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ABSTRACT 

 

The Escherichia coli twin-arginine translocation (Tat) system transports 

fully folded and assembled proteins across the inner membrane into the 

periplasmic space.  The E. coli Tat machinery minimally consists of three 

integral membrane proteins: TatA, TatB and TatC. A popular model of Tat 

translocation is that cargo first interacts with a substrate binding complex 

composed of TatB and TatC and then is transported across the inner membrane 

through a channel comprised primarily of TatA.   

The most common method for observing the kinetics of Tat transport, a 

protease protection assay, lacks the ability to distinguish between individual 

transport sub-steps and is limited by the inability to observe translocation in real-

time.  Therefore, a real-time FRET based assay was developed to observe 

interactions between the cargo protein pre-SufI, and its initial binding site, the 

TatBC complex.  The cargo was found to first associate with the TatBC complex, 

and then, in the presence of a membrane potential (∆ψ), migrate away from the 

initial binding site after a 20-45 second delay.  Since cargo migration away from 

the TatBC complex was not directly promoted by the presence of a ∆ψ, the delay 

likely represents some preparatory step that results in a transport competent 

translocon.  

In addition, the Tat system has long been identified as a potential 

biotechnological tool for protein production.  However, much is still unknown 
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about which cargos are suitable for transport by the Tat system.  To probe the 

Tat system’s ability to transport substrates of different sizes and shapes, 18 

different cargos were generated using the natural Tat substrate pre-SufI as a 

base.  Transport efficiencies for these cargos indicate that not only is the Tat 

machinery’s ability to transport substrates determined by the protein’s molecular 

weight, as well as by its dimensions.    

In total, these results suggest a dynamic translocon that undergoes 

functionally significant, ∆ψ−dependent changes during translocation.  Moreover, 

not every protein cargo can be directed through the Tat translocon by a Tat 

signal peptide, and this selectivity is not only related to the overall size of the 

protein, but also dependent on shape.  
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NOMENCLATURE 

 

∆Ψ:  membrane potential  

∆pH:  pH gradient 

BSA:  bovine serum albumin 

FRET:  fluorescence resonance energy transfer 

GFP:  green fluorescent protein 

IMVs:  inner-membrane vesicles  

NADH: β-Nicotinamide adenine dinucleotide, reduced 

PMF:  proton motive force 
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CHAPTER I 

 

INTRODUCTION 

 

SUMMARY 

 All proteins in Escherichia coli are synthesized in the cytoplasm.  

However, many important functions are performed by proteins outside the cell, 

inside the periplasm, or within the cell membranes.  The movement of proteins 

across the inner membrane is facilitated by two general transport systems; the 

Secretory pathway (Sec) and the Twin arginine translocase (Tat).  In contrast to 

the Sec machinery, which transports unfolded proteins, Tat cargos are 

translocated in a fully folded manner (Clark and Theg, 1997; Hynds et al., 1998).  

The Tat machinery derives its name from a conserved double arginine motif 

present in the signal peptide of its substrates (Chaddock et al., 1995).  It has 

been identified in archea, bacteria, plants and at least one animal (albeit a sea 

sponge) (Frobel et al., 2012; Wang and Lavrov, 2007).  Although it transports 

fewer substrates than the Sec machinery in E. coli, the cargos translocated by 

the Tat translocase are nevertheless responsible for a wide range of important 

functions such as anaerobic respiration, biogenesis, cell division and virulence 

(Lee et al., 2006; Widdick et al., 2008).  The Tat pathway in E. coli minimally 

consists of three transmembrane proteins: TatA (or its homolog TatE), TatB and 

TatC (Bogsch et al., 1998; Sargent et al., 1999; Weiner et al., 1998).  Despite 
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the relative scarcity of high resolution structures of the translocon and its 

constituents (the only one being a NMR structure of a truncated TatA monomer), 

numerous models of the transport cycle have been proposed based on 

biochemical studies.  The most popular of these models describes the active 

translocation site as being an oligomer primarily composed of TatA, and the 

initial binding site consisting of a complex of TatB and TatC (De Leeuw et al., 

2001; Gohlke et al., 2005).  The stoichiometry of the translocon as well as a 

precise mechanistic model remains a subject of debate.   This chapter 

summarizes the current understanding of the Tat machinery derived from 

genetic, biochemical and structural studies performed in the past two decades. 

 

DIVERSITY AND SIGNIFICANCE 

 

Discovery of the Translocon 

 The earliest evidence of an alternate pathway to Sec came from studies 

on hydrogenases in the gram-negative bacteria Desulfovibrio vulgari (Prickril et 

al., 1986; van Dongen et al., 1988).  These described the export of a 

heteroligomeric protein that contains a signal peptide on only one of its subunits, 

which suggested that it was being transported in a folded and assembled state.  

The discovery of a different kind of signal peptide, one that contained a strictly 

conserved twin-arginine motif, further strengthened the idea that these 

substrates were being conveyed across the inner membrane by a new, Sec-
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independent, pathway (Niviere et al., 1992). At around the same time, a new, 

ATP-independent pathway was being described in thylakoids (Cline et al., 1992; 

Klosgen et al., 1992; Robinson and Klosgen, 1994).  Studies had indicated that 

there was an important double-arginine in the signal sequences for this pathway, 

and that the pathway could function without the presence of any soluble factor 

(Chaddock et al., 1995; Cline et al., 1992; Robinson et al., 1993). It was 

eventually suggested that these two pathways may be related, and that they 

might share functional and mechanistic characteristics (Berks, 1996).  This was 

confirmed by sequence homology between the thylakoid protein Hcf106 and an 

E. coli protein that would eventually be called TatB (Settles et al., 1997). 

 Since its discovery, the vast majority of mechanistic studies have been 

performed on the plant and E. coli versions of the Tat machinery, and genomic 

studies have revealed the presence of Tat homologs in a wide array of 

organisms (Dilks et al., 2003; Yen et al., 2002).  The machinery appears to have 

a particularly important role in some archea, namely halophiles like Haloferax 

volcanii, one of the few organisms in which Tat has been shown to be essential 

for viability (Dilks et al., 2005).  This dependence on Tat as the organism’s 

primary export machinery has been suggested to be due to rapid folding of 

protein cargos under high-salt conditions (Bolhuis, 2002; Rose et al., 2002).  

 

 

 



4 

 

Potential Drug Target 

 Despite Tat not being essential in most organisms, the system has 

nevertheless been identified as a potential drug target in some pathogens, in 

part due to the absence of any Tat homologs in humans (De Buck et al., 2008b).  

Interest in this has led to some studies in organisms like Mycobacterium 

smegmatis, the non-pathogenic mycobacterium frequently used as a model for 

Mycobacterium tuberculosis.  M. smegmatis tat mutants failed to export active β-

lactamase and exhibited slower growth rates (McDonough et al., 2005; Posey et 

al., 2006).   Surprisingly, M. tuberculosis requires the Tat machinery for cell 

growth (at least under laboratory conditions) (Saint-Joanis et al., 2006). In 

Legionella pneumophila, the cause of Legionnaire’s disease, the absence of a 

functional Tat machinery results in the failure to export 3’,5’-cyclic nucleotide 

phosphodiesterase and the iron–sulfur subunit of the ubiquinol-cytochrome c 

reductase, resulting in abnormal cell growth and motility (De Buck et al., 2008a; 

De Buck et al., 2007). The Tat machinery is important for virulence of the 

pathogenic E. coli strain O157:H7, since a tatABC deletion shows a five-fold 

decrease in the secretion of Shiga toxin 1 (Pradel et al., 2003). 

 In addition to the studies described above, the deletion or mutation of Tat 

genes in various plant and animal pathogens result in phenotypes that affect 

iron acquisition, cell growth, motility, infection and biofilm formation (Bronstein et 

al., 2005; Caldelari et al., 2006; De Buck et al., 2005; Ding and Christie, 2003; 

Ize et al., 2004; Lavander et al., 2006; Ochsner et al., 2002; Reynolds et al., 
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2011; Rossier and Cianciotto, 2005).  It is apparent that, despite being often 

thought of as the “alternative” pathway for translocation, the Tat system is 

important for a wide array of functions in a variety of organisms. Extensive 

investigations to elucidate its precise role in many economically and medically 

important pathogens is needed. 

 

Biotechnological and Protein Engineering Applications 

 The value of secreting recombinant proteins into the periplasm or outside 

of the bacterial cell has been known for many years (Mergulhao et al., 2005).  

Exporting proteins from the cytoplasm allows easier and less costly purification 

downstream.  While the Sec pathway can transport most proteins faster and with 

a higher efficiency, the Tat machinery does have several advantages.  The first 

and most important advantage is that the Tat system typically only transports 

correctly folded cargos (Clark and Theg, 1997; Hynds et al., 1998).  Misfolded 

cargos would therefore be excluded from the periplasmic fraction, allowing for 

the isolation of only correctly folded species.  Additionally, the pathway can 

accommodate proteins that the Sec system cannot, specifically oligomeric, fast 

folding, or cofactor-containing substrates.  For these reasons, the Tat system 

has been identified as a potential tool for the production of protein products 

(Bruser, 2007; Yoon et al., 2010).  

 The Tat machinery has also been applied to protein engineering.   It has 

been used to select solubility enhanced proteins (Fisher et al., 2011b), to direct 
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the evolution of single-chain antibodies for both solubility (Fisher and DeLisa, 

2009) and for faster folding (Ribnicky et al., 2007), to develop a bacterial two-

hybrid assay (Strauch and Georgiou, 2007a), and as a tool for glycoengineering 

in E. coli (Fisher et al., 2011a). 

  

TAT CARGOS 

 The physiological effects of the Tat knockouts and mutations discussed in 

the previous section are not caused by the absence of Tat directly, but by the 

absence of its properly translocated substrates.  In this section the 

characteristics of these cargos are discussed.  

 

The Signal Peptide 

 For Sec and Tat cargos, short, N-terminally attached signal peptides 

target precursors to the translocons.  Tat and Sec signals share several 

characteristics, most notably their tripartite structure (Figure 1.1).  This consists 

of a positively charged amino-terminal sequence (n-region), a hydrophobic 

central sequence (h-region) and a carboxy-terminal polar sequence (c-region) 

(Natale et al., 2008).  Tat signal peptides, however, are typically longer than Sec 

peptides and nearly always contain two consecutive arginines in their n-region.  

It has been noted that these arginines are part of a larger S-R-R-x-F-L-K 

consensus motif (in E. coli systems), and it is present in about 50% of bacterial 

cargos (Berks, 1996).  A more generalized view of this motif which 
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encompasses thylakoid Tat substrates has been suggested: Z-R-R-x-Φ-

Φ (Robinson and Bolhuis, 2004), where Z is any polar residue and Φ is a 

hydrophobic residue. The twin-arginines are highly conserved, with only a few 

naturally occurring variations known (typically single lysine, asparagine, or 

glutamine residue) (Hinsley et al., 2001; Ignatova et al., 2002; Molik et al., 2001; 

Widdick et al., 2008).  Introducing these mutations into other Tat cargos appears 

to allow proper targeting and transport, albeit to a lesser extent (DeLisa et al., 

Figure 1.1. Tat signal peptides. Peptides for E. coli substrates SufI, HyaA, TorA and DmsA are 
shown.  OE17 is a thylakoid Tat cargo and SCO3484 is a Streptomyces coelicolor cargo.  The Sec 
signal peptide of E. coil OmpA is shown for comparison.  Blue indicates the polar n regions, red 
indicates the hydrophobic core region and white indicates the c region.  The Tat consensus motif is 
shown in bold with Z as any polar residue, Φ is a hydrophobic residue and + indicates any basic 
residue. The peptide cleavage signal is shown in bold in the c regions.  Figure adapted with 
modifications from (Palmer and Berks, 2012).  
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2002; Halbig et al., 1999; Ize et al., 2002b; Stanley et al., 2000). However, a 

“conservative” double mutation to twin lysines abolishes transport (Chaddock et 

al., 1995; Stanley et al., 2000).  Clearly, the twin-arginine motif is important for 

proper recognition by the Tat machinery.  However, suppressor mutations have 

been generated in the  cargo binding protein TatC that allow for limited transport 

of the double lysine mutant (Strauch and Georgiou, 2007b).   

 Overall, Sec signal peptides are more hydrophobic than Tat peptides, and 

mutations to either the n-region or the h-region that increase their hydrophobicity 

have been shown to cause Tat cargos to be directed to the Sec machinery 

instead (Cristobal et al., 1999; Ize et al., 2002a).  The hydrophobicity of the 

middle of the h-region (amino acid position 17) in at least one substrate seems 

to be of particular importance, with more hydrophobic residues leading to 

greater Tat dependent binding and transport (Bageshwar et al., 2009). 

 As in the Sec system, the c-region of Tat signal peptides typically 

contains a number of polar and charged residues.  The number of these 

residues varies, but is usually higher in Tat peptides (Ize et al., 2002a).  One of 

these charged residues was reported to function as a “Sec-avoidance signal” 

(Blaudeck et al., 2003; Bogsch et al., 1997).  The c-region of Sec and Tat 

precursors also contains a recognition sequence for signal peptidase I (LepB) 

(Luke et al., 2009), which is required for post-transport processing of the 

precursor into its mature form.  
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Cargo Function, Folding and “Proofreading”  

   As described previously, the degree to which the Tat machinery is 

utilized varies widely from species to species. In E. coli, there are 28 known or 

Table 1.1. L ist of known and predicted E. coli Tat substrates . Adapted from (Palmer et al., 2005). 
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predicted substrates (Table 1.1).  Most of these proteins perform redox 

functions, and contain metallocofactors and/or a co-exported partner (Palmer et 

al., 2005).  Proper assembly of these cofactor containing proteins necessitates 

that they are folded in the cytoplasm.  This was demonstrated directly by the 

observation that TMAO reductase (TorA) required the insertion of its 

molybdocofactor in the cytoplasm before translocation (Santini et al., 1998).  

Proper insertion of cofactors in artificial Tat substrates was also seen to be 

necessary prior to transport (Hynds et al., 1998; Sanders et al., 2001). Similarly, 

hetero-oligomeric cargos with subunits that lack a signal peptide must obtain 

their quaternary structure before translocation.  This transport of a signal peptide 

lacking subunit has been termed the “hitch-hiker mechanism,” and was shown 

experimentally with dimethyl sulphoxide reductase’s catalytic dimer (DmsAB) 

and hydrogenases in E. coli (Rodrigue et al., 1999; Sambasivarao et al., 2000).   

The hitch-hiker mechanism is a salient feature of the Tat machinery, but 

natural Tat cargos that were tightly bound to an avidin tetramer failed to be 

translocated under in vitro conditions (Bageshwar et al., 2009; Musser and 

Theg, 2000).  These substrates still maintained the ability to bind to the 

translocon, and are not larger than the largest known Tat cargos.  This suggests 

a possible dependence of “transportability” on the shape of the precursor, as 

opposed to its overall size.  This relationship is explored in detail in Chapter III of 

this dissertation.  
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 Tat substrates also include lipoproteins (Gralnick et al., 2006; Shruthi et 

al., 2010b). These substrates contain modified signal peptides (termed type II), 

whose cleavage site is next to a lipidated cysteine residue that is eventually 

cleaved by the lipoprotein signal peptidase (Figure 1.1) (Yamada et al., 1984).  

In E. coli, the Tat machinery was found to be both capable of translocating a fast 

folding lipoprotein and essential for its lipid modification (Shruthi et al., 2010a).  

The function of some Tat substrates (and for what reasons, if any, they 

are folded before export) are still unclear.  SufI’s function, for instance, has yet 

to be elucidated despite its frequent use as a model cargo. However, there is 

significant evidence that it is involved in cell division (Tarry et al., 2009a).  Also, 

despite the high sequence identity (~80%) between the E. coli Tat proteins and 

their counterparts in Salmonella enterica, approximately 40% of the predicted 

substrates differ between the two closely related organisms (Reynolds et al., 

2011).  Although the Tat system is sometimes thought of as a back-up 

translocation machinery to Sec, to be used only when necessary (since 

transporting a fully folded protein across an ion tight membrane is a difficult task 

(Palmer and Berks, 2012)), it may simply be an alternative method of export.  

