscillations with atleast two-fold change (Bailey et 

al., 2003). The transcripts include genes involved in melatonin biosynthesis, circadian 

rhythm generations, phototransduction, immune and stress responses. Hence, the pineal 

possess genes that encode proteins involved in regulation of several important 

physiological functions which were previously not known.  
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1.4.2 Retina  

The avian retina has circadian clocks that drive local ocular physiological  

rhythms including rhythmic turnover of photoreceptor outer segments (Pierce et al.,  

1993), electrophysiological properties (McGoogan and Cassone, 1999; Binkley et al.,  

1971; Ko et al., 2003), as well as rhythmic biosynthesis of melatonin and dopamine  

(Adachi et al., 1995; Binkley et al., 1971; Hamm and Menaker 1980, Reppert and Sagar, 

1983; Doyle et al, 2002). The rhythms of clock genes and melatonin biosynthesis remain 

circadian in retinal cell cultures under constant conditions (Toller et al., 2006). Thus, retina 

too possesses several properties similar to those of the pineal gland both, in vivo and in 

vitro. In some avian species (pigeons and quails) both pineal gland and the retina are major 

contributors of circulating blood plasma-melatonin (Underwood et al., 1984; Oshima et 

al., 1989). However, in galliforms (chicken) less than 1% of locally produced retinal-

melatonin reaches the systemic circulation. 

 Enucleation (removal of eyeballs/retina) leads to disruption and/or total loss of 

circadian activity in some avian species (Underwood and Siopes, 1984). In these cases, the 

disruption/loss of rhythms can be rescued by exogenous melatonin administration an 

observation that implies that retina controls the circadian rhythms via rhythmic melatonin 

release (Underwood et al, 2001). In galliforms (chicken) enucleation abolishes locomotor 

activity (Nyce and Binkley, 1977) although retina retains ~ 99% of the locally synthesized 

melatonin (Cogburn et al., 1987; Reppert and Sagar, 1983). This implies that in chicken 

and quail, retina regulates circadian rhythms in distant organs via neural pathways 

(Underwood et al., 2001). A very critical function of retina is integration and relay of 
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photoperiodic information to the SCN via retinal ganglion cells (RGCs) and the 

retinohypothalamic tract (RHT) (Cassone et al., 1988).  

The RHT has glutamatergic processes from the RGCs that innervate the avian 

SCN directly. The RGCs can relay the photic information via RHT and entrain the SCN. 

Additionally, the RGCs have different kinds of opsin photopigments that help generate 

local circadian rhythms that in turn can entrain the avian SCN. Hence, retina is acts as a 

local and systemic pacemaker, and can entrain the SCN via humoral and neurological 

pathways (Provencio et al., 2000; Bailey and Cassone, 2004). It is relatively difficult to 

investigate the precise role of avian eyes in circadian system, because blind birds retain 

light input to the CCS via extra-retinal photoreceptors in the pineal gland and deep-brain 

tissues. However, several studies indicate that retina hosts autonomic oscillator and play a 

role in regulation of retinal and physiological rhythms. The eyes of quail (Underwood et 

al., 1991), chicken, (Reppert & Sagar, 1983) and pigeons (Oshima et al., 1989) synthesize 

and secrete melatonin in a circadian fashion at subjective night. The retinal cells in quail 

eye are tightly coupled to each other and work in synchrony to drive circadian rhythms 

indicating the presence of autonomous clocks (Steele et al., 2003).The retinal 

photopigments such as melanopsin, rhodopsin and opsins are under circadian regulation 

(Bailey & Cassone, 2004). Clock genes such as cry1, cry2 and clock exhibit rhythmic 

circadian oscillations (Bailey et al., 2002; Haque et al., 2002). Retina has several well 

characterized circadian outputs which exhibit rhythmic oscillations such as, rhythmic 

neuronal activity of retinal cells (McGoogan & Cassone, 1999), arylalkylamine N-

acetyltransferase (AANAT) involved in melatonin biosynthesis (Bernard et al., 1997), and 



 

27 

 

melatonin biosynthesis which is independent of pineal and brain clocks.  

 

1.4.3 Suprachiasmatic nucleus  

In addition to retina and pineal gland, the hypothalamus in central nervous system 

(CNS) of the bird hosts the avian homolog of mammalian SCN. The avian SCN has two 

sets of functional structures: medial hypothalamic nucleus also known as medial SCN 

(mSCN) while lateral to the mSCN is the visual SCN (vSCN) (Cantwell and Cassone, 

2006). These structures are connected via neuronal projections and have a contiguous 

cellular distribution. The vSCN exhibits metabolic and electric rhythmicity (Lu and 

Cassone 1993, Cantwell and Cassone, 2006). The vSCN receives innervations from the 

RHT and expresses melatonin receptors (Cassone et al., 1995) Administration of 

exogenous melatonin inhibits the metabolic activity of vSCN (Cassone and Brooks, 1991; 

Lu and Cassone, 1993; Cantwell and Cassone, 2006). The role of avian SCN is species 

specific as SCN lesioning (SCN ablation) results vary among species to species. In quails, 

pigeons and sparrows, SCN lesion abolishes locomotor activity (Ebihara and Kawamura, 

1981; Simpson and Follett, 1981; Takahashi and Menaker, 1982; Yoshimura et al., 2001). 

Unlike mammals where SCN is sufficient to maintain circadian rhythms under constant 

conditions, birds require all the three neural pacemakers SCN, pineal gland as well retina 

to do so (Underwood et al, 2001).  

 

1.4.4 Extraocular photoreceptors  

In addition to having more than one pacemaker, the avian circadian system also 
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involve photoreceptors in regions other than the eye, known as the Extraocular 

photoreceptors. These photoreceptors are a part of the input pathways that transduce 

photic information to entrain/synchronize an oscillator/pacemaker. These Extraocular 

photoreceptors are distributed throughout the central nervous system. Hence, birds possess 

multiple functioning entrainment pathways and each of these pathways is sufficient to 

entrain them. For example, Underwood et al., (2001) demonstrated that birds can be 

entrained to light-dark (LD) cycle even after they have been enucleated.  

 A unique feature of avian pineal gland is the presence of photoreceptors. 

Pinealocytes are sensitive to light and respond by rhythmic circadian secretion of the 

hormone melatonin. The hormone melatonin in turn entrains the bird. Natesan  (Natesan & 

Cassone, 2002) suggest that the photopigments, melanopsin and pineal-specific pinopsin 

may be involved in mediating this photosensitive response. Yet again, in some birds, 

enucleation and pinealectomy has no effect on photic-entrainment capability, suggesting 

that CNS hosts photoreceptors in other areas referred to as the deep-brain photoreceptors. 

Underwood et al, (2001) demonstrated that the ventral hypothalamus hosts rhodopsin-

containing photoreceptors which may be responsible for this phenomenon.  

 

1.5 The neuroendrocrine loop 

The avian circadian system comprises of multiple-oscillators, ocular and 

extraocular-photoreceptors forming the complex CCS network. These components are 

spatially distributed throughout the CNS with multiple input-pathways. Although the 

pacemakers are semi-autonomous and regulate local processes independently, these 
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oscillators are capable of influencing each other’s oscillation by through several feedback 

loops. Cassone and Menaker (1984) hypothesized what is known as a “neuroendocrine 

loop” model to explain how the different pacemakers and input-pathways in avians 

couples and communicate with each other in order to function as a single circadian clock 

unit. Unity in function requires the CCS to employ neural and humoral signals to remain 

physiologically connected. Each of the oscillators in the CCS is referred to as a “damped 

oscillator.” Briefly, the pineal gland, and in a few species the retina, secrete melatonin into 

the blood stream. The melatonin binds to the melatonin receptors on the SCN which 

results in general inhibition of SCN activity (Cassone et al., 1987), this is the humoral loop. 

The SCN communicates with the pineal gland via polysynaptic neural pathway, wherein, 

the SCN synapses with the hypothalamic paraventricular nucleus (PVN). The descending 

projections from the PVN innervate the intermediolateral cell column (IML) in the 

thoracic spinal cord. The IML innervates with the superior cervical ganglion (SCG) in 

finally synapses with the pineal gland (Moore, 2003). An activated SCN causes the release 

of norepinephrine (NE) at the nerve terminals synapsing pineal gland. Adrenergic 

receptors on pineal gland bind to NE and inhibit melatonin biosynthesis. During the day, 

the SCN rhythmically releases NE at the nerve terminals which then inhibits the 

production of melatonin in the pineal gland. At night the pineal gland rhythmically 

secretes melatonin which then reduces the SCN activity.  

Studies in mammals and birds indicate that melatonin affects circadian clock 

function and sleep. However, studies by Abraham et al. (2003), Yasuo et al. (2002), and 

Poirel et al. (2003) indicate that acute melatonin administration has no effect on clock gene 
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expression in SCN. If rhythmic clock gene expression is required for generation of 

circadian rhythms, it implies that metabolic and clock gene expressions are two separable 

properties of circadian clock function. The SCN has a large population of fibrous 

astrocytes which express melatonin receptors. It is hypothesized that melatonin affects the 

metabolism of astrocytes via melatonin receptors. The astrocytes with altered metabolism 

now alter the SCN clock gene expression which in turn affects their metabolic rhythms, 

since knockdown of clock reduces the amplitude and increases the period length of 

glucose uptake rhythms in SCN2.2 cell lines but with no alteration in transcriptional 

rhythmicity. Therefore, in birds SCN is activated by RHT during the subjective day. The 

activated SCN mediates several downstream processes via neuronal, sympathetic and 

hormonal outputs. One of the targets of sympathetic activity is the pineal gland. The 

melatonin biosynthesis by pineal gland is inhibited by both sympathetic NE and by light. 

Since the SCN is an oscillator, its outputs wanes by dusk, thereby disinhibiting melatonin 

biosynthesis by the pineal gland. The pineal gland releases melatonin during subjective 

night which induces its physiological effects by binding to the cells and tissues expressing 

melatonin receptors. One of the targets of melatonin is the astrocytes which are present 

within the SCN and rest of the brain. Melatonin decreases glycolytic activity and increases 

glycogen biosynthesis in the astrocytes. The glycogen biosynthesis during subjective night 

builds energy stores required for brain activity during the subjective day. This change in 

metabolic activity may affect the SCN clock gene expression, but the mechanism by 

which this happens is not completely understood as of yet. Just like the SCN, the pineal 

gland is an oscillator too whose output wanes as dawn approaches, thereby removing the 
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disinhibition on SCN activity.  

Therefore, according to the neuroendocrine loop model, it is the mutual coupling 

of the damped SCN, astrocytes and pineal gland oscillators that keeps them robustly 

oscillating in a rhythmic fashion (Cassone and Menaker, 1984). Apart from the SCN and 

pineal, the third oscillator, retina adds one more layer of complexity to the neuroendocrine 

loop. It couples with the SCN and relays photic info via RHT and in some species secretes 

melatonin that in turn can regulate SCN function.  

 

1.6 Molecular basis of biological clocks  

Centuries of almost similar selective pressure has led to the evolution of similar 

endogenous timing mechanism in organisms in nearly every phylum ranging from 

eubacteria to humans. These endogenous timing mechanisms may have different layers  of 

complexity and composition in different phylum, but they all serve a common purpose 

namely, to enable the organism predict temporally defined environmental changes and to 

coordinate complex internal biochemical and physiological processes to respond to them 

(Pittendrigh 1993; Bell-Pedersen et al., 2005). Remarkably, the cellular and molecular 

bases of these systems are highly conserved, especially among phylum vertebrata (Panda 

et al., 2002).  

 

1.6.1 A brief history  

French astronomer Jacques de Mairan in 1729 was the first scientist to document 

the phenomenon of circadian rhythm in a plant, Mimosa pudica (Sweeney, 1987; 
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DeCoursey, 2004). He introduced the idea that plants and animals respond to the 

environmental cycles owing to their innate ability of internal timing, and it was not just a 

passive exogenous reaction. Almost after a century, several pivotal studies and findings 

spurred back interest in the study of biological clocks in the scientific society. Erwin 

Bünning a pioneering scientist demonstrated that photoperiodic time measurements are 

controlled by internal mechanisms and hypothesized that circadian rhythms have adaptive 

value in organisms (Bünning and Moser, 1969). Sweeney and Hastings 1960 demonstrated 

rhythmic bioluminescence in unicellular algae Gonyaulax under constant condition. 

Kramer in 1952 coined the term “biological clock” to explain the phenomenon of 

navigation in migratory birds (Kramer, 1952; DeCoursey, 2004). Colin S. Pittendrigh, 

investigator of circadian clock in Drosophila and Jürgen Aschoff, investigator of 

locomotor activity in mice, are the two principal scientists who are considered as the 

founders of modern biological rhythm research who developed the concepts and key 

principles of circadian clocks (Daan 2000; Daan et al., 1976). Circadian biology got its 

much deserved attention when Colin Pittendrigh delivered a lecture titled “Circadian 

rhythms and the circadian organization of living systems”, whereby it recognized as a 

science which was very much applicable to humans and medical science (DeCoursey, 2004).  

The biological clock in any given living organism has a set of “core clock genes”. 

The number of core clock genes, their orthologs, arrangement and functional importance 

may vary from species to species. Historically, the discovery of the “period gene” in 

Drosophila was the first stepping stone in understanding the genetic and molecular basis of 

biological clocks. This remarkable breakthrough was made by Ronald Konopka and 
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Seymour Benzer while studying a mutant screen in Drosophila melanogaster (Konopka 

and Benzer, 1971). The mutant groups were studied for the persistence of two circadian 

behaviors, time of pupal eclosion and locomotor activity rhythms. The flies exhibited one 

of the three phenotypes: lengthened circadian period, shortened circadian period and 

arrhythmic. The three phenotypes were complemented by a single locus, referred to as the 

“Period” (per) gene. Later on, several additional core clock genes were uncovered 

including timeless (tim), cycle (cyc), doubletime (dbt) and cryptochrome (cry).  

Work by Feldman and Hoyle (Feldman and Hoyle, 1973) in the filamentous fungus 

Neurospora crassa lead to the discovery of “Frequency” (frq) gene which is required for 

persistence of rhythmic conidiation. Martin Ralph and Michael Menaker (Ralph and 

Menaker, 1988) discovered that a mutation in a single, autosomal locus tau can dramatically 

shorten the period of their circadian locomotor rhythms. Thus, scientists discovered that 

even a single gene mutation could disrupt a complex behavioral rhythm. These discoveries 

forayed a large-scale mutant screening in mice for biological clock mutations (Vitaterna et 

al., 1994). Consequently, genetic and mutation studies have been applied and dozens of 

other core clock genes have been identified in normal and mutants of several model 

organisms such as Neurospora, Arabidopsis, hamsters, mice, rats and fish (Dunlap, 

1999).Genetic studies of core clock genes reveal that although these organisms are greatly 

separated by genetic makeup and belong to different phyla, the fundamental processes (if 

not sequences) which drive their circadian rhythms are highly conserved (Dunlap, 1999).  

A feature that is common among all the organisms possessing diverse core clock 

gene systems is the presence of transcription/post-translational feedback loops. These 
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loops ensure generation of circadian rhythms of high amplitude and a period length of 

nearly 24 hr. Scientists have developed real-time bioluminescent and fluorescent reporters 

that help visualize circadian rhythms in tissues and cells (Hastings et al., 2007). These 

techniques help in understand the coupling of oscillators within a population of cells which 

are rhythmic. In 2005, Nakajima’s lab demonstrated that it is possible to construct a 

circadian oscillator in the absence of gene transcription (Nakajima et al., 2005).  

 

1.6.2 The mammalian molecular clock  

The mammalian circadian oscillator is a network of interlocking transcriptional- 

translational feedback loops working in driving a rhythmic expression of core clock genes 

(Reppert and Weaver, 2002). The products of these genes (i.e. clock proteins) are required 

for the generation and maintenance of circadian rhythms within all clock containing cells 

in an organism.  

The core clock components of mammalian circadian molecular clock can be 

divided into two sets, the positive and the negative elements. The core clock genes, 

CLOCK (Circadian Locomotor Output Cycles Kaput, Clock) and BMAL1 (Brain and 

muscle Arnt-like protein-1, Bmal1) form the positive arm of the circadian clock and they 

belong to the family of basic-helix loop helix-PAS (bHLH-PAS) containing transcription 

factors. These two form a heterodimer and bind to the E-box cis regulatory enhancer 

(CRE) elements and lead to rhythmic transcription and translation of their target clock 

genes, period (per1, per2, per3) and cryptochromes (cry1 and cry2).  Period and 

cryptochrome genes form the negative elements of the feedback loop. The period and 
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cryptochrome proteins form heterocomplexes and translocate back into the nucleus and 

inhibit their own transcription (Gallego and Virshup, 2007). In addition to the positive and 

negative feedback loops, a third regulatory feedback loop also participates in the molecular 

circadian network. The third loop is formed by orphan nuclear receptors REV-ERBα 

(Rev-erb alpha, an orphan nuclear receptor; Rev-erbα) and RORα (Retinoid-related orphan 

receptor alpha (ROR alpha; RORα) (Gallego and Virshup, 2007). The proteins of positive 

elements Clock/Bmal1 heterodimer regulate the expression of these orphan nuclear 

receptors. In the nucleus, REV-ERBα protein competes with RORα protein to bind with 

ROR-responsive element (RORE) located in the promoter region of bmal1 gene. Binding 

of RORα at the RORE activates bmal1 transcription, whereas REV-ERBα binding 

represses it. Hence, the rhythmic expression of bmal1 is under the positive and negative 

regulation of RORs and REV-ERBs respectively. This forms the secondary feedback loop 

referred to as the “stabilizing loop”.  

Apart from these three transcriptional-translational feedback loops, the circadian 

clockwork also employs several post-translational modifications for normal functioning. 

It’s believed that post-translational modifications may be responsible for the ~ 24 hrs 

length of the circadian period (Gallego and Virshup, 2007). Casein kinase members (CK1 

ε and CK1 δ) are required for the phosphorylation and degradation of the protein Period. 

Mutation in CK1 ε results in shorter free-running period in hamsters (Lowrey et al., 2000). 

Over expression of CK1 ε and CK1 δ causes moderate shortening of circadian period in 

mammals (Akashi et al., 2002). Inhibition of enzyme glycogen synthase kinase-3(GSK-3) 

results in shortening of mammalian circadian period (Hirota et al., 2008).  Mitogen -
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activated protein kinase (MAPK) and cAMP-dependent protein kinase (PKA) pathways 

induce per1 induction (Travnickova-Bendova et al., 2002). Resetting of mammalian 

circadian clock requires protein kinase C (PKC)-mediated phosphorylation of Clock (Shim 

et al., 2007). Mutation in an F-box containing E3 ligase (Fbx13) causes improper 

ubiquitination and degradation of CRY proteins. The resulting CRY protein accumulation 

causes lengthening of circadian period (Busino et al., 2007). Post-translational 

modification of Bmal1 such as sumoylations, acetylation and phosphorylation are critical 

for nuclear accumulation of Bmal1 and circadian function (Tamaru et al, 2009).  

 

1.6.3 The avian molecular clock  

Avian circadian biology is an emerging field of chronobiology. Several clock 

genes have been cloned in several species of birds such as, chicken, Japanese quail, 

pigeon, sparrows to name a few. However, little is known about the mechanisms of 

molecular clock functions in the birds. Birds do not seem to have the clock gene, per1. 

Negative elements of circadian clock cry1, cry2, bmal1 and bmal2 are found to rhythmic 

in chicken and sparrow.  

When compared to mammals, avians have a complex CCS comprising of mutually 

coupled, three autonomous and anatomically distinct oscillators with multiple photic-input 

pathways. The avian pineal gland and retina express rhythmic oscillations in melatonin 

biosynthesis. The pineal melatonin reaches circulating blood stream, and in some avian 

species retinal melatonin also reaches the blood circulation. There are significant 

differences in transcriptional regulation of avian and mammalian biological clocks. In 
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chicken, core clock genes are differentially regulated within pineal gland and retina 

(Bailey et al, 2003; Bailey et al., 2004). This implies that molecular clockwork function 

differently in different pacemakers within the same organism. Thus avian circadian clock 

networks are functionally complex and require more in depth analysis for greater 

understanding. At molecular level, genomic and transcriptional analyses reveal a highly 

conserved network of clock genes. The avian core clock genes are orthologous to the core 

clock genes identified in insects and mammals (Bailey et al., 2003; Karagnis et al., 2008, 

2009). Avian orthologs of core clock genes include clock, bmal1, bmal2, per2, per3, cry1, 

cry2 and cry4 (Chong et al, 2000; Yoshimura et al, 2000; Brandstatter et al, 2000; 

Yamamoto et al., 2001; Bailey et al., 2001; Fu et al., 2002; Chong et al., 2003; Yasuo et al., 

2003; Mouritsen et al., 2004; Helfer et al., 2006).  

