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ABSTRACT

Automated Morphology Analysis of Nanoparticles. (August 2011)

Chiwoo Park, B.S., Seoul National University

Co–Chairs of Advisory Committee: Dr. Yu Ding
Dr. Jianhua Z. Huang

The functional properties of nanoparticles highly depend on the surface mor-

phology of the particles, so precise measurements of a particle’s morphology enable

reliable characterizing of the nanoparticle’s properties. Obtaining the measurements

requires image analysis of electron microscopic pictures of nanoparticles. Today’s

labor-intensive image analysis of electron micrographs of nanoparticles is a significant

bottleneck for efficient material characterization. The objective of this dissertation is

to develop automated morphology analysis methods.

Morphology analysis is comprised of three tasks: separate individual particles

from an agglomerate of overlapping nano-objects (image segmentation); infer the

particle’s missing contours (shape inference); and ultimately, classify the particles by

shape based on their complete contours (shape classification). Two approaches are

proposed in this dissertation: the divide-and-conquer approach and the convex shape

analysis approach. The divide-and-conquer approach solves each task separately,

taking less than one minute to complete the required analysis, even for the largest-

sized micrograph. However, its separating capability of particle overlaps is limited,

meaning that it is able to split only touching particles. The convex shape analysis

approach solves shape inference and classification simultaneously for better accuracy,

but it requires more computation time, ten minutes for the biggest-sized electron

micrograph. However, with a little sacrifice of time efficiency, the second approach
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achieves far superior separation than the divide-and-conquer approach, and it handles

the chain-linked structure of particle overlaps well.

The capabilities of the two proposed methods cannot be substituted by generic

image processing and bio-imaging methods. This is due to the unique features that

the electron microscopic pictures of nanoparticles have, including special particle

overlap structures, and large number of particles to be processed. The application

of the proposed methods to real electron microscopic pictures showed that the two

proposed methods were more capable of extracting the morphology information than

the state-of-the-art methods. When nanoparticles do not have many overlaps, the

divide-and-conquer approach performed adequately. When nanoparticles have many

overlaps, forming chain-linked clusters, the convex shape analysis approach performed

much better than the state-of-the-art alternatives in bio-imaging.

The author believes that the capabilities of the proposed methods expedite the

morphology characterization process of nanoparticles. The author further conjectures

that the technical generality of the proposed methods could even be a competent al-

ternative to the current methods analyzing general overlapping convex-shaped objects

other than nanoparticles.
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CHAPTER I

INTRODUCTION

I.1. Nanoparticles and Their Morphology-related Properties

The British and several international standard organizations define nanoparticles as

ultrafine particles having one or more dimensions on the order of 100 nm or less

(BSI, 2005; ISO, 2009). At this order of magnitude, the functional properties of

nanoparticles are significantly different from the properties of the bulk material having

the same chemical composition. This is mainly because the fraction of atoms or

molecules located at the surface of the particles increases as the size of the particles

decreases below a critical size (100 nm); the atoms or molecules at the surface are

more reactive to chemical bonding (Hosokawa, 2007).

In addition, nanoparticles of different shapes have different crystal facets ex-

posed at the surface, and different facets have different degrees of chemical reactivity

(Narayanan and El-Sayed, 2004). Hence, both the shape and the size of nanoparticles

are important factors in determining the properties of the nanoparticles. For this rea-

son, material scientists attempt to synthesize nanoparticles with controlled size and

shape in order to have the functional properties desired for applications.

I.2. The Morphology Analysis Problem

The precise design and control of a nanoparticle synthesis process requires accurate

analysis of the size and shape of the nanoparticles produced because the analysis

result provides the feedback necessary to control or fine-tune the synthesis process.

The journal model is IIE Transactions.
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In this dissertation, obtaining the size and shape characteristics of nanoparticles is

called morphology analysis of nanoparticles.

More than 400 different techniques exist for counting, sizing and characterizing

nanoparticles, but most of them are applicable only to obtaining size estimates of

nanoparticles; these techniques are reviewed in Section II.1.