 There have been numerous studies linking specific cytosolic chaperones 

to the transport of cargos through the Tat translocon.  These have been termed 

redox enzyme maturation proteins (REMPs) (Turner et al., 2004).  The first of 

such proteins described was DmsD, a specific chaperone for DmsA (Oresnik et 

al., 2001; Weiner et al., 1992).  Surprisingly, DmsD does not recognize the 
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signal peptide of DmsA when it is fused to a different protein, indicating that 

DmsD recognizes the mature domain of the cargo, at least in part (Ray et al., 

2003).  DmsD appears to also interact with several general chaperones (GroEL, 

DnaK, and others) leading some to suggest that DmsD directs its substrate into 

a cascade of chaperones to assist in the protein’s proper folding and assembly 

(Li et al., 2010). Other highly studied Tat specific chaperones are TorD, NapD, 

HyaE, and HybE, which bind to TMAO reductase, the NapA subunit of nitrate 

reductase, the HyaA subunit of hydrogenase-1, and the HybO subunit of 

hydrogenase-2 respectively (Dubini and Sargent, 2003; Genest et al., 2006; 

Jack et al., 2004; Tranier et al., 2002). Most of these chaperones appear to 

dimerize (Turner et al., 2004).  It has been proposed that these substrate-

specific chaperones act as proofreading checkpoints, allowing the cargo to 

mature before transport (Sargent, 2007a).   

 In addition to these apparently dedicated chaperones, a more generalized 

proofreading system has been proposed in which the Tat translocon directs 

malfolded proteins to degradation pathways.  Two studies seemed to indicate 

the presence of such a mechanism, with TatD playing a central role (Matos et 

al., 2009; Matos et al., 2008).  However, it was recently determined that these 

results were caused by an overexpression artifact, and that malfolded Tat 

substrates are degraded by Tat independent cytosolic systems (Lindenstrauss 

et al., 2010).  With these findings, the biological role of TatD remains unclear 

(Wexler et al., 2000).  A general proofreading system remains a possibility, as it 
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explains several results which demonstrates the machinery’s ability to 

apparently “reject” certain untransportable substrates (Bageshwar et al., 2009; 

Musser and Theg, 2000).  It is unclear if this ability is linked to a specific action 

of the translocon, or if it is simply a result of the machinery not being able to 

accommodate certain substrates, resulting in their disassociation.  A recent 

study has determined that this quality control system can be disabled through 

random mutagenesis, leading the authors to suggest that a specific region of the 

Tat translocon performs this function (Rocco et al., 2012).  It is apparent from 

this data that the proof-reading abilities of the Tat translocase are embedded in 

the Tat proteins themselves, since mutations solely in TatA, TatB and TatC were 

able to give rise to the machinery’s ability to transport previously untransportable 

cargo.   However, the claim that a region of the translocon is specifically 

responsible for this function cannot fully be supported by any current data, and 

would likely require high resolution structures of active Tat machinery to 

validate.   

 

THE TRANSLOCON 

 As stated previously, genetic studies have indicated that the E. coli Tat 

translocon minimally requires three components (TatA, TatB, and TatC) for 

proper function (Figure 1.2).  This was confirmed with an in vitro assay utilizing a 

purified Tat cargo and isolated bacterial inner membrane vesicles (Yahr and 

Wickner, 2001).  Despite many studies by numerous different laboratories, the 
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precise manner in which these three components interact to transport cargo is 

not fully understood.  However, the most well-accepted model proposes that 

TatB and TatC act together to form the initial binding site for precursor proteins, 

and a structure composed primarily, or entirely of TatA (typically thought to be a 

pore) comprises the protein conducting channel.  This section discusses what is 

known about the translocon, the individual roles of the components, their 

stoichiometry and the kinetics of the actual translocation event.  

 

The TatBC Complex 

 TatB and TatC appear to work congruently in a stable complex (De 

Leeuw et al., 2001).  In E. coli, TatB has 20% sequence identity with TatA (Hicks 

Figure 1.2. Components of the E. coli twin arginine  translocase.  
TatA (blue) contains a predicted single transmembrane spanning helix, an amphipathic helix 
and an unstructured C-terminal region.  TatB (orange) contains two helices with significant 
homology to those in TatA.  In addition, TatB also is predicted to contain a soluble helix near 
its C-terminus.  TatC (yellow) is composed of six transmembrane helices.   
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et al., 2003).  In some organisms (like Mycobacterium smegmatis), TatB is not 

present, with TatA presumably assuming its functional role (McDonough et al., 

2005).  For this reason, Tat proteins have been broadly described as pertaining 

to one of two types: TatA and TatC (Palmer and Berks, 2012). However, in E. 

coli,  TatB’s functional diversity with the similar TatA molecule was discovered 

fairly early on (Sargent et al., 1999).  TatB is a 171 amino acid protein with a 

molecular mass of 18.5 kDa.   Structurally, TatB is predicted to have a single 

membrane spanning helix, an amphipathic helix, and a short soluble region on 

the C-terminal, cytoplasmic side (Figure 1.2) (Barrett et al., 2003).  The highest 

homology between TatB and TatA occurs in the amphipathic and 

transmembrane regions, with the C-terminus being mostly absent in TatA. 

Truncation analyses revealed that the C-terminal domain is unnecessary for 

proper TatB function (Lee et al., 2002). TatB’s role in cargo binding has been 

examined in crosslinking studies.  These suggest a model of precursor binding 

in which cargo transiently associates with the transmembrane and amphipathic 

helices of TatB before transferring to TatC (Alami et al., 2003; Maurer et al., 

2010).   

 TatC is the largest of the E. coli Tat proteins with a mass of 28.9 kDa.  It 

has six predicted transmembrane spanning helices (Figure 1.2), which were 

confirmed by cysteine-labeling and reporter fusions (Behrendt et al., 2004; Ki et 

al., 2004; Punginelli et al., 2007).  Site specific crosslinking studies in both active 

and resting translocons revealed that the most prominent contacts of TatC to 
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cargo are between the signal peptide of the precursor protein and the first 

cytosolic loop of TatC (Zoufaly et al., 2012). This is in contrast to the 

aforementioned experiments that revealed that TatB makes contacts primarily 

with the mature domain of the translocating protein (Alami et al., 2003; Maurer et 

al., 2010).  Thus, TatB and TatC together bind the precursor protein but interact 

with distinct regions (Maurer et al., 2010).   

Several studies have indicated that TatB and TatC are found in stable, 

high molecular weight complexes in an equimolar ratio.  In resting (no pmf) 

membranes these complexes range in size, typically between 350 and 600 kDa 

(Bolhuis, 2002; De Leeuw et al., 2001).  Structures generated by low resolution 

single-particle electron microscopy indicate that TatBC complexes are irregularly 

shaped with varying stoichiometries (Oates et al., 2003). However, a more 

recent, higher resolution (15 Å)  structural study observed complexes with what 

was first described to be 7-8 fold symmetry (Tarry et al., 2009b). Later studies 

with fused TatC dimers favor an octomer (Palmer and Berks, 2012).  

Interestingly, for structures determined in the presence of a cargo protein, it was 

found that at most two precursors were found bound to a single TatBC octomer.  

In contrast, recent experiments performed with the thylakoid Tat system 

indicated that a single cpTatC-Hcf106 complex (the chloroplast equivalent to the 

TatBC complex in E. coli) can bind up to eight cargos (Celedon and Cline, 

2012).  This apparent discrepancy could be due to inherent differences between 

the plant and bacterial systems.  However, it must also be noted that the 
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structural investigations were performed with purified E. coli proteins in the 

absence of the membrane, and therefore may not accurately reflect the TatBC 

complex in its active state.   

 

 

The TatA Channel 

 TatA is a 9.6 kDa protein comprised of one predicted transmembrane 

helix, a cytosolic amphipathic helix and a short hinge region linking the two.  

These two helices were confirmed by two separate solution NMR analyses 

(Chan et al., 2011; Hu et al., 2010).  Solid-state NMR performed with TatA 

Figure 1.3.  Structure of a Tat monomer from Bacillus subtilus. This structure was 
determined by NMR in dodecyl-phosphocholine (DPC) micelles (Hu et al., 2010).  The 
position of TatA is in accordance with the membrane alignment of (Walther et al., 2010) 
and the PEGylation analysis of (Koch et al., 2012; Tarry et al., 2009a).  The amphipathic 
helix has a slanted alignment with respect to the lipid bilayer, with its N-terminal residues 
buried.    Red color indicates regions with high hydrophobicity and blue indicate regions 
with low hydrophobicity. Only residues 2-45 are shown. Structure drawn in UCSF Chimera. 
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reconstituted into planar bicelles revealed that the hinge region and the end of 

the amphipathic helix were buried into the lipid bilayer (Figure 1.3).  Additionally, 

the transmembrane helix was found to be tilted 13º with respect to the bicelle  

(Walther et al., 2010).  This slanted conformation was confirmed by a recent 

PEGylation accessibility study in which the residues in the hinge region were 

protected, indicating that they are indeed buried in the membrane (Koch et al., 

2012).   

 The topology of TatA during a translocation event, particularly that of the 

transmembrane helix, has been the subject of some debate.  Some studies have 

indicated that the N-terminus faces the cytoplasmic side of the membrane at 

least some of the time (Chan et al., 2007), leading some to suggest that it 

possesses a dual topology (Gouffi et al., 2004).  This configuration of TatA 

would be at odds with the “positive inside rule,” which states that integral 

membrane proteins favor a topology that places positive charges inside the 

cytoplasm (von Heijne and Gavel, 1988).  Some have argued that the opposite 

is true, with data from protease and oxidant accessibility experiments indicating 

that the N-terminus faces the periplasm (Greene et al., 2007; Porcelli et al., 

2002).  A recent study may have finally settled the issue by probing TatA via 

PEGylation in intact cells, arguing that previous “N-in” results have arisen from 

damaged or inverted cytoplasmic membranes (Koch et al., 2012).   

 There have been a number of studies that suggest that a soluble (i.e., 

cytoplasmic or stromal) form of TatA exists.  These were performed in both the  
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Figure 1.4. 25 Å and 15 Å resolution electron tomography structures of the TatA 
and TatBC complexes. Structures obtained using single-particle negative-stain electron 
microscopy and detergent solubilized E. coli proteins (Gohlke et al., 2005; Tarry et al., 
2009b).  The top row shows four different size classes.  The third row shows the 
assumed position of the structures within the inner membrane.  High resolution 
structures of Bacillus subtilus TatA (TatAd) and the E. coli Tat cargo SufI was included 
for comparison to their low resolution counterparts.  Reprinted with permission from “The 
twin-arginine translocation (Tat) protein export pathway” by T. Palmer and B.C. Berks, 
2012. Nat Rev Microbiol. (10) 483-96. Copyright 2012 Nature Publishing Group. 



20 

 

chloroplasts of plants and in gram-positive bacteria (Barnett et al., 2009; De 

Keersmaeker et al., 2005; Frielingsdorf et al., 2008; Pop et al., 2003; Schreiber 

et al., 2006; Westermann et al., 2006).  A possibly related finding describes 

TatC-dependent TatA tube-like structures observed in the cytoplasm of E. coli 

(Berthelmann et al., 2008).  Whether this is part of the biogenesis of TatA, or 

evidence of some unknown step in Tat mediated protein transport is still unclear. 

 TatA has been suggested to be the primary component of the protein 

conducting channel in Tat dependent translocation for many years due to its 

observed ability to form many different sized oligomers (Behrendt et al., 2007; 

De Leeuw et al., 2001; Oates et al., 2005).  These homo-oligomers have been 

observed using detergent solubilized TatA molecules and single-particle electron 

microscopy (Figure 1.4, top row) (Gohlke et al., 2005).  Ring-like structures of 

variable diameter were observed with a “lid” on what the authors suggest is the 

cytoplasmic side.  It was proposed that the variable diameters may be important 

to the machinery’s ability to accommodate substrates of different sizes and that 

the lid could be part of a gating mechanism.   Importantly, smaller, but similar, 

structures were found when identical experiments were performed with the TatA 

functional paralog TatE (Baglieri et al., 2012).  The authors of this study suggest 

that in the case of small substrates, channels comprised of TatE could be used. 

 A comparison of TatA proteins from different species reveals that the 

residues found within the amphipathic and transmembrane helices are the most 

conserved (Frobel et al., 2012).  Alanine substitution (Hicks et al., 2003), 
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cysteine scanning (Greene et al., 2007), and loss of function mutagenesis 

(Barrett et al., 2003; Hicks et al., 2005) studies indicated that, predictably, these 

regions are important for TatA function.  Mutations that structurally affect the 

hinge region also cause significant loss of function (Hicks et al., 2003; Hicks et 

al., 2005).  Because the helices and hinge region are within the first 42 amino 

acids, it is not surprising then that TatA retains its functionality even when 40 

amino acids are removed from the C-terminus in truncation analyses (Lee et al., 

2002). 

 

The Mechanism of Tat Translocation 

 Despite substantial progress in understanding the Tat machinery, there is 

yet no consensus on the events of the translocation cycle.  The translocon itself 

appears to be transient (Cline and McCaffery, 2007), and no stable translocation 

intermediates have been generated that would allow researchers to characterize 

sub-steps of the mechanism.  In vitro studies utilizing isolated inverted inner-

membrane vesicles and thylakoids have proven the most valuable in terms of 

developing a working model.  When comparing these studies, it is convenient to 

assume that data derived from experiments in the two systems (plant and 

bacterial Tat) can be compared directly.  It is important to remember, however, 

that there could easily be substantial differences, especially considering that it 

has been suggested that the evolutionary split between TatA and TatB (Tha4  
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Figure 1.5 . A TatA pore  model of Tat transport.   (A) TatB (orange) and TatC (yellow) form 
a complex in the membrane with a 1:1 stoichiometry.  TatA (blue) is shown here as 
membrane integrated monomers. (B) Tat cargos can associate with the lipid bilayer in a 
signal peptide dependent fashion.  (C) The precursor can then bind to the TatBC receptor 
complex (Bageshwar et al., 2009).   Formally, it is possible that the cargo can forgo the 
membrane binding step and associate directly with TatBC (A → C), but this has yet to be 
directly observed. (C →  F)  From the TatBC-bound state, the cargo is translocated across 
the membrane in a process that includes a high ∆ψ-dependent step (C → D) and a low ∆ψ-
dependent step (D → F) (Bageshwar and Musser, 2007).  After translocation, the signal 
peptide is cleaved from the cargo to generate a mature protein (Luke et al., 2009).   
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and Hcf106 in plants) appears to have occurred independently within the two 

system’s lineages (Greene et al., 2007).  

 One such difference may be how the plant and bacterial Tat systems 

utilize the proton motive force to drive the translocation process.  The pmf was 

first identified as the sole source of energy for the thylakoid translocon (Mould 

and Robinson, 1991) and was later confirmed in E. coli (Yahr and Wickner, 

2001).  Early results on the plant system seemed to indicate that the ∆pH 

component of the pmf alone drove cpTat specific transport (Cline et al., 1992), 

with no detectable contribution of the electrical potential (∆Ψ).  This result was 

apparently confirmed in a study that demonstrated a substrate specific minimum 

∆pH is required transport, suggesting that larger cargos require a larger ∆pH for 

translocation (Alder and Theg, 2003).  This is in stark contrast to a more recent 

study in the bacterial Tat system that indicates that the exact opposite is true, 

i.e., that the ∆pH appears to not be necessary for transport, and that the ∆Ψ is 

absolutely required (Bageshwar and Musser, 2007). More recent evidence 

indicates that the ∆Ψ is utilized in the thylakoids of other organisms, such as the 

green algea Chlamydomonas reinhardtii and in the leaves of barley plants 

(Finazzi et al., 2003).  It is somewhat surprising that such a fundamental part of 

the transport machinery would differ so much from species to species, leading 

some to suggest that an unknown component is absent from these in vitro 

assays (Theg et al., 2005), that the ionophore used to collapse the ∆Ψ 

(valinomycin) does not completely remove the gradient (Bageshwar and Musser, 
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2007) or that both the ∆Ψ and the ∆pH can support transport under certain 

conditions.  The latter case is supported by another study that suggested that, 

contrary to previous results, the ∆Ψ can contribute, at least in part, to in vitro 

translocation in thylakoids (Braun et al., 2007; Braun and Theg, 2008).   