Although the entire biochemical details are not well known in birds, studies indicate 

that the birds too express “positive elements” genes clock and bmal1. The avian clock and 

bmal1 genes are transcribed rhythmically in the nucleus and translocated to the cytoplasm. 

The Clock and Bmal1 proteins dimerize and reenter the nucleus to activate the transcription 

of negative elements per2, per3, cry1, cry2 as well as other ccgs that rhythmically affect 

downstream processes. Genomic analysis of chick pineal and retina express the 

orthologous clock genes but at different phases. For instance, pineal gland expresses 

bmal1, bmal2 and clock at subjective night, while retina expresses only bmal1 in a 

rhythmic fashion. Furthermore, pineal gland expresses the negative elements per2, per3, 

cry1 and cry2, but retina expresses only per3 and cry1. The expression profiles of the 

avian clock orthologous genes are not consistent with the mammalian molecular model. 
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Although avian orthologs of core clock genes exhibit rhythmic oscillations, not all of these 

mRNA transcripts are in phase with their mammalian counterparts (Bell-Pedersen et al., 

2005; Helfer et al., 2006). For example, the mRNA levels of “negative elements” per3 and 

cry1 are expressed at 180° out of phase to each other, per3 peaking at night and cry1 

peaking during the day. This implies that oscillator-feedback-loop model is not universally 

similar across the vertebrate classes. Hence, further studies gene and protein level are 

required to elucidate the entire molecular mechanism of the circadian clock in birds.  

 

1.7 Peripheral clocks  

For a long time it was believed that circadian clock existed only within the 

SCN/master pacemaker. It was the work of Balsalobre et al. in 1998 and Yamazaki et al. 

in 2000 that successfully demonstrated the presence of circadian genes in Rat-1 fibroblast 

cells and tissue explants respectively (Balsalobre et al., 1998; Yamazaki et al., 2000). 

However, explants from peripheral tissues and fibroblast cell cultures progressively fall out 

of phase and become incoherent in oscillations (Balsalobre et al., 1998; Yamazaki et al., 

2000). Studies in SCN-lesioned animals showed reduced and/or abolished rhythms of 

clock genes in the peripheral tissues. These lead to the belief that the central pacemakers 

are absolutely indispensable for the peripheral clocks to function (Sakamoto et al., 1998; 

Akhtar et al., 2002; Terazono et al., 2003). Contradictory to this belief, Nagoshi et al. and 

Welsh et al. in 2004 (Nagoshi et al., 2004; Welsh et al., 2004) demonstrated that the clocks 

in the fibroblast cells are cell-autonomous and self-sustained. The lung explants expressed 

per2 rhythms for more than 20 days and that SCN lesion did not abolish rhythms in 
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peripheral tissues. Additionally peripheral clocks are resilient to cell division, acute stress, 

temperature-fluctuations and general transcription rate (Nagoshi et al., 2004; Dibner et al., 

2009; Saini et al., 2011). However, peripheral clocks in mice subjected to SCN-ablation 

show lack of coordination along with large differences in phase from tissues to tissues (Yoo 

et al., 2004). Thus, SCN is required for relaying signals that help phase organize the 

peripheral clocks in SCN-intact animals. Hence, the peripheral clocks are considered as 

dampened oscillators which require the master clock, SCN to synchronize their rhythms in 

a robust manner. In addition to the signals from SCN, there are several other signaling 

pathways that can transiently synchronize cellular oscillators which include serum shock, 

glucocorticoids and temperature pluses (Balsalobre et al., 2000; Balsalobre et al., 1998; 

Prolo et al., 2005; Yagita and Okamura, 2000).  

 

1.7.1 Central vs. peripheral clocks  

The master pacemakers and peripheral clocks do exhibit rhythmic expression of 

various clock genes with almost similar molecular mechanisms running their clocks. They 

both employ transcription-translational feedback loops and post-translational 

modifications for generation of overt rhythms, yet, there are a few important differences 

between the central and peripheral clocks. A few of these differences include the 

redundancy of positive arm of the circadian clock in the SCN which is absent peripheral 

clocks. The clock in the SCN is quite dispensable such that, in absence of clock, another 

positive element, NPAS2 can substitute in functionally. This phenomenon explains the 

locomotor activity in Clock-deficient mice under constant darkness (DeBruyne et al., 
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2007). The second difference between the SCN and peripheral clocks is the capacity to 

communicate phase information between individual cells. The individual cells making up 

the SCN are capable of communicating with each other through neuronal and paracrine 

signals. These signals keep all the cells within the SCN coupled (synchronized) and hence, 

they oscillate robustly in the same phase (Welsh et al., 2010). This coherence in phase is 

observed in SCN ex-vivo for days to weeks.  

Thirdly, members of ROR family (a, b and c) exhibit different patterns of 

expression across peripheral tissues (Akashi and Takumi, 2005; Guillaumond et al., 2005; 

Liu et al., 2008; Sato et al., 2004). For instance, RORc is rhythmically expressed in 

peripheral tissues while in the SCN it is not expressed it at all; RORb is expressed in the 

SCN and retina but is absent in other peripheral tissues; RORa exhibits robust oscillations 

in the SCN and is almost dampened in the peripheral tissues. Hamilton et al. reported that 

mice lacking functional RORa, called “staggerers” (Hamilton et al., 1996) express normal 

levels of Bmal1 rhythms in peripheral tissues; suggesting that ROR proteins may contribute 

to rhythmic activation of Bmal1 in a tissue-specific manner (Emery and Reppert, 2004; Sato 

et al., 2004).  

Fourth, deficiency of Clock suppresses the rhythmic amplitude of Rev-erbα in 

liver, but has little effect in the SCN. Clock-deficient liver has elevated levels and robustly 

rhythmic Per1 when compared to its wild type mice. However, the levels of Per1 are 

lowered in dampened in Clock-deficient SCN when compared to the wild type. Further, 

Clock-Ä19 mutant mice exhibit disruption of per2 mRNA rhythms in liver and muscle 

with severely reduced levels in the kidney and heart (Noshiro et al., 2005). Thus, it appears 
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that the activity of transcription factors promoting circadian gene expression patterns 

varies from target gene and /or type of tissue (DeBruyne et al., 2006). The peripheral 

tissues also display vast variations in transcriptional circadian regulation of ccgs as 

revealed by microarray studies (McCarthy et al., 2007; Miller et al., 2007; Panda et al., 

2002; Storch et al., 2002). The tissue-specific differences may imply that the molecular 

clocks vary in their intrinsic rhythmic properties across the tissues. Additionally, these 

differences in the peripheral clock properties may also be due to differences in tissue-

specific input signals and/or regulatory mechanisms in the clock output pathways. 

Peripheral clocks are regulated and synchronized by several signaling pathways in 

addition to the neuronal and humoral signals from the SCN (Kornmann et al., 2007; 

Stokkan et al., 2001; Zambon et al., 2003).  

 

1.7.2 Entrainment and synchronization of peripheral clocks  

In most animals, neuronal pacemakers are primarily entrained by light. In some 

species, this entrainment may occur via direct exposure of the pacemaker tissue to the photic 

stimuli, as in the avian species which have photoreceptive pineal gland and retinae. In case 

of mammals, photic signals are relayed via RHT to the SCN. The peripheral clocks 

generally do not get entrained by direct light cues. They get entrained by either of these two 

mechanisms: 1) output signals derived from the SCN; 2) externally derived non-photic 

stimuli. Immortalized SCN 2.2 cells when co-cultured with NIH 3T3 fibroblasts can drive 

downstream oscillations in clock gene expression and glucose uptake via humoral signals 

(Allen et al., 2001). In addition to synchronizing the peripheral clocks indirectly through 
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sleep-wake cycles and body temperature, the SCN can also entrain the peripheral clocks  via 

direct signaling pathways (viz. humoral and neuronal pathways) (Guo et al., 2005). The 

SCN regulates plasma-glucocorticoid levels on a daily basis via the hypothalamic-pit 

adrenal axis (Oster et al., 2006). Glucocorticoids are capable of resetting and phase 

shifting cycles of peripheral clocks by binding to glucocorticoid receptors (GR) expressed 

in the tissues. An additional direct synchronization pathway employed by the SCN is the 

autonomic nervous system (ANS) (Buijs et al., 2009) wherein the SCN resets the 

peripheral clocks (such as adrenal gland, liver) via light signals. Glucocorticoids may be 

one indirect method by which the SCN can entrain the peripheral clocks (Balsalobre et al., 

2000; Le Minh et al., 2001; Stratmann and Schibler, 2006).  

Apart from photic-stimuli, food-intake can also act as a primary external zeitgeber, 

especially for the oscillators in the liver, stomach and heart underscoring the importance of 

peripheral circadian clocks in the temporal orchestration of metabolism. These types of 

clocks are referred to as feed-entrainable oscillators (FEO). In mice and rats, feed 

restriction can uncouple peripheral rhythms in the liver and heart from those of the SCN 

without shifting the phase of the SCN itself (Damiola et al., 2000; Hara et al., 2001; 

Stokkan et al., 2001).Another very interesting mechanism that can entrain circadian clocks 

in the peripheral tissues is the cellular redox state (NAD/NADP oxidative state) known as 

the metabolic entrainment pathway(s) (Rutter et al., 2001). McKnight et al. suggest that 

the NAD(P)H/NAD(P)+ ratio affects the binding of CLOCK/NPAS2-BMAL1 

heterodimers to the promoter regions of clock gene sequences (Rutter et al. 2001). Silent 

mating type information regulation 2 homolog-1(SIRT1), a NAD+-dependent histone 
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deacetylase may be another candidate for connecting cellular metabolism to circadian gene 

expression (Asher et al. 2008; Nakahata et al. 2008). Silent mating type information 

regulation 2 homolog, SIRT1 deacetylates various transcription factors and coactivators 

(Zschoernig and Mahlknecht 2008) and influences the circadian expression of several 

clock genes (Asher et al. 2008; Nakahata et al. 2008). Poly (ADP-ribose) polymerase-1 

(PARP-1), another NAD+-dependent enzyme, has been implicated in the phase resetting of 

liver clocks. PARP-1 adds poly (ADP-ribose) residues to Clock protein in a diurnal 

manner, and whereas PARP-1 and affects the kinetics of phase adaptation to feeding 

rhythms (Asher et al. 2010; Bellet and Sassone-Corsi et al., 2010) (Figure 3).  

Another surprising zeitgeber capable of synchronizing peripheral clocks in 

mammals is temperature fluctuations. Shallow fluctuations in temperature rhythms imitate 

fluctuations in body temperature rhythms, and can maintain previously induced rhythms in 

peripheral clocks and can induce phase shifts without affecting the phase of the SCN 

(Brown et al., 2002).  

 

1.7.3 Physiological importance and roles of peripheral clocks  

After the discovery of clock genes in master oscillators, scientists started looking  

for clock gene expression in rest of the cells in the body. It quickly became apparent that  

circadian clocks ticked if not in all, but almost all peripheral cells and tissues. This  

phenomenon was seen in several vertebrate and non-vertebrate species popularly used  

for circadian studies (Balsalobre et al., 1998; Yamazaki et al., 2000). As discussed earlier, 

the central and peripheral clocks have several similar and dissimilar properties in terms of 
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mechanism of action, molecular components, synchronization, entrainment, input-output 

signals and physiological significance to name a few. Cultured cells and explants from 

tissues such as, lung, kidney, spleen, pancreas, heart, stomach, skeletal muscle, thyroid 

gland and adrenal gland exhibit robust circadian oscillations in clock genes (Yagita et al., 

2010). However, not all tissues or cells exhibit similar or persistent cyclic rhythms, such 

as; the thymus gland and testis in mice are arrhythmic. It is hypothesized that the thymus 

and testis are largely comprised of rapidly multiplying and differentiating cells which may 

not exhibit a functional circadian oscillators (Alvarez et al., 2005; Liu et al., 2008).For 

instance, embryonic stem cells (ES cells) may be considered as the least differentiated 

cells incapable of generating circadian oscillations. Yagita et al. demonstrated that ES cells 

become rhythmic once they undergo differentiation implying that there is some sort of 

cross-talk between the cellular differentiation program and the circadian clock components 

(Yagita et al., 2010). 

A large number of key physiological functions exhibit daily oscillations in the 

peripheral tissues. There are several examples which support this observation. Endobiotic 

and xenobiotic detoxification in the liver, kidney and small intestine; lipid and 

carbohydrate metabolism in the liver, muscle and adipose tissue; renal plasma flow and 

production of urine in the kidneys; blood pressure and rate of heart beats in the 

cardiovascular system exhibit recordable daily rhythmic oscillations. 
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Figure 3. The circadian feedback loop between SIRT1 activity and Nampt transcription The Clock/Bmal1 
heterodimer bind to the E-box of Nampt gene. Clock acetylates Bmal1 and local histone tails which promotes 
transcription of Nampt. The resulting Nampt enzyme increases synthesis of NAD+, which activates the 
SIRT1. Meanwhile, the Clock/Bmal1 heterodimer induce transcription of cry1 and per2 too. The Cry1/Per2 
heterodimer, serving as co-repressors of Clock/Bmal1, turns off the transcription of Clock/Bmal1 and Nampt. 
The activated SIRT1 is subsequently recruited to the transcriptional machinery by Clock. Here SIRT1 
deacetylates Bmal1 and Per2. This deacetylation promotes the degradation of both proteins. As such, the 
promoter region of Nampt is re-primed and the gene is ready for the next round of Clock-dependent 
induction (Bellet and Sassone-Corsi, 2010). 

 

 

 

 

 



 

46 

 

The old belief of hierarchical organization of the circadian system has been 

revisited and revised owing to the findings of cell-autonomous peripheral clocks. It was 

believed that oscillators in the higher centers send out neuronal, humoral and signaling 

molecules and control the rhythms of peripheral tissues. In absence of the signals from 

master oscillators, the peripheral tissues are totally incapable of generating any circadian 

rhythms of their core clock genes and ccgs related to their physiological functions. 

Disruption in the master oscillators or their signals was sufficient to throw off the 

functions and rhythms in the peripheral tissues. Time and again several studies have 

shown otherwise. Technically, a peripheral oscillator can generate its own rhythm and 

regulate the physiological functions within its cell/tissue without having to depend on the 

signals/cues from the master clock. For instance, kidneys, liver and gastrointestinal tract 

(GIT) can have their rhythms and functions synchronized by the time of food-intake. 

These tissues host what are known as food entrainable oscillators (FEO) which do not 

need any other external signal or cues from the master clock to function rhythmically.  

However, the peripheral clocks in different tissues and cells along with their physiological 

outputs must be in sync for an organism to survive. This harmony and synchrony is 

brought about by the master clock.  Albrecht and colleagues proposed the “orchestra 

model of circadian organization” in complex multicellular organisms. According to this 

model, the master clock sends out neural, humoral and substrate signals to “orchestrate” or 

synchronize the oscillators present in the peripheral tissues (Dibner et al, 2009). Studies in 

several tissues and cell-lines indicate that peripheral clocks are not passive players and 

may have critical roles in regulating the rhythms of local physiological functions. It is 
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therefore, critical to understand the role of peripheral clocks in each tissue, and their 

relationship to another in order to comprehend the role of peripheral clocks in circadian 

physiology.  

It is difficult to distinguish the roles of peripheral clocks when master oscillators 

(such as the SCN) are intact. The SCN continuously synchronizes the phases of peripheral 

clocks thus influencing downstream physiological outputs. To go around this situation, 

scientists study circadian transcriptomes of tissue/cell explants and apply tissue/cell type 

selective manipulation of local clock machinery and look for changes in alterations in 

physiological outputs.  

Transcriptome studies show that several clock genes are expressed in a tissue 

specific manner, and some clock genes have opposite effects in different tissues indicating 

that all peripheral clocks are not alike. Additionally, of the 5-10% transcriptome that are 

rhythmically expressed across the peripheral tissues, there is very little overlap in these 

genes. This diversity implies that the peripheral clocks are unique to each tissue, hence a 

particular tissue and cell is able to carry out its own unique functions. Each tissue-specific 

or cell-specific oscillator exercises its effects on distinct clock-controlled pathways thus 

diversifying its role in physiological and molecular regulation. The physiological 

significance in having different peripheral clocks regulating diverse physiological and 

cellular functions goes back to support the theory of “temporal compartmentalization of 

biochemically incompatible processes” and organization of successive compatible 

processes for maximum energy efficiency in a well-orchestrated manner in the course of a 

normal day. Thus, the peripheral clock tends to become an interpreter, messenger and 
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organizer helping the cross-talk between the central clock and peripheral physiological 

processes.  

What are the mechanisms that the peripheral clocks use in reception of central clock 

oscillators and regulation of peripheral physiological functions are under a lot of scrutiny 

lately. Cell/tissue specific knockout of clock genes and ccgs have revealed very interesting 

results. For instance, Takahashi and colleagues rescued the expression of Bmal1 expression 

in Bmal1-deficient mice. They showed that activation of bmal1 is required in the brain to 

restore the overall circadian behavioral rhythms, but restoring bmal1 expression in 

muscles was sufficient to rescue normal wheel-running activity (McDearmon et al., 2006). 

Lamlia et al. demonstrated that liver-specific bmal1 leads to dysfunction in glucose and 

lipid metabolism (Lamlia et al., 2008). Disruption of pancreatic-bmal1expression causes 

defective β-cell function leading to diabetes-like state (Marcheva et al., 2010). In the 

cardiovascular system, Bmal1 helps in regulation of blood pressure and thrombogenesis 

(Westgate et al., 2008).Disruption of peripheral oscillator in adrenal gland alters the 

glucocorticoid (GC) rhythms (Oster et al., 2006; Son et al., 2008). Genome-wide 

transcriptome profiling studies in peripheral tissues such as heart, liver and adrenal gland 

indicate that around 5% to 10% of genes are under circadian regulation and expressed 

rhythmically (Panda et al., 2002; Ueda et al., 2002).Several of these genes are involved in 

regulation of important physiological functions across different tissues. 

 

1.7.4 Lessons from studies on various peripheral tissues and their clocks  

Weitz et al. employed Cre-lox technology and bmal1 allele with loxP flanking 
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exon 8 of the gene to inactivate the bmal1 gene in retina and liver. The resulting phenotype 

exhibited disturbances similar to those of whole-body bmal1-knockout (bmal1-KO) mice 

(Storch et al., 2007). These retina-specific bmal1-KO mice exhibited normal circadian 

gene expression everywhere except in the retina. The retina in these mice showed 

abnormally low electrical activity especially when exposed to light leading to impaired 

retinal visual processing.  Even in the presence of intact SCN in these KO mice, the 

animals expressed loss in circadian rhythms of ~ 90% of the otherwise rhythmically 

oscillating genes. Similar results were seen in SCN ablated (SCNx) retina-specific bmail1-

KO mice. Although, the role of retinal-bmal1 in regulating visual processing and electrical 

activity in retina is still under investigation it is clear that a functional retinal clock is 

required for processing photic information and not the SCN (Storch et al., 2002; Storch et 

al., 2007).  

Liver is one of the most extensively studied tissues in terms of circadian 

transcription and ccgs. Around 1000 circadian transcripts are rhythmic in liver of which  

several genes encode of key enzymes involve in metabolic pathways, energy homeostasis, 

detoxification and several other biochemical processes.  In 2008, Lamia et al. studied the 

effects of liver-specific bmal1- KO in mice on glucose metabolism. These models 

exhibited hypoglycemia and increased glucose clearance. Kornmann et al. showed that 

over expression of Rev-erbα in liver prevents the expression of Bmal1 along with the loss 

of rhythms of several clock-controlled genes in the tissue (Kornmann et al., 2007).  