One way to conduct both shape and size analysis is to perform the image anal-

ysis on electron microscopic pictures, hereafter called electron micrographs, taken

with either a transmission electron microscope (TEM), a scanning electron micro-

scope (SEM), or an atomic force microscope (AFM). The advantage of using the

micrographs is that sizes and shapes of individual nanoparticles can be captured,

while most size-measuring instruments can capture only the average size for a popu-

lation of nanoparticles. In particular, TEM is widely used to profile the size and shape

characteristics of nanoparticles (Lacava et al., 2001). Unless stated otherwise, from

now onward in this dissertation, the term morphology analysis implies that the size

and shape information of nanoparticles are to be extracted from a TEM micrograph.

However, in using TEM, it may take several attempts to prepare a diluted solvent

with an appropriate particle concentration. If the concentration is too low, only a few

nanoparticles in a micrograph can be observed, which may not be enough to represent

the whole population. Conversely, if the concentration is too high, nanoparticles are

heavily and severe overlaps will make it difficult to measure individual nanoparticles.

Once the diluted solvent is ready, the solvent is imaged to a grayscale micrograph.

It is then necessary to measure the morphologies of individual nanoparticles on the

micrograph and to classify the particles by their shapes.

The current practice is to use image processing tools such as ImageJ Particle

Analyzer (http://rsbweb.nih.gov/ij) and AxioVision (http://www.zeiss.com/),

which have been popularly used for biomedical image processing. The final results
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are a particle size distribution and a particle shape distribution.

However, the current practice is highly labor-intensive, and requires manual

counting process owing to the low accuracy of the image processing tools. Because

hundreds to thousands of nanoparticles may exist in a single micrograph, the manual

process takes a significant amount of time and effort, and it is almost impossible to

contour the exact surfaces of nanoparticles. This is the major reason for developing

an automated analytical method.

The low accuracy of the image processing tools largely stems from their incapabil-

ity of handling particle overlaps. The tools fail to recognize individual nanoparticles

from a cluster of overlapping particles. Hence, it is important for a morphology

analysis method to be capable of handling a wide-ranging degree of particle overlap.

I.3. The Objective of the Dissertation

The objective of this dissertation is to formulate an automated morphology analy-

sis method capable of measuring and classifying precise morphologies of individual

nanoparticles on a micrograph under severe overlaps among nanoparticles. The auto-

mated method has three main components: (1) image segmentation, (2) shape infer-

ence, and (3) shape classification. The morphology analysis method needs an image

segmentation component in order to separate overlapping particles into individual

pieces, but there are several other issues. Overlaps among nanoparticles occlude

partial surface contours of other particles so simply splitting the overlaps does not

provide the desired morphology analysis. The occluded parts must be inferred using

some prior knowledge of the morphologies of nanoparticles. This presents a shape

inference problem on the occluded parts. In addition, the inference on the occluded

parts can be definitely enhanced by utilizing information about possible shapes of
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nanoparticles. This raises the need to classify the particle’s shape, i.e. shape classifi-

cation.

I.4. Image Segmentation

Image segmentation is the process of partitioning an image into a set of non-overlapping

regions that are meaningful to a particular application (Haralick and Shapiro, 1992).

The segmentation process utilizes various features revealed in an image such as colors,

textures, and edges, and finally identifies several homogeneous sub-regions in terms

of the features.

Image segmentation is formally described as follows. Let I denote the set of

coordinates of image pixels (x, y) and let F (I) denote a homogeneity measure of I,

where F (I) is a measure of similarity among image features in I; F (I) = true implies

that the image features in I are similar. The image segmentation of I for predicate

F is to partition I into disjoint subsets Cseg
1 , . . . , Cseg

n such that

•
⋃n
i=1C

seg
i = I with Cseg

i

⋂
Cseg
j = ∅ for i 6= j.

• F (Cseg
i ) = true for all i’s.

• F (Cseg
i

⋃
Cseg
j ) = false when Cseg

i and Cseg
j are neighboring.