 How the pmf is specifically utilized to drive the transport of cargo is also a 

subject of some debate.  Part of the discussion has centered on whether the 

gradient “drives” the process at all.  Models have been suggested in which the 

pmf is instead coupled to a gating reaction, not unlike those which have been 

demonstrated to occur in voltage-gated ion channels (Tombola et al., 2005).  In 

this scenario, the cargo would be recruited to the translocon in a pmf 

independent manner, then migrate across the inner membrane after a “gate” is 

opened.  The translocation event is energetically favorable because the 

concentration of precursor proteins is higher in the cytoplasm as compared to 

the periplasm, where they are processed into their mature forms by the signal 

peptidase LepB (Luke et al., 2009), creating a concentration gradient.  The 

alternative model is that the ion movement is coupled to the protein transport 

event itself.  This would mean that a certain amount of the pmf would be 

“consumed” in every transport reaction.  This appears to be supported by data 

that suggests that an estimated 105 protons are transferred per protein 

transported (Alder and Theg, 2003).  The amount of potential energy that would 

be used in this transfer would be similar in magnitude to the energy that is 

estimated to be consumed by the ATP-driven Sec dependent translocon.  It is 
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possible, however, that these protons are not providing energy for translocation, 

but are simply moving across the membrane when the putative “gate” is opened 

(a leak). 

 The channel, regardless of the existence of a gating mechanism or not, 

must first be assembled in order to function.  This issue has been addressed 

with some success in some of the crosslinking studies that have been discussed 

in the previous section.  The TatBC complex exists in stable high-molecular 

weight structures in the absence of both the pmf and cargo proteins (Bolhuis et 

al., 2001; De Leeuw et al., 2001).  It has been observed that cargo can bind 

directly to the lipid bilayer before associating with the TatBC binding complex 

(Figure 1.5 A→B) (Bageshwar et al., 2009; Brehmer et al., 2012; Hou et al., 

2006).  This process can occur in the absence of any detectable pmf, consistent 

with results from the thylakoid system that suggest that the pmf is not necessary 

for the earliest steps in transport (Di Cola et al., 2005).  In the presence of a pmf, 

however, small amounts of TatA are recruited to the TatBC receptor complex 

during the early stages of the Tat cycle (Zoufaly et al., 2012).  In the later stages 

of transport, the substrate primarily makes contacts with TatA (Maurer et al., 

2010).  It has been suggested that the initial small amount of TatA may serve as 

a nucleation site for assembly of higher order TatA oligomers (Frobel et al., 

2011). Several studies in the thylakoid Tat system have suggested that this 

assembly of Tha4 (TatA) occurs only in the presence of a substrate (Dabney-

Smith and Cline, 2009; Dabney-Smith et al., 2006).  Support for this comes from 
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real-time fluorescence experiments (using TatA fused to the fluorescent protein 

YFP) that found that in the absence of cargo, TatA formed lower-order oligomers 

than it did when substrates were available (Leake et al., 2008).  It should be 

noted, however, that this TatA-YFP fusion transported cargo with a much lower 

efficiency compared to wild-type, possibly a consequence of an oligomerization 

effect. 

Assembly of TatA pores in response to a bound substrate is a popular 

hypothesis because it addresses one of the major challenges in describing a 

model of Tat translocation: the necessity of maintaining an ion-tight membrane.  

The translocon appears to be quite versatile in its ability to accommodate a wide 

range of differently sized substrates, and any model that seeks to explain it must  

allow for this flexibility without uncoupling the membrane potential.  The Sec 

machinery, in contrast, needs only a single sized channel capable of 

accommodating an unfolded polypeptide, highlighting the uniqueness of the 

bacterial Tat system.   It has been proposed that by having TatA assemble from 

monomers or low-order oligomers in response to a bound cargo, the machinery 

can create a pore that is large enough to accommodate the precursor protein 

without allowing the unnecessary passage of ions (Palmer and Berks, 2012).  

Despite the popularity of this “channel model” where TatA (or TatE) are part of a 

pore, an alternative model has been proposed in which cargos are conducted 

across the membrane via a destabilized region of lipids (Cline and McCaffery, 

2007).   This model suggests that the lipids are allowed to assemble around the 
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translocating cargo, preventing any leakage of ions.  Other models have 

suggested a more active role of the amphipathic helix of TatA.  In one such 

model, the amphipathic helix reorientates itself into the lipid bilayer in response 

to a force on the translocating substrate.  In this scheme, the helices would 

shield the cargo from the hydrophobic bilayer’s interior by having the hydrophilic 

side face the substrate and the hydrophobic side face the lipids (Dabney-Smith 

et al., 2006).  A similar model has also been suggested in which the membrane 

bends upon insertion of the amphipathic helices into the cytoplasmic leaflet, 

allowing the opening of an aqueous channel (Greene et al., 2007).  Once this 

channel is open, the cargo would then diffuse across the membrane 

spontaneously in accordance with its concentration gradient.  These two models 

require that the amphipathic helix is able to reorientate itself into the lipid bilayer, 

in agreement with some publications that suggested a dual TatA topology (Chan 

et al., 2007; Gouffi et al., 2004).  However, as previously mentioned, a recent 

study seems to refute this (Koch et al., 2012) and the limited structural data on 

TatA suggests that the amphipathic helix is held in a rigid ~90º angle to the 

transmembrane helix due to interactions of side chains at the helical joint, which 

also suggests that any major topological reorientation is unlikely (Chan et al., 

2011; Hu et al., 2010; Walther et al., 2010).  

Another unanswered question with regards to a Tat transport model is the 

fate of the signal peptide.  It has been shown through crosslinking studies that 

the signal peptide alone can be recruited to the Tat machinery in a pmf 
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dependent manner (Gerard and Cline, 2007).  Furthermore, it seems that in 

some cases the signal peptide can become cleaved even if the mature domain 

is not translocated, indicating that at some point the C-terminal end of the 

peptide must cross the membrane since the LepB peptidase is only active in the 

periplasm (Cline and McCaffery, 2007; Di Cola and Robinson, 2005).  It is 

unknown, however, if the signal peptide then remains in the bilayer, enters the 

periplasm (as shown in Figure 1.5F), or the cytoplasm.  More fundamentally, the 

way the signal peptide interacts with the lipid bilayer in the absence of the 

translocon is still not fully known.  At least one study, albeit with an artificial 

substrate, has suggested that it may form a hairpin loop with two 

transmembrane spans (Schlesier and Klosgen, 2010). It should be noted that in 

at least some substrates (such as SufI), a portion of the mature domain would 

need to unfold to have a long enough polypeptide to form a hairpin structure like 

this.  Alternative hypotheses include a scenario in which the signal peptide 

crosses the membrane only once, implying that the mature domain must be 

translocated and that the signal peptide must flip in this process in order for 

LepB to have access to the cleavage site.  Another scenario is that the signal 

peptide forms a hairpin that does not fully transverse the bilayer, or that it merely 

is associated with the lipid headgroups and does not enter the bilayer at all.  If 

either one of these conditions is the actual state of the cargo before it interacts 

with the translocon, significant movement of the signal peptide during transport 

must take place to allow LepB to process the precursor to its mature form. 
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 Although much progress in obtaining an accurate and complete 

understanding of the Tat machinery has been made, our overall picture of the 

process remains unclear.   Part of the reason for this is the lack of approaches 

that enable probing of Tat-dependent transport events with high time resolution.  

Furthermore, it has proven difficult to obtain data elucidating sub-steps of the 

Tat transport cycle.  Most in vitro approaches in the field can either only observe 

the translocation endpoint (i.e, when the cargo has been successfully 

transported into the lumen of a vesicle or thylakoid) or are performed on 

detergent solubilized Tat assemblies that are therefore incapable of pmf-

dependent transport.  Chapter II of this dissertation addresses both these issues 

by describing a novel real-time assay that utilizes fluorescence resonance 

energy transfer (FRET) to observe the kinetics of interactions between Tat 

cargos and the translocon.  Another, very different, but important issue 

concerning the Tat system is its potential to be utilized in the export of proteins 

with biotechnological applications. Several studies have provided some data on 

this subject by examining the Tat system’s ability to transport substrates of 

different molecular weights or lengths (Cline and McCaffery, 2007; Musser and 

Theg, 2000). Chapter III uses a different approach and seeks to probe the Tat 

machinery by investigating its ability to transport cargos that not only vary in 

size, but in shape.  
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CHAPTER II 

 

KINETICS OF PRECURSOR INTERACTIONS WITH THE BACTERIAL TAT 

TRANSLOCASE DETECTED BY REAL-TIME FRET* 

 

SUMMARY 

The Escherichia coli twin-arginine translocation (Tat) system transports 

fully folded and assembled proteins across the inner membrane into the 

periplasmic space.  Traditionally, in vitro protein translocation studies have been 

performed using gel-based transport assays.  This technique suffers from low 

time resolution, and often, an inability to distinguish between different steps in a 

continuously occurring translocation process.  To address these limitations, we 

have developed an in vitro FRET-based assay that reports on an early step in 

the Tat translocation process in real-time.  The natural Tat substrate pre-SufI 

was labeled with Alexa532 (donor) and the fluorescent protein mCherry 

(acceptor) was fused to the C-terminus of TatB or TatC.  The colored Tat 

proteins were easily visible during purification, enabling identification of a highly 

active inverted membrane vesicle (IMV) fraction yielding transport rates with 

NADH almost an order of magnitude faster than previously reported.  When pre-

SufI was bound to the translocon, FRET was observed for both Tat proteins.  

FRET was diminished upon addition of nonfluorescent pre-SufI, indicating that 

the initial binding step is reversible. When the membranes were energized with 
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NADH, the FRET signal was lost after a short delay.  These data suggest a 

model in which a Tat cargo initially associates with the TatBC complex, and an 

electric field gradient is required for the cargo to proceed to the next stage of 

transport. This cargo migration away from the TatBC complex requires a 

significant fraction of the total transport time.   

 

INTRODUCTION 

The bacterial Tat machinery transports protein cargos from the cytoplasm 

to the periplasm (Santini et al., 1998; Thomas et al., 2001).  A functional E. coli 

Tat machinery minimally consists of three membrane proteins, TatA (or TatE), 

TatB and TatC (Natale et al., 2008; Sargent, 2007b; Sargent et al., 1998; 

Sargent et al., 1999; Weiner et al., 1998).  TatB and TatC are expressed at 

approximately equal levels (Bolhuis et al., 2001), and together act as the 

receptor for precursor proteins (Alami et al., 2003; Jack et al., 2001).  TatA is 

expressed at higher levels than TatB and TatC (Bolhuis et al., 2001), and can 

form ring-like structures in vitro (Gohlke et al., 2005).  A popular model is that 

cargos are first recruited by TatBC complexes, and are then conveyed across 

the membrane by a protein conducting channel comprised of TatA oligomers 

(De Leeuw et al., 2001; Gohlke et al., 2005).  After transport, Tat signal peptides 

are cleaved from precursor proteins by the LepB peptidase (Luke et al., 2009; 

Yahr and Wickner, 2001).  Recent studies have suggested that precursor 

binding to the cytoplasmic face of the inner membrane is a functional 



32 

 

intermediate in the transport process (Bageshwar et al., 2009; Hou et al., 2006).  

A proton motive force (PMF) is essential for translocon assembly and cargo 

transport (Braun et al., 2007; Cline et al., 1992; Mould and Robinson, 1991).  In 

E. coli, only the membrane potential (∆ψ) component of the PMF is required for 

transport (Bageshwar and Musser, 2007). 

Both TatB and TatC participate in binding and recognition of signal 

peptides.  Bacterial Tat signal peptides contain an (S/T)RRxFLK consensus 

motif, a hydrophobic domain, and a short polar domain which precedes the 

signal sequence cleavage site (Bendtsen et al., 2005; Berks et al., 2003; 

Shanmugham et al., 2006).  Based on mutant suppression, alanine substitutions 

and crosslinking experiments, the N-terminal half of TatC interacts with the twin-

arginine portion of the signal peptide (Gerard and Cline, 2006; Holzapfel et al., 

2007; Kreutzenbeck et al., 2007; Strauch and Georgiou, 2007b).   Crosslinking 

indicates that TatB interacts with the C-terminal end of the signal peptide 

(Gerard and Cline, 2006; Holzapfel et al., 2007).  TatB also makes extensive 

contacts with the cargo mature domain, presumably through its cytoplasmic 

domain (Maurer et al.).   

It is unclear how the cargo proceeds across the membrane after 

recognition by the TatBC complex.  A severe constraint on possible models is 

the finding that the mature domain can be efficiently translocated when the 

signal sequence is crosslinked to TatC near the twin-arginine motif (Gerard and 

Cline, 2006).  One possibility is that TatA somehow assists with flipping the 
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mature domain from one side of the membrane to the other while the signal 

sequence remains tethered (Gerard and Cline, 2006). In this picture, the signal 

peptide may initially only partially occupy a transmembrane binding pocket 

before transport, and full binding only occurs during or after transport, consistent 

with the identification of deep insertion of the signal peptide and distinct 

translocation intermediates (Frielingsdorf and Klosgen, 2007; Gerard and Cline, 

2007; Schlesier and Klosgen).  Electron microscopic images of purified TatBC 

complexes revealed cargo bound within the membrane plane, possibly reflecting 

cargo in transit (Tarry et al., 2009b). 

Fluorescence resonance energy transfer (FRET) can provide time-

dependent distance information at low protein concentrations.  Here we report 

the use of FRET to probe the binding of a cargo to the TatBC complex, and its 

migration away from this complex, either by dissociation or by movement along 

the transport pathway.  We found that the TatBC complex has a nanomolar 

affinity for pre-SufI, and that an electric field gradient is required for migration 

beyond the initial binding step.  

 

RESULTS 

Experimental Design  

Our goal was to examine the interaction between the TatBC receptor 

complex and a cargo under real-time transport conditions.  To this end, we used 

FRET, with a donor fluorophore (Alexa532) on the cargo and an acceptor 
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fluorophore (mCherry) on one of the Tat proteins.  We assumed that binding 

would result in a decrease in donor fluorescence due to FRET.  The fluorescent 

cargo selected was the natural Tat substrate pre-SufI.  Eight different single 

cysteine mutants of pre-SufI were generated.  The different cysteine mutations 

were spread over the surface of the protein (Figure 2.1A).  These mutants were 

labeled with Alexa532 maleimide.  The C-terminal cysteine mutant, pre-

SufI(479C), serves as our wildtype (wt) reference because previous experiments 

indicated that a C-terminal dye had no effect on transport efficiency (Bageshwar 

et al., 2009).  The T96C and 479C mutants yielded the highest transport 

efficiencies (Figure 2.1B).  