An important organ involved in glucose metabolism is the pancreas and specifically 

the β-cells. Marcheva et al. examined bmal1-deficient pancreatic islets in-vitro to study the 
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importance of their core clock machinery. These cells were much smaller and had 

defective insulin secretion. In the in-vivo models, the islet-specificb bmal1-deficient mice 

expressed severe phenotype with markedly reduced glucose tolerance, severely reduce 

insulin production and a very high blood glucose levels throughout the day. In a normal 

pancreatic cell with functional circadian clock, Clock/Bmal1 heterodimers bind to the E-

box of Nicotinamide phosphoribosyltransferase (Nampt) gene. The clock acetylates 

Bmal1and promotes the transcription of Nampt. The Nampt enzyme increases NAD 

synthesis, which induces activation of sirtuin1 (SIRT1). The Clock/Bmal1 heterodimer 

promote the transcription of cry1 and per2 too. The Cry1/Per2 heterodimer bind to the 

promoter regions of clock/bmal1 and Nampt and suppress their transcriptions. The Clock 

recruits the activated SIRT1 which in turn deacetylates Bmal1 and Per2 proteins leading to 

their degradation. The degradation removes the negative feedback on the Nampt and thus 

priming to the next round of Clock-dependent transcription (Marcheva et al., 2008). The 

SIRT1 is an important enzyme which has large number of target molecules, some of these 

molecules participate in energy homeostasis, metabolism, cancer and aging. In glucose 

metabolism, the SIRT1 induces insulin production in β-pancreatic cells by inhibiting 

uncoupling protein2 (UPC2) and increasing exocytosis of insulin-laden globules.  In 

bmal1-mutation and deficiency, there is no SIRT1 activation, which leads to reduced 

insulin production and diabetes-like symptoms. 

Another important peripheral tissue known to regulate several metabolic and 

physiological functions is the adrenal gland. The adrenal gland is part of the hypothalamic 

pituitary-adrenal axis (HPA axis) and receives humoral and neuronal signals from the 
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hypothalamus and pituitary and releases glucocorticoids (GCs) accordingly. The adrenal 

cortex releases the GCs under the influence of SNS and ACTH (adrenocorticotropic 

hormone) via the HPA axis. Hence, it was initially considered that adrenal gland was a 

passive organ under the strict regulation of the hypothalamus and pituitary gland with 

regards to GC secretion on a daily basis. GCs are strong signaling molecules, capable of 

shifting the clock gene expression in peripheral organs such as liver, kidney and heart 

(Balsalobre et a., 2000).  Surgical removal/ablation of adrenal gland (adrenalectomy) 

induces loss/dampening of rhythmic expression of several genes in the liver (Oishi et al., 

2005). Corticosterone of the adrenal cortex modulates gluconeogenesis and lipid 

metabolism in the liver, cardiovascular functions and immune functions (Kemppainen & 

Behrend, 1997). Oster et al. investigated if the adrenal clock helped/ played any role in the 

modulatory and regulatory capacities of the adrenal gland (Oster et la., 2006). They 

observed that several genes involved in the biosynthesis of corticosterone are clock 

controlled (Oster et al., 2006). They used transplantation studies (adrenals from WT or 

Per2/Cry1 KO grafted into adrenal ablated mice; adrenal-specific Per2/Cry1KO grafted to 

WT). It was observed that both adrenal and SCN must have functional clocks for normal 

rhythmic GC synthesis. Adrenal explants suggest that the clocks in adrenal gland gate its 

sensitivity to ACTH on a rhythmic basis (Oster et al., 2006). They demonstrated that the 

local clock is tightly linked to the steroidgenic pathway/biosynthesis of glucocorticoid via 

StAR (steroidogenic acute regulatory proteins). The cyclic expression of StAR (a rate 

limiting gene of steroid biosynthesis) is under the direct control of Clock/Bmal1 

heterodimer. StAR is an adrenal gland-specific ccgs, thus resulting in cyclic rhythms in GC 
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production (Figure 4).  

Nakamura et al. investigated the role of Clock and Bmal1 in the cardiovascular 

system. They found that Clock/Bmal1 heterodimer transactivates peroxisome proliferator 

activated receptor-γ (PPARγ). The PPARγ is a member of the superfamily of nuclear 

receptor ligand-activated transcription factors which participates in glucose and lipid 

metabolism. It also has vasoprotective action and regulates blood pressure in the 

cardiovascular system (Nakamura et al., 2008). Wang et al. highlighted the importance of 

vascular and endothelial PPARγ expression over a period of 24hrs of blood pressure and 

heart rate.  Smooth muscle and endothelial cells lacking PPARγ exhibited reduced 

rhythms of Bmal1, blood pressure and heart rate. They showed compelling evidence 

cardiac clock and PPARγ are required for normal cardiac functioning. Namely, PPARγ 

exhibits robust rhythms which precede Bmal1. Chromatin immunoprecipitation (ChiP) 

assay revealed that PPARγ interacts with PPRE (PPARγ response elements) sites on the 

Bmal1 promoter. Lastly, rosiglitazone (RGZ), a PPARγ activator induces Bmal1 

expression in mouse endothelial cell line (Wang et al., 2008; Wang et al., 1995). In 

addition to studies in endothelial cells, Bray et al. and Duran et al. studied the role of 

circadian clocks in the cardiomyocytes functions (Bray et al., 2008; Durgan et al., 2006). 
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Figure 4. The peripheral adrenal clock). The adrenal local clock is tightly linked with the steroidogenic 
pathway. StAR is a rate-limiting gene of steroid biosynthesis. The cyclic expression of StAR is directly 
controlled by the CLOCK:BMAL1 heterodimer. Thus, StAR is an adrenal gland-specific clock-controlled 
gene; consequently, resulting in daily oscillation in steroidogenesis which contributes to the generation of the 
robust GC rhythm (Son et al., 2011).  
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Mice which lack clock gene in their cardiomyocytes express lack of rhythmicity in 

myocardial gene expression, glycogenesis, β-adrenergic signaling, triglycerides 

metabolism, epinephrine induced contractility, heart-rate, and repression of cardiac output 

(Bray et al., 2008; Durgan et al., 2006). Hence, disrupting various players in the circadian 

clock in tissues such as fat, kidney, adipose tissue, ovary should demonstrate the 

requirement of a responsive and functional circadian peripheral. Hence, disrupting the 

clock specifically in other tissues, such as fat, kidney, etc., should further demonstrate the 

requirement of responsive and functional peripheral circadian clocks in other physiological 

systems. 

 

1.8 Specific objectives  

 

1.8.1 Objective 1 

To investigate rhythmic immune and clock properties in avian spleen. We will 

identify and characterize oscillations in spleen and test the hypothesis that the circadian 

clock rhythmically regulates immune tissue function in chicken. Temporal expression 

profiles of immune response and core clock genes in immune tissues will be identified and 

characterized. We will examine the daily regulation of important proinflammatory 

cytokines namely, TNF-α, IL-1β, IL-6 and IL-18.  

 

1.8.2 Objective 2 

 Effects of LPS treatment upon immunity, temporal difference in the immune 
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response and immune tissue functions. We will test the hypothesis that the inflammatory 

response in spleen is under the regulation of circadian clock. Birds will be immune-

challenged at mid-day and mid-night to examine time-of-the day difference in 

inflammatory response by examining the temporal expression profile of pro-inflammatory 

cytokines TNF-α, IL-1β, IL-6 and IL-18. 

  

1.8.3 Objective 3 

Effects of melatonin on inflammatory response. The pineal gland secretes 

melatonin which regulates several physiological functions in the peripheral tissues. 

Melatonin therefore, acts as signaling molecule synchronizing timing information between 

the central and peripheral clock. We will investigate the effect of exogenous melatonin 

administration upon the daily dynamics of the inflammatory response in spleen.  

 

1.8.4 Objective 4  

Investigation and comparison of circadian clock gene expression and rhythms in 

the hypothalamus, ovary and adipose tissue of egg-type and meat-type hens. The 

demonstration of circadian rhythmicity in peripheral tissues and cell types and the ability 

of excess energy to impact them is an extremely powerful observation for deciphering the 

timing of reproductive physiology. While much is known regarding the contributions of 

the hypothalamic-pituitary-gonadal (HPG) axis and hypothalamic oscillator to ovarian 

function, little is known regarding the necessity of peripheral clock and their coordination 

of daily ovarian physiology. In the present study we examine the daily control of core 
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clock genes within central and peripheral clocks in two distinct lines of hens and present a 

novel model for studying circadian control of ovarian physiology in normal and obesity 

prone subject.
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2. CIRCADIAN CLOCK REGULATION OF IMMUNE FUNCTION IN AVIAN 

SPLEEN
*
 

 

2.1 Introduction  

Higher organisms exhibit molecular circadian oscillators in peripheral tissues and  

cell types similar to those witnessed in the central nervous system. These peripheral  

clocks regulate the timing of local physiological functions. One such key physiological  

function under investigation in our laboratory is immune defense. Circadian pacemakers 

may regulate the immune system via neuroendocrine signaling which includes hormones 

cortisol and melatonin. However, the role of local clocks in in regulating the immune 

system and inflammatory response. Studies in animal models show that immune system 

parameters exhibit time of day-dependent variations. These variations may be coordinated 

by the peripheral clock at multiple levels. The molecular mechanisms governing 

communication between the circadian system and the immune system are not completely 

understood and are under active investigation. With the identification of the core clock 

genes in immune tissues, and rhythmic oscillations of cytokine genes, it can be 

hypothesized that the clock may be important for directing daily immunological functions. 

Several cell cycle genes such as Wee1, cyclinD1, and c-Myc are regulated by 

rhythmic core clock genes. Therefore, direct effect on tumorogenesis is possible upon 

                                                 

*Reprinted with permission from “Inflammation in the avian spleen: timing is everything” by Kallur S 
Naidu, Louis W Morgan and Michael J Bailey, 2010. BMC Molecular Biology, 11, 104-117, Copyright 
2010 BioMed Central Ltd.   
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disruption of circadian rhythms. In rodents, the clock gene ‘period’ has been implicated in 

tumor suppression and DNA repair. The per2-mutant mice lack daily rhythmic expression 

of an important immune factor Interferon-γ (IFN- γ) in the spleen when compared to wild-

type mice. The bmal1- deficient mice have impaired B cell development, while per2-

mutant mice show very poor response to LPS-induced endotoxic shock. These data 

strongly suggest that circadian clocks are key regulators of the immune functions.  

The molecular mechanisms governing communication between the circadian 

system and the immune system are not completely understood and are largely under 

investigation. In order to understand the progression of several inflammatory disorders and 

disease conditions, it is critical to understand how the disruption of circadian timing 

mechanisms leads to dysfunctional immune response. 

Therefore, the aim of this research proposal was to investigate daily and circadian 

regulation of immunological function by the circadian clock in our animal model, the 

domestic chicken (Gallus gallus). We chose an important peripheral tissue critically 

involved in t avian immunological functions, the spleen.  The avian spleen was examined 

for expression patterns of core clock genes and temporal regulation of the inflammatory 

responses over a 24-hour period. Hence, avian spleen was systematically investigated to 

test whether, i) its core clock genes exhibit daily and/or circadian rhythms, and  ii) pro-

inflammatory cytokines genes exhibit daily and/or circadian rhythms. The study provided 

a novel functional evidence for the presence of core circadian clock genes in the avian 

immune tissue, and its possible role in temporal regulation of immune tissue physiology.  
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2.2 Background and significance  

The rotation of earth on its axis and revolution around the sun exposes its living 

organisms to the light/dark cycle. Synchronization of the internal environment to the 

external environment’s 24-hour periodicity has resulted in evolution of the molecular  

circadian clocks of living organisms on planet Earth. As a result, living organisms  

exhibit circadian rhythms in their physiology and behavior. The word “circadian” stands  

for circa diem in Latin, which means “about a day.” Living organisms have complex  

neural and molecular mechanisms which enable them to anticipate and adapt to the  

dynamic daily environmental changes. Living organisms have endogenous timing  

system known as the circadian clock. The circadian clocks are capable of regulating  

behavioral and physiological functions on a daily basis by complex signaling  

mechanisms.  

These circadian rhythms exhibit a period of approximately 24 hours which persist 

even in the absence of external timing cues. Higher organisms have specialized cells in 

certain areas of brain, eye or optic lobes which are capable of generating circadian 

rhythms. These cells make up the master pacemaker/central clock. The master pacemaker 

functions as a regulator of several physiological, metabolic and behavioral processes 

(Ralph et al., 1990). Studies indicate that peripheral organs and cells such as heart, liver, 

kidney, skin and some cultured cells carry their own circadian clock machinery (Yamazaki 

et al, 2000; Keller et al, 2009). The local clock machinery is referred to as the peripheral 

oscillator/clock. The phases of peripheral clocks might be synchronized by the master 

pacemaker, perhaps by neuroendocrinal signals. Although peripheral clocks may be under 
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the regulation of central/master pacemaker, reports indicate that these peripheral clocks 

may be involved in the regulation of local physiological processes (Schibler, 2006; Lamia 

et al., 2008 & Yamazaki et al., 2000). In addition to light, feeding and ambient temperature 

can also act as powerful zeitgebers (German for time givers) for the peripheral clocks 

(Damiola et al. 2000; Brown et al. 2002).  

The central and peripheral clocks share a fundamental mechanism of rhythm 

generation consisting of interlocking transcriptional/translational feedback loops involving 

clock genes. Molecular studies have identified several core clock genes (Glossop and 

Hardin, 2002; Reppert and Weaver, 2002 & Hastings et al., 2007). These core clock genes 

have been grouped into “positive” and “negative” elements. In mammals, the positive 

elements Clock and Bmal1 undergo transcription and translation. The Clock and Bmal1 

protein dimerize to form Clock/Bmal1 dimer binds to the E-box motifs of negative element 

genes such as per1, per2, cry1 and cry2.The negative elements proteins form oligomers 

and get translocated to the nucleus where they inhibit the binding of 

Clock/Bmal1transcription factors to the E-box, thereby inhibiting their own transcription. 

Several avian orthologs of these mammalian clock genes have been identified (Abraham et 

al., 2002; Bailey et al., 2002, Yasuo et al., 2003).  

In mammals, there are several auxillary loops that act on the primary feedback loops. 

One such interlocking loop involves the nuclear receptors (NRs), REV-ERB and ROR 

(Preitner et al., 2002; Emery & Reppert 2004). Nuclear receptors render the clock 

responsive to several circulating hormones (e.g. cortisol, estrogen, and melatonin), nutrient 

signals (e.g fatty acid derivatives, retinoids) and redox status of the cell (NAD: NAD+ 
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ratio). These feedback loops and auxillary cycles provide an approximate period of 24-

hours, and drive the rhythmic expression of several clock-controlled and clock-modulated 

genes, which in turn mediate circadian rhythms in behavior and physiology in the 

organism.  

As mentioned earlier, the presence and rhythmic expression of clock genes in 

peripheral tissues implies that the molecular clocks reside in the central nervous system as 

well as in peripheral tissues. These local clocks may be involved in the regulation of 

biological processes in the local tissues (Earnest and Cassone, 2005; Hastings et al., 2008). 

One such physiological function that may be under the regulation of circadian clock is the 

Immune system. Studies in mammals (mice, hamsters, guniea-pigs etc) indicate that 

disruption of circadian clock gene expression in peripheral tissue may induce cancer (Fu 

and Lee 2003), obesity (Shimba et al. 2005) and cardiovascular disorders (Young 2006), 

all of which have links to immune function.  

Halberg et al. demonstrated about 50 years ago that mice have diurnal variation in 

susceptibility to endotoxic shock (Halberg et al., 1960).  In addition to susceptibility to 

infection (Cutolo et al., 2005), course of a disease (e.g rheumatoid arthritis, asthma), 

clinical diagnostic parameters and drug-therapy too show time-of-day dependence 

(Sutherland et al., 2003), indicating the importance of the circadian system in regulating 

immunological responses (Smolensky et al., 1999).  Several functions and parameters in 

the immune system exhibit time-of-day dependent variations, e.g., lymphocytic 

proliferation (Esquifino et al., 1996), natural killer (NK) cell activity, (Arjona and Sarkar, 

2005), humoral immune response (Fernandes et al., 1976), cytokine levels (Young et al., 
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1995) and serum cortisol levels (Krieger 1975).  

Studies show that the circadian system and immune system are capable of 

crosstalk with each other.  Immune markers such as IL-2, IL-10, GM-CSF, CCR2, IL-6, 

IL-1β, TNF-α, MCP-1/JE, IFN-γ and IFNRs are under circadian regulation (Young et al.,  

1995; Lundkvist et al., 1998; Talkane et al., 2002; Hayashi et al., 2007). The per2 mutant  

mice lack rhythm in IFN-γ expression (Arjona & Sarkar, 2006) and are unable to  

produce IL-10 and IFN-γ upon endotoxic shock induced by LPS (Liu et al., 2006). The  

bmal1-KO show very early aging, chronic inflammation, corneal inflammation  

and reduced number of circulating lymphocytes (Kondratov et al., 2006). Mice deficient in 

cry1 and cry2 genes exhibit exacerbated cytokine production and joint swelling upon 

arthritic induction (Hashiramoto et al., 2010).  

Several functions and parameters in the immune system have been determined to 

be dependent on time-of-the day for instance lymphocytic proliferation (Esquifino et al., 

1996) , as well as proliferation of natural killer (NK) cell activity (Arjona & Sarkar, 2005), 

humoral immune response (Fernandes et a., 1976), rhythms in absolute and relative 

numbers of circulating white blood cells and their subsets (Kawate et al,, 1981), cytokine 

levels (Young et al., 1995), and serum cortisol (Krieger, 1975). Additionally, the variation 

based on time of the day in susceptibility to infection (Shackelford & Feigin, 1973), course 

of diseases in rheumatoid arthritis (Cutolo et al., 2005) or asthma (Sutherland et al., 2003), 

clinical diagnostics parameters as well patterns in response to therapy based on time of the 

day etc. uncover the integral role the circadian system plays in immunological responses 

(Hause et al., 1999). Kornmann et al., suggest that both cell-autonomous and systemic 
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pathways may participate in relaying timing information (Kornmann et al., 2007) it is 

largely unknown how the circadian system and the immune system communicate. It is 

speculated that clock-controlled factors such as cortisol and melatonin or innervations by 

the autonomic nervous system may regulate gene expression and protein activity (Ralph et 

al., 1990), but the possibility that the local clocks in immune cells may directly control 

cellular immune functions cannot be ruled out either. Hence, the aim of this part of the 

study was to gain a deeper understanding of the mechanisms regulating circadian 

immunological rhythms on a systemic level. To this end, we investigated the spleen tissue 

to test (i) for the presence of an autonomous circadian clock, (ii) whether such a clock 

regulates circadian immune functions. The aim of this study was to decipher the role of 

circadian clock in the dynamics of pathophysiology of immune response. 

  

2.3 Materials and methods  

Melatonin and lipopolysaccharides (LPS from Escherichia coli 0111:B4) were 

obtained from Sigma-Aldrich.  

 

2.3.1 Animals  

Day-old male chicks, Gallus gallus, Hy-line Brown, were obtained from Hyline  

International (Bryan, TX). For daily and circadian studies over 7different timepoints, the  

chicks were housed photoperiod of LD 12:12hr for 3 weeks.  Food and water was made 

available ad libitum. A total of n = 63 for daily study and total of n = 63 chicks were used 

for the circadian experiment. Seven timepoints tested in 12:12 hr LD photoperiod were 
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ZT0, ZT3, ZT6, ZT12, ZT15, ZT18, and ZT21 (ZT: zeitgeber time, lights on at ZT0; 

lights off at ZT12). For the circadian study, chicks were held in constant darkness (dark-

dark phase, DD) for 3 days prior to sacrificing and collecting tissue samples under dim red 

light. The circadian timepoints used for sampling were CT0, CT3, CT6, CT12, CT15, 

CT18, and CT21 (CT: circadian time). All the birds were sacrificed by CO2 asphyxiation 

and tissues collected at each timepoint were immediately placed on solid CO2 and stored 

at -80°C until use. Three pools of tissue were prepared at each time point, each of which 

was composed of three spleens (n = 9 per time point). Animal use and care protocols were 

in accordance with NIH guidelines.  