In the morphology analysis problem, the definition of image segmentation is

changed by the following three problem-specific constraints. First, in the bright field

mode of the TEM imaging, the image contrast is formed by the absorption of electrons

in the specimen; thicker regions of the specimen will appear darker (Fultz and Howe,

2008). Therefore, the region occupied by the specimen (i.e. nanoparticle) can be

easily separated from the remaining region (i.e. background) by thresholding the

grayscale image intensities. The image segmentation needs to be performed only on
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the region of the specimen. As such, I in this context can be narrowed to be the region

of the specimen, rather than the whole micrograph. Second, according to the theory

of equilibrium shapes of crystals (Wortis, 1988), the morphology of a nanoparticle is

most likely convex. Therefore, I can be further thought of as a union of convex sets;

i.e. if Ci is the convex region of particle i, I =
⋃n
i=1Ci. Third, nanoparticles often

overlap so that a simple partition of I may not result in Ci. In fact, the result of the

simple partition, Cseg
i , is a subset of Ci. In the morphology analysis problem, Cseg

i is

restricted to a convex subset of Ci, not just an arbitrary subset of Ci.

According to the three constraints, the image segmentation is defined as a simple

partition that splits I into the minimal number of convex sets {Cseg
1 , Cseg

2 , . . . , Cseg
n }.

Expressed using a predicate, the image segmentation is to find the minimal number

of convex sets, Cseg
i ’s, such that

•
⋃n
i=1C

seg
i = I with Cseg

i

⋂
Cseg
i = ∅ for i 6= j.

• F cv(Cseg
i ) = true if all i’s.

• F cv(Cseg
i

⋃
Cseg
j ) = false for i 6= j,

where F cv is the predicate for maximal convexity, defined as for C ∈ I,

F cv(C) = true if C is a maximal convex set in I; false otherwise.

I.5. Shape Inference and Classification

Shape inference is the statistical inference problem that estimates missing parts of a

geometric shape given the partial observation of the shape. In morphology analysis,

shape inference is a necessary step to find the actual morphologies of nanoparticles

using the image segmentation result Cseg
i . As discussed in the previous section, the

image segmentation result Cseg
i does not represent the morphology of a nanoparticle
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due to the occlusion caused by particle overlaps. Solving the shape inference problem

is necessary to recover the complete morphology of nanoparticles.

Since the complete morphology of a nanoparticle is convex, the objective of the

shape inference in the morphology analysis problem is to find a convex superset of

Cseg
i . So far, the shape inference problem is still ill-posed, because there could be an

infinite number of convex sets which contain the subset Cseg
i . In order to make the

problem well-posed, it is necessary to add some constraints to the shape of the convex

superset of Cseg
i , so that the inference problem provides a unique solution. The shape

constraints come in many different forms: some methods restrict the smoothness

of the final shape (Kass et al., 1988; Chan and Vese, 2001), while other methods

restrict the final shape to one of the pre-determined reference shapes (Chen et al.,

2002; Foulonneau et al., 2009). The latter case raises the need for solving a shape

classification problem in order to choose one reference shape to use for restricting the

solution (shape).

Morphology analysis concerns a finite number of geometric shapes of nanopar-

ticles. The number and categories of these shapes can also be pre-determined ac-

cording to the engineering understanding of the nanoparticles in question. For exam-

ple, commonly observed shapes of nanoparticles are spheres, cubes, tetrahedra and

rods (Huitink et al., 2010). This dissertation assumes that the geometric shapes of

nanoparticles are circles, rectangles, triangles or rods, which are the two-dimensional

projection of spheres, cubes, tetrahedra and rods respectively. Under this assump-

tion, both shape inference and classification can be solved either separately (Section

III.4) or jointly (Section IV.3).

Suppose that multiple reference shapes R1, R2, . . . , Rm are given. The shape

inference is to infer the missing part Cmiss
i of complete shape Ci = (Cmiss

i , Cseg
i ): if
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Ci is of the kth reference shape Rk,

Cmiss∗
i = arg max

∀Cmiss
i

{d(Ci, Rk);Ci is convex},

where d(Ci, Ck) is a shape similarity measure. The shape classification determines

whether Ci is of the kth reference shape Rk by solving

k = arg min
∀j

d(Ci, Rj).

Note that the shape classification for determining k is solved when Ci is given and

the shape inference for determining Ci is solved when k is fixed. Therefore, solving

the two problems jointly (see Section IV.3) is ideal. However, the sequential solution

approach, i.e. first solving the classification problem with a rough estimate of Ci and

then inferring Ci, is also possible when the particle overlaps are not significant and

the rough estimate of Ci is reliable (Section III.4).