In order to exclude any endogenous (and therefore unlabeled) Tat 

proteins from IMV preparations, TatBcherry and TatCcherry were expressed in the 

Tat deletion strain MC4100∆TatABCDE.  The mCherry domain did not 

significantly affect transport efficiency (Figure 2.1C) or transport kinetics (Figure 

2.1D).  The fluorescent TatB and TatC proteins allowed us to visually monitor 

the IMV purification process.  Consequently, we identified a minor membrane-

containing band within the 0.5 M sucrose region of the sucrose gradient that had 

the majority of the mCherry protein (Figure A11).  The MC4100 membranes 

recovered from this band catalyzed pre-SufI transport about an order of 

magnitude faster (Figure 2.1D) than reported previously for JM109 IMVs 

(Bageshwar and Musser, 2007; Bageshwar et al., 2009).  Further, IMVs 

prepared with our current protocol were more consistently active.  Previously, 
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Figure 2.1.  Pre-SufI cysteine mutants and influence of TatB cherry  and TatC cherry  on Tat 
transport.  (A) Location of single cysteine mutations.  Residues mutated to cysteine are 
indicated in red (PDB accession number: 2UXT).  Cysteines were labeled with Alexa532 
maleimide for transport and FRET experiments.  (B) Transport efficiencies of Alexa532 labeled 
pre-SufI mutants.  Transport reactions (30 min) were performed with TatABC IMVs (A280 = 5), 4 
mM NADH and 90 nM pre-SufI.  Transport efficiencies were normalized to the 479C mutant (N = 
3).  (C) Transport of pre-SufI(479C)Alexa532 into IMVs containing TatABcherryC, TatABCcherry or wt 
TatABC.  Transport requires NADH to generate the necessary ∆ψ.  The mCherry domain has no 
apparent effect on transport efficiency.  Lanes 1-3 are pre-SufI concentration standards.  The 
location of precursor (p) and mature (m) molecular weight bands are identified.  Conditions are 
the same as in (B). (D) Kinetics of pre-SufI(479C)Alexa532 (20 nM) transport into IMVs (A280 = 2) 
containing wt TatABC (blue), TatABcherryC (green), and TatABCcherry (red).  Transport efficiencies 
were normalized based on the 20 min time point.  The black dashed curve is a single 
exponential plus linear baseline fit to the TatABCcherry data (τ = 81 s). 
 

we were not able to consistently obtain active membranes from MC4100 

(Bageshwar and Musser, 2007). 
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The FRET Signal   

IMVs isolated from E. coli expressing TatABcherryC or TatABCcherry 

exhibited two fluorescence peaks at ~610 nm and ~641 nm (Figures A12A and 

A12B).  These peaks both arise from mCherry (Figure A12C).  Addition of pre-

SufIAlexa532 resulted in a third peak at ~550 nm (Figure 2.2A).  The decrease in 

donor fluorescence signal due to FRET was most easily verified by addition of a 

competitor protein (non-fluorescent cargo), which resulted in an increase in the 

550 nm peak, presumably due to replacement of the bound fluorescent protein 

with the non-fluorescent competitor (Figure 2.2A).  No increase in 550 nm 

emission was observed upon competitor addition if mCherry was not attached to 

the Tat proteins (Figure A12D), indicating that the decrease in 550 nm emission 

when the fluorescent cargo was bound to the Tat translocon (Figure 2.2A) was 

indeed due to FRET.  The strong mCherry fluorescence emission far from the 

excitation wavelength of 500 nm indicates a high concentration relative to the 

cargo.  The mCherry concentration was estimated as 322±88 nM (N = 5) under 

typical assay conditions, over an order of magnitude higher than the pre-SufI  

concentration of 20 nM (Figure 2.2A).   These values are consistent with the 

amounts of pre-SufIAlexa532 and mCherry needed to approximately reproduce the 

emission spectra in Figure 2.2A in an IMV-free mixture (Figure A12D).   Any 

increase in mCherry emission due to FRET was weak and not reliably detected.  

This is expected if the mCherry acceptor molecules self-quench due to their 

proximity in a TatBC oligomer (Tarry et al., 2009b). 
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Maximizing the FRET Efficiency   

Having determined that FRET indeed occurred upon binding of the cargo 

to the Tat translocon, we next sought to maximize the FRET signal.  This was 

accomplished by individually attaching the donor dye to the 8 locations identified 

in Figure 2.1A, which cover the surface of pre-SufI.  In addition, the mCherry 

acceptor was attached to either TatB or TatC.  FRET signal intensity was 

determined from kinetic experiments in which non-fluorescent competitor cargo 

was added to IMVs with prebound fluorescent cargo (Figure 2.2B).  For pre-

SufI(T96C), the competitor released the bound cargo with τ = 24±2 s (Figure 

2.2B).  Control kinetic experiments in the absence of a donor or acceptor 

fluorophore confirmed the transient FRET signal (Figure A13A).  We found that 

TatCcherry yielded stronger FRET signals than TatBcherry (Figure 2.2C).  Two pre-

SufI mutants, G29C and T96C, yielded similarly strong FRET signals when the 

mCherry domain was attached to TatC (Figure 2.2C).  However, labeling at 

G29C reduced transport efficiency (Figure 2.1B).  To convert the relative FRET 

signals into reliable distance and/or orientation information, the data in Figure 

2.2C need to be corrected based on binding affinity.  We attempted to do this 

using our previous binding assay (Bageshwar et al., 2009), but the errors of 

these binding measurements and the errors of the FRET measurements were 

too high to provide meaningful information.  Instead, we settled on using 

TatCcherry and the T96C mutant of pre-SufI for all subsequent experiments since  
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Figure 2.2.  FRET between the pre -SufI cargo and the Tat translocon.   (A) Emission 
scan (EX = 500 nm) of pre-SufI(T96C)Alexa532 (20 nM) and TatABCcherry IMVs (A280 = 2) 
before (red) and after (blue) addition of 200 nM unlabeled pre-SufI(T96C). The increase 
in signal at 550 nm indicates loss of FRET.  The overall signal change is not a good 
measure of FRET efficiency since a high fraction of the cargo is not bound to Tat 
translocons (i.e., free in solution or bound to the lipids).  (B) Time trace of the 
fluorescence emission at 550 nm (donor) for the experiment in (A).  Unlabeled pre-
SufI(T96C) was added at τ = 0 s.  The competitor-induced loss of FRET occurred with a 
time constant of 24±2 s (N = 3).  (C) Total FRET signal observed for various pre-SufI 
mutants, determined as in (B).  IMVs contained TatABCcherry (red) or TatABcherryC (blue)  
(N = 3).  The absence of blue bars for some mutants indicates no FRET to TatBcherry.  
(D) Precursor binding affinity and receptor concentration estimated from the 
concentration dependence of the FRET signal.  TatABCcherry IMVs were titrated with pre-
SufI(T96C)Alexa532 in the presence and absence of 300 nM unlabeled pre-SufI(T96C).  
Shown here is the average difference (N = 5) between two titration curves, such as 
those shown in Figure A14.  Three fits are shown in which the receptor concentration 
(T0) was fixed and the KD and maximum signal were fitting parameters:  (red) T0 = 0.1 
nM, KD = 23 nM; (blue) T0 = 20 nM, KD = 7.5 nM; (green) T0 = 30 nM, KD = 3.6 nM.  
These fits indicate that T0 ≈ 0-20 nM and KD ≈ 7-23 nM.  Details of the analysis are 
described in the Supplementary Material. 
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these proteins yielded the strongest FRET signal while retaining transport 

efficiency (Figures 2.1B and 2.2C).  

 

Binding Af finity   

The FRET signal was used to estimate the cargo-TatBC binding affinity.  

Two titrations were done.  The first titration involved adding increasing amounts 

of fluorescent pre-SufI(T96C) to IMVs.  The second titration was identical to the 

first, except that a large excess of non-fluorescent cargo was preincubated with 

the IMVs (Figure A14).  The difference in donor fluorescence intensity between 

the two titrations (FRET signal) reflects the amount of fluorescent cargo bound 

to the translocon (Figure 2.2D).  Based on the mCherry concentration, the Tat 

receptor concentration is high relative to the apparent KD.  Thus, the data in 

Figure 2.2D were fit with equation 2 (Experimental Procedures and 

Supplementary Material), which explicitly includes the receptor concentration as  

a fit parameter.  Unfortunately, the receptor concentration and KD are not 

uniquely determined from the data.  However, the data indicate that the 

functional receptor concentration is ≤ ~20 nM and the KD ≈ 7-23 nM (see Figure 

2.2D and Supplementary Material for a detailed explanation). 

 

FRET Decreases Upon Membrane Energization   

When fluorescent pre-SufI was prebound to IMVs containing Tat-mCherry 

fusions and the membranes were subsequently energized by the addition of  
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Figure 2.3.  Effect of PMF components on the FRET signal.   (A) Time trace of the 
fluorescence emission at 550 nm (donor) upon membrane energization.  Reactions contained 
pre-SufI(T96C)Alexa532 (20 nM) and IMVs (A280 = 2) with TatABcherryC (blue) or TatABCcherry (red).  
NADH (4 mM) was added at t = 0 s.  (B) Sensitivity of NADH-dependent fluorescence changes 
to components of the PMF.  The ∆pH and ∆ψ were reduced with nigericin (5 µM, blue) and 
valinomycin (5 µM, green), respectively.  The control trace (red) contains no ionophores.  
Conditions as in (A) with TatABCcherry IMVs (N = 2).  (C) Gradients across membranes of 
TatABCcherry IMVs (A280 = 2).  The presence of ∆ψ (blue) and ∆pH (red) gradients were 
determined using 100 nM oxonol VI (EX = 610 nm, EM = 645 nm) and 2.5 µM quinacrine (EX = 
420 nm, EM = 510 nm), respectively, as described previously (Bageshwar et al., 2009).  NADH 
(4 mM) was added at t = 50 s. 
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NADH, the donor fluorescence signal increased (a decrease in FRET).  This 

was observed for membranes containing either TatBcherry or TatCcherry (Figure 

2.3A).  Control experiments in the absence of donor or acceptor fluorophore 

confirmed the NADH-dependent loss of FRET (Figure A13B).  Since NADH 

addition initiates transport across the membrane, these data are consistent with 

migration of the cargo away from its initial binding site on the TatBC complex as 

part of the transport process.  It is unclear if the observed kinetics reflect 

migration elsewhere within the translocon (e.g., to the TatA pore) or immediate 

movement across the membrane.  NADH generates a PMF, which is necessary 

for Tat transport.  It was shown earlier that the ∆ψ and not the ∆pH component 

of the PMF is essential for Tat transport (Bageshwar and Musser, 2007).  We 

therefore tested whether the observed FRET signal is sensitive to these two 

PMF components.  We found that the decrease in FRET upon NADH addition 

requires a ∆ψ and not a ∆pH (Figure 2.3B), consistent with the hypothesis that 

the observed changes in the FRET signal report a transport substep.  

 

A ∆ψψψψ-dependent Step Precedes Cargo Migration Away from the TatB C 

Complex 

 Exponential NADH-dependent FRET changes (τ = ~30 s) were preceded 

by a lag phase (Figure 2.3A).  The duration of the delay was dependent on the 

batch of IMVs (e.g., compare Figures 2.3A and 2.3B), and ranged from ~20 to 

~45 s (N = 9).  This delay did not arise from slow formation of the ∆ψ, as the ∆ψ 
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forms within seconds (Figure 2.3C).  While it takes ~25-30 s for the ∆pH to 

become fully established (Figure 2.3C), it was shown earlier (Bageshwar and 

Musser, 2007) and here  (Figure 2.3B) that the ∆pH is not necessary for 

transport.  Therefore, the slow formation of the ∆pH does not explain the lag 

phase.  Consequently, we reasoned that the lag phase could be explained by a 

∆ψ-dependent conformational change or oligomerization process that is required 

for the cargo to migrate away from the TatBC binding site.  We tested this 

hypothesis by preincubating the IMVs with NADH and then adding the cargo 

after a short delay (Figure 2.4).  The lag phase largely disappeared when the 

cargo was added 200 s after NADH (Figure 2.4C).  Under these conditions, 

slower kinetics (τ = ~70-90 s) were observed.   

 

Pre-Suf I is Released From TatBC Complexes when Membranes are 

Energized in the Absence of TatA   

As a control experiment for the NADH-dependent loss of FRET (Figure 

2.4A), we repeated these experiments in the absence of TatA.  Similar levels of 

TatB and TatCcherry were recovered in IMVs in the presence and absence of 

TatA (Figure A15).  Since TatA is required for transport, our expectation was 

that the cargo would remain bound to the TatBC complex, and hence, the FRET 

signal would remain constant.  Experiments similar to those in Figures 2.3A and 

4A were performed, where pre-SufI was allowed to bind to IMVs, and NADH 
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Figure 2.4.  Cargo migration kinetics depend on the interval between energization 
and cargo addition times.  The time-dependent donor fluorescence emission (550 nm) 
was measured for transport reactions containing TatABCcherry IMVs (A280 = 2) and pre-
SufI(T96C)Alexa532 (20 nM).  Membranes were energized with NADH (4 mM) and the cargo 
was added 0 s (A), 10 s (B) or 200 s (C) later.  Cargo was added at τ = 0 s.  The kinetics 
after the lag phase in (A) and (B) were fit with a single exponential plus a linear baseline 
drift (Experimental Procedures), yielding τ = 33 s and 46 s, respectively.  The entire trace 
in (C) was fit with the same equation, yielding t = 93 s.  The linear baseline drift accounts 
for ~11% of the total fit fluorescence change for all three panels.  Each trace represents 
an average of 3 individual runs. 
 

was added at time zero.  FRET immediately decreased (τ = 71 s) when the 

membranes were energized in the absence of TatA (Figure 2.5A).  This differed  
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from results obtained with IMVs containing TatA (Figures 2.3A and 2.4A), which 

exhibited a lag-phase and rapid loss of FRET after the lag phase (τ = ~30 s).  

Since the Tat machinery is incapable of transport without TatA (or its paralog, 

TatE) (Sargent et al., 1998), the observed loss of FRET is not due to cargo 

translocation across the membrane, as confirmed in Figure 2.5B.  Rather, likely 

possibilities are that the loss of FRET arises either from a conformational 

change that results in the mature domain of the bound precursor moving away 

from the mCherry fluorophore, or from the precursor dissociating from the TatBC 

complex entirely.  The latter appears to be the case since TatBC IMVs pelleted 

after energization retain ~53% less bound pre-SufI than unenergized IMVs 

(Figure 2.5B).  Multiple groups have suggested the possibility that the signal 

peptide can penetrate fairly deeply into the membrane (Gerard and Cline, 2007; 

Panahandeh et al., 2008; Schlesier and Klosgen, 2010; Strauch and Georgiou, 

2007b).  The energy-dependent dissociation of pre-SufI from the receptor 

complex in the absence of TatA suggests the possibility that the signal 

sequence may not have penetrated as deeply under these conditions.  

 

DISCUSSION 

Tat transport requires both binding of a pre-protein to the Tat proteins as 

well as movement of the cargo across the membrane.  Presumably, these two 

seemingly conflicting processes are coupled, i.e., the binding reaction gates the 

transport event.  Critical to understanding this process is the development and 
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analysis of assays that can identify and discern the conversion between 

substeps of transport.  To this end, we developed a FRET assay that reports the  

initial cargo binding step.  Our major conclusions are:  1) transport occurs on the 

minute timescale with a highly purified membrane fraction (Figure 2.1D); 2.2) the 

cargo binding interaction occurs with an apparent KD ≈ 7-23 nM (Figure 2.2D) 

and a competitor-induced koff ≈ -0.042 s-1 (= 1/24 s) (Figure 2.2B); 3) the cargo 

mature domain appears to be nearer to the C-terminus of TatC than the C-

terminus of TatB (Figure 2.2C); 4) migration of the cargo from its initial binding 

site requires a ∆ψ (Figure 2.3B); 5) a delay in cargo migration from the initial 

binding site occurs after membrane energization (Figures 2.3 and 2.4), 

indicating that the ∆ψ does not directly promote cargo migration; and 6) TatA 

increases the affinity of the TatBC receptor complex for the precursor in the 

presence of a membrane potential (Figure 2.5).  The implications of these 

results are now discussed. 