 

2.3.2 Quantitative real-time polymerase chain reaction  

From each tissue pool Total RNA (4 µg/sample) was extracted using TRIzol 

protocol (Invitrogen), according to manufactures instructions. To remove contaminating 

genomic DNA, the total RNA was subjected to DNase treatment using TURBO DNA-free 

(Ambion). Ribonucleic acid quantification was assessed using an Eppendorf 

Biophotometer (Eppendorf). Using 1 µg of DNase-treated total RNA as starting material, 

synthesis of cDNA was performed following the High Capacity cDNA Reverse 

Transcription Kit protocol (Applied Biosystems). The qRTPCR determinations were made 

using a LightCycler 480 (Roche). Each reaction of 20µl volume contained 0.5 µM 

primers, SYBR Green mastermix (Roche), and cDNA, according to the manufacturer’s 

instructions. Each incubation step consisted of an initial denaturation step at 95°C for 10 

minutes, followed by 40 cycles of a 95°C denaturation for 15 s, 30 s annealing at 63°C, 
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then extension at 72°C for 30 s. The list of primers used for the daily and circadian 

expression studies using qRTPCR are described in Table 1. All the primer pairs generated 

a single product of the predicted size as indicated by agarose gel electrophoresis. Their 

specificity was demonstrated by melting curve analysis (Tm) during every qRTPCR run. 

Typically ~25 cycles were necessary to detect amplification of the product. All qRTPCR 

assays were linear (r2 > 0.99) from 101 to 107 copies. Internal standards were used to 

determine transcript numbers. They were prepared by cloning target PCR products into 

pGEMT Easy vectors (Promega).  

Clones were verified by performing direct sequence analysis. The plasmid DNA was 

digested, followed by agarose gel electrophoresis (2.0%, w/v) for visual verification of 

correct product sizes and staining with ethidium bromide (EtBr, 0.5 µg/ml). To generate 

standard curves, a set of 100-fold serial dilutions of each internal standard (101-107 copies/2 

µl) was prepared. The transcript numbers were determined by using a 2 µl sample of a 10-

fold dilution of cDNA prepared as mentioned above. The values were then normalized to 

the number of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) copies (Table 1 and 

Table 2).  
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Table 1.  List of primers used for qRT-PCR for core clock gene expression study 

 

 

Fwd = forward primer; Rv = reverse primer; Size = expected amplicon size. Primer pairs that also spanned an 
intron are indicated by an *.  
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Table 2. List of primers for qRT-PCR for proinflammatory cytokine gene expression 
study 
 
 

 
 

Fwd = forward primer; Rv = reverse primer; Size = expected amplicon size. Primer pairs that also spanned an 
intron are indicated by an *.  
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2.4 Results  

 

2.4.1 Daily rhythms of clock genes in avian spleen  

The avian pineal gland expresses circadian clock and immune genes on a daily and 

circadian basis. This prompted us to investigate if peripheral immune tissue, spleen 

harbors and rhythmically expresses core clock genes on daily and circadian basis (Bailey 

et al., 2003; Bailey et al., 2004). From Figure 5 it is evident that the core clock genes in 

spleen exhibit 24 hr oscillations in mRNA abundance in a robust manner. Investigation of 

putative negative elements, the cry and per genes, reveals daily oscillations with 2-5 fold 

amplitudes with higher abundances occurring during the late night for cry1 (pANOVA < 

.001; pcosinor = .009), cry2 (pANOVA = .003; pcosinor < .001), per2 (pANOVA < .001; 

pcosinor = .005), and per3 (pANOVA < .001; pcosinor = .008). Analysis of putative 

positive elements, clock and the bmals, too reveals a daily pattern of rhythmicity in the 

spleen. The clock mRNA attained maximal abundance during the early night (pANOVA < 

.001; pcosinor < .001) while bmal1 is highest during the late night to early day period 

(pANOVA = .007; pcosinor = .01). The bmal2 exhibited peak expression at night time 

(pANOVA = .01; pcosinor = .03), however it was not as robust as the other core clock 

genes nor in excess of a 2-fold rhythm. Birds do not seem to exhibit period1 (per1) gene; 

hence it was not examined in our study (Table 1).  

 

2.4.2 Circadian rhythms in clock genes in avian spleen  

The core clock genes exhibit display robust oscillations under free running 
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conditions (DD).  The cry1 (pANOVA < .001; pcosinor = .001), cry2 (pANOVA = .006; 

pcosinor = .005), per2 (pANOVA < .001; pcosinor < .003), and per3 (pANOVA =.03; 

pcosinor = .006), bmal1 (pANOVA < .001; pcosinor = .003), bmal2 (pANOVA < .001; 

pcosinor = .003), and clock (pANOVA < .001; pcosinor = .002) exhibited maximum 

amplitude at late subjective night and early day (Figure 5). We demonstrate for the first 

time that the avian spleen expresses circadian clock genes on a daily and circadian manner. 

To our knowledge this is the first demonstration of daily and circadian clock gene 

regulation in an avian immune tissue (Figure 5 and Figure 6).  

 

2.5 Discussion  

In recent years, the field of chronobiology and chronotherapy has garnered a lot  

of scientific and medical attention. This attention stems from the studies that indicate  

that circadian clocks are tightly coupled with several aspects of immune function, which  

includes regulation of cytokine production, proliferation and trafficking of leukocytes  

and apoptosis (Gudewill et al., 1992; Jones et al., 1992; Lemmer et al., 1992; Sother et al., 

1995; Oishi et al., 2006; Smolensky et al., 1999; Smolensky & Portaluppi1999). However, 

molecular pathways and structures, or timing signals bridging the communication between 

circadian clocks and immune system are not yet known in their entirety. Studies are on to 

complete the puzzle of relationship between circadian clock dysfunction and the resulting 

aberrations in physiological homeostasis.In the current study we provide important insight 

to circadian control of inflammatory mechanism in the avian model.  The knowledge 

should help in opening avenues towards deciphering circadian control of immune tissues  
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Figure 5. Quantitative RT-PCR analysis of core clock genes in spleen under 12:12LD. Plotted open circles 
represent the mean ± SEM in each study group. Dashed line represents fitted plot of cosinor analysis utilizing 
linear harmonic regression. Values are represented as the number of transcript copies/1000 Gapdh 
transcripts. Abscissa labels indicate ZT timepoints for 3 hrs under LD 12:12hr photoperiod; ZT0 = lights on; 
ZT12 = lights off. Open bar on the bottom of the x-axis indicates light period, while crosshatched indicates 
darkness. The cry and per genes harbor daily oscillations ~2-5 fold in amplitude with higher abundances 
occurring during the late night for cry1 (pANOVA < .001; pcosinor = .009), cry2 (pANOVA = .003; pcosinor 
< .001),  per2 (pANOVA < .001; pcosinor = .005), and per3 (pANOVA < .001; pcosinor = .008). The clock 

and the bmals, also express a daily pattern of rhythmicity in the spleen. The clock mRNA exhibited peak 
during early night (pANOVA < .001; pcosinor < .001) while bmal1 peaked during late night to early day 
period (pANOVA = .007; pcosinor = .01). The bmal2 peaks at nighttime (pANOVA = .01; pcosinor = .03), 
however its not as robust as other clock genes nor in excess of a 2-fold rhythm.  

 

 

 



 

71 

 

 

 

 

 

 
 
 
 

 

 

  

 

 

 

 

 

 
Figure 6. Quantitative RT-PCR analysis of core clock genes in spleen under DD. Plotted dark circles 
represent the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor 
analysis utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 
Gapdh transcripts. Abscissa labels indicate CT timepoint for 3 hrs under DD conditions; crosshatched 
indicates darkness. The clock genes exhibit 24 hr rhythmicity with peak amplitudes in the late subjective 
night and early day for cry1 (pANOVA < .001; pcosinor = .001), cry2 (pANOVA = .006; pcosinor = .005), 
per2 (pANOVA < .001; pcosinor < .003), and per3 (pANOVA = .03; pcosinor = .006), bmal1 (pANOVA < 
.001; pcosinor = .003), bmal2 (pANOVA < .001; pcosinor = .003), and clock (pANOVA < .001; pcosinor = 
.002).  
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and their immunological rhythms. 

 

2.5.1 Daily and circadian regulation of clock genes in the spleen  

The avian and pineal gland exhibit rhythmic oscillations of core clock genes on a 

daily and circadian basis (Bailey et al., 2003; Bailey et al., 2004; Bailey et al., 2008). This 

and several other studies have prompted the notion that molecular clocks reside in 

peripheral tissues and cells outside the master clock (Earnest & Cassone, 2005; Hastings et 

al., 2007; Reppert & Weaver, 2002). Molecular clocks in the peripheral tissues may be 

required for regulating local peripheral physiology (Lamia et al., 2008). In this study we 

demonstrated that the avian spleen harbor core clock genes. These core clock genes exhibit 

daily and circadian oscillations. We found interesting observations firstly; there is no strict 

anti-phase of positive and negative elements. This kind of pattern has been demonstrated 

in Drosophila and mammalian models as well. The avian spleen Bmals are expressed 

coincidentally with the Cry genes. The mRNA expression pattern of these core clock 

genes is similar, but not exactly identical, to those demonstrated in the avian pineal gland 

(Bailey et al., 2003). The bmal and cry genes in the avian pineal gland are expressed 

rhythmically peaking at the same time of the day. This data was confirmed by northern 

blots. Although we do not have protein data in the spleen study, however comparing 

mRNA temporal expression profiles of core clock genes in avian spleen to those of avian 

pineal gland, mammals and flies strongly suggest that other rhythmic mechanisms are in 

place which regulate molecular rhythms among these model systems. 

Spleen is a highly dynamic tissue composed of several sub-population of cells (B 
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cells, T cells, macrophages, dendritic cells, natural killer cells). Each sub-population of 

cell serves different functions. Each cell type may possess its own cell-autonomous 

molecular clock. The overt spleen inflammatory function may be a result of independent 

timing signals originating from the sub-population of different cell types. Hence, 

additional studies are required to study the molecular clocks and their functions in different 

sub-population of the spleen tissue.  

 

2.5.2 Daily and circadian regulation of proinflammatory cytokine in the spleen  

Proinflammatory cytokines IL-1b, IL-6, and TNF are key regulators of early 

inflammatory response during infection or inflammation (Schluger & Rom, 1997). 

Understanding the regulation of cytokines under different photoperiodic conditions in 

avian spleen and the role of melatonin in modulating their expression patterns under 

normal and inflammatory states is integral to deciphering the dynamics of the 

inflammatory response (Semaeva et al., 2010). In the current study we demonstrate that 

several proinflammatory cytokine genes exhibit daily and circadian oscillations in avian 

spleen (Figure 7 and 8; Table 3 and 4). The results suggest that circadian clock in avian 

spleen may regulate the inflammatory response on a temporal basis.  
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Figure 7. Quantitative RT-PCR analysis of cytokine genes in spleen under 12:12LD. Plotted open circles 
represent the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor 
analysis utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 
GAPDH transcripts. Abscissa labels indicate ZT time values every 3 hrs under LD 12:12 conditions; ZT0 = 
lights on; ZT12 = lights off. Open bar at the bottom of  x-axis indicates the light period, while crosshatched 
indicates darkness. TNFa mRNA show peak levels at dark-light transition (pANOVA < .001; pcosinor 
.003), IL-1b (pANOVA < .001; pcosinor < .001), and IL-6 (pANOVA < .001; pcosinor < .001) mRNA 
displayed peaks at ~ZT3. IL-18 (pANOVA < .001; pcosinor = .003) achieved peak levels before midnight 
(ZT15). IL-2 and IL-12b mRNAs did not exhibit a >2-fold rhythm in LD, although their mRNA levels 
fluctuated during 24hr period.  
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Figure 8. Quantitative RT-PCR analysis of cytokine genes in spleen under DD. Plotted dark circles 
represent the mean ± SEM in each study group. The dashed line represents the fitted plot of cosinor analysis 
utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 
GAPDH transcripts. Abscissa labels indicate CT timepoints for every 3 hrs under DD conditions; 
crosshatched indicates darkness. TNFa became statistically arrhythmic at a >2-fold change. IL-1b 
(pANOVA = .004; pcosinor = .003) and IL-6 (pANOVA < .001; pcosinor = .003) mRNAs maintained 
robust circadian rhythms with peak levels at subjective midnight and subjective day respectively. IL-2 
(pANOVA < .001; pcosinor = .003), IL-l2b (pANOVA < .001; pcosinor = .002) and IL-18 (pANOVA < 
.003; pcosinor = .006) exhibit their peak mRNAs at early subjective day.  
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Table 3. Quantitative RT-PCR values of core clock and cytokine genes in spleen under 
12:12LD 
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Table 4. Quantitative RT-PCR values of core clock and cytokine genes in spleen under 
DD 
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3. EFFECT OF SYSTEMIC ADMINISTRATION OF LIPOPOLYSACCHARIDE  

ON TEMPORAL EXPRESSION PROFILE OF CLOCK GENES IN AVIAN 

SPLEEN
*
 

 

3.1 Introduction  

The presence of cellular clocks in tissues and cells of the immune system  

suggests that the peripheral clocks fulfill a local regulatory function from the studies on  

peripheral clocks of other tissues (Lamia et al., 2009). The proinflammatory cytokine  

genes (Figure 7 and Figure 8) showed daily and circadian rhythmic oscillations in spleen. 

Presence of such definitive temporal rhythms in cytokine gene expression implies that there 

might be systemic and/or autonomous circadian clock regulation.  

Halberg and colleagues found that rate of mortality by LPS-induced endotoxic 

shock in mice was dependent on the time of the day (Halberg et al., 1960; Liu et al., 

2006). We hypothesized that the immune tissue-specific mechanisms such as, response 

to induced acute systemic inflammation may be under temporal regulation in birds 

too. During inflammation immune tissues release several signaling molecules in the 

form of pro inflammatory cytokines. The LPS interacts via the LPS-binding protein 

(LBP)-LPS complex (TLRs) on the spleen tissue to induce downstream signaling pathways 

leading to transcription of several pro-inflammatory cytokines. Therefore, we 

                                                 

*
Reprinted with permission from “Inflammation in the avian spleen: timing is everything” by Kallur S 

Naidu, Louis W Morgan and Michael J Bailey, 2010. BMC Molecular Biology, 11, 104-117, Copyright 
2010 BioMed Central Ltd.   
 



  

79 

 

investigated the effect of systemic administration of LPS on spleen to test whether the 

immune/inflammatory response to bacterial endotoxin is time-of-the day dependent. If 

there was a temporal regulation of inflammatory response in the spleen, what possible 

signaling molecule might be modulating this inflammatory response?  

 

3.2 Background and significance  

Administration of lipopolysaccharide (LPS or endotoxin) systemically or 

intravenously (i.v.) is a powerful method of challenging the immune system. This acute 

inflammation results in increase in the concentrations of different cytokines. The effects of 

LPS vary with the dose and mode of administration. LPS administration generally leads to 

fever, acute-phase responses and septic shock (Rivest et al., 2000). Marpegan et al in 2009 

replicated the classic chronotoxicity by Halberg (Halberg et al., 1960). They compared and 

contrasted the mortality rates, types of pro-inflammatory cytokine induced, and effect on 

locomotor activity in two groups of mice injected with LPS at two different times of the 

day (zt11 and zt19). They compared these results to two more groups of mice housed in 

constant darkness (DD), to determine whether similar results persisted in the absence of 

light. As expected, the mice in LD expressed differential susceptibility to LPS-induced 

endotoxic shock depending on time of the day. There was no temporal difference in 

mortality rates in mice housed in DD. There was only transient effect on locomotor 

activity with no modification in circadian period and phase. In LD mice, LPS injection at 

ZT11 induced levels of IL-1b, IL-6 when compared to ZT19.  Mice with high LPS-

mortality at zt11 had high levels of IL-1b and IL-6 when compared to zt19. No such 
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information is available for the chicken, although it is reasonable to think that such 

processes occur in this species. To gain direct evidence in this regard we hypothesized that 

the spleen, an important peripheral immune tissue, possesses an endogenous circadian 

clock and that LPS administered at different phases of the clock would vary in 

inflammatory effects.  

 

3.3 Materials and methods  

Effect of clock phase on LPS toxicity was tested by comparing the effects of 

intravenous LPS administration at midday (zt6) to those at midnight (zt18).  

 

3.3.1 Animals  

Day-old male chicks, Hy-line Brown (n = 144) were housed under 12:12 hr LD  

photoperiod for 5 weeks until their weight reached ~0.5 kg. Of the 144 birds, 72 birds 

were used to evaluate acute systemic inflammatory response at midday, defined as ZT6. 

For this, an intravenous (IV) injection of 1.5 mg/kg LPS in 100 ul of saline was 

administered to 36 birds (test group), while 100 ul/bird of saline vehicle control was 

administered to an additional 36 birds (control group). Spleen tissues were collected 5 

minutes post-injection, and then for every 1 hour for next 3 hrs (n = 9 per sampling, n = 36 

per condition) in test and control groups. A 3 hr time frame has proven to be an 

appropriate time course to analyze cytokine induction as a result of LPS stimulation 

(Miller, 1997).  

The remaining 72 birds were similarly injected with LPS (n = 36) (1.5 mg/kg 
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in100 ul saline, test group) or saline (n = 36, control group) as midnight, defined as ZT18.  

Spleens were harvested 5 minutes following the injection and then every hour for 3 hrs (n 

= 9 per sampling, n = 36 per condition) in the test and control groups at the zt18 timepoint.  

 

3.3.2 Quantitative real-time polymerase chain reaction  

From each tissue pool Total RNA (4 µg/sample) was extracted using TRIzol 

protocol (Invitrogen), according to manufactures instructions. To remove contaminating  

genomic DNA, the total RNA was subjected to DNase treatment using TURBO DNA- 

free (Ambion). Ribonucleic acid quantification was assessed using an Eppendorf  

Biophotometer (Eppendorf). Using 1 µg of DNase-treated total RNA as starting material,  

synthesis of cDNA was performed following the High Capacity cDNA Reverse  

Transcription Kit protocol (Applied Biosystems).  

The qRTPCR determinations were made using a LightCycler 480 (Roche). Each 

reaction of 20µl volume contained 0.5 µM primers, SYBR Green mastermix (Roche), and 

cDNA, according to the manufacturer’s instructions. Each incubation step consisted of an 

initial denaturation step at 95°C for 10 minutes, followed by 40 cycles of a 95°C 

denaturation for 15 s, 30 s annealing at 63°C, then extension at 72°C for 30 s. The list of 

primers used for the daily and circadian expression studies using qRTPCR are described in 

Table 1. All the primer pairs generated a single product of the predicted size as indicated 

by agarose gel electrophoresis. Their specificity was demonstrated by melting curve analysis 

(Tm) during every qRTPCR run. Typically ~25 cycles were necessary to detect 

amplification of the product. All qRTPCR assays were linear (r2 > 0.99) from 101 to 107 
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copies. Internal standards were used to determine transcript numbers. They were prepared 

by cloning target PCR products into pGEMT Easy vectors (Promega). Clones were 

verified by performing direct sequence analysis.  

The plasmid DNA was digested, followed by agarose gel electrophoresis (2.0%, 

w/v) for visual verification of correct product sizes and staining with ethidium bromide 

(EtBr, 0.5 µg/ml). To generate standard curves, a set of 100-fold serial dilutions of each 

internal standard (101-107 copies/2 µl) was prepared. The transcript numbers were 

determined by using a 2 µl sample of a 10-fold dilution of cDNA prepared as mentioned 

above. The values were then normalized to the number of Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) copies.  

 

3.3.3 Statistical analysis  

Analysis of variance (ANOVA) (Sigmaplot) was used for analyzing times series 

data involving the 7 timepoints. The cosinor analysis was done using linear harmonic 

regression (CircWave software) (Oster et al., 2006). Student-Newman-Keuls method was 

used to estimate significant differences among means. Average changes in cytokine levels 

in the LPS and melatonin experiments were subjected to two-way ANOVA (Sigmaplot) 

and multiple comparisons vs. control group (Holm-Sidak method) for each time point. 