I.6. Main Contribution and Organization of the Dissertation

The main contribution of this dissertation is to formalize the morphology analysis

problem as three components of image segmentation, shape inference and classifi-

cation, and to provide two approaches to solving the problem. Each approach has

different capabilities in terms of time efficiency and separation of nanoparticle over-

laps. According to extensive empirical studies of both approaches using real electron

micrographs, the approaches provide automated morphology analysis of nanoparticles

deemed as reliable and satisfactory by the dissertation’s material science collabora-

tors.

This dissertation is organized as follows. Chapter II reviews the state-of-the-art

research in the morphology analysis of nanoparticles. The chapter also reviews a
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large amount of literature about cell segmentation problems in bio-imaging because

the problem is similar to the morphology analysis problem in terms of technical

ingredients. This chapter includes discussions about the limitation of the state-of-

the-art approaches to the morphology analysis problem.

Chapter III presents the first approach, divide-and-conquer, to separately solve

the three components of morphology analysis. Because it solves each component

separately, it is efficient as it takes less than a minute to obtain the final analysis

results for all electron micrographs tested. However, its separating capability of par-

ticle overlaps is limited. This chapter explains why the method is capable only when

the degree of particle overlaps is low enough that the largest part of the connected

particle contour not occluded by overlaps remains significant, i.e. as much as 80% or

more of its whole contour.

Chapter IV presents the second approach, convex shape analysis, that is able to

separate more severe particle overlaps and obtain accurate morphologies. It solves

shape inference and classification jointly for better accuracy. As a result, this ap-

proach requires more computation time, ten minutes for the biggest-sized electron

micrograph. With a little sacrifice of time efficiency, the second approach achieves

far superior separation capability than the divide-and-conquer approach presented.

Chapter IV explains why the second approach is particularly competent to handle the

chain-linked structure of particle overlaps, which are frequently observed in real sam-

ples of nanoparticles. In addition, the separation capability of the second approach

is justified on the theoretical base of mathematical morphology.

Chapter V summarizes the contribution of this dissertation with its broad im-

pact on nanoscience and engineering. The chapter also discusses the future research

direction to extend this dissertation study.
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CHAPTER II

STATE OF THE ART

This chapter reviews existing technology and literature related to morphology anal-

ysis of nanoparticles. The first section compares capabilities and limitations of in-

struments available for measuring size and shape of nanoparticles, and discusses why

the image analysis of electron micrographs is popularly used. The second and third

section review the literature about the image analysis of electron micrographs for

nanoparticle analysis and for bio-cell analysis respectively. The last section intro-

duces some general image processing algorithms or tools applicable to image analysis

of electron micrographs.

II.1. Particle Characterization Technique

Geometric size and shape information of nanoparticles are obtained by several differ-

ent microscopic technologies. For summaries, please refer to Table 1.

Light or X-ray scattering is frequently used to obtain the average size of an en-

semble of nanoparticles. Dynamic light scattering (DLS), also known as photon corre-

lation spectroscopy, is a technique for sizing nanoparticles in liquid phase. DLS mea-

sures the time-dependent fluctuation in the intensity of light scattered by nanopar-

ticles, converts the fluctuation into particle movement speed, and finally applies the

Stokes-Einstein equation to convert the particle movement speed into the mean parti-

cle size (Pecora, 1985; Nobbmann and Morfesis, 2009). Nanoparticle tracking analysis

(NTA) developed by NightSight Ltd. is a variant of DLS. It uses the same physical

principle as DLS, but captures the particle movement speed directly by tracking par-

ticle movement with laser illuminated microscope. By doing so, NTA performs better

than DLS in the analysis of complex and polydispersed samples (Filipe et al., 2010).
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In the meanwhile, DLS has wider size range of detectable particles; 1-1000 nm for

DLS and 30-1000 nm for NTA (Filipe et al., 2010).

X-ray diffraction (XRD) is a particle sizing technique based on a physical phe-

nomenon that the broadening of the X-ray diffraction lines occurs when particle size

is smaller than 100 nm (Jones, 1938). The broadened amount of the diffraction lines

is linked to the mean particle size by the Sherrer formula. The formula is exact when

the shape of nanoparticles is spherical (Patterson, 1939).