As far as we are aware, the binding experiments reported here provide 

the first estimate of the binding affinity of a signal peptide for functional E. coli 

Tat translocons.  The estimated KD of 7-23 nM indicates a fairly strong, highly 

specific interaction, as is reasonably expected for a selective process.  From this 

measured KD and the competitor-induced koff ≈ 0.042 s-1 (Figure 2.2B), the 

apparent kon is 106-107 M-1 s-1.  This second order rate constant is of the 

magnitude expected for enzymatic interactions, where orientation of the 

reactants is clearly important, and is complicated by the fact that it likely reflects  
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Figure 2.5.   Transport and binding to energized membranes in the absence of TatA.   (A) 
Time traces of donor emission (at 550 nm) in the presence or absence of mCherry after 
energization with 4 mM NADH at τ = 0.  Reactions contained pre-SufI(T96C)Alexa532 (20 nM) and 
IMVs with TatBCcherry (red) or TatBC (blue) (A280 = 2).  The TatBCcherry data were fit with a single 
exponential plus a linear baseline drift, yielding τ = 71 s (the baseline drift accounts for 13% of 
the total fluorescent change).  (B) Membrane binding and cargo transport in the presence and 
absence of TatA.  Pre-SufI(T96C)Alexa532 (20 nM) was allowed to bind to membranes (TatBC or 
TatABC IMVs, A280 = 2) for 10 minutes at 37°C, respectively.  After a 10 min binding period, 
control samples were then centrifuged (16,000 g, 45 min, room temperature) and the pellet 
fractions were analyzed by SDS-PAGE (lanes 1-2).  Resuspended membranes were energized 
with 4 mM NADH for 20 minutes at 37°C (lanes 3-6).  Proteinase K (PK, 0.7 mg/mL) was added 
to half the reactions and all reactions were immediately centrifuged (16,000 g, 45 min, room 
temperature).  The resultant membrane pellets were resuspended in translocation buffer 
containing 68 mM PMSF and resolved via SDS-PAGE.  The amounts of recovered precursor 
(p, blue) and mature (m, red) proteins are shown above the sample gel, as indicated (N = 3).  
Less pre-SufI was recovered with membranes lacking TatA (compare lanes 3 and 4), indicating 
that the TatBC affinity for pre-SufI is lower without TatA in the presence of a PMF.  Matured 
protein was protease protected (compare lanes 4 and 6), indicating transport.  The average 
amount of protein initially recovered with TatABC membranes (lane 2) was set to 100%. 
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both binding to the membrane lipids (Bageshwar et al., 2009) as well as lateral 

diffusion to the Tat translocon.  Whereas the precursor can apparently exchange 

between lipid- and translocon-bound forms on the tens of seconds timescale, 

release from the membrane surface is significantly slower (Bageshwar et al., 

2009).  

It is unclear whether the signal peptide binding interaction was broken at 

the point at which the FRET interaction was lost under transport conditions, or 

whether there is sufficient flexibility between the mature domain and signal 

peptide such that large movements of the mature domain away from the C-

termini of TatB and TatC can occur without dissociation of the signal peptide.  

The latter is consistent with the finding that the thylakoid Tat machinery can 

transport cargos covalently linked to TatC via their signal peptide (Gerard and 

Cline, 2006).  In contrast, the NADH-dependent release of the cargo from 

membranes containing TatBC complexes but no TatA (Figure 2.5) indicates a 

weaker membrane binding affinity in the presence of a ∆ψ under these 

conditions, and thus clear dissociation of the signal peptide from the TatBC 

receptor complex under these conditions.   

The analysis of the data in Figure 2.2D indicates that the functional 

TatBC receptor concentration is ≤ ~20 nM (Supplementary Material).  Thus, the 

functional binding site concentration is significantly lower than the number of 

TatC molecules (322±88 nM) calculated based on the mCherry concentration. 

Note that TatABCcherry IMVs contained only full-length TatCcherry (Figure A15), 
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indicating that the mCherry fluorescence signal was not contaminated by 

degradation products of the fusion protein.  One possibility is that most TatC 

molecules are inaccessible or non-functional, possibly a consequence of 

overexpression.  Tarry and coworkers (Tarry et al., 2009b) found that cargos 

bind to only a few available binding sites in TatBC oligomers, which they 

estimated to be heptamers.  According to our data, active heptamers could 

account for ~140 nM (= 7 x 20 nM) of the TatC molecules present.  The 

remaining ~180 nM of the TatC molecules present may then be inactive or 

inaccessible.  However, a recent report with covalent TatC dimers suggests that 

TatBC complexes contain an even number of TatC molecules (Maldonado et al., 

2011).  Thus, the oligomerization state of active TatBC complexes remains 

uncertain.  

For all the pre-SufI single cysteine mutants tested, FRET signals were 

higher with TatCcherry than with TatBcherry.  This is seemingly at odds with a recent 

crosslinking study, which suggested that pre-SufI binds more closely to TatB 

than to TatC (Maurer et al., 2010).  However, the observed FRET signal arises 

from the proximity of pre-SufI's mature domain to the mCherry protein, which 

was at the C-termini of the Tat proteins.  Our data do not exclude the possibility 

that the dye molecules on the pre-SufI mutants are closer to the amphipathic 

region of TatB than to the TatB C-terminus. Consequently, the models of Maurer 

et al. (Maurer et al., 2010) are entirely consistent with our FRET data. 
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A model that has emerged for the E. coli Tat system and the pre-SufI 

cargo is that the cargo first binds to the membrane lipids.  From there, the cargo 

laterally diffuses to the TatBC complex.  Translocation across the membrane, 

presumably with the assistance of TatA oligomers, requires a ∆ψ (Bageshwar et 

al., 2009).  From studies on the thylakoid Tat system, the oligomerization of a 

TatBC complex with a TatA complex requires a PMF (Mori and Cline, 2002).  It 

seems safe to deduce, then, that such an oligomerization process is responsible 

for the lag phase observed in Figure 2.3A.  Loss of FRET is fairly rapid after this 

lag phase, possibly indicating that migration of the cargo mature domain from 

TatBC is fairly quick after TatABC oligomerization is complete.  Figure 2.4C 

indicates that migration after binding occurs essentially immediately if the cargo 

is added ~200 s after ∆ψ generation has been initiated, possibly indicating that 

TatABC oligomerization occurred before the cargo bound to TatBC.  The cargo 

migration away from TatBC is ~2.6-fold slower under these conditions, likely due 

to the fact that the detectable ∆ψ had already collapsed (Figure 2.3C; see also 

(Bageshwar et al., 2009)) when the cargo was added.  Receptor binding and 

migration of the mature domain away from the TatBC complex occurs 

concurrently in Figure 2.4C.  The absence of a detectable increase in FRET at 

the beginning part of the kinetics in Figure 2.4C indicates a rapid binding step (τ 

≤ ~3 s), which includes both lipid binding and diffusion to the Tat translocon.  

Our data are therefore consistent with the hypothesis that TatBC and TatA 

oligomerization occurs in the presence of a ∆ψ, with or without the cargo.  
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Further, the ∆ψ makes the translocation system receptive to cargo movement 

from the receptor binding site (e.g., by a conformational change, or the 

oligomerization itself), but does not appear to directly drive it energetically.  We 

expect that under in vivo conditions where a large ∆ψ is consistently maintained, 

all three Tat components can and do oligomerize and cargo transport occurs on 

the sub-minute timescale. 

According to the oligomerization model discussed in the previous 

paragraph, TatA and TatBC form separate oligomers in the absence of a cargo 

and a PMF (Bolhuis et al., 2001; de Leeuw et al., 2002; Gohlke et al., 2005; 

Maldonado et al., 2011).  Thus, our expectation was that the stability of the 

TatBC-precursor complex should be unaffected by the absence of TatA in the 

presence or absence of a ∆ψ.  We were therefore surprised that pre-SufI was 

released from IMVs upon addition of NADH in the absence of TatA (Figure 

2.5B).  We interpret these data to imply that the receptor complex has a weaker 

affinity for pre-SufI in the absence of TatA when a ∆ψ is present.  This appears 

inconsistent with an oligomerization model in which TatA is not part of the 

receptor complex.  However, an alternative, revised model is that at least some 

TatA is part of the receptor complex, consistent with earlier results (Bolhuis et 

al., 2001; de Leeuw et al., 2002).  This picture is also consistent with a recent 

study, which reports crosslinking of pre-SufI to TatA in the absence of a PMF 

(Frobel et al., 2011).  In light of these data suggesting that TatA is part of the 

TatBC receptor complex, it is not at all surprising that the absence of TatA 
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affects the interaction between TatBC and pre-SufI.  According to our FRET 

assay, a weaker receptor complex binding affinity in the absence of TatA is only 

apparent in the presence of a PMF.  TatA is necessary to keep pre-SufI bound 

to the TatBC complex in the presence of a PMF, eventually leading to transport 

(compare Figures 2.4A and 2.5A). 

In summary, we have isolated membranes exhibiting rapid Tat 

translocation activity.  For TatABCcherry IMVs, the overall translocation process is 

characterized by τ = ~80 s (Figure 2.1D).  When a ∆ψ is generated across these 

IMV membranes with bound precursor protein, migration away from the TatBC 

binding site occurs with τ = ~30 s after a significant (20-45 s) lag phase (Figure 

2.4A).  Migration away from the TatBC binding site occurs more slowly, but with 

no lag phase, if the precursor is added to previously energized membranes (τ = 

~90 s, Figure 2.4C), suggesting that the effect of the ∆ψ slowly wears off or that 

transport in the presence of a weak, undetectable ∆ψ (Bageshwar et al., 2009) 

occurs more slowly.  Binding to the membrane surface and diffusion to the 

TatBC complex occurs rapidly (τ ≤ ~3 s).  Therefore, the migration process in 

which the cargo moves away from the TatBC complex requires a significant 

fraction (~40%) of the total transport time.  It is unclear whether the migration 

step itself is rate-limiting or whether an upstream kinetic step limits the migration 

rate.  The gel-based transport assay has poor time resolution, and, since it is not 

a real-time assay, it is not clear whether any transport substeps can occur after 

quenching the reaction.  Consequently, it remains unclear whether the cargo 
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proceeds directly across the membrane bilayer upon leaving the TatBC complex 

or whether there is an additional kinetically significant intermediate, e.g., cargo 

within the TatA pore.  Further experiments are needed to clarify these 

downstream events. 

 

METHODS 

Bacterial Strains, Plasmids, and Growth Conditions   

E. coli strains MC4100∆TatABCDE, JM109, and BL21(λDE3) were 

described previously (Casadaban and Cohen, 1979; Studier et al., 1990; Wexler 

et al., 2000; Yanisch-Perron et al., 1985).  Cultures for IMV preparations were 

grown at 37°C as described (Bageshwar and Musser, 2007).  Overexpression 

cultures for pre-SufI and spTorA-mCherry-MA were grown in Luria-Bertani (LB) 

medium at 37°C, and shifted to 15°C upon induction with 1 mM IPTG or 0.6% 

arabinose, respectively.  All cultures were supplemented with ampicillin (50 

µg/mL).  Tat proteins were induced for 4 hours with 0.7% arabinose, as 

previously described (Bageshwar and Musser, 2007).   

The plasmid pIntein-preSufI-MA was generated by inserting a cysteine-

free form of pre-SufI with a 6xHis tag into the vector pTYB11 (New England 

Biochem).  Plasmid pIntein-preSufI-MA was used as the template for all pre-SufI 

mutants, as described in Figure A5.  Plasmids pTatABcherryC and pTatABCcherry 

were generated by insertion of the mCherry sequence (plasmid pmCherry, 

Clontech) into pTatABC (Yahr and Wickner, 2001) immediately after the coding 



53 

 

regions of TatB and TatC,  respectively  (Figures A6 and A7).  pTatBC  and 

pTatBCcherry were generated by excising the TatA sequence from pTatABC and 

pTatABCcherry, respectively (Figure A8).  All mutations were generated via the 

Quikchange protocol (Stratagene), and all plasmid coding sequences were 

verified by DNA sequencing.  Plasmid pTorA-mCherry-H6 was generated by 

inserting mCherry along with the TorA signal peptide and 4 amino acids (AQAA) 

of the TorA mature domain into the pBAD24 vector (Figure A9).  

 

Protein Purification and Labeling   

All pre-SufI proteins were purified from expression cultures via chitin 

chromotography as described previously (Chong et al., 1998) with an on-column 

cleavage (50 mM dithiothreitol) at 4°C for 20 hours (Figure A10).  Excess 

dithiothreitol was removed from the eluate by dialysis (10,000 MW cutoff) 

against phosphate buffered saline (1X PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, and 2 mM KH2PO4, pH 7.5) for 4 hours.  Ni-NTA chromatography was 

used for further purification (Bageshwar and Musser, 2007).  Alexa532 labeling 

of pre-SufI proteins was performed as described previously (Bageshwar et al., 

2009).  After a 4 hour dialysis against 1X PBS buffer, excess dye was removed 

by an additional Ni-NTA purification step (Bageshwar et al., 2009).  The final 

storage buffer was 20 mM Tris-HCl, 50 mM NaCl, 250 mM imidazole, 50% 

glycerol, pH 8.0.  Purification of spTorA-mCherry-H6 was performed by Ni-NTA 

chromatography, by the procedure used for pre-SufI (Bageshwar and Musser, 
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2007).  The mCherry protein was obtained by purifying the mature protein from a 

spTorA-mCherry-H6 preparation via Resource Q (GE Healthcare) 

chromatography.  

The protein concentrations of all pre-SufI proteins were quantified by 

SDS-PAGE using bovine serum albumin as the standard.  Spot intensities after 

Coomassie Blue staining were determined with a phosphorimager (model FX 

PhosphoImager, Bio-Rad Laboratories).  Alexa532 concentrations were 

determined by absorbance spectroscopy at 532 nm (e = 81,000 cm−1M−1). 

Typical dye-to-protein ratios after labeling indicated that 80-90% of the cysteines 

were successfully tagged.  mCherry concentrations were estimated in 2% SDS 

based on the mCherry absorbance at 587 nm in and its extinction coefficient at 

this wavelength (Shaner et al., 2004). 

 

Isolat ion of IMVs   

IMVs were isolated from MC4100∆TatABCDE as described (Bageshwar 

and Musser, 2007), with the following modifications.  Cell lysis by French press 

was performed at ~16,000 psi instead of ~6,000 psi.  In addition, the 2.3 M 

sucrose cushion was replaced with a 3-step (0.5 M, 1.5 M, and 2.3 M) sucrose 

gradient, which enabled enrichment of a highly active inner membrane fraction. 

A band in the 0.5 M region was faintly pink when mCherry Tat fusions were 

expressed (Figure A11), and translucent dark brown when wild type TatABC 
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was expressed.  IMV concentrations were determined as the A280 in 2% SDS 

(Bageshwar and Musser, 2007). 

 

Transport and Membrane Binding Assays  

In vitro transport assays and precursor-membrane binding assays were 

performed as described (Bageshwar and Musser, 2007; Bageshwar et al., 

2009), unless otherwise indicated.  Gel based transport kinetics were performed 

in a heated cuvette to mimic conditions in which the real-time FRET assays 

were performed.  Aliquots (35 µL) of the reaction mixture were removed from the 

cuvette at the indicated time points and quenched with a mixture of 5 µM 

nigericin and 5 µM valinomycin on ice.  Visualization of protein bands was 

performed by direct in-gel fluorescence imaging (model FX PhosphorImager, 

Bio-Rad Laboratories). 

 

Real-time FRET Assay   

Translocation buffer (5 mM MgCl2, 50 mM KCl, 200 mM sucrose, 57 µg 

ml−1 BSA, 25 mM MOPS, 25 mM MES, pH 8.0) (Bageshwar and Musser, 2007) 

and IMVs (A280 = 2) were added to a heated cuvette (final volume: 800 µL) in an 

SLM-Aminco fluorometer and allowed to equilibrate to 37°C for 5 min.  Precursor 

protein was then added and equilibration was continued for at least 200 s.  

Reactions were initiated by addition of competitor precursor or NADH.  
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Excitation and emission wavelengths were 500 nm (4 nm slits) and 550 nm (8 

nm slits), respectively.  

 

Analysis 

Kinetic data were fit with a single exponential plus a linear baseline drift: 

 

(equation 1) 

 

where a, b, and k (= 1/τ) are fit parameters.  The data in Figure 2.2D were fit to 

the equation for single site binding when the KD and receptor concentration are 

of similar magnitude (derived in the Supplementary Material)(equation 2) 

where C, T0, and KD are fit parameters. 

 

 

 

(equation 2) 

 

 

 

 

 

 

   y = ax + b(1− e−kx )

   
y = C *

(x +T0 + KD ) − (x +T0 + KD )2 + 4(x)T0

2T0
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CHAPTER III 

 

EFFECT OF CARGO SHAPE ON TRANSPORT EFFICIENCY OF THE 

BACTERIAL TAT TRANSLOCASE 

  

SUMMARY 

 The Tat machinery’s ability to translocate fully folded and, in some cases, 

oligomeric substrates have caused it to attract attention as a potential 

biotechnological tool.  Previous studies have implied that a cargo’s molecular 

weight and possibly its length can adversely affect its transport efficiency.  It was 

hypothesized that transport efficiency may not only be dependent on size, but 

shape.  To this end a series of cargos of different sizes and shapes were 

generated using the Tat substrate pre-SufI as a base.  Of the eighteen cargos 

that were tested, four were found to transport with significant (>15% of wild–

type) efficiencies.   The lower efficiencies were not due to slower transport 

kinetics.  Despite identical molecular weights, the same theoretical isoelectric 

point, and the same signal peptide, many of the other cargos failed to transport.  