Statistical significance is based on P < 0.05.  
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3.4 Results  

 

3.4.1 Daily regulation of the inflammatory response in avian spleen  

Our experiments demonstrate that several inflammatory cytokines oscillate in a 

daily and circadian manner in spleen (Figure 6 and 7). Therefore, we hypothesized that the 

circadian clock may regulate the inflammatory response in the avian spleen.  Time-of-day-

dependency of inflammatory response in spleen was studied performed by challenging the 

birds with LPS at midday and midnight followed by assaying proinflammatory cytokine 

mRNA expression profiles. The results indicated that one set of cytokines exhibits greater 

overall induction during the night vs. the day, implying daily regulation of inflammatory 

response (Figure 9 a-f). For instance, TNFα exhibits a ~8-fold greater overall induction at 

midnight (ZT18) versus midday (ZT6) following immune challenge (p, ANOVA < 0.001) 

(Figure 9 a). However, an LPS injection at ZT6 (pANOVA = 0.5) lead to a mere 2.5-fold 

average induction of TNFα levels in the three hrs when compared to ZT18 (p, ANOVA < 

00.001) vs. saline control. A closer examination reveals that the magnitude of TNFα 

induction at midnight is a reflection of daily TNFαregulation, as the TNFά levels of saline 

group at ZT18 is higher than those at ZT6 saline group (Figure 9 a). The IL-18 cytokine 

induction exhibits patterns similar to those of TNFά cytokine. Around 7-fold greater 

overall induction at midnight (ZT18) vs. midday (ZT6) following immune challenge (p, 

ANOVA < 00.001) (Figure 9 b, Table 5) was seen. However, only a 3-fold average 

induction of IL-18 levels was observed when LPS was administered both ZT6 (pANOVA 

< 0.001) and ZT18 (pANOVA < 0.001) vs. saline control (Figure 9b, Table 5). IL-1b 
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(Figure 9 c) and IL-6 (Figure 9 d) harbor exhibited a very different daily inflammatory 

response profiles. When compared with TNFα and IL-18, the IL-1b and IL-6 did not 

express variation in induction at midnight vs. midday following LPS stimulation. 

However, the magnitude of IL-1b and IL-6 induction after LPS injection is higher at 

midnight than midday. 

Quantitatively, a 15-fold (p, ANOVA < 0.001) vs. 6-fold (p, ANOVA < 0.001) for 

IL-1b, and 331-fold (p, ANOVA < 0.001) vs. 14-fold (p, ANOVA < 0.001) for IL-6 were 

observed (table 5). The mechanism to explain this phenomenon may be circadian clock 

regulation of inflammatory response. Cytokines IL-1b and IL-6 exhibit reduced levels at 

night when compared to daytime (Figure 9 c and d). The cytokines IL-2 (Figure 9 e) and 

IL-12b mRNAs (Figure 9 f)   did not have statistically different inductions following LPS 

injection at either ZT6 or ZT18. It implies that these cytokines are produced downstream 

of the acute inflammation pathway (Klein et al., 1997).  

Summarily, cytokines IL-1b and IL-6 cytokines released in response to an 

inflammatory response are in an anti-phase relation to the cytokines IL-18 and TNFα. This 

temporal difference in cytokine inductions in avian spleen may be due to circadian clock 

control of inflammatory response.  
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Figure 9. (a-f)  Effects of acute LPS administration upon cytokine induction in the spleen at midday vs. 
midnight. Plotted values represent the mean ± SEM in each experimental group. Values are represented as 
the number of transcript copies/1000 GAPDH transcripts following the respective treatments, 
lipopolysaccharides (LSP), or saline (Sal), ZT6 = midday; ZT18 = midnight.  
*Statistical significance is based on P < 0.05.  
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Figure 9 Continued.   
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Figure 9 Continued.  
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Table 5. Quantitative RT-PCR values of cytokine genes in spleen under LPS induced 
inflammation at midday vs. midnight 
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Table 5. Continued.  
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3.5 Discussion  

In this study, inflammatory responses by LPS-induced acute systemic inflammation 

were compared and contrasted. A set of 6 different proinflammatory cytokines were 

investigated for their mRNA expression profiles when immune challenged at two different 

times of the day (midday vs. midnight).  Of the 6 proinflammatory cytokines investigated, 

TNFα and IL-18 exhibited significant greater overall induction at midnight (ZT18) versus 

midday (ZT6) following immune challenge due to elevated levels for each during the night 

(Figure 9 a and b).  

Molecular studies to link the direct interaction between circadian clock immune  

system have helped to reveal a few key players. These key players, in turn, help us  

understand the phenomenon of temporal gating of the immune system on a daily (LD)  

and circadian (DD) basis. For instance, REV-ERBα mediates clock control of multiple  

cellular metabolic pathways, including hepatic lipid metabolism and regulation of sterol  

regulatory element-binding protein in mice (Martelot et al., 2009). It seems that the  

circadian homeostasis, metabolism, and immune responses share common pathways in  

human beings (Bechtold et al., 2010). Findings by Gibbs et al. reveal that REV-ERBα is  

capable of regulating innate immunity in the lungs (Gibbs et al., 2009). Suppressing the  

bmal1 gene in macrophages in mice removed the temporal gating of endotoxic-induced  

cytokine response in both cell-culture and in vitro studies in mice. Similar results were  

seen, when Rev-Errbα expression was suppressed in vivo and in vitro. Circadian gating  

of endotoxin response was lost in rev-erbα−/− mice and in cultured macrophages from  

these animals, despite maintenance of circadian rhythms within these cells. They also  
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used human macrophages to study the effects of knocking down rev-erbα. The results 

show that it was sufficient to modulate the production and release of proinflammatory 

cytokine, IL-6. Hence, macrophage clockwork provides temporal gating of systemic 

responses to endotoxin, and identifies REV-ERBα as the key link between the clock and 

immune function. Thus, REV-ERBα may represent a unique therapeutic target in 

inflammatory disease (Martelot et al., 2009). Thus these types of studies will help in 

understanding chronotoxicity and chronotherapeautic measures.  

We speculate that the daily control of cytokine gene expression may be under 

master clock and/or peripheral clock regulation. The systemic timing mechanism to  

explain nocturnal abundance of TNFά and IL-18 cytokines  may be attributed to several  

signaling molecules released by circadian clock, such as glucocorticoids, norepinephrine  

and melatonin to name a few.  For our next study we selected the hormone, melatonin to  

study its immunomodulatory effect on inflammatory response in the avian spleen.  We  

hypothesized  that  that  melatonin  is  immunomodulatory  molecule  and,  day  time  

administration of melatonin prior to LPS-induced systemic inflammation results in  

mRNA expression profiles of proinflammatory cytokines very different to those seen in  

Figures 5a-f.  Upon priming the birds with melatonin 1-hour prior to LPS injection  

during midday, the mRNA expression profiles of the proinflammatory cytokines should  

ideally look like that of expression profiles of test group birds  zt18-LPS injection  

(Figure 9 a-f).  The test birds at zt18 have circulating nocturnal melatonin hence, 

mimicking the zt6 birds injected with exogenous melatonin. 
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4. ROLE OF MELATONIN ON TEMPORAL REGULATION OF 

INFLAMMATION IN THE AVIAN SPLEEN
*
 

 

4.1 Introduction  

In dissertation sections 2 and 3, we demonstrated that the avian spleen exhibits 

rhythmic oscillations of several proinflammatory cytokine genes on a daily and circadian 

basis (Figures 6, 7). We suggest that the circadian clock regulate an inflammatory response 

by regulating cytokine genes on a daily basis. Our results show that the cytokines TNFά and 

IL-18 mRNA levels peak at night in normal, healthy birds. This explains the phenomenon 

a very high induction of TNFα and IL-18 at midnight (ZT18 LPS challenge) when 

compared to midday (ZT6 LPS challenge) (Figure 5). It is still unclear if the regulation of 

inflammatory response in under master clock or peripheral clock (in the spleen). 

Melatonin is one of the most important signaling molecules released by the master 

clock which is rhythmically secreted at night by the pineal gland. Melatonin impinges its 

temporal effects via melatonin receptors in target cells. Hence, the nocturnal abundance of 

TNFa and IL-18 cytokines may be due to the hormone melatonin binding to melatonin 

receptors in the splenocytes. Nocturnal peak of melatonin is observed in all vertebrate 

species, regardless of their diurnal or nocturnal behavior.  

The magnitude and duration of nocturnal increase in melatonin secretion is 

                                                 

*Reprinted with permission from “Inflammation in the avian spleen: timing is everything” by Kallur S 
Naidu, Louis W Morgan and Michael J Bailey, 2010. BMC Molecular Biology, 11, 104-117, Copyright 
2010 BioMed Central Ltd.   
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dependent on the length of the dark-phase.  

Hence, melatonin acts as an entrainment cue for multiple biological functions 

(Cassone, 1998). Melatonin’s capability in regulating antioxidant defense and immune 

system has been documented in a few studies (Reiter & Maestroni, 1999). The 

immunomodulatory role of melatonin has been examined by several scientists. The results 

however have been conflicting with no particular consensus regarding immune-

modulation function of melatonin. Studies in rats indicate pro-inflammatory role of 

melatonin, while pinealectomy produces an opposite effect, resulting in a reduction of 

immune parameters (Maestroni et al., 1986; McNulty et al., 1990). Opposite results were 

observed in mice studies. Inhibition of melatonin synthesis using propanolol (adrenergic 

beta1-receptors) and of p chlorophenylalanine administration (a tryptophan inhibitor) in 

mice results in significant reduction of the primary antibody response to sheep red blood 

cells (Maestroni et al., 1986). Melatonin studies in some bird species failed to exhibit an 

alteration in immune modulation activity (Skwarlo-Sonta, 1999). The role of melatonin in 

immune-regulation cannot be ruled in avian spleen. Hence, we hypothesized that 

melatonin may play a role in regulating the levels of pro-inflammatory cytokine genes on a 

daily basis via melatonin receptors on splenocytes.  

 

4.2 Background and significance  

Molecular mechanisms governing communication between the circadian system  

and the immune system are still largely under investigation (Kornmann et al., 2007). These 

cross talk “conversations” may involve important signaling molecules such as 
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glucocorticoids, melatonin, and cytokines. The inflammatory responses may be gated at  

a local level by the peripheral clock within a tissue or a cell. For example, mice peritoneal 

macrophages exhibit rhythmic expression of clock genes, autonomous gene oscillations, and 

exhibit regulation of inflammatory response to lipopolysaccharide (LPS) (Hayashi et al., 

2007; Keller et al., 2009; Gibbs et al., 2009).  Keller et al., demonstrated that mouse 

macrophages cell cultures exhibit rhythmic expression cytokines as well as genes that are 

involved in LPS response pathways, suggesting a direct influence of the circadian clock on 

immune responses (Keller et al., 2009).  

In the avian circadian system, like in the other higher vertebrates, overt circadian 

rhythms are regulated by a set of neural and neuroendocrinal structures. Work of Gaston 

and Menaker proved that the pineal gland is necessary for maintenance of self-sustained 

locomotor and body temperature rhythms in house sparrows, Passer domesticus (Gaston 

and Menaker, 1968). The avian pineal gland has circadian oscillators as well as 

photoreceptors which are necessary for the generation of circadian rhythms of melatonin 

secretion in vitro and entrainment of these rhythms to the external light/dark photoperiods 

(Takahashi et al., 1980).  

In birds, the pineal gland secretes melatonin which peaks at night and is an 

important regulator of physiological events (Klein 1997; Klein 2007). One such event 

suggested being under circadian clock regulation and melatonin hormone signaling is the 

immune system (Carillo-Vico et al., 2005). Several studies have shown the 

immunomodulatory effect of melatonin in chronic inflammatory conditions and tumors. 

Lissoni demonstrated that simultaneous administration of melatonin with IL-2 amplified 
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IL-2’s lymphocytosis and anti-tumor efficiency in several types of tumors (Lissoni 2000; 

Lissoni et al., 2003).Melatonin also seems to modulate biological activity and toxicity of 

the anti-tumor cytokine TNF-α (Lissoni, 2000). Patients with chronic inflammation such as 

rheumatoid arthritis and asthma express rhythmic symptoms (Cutolo & Maestroni,  2005; 

Sutherland, 2003). The increase in rhythmic symptoms may be due to disturbance in the 

clocks regulation of the immune response resulting in an increase of proinflammatory 

cytokine production. The increase in circulating cytokine levels may be due to increased 

melatonin levels resulting in inflammation. Hence, melatonin could be the functional link 

between the central/master circadian clock and immune tissue function. The molecular 

mechanisms by which melatonin regulates the immune system are largely unknown and 

are being actively investigated by various scientists.  

The current research proposal thus aimed at examining mechanisms of regulation 

between the circadian clock and immune system in the domestic chicken, Gallus gallus. It 

should help in elucidating the role of clock and melatonin in regulation of immune system.  

The proposal explored the hypothesis that the circadian clock, melatonin and immune 

system are tightly coupled in function such that the clock is capable of modulating 

immune tissue physiology and the immune response on a temporal basis.  

 

4.3 Materials and methods  

Effect of melatonin on LPS-mediated acute inflammatory responses at midday 

(ZT6)  
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4.3.1 Animals  

Day old male Hy-line Brown birds (n = 72) were housed in a 12:12hr LD 

photoperiod for approximately 5 weeks until their weight reached ~0.5 kg.  The birds were 

injected with an intramuscular injection (IM) of 100 µL saline (n = 36, control group) or 

100 µL saline containing sufficient melatonin to provide 100 µg melatonin/kg bodyweight 

(n = 36, study group) at ZT5. The melatonin dose gives rise to plasma concentrations that 

mimic physiological nighttime concentrations in the chicken (Cassone, 1986). One hour 

post-melatonin (study group) or post-saline (control group) injection, an intravenous (IV) 

injection of LPS (1.5 mg/kg, 100 ul) was delivered to half the animals (study group) and 

saline vehicle to other half (control group). Spleen tissues were harvested 5 minutes 

following the second injection and then every hour for 3 hrs (n = 9 per sampling, n = 36 

per condition) from the study and control groups. A 3 hr time frame is considered 

sufficient for LPS -induced cytokine production (Miller et al., 1997).  

 

4.3.2 Quantitative real-time polymerase chain reaction  

From each spleen tissue pool Total RNA (4 µg/sample) was extracted using 

TRIzol protocol (Invitrogen), according to manufactures instructions. To remove 

contaminating genomic DNA, the total RNA was subjected to DNase treatment using 

TURBO DNA-free (Ambion). Ribonucleic acid quantification was assessed using an 

Eppendorf Biophotometer (Eppendorf). Using 1 µg of DNase-treated total RNA as starting 

material, synthesis of cDNA was performed following the High Capacity cDNA Reverse 

Transcription Kit protocol (Applied Biosystems). The qRTPCR determinations were made 



  

97 

 

using a LightCycler 480 (Roche). Each reaction of 20µl volume contained 0.5 µM 

primers, SYBR Green mastermix (Roche), and cDNA, according to the manufacturer’s 

instructions. Each incubation step consisted of an initial denaturation step at 95°C for 10 

minutes, followed by 40 cycles of a 95°C denaturation for 15 s, 30 s annealing at 63°C, then 

extension at 72°C for 30 s. The list of primers used for the daily and circadian expression 

studies using qRTPCR are described in Table 1 and Table 2. All the primer pairs generated 

a single product of the predicted size as indicated by agarose gel electrophoresis. Their 

specificity was demonstrated by melting curve analysis (Tm) during every qRTPCR run. 

Typically ~25 cycles were necessary to detect amplification of the product. All qRTPCR 

assays were linear (r2 > 0.99) from 101 to 107 copies.  

 Internal standards were used to determine transcript numbers. They were prepared 

by cloning target PCR products into pGEMT Easy vectors (Promega). Clones were 

verified by performing direct sequence analysis. The plasmid DNA was digested, followed 

by agarose gel electrophoresis (2.0%, w/v) for visual verification of correct product sizes 

and staining with ethidium bromide (EtBr, 0.5 µg/ml). To generate standard curves, a set 

of 100-fold serial dilutions of each internal standard (101-107 copies/2 µl) was prepared. 

The transcript numbers were determined by using a 2 µl sample of a 10-fold dilution of 

cDNA prepared as mentioned above. The values were then normalized to the number of 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) copies.  

 

4.3.3 Statistical analysis  

Analysis of variance (ANOVA) (Sigmaplot) was used for analyzing times series 
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data involving the 7 timepoints. The cosinor analysis was done using linear harmonic 

regression (CircWave software) (Oster et al., 2006). Student-Newman-Keuls method was 

used to estimate significant differences among means. Average changes in cytokine levels 

in the control and melatonin-LPS experiments were subjected to two-way  ANOVA 

(Sigmaplot) and multiple comparisons vs. control group (Holm-Sidak method) for each 

time point. Statistical significance is based on P < 0.05.  

 

4.4 Results  

 

4.4.1 Melatonin control of the inflammatory response  

The melatonin hormone is released at night time by the pineal gland and is a 

transducer of timing information the peripheral tissues and cells which have melatonin 

receptors. Thus, melatonin seems have to an impact on a wide range of physiological 

functions throughout the body (Klein et al., 1992; Pevet, 2003). Hence, melatonin represents 

as an attractive model for studying the role of central clock in synchronization the peripheral 

clocks and their functions. Hence, in this study we investigated the effects of exogenous 

melatonin administration upon the daily dynamics of inflammation in the avian spleen. 

Melatonin administered at midday mimicking nighttime physiological levels resulted in a 

70-fold increase (p, ANOVA < 0.001) and 34-fold increase (p, ANOVA < 0.001) in case of 

TNFα and IL-18, respectively vs. control (Figure 10 a and 10 b; Table 6). Administration 

of melatonin prior to LPS injection leads to a 170-fold increase (p, ANOVA < 0.001) in 

TNFα mRNA levels. This enhanced induction effect appears to be a reflection of the  
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Figure 10. (a-f) Effects of acute melatonin and LPS administration upon cytokine induction in the spleen at  
midday vs. midnight. Plotted values represent the mean ± SEM in each experimental group. Values are  
represented as the number of transcript copies/1000 GAPDH transcripts following the respective  
treatments, lipopolysaccharides (LSP), melatonin (Mel), or saline (Sal), ZT6 = midday; ZT18 = midnight.  
Melatonin was administered one hour prior to challenge with LPS or saline (ZT5). *Statistical significance  
is based on P < 0.05.  
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Figure 10 Continued.  
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Figure 10 Continued.  
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combined actions of both molecules. For instance, TNFα increases by 2.5-fold following 

LPS stimulation alone at midday, while melatonin injection elicits a 70-fold increase. 

Combining the melatonin and LPS should theoretically induce a 175-fold induction in 

TNFά. This value is very close to what we observed in our results, a 170-fold increase. 

Similarly, IL-18 exhibited an average 3-fold increase following LPS injection at ZT6 (p, 

ANOVA < 0.001), 34-fold increase upon melatonin injection at ZT6 (p, ANOVA < 

0.001,) and about 217-fold (p, ANOVA < 0.001) after melatonin and LPS injection at 

ZT6. Hence, we observed a synergistic effect of melatonin on LPS-induced inflammatory 

induction of TNFά and IL-18 cytokine genes mRNA levels. The cytokines IL-1b and IL-6 

behave in an opposite fashion to that of TNFα and IL-18. The IL-1b and IL-6 mRNA 

levels decreased in levels following melatonin administration at midday (Figure 10 c and 

10 d, Table 6). Melatonin injection prior to LPS led to a massive increase in IL-1b and IL-

6 mRNA levels vs. melatonin ZT6 study group. Quantitatively, IL-6 increased by 14 fold 

(p, ANOVA < 0.001) upon LPS injection at ZT6, but decreased by 11-fold (p, ANOVA < 

0.001) following melatonin administration, and increased 176-fold (p, ANOVA < 0.001) 

upon melatonin+LPS injection, resulting in absolute levels 12-fold higher than LPS 

treatment alone. Likewise, IL-1b is increased 6-fold (p, ANOVA < 0.001) upon LPS 

treatment at midday, decreased by 3-fold upon melatonin injection at ZT6, and increased 

18-fold (p, ANOVA < 0.001) by both melatonin and LPS treatment at ZT6 (Table 6). The 

cytokines IL-2 and IL-12b expressed only slight increase in their mRNA levels upon 

melatonin and melatonin + LPS administration, indicating that although expression of 

these cytokines is weakly stimulated by melatonin, it does not act in conjunction with LPS  
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or enhance its  effects, at least within the 3 hr time frame of the data sampling. These data 

reveal that melatonin decreases the expression of IL-1b and IL-6 mRNA at midday but 

also functions in a synergistic fashion with LPS in the induction of these cytokines during 

inflammation.  