Ultrasonic signal attenuation or gas absorption can also be used for sizing nanopar-

ticles. Acoustic attenuation spectrometry (AAS) is used for measuring the average

size of particles (size range: 10 nm - 1000 µm) in suspension or emulsion; it senses the

spectra of ultrasonic waves attenuated by particles, and it correlates the amount of

attenuation to particle size (Alba et al., 1999). In particular, the spectroscopy works

better in a suspension or emulsion of highly concentrated particles than DLS, so it

does not need sample dilution process which is required for DLS.

Brunauer-Emmett-Teller (BET) method can be an option for obtaining the av-

erage particle size. It is based on the gas absorption phenomenon occurred at the

surface of particles. The method measures the surface area of nanoparticles by ob-

serving gas absorption, and it estimates the mean particle size from the surface area

after making an assumption regarding the shape of particles. BET method is espe-

cially useful for sizing particles when the size distribution is broad (Hosokawa, 2007),

where DLS and XRD do not produce very accurate measurements.

The particle sizing instruments explained above produce one value to represent a

sample of nanoparticles. In other words, they provide the average size of an ensemble

of nanoparticles rather than individual sizes or the size distribution of individual

nanoparticles. In addition, they suppress the size of a three-dimensional particle to

a one-dimensional value, called ‘equivalent size’. The definitions of the equivalent
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size are different according to the physical principles used in the instruments, e.g.

for DLS and NTA, it is the Stoke radius. These different definitions usually produce

different size measurements unless the particle’s morphology is uniformly spherical.

Hence, their use for analyzing a particle size distribution is limited.

When measuring sizes or shapes of individual nanoparticles is required, various

types of microscopes followed by image analysis can be used. A popular choice is

the use of electron microscopes such as transmission electron microscope (TEM) and

scanning electron microscope (SEM). Although they capture only two-dimensional

projection images of three-dimensional nanoparticles, they are popularly used in the

nanoparticle research because of their ultra-high resolution; the highest resolution is

0.05 nm for TEM or 1 nm for SEM (Allard and O’Keefe, 2004; Boyes, 2005). Applying

tomography technology to conventional TEM or SEM images enables revealing three-

dimensional structures of nanopartices (Koster et al., 2000), but the technology is not

yet mature nor broadly available among most nanoparticle research laboratories.

Scanning probe microscopy (SPM) is another powerful technique for characteriz-

ing the three-dimensional morphology of nanoparticles. This type of microscope uses

a very small probing tip that scans the surface of a specimen. Popular instruments

of SPM includes atomic force microscope (AFM) and scanning tunneling microscope

(STM). A main advantage of SPM is that it can produce three-dimensional morphol-

ogy. In addition, it is capable of imaging nanoparticles in liquid phase, which cannot

be observed by electron microscopes. However, SPM generates a convolution image

of a probing tip with a specimen, so its lateral dimension apts to be overestimated

(Villarrubia, 1997).

In spite of many advantages, the application of SPM to the morphology analysis

is limited. SPM has rounding effect on sharp edges and corners, so small triangular

particles are not very differentiable from spherical particles of equivalent size. In
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addition, if nanoparticles are very closely located or form complicated aggregates,

SPM cannot produce true lateral dimension. For more detailed comparison between

SPM and electron microscopes, please refer to Vujtek et al. (2010).

Therefore, in nanoparticle research, the image analysis of electron micrographs

is regarded as a reasonable option. This is evident by the sheer amount of research

papers studying nanoparticles in which the morphology information of the particles

comes from transmission electron microscopes (Ahmadi et al., 1996; Puntes et al.,

2001; Chithrani et al., 2006).

II.2. Morphology Measurement Methods in Nano-Imaging

Once two-dimensional projection images of nanoparticles are generated, the next step

is to the measure sizes and shapes of individual nanoparticles from the images. In

most nanoparticle research, the image analysis step is performed manually. The

manual analysis is very time-consuming and it is also susceptible to subjectivity of

human analyzers. Thus, an automated method for the quantitative image analysis is

necessary for quick and accurate morphology analysis.

A popular tool used for morphology analysis is ImageJ. The tool is a branched

version of NIH Image, which has been developed by the National Institute Health

(NIH) for bio-medical imaging, and it is widely used in the analysis of TEM or SEM

nanoparticle images (Eustis et al., 2005; Siqueira et al., 2008; Hindson et al., 2011).