These results indicate that the shape of the cargo is indeed important for its 

transportability.   

 
INTRODUCTION 
 
 As described in previous chapters, the twin arginine translocase 

transports fully folded and assembled cargos from the Escherichia coli 
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cytoplasm to the periplasm (Clark and Theg, 1997).  The system is named for 

two highly conserved arginines found within the consensus motif in the signal 

peptides of Tat directed precursor proteins (Chaddock et al., 1995).  The E. coli 

machinery is composed of three minimal components: TatA, TatB and TatC 

(Bogsch et al., 1998; Sargent et al., 1999; Weiner et al., 1998).  The working 

model of Tat dependent transport describes a scenario in which cargos first 

interact with a complex of TatB and TatC, and then are conveyed across the 

bilayer though a channel comprised primarily of TatA (De Leeuw et al., 2001; 

Gohlke et al., 2005).   After the precursor has been transported, the signal 

peptide is removed by a periplasmically active signal peptidase resulting in the 

mature form of the protein (Luke et al., 2009).  

The Tat system’s ability to transport fully folded, and in some cases 

oligomeric, proteins in a vesicle-independent fashion is perhaps its most 

interesting feature.  In fact, there are only two other known systems that have 

this capability: the nuclear pore complex and the peroxisomal import system, 

both of which are absent in bacteria (Strambio-De-Castillia et al., 2010; Walton 

et al., 1995).  Due to its uniqueness in bacterial systems, the Tat machinery has 

attracted attention because of its potential for use in the production of protein 

products (Bruser, 2007; Yoon et al., 2010).  The bacterial Sec system has long 

been used to transport proteins of interest into the periplasm or outside of the 

cell for increased ease and rapidity of purification (Mergulhao et al., 2005).   The 

Sec system, however, cannot transport some proteins such as those that are  
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oligomeric, fast folding, or those that contain cofactors.  The Tat translocase 

offers an attractive alternative pathway that, in principle, could accommodate 

these problematic substrates.  Additionally, the Tat translocase possesses a 

Figure 3.1. Pre -SufI -IAC fails to transport when bound to avidin.  (A) Effect of avidin on the 
transport of pre-SufI-IACbiotin. Proteins were detected by Western blotting using avidin-HRP. When 
present, biotin (16 µM) was in large excess over neutravidin (1.6 µM), and neutravidin was in large 
excess over the precursor protein (40 nM, 1.4 pmol). Thus, the binding interactions were saturated. 
[IMV] = 5 (A280) (B) Competition between pre-SufI-IACbiotin and pre-SufI-IACatto in the presence of 
avidin. The transport efficiency of pre-SufI-IACatto (40 nM, 1.4 pmol) was determined in the 
absence (black) and presence (red) of 25 µM neutravidin and the indicated molar equivalents of 
pre-SufI-IACbiotin (n = 3). Gels were visualized by the Atto565 fluorescence emission. [NADH] = 4 
mM; [IMV] = 5 (A280). (C) Effect of precursor addition order on the transport efficiency of pre-SufI-
IACatto. For lanes 5–9, the reactions contained pre-SufI-IACatto, 25 µM neutravidin, and IMVs 
containing over-expressed Tat (A280 = 5). For lanes 7–9, the reactions contained pre-SufI-IACbiotin. 
The boxes indicate which precursor (90 nM, 3.1 pmol each) was added first to the reaction 
solution. In lane 7, both precursors were added simultaneously, and 4 mM NADH was added 5 min 
later. In lane 8, pre-SufI-IACbiotin was added 5 min prior to the simultaneous addition of pre-SufI-
IACatto and NADH. Lane 9 was obtained similarly to lane 8, but the precursors were reversed. This 
gel was visualized by the Atto565 fluorescence emission. Adapted from (!!! INVALID CITATION 
!!!). 
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poorly understood quality control mechanism that appears to be able to preclude 

incorrectly folded cargos, which would presumably allow for isolation of only 

correctly folded proteins (Rocco et al., 2012; Sargent, 2007a).  In order to make 

use of the system in this way, it is important to understand the limitations of the 

machinery, especially in terms of its capability to translocate unnatural 

substrates.  

 The Tat system’s ability to transport hetero-oligomeric proteins with only a 

single signal peptide has been termed the “hitch-hiker” mechanism.   In E. coli, 

the small (HybO) and large (HybC) subunits of hydrogenase 2 (Hyd2) are a 

good example of such a situation, with the small subunit responsible for the co-

transport of the large subunit (Rodrigue et al., 1999).   Dimethyl sulfoxide 

(DMSO) reductase’s catalytic dimer (DmsAB) also only has a single signal 

peptide, which is found on DmsA (Sambasivarao et al., 2000).  Despite the 

presence of these naturally occurring hitch-hiker complexes, efforts to transport 

“unnatural” non-covalent hetero-dimers have been unsuccessful.  The only two 

studies that address this directly have utilized biotinylated natural cargo bound 

to avidin tetramers.  In both instances (OE17 and SufI avidin complexes), the 

precursors failed to transport under in vitro conditions despite their apparent 

ability to bind to the Tat translocon (Figure 3.1AB and (Musser and Theg, 

2000)).  These bound, non-transportable cargos were not, however, dead-end 

intermediates (i.e. they were not “stuck” in the translocon) because they could 
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be exchanged out with different cargos that were subsequently transported 

(Figure 3.1C).   

Efforts have been made to probe the size limitations of the Tat machinery 

using fusion proteins consisting of a natural Tat substrate (or corresponding 

signal peptide) fused to a separate protein moiety. One study utilized the natural 

chloroplast Tat substrate OE17 fused to a Protein A moiety, separated by 

varying lengths of unstructured linkers (Cline and McCaffery, 2007).  Like the 

avidin bound precursor proteins, these Protein A fused cargos failed to fully 

transport. Surprisingly, the fusions with the longest linkers formed membrane 

spanning intermediates that were not associated with the translocon. In light of 

these intermediates, it is possible that some attribute of Protein A itself prevents 

it from becoming transported, especially because it is not a natural substrate for 

the Tat machinery.  Another unnatural Tat cargo has, on the other hand, been 

successfully transported.  Green fluorescent protein (GFP) is translocated into 

IMVs containing the E. coli Tat system when it was fused to the signal peptide 

from the substrate TorA (Bageshwar and Musser, 2007).  However, though pre-

SufI is transported with high efficiency in vitro, when SufI’s signal peptide is 

fused to GFP, it does not transport or even bind to the translocon (Bageshwar 

and Musser, 2007).   

 Based on these studies, experiments were performed that sought to 

probe the translocon by modifying the natural cargo pre-SufI.  GFP fusions and 

noncovalent pre-SufI-avidin hetero-dimers formed from biotinylated versions of 
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the single cysteine mutants described in Chapter II were used.  Additionally, the 

naturally occurring, high affinity, dimeric avidin homolog, rhizavidin, was used in 

place of the tetrameric avidin (Helppolainen et al., 2007).  These results indicate 

that transport efficiency of a given cargo is not only dependent on its molecular 

weight, but also on its shape.  

 

RESULTS  

Generation of Pre-SufI Cargos 

 The natural Tat substrate, pre-SufI, was selected as a base for the series 

of cargos used in this study based on its relatively high transport affinity 

demonstrated in previous studies (Bageshwar and Musser, 2007; Bageshwar et 

al., 2009). For a preliminary set of experiments, GFP and a tandem GFP dimer 

were fused to pre-SufI at the C-terminus, generating new substrates with 

molecular weights of 86 and 110 kDa, respectively.  As a Tat substrate, these 

constructs are similar to several that have been previously studied, i.e, a natural 

Tat cargos with a C-terminal addition (Cline and McCaffery, 2007; Lindenstrauss 

and Bruser, 2009; Musser and Theg, 2000) (Figure 3.1).  The goal of this study, 

however, is to probe the Tat machinery with a range of cargos that differ not only 

in size, but in shape.  To this end, the series of single cysteine mutations from 

Chapter II was utilized.  Each mutant was labeled with N-(3-maleimidyl 

propionyl)biocytin, yielding a series of pre-SufI proteins with a single biotin at 8 

different locations on the surface of the molecule (see Figure 2.1A).  When 
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mixed with saturating levels of avidin, the biotinylated pre-SufI form cargos with 

a MW of 113 kDa, but with 8 distinct morphologies. The high affinity for biotin 

and slow off-time of the avidin tetramer (KD ~ 10-15 M) ensures that the 

heterodimeric structure will be maintained during in vitro Tat dependent 

transport reactions, which take place on the order of a few minutes (see Figure 

2.1D). 

 Recently, a naturally occurring, dimeric homolog of avidin was 

characterized, termed rhizavidin.  Isolated from the nitrogen-fixing bacterium 

Rhizobium etli, rhizavidin does not have the 1-2 and 1-3 interfaces that 

tetrameric interfaces that avidin has, yet it still maintains a high affinity for biotin 

(Helppolainen et al., 2007; Meir et al., 2009). When the biotinylated pre-SufI 

variants are mixed with rhizavidin at saturating concentrations, a series of 

heterodimeric precursor proteins with a MW of 83 kDa are formed.   

 

Transport Efficiency of Modified Pre-SufI Proteins 

 Transport efficiencies of all substrates were measured using the protease 

protection based in vitro transport assay described previously (Bageshwar and 

Musser, 2007).  In short, cargo protein was mixed with IMVs containing over-

expressed TatABC.  Membranes were energized by addition of NADH which 

promotes translocation of the cargo into the lumen of the vesicles.  Reactions 

were then treated with Proteinase K, which digests any untranslocated 
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substrate.  The resultant mixtures were resolved via SDS-PAGE and visualized 

by Western blotting.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Pre -SufI -GFP transports with limited efficiency. (A) In vitro transport assays were 
performed with pre-SufI (lanes 1-5) or pre-SufI-GFP (lanes 6-10). Limited transport (17% of pre-
SufI) was observed (compare lane 10 to lane 5).  Lanes 1-3 and 6-8 are concentration standards. 
Reactions were performed with 50 nM of cargo.   Lanes 4 and 9 are negative controls. Bands were 
visualized by anti-SufI immunoblotting. (B) Experiment similar to (A) but with pre-SufI-2xGFP 
labeled with Alexa647 at the C-terminus as the substrate.  No transport was detected.  
Visualization of protein bands was performed by direct in-gel fluorescence imaging (model FX 
PhosphorImager, Bio-Rad Laboratories). 
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Figure 3.3.  Pre -SufI biotin  transports in the presence of rhizavidin with limited and 
shape dependent efficiency. (A) Pre-SufIbiotin transport was strongly inhibited when 
bound to avidin tetramers.  Proteins were detected by Western blotting using avidin-HRP. 
When present, biotin (36 µM) was in large excess over neutravidin (3.6 µM), and 
neutravidin was in large excess over the precursor protein (90 nM, 3.1 pmol). Thus, the 
binding interactions were saturated. The graph represents an average of three reactions, 
normalized to transport in the absence of avidin (wildtype). (B) In the presence of 
rhizavidin pre-SufI(T96C)biotin, pre-SufI(M338C)biotin, and pre-SufI(479C)biotin were found to 
transport with the greatest efficiency efficiency.  All other pre-SufIbiotin mutants failed to 
transport more than 12% of wildtype when bound to rhizavidin.  Experiments performed 
identically to those in (A) with rhizavidin substituted for avidin.  (C) The percent of 
transported pre-SufIbiotin in the presence of avidin (red) and rhizavidin (blue) was divided by 
the amount transported in the presence of both (rhiz)avidin and excess biotin.  (D)  
Example reactions of a pre-SufIbiotin mutant that was found to transport in the presence of 
rhizavidin, but not avidin (M338C) and a mutant that did not transport under either 
condition (G410C).   Lanes 2 and 4 are in the presence of 36 µM biotin.  All reactions were 
energized with NADH. 
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Unlike previous studies with GFP fused to the signal peptide of SufI 

(spSufI-GFP) (Bageshwar and Musser, 2007), full length SufI fused to GFP was 

transportable, albeit with a lower (17% of wild-type SufI) efficiency (Figure 3.2A), 

indicating that the mature domain of pre-SufI plays an important role in the 

ability of the translocon to transport the cargo.  A similar construct with two 

copies of the GFP moiety fused to the C-terminus of SufI, however, failed to 

transport to any detectable degree (Figure 3.2B). 

 

Figure 3.4.  Rhizavidin is translocated into the lumen of IMVs.  (A) Reactions were performed 
essentially as in Figure 3.2 but without proteinase K digestion for the rhizavidin532 gel.  Instead, the 
reactions were pelleted and washed with translocation buffer containing 1 M KCl and 2 M urea to 
remove untransported rhizavidin.   Lanes 1-3 are standards. Lanes 4 and 5 contain rhizavidin, with 
saturating levels of biotin present in lane 5.  Pre-SufI(M338C)biotin was detected by Western blotting 
using avidin-HRP.  Rhizavidin532 was detected by in-gel fluorescence imaging (model FX 
PhosphorImager, Bio-Rad Laboratories). (B) Bar graph of data from (A).  Total rhizavidin transported is 
shown in red, total pre-SufI transport is shown in blue (N = 3).  
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Comparative transport efficiencies were also determined for the avidin 

and rhizavidin pre-SufI complexes (Figure 3.3).  Similar to the pre-SufI-IACbiotin 

experiments shown in Figure 3.1, pre-SufIbiotin failed to transport in significant 

amounts when bound to the avidin tetramer (Figure 3.3A).  When bound to the 

dimeric rhizavidin, however, limited transport was observed for pre-

SufI(T96C)biotin , pre-SufI(M338C)biotin, and pre-SufI(T479C), which yielded 

transport efficiencies of 28%, 39% and 28%, respectively (compared to when 

biotin was present) for the pre-SufI(M338C)biotin mutant  (Figures 3.3B and 3.3C).  

The presence of saturating amounts of biotin was found to largely restore 

transport, indicating that the inhibition of transport was due primarily to the 

specific avidin-biotin interaction, and not due to any unanticipated effect of the 

avidin on Tat protein transport.   

 For the pre-SufI mutants that transport in the presence of rhizavidin, it is 

necessary to determine if the “hitchhiking” rhizavidin dimer actually transports 

into the vesicle lumen.  There is the possibility, however unlikely, that either the 

pre-SufI protein crosses the membrane while leaving the attached rhizavidin 

outside (like in the case of the membrane spanning intermediate observed by 

(Cline and McCaffery, 2007) or that the rhizavidin becomes disassociated during 

the transport process, despite its high affinity.   To this end, rhizavidin was 

labeled with the fluorescent dye AlexaFlour532 and translocated into vesicles 

under the same conditions as in Figure 3.3.  Untransported rhizavidin could not 

be removed by proteinase K digestion, due to the proteins resistance to  
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Figure 3.5.  Pre -SufI(M338C) biotin  transports with similar kinetics in both 
rhizavidin bound and unbound states.  (A) Time course of pre-SufI(M338C)biotin 
translocation in the presence of rhizavidin and either in the presence (bottom gel) or 
absence (top gel) of a saturating amount of biotin.  The reaction was performed in a 
heated (37ºC) cuvette with stirring, as in the kinetics experiments in CHAPTER II.  
Aliquots were removed at the time points indicated and added to chilled tubes 
containing nigericin and valinomycin to quench to reaction.  Gels were was detected 
by Western blotting using avidin-HRP. (B)  Quantification of the data from (A).  
Transport efficiencies were normalized based on the 20 min time point.  Note that 
the blots were exposed for different amounts of time, and intensities between the two 
sets of bands are not directly comparable.  
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proteolytic digestion (Helppolainen et al., 2007), so it was removed by pelleting 

and washing with translocation buffer containing 2 M urea and 1 M KCl to 

remove precursor bound rhizavidin from the vesicles.  The total amount of 

translocated rhizavidin was found to be approximately the same as the total 

amount of transported pre-SufI (Figure 3.4).   