 

4.5 Discussion  

 This study provides evidence that melatonin is capable of regulating 

inflammatory response. However, melatonin is not capable of modulating all the pro-

inflammatory cytokines selected for the study. Hence, it implies that there may be 

additional signaling mechanisms that may be regulating the the inflammatory response in 

the spleen. For instance, IL-1b (Figure 9 c) and IL-6 (Figure 9 d) mRNA levels peak at 

ZT3, while TNFα (Figure 10a) and IL-18 (Figure 9 b) mRNA peak at subjective night. 

Additionally, neither IL-1b (Figure 9 e) nor IL-6 mRNA levels are altered upon exogenous 

administration of melatonin at ZT6 (Figure 9 f).  

The results suggest that additional circadian mechanisms of cytokine regulation 

may be present in the avian spleen. For instance, there may more than one hormone or 

chemical mediator (NE), which may be regulating some cytokines during the day resulting 

in diurnal phase differences in immune responses. Thus melatonin may not be the sole 

mediator of differential immune response in the avian spleen, as hypothesized in Figure 

11.  
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Table 6. Quantitative RT-PCR values of cytokine genes in spleen under LPS induced 
inflammation at midnight vs. Melatonin and LPS at midday 
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Table 6 Continued.  
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Figure 11. Model showing circadian clock regulation of cytokine rhythms in spleen. The IL-1b and IL-6 
cytokines may be upregulated during daytime by norepinephrine (NE) via adrenergic receptors. The TNFά 
and IL-18 are upregulated during the night time by melatonin via melatonin receptors.  
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Moore and Siopes (Moore & Siopes, 2000) reported the stimulatory effects of 

melatonin on cellular and humoral immune responses in quail were opiod-dependent. 

Additional studies have also shown that melatonin interacts with GCs and testosterone 

hormone resulting in diurnal variations in immune function (Maestroni et al., 1986; Singh 

& Haldar, 2007). In the current study we demonstrated melatonin’s ability to elicit diurnal 

changes in inflammatory response avian spleen. We also hypothesize that further study is 

needed in this area to identify the mechanism(s) and any additional mediators regulated by 

the circadian clock that are involved in modulating the immune response. 
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5. PERIPHERAL CLOCKS IN AVIAN OVARY AND ADIPOSE TISSUE 

 

5.1 Background  

Most physiological and behavioral functions of organisms exhibit a daily rhythm 

of ~24 hrs in length. These rhythmic processes are governed by environmental cues (e.g., 

daily light intensity and temperature), an endogenous circadian timing system termed the 

circadian clock, and the interactions between the circadian clock and environmental 

signals (Bell-Pedersen et al., 2005). In higher organisms, the circadian timekeeping system 

is comprised of a complex circuitry including a master pacemaker that is located in cells of 

specific structures of the organism, including regions of the brain (optic lobe) in insects; 

the eyes in certain invertebrates and vertebrates; and the pineal gland of some non-

mammalian vertebrates (Gaston & Menaker, 1968; Sokolove, 1975). In mammals, the 

master clock resides in the suprachiasmatic nucleus (SCN), which is located at the base of 

the brain, just above the optic chiasm in the anterior hypothalamus. For quite some time 

SCN was viewed as the sole master circadian structure responsible for generating ~24 hr 

rhythms of physiology and behavior.  

However, we know now that several peripheral tissues and cells contain molecular  

clocks similar to those in the brain, termed as peripheral clocks (Reppert & Weaver, 

2002). For example, researchers have discovered that circadian rhythms persist in isolated 

lungs, livers, and other tissues in vitro, in the absence of SCN control (Yamazaki et al., 

2000). These studies have led to a progressive shift in the traditional perception of 

circadian hierarchy, which is now regarded as an integrated timing system involving 
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peripheral oscillators in tissues and cells throughout the body whose activities are not 

wholly dependent upon SCN stimulation for coordination.  

The fundamental basis for circadian rhythms of physiology lies with the molecular 

clock consisting of transcriptional/translational feedback loops. In mammals, the 

molecular clock consists of interlocking feedback loops which regulate circadian gene 

expression. Transcription factors Bmal1/Bmal2 and Clock/Npas2 for heterodimers and 

bind to the E-box regulatory elements at promoter regions of period (per1, per2, per3) and 

cryptochrome genes (cry1, cry2), thereby activating their expression. Once translated, PER 

and CRY repressor proteins form cytoplasmic complexes. This complex translocates to the 

nucleus and suppresses Bmal/Clock-mediated transcription (Ko & Takahasi, 2006). This 

interaction provides the framework that enables the intracellular circadian timing system, 

creating a robust 24 hr timekeeper that drives oscillations in output gene expression.  

Although the period of an oscillator is relatively constant with a mean of 24hrs, the 

phase of the clock can vary greatly between cells and tissues. The core clock gene 

products are basic helix-loop-helix transcription factors which are capable of binding to E-

box promoter sequences of ccgs and regulating their rhythmic expression. These ccgs 

include several genes engaged in cell signaling pathways, cellular metabolism and cell 

cycle regulators. It is implied that rhythmic regulation of ccgs by the clock may be critical 

for normal physiological functioning in a cell/tissue-specific manner (Cassone et al., 1984; 

Mitchell et al., 2005). (Silver, 1986; Sharp, 1984; Nakao et al, 2007). Hens (Gallus 

domesticus) and quails (Coturnix japonica) in constant light (LL) show persistence of 

ovipositioning cycles with a (τ) of approximately 27hr. The rhythm of ovulation-
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oviposition in birds depends on several factors including, time of LH secretion 

(Underwood et al, 1997), positive feedback action of progesterone on neuroendocrine 

system and the rhythmic sensitivity of hypothalamus to the circulating progesterone which 

in turn depends on the timing of LH secretion (Lesauter et al., 2003). Studies in domestic 

hens (Lesauter et al., 2003) and Japanese quail (Yoo et al., 2004; Yoo et al., 2005) indicate 

that the oviposition-ovulation cycles are regulated by a multi-oscillatory system wherein 

the central clock drives the circadian rhythms of body temperature, and a peripheral clock 

in the ovary regulates the time of oviposition.  

 

5.2. Circadian clocks in ovary and adipose tissue  

In a very interesting study in Japanese quail (Coturnix japonicum) housed under 

constant light (LL) and constant darkness (DD), Underwood et al. (Underwood et al., 

1997) suggest the presence of a circadian clock in ovary which may regulate the rhythms  

of core body temperature (CBT). They found that the CBT rhythm exhibit daily and 

circadian oscillations. However, under LL the CBT starts free-running free with at period 

> 24hr and gets synchronized to the rhythms of oviposition. The birds under DD cease to 

ovulate and their CBT rhythms free-ran with a period close to 22hrs. Ovariectomy 

abolished the CBT rhythms when birds were kept in LL. When birds were not given any 

photic input, the CBT rhythms split into two periods, a period of < 24 hr and a period of > 

24hr. These rhythms are similar to the rhythms of oviposition.  This suggests that rhythms 

of CBT are under the influence of multiple oscillators, one of which may be located in the 

ovary which is responsible for the period > 24hr (Underwood et al., 1997). It is speculated 
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that the ovarian clock regulates rhythm of steroid hormone (tau (> 24 hr) which in turn 

regulates the longer CBT rhythms.  

The ovary of Japanese quail and domestic hens host core circadian clocks 

(Underwood et al., 1997; Yoshimura et al., 2000).  Several core clock genes such as per2, 

per3, clock and bmal1 have been identified in several peripheral tissues in quail 

(Yoshimura et al., 2000).  Strong diurnal rhythms were observed of quail per2 (qPer2) and 

qPer3 mRNA expression in granulosa cells (O-GC) and theca cells (O-TC) of fully mature 

F1 follicles (Underwood et al., 1997). Rhythms of qPer2 and a tendency toward cycling in 

qPer3, clock and bmal1 were also detected in F1 follicles from quail housed in constant 

light. The F1 follicles exhibit robust rhythms in cholesterol transporter steroidogenic acute 

regulatory protein (StAR) and steroid biosynthetic enzyme 3β-hydroxysteroid 

dehydrogenase (3-βhsd) (Nakao et al., 2007). The promoter region of StAR in transiently 

transfected primary cultures of chicken granulosa cells revealed that Clock/Bmal1 

transcription factor is capable of activating the transcription of StAR gene (Nakao et al., 

2007). Hence, the quail and domestic hen ovary may host molecular clock (perhaps 

specifically in their O-GC and O-TC) which play a role in temporal regulation of 

steroidogenesis. Ball suggests (Ball, 2007) a novel hypothesis that the clocks in avian 

ovary participate in ovulation rhythms by driving rhythmic positive steroid hormone 

feedback on the hypothalamus. An important hormone regulating the ovulation in birds 

and rodents is the LH. The LH secretion from the pituitary is under temporal regulation by 

the master clock (SCN) (Sharp et al., 1984; Silver et al., 1986). Although regulation of LH 

surge by SCN exists in rodents (e.g. rats, mice and hamsters), a similar phenomenon is 
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unclear in women. However, female subjects exhibit rhythmic secretion of LH during 

menstrual cycle. These rhythms correlate strongly with the rhythm of serum cortisol and 

the L:D photoperiod cycle (Kerdelhue et al., 2002; Garcia et al., 1981; Seibel, 1986). 

Unraveling these relationships could prove crucial to understanding the role of circadian 

clock function in diseases that negatively impact fertility.  

Autonomous rhythmicity in reproductive structures has only recently been 

explored. Although the majority of evidence from mammals suggests that some male 

reproductive structures (e.g. testis) do not contain cell-autonomous clocks (Yoo et al., 

2005; Yoo et al., 2006) circadian clocks are present in accessory structures such as the 

extratesticular ducts (Wilsbacher et al., 2002). Core clock gene expression is also evident 

in the cells of the ovary, uterus and oviduct (Dolatshad et al., 2009).  

 Disruption of circadian clock function seems to affect the fertility in several 

species (Boden et al., 2010; Kennaway et al, 2005; Miller et al., 2004). Middle aged per1
 

and per2
-/- mice exhibit reduced fecundity and fertility (Pilorz and Steinchner, 2008) while, 

clock mutant (clock
∆19) mice have lengthy estrous cycles (Miller et al., 2004) and bmal1

-/- 

mice luteal cells (LCs) display reduced progesterone production, reduced expression of 

StAR and prolonged estrous cycle. Scientists suggest that disrupted ovarian clock may be 

one of the etiologies of one such reproductive dysfunction affecting ~ 6-10% women 

known as the PCOS (polycystic ovarian syndrome).  PCOS ovarian thecal cells (O-TCs) 

have inherent defect in mitogen activated protein kinase (MAPK) signaling, which might 

contribute to excess CYP17 gene expression and androgen biosynthesis (McAllister JM, 

2006).  PCOS involves a vicious cycle wherein hyperandrogenism favors abdominal 
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adiposity, which further stimulates androgen secretion by the ovaries. It is hypothesized 

that abnormal clock gene expression in the ovary could affect the expression of steroid 

hormone biosynthetic enzymes, leading to excess androgen secretion and PCOS (Yildizet 

al., 2008).  

 

5.3 Clocks in ovary and adipose tissue in poultry  

The third largest agricultural sector in the United States is occupied by the poultry 

industry with an annual production of more than 30 billion pounds of meat and 6 billion 

dozens of eggs from chickens alone (USDA 2005). However, a major factor contributing 

to limiting the efficiency of meat production is the poor egg production. Genetic selection 

programs that underlie the gains in early rapid broiler growth have outpaced our 

knowledge of reproductive biology in currently utilized genetic backgrounds. Comparative 

studies have been done with regards to fertility and energy-balance between egg-laying 

and meat-type hens (broiler breeder hens). The broiler breeder hens have a productive egg-

laying cycle of about 40 weeks when compared to the 60 week cycle of egg-laying (layer 

breeder hens) (Cobb-Vantress 2008; International 2009). During these productive egg-

laying cycles, the  Broiler breeders lay ~173 eggs during the first 40 weeks of production 

compared to ~234 egg laid by egg-type hens  during this same period. Hence, broiler 

breeder hens have reduced rate and persistency of egg production for a given production 

cycle. The Broiler breeder hens lay ~180 eggs to the ~ 352 eggs laid by   egg-type hens; an 

approximately 50% reduction in the egg production.  

Although these large discrepancies in feed efficiency and egg-production 
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capacities are well known in the two lines of chicken, the molecular basis are still largely  

unknown. To maintain optimal egg-production capacity, the broiler breeder hens need  

strict diet and light-dark cycle managements. Strict restricted-diet to maintain uniform 

weight among the broiler breeder hens for a productive cycle seems to be the most 

effective method. Studies show that broiler breeder hens on an ad-libitum diet showed 

excessive body weight (obesity), doubling of feed intake, reduced egg-production and  

physiological symptoms similar to human metabolic syndrome (Chen SE, McMurtry JP,  

Walzem RL.( 2006) Overfeeding-induced ovarian dysfunction in broiler breeder hens is  

associated with lipotoxicity. Poult Sci.85 (1):70-81. Similar changes are produced in egg-

type hens which were force fed by intubating 120% of ad libitum intake daily for periods 

of up to three weeks (Walzem et al. 1994). The former study provided the first insight into 

a physiological mechanism that might underlie a large number of observations by others 

documenting altered hormonal patterns, ovarian dysfunction and impaired egg production 

in conjunction with untoward weight gain in female Broiler breeders (Yu, Robinson et al. 

1992a; Yu, Robinson et al. 1992b; Yu, Robinson et al. 1992c).  Hence, the relationship 

between over-feeding and reproduction and the role of circadian clocks in regulating these 

physiological events should be able to gap the bridges in understanding this phenomenon. 

 

5.4 Investigation of clock genes in layer vs. broiler hens  

 

5.4.1 Introduction  

A functional ovary is critical for successful reproduction in broiler breeder hens.  
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This is the point where the internal balance between growth and reproduction will  

interface with external management methods to achieve the greatest number of settable  

eggs. It is postulated that there are two interacting systems that regulate the timing of  

ovulation (Etches and Schoch, 1984). The first system regulates follicular maturation.  

The second system regulates the surge of LH and is under the control of circadian clock.  

It is generally accepted that the ovulation in hen has circadian component. However the  

extent to which the circadian clock regulates ovulation is still a subject of debate as the  

identity and description of the circadian oscillators regulating reproduction in poultry  

remains unknown. The innate genetic disparity in egg production of broiler breeders 

versus leghorn-type hens represents a unique opportunity to dissect out circadian timing  

mechanisms controlling ovulation in order to mitigate poor reproductive function in 

poultry and thus serve as a focal point of our investigations.  

Understanding the relationships between circadian clock and reproductive function 

will help understand the reproductive system under normal and pathological states. In the 

current study we examined temporal expression profiles of core clock genes of two 

distinct lines of poultry which differ in their reproductive function and energy storage 

capacity capabilities (fat). Comparing and contrasting these data will garner us a better 

understanding of reproductive function regulation by the circadian clocks.  The aim of the 

present research was to understand the daily regulation of reproductive function by the 

circadian clock through determining the temporal expression patterns of core clock genes 

in central clock and peripheral tissues of two distinct lines of poultry. If the broiler breeder 

hens exhibit disrupted circadian clocks within the hypothalamus, adipose tissue and ovary, 
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it may explain the poor reproductive functioning in this obesity prone poultry line when 

compared to the layer hen. These data may help establish the circadian link between ovary 

and ovarian physiology.  

 

5.4.2 Materials and methods  

 

5.4.2.1 Animals  

Day old female broiler chicks, Gallus gallus, Ross x Ross (n=54) were obtained  

from Brazos Sanderson Farms Hatchery (Bryan, TX). Day old female layer chicks, 

Bovans (n=54) were obtained from Feather Crest Farms (Bryan, TX). Animals were held in 

LL at the Texas A&M University poultry research farm till the age of 39 days. On the 40th 

day animals were placed in a LD 12:12 photoperiod for 1 week with food and water 

continuously available (total n=54 for each experiment involving 6 time points. The 6 time 

points tested in LD were ZT2, ZT6, ZT10, ZT14, ZT18 and ZT22 (ZT: Zeitgeber time, 

lights on at ZT0; Lights off at ZT12). All animals were sacrificed by CO2 asphyxiation and 

tissues (ovary, adipose tissue and hypothalamus) were harvested. The tissues were 

immediately placed on solid CO2 and stored at -80ºC until use. Three pools of tissue were 

prepared at each time point, each of which was composed of three tissue samples (n=9 per 

time point). Animal use and care protocols were in accordance with NIH guidelines.  

 

5.4.2.2 Quantitative real-time polymerase chain reaction  

From each tissue pool, Total RNA (4 µg/sample) was extracted using TRIzol 
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protocol (Invitrogen), according to manufactures instructions. To remove contaminating  

genomic DNA, the total RNA was subjected to DNase treatment using TURBO DNA-free 

(Ambion). Ribonucleic acid quantification was assessed using an Eppendorf 

Biophotometer (Eppendorf). Using 1 µg of DNase-treated total RNA as starting material,  

synthesis of cDNA was performed following the High Capacity cDNA Reverse 

Transcription Kit protocol (Applied Biosystems). The qRTPCR determinations were made 

using a LightCycler 480 (Roche). Each reaction of 20µl volume contained 0.5 µM 

primers, SYBR Green mastermix (Roche), and cDNA, according to the manufacturer’s  

instructions. Each incubation step consisted of an initial denaturation step at 95°C for 10  

minutes, followed by 40 cycles of a 95°C denaturation for 15 s, 30 s annealing at 63°C, 

then extension at 72°C for 30 s. The list of primers used for the daily and circadian 

expression studies using qRTPCR are described in Table 1. All the primer pairs generated 

a single product of the predicted size as indicated by agarose gel electrophoresis. Their 

specificity was demonstrated by melting curve analysis (Tm) during every qRTPCR run. 

Typically ~25 cycles were necessary to detect amplification of the product. All qRTPCR 

assays were linear (r2 > 0.99) from 101 to 107 copies. Internal standards were used to 

determine transcript numbers. They were prepared by cloning target PCR products into 

pGEMT Easy vectors (Promega). Clones were verified by performing direct sequence 

analysis. The plasmid DNA was digested, followed by agarose gel electrophoresis (2.0%, 

w/v) for visual verification of correct product sizes and staining with ethidium bromide 

(EtBr, 0.5 µg/ml). To generate standard curves, a set of 100-fold serial dilutions of each 

internal standard (101-107 copies/2 µl) was prepared. The transcript numbers were 
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determined by using a 2 µl sample of a 10-fold dilution of cDNA prepared as mentioned 

above. The values were then normalized to the number of Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) copies.  

 

5.4.2.3 Statistical analysis  

Analysis of variance (ANOVA) (Sigmaplot) was used for analyzing times series 

data involving the 7 timepoints. The cosinor analysis was done using linear harmonic 

regression (CircWave software) (Oster et al., 2006). Student-Newman-Keuls method was 

used to estimate significant differences among means. Average changes in core clock gene 

levels were subjected to two-way ANOVA (Sigmaplot) and multiple comparisons vs. 

control group (Holm-Sidak method) for each time point. Statistical significance is based on 

P < 0.05.  