Since ImageJ is a general image analysis tool, the ways of using the tool in parti-

cle analysis may vary for different types of images. Mostly used is a sequence of

the following operations; first separate nanoparticles from the background by global

thresholding, then apply watershed segmentation to separate overlapping nanopar-

ticles, and finally execute a function called ‘particle analyzer.’ More details about
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Table 1. Particle characterization techniques. XRD: X-ray diffraction, DLS: dynamic

light scattering, NTA: nanoparticle tracking analysis, AAS: acoustic attenu-

ation spectroscopy, BET: Brunauer-Emmett-Teller, TEM: transmission elec-

tron microscopy, SEM: scanning electron microscopy, AFM: atomic force mi-

croscopy, STM: scanning tunneling microscope.

Sample Type Information Size Range

XRD Powder Average Size 1 - 100 nm

DLS Emulsion or Suspension Average Size 1 - 1000 nm

(Diluted)

NTA Emulsion or Suspension Average Size 30 - 1000 nm

AAS Emulsion or Suspension Average Size 10 nm - 1000 µm

BET Powder Average Size Not available

TEM Powder, Size and Shape 0.05 nm and larger

Dried (2d projection)

‘electron-transparent’-thin

SEM Powder, Size and Shape 1 nm and larger

Dried (2d projection)

only (semi)-conductive

AFM Power, Emulsion, Size and Shape Lateral: 5 nm and larger ,

or Suspension Vertical: 0.1 nm and larger

STM Power, Emulsion, Size and Shape Lateral: 0.1 nm and larger ,

or Suspension Vertical: 0.01 nm and larger
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these steps are described at Woehrle et al. (2006).

The ImageJ particle analyzer works well if nanoparticles are well separated with-

out overlaps, but its analysis capability is limited otherwise. Therefore, after applying

the ImageJ particle analyzer, human analyzers need to do significant amount of man-

ual work for refining the result from ImageJ. Detailed discussion about the accuracy

of ImageJ will be presented in Section III.5.

More sophisticated image analysis methods to supersede ImageJ are necessary,

but there are only a limited amount of literature about the automated image analy-

sis. Fisker et al. (2000) applied a deformable template model, also known as active

contour, to estimate particle size distribution, where the shape of nanoparticles is

assumed to be an ellipsis in the algorithm of separating overlapping nanoparticles.

Gontard et al. (2006) proposed a local thresholding of electron micrographs for iden-

tifying particles with spatially varying intensities. Chen and Ho (2008) used sequen-

tially the Laplacian edge detection algorithm and a radius estimation algorithm to

estimate the size distribution of spherical nanoparticles, which do not overlap. Glotov

(2008) analyzed very complicated chain-structured nanoparticle aggregates by apply-

ing the proposed circular decomposition algorithm to the outline of aggregates, but

the results of the proposed method still need to be refined by human operators.

The electron micrographs of nanoparticles we come across usually have a large

number of particles, with various types of shapes and different degree of overlaps.

The methods reviewed above fall short of handling the electron micrographs of these

generic characteristics. The capabilities and limitations of the methods are summa-

rized in the first row of Table 2.
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Table 2. Summary on the related research. Image analysis methods potentially usable

for the morphology analysis of nanoparticles.
Method What-to-do Limitation

Nano-imaging methods
Circle or ellipse
template (Fisker
et al., 2000; McFarland
and Van Duyne, 2003;
Glotov, 2008; Chen and
Ho, 2008)

• analyze chain branched
aggregates composed of
spherical or elliptical objects

• only for spherical or elliptical
objects

Cell segmentation methods
Morphological
segmentation
(Malpica et al., 1997; Tek
et al., 2005; Cheng and
Rajapakse, 2009;
Umesh Adiga and
Chaudhuri, 2001; Lin
et al., 2005)

• use morphological operators

• work for convex shapes

• no statistical reasoning on
occlusion

• oversegmentation

Graph cut (Shi and
Malik, 2000; Felzenszwalb
and Huttenlocher, 2004;
Daněk et al., 2009) • regard a digital image as a

graph

• partition the graph by
intensity similarities

• no statistical reasoning on
occlusion

• undersegmentation for
overlapping objects with
similar intensities

• time consuming

Active contour
(Bamford and Lovell,
1998; Nath et al., 2006;
Chen et al., 2002;
Foulonneau et al., 2009;
Hodneland et al., 2009)