 The lower apparent transport efficiencies for the avidin and rhizavidin 

bound pre-SufI proteins could be due to the larger, heterodimeric proteins 

transporting at a slower rate than the unbound pre-SufI.  To test this, two time 

course reactions were performed: one with pre-SufI(M338C)biotin bound to 

rhizavidin and one without (Figure 3.5A).  Although the overall kinetics appeared 

slower than those of similar experiments reported in the previous chapter, they 

were similar to each other, indicating that the lower transport efficiencies 

observed for the avidin and rhizavidin bound forms of pre-SufI are likely not a 

consequence of slower transport kinetics (Figure 3.5B).    

 

DISCUSSION 

 All studies thus far on the Tat system that have sought to determine 

limitations on cargo translocation have focused on either the molecular weight of 

the substrate, or the total length (i.e.,  the number of amino acids) of a linker 

region between two folded moieties.  These are related but not identical 

parameters since a folded domain yields a shorter length than a flexible linker.  

Defining Tat substrates via these parameters are likely inadequate given that the 
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Tat machinery transports fully folded and assembled cargos, and folded proteins 

of similar molecular weights may have considerably different dimensions.   

Additionally, several other properties of proteins that are directed to the 

Tat machinery may affect their ability to be translocated.  These could include 

the overall charge of the protein, the surface charge, the properties of its specific 

signal peptide, or the ability of the translocon to bind to the signal peptide.  This 

study has for the first time utilized a system that both probes the translocon’s 

ability to handle unnatural substrates in terms of both size and shape, while 

attempting to change the properties listed above as little as possible.   

 In all cases, the presence of a bound avidin tetramer substantially 

inhibited pre-SufI transport (Figure 3.3A).  In the cases were a small amount 

was translocated (such as pre-SufI-T96C), more or at least equal amounts 

(within error) of protein was transported when the pre-SufI mutant was bound to 

rhizavidin instead.  Pre-SufI-2xGFP, which is similar in molecular weight to pre-

SufI bound to an avidin tetramer, also failed to transport to a detectable degree 

(Figure 3.2B).  While this does not prove a molecular weight cutoff for the Tat 

translocon, it certainly suggests that larger proteins, despite significant similarity, 

are more difficult to transport than smaller ones.  It is important to consider that 

the duration, and possibly the magnitude, of the membrane potential are not as 

high or as long as they would be under in vivo conditions.  Presumably, in live E. 

coli cells, the membrane potential is essentially constant, and this sustained 

potential may allow larger proteins to be translocated.  Furthermore, using 
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purified IMVs may exclude some essential soluble factors that would allow these 

larger proteins to translocate.  However, this is unlikely in this case since it has 

been determined that no soluble factor is required for translocation of pre-SufI 

(Holzapfel et al., 2009).  Importantly, evidence exists that suggest that proteins 

of similar, and even larger, molecular weights are transported under natural 

conditions (Palmer et al., 2005).  The catalytic subunit of the E. coli Tat 

substrate TMAO reductase, for instance, has a molecular weight of 

approximately 94 kDa.  This discrepancy could be due to a specific function of 

the signal peptide attached to the cargo (i.e., a TorA signal peptide in place of 

the SufI signal peptide may allow for transport of some of the untransportable 

cargos used in this study), or it could simply be due to some unknown limitation 

of using this in vitro system. 

Interestingly, some pre-SufI mutants were transported when bound to 

rhizavidin and some were not (Figure 3.3B, C and D). The hetero-dimeric cargos 

have different shapes and the only other difference in these substrates is the 

single point mutations used for labeling. However, these mutations were shown 

to not significantly affect the transportability of the proteins in the majority of 

cases (Figure 2.1B), and the adverse effects on transport efficiency were not 

nearly as significant as those observed in Figure 3.3.   

Based on the transport efficiency of the various biotinylated precursors in 

the presence of (rhiz)avidin, it is expected that something could be learned 

about the shape requirements for Tat cargos.  However, as can be seen in 
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Figure 2.1A, the two proteins that transported with the highest efficiency when 

bound to rhizavidin (pre-SufI(M338C) and pre-SufI(T96C)) have mutations on 

opposite sides of the protein’s mature domain.  Furthermore, pre-SufI(479C)biotin 

and the similar pre-SufI-GFP precursor were found to transport significantly 

better in the presence of rhizavidin than pre-SufI(L470C)biotin despite the fact that 

the two cysteine mutations are very close to each other.  The reason for this 

difference in transport efficiencies is unknown.  One possibility is that the flexible 

linker region in pre-SufI(479C)biotin  may allow the cargo to assume a more 

transportable shape, but this has not been shown explicitly.  

It is possible that the hetero-dimeric proteins simply transport slower than 

unbound pre-SufI.  Rhizavidin bound and unbound pre-SufI(M338C)biotin was 

found to transport with similar kinetics (Figure 3.5), so it is unlikely that this is the 

case.    Either only a certain fraction of Rhizavidin bound pre-SufI(M338C)biotin  is 

transport capable (implying that the cargo population is somehow not uniform), 

or that every transport event has a certain chance of aborting, and the cargo’s 

dimensions  (the size and shape) affect this chance.   

The Tat machinery’s ability to translocate folded and oligomeric proteins 

will likely continue to attract attention for the production and purification of 

proteins that cannot be secreted by the more commonly used Sec system.  This 

study implies that not every tightly folded protein can be secreted by the Tat 

machinery when coupled to readily recognizable transportable carrier cargo.   
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Thus, we still have much to learn about the recognition, size, and shape 

requirements of Tat cargos.    

 

METHODS 

Bacterial Strains, Plasmids, and Growth Conditions   

 E. coli strain MC4100∆TatABCDE was used for growth and isolation of 

IMVs as described in Chapter II.   E. coli TatA, TatB and TatC was induced by 

addition of 0.6% arabinose to cultures of MC4100∆TatABCDE containing the 

plasmid pTatABC, as previously described (Bageshwar and Musser, 2007)  

(Chapter II).  Expression conditions for production of the pre-SufI cysteine 

mutants were also as described in Chapter II.  

 The plasmid pPre-SufI-GFP was generated by amplifying the GFP gene 

from spTorA-GFP (Bageshwar and Musser, 2007) with PCR using primers 5’-

AAAACTCGAGGATCGGCGCAAGCGGCGCGTAAAGGA-3’ (forward) and 5’-

AAAAGCTAGCTTTGTATAGTTCATCCATGACCATGCCATGTC-3’ (reverse), 

which introduced two flanking restriction sites (NheI and XhoI) to the GFP gene.  

These sites were used to insert GFP into pSufI-MCC (Bageshwar et al., 2009) 

between the pre-SufI gene and the sequence for the 6xHis tag.  The resultant 

ligated plasmid contained a frame shift error that was corrected by XhoI 

digestion and a subsequent Klenow fragment fill-in reaction, which also 

destroyed the XhoI site after the plasmid was re-ligated (Figure A16).  The 

plasmid pPre-SufI-GFPx2 was similarly produced by amplifying the GFP gene 
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from spTorA-GFP with PCR using 5’-

GGGGACTAGTTTTGTATAGTTCATCCATGCCA-3’ (forward) and 5’-

GGGGACTAGTAAGCGTAAAGGAGAAGAACTTTA-3’ (reverse) which 

introduced flanking SpeI and NheI restriction enzyme sites.  The amplified 

second GFP gene was then inserted into a NheI site, destroying the site upon 

religation (Figure A17).  Because the pre-SufI-GFP fusion protein is too large to 

be readily distuinguished from the mature, SufI-GFP protein, pre-SufI-GFP was 

inserted into the vector pTYB11 (New England Biochem) to ensure the full 

length precursor would be purified, generating pIntein-pre-SufI-GFP (Figure 

A18).  The cargo coding region of plasmid pPre-SufI-2xGFP was also inserted 

into the pTYB11 vector, but expression of the resultant fusion protein produced 

very little soluble precursor protein.  It was therefore not used in this study. 

Instead, pPre-SufI-2xGFP was expressed from plasmid pPre-SufI-2xGFP using 

the pre-SufI expression protocols described previously (Bageshwar and Musser, 

2007).  Growth and expression conditions for pre-SufI-GFP from pIntein-pre-

SufI-GFP are identical to conditions used for expression from pIntein-preSufI-

MA as described in Chapter II.  

 Plasmids used for generating the proteins necessary for the pre-SufIbiotin 

experiments were produced as described in Chapter II.  The plasmid used for 

rhizavidin expression was a gift from Barbara Niederhauser. (Helppolainen et 

al., 2007).   
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Protein Purification and Labeling 

 Labeling and purification of the pre-SufI cysteine mutants was performed 

as described in Chapter II, except that the labeling reactions were performed 

with N-(3-maleimidyl propionyl)biocytin (Invitrogen).  Purification of pre-SufI-GFP 

was performed essentially by the same method, except without the labeling 

step.   Pre-SufI-2xGFP and rhizavidin were purified as described (Bageshwar 

and Musser, 2007; Helppolainen et al., 2007).   Rhizavidin was labeled with 

AlexaFluor532 carboxylic acid, succinimidyl ester.  The reaction was performed 

(1 hour at room temperature) sodium bicarbonate buffer (pH 8.25).  The reaction 

was quenched by addition of 100 mM Tris-HCl (pH 8.0).  Excess dye was 

removed by spin filtration with addition of fresh bicarbonate buffer after each 

spin (8 consecutive 5 minute spins at 10,000 rcf) using Pall Nanosep Omega 

spin-filters (MW cutoff = 3,000 KDa).  The term “avidin” refers to the 

glycosylation free variant NeutrAvidin, purchased from Invitrogen. 

 

Transport Reactions 

Protein translocation assays were performed essentially as described 

(Bageshwar and Musser, 2007) (Chapter II).  Unless otherwise noted, initial 

precursor concentrations were 90 nM.  All errors bars represent the standard 

error of the mean.   The amount of IMVs in the reactions was estimated by the 

absorbance at 280 nm in 2% SDS.  All IMV optical densities (OD) in the 

translocation reactions in this study were A280 = 5. 
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CHAPTER IV 

 

CONCLUSIONS 

 

 In the first chapter, over two decades of research on the twin arginine 

translocase were summarized.  Despite the numerous studies which have 

sought to elucidate aspects of the Tat machinery, much of the translocation 

process is still unknown.  For instance, we know very little about the substeps of 

the translocation process, and the limitations of the Tat system in terms of what 

types of cargos it can successfully transport are poorly understood.  This 

dissertation has reported on two studies which have attempted to address these 

discrepancies, and the following are the major conclusions.  

 Chapter II reported on the development of a real-time FRET based assay 

that allowed for the observation of the dynamic interactions of cargo with the Tat 

translocon.  To date, no other study has been able to observe any step of Tat 

dependent translocation with higher time resolution.  The data from this chapter 

support the following conclusions.  First, the cargo’s binding affinity to the 

translocon under the currently described conditions is reversible and has a 

relatively high affinity.  The estimated dissociation constant (KD ≈ 7-23 nM) is the 

first such measurement made for a functional Tat system.  Second, cargo was 

found to first bind to the TatBC complex, confirming one of the early steps in the 

popular model for Tat transport.  Then, in the presence of a membrane potential, 
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the mature domain migrated away from its initial binding site. The substrate’s 

migration and subsequent translocation occur on the minute timescale in these 

experiments.  Third, cargo (or at least pre-SufI) appears to bind closer to the C-

terminus of TatC than the C-terminus of TatB.  Fourth, there is a delay in cargo 

migration from its binding site after energization, which lasts for approximately 

20-45 seconds.   The fact that it occurs after the translocon is fully energized 

indicates that the membrane potential does not directly promote cargo migration, 

but rather facilitates some process that prepares the translocon to allow for the 

migration to take place.  Fifth, in the absence of TatA, energized TatBC 

membranes lose affinity for bound cargo when energized. 

 In Chapter III, a series of different sized and shaped cargos was used to 

probe the Tat translocon’s ability to accommodate a range of unnatural cargos.  

The study used the natural Tat substrate pre-SufI as a scaffold for constructing 

eighteen different cargos.  The data support the following conclusions.  First, of 

the two size classes of substrates used (~85 kDa and ~110 kDa) the four that 

were found to transport were ~85 kDa.  Second, when the same protein moiety 

(rhizavidin) was bound to different locations on pre-SufI, different transport 

efficiencies were observed.  Third, the transport efficiencies of the newly tested 

cargo were lower than that of wild-type pre-SufI, but were found to transport with 

approximately the same kinetics.   

 In conclusion, these studies have provided two distinct methods for 

probing the mechanism of Tat translocation.  The method utilized in CHAPTER 
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II was able to observe a sub-step in translocation.  This substep appears to take 

up a significant amount (~40%) of the total transport time.  The fact that this 

apparent migration step is not directly caused by the membrane potential, but 

still requires it to occur, implies that there is an unknown ∆ψ−dependent process 

that “primes” the translocon for the next stage in the transport cycle.  Whether 

this is an oligomerization step (i.e., the formation of a TatA pore), a 

conformational change, or something else is unclear.  Additionally, the finding 

that TatA plays a role in the early steps of transport is an important distinction 

from previous models.  The data reported in CHAPTER III address the long 

standing goal of adapting the Tat machinery for transport of tightly folded protein 

products that cannot be transported with the more commonly used Sec system.  

The results indicate that the limitations of the translocon are not only limited to 

the overall size (molecular weight) of the potential substrates, but also their 

dimensions.   

The dynamic nature of the Tat machinery has made observing substeps 

with commonly used biochemical methods that provide only static snapshots of 

transport (such as chemical crosslinking) or data that pertain only to non-

functional translocons (such as EM structures of detergent solubilized Tat 

proteins) have yet to shed sufficient light on transport as a dynamic process.  

Hopefully, by optimization and the labeling of other proteins (different cargos, 

TatA, or TatE for example) a clearer picture of the process may be uncovered.  

Additionally, the reasons for the apparent shape dependence on cargo efficiency 
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remain unclear.  For instance, in the presence of a longer lasting ∆ψ, previously 

untransportable cargo may be successfully translocated.  An alternative 

explanation for this would be that there is a certain chance for every 

translocation event to abort, and this is dependent on the properties of the 

substrate.  If this is the case, at what step in the translocation process does this 

occur?  A combination of the two techniques described in this dissertation, such 

as utilizing fluorescent rhizavidin in FRET based kinetics experiments, may 

serve to answer this question.   
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APPENDIX 

 

GENERATION OF TATA WITH A C-TERMINAL 6XHIS-TAG FOR 

PURIFICATION AND LABELING 

 Purification of the channel forming unit of the Tat translocase has been 

reported in multiple studies (Gohlke et al., 2005; Mehner et al., 2012).  To allow 

for rapid purification of TatA, as well as to create a C-terminal site for fluorescent 

labeling, a 6xHis-tag and a cysteine (together called a HisC-tag) were attached 

to its C-terminus.  These were created by inverse PCR using the primers 5’-

ATTAGCAATGATGATGATGATGCACCGCTCTTTATCGCGCTTCG-3’ and 5’-

CCATGGTTGATATCGGTTTTAGCGAACTGCTATTGGTGTTCATCATCGG-3’ 

to amplify pTatABC (described in (Bageshwar and Musser, 2007)).  The 

amplified product was then self-ligated generating the plasmid pTatA-H6-BC, 

which encodes TatA-HisC, TatB, an TatC.  TatA-HisC was found to be as active 

as wild-type TatA when tested in vitro (Figure A1).   

 The plasmid pTatA-H6-BC uses the arabinose inducible pBAD promoter.  

In order to increase expression yield for potential TatA purification, the TatA-

HisC coding region of pTatA-H6-BC was inserted into the plasmid pACYCDuet-1 

at the NcoI site, generating plasmid pDUET-TatA-H6 (Figure A2).   
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 Labeling of TatA-HisC was performed with IMVs produced from E. coli 

strain BL21 containing pDUET-TatA-H6 essentially as described in Chapter II, 

except TatA-HisC expression was induced with 1 mM ITPG.  The labeling 

reaction was performed with AlexaFluor568 maleimide using the standard 

protocol as described in Chapter II with dye concentrations 10x higher than the 

protein concentration in the IMVs estimated by A280 in 2% SDS.  When resolved 

via SDS-PAGE and visualized by Alexa568 florescence, a major band was 

found at the molecular weight at which TatA typically migrates (~18 kDa) (Figure 

A3).   