 

5.4.3 Results  

 

5.4.3.1 Daily rhythms in the hypothalamus  

The interacting transcriptional-translational feedback loops generate circadian 

rhythms in several peripheral tissues (Bell Pederson et al., 2005). Examination of the 

putative negative elements, in layer hen hypothalamus , reveals daily oscillations ~2-3 fold 

amplitudes with high abundances occurring during the early day for cry1 (p, ANOVA = 

0.003; p, cosinor  = 0.002), and at the dark to light transition for per2 (p, ANOVA = 0.05; p, 

cosinor  = 0.01), and per3 (p, ANOVA < 0.001; p, cosinor < 0.001) (Figure 12). Cry2 (p, 
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ANOVA = 0.4), did not display a statistically significant difference over a 24 hr period in 

the hypothalamus. Analysis of the putative positive elements reveals a daily pattern of 

rhythmicity. The clock attained maximal abundance during midday (p, ANOVA = 0..004; 

p, cosinor  = 0.01) while bmal1 (p, ANOVA = 0.02; p, cosinor  = 0.02) and bmal2 (p, ANOVA 

= 0..03; p, cosinor  = 0.03) attained  maximal abundance at the light to dark transition (Figure 

12).  

In the hypothalamus of broiler hens, all clock genes examined displayed mRNA 

rhythms with 2-7 fold amplitudes over the 24 hr period with peaks occurring at midday  

for cry1 (pANOVA < .001; pcosinor < .001), cry2 (pANOVA = .09; pcosinor = .002),  per2 (pANOVA  

< .001; pcosinor <.001), per3 (pANOVA =<.001; pcosinor <.001), clock (pANOVA = .004; pcosinor =  

.001), bmal1 (pANOVA = .04; pcosinor = .007) and bmal2 (pANOVA =<.001; pcosinor <.001) 

(Figure 13). The period1 (per1) gene has not been identified in birds and is thus not 

examined in these studies.  
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Figure 12. Quantitative RT-PCR analysis of core clock genes in Layer hypothalamus. Plotted open circles 
represent the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor 
analysis utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 
Gapdh transcripts. Abscissa labels indicate ZT time values every 4 hrs under LD 12:12 conditions; ZT0 = 
lights on; ZT12 = lights off. Open bar on the bottom of the x-axis indicates the light period, while 
crosshatched indicates darkness. The cry and per genes harbor daily oscillations ~2-3 fold amplitudes with 
high abundances occurring during the early day for cry1 (pANOVA =.003; pcosinor = .002), and at the dark 
to light transition for per2 (pANOVA = .05; pcosinor =.01), and per3 (pANOVA =<.001; pcosinor <.001). 
The cry2 (pANOVA = .4), did not display a statistically significant difference over a 24 hr period. The 
clock mRNA attained maximal abundance during midday (pANOVA =.004; pcosinor = .01) while bmal1 

(pANOVA = .02; pcosinor = .02) and bmal2 (pANOVA = .03; pcosinor = .03) attained maximal abundance 
at the light to dark transition.  
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Figure 13. Quantitative RT-PCR analysis of core clock genes in Broiler hypothalamus. Plotted open circles  
represent the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor 
analysis utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 
Gapdh transcripts. Abscissa labels indicate ZT time values every 4 hrs under LD 12:12 conditions; ZT0 = 
lights on; ZT12 = lights off. Open bar on the bottom of the x-axis indicates the light period, while 
crosshatched indicates darkness. All clock genes displayed mRNA rhythms with 2-7 fold amplitudes over 
the 24 hr period with peaks occurring at midday for cry1 (pANOVA < .001; pcosinor < .001), cry2 (pANOVA = .09; 
pcosinor = .002), per2 (pANOVA < .001; pcosinor <.001), per3 (pANOVA =<.001; pcosinor <.001), clock (pANOVA = .004; 
pcosinor = .001), bmal1 (pANOVA = .04; pcosinor = .007) and bmal2 (pANOVA =<.001; pcosinor <.001).  
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5.4.3.2 Daily rhythms in visceral adipose tissue  

Integral functions of energy homeostasis, including the sleep-wake cycle, 

thermogenesis, and feeding are subject to circadian regulation (Gimble et al., 2011).  

However, it remains to be elucidated whether these genes are expressed in avian adipose  

tissue. Existence and daily oscillations of clock genes in layer VAT are evident, as clock  

genes exhibit 24 hr rhythms in mRNA abundance. Examination of the putative negative  

elements reveals daily oscillations with ~3-10 fold amplitudes with peak abundances 

occurring during the day for cry1 (pANOVA < .001; pcosinor < .001),  and cry2 (pANOVA =  

.01; pcosinor = .007), and at the dawn transition for per2 (pANOVA < .001; pcosinor <.001), and  

per3 (pANOVA =<.001; pcosinor <.001) (Figure 14). Analysis of clock and the bmals, reveals a 

daily pattern of rhythmicity in VAT. The clock attained maximal abundance during the 

late night (pANOVA = .003; pcosinor = .005) while bmal1 is highest during the late day period 

(pANOVA = .02; pcosinor = .04). The bmal2 exhibited increased expression during the early 

day and late nighttime, however there is not a statistically significant difference over a 24 

hr period (pANOVA =.2). However, for broiler hens daily core clock gene oscillations in 

VAT are markedly different (Figure 15). Cry1, the per genes and bmal1, possess daily 

oscillations with 2-6 fold amplitudes with higher abundances occurring during the day  

for cry1 (pANOVA < .001; pcosinor = < .001), per2 (pANOVA < .001; pcosinor = < .001), per3  

(pANOVA = .003; pcosinor =.001) and bmal1 (pANOVA =.009; pcosinor = .007). The cry2 (pANOVA 

= 0.1), bmal2 (pANOVA = 0.1), and clock (pANOVA = 0.09) mRNA values fluctuated, 

however none show a statistically significant difference over a 24 hr period (Figure 15).  
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Figure 14. Quantitative RT-PCR analysis of core clock genes in Layer VAT. Plotted open circles represent 
the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor analysis 
utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 Gapdh 
transcripts. Abscissa labels indicate ZT time values every 4 hrs under LD 12:12 conditions; ZT0 = lights on; 
ZT12 = lights off. Open bar on the bottom of the x-axis indicates the light period, while crosshatched 
indicates darkness. Negative elements reveals daily oscillations with ~3-10 fold amplitudes with peak 
abundances occurring during the day for cry1 (pANOVA < .001; pcosinor < .001), and cry2 (pANOVA = .01; pcosinor 

= .007), and at the dawn transition for per2 (pANOVA < .001; pcosinor <.001), and per3 (pANOVA =<.001; pcosinor 

<.001). The clock mRNA attained maximal abundance during the late night (pANOVA = .003; pcosinor = .005) 
while bmal1 is highest during the late day period (pANOVA = .02; pcosinor = .04). The bmal2 exhibited an 
increased expression during the early day and late nighttime, however there is not a statistically significant 
difference over a 24 hr period (pANOVA =.2).  
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Figure 15. Quantitative RT-PCR analysis of core clock genes in Broiler VAT. Plotted open circles represent 
the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor analysis 
utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 Gapdh 
transcripts. Abscissa labels indicate ZT time values every 4 hrs under LD 12:12 conditions; ZT0 = lights on; 
ZT12 = lights off. Open bar on the bottom of the x-axis indicates the light period, while crosshatched 
indicates darkness. The cry1, the per genes and bmal1, possess daily oscillations with 2-6 fold amplitudes 
with higher abundances occurring during the day for cry1 (pANOVA < .001; pcosinor = < .001), per2 (pANOVA < 
.001; pcosinor = < .001), per3 (pANOVA = .003; pcosinor =.001) and bmal1 (pANOVA =.009; pcosinor = .007). The cry2 
(pANOVA = 0.1), bmal2 (pANOVA = 0.1), and clock (pANOVA = 0.09) mRNA values fluctuated, however none 
show a statistically significant difference over a 24 hr period with a >2-fold rhythm.  

 

 

 



  

125 

 

5.4.3.3 Daily rhythms in the ovary  

It is well known that several aspects of reproductive function including ovulation  

in birds and mammals exhibit circadian characteristics. However, there is very limited  

evidence for a functional clock in the hen ovary to date (Yamazaki & Takahashi, 2005). 

For this reason we examined core clock genes profiles in the ovary of hens.). Examination 

of the cry and per genes, reveals daily oscillations with amplitude changes of 3-10 fold. Of 

these, higher abundances occur during the early day for cry1 (pANOVA < .001; pcosinor < 

.001), per2 (pANOVA < .001; pcosinor <.001), and per3 (pANOVA =<.001; pcosinor <.001). The 

cry2 also had elevated mRNA abundance during the early day however it was not 

statistically significant (pANOVA = .1) (Figure 16). Analysis of gene expression of the 

positive elements of the clock, clock and the bmal genes, revealed that only bmal2 

displayed a significant daily pattern of rhythmicity in the layer ovary (pANOVA =.006; pcosinor 

=.007) (Figure 16).  

Investigation of the broiler ovary revealed a vastly different situation than what 

occurs in the layer ovary. None of the core clock genes examined displayed a statistically 

significant difference over a 24 hr period, cry1 (pANOVA = 0.8), cry2 (pANOVA = 0.1), per2 

(pANOVA = 0.06), per3 (pANOVA = 0.06), bmal1 (pANOVA =0.1), bmal2 (pANOVA = 0.1), and 

clock (pANOVA = 0.9) (Figure 17).  
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Figure 16. Quantitative RT-PCR analysis of core clock genes in Layer ovary. Plotted open circles represent 
the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor analysis 
utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 Gapdh 
transcripts. Abscissa labels indicate ZT time values every 4 hrs under LD 12:12 conditions; ZT0 = lights on; 
ZT12 = lights off. Open bar on the bottom of the x-axis indicates the light period, while crosshatched 
indicates darkness.  The cry and per genes, reveal daily oscillations with 3-10 fold amplitudes with higher 
abundances occurring during the early day for cry1 (pANOVA < .001; pcosinor < .001), per2 (pANOVA < .001; 
pcosinor <.001), and per3 (pANOVA =<.001; pcosinor <.001). The cry2 also had elevated mRNA abundance during 
the early day however it was not statistically significant (pANOVA = .1). Analysis of the putative positive 
elements, clock and the bmals, revealed that only bmal2 displayed a significant daily pattern of rhythmicity 
in the layer ovary (pANOVA =.006; pcosinor =.007).  
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Figure 17. Quantitative RT-PCR analysis of core clock genes in Broiler ovary. Plotted open circles 
represent the mean ± SEM in each experimental group. The dashed line represents the fitted plot of cosinor 
analysis utilizing linear harmonic regression. Values are represented as the number of transcript copies/1000 
Gapdh transcripts. Abscissa labels indicate ZT time values every 4 hrs under LD 12:12 conditions; ZT0 = 
lights on; ZT12 = lights off. Open bar on the bottom of the x-axis indicates the light period, while 
crosshatched indicates darkness.  
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5.4.4 Discussion  

The role of hypothalamus-pituitary gland-gonad (HPG) axis in maintaining 

reproductive efficacy is well established. One additional candidate peripheral tissue  

capable of modulating ovarian function is the adipose tissue owing to its endocrine  

capacity. It is proposed that normal ovarian function and fertility requires a 

synchronization of neuroendocrine signals from the HPG axis as well as endocrine signals 

from the adipose tissue (Gimble et al., 2002). If peripheral clocks are capable of regulating 

physiological functions within the tissues, then we hypothesize that desynchronization of 

clock in HPG and/or adipose tissue with that of the ovarian clock should lead to 

disrupted/reduced efficacy in ovarian function such as ovulation.  

In the poultry industry, egg-type chickens have been genetically selected for their 

prolific ovulation rates and smaller body size. In the meat-type chicken however, rapid 

growth-rate and heavy bodies are the basis for their genetic selection. But the broiler 

breeder hens also exhibit detrimental phenotypic features such as, poor ovarian follicular 

development with disorganized hierarchies among ovarian follicles (Sellix et al., 2010). 

This makes broiler breeder hens relatively poor egg-layers. Studies indicate that this 

decreased efficacy may be due to any of these 3 reasons, 1) effects of adipose related 

hormones, 2) oocyte signaling, and 3) oocyte-granulosa interactions (Gimble et al., 2002). 

Hence, ovulation may be affected by feed intake and body weight in broiler breeder hens. 

In the current study we examined temporal expression profile of core clock genes on a 

daily basis in visceral adipose tissue (VAT), hypothalamus and ovary of 44 day old female 

egg-type (layer) and meat-type (broiler) pullets. A tissue or cell is considered to have a 
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functional clock if it expresses positive element bmal1 in an anti-phase relationship to the 

negative elements per1, per2, cry1and cry2 (Bell-Pedersen et al., 2005). We have 

demonstrated that there is significant cycling of core clock genes in the hypothalamus of 

layer and broiler pullets, although the expression patterns differed between the two poultry 

lines (Figure 12and 13). Even though the mRNA expression profiles in layer 

hypothalamus differed among the six clock genes tested, no obvious anti-phase 

relationship between the negative element cry1 and positive elements bmal1 and clock 

were observed (Figure 12).  A similar pattern was reported by Tischkau et al., 2011 in the 

hypothalamus of 26 week old broiler-hens. The negative elements per2 and per3 were in 

anti-phase with the positive elements bmal1 and clock. We report that in broiler 

hypothalamus, although all the six clock genes express circadian oscillations, the positive 

elements (bmal1 and clock) and negative elements (cry1, cry2, per2 and per3) do not show 

obvious anti-phase. All six core clock genes peaked during day time and fell during night 

time (Figure 12).  

The clock genes in VAT exhibit daily oscillations in both layer and broiler pullets 

although the temporal expression profiles are different in these two poultry lines (Figure 

14 and 15). The mRNA profile of positive elements bmal1 and clock genes are in anti-

phase with the negative elements cry1, cry2, per2 and per3in layers. However, in broilers 

cry1, per2, per3 and bmal1 were in same phase with daily abundance occurring during the 

day, while the mRNA levels of cry2 and clock were statistically insignificant (Figure 15). 

This comparative study indicates that the layer VAT has a functional clock as opposed to 

the broiler VAT.  
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Birds and mammals exhibit circadian characteristics in several aspects of their 

reproductive function including ovulation. We demonstrated that the layer pullets exhibit 

daily oscillations in the mRNA levels of core clock genes cry1, cry2, per2 and per3  

(Figure 16). The mRNA levels of positive elements bmal1 and clock were statistically 

insignificant. Studies from F1 follicles in 26 week old chicken ovary exhibit significant  

cycling of bmal1, cry1 and per2. The cry1 and per2 were in-phase with each other while 

bmal1 cycled out-of-phase indicating presence of functional molecular clock. The cry1 

and per2 peaked at ZT12 while bmal1 levels were high at ZT0 (Tischkau et al., 2011). In 

quails, the Per2 peaked during early day and showed a trough during late night while the 

bmal1 showed no significant oscillation (Nakao et al., 2007). This observation is almost 

similar to what we saw in the layer-pullet ovary transcription profile for per2 and bmal1 

levels (Figure 16). Yoshikawa & Menaker, 2010, Nakao et al., 2007 and Tischkau et al., 

2011 demonstrated that LH is a powerful zeitgeber capable of resetting the ovarian 

circadian clock in chicken with significant effect on bmal1 and per2 genes. One possible 

reason for the lack of significant levels of clock and bmal1 oscillations may be that the 

birds are sexually immature with ovaries which do not have mature follicles and are 

unresponsive to LH. In contrast to the layer-pullet ovary, none of the core clock genes 

exhibited any statistically significant levels in the broiler-pullet ovary. A next interesting 

study would be to examine the temporal expression profiles of core clock genes in the 

ovaries of sexually mature broiler hens with a history of poor fertility/reproduction over a 

24 hour cycle. Arrhythmic or lack of core clock gene oscillations may indicate loss and 

may imply that the absence of functional ovarian clock leads to loss of regular ovarian 
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function in broiler breeder hens. Selix and Menaker (2010) suggest that circadian 

oscillators exist in the HPG-axis and synchronization between hypothalamus, GnRH 

(Gonadotropin releasing hormone) neurons, LH surge and ovarian cells are necessary for 

maintaining normal physiology in the ovary. Disruption of coordination or 

synchronization within and between these circadian clocks may have significant negative 

effects on fertility.  

Recent studies in mammals and mice demonstrated that adipose tissue is capable 

of releasing hormones which participate in metabolic as well as reproductive functions. A 

set of adipose-hormones (adipokines) namely, leptin, adinopectin and resistin may 

impinge their endocrine effects by binding to their receptors that are expressed in higher 

brain centers like hypothalamus as well as on ovaries (Mitchell et al., 2005) and thereby 

regulate ovarian functions. Chicken granulosa and theca cells express AdipoR1 and 

AdipoR2 receptors which bind to a hormone adiponectin, a hormone released by adipose 

tissue namely (Chabrolle et al., 2007). Chabrolle et al., 2007 also reported activation of  

AMPK in response to adiponectin in chicken cultured granulosa cells. Tosca et al., 2006 

reported that activation of AMPK reduced progesterone secretion. Adipose tissue function 

exhibits circadian oscillations in adipokines secretion on daily basis (Gimbel et al., 2011). 

Disruption of circadian clock in adipose tissue may lead to disruption (of phase and/or 

levels) of adipokines secretion thus upsetting normal ovarian function.  

Excess energy intake leads to excess adipose tissue and obesity-related 

complications in metabolism and reproductive complications. The adipose tissue secretes 

several biologically active molecules such as leptin, resistin and adiponectin (Matsuzawa 
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et al. 2006). Some of these molecules express daily rhythms in their secretion (Gavrila et 

al. 2003). It is speculated that insulin resistance and metabolic syndrome in obese human 

beings may be due to altered rhythms in secretion of adipocytokines (Matsuzawa et al., 

2006; Stefan et al. 2002).  

Study in obese mice showed severe attenuation of adipokine secretion by adipose 

tissue. The authors suggest that the adipose clock may regulate rhythmic secretion 

adipocytokines in healthy mice.  In obese mice, there is a loss of functional adipose clock 

resulting in altered secretion of adipokines (Chen et al., 2006; Ando et al., 2005). All of 

the above indicate the importance of a functional molecular clock in adipose tissue 

metabolism.  

In our current study we compared temporal expression profile of core clock gene  

mRNA levels between layer-pullet and broiler-pullet in the hypothalamus, ovary and 

VAT. In broiler-pullet hypothalamus and VAT, several core clock genes oscillations were 

out-of-phase and a few were at statistically insignificant levels (Figure 13and 15). There 

were no rhythmic oscillations of any core clock gene mRNA in the broiler-pullet ovary, 

indicating an absence of a functional clock. These data suggest that immature broiler hens 

may possess either poorly functional or disrupted circadian clock in their hypothalamus, 

VAT and ovary with significant physiological implications. Disrupted circadian clock in 

hypothalamus may lead to improper energy-homeostasis capability thereby disrupting 

feed-intake and energy balance, a genetic predisposition already seen in broiler birds.  

A poor clock in the adipose tissue may lead to disrupted circadian oscillation and 

secretion of adipokines. These adipokines in turn may impinge their disruptive effects on 
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ovarian function. Lack of circadian rhythms in core clock genes in the ovaries of broiler 

pullet also means that physiological functions within the ovary (e.g LH receptive  

window, ovulation, and steroidogenesis) may be either disrupted or desynchronized  

leading to poor reproductive capacity.  

We thus propose a paradigm in which circadian clocks in the hypothalamus,  

VAT and ovary may contribute to ovarian function. We hypothesize that synchronization 

within and between these clocks are required to maintain rheostasis in reproductive events. 

Disruption of this synchrony might affect the reproductive capacity/fertility of the 

organism. We suggest that in the broiler breeder hens the circadian clock of the 

hypothalamus, VAT and ovary are out of sync/out-of-phase leading to an improper timing 

of the neuronal and endocrinal signaling between the tissues.  This lack of coordination 

may explain the lack of regulation of energy homeostasis, propensity to obesity in absence 

of feed restriction practice and poor reproductive capacity in broiler hens.  