Figure A1. TatA is functional with a C -terminal 6xHis -tag and 
cysteine.   Tat function was tested using the protease protection 
assay described previously, using 30 min transport reactions with 
IMVs (A280 = 5), 4 mM NADH and 50 nM pre-SufI.  Lanes 5 and 6 use 
“wild-type” IMVs that were generated by expression of the Tat 
machinery from the plasmid pTatABC (Bageshwar and Musser, 
2007).  Lanes 7 and 8 use IMVs with Tat machinery expressed from 
plasmid pTatA-H6-BC in E. coli strain MC4100, induced by addition of 
0.7% arabinose as described in Bageshwar and Musser (2007).  
Lanes 1-4 are standards.   
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Figure A2.  Plasmid map of pDUET -TatA-H6-C.  The coding region for TatA-
H6-C was excised from from pTatA-H6-C and inserted into the NcoI site of 
pACYCDuet-1. 
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The putative TatA band appears as a doublet when visualized by fluorescence 

for unknown reasons.  

 

 

Figure A3 .  TatA-HisC was labeled with Alexa568.  IMVs isolated from E. 
coli (pDuet-TatA-H6) in the presence of (lanes 3 and 5) or absence of (lanes 2 
and 4) Tat-HisC induction were resolved by SDS-PAGE.  The gel was 
visualized both by Coomassie blue staining (A) and by Alexa568 fluorescence 
(B).   
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 In one study, it was reported that TatA was purified from a soluble fraction 

of lysed cells by affinity purification (Mehner et al., 2012), despite other studies 

stating that TatA requires detergent solubilization to be isolated (Gohlke et al., 

2005; Porcelli et al., 2002).  A similar approach was attempted by over-

expressing the Tat machinery in E. coli strain MC4100 cells containing the 

plasmid pTatA-H6-BC.  Cells were induced with 1.2% arabinose for 5 hours at 

37ºC.  After lysis by French press, the lysate was pelleted and the supernatant 

was run over a Ni-NTA purification column.  No TatA-HisC was found to have 

bound to the column, or to be present in any part of the lysate other than the 

pellet.  This result appears contrary to the data in (Mehner et al., 2012) despite 

similar protocols.  However, use of a 6xHis tag rather than a Strep tag may 

explain the different results.   

 

TAT INHIBITOR INCREASES THE LENGTH OF THE LAG PHASE IN FRET 

ASSAY 

 Recently, a Tat inhibitor was identified by a colleague in the lab, Umesh 

Bageshwar, by high through-put screening.  The inhibitor, termed TatBlock-1, 

was added to experiments essentially identical as the FRET assays as 

described in Chapter II.  In the presence of TatBlock-1, the lag phase was 

extended.  Additionally, at higher concentrations of the inhibitor the lag was 

further extended (Figure A4).  TatBlock-1 was added after addition of cargo and 
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did not result in a decrease in FRET signal, indicating that the inhibitor does not 

act by directly competing for the cargo’s binding site on TatBC.   

 

Figure A4.  TatBlock -1 delays cargo migration from TatBC.  Reactions were performed 
with no TatBlock-1 (red), 40 µM TatBlock-1 (blue), or 100 µM TatBlock-1 (green).  The 
fluorescence signal is emission at 550 nm (donor) upon membrane energization with 
excitation at 500 nm.  TatBlock-1 was allowed to incubate with membranes for 300 seconds 
before addition of NADH.  Reactions contained pre-SufI(T96C)Alexa532 (20 nM) and IMVs 
(A280 = 2) with TatABcherryC. NADH (4 mM) was added at t = 0 s.   
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DERIVATION OF THE BINDING EQUATION INCLUDING THE RECEPTOR 

CONCENTRATION (EQUATION 2 FOR FIGURE 2.2D) 

If it can be assumed that the TatBC complex concentration is much less than 

the precursor KD, the binding data in Figure 2.2D can be fit to a typical single 

site binding equation: 

 

          (equation 3) 

However, if the TatBC concentration and KD are of similar magnitude, this 

equation is invalid.  The appropriate fitting equation is derived as follows. 

The relevant binding equilibrium is: 

 

          (equation 4) 

where P is the precursor and T is the Tat(A)BC receptor complex.  Assuming 

that Pa is the total amount of precursor added and that T0 is the concentration of 

receptor binding sites, mass balance yields: 

 

 

 

[PT] can then be obtained from equation 4 after substitution and use of the 

quadratic formula, 

 

 

  
y =

Bmaxx
(KD + x)

   
KD =

k−1

k1

=
[P ][T ]
[PT ]

  Pa = [P ] + [PT ]

   T0 = [T ] + [PT ]
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The proper solution is given by the difference in the numerator. Since T0 is 

unknown, dividing by T0 yields the percent occupancy of the available binding 

sites, 

 

 

          (equation 5) 

A multiplicative scaling factor, C, was then used to fit the data in Figure 2.2D 

with C, T0 and KD as fitting parameters, 

 

   

          (equation 6) 

Equation 6 is the formula given in the Experimental Procedures section 

(equation 2).  

Note that if T0 << KD, then [P] can be approximated by Pa (i.e., the bound 

precursor is always a small fraction of the total precursor added).  Under these 

conditions,  

 

  KD [PT ] = [P ][T ]

   KD [PT ] = Pa − [PT ]( )T0 − [PT ]( )

   0 = [PT ]2 − (Pa +T0 + KD )[PT ] + PaT0

   
[PT ] =

(Pa +T0 + KD ) ± (Pa +T0 + KD )2 − 4PaT0

2

   

[PT ]
T0

=
(Pa +T0 + KD ) − (Pa +T0 + KD )2 − 4PaT0

2T0

   
y = C *

(x +T0 + KD ) − (x +T0 + KD )2 − 4(x)T0

2T0
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or, 

 

(equation 7) 

With the exception of a scaling factor, equation 7 is identical to equation 3. 

Unfortunately, fitting the data in Figure 2.2D with equation 6 does not yield a 

robust, unique solution for T0 and KD.  However a range of possible values can 

be determined by determining the extremes of possible values.  In principle, T0 

could be infinitely small.  However, the KD determined from the fit is essentially 

identical (= 23 nM) for T0 ≤ 0.1 nM.  For T0 = 20 nM, the KD = 7.5 nM.  For T0 > 

20 nM, the fit becomes significantly worse.  Thus, a range of possible values 

consistent with the data in Figure 2.2D is T0 ≈ 0-20 nM, and KD ≈ 7-23 nM.  Due 

to the high mCherry concentration present in our samples, which reports on the 

receptor concentration, a high T0 (~20 nM) is more likely, which corresponds to 

the lower end of the KD range (i.e., ~7 nM). 

   
KD ≈

Pa(T0 − [PT ])
[PT ]    

[PT ]
T0

≈
Pa

KD + Pa
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Figure A5. Generation of pIntein-preSufI-MA from pTYB11 . The plasmid pIntein-preSufI-MA 
was generated by inserting a cysteine-free form of pre-SufI with a 6xHis tag into the vector 
pTYB11 (New England Biolabs) at restriction enzyme sites SapI and EcoRI. Since SapI does not 
cleave at the restriction enzyme recognition site, the recognition sequence was lost after 
insertion of the pre-SufI sequence.  The pre-SufI gene was obtained from pET-SufI (Yahr and 
Wickner, 2001) and the cysteines were removed with mutations C17M and C295A.  Site directed 
mutagenesis was used to generate plasmids pIntein-preSufI-MA(G29C), pIntein-preSufI-
MA(G45C), pIntein-preSufI-MA(T96C), pIntein-preSufI-MA(S204C), pIntein-preSufI-MA(M338C), 
pIntein-preSufI-MA(G410C), the names of which reflect single cysteine mutations in the mature 
region of the pre-SufI protein.  Plasmids pIntein-preSufI-MA(L470C) and pIntein-preSufI-
MA(479C) were made by mutating a leucine in the short linker region between the mature 
domain and the 6xHis tag (CTC codon), and by adding a cysteine residue to the C-terminus, 
respectively. 
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Figure A6.  Plasmid map of pTatAB cherry C.  Plasmid pTatABcherryC was generated by insertion 
of the mCherry sequence (plasmid pmCherry, Clontech) between restriction sites SmaI and 
SpeI.  These restriction sites were inserted into pTatABC (Yahr and Wickner, 2001) immediately 
after the coding region of TatB by site-directed mutagenesis, as indicated, deleting the stop 
codon. 



109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7.  Plasmid map of pTatABC cherry .  Plasmid pTatABCcherry was generated by insertion 
of the mCherry sequence into pTatABC immediately after the coding region of TatC by insertion 
at an XbaI site.  The TatC stop codon was removed by site-directed mutagenesis.  
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Figure A 8.  Plasmid map of pTatBC cherry .  Plasmids pTatBC and pTatBCcherry 
were generated by engineering two NcoI sites flanking the TatA coding 
sequence and excising tatA from pTatABC and pTatABCcherry, respectively. 
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Figure A9. Plasmid map of pTorA-mCherry-H6.  The coding sequence for the TorA signal 
peptide (from plasmid pTorA-GFP (Bageshwar and Musser, 2007)) was fused with the coding 
sequence for mCherry, as indicated, between restriction sites EcoRI and HindIII of pBAD24 
(ATCC).  The first four amino acids following spTorA (AQAA) are from the N-terminus of the 
TorA mature domain.   
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Figure A10.  Purification of pre-SufI.   In order to obtain pure precursor protein 
free from mature protein, pre-SufI was purified using the IMPACT-CN system 
according to the manufacturer (New England Biolabs).  In brief, a bifunctional 
tag, consisting of intein and chitin binding domains, was fused to the N-terminus 
of pre-SufI.  Crude cell extracts were added directly to a chitin column.  Pre-SufI 
was cleaved off the column by activating intein cleavage by the addition of DTT.  
The protein was further purified by Ni-NTA chromatography, as described 
(Bageshwar and Musser, 2007). 
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Figure A11.  Sucrose gradient for IMV isolation.  A three step (0.5 M, 1.5 M, and 2.3 M) 
sucrose gradient was used for IMV purification in Buffer B (1 mM KCl, 1 mM MgSO4, 2 mM DTT, 
10 mM Hepes, pH 7.0) (Bageshwar and Musser, 2007).  IMVs typically sedimented within the 
0.5 M sucrose fraction.  A sucrose gradient with membranes containing TatABCcherry is shown on 
the right.  We previously reported that IMV preparations with E. coli strain JM109 consistently 
yielded high transport efficiencies, but attempts with strain MC4100 were less successful, for 
unknown reasons (Bageshwar and Musser, 2007).  The Tat proteins in this study were all 
expressed in strain MC4100∆TatABCDE in order to obtain IMVs in which all TatB or TatC 
molecules were labeled with mCherry.  The pink color of proteins labeled with mCherry served 
as a convenient marker during purification of inner membranes on a sucrose gradient as shown.  
Consequently, the recovered membranes were significantly more highly purified.  Moreover, the 
IMVs displayed more consistent transport activity both in terms of transport efficiencies and 
transport rate.  Transport rates were about an order of magnitude faster (Fig. 1D) than reported 
earlier (Bageshwar and Musser, 2007; Bageshwar et al., 2009).  We expect that this is a 
consequence of the higher purity of the IMV preparations.  
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Figure A12.  Fluorescence emission of mCherry-tagged proteins and lack of FRET for 
non- in teracting proteins.  (A and B) Emission spectra of IMVs containing TatABcherryC  (A, red), 
TatABCcherry (B, red) and TatABC (blue).  (C) Emission spectra of mCherry (red) and TatABC 
IMVs (blue).  Note that the mCherry protein exhibits two emission peaks.  The mCherry protein 
was obtained by combining fractions of mature-length protein obtained from anion-exchange 
chromatography of spTorA-mCherry-H6.  (inset, left) Coomassie blue stained SDS-PAGE gel of 
mCherry, with molecular weight ladder in the left lane.  (inset, right) Fluorescence of the same 
gel before staining.  The native structure of mCherry is retained on this gel because the sample 
was not boiled. As further tests to identify the reason behind the two well-resolved peaks for 
mCherry in our experiments, we tested phosphate buffer (eliminating effects of a component in 
the transport buffer), excitation wavelength (eliminating an off-peak excitation effect), and slit 
width (eliminating resolution due to a narrow emission window).  None of these different 
conditions eliminated the two well-resolved peaks for mCherry emission.  (D) Emission spectra 
of a mixture of pre-SufI(T96C)Alexa532 (20 nM) and spTorA-mCherry (300 nM) before (red) and 
after (blue) addition of 200 nM unlabeled pre-SufI(T96C).  Note that there is no difference in the 
intensities of any of the peaks (compare with Fig. 2A).   This confirms that the increase in the 
550 nm peak observed in Fig. 2A results from loss of FRET.  EX = 500 nm for all spectra.  
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Figure A13.  Control experiments for FRET kinetics.  (A) Donor emission at 550 nm (EX = 
500 nm) after addition of 200 nM unlabeled pre-SufI(T96C) at t = 0 s.  Conditions are as in Fig. 
2B except with TatABC IMVs (red) (i.e., with no mCherry acceptor) or with unlabeled pre-
SufI(T96C) (blue) (i.e., with no Alexa532 donor).  These data indicate that no observable signal 
change was detectable without both donor and acceptor fluorophores (compare with Fig. 2B).  
(B) Same as (A) except that reactions were initiated with 4 mM NADH at t = 0 s instead of 
competitor.  Again, no observable signal change was detectable without both donor and 
acceptor fluorophores (compare with Fig. 4).  For both panels, the same ordinate scale was used 
as in Figs. 2B and 4.  Traces were zeroed and the upper traces (red) were displaced for clarity.  
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Figure A14. Titrations used to determine binding affinity.  Sample titration of TatABCcherry 
IMVs with pre-SufI(T96C)Alexa532 in the presence (blue) and absence (red) of 300 nM pre-
SufI(T96C) as a competitive inhibitor.  Each step results from the addition of pre-
SufI(T96C)Alexa532.  One of the data sets used to generate Fig. 2D.  EX = 500 nm; EM = 550 nm. 
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Figure A15. Expression of Tat proteins.  (A) Western blot of the indicated IMV preparations 
using TatB antibodies.  TatB protein levels are approximately the same in IMVs with or without 
TatA.  The SDS-PAGE gel was electroblotted onto PVDF membranes and immunoblotted with 
rabbit polyclonal TatB antibodies (Yahr and Wickner, 2001) (1:5,000 dilution in 2% nonfat dry 
milk, 0.1% Triton X-100, and 0.1% Tween).   Goat polyclonal anti–rabbit IgG-HRP conjugate 
(1:15,000; Santa Cruz Biotechnology, Inc.) was used as the secondary antibody, and bands 
were visualized by chemiluminescence.  (B) TatCcherry fusions in the indicated IMV prreparations 
visualized by mCherry fluorescence.  These data indicate that the mCherry protein was only 
present as part of the full-length fusion protein.  The predicted molecular weights of TatB, TatC 
and TatCcherry are 18, 29, and 57 kDa, respectively.  Note, however, that TatB and TatC migrate 
abnormally on gels (Sargent et al., 1998).  
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Figure A16 .  Plasmid map of pPre -SufI -GFP. The GFP gene was inserted behind the 
C-terminus of pre-SufI with a 21 bp linker, and before the 6xHis tag sequence.   
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Figure A17 .  Plasmid map of pPre -SufI -2xGFP.  Amplified GFP gene was inserted between 
the GFP and the 6xHis sequences at a NheI site by SpeI ligation, destroying the site and 
resulting a 9 bp pair linkager.  
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Figure A18 .  Plasmid map of pIntein -pre-SufI -GFP. The plasmid pIntein-pre-SufI-GFP was 
generated by inserting pre-SufI-GFP from plasmid pPre-SufI-GFP into the vector pTYB11 (New 
England Biolabs) at restriction enzyme sites SapI and SpeI. Since SapI does not cleave at the 
restriction enzyme recognition site, the recognition sequence was lost after insertion of the pre-SufI 
sequence.   