 

5.4.5 Conclusions  

Ultimately, understanding the role of circadian clock and its timing cues in 

modulating immune function will have significant impacts on the fields on chronobiology, 

physiology, immunology, and endocrinology. Elucidating the pathways of circadian-

immune interaction will provide new insight into the role of the circadian clock and further 

our understanding of an organism’s health.  
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6. CONCLUSIONS AND FUTURE DIRECTIONS  

 

6.1 The circadian inflammatory response in the avian spleen  

From the results presented in this dissertation (section 2, 3 and 4) and evidence 

from published literature concur and show that the innate immune response is under 

circadian control. The results indicate that the avian spleen has a functional circadian clock 

with its core clock genes showing rhythmic oscillations in a daily (LD) and circadian (DD) 

manner. Avian spleen is a dynamic tissue with a large turnover of splenocytes, 

lymphocytes and macrophages. We examined the avian spleen for circadian clock in 

normal healthy chicks, and in birds undergoing acute systemic inflammation. Results from 

these studies have been discussed in sections 2 and 3. Interesting observations include 

daily rhythmic oscillations of mRNA of cytokine genes in the avian. These cytokine genes 

are proinflammatory in nature. These proinflammatory cytokines have been implicated in 

several chronic inflammatory diseases, disrupted sleep-wake cycles, obesity and 

reproductive disorders in several mammalian species including human beings. Several 

chronic disease conditions in circulating proinflammatory cytokines have been related to 

disrupted circadian clocks. These studies hypothesize that a functional circadian clock 

tightly regulates the rhythms of cytokine genes with very critical physiological 

implications. Long investigated, newer molecular techniques have identified several 

intriguing pathways of circadian-immune crosstalk that are means for circadian-immune 

regulation. Although the entire molecular mechanism has not been elucidated yet, there are 

several pieces of this puzzle that have been discovered as of now which are helping in 
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understanding these pathways.  

Circadian clock in multicellular organism comprises of master oscillators and 

peripheral clocks. The aim of the current dissertation was to investigate peripheral tissues 

for the presence of a functional clock and their potential roles in regulating local 

physiological functions. Isolated immune cells have been shown to oscillate in terms of 

their raw numbers in the circulation (Arjona and Sarkar 2005; Haus and Smolensky 1999). 

Tissues from the immune system have been shown to oscillate both as tissue explants 

(using the PER2::luc mouse) and as mRNA (mPer2 and mRev-erbα) extracted from mice 

in constant darkness over the 48h (Keller et al. 2009). Furthermore, mediators involved in 

inflammatory response exhibit oscillations independently and in response to LPS 

challenge in both human beings and murine models (Keller et al. 2009; Petrovsky et al. 

1998).  

In vivo studies, like the ones conducted as part of this dissertation cannot rule out 

the regulation of the central/master clock in the higher centers of the brain and 

inflammatory response in the avian spleen. Some authors have gone around this issue by 

isolating various cells from immune-tissues and exposing them to signaling molecules 

from the master clock (for instance norepinephrine, glucocorticoids, and melatonin etc) in 

order to compare to expression (gene/proteins) of the important cytokines in explants and 

cell culture settings that are free of these regulating factors.  

In human beings, glucocorticoids (GC) are released in a circadian manner and have 

a negative correlation with production of IFNγ, TNFα and IL-12. Peak serum GC levels 

are associated with suppressed cytokine production (Petrovsky et al., 1998). Studies in 
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human volunteers show that IL-6 and IL-1β expression do not correlate with GC release, 

but IFN-γ, IL-8 and TNFα do, so it seems that circulating GC concentrations do, affect 

circulating cytokine concentrations. An association between GC concentration and TNFα 

production has been shown in serum (Parant et al. 1991), where pre-treatment of 

adrenalectomised mice with GC did not express TNFα expression, in response to LPS. 

However, there is no difference in TNFα or IL-6 circadian gene expression between the 

spleens of intact and adrenalectomised mice treated with LPS over the circadian day 

(Keller et al. 2009). This suggests that although in vivo cytokine production can be 

influenced by circulating GC, which is under direct control of circadian clock, yet there 

are some cytokines, such as TNFα and IL-6, that remain rhythmic even their absence. 

Furthermore, Keller et al. (2009) showed through an array study that 8% of the 

macrophage transcriptome is under circadian control with multiple levels of the 

inflammatory response.  

Several genes involved in healing of wounds, stress response and phagocytosis  

exhibit rhythmic circadian expression. Also genes, whose protein products act in 

complexes such as cFOS and cJUN (AP-1) and CD-180 and MD-1 (TLR4 inhibitory 

molecules) are in-phase with each other, suggesting the role of circadian clock regulation. 

Taken together, although circulating factors such as GC can, and do, affect cytokine 

production. Thus, the central clock participates in regulating the immune system in several 

species of lab animals, yet the role of peripheral clocks cannot be ruled out. Inflammatory 

cells cytokines such as TNFα and IL-6may be under direct regulation of the peripheral 

clock, rather than the central clock.  
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The immune-regulation by circadian clock seems to have physiological 

significance. One hypothesis may be that at different times of the day an inflammatory 

response may be more harmful (i.e. lethal) than at other times. Doses of TNFα that are 

enough to kill mice at certain times of the day, can be less harmful during other times (late 

activity phase/night time) (Hrushesky et al., 1994; Hrushesky et al., 1997). In the Keller 

study, (Keller et al., 2009), the peak serum TNFα and IL-6 expression occurred during the 

mid to late subjective day (prior to the onset of activity), as did numbers of macrophages 

and monocytes, a time that corresponds with a high degree of TNFα induced mortality in 

mice (Hrushesky et al. 1994). It is interesting to speculate as to what could be the 

evolutionary advantages of such temporal profile. Perhaps it better prepared an individual 

against an anticipated bacterial infection at certain times of the day (for instance while 

foraging of food, hunting, pregnancy etc). Additionally, it would be a waste of energy to 

maintain a high level of circulating cytokines/chemokine at times of rest and while in 

relative safety from pathogen exposure. High levels of cytokines just (TNFα and IL-6 ) 

prior to the onset of activity may be in preparation for moving out of the safety of the nest, 

a time when the animal could be disorientated and susceptible to attack. In addition to such 

possibilities there could be one more reason for this tight circadian control on immune 

system, namely, prevention of hyper-immune response leading to the death of the host.  

Furthermore, circadian control of the inflammatory response would be beneficial to allow 

it to keep the phase of the immune-system and related organs in sync with the rest of the 

organ system in the body.  

 The immune system can directly influence the core clock as well as the clock 
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causing the oscillation of cytokine expression, and the relationship is therefore bi- 

directional. LPS can suppress E-box mediated transcription (Per2, Cry1 and Rev-erbα)  

via TNFα (Cavadini etal. 2007) which is most likely another ‘pro-survival’ mechanism  

as the loss of Per2 has been shown to increase survival after LPS administration (Liu et  

al. 2006). However, this action is opposite to the effects previously described above where 

TNFα was less likely to kill when administered during the late subjective night, when 

PER2 protein is at its highest.  

Far more research needs to be carried out before the bi-directional relationship  

between the inflammatory response, the clock and ultimate survival is clarified. From  

the LPS-induced inflammatory response studies described in section 3, we hypothesized 

that a circadian clock output/signaling molecule, melatonin may be one of the candidate  

molecules capable of regulating the expression of proinflammatory cytokines in the avian 

spleen. To test this hypothesis, we studied the effects of priming the birds (with melatonin) 

prior of LPS administration at midday (section 4). Previous studies show intriguing results 

about immunomodulatory behavior of the melatonin.  

Coming back to the study in the current dissertation, there are several experiments 

that can be added to add the missing pieces to the puzzle of peripheral clock-local immune 

system regulation.” The interesting studies that can be pursued in the future to add to this 

study include, opposite effects of melatonin are observed on cAMP and IP3 production in 

the same cell depending on the activation state of cells and the involvement of specific 

subtypes of melatonin receptors. Avian splenocytes express different types of melatonin 

receptors. Melatonin binds to the Mel1c receptors decreases intracellular cAMP and 
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increases IP3 in unstimulated chick splenocytes (Markowska et al. 2004), whereas in 

LPS/mitogen-stimulated splenocytes it increases cAMP levels and decreases IP3 acting 

through MT2 receptors (Markowska et al. 2002).  

 

6.2 Future directions 

A list of interesting studies that can be done in the future that could add more 

interesting information to the current dissertation include but are not restricted to the 

following:  

 

6.2.1 Experiment 1 to test the effect of neuroendocrinal signaling molecule, 

norepinephrine on inflammatory response  

Bidirectional communication exists between central nervous system and immune 

system. A signaling molecule which participates in this cross-talk is the catecholamine, 

Norepinephrine (NE). During an inflammatory response, immune cells secrete cytokines 

which activate the brain. This results in stimulation of sympathetic nervous system (SNS) 

with the release of NE. The NE modulates the level of immune activity and function by 

binding to the adrenergic receptors present on immune tissues and immune cells. We will 

investigate the effect of NE upon the daily dynamics of the inflammatory response.  

We hypothesize that NE acts as an immunomodulatory molecule and regulates  

the diurnal levels of pro-inflammatory cytokines. We will test this hypothesis by injecting 

NE (Sigma-Aldrich) at midday (ZT6) and at midnight (ZT18). Day old birds (n=48) will 

be placed in 12:12LD photoperiod for approximately 5 weeks (~0.5 kg body weight). The 
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treatment groups (ZT6, n=12; ZT18, n=12) will get a single IV dose of NE 1 hour before 

IV injection of LPS (Escherichia coli O111:B4, Sigma-Aldrich; dose: 1.5mg/kg body 

weight). The control groups (ZT6, n=12; ZT18, n=12) will get a single IV dose of NE 1 

hour before IV injection of 100µl of normal saline (0.9% NaCl). Spleen, thymus, bursa of 

Fabricius will be collected from 3 birds at 0hr, 1hr, 2hr, 3hr post-injection from the 

treatment and control groups. The tissues will be processed for examining the transcription 

profiles of immune function genes (TNF-α, IL-1β, IL-6 and IL-18) and clock genes using 

qRT-PCR.  

 

6.2.2 Experiment 2 to determine the effect of pinealectomy upon immune tissue function 

Studies indicate that melatonin has immunomodulatory property and act as pro-

inflammatory as well anti-inflammatory molecule. We will investigate effect of the  

absence of circulating melatonin on the rhythmic transcription profiles of immune function 

genes (TNF-α, IL-1β, IL-6 and IL-18) in both health and during inflammation.  

 

6.2.2.1 Experiments 2a effect of pinealectomy upon rhythmic immune tissue function in LD 

cycle  

In domestic chicken, pineal gland is the source of circulating melatonin hormone. 

We will examine the role of immunomodulatory role melatonin by surgically excising the 

pineal gland (pinealectomy). Day old birds (n=126) will be placed in 12:12LD cycle for 2 

weeks. After 2 weeks, the experiment group (n=63) will be pinealectomized, while the 

control group (n=63) will undergo sham surgery. The experiment and control group will 
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get 10 days of recovery period (12:12 LD photoperiod; food and water ad libitum). After 

10 days of recovery, pinealectomized and sham birds will be sacrificed (n=9, at ZT0, ZT3, 

ZT6, ZT12, ZT15, ZT18 and ZT21) by CO2 asphyxiation. Spleen, thymus and bursa of 

Fabricius will be collected for determining temporal mRNA of immune function genes 

(TNF-α, IL-1β, IL-6 and IL-18) using qRT PCR.  

 

6.2.2.2 Experiment 2b effect of pinealectomy upon rhythmic immune tissue function under 

constant darkness DD  

We will test if immune function genes are under the regulation of melatonin under 

constant conditions. Day old birds (n=126) will be placed in  

12:12LD cycle for 2 weeks. After 2 weeks, the experiment group (n=63) will be 

pinealectomized, while the control group (n=63) will undergo sham surgery. The 

experiment and control group will get 10 days of recovery period (12:12 LD photoperiod; 

food and water ad libitum). After 10 days of recovery, pinealectomized and sham birds 

will be sacrificed (n=9, at CT0, CT3, CT6, CT12, CT15, CT18 and CT21) by CO2 

asphyxiation. Spleen, thymus and bursa of Fabricius will be collected for determining 

temporal expression profiles of mRNA levels of immune function genes (TNF-α, IL-1β, 

IL-6 and IL-18) using qRT-PCR.  

 

6.2.2.3 Experiment 2c study the effect of pinealectomy on inflammatory response  

We will test if the loss of circulating melatonin alters the temporal expression 

profile of pro inflammatory cytokine genes in birds undergoing inflammatory response. Day 
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old birds (n=48) will be housed in 12:12LD photoperiod for 2 weeks. At 3 weeks of age, 

pinealectomy (n=24) and sham (n=24) surgeries will be performed and the birds will be 

placed in 12:12 LD till they are 5 weeks old. The pinealectomized-treatment group (n=12) 

and sham-treatment group (n=12) will be injected with a single IV dose of LPS (LPS, 

Escherichia coli 011:b4; Sigma-Aldrich; Dose: 1.5mg/kg body weight) at mid-day (ZT6, 

n=12) and mid-night (ZT18, n=12). Spleen, thymus, bursa of Fabricius will be collected 

from 3 birds at 0hr, 1hr, 2hr, 3hr post LPS injections at ZT6 and ZT18 time points 

respectively. The pinealectomized-control group (n=12) and sham-control group (n=12) 

will be administered with 100µl of Normal saline (0.9% NaCl) IV. Spleen, thymus, bursa 

of Fabricius will be collected from 3 birds at 0hr, 1hr, 2hr, 3hr post normal saline injection 

at ZT6 and ZT18 time points respectively. We will examine the immune tissues for 

transcription profiles of pro-inflammatory cytokine genes (TNF-α, IL-1β, IL-6 and IL-18) 

using in qRT-PCR.  

 

6.3 Expected results  

Experiment1: If the peripheral clock regulates the immune function genes in time 

of day dependent manner, then immune challenging the birds at different times of the day  

should result in exhibition of differential immune response. LPS challenge should  

attenuate rhythms of immune tissue function and immune response depending upon the  

time of day.  

NE is a catecholamine neurotransmitter capable of regulating immune tissue 

functions during inflammation. If NE has a pro-inflammatory property during day time,  
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we should see an increased expression of pro-inflammatory cytokine genes in birds primed 

with NE followed by an immune challenge with LPS. Conversely, if NE is has anti-

inflammatory property, then immune-challenging the birds primed with NE should result 

in an attenuation of immune response.  

Experiment 2a-2c: If melatonin is regulating the rhythms of immune tissue 

oscillations, then pinealectomy should lead to loss or disruption of these rhythms. 

Pinealeactomized birds should show loss or disruption in the rhythms of immune function 

genes in a daily and circadian manner.  If melatonin is capable of modulating an 

inflammatory response, then pinealectomized birds undergoing endotoxic shock should 

show statistically significant difference in transcription profiles of pro-inflammatory 

cytokines depending on time of the day when compared to pineal gland-intact birds.  

 

6.4 To summarize the results from sections 2, 3 and 4  

•   In the spleen, core clock genes, as well as genes for proinflammatory cytokines 

including Tnfα and IL-1β exhibit rhythmic oscillations of mRNA abundance and are under 

control of the clock.  

•   Acute melatonin administration at midday induces expression of some, but not all 

proinflammatory cytokines in the spleen.  

• LPS-induced systemic inflammation initiated at midday versus midnight results in a 

differential immune response of proinflammatory cytokine induction indicating regulation 

by the clock.  

•   Exogenous melatonin administration at midday prior to LPS stimulation conveys  
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pleiotropic effects; enhancing and repressing cytokine induction indicating melatonin 

functions as both a pro and anti-inflammatory molecule in the spleen. Hence the data 

suggests that the rhythmic properties of the spleen including the differential immune 

response to inflammation are mediated by the circadian clock and the hormone melatonin.  

The Hypothalamus-Adipose-Ovary clocks in egg-type vs. meat-type breeder hens: 

a comparative study: Around 5-10% of women suffer from a condition called polycystic 

ovarian syndrome (PCOS). The primary symptoms being, anovulation/oligoovulation and 

polycystic ovarian morphology. Although the symptoms are well known, the mechanism  

of the disease onset are still largely under investigation (Xita and Tsatsoulis, 2006; 

Ehrmann, 2005). PCOS is often present with another medical condition known as 

metabolic syndrome. The metabolic syndrome is characterized by obesity, high 

cardiovascular disease risk, hyperinsulinemia, dyslipidemia and diabetes-like condition 

(Ehrmann, 2005). It is hypothesized that excessive ovarian androgen secretion may be an  

underlying cause of PCOS (Balen et al., 2009; Homburg, 2009; Padmanabhan et al, 2006). 

The excess androgen might bind to the androgen receptors present on the SCN and alter the 

SCN-regulated circadian rhythms such as body temperature, hormone secretion, metabolic 

cycles (Butler et al., 2009;  Karatsoreos et al., 2007). One more school of thought about 

etiology of PCOS is presence of abnormal clock gene in the ovary. The abnormal clock 

gene expression directly impairs the biosynthesis of steroid hormones leading to excess 

androgen synthesis and PCOS. Scientists studying PCOS in murine models have focused 

on the role of the HPG axis, including role of the clocks present in the cells forming the 

HPG axis. It is hypothesized that impairment of clocks in any one part of the HPG axis or 
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their downstream regulatory pathways may throw-off the delicate balance regulating the 

reproductive function. Bohler et al., (Bohler et al., 2010) proposed the model which relates 

adipose tissue with ovarian physiological functions as summarized in Figure 18.  

The meat-type broiler breeder hens are known to have poor reproductive capacity  

and are incapable of energy balance when fed ad libitum. The breed’s propensity to 

obesity and poor reproduction is similar to the females with PCOS associated with excess 

body fat. Hence, we set out to investigate the adipose tissue (visceral adipose tissue, 

VAT), hypothalamus and ovary in female broiler breeder chicken for the presence of 

rhythmic core clock gene expression. These results were compared to the results in egg-type 

breeder chicken which are known for efficient energy metabolism and reproductive 

function.  

We compared temporal expression profile of core clock gene mRNA levels 

between layer-pullet and broiler-pullet in the hypothalamus, ovary and VAT. In broiler 

pullet hypothalamus and VAT, several core clock genes oscillations were out-of-phase and 

a few were at statistically insignificant levels (Section 5). There were no rhythmic 

oscillations of any core clock gene mRNA in the broiler-pullet ovary, indicating an 

absence of a functional clock. These data suggest that immature broiler hens may possess 

either poorly functional or disrupted circadian clock in their hypothalamus, VAT and 

ovary with significant physiological implications. 
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Figure 18.  Role of VAT and SAT in PCOS pathophysiology). The above model hypothesizes the possible 
role of VAT and SAT in the pathophysiology of polycystic ovary syndrome (PCOS). Increase in VAT may 
result in elevated serum androgen and local cortisol. Adipokine and FFA in liver and skeletal muscle may 
contribute to insulin resistance. Insulin acts as a co-gonadotropin, amplifying the effect of LH to induce 
androgen production from the ovary leading to anovulation. Leptin may play a role in the increase in LH 
secretion although other factors and obesity dampen this effect. VAT = visceral adipose tissue; SAT = 
subcutaneous adipose tissue; FFA = free fatty acid; HSD = hydroxysteroid dehydrogenase; E = cortisone; F = 
cortisol; R = reductase; SHBG = sex hormone binding globulin; ACTH = adrenocorticotropic hormone; LH 
= luteinizing hormone; GnRH = gonadotropin releasing hormone; TNF = tumor necrosis factor; IL = 
interleukin; PAI = plasminogen activator inhibitor (Bohler et al., 2010).  

 

 

 

 



  

147 

 

Disrupted circadian clock in hypothalamus may lead to improper energy-

homeostasis capability thereby disrupting feed-intake and energy balance, a genetic 

predisposition already seen in broiler birds. A poor circadian clock in the adipose tissue 

may lead to disrupted circadian oscillation and secretion of adipokines. Disordered 

adipokine secretion may, in turn, provoke additional disruptive effects on ovarian function. 

Lack of circadian rhythms in core clock genes in the ovaries of broiler-pullet also means 

that physiological functions within the ovary (e.g LH receptive window, ovulation, and 

steroidogenesis) may be either disrupted or desynchronized leading to poor reproductive 

capacity. From the results, we hypothesized that synchronization within and between these 

clocks are required to maintain rheostasis in reproductive events. Disruption of this 

synchrony might affect the reproductive capacity/fertility of the organism. We suggest that 

in the broiler breeder hens the circadian clock of the hypothalamus, VAT and ovary are 

out of sync/out-of-phase leading to an improper timing of the neuronal and endocrinal 

signaling between the tissues.  This lack of coordination may explain the lack of regulation 

of energy homeostasis, propensity to obesity in absence of feed restriction practice and 

poor reproductive capacity in broiler hens.  
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