• find regions with uniform
intensities

• no preprocessing necessary

• apply prior knowledge on
shapes

• cannot handle overlaps
without prior shape
information

• hard to learn many contour
functions with prior shape
information

Convergent index
filtering (Marcuzzo
et al., 2009; Quelhas et al.,
2010)

• use image gradient and its
direction

• work for identifying convex
objects

• segment overlapping objects
efficiently

• does not work well when the
size distribution of objects is
wide
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II.3. Cell Segmentation Methods in Bio-medical Imaging

There exists plenty of research addressing the bio-cell segmentation problem. Many

of them are about a single-cell segmentation. What is reviewed here is the literature

about multiple cell segmentation, which involves the separation of individual cells

from other cells; this line of research is directly related to our objective.

A classical approach for the cell segmentation problem is to use the morphological

image segmentation methods, represented by the watershed method and its variants

(Malpica et al., 1997; Tek et al., 2005; Cheng and Rajapakse, 2009). The approach

first finds markers pointing to the approximate locations of cells and then segments

an image region into several influence zones of markers. An alternative approach

is to segment the image region using the watershed transform (Umesh Adiga and

Chaudhuri, 2001; Lin et al., 2005). Doing so usually oversegments a region, so the

regions should be merged into meaningful groups by some ad-hoc rules. Watershed

segmentation generally works well, but this line of methods does not provide any

inference on the missing parts, which makes it difficult to fulfill the final objective of

morphology analysis.

Graph-cut methods have also been applied to cell segmentation. The method

constructs a graph by treating each image pixel as a node. Each pair of nodes is

connected by an edge with the similarity between pixel intensities as its cost. It

finds a normalized minimum cut of the graph, which naturally segments images (Shi

and Malik, 2000; Felzenszwalb and Huttenlocher, 2004). This approach does not

separate overlapping objects well, especially when the overlapping objects have similar

intensity levels. Hence, the estimated mean radius of cells was utilized for the purpose

of separating the overlapping cells (Daněk et al., 2009), but their method is only

applicable to spherically shaped objects.
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Active contour is another school of methods applied to the cell segmentation

(Bamford and Lovell, 1998; Nath et al., 2006). Active contour is originally designed to

segment a single object of complicated shape from the background (Kass et al., 1988),

but the level-set based active contour (Chan and Vese, 2001) or the multiphase active

contour (Vese and Chan, 2002) could be used to segment multiple objects. However,

if any shape constraints is not put on the contours, active contour methods work only

for segmenting non-overlapping objects or those overlapped but of different colors.

There have been several attempts to put shape constraints for handling overlaps and

occlusions of objects (Chen et al., 2002; Foulonneau et al., 2009; Lecumberry et al.,

2010). The limitation of these methods is their computation inefficiency. In order to

separate the individual objects from the overlapping agglomerates, one needs to put

a shape constraint on every single object. But, doing so will significantly increase the

number of level-set functions, to be the same as the number of objects in a micrograph,

because each level-set function can only be associated with one shape constraint. It

is computationally difficult to coordinate hundreds of level-set functions so that they

do not locate in the exactly same region. In fact, coordinating level-set functions is

so far practically feasible only for a small number (e.g. four) of level-set functions

(Hodneland et al., 2009; Zhang and Matuszewski, 2009).

Recently, convergent index filtering and its advanced version, the sliding band

filter (SBF), have been used for a noise-robust cell segmentation (Marcuzzo et al.,

2009; Quelhas et al., 2010). A major difficulty to apply SBF is that the range of

object sizes should be known a priori. The size range can be roughly estimated by

morphological granulometric analysis (Matheron, 1975), but if the range is wide or

several objects are located in a specified size range, SBF will fail to separate different

objects or to oversegment one big object.

All of the aforementioned methods solve problems similar to ours, but their effec-
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tiveness in morphology analysis is limited by the way they handle overlapping objects

or their computation inefficiency. Overlapping nanoparticles have similar image in-

tensities, which makes the graph-cut methods a less ideal candidate. Nanoparticles

often manifest themselves in different sizes, and consequently, hundreds of particles

in a micrograph could present a rather broad range of object size, rendering the SBF

approach ineffective. The large number of particles in a micrograph that need to be

separated also presents a computational challenge for the active contour methods to

be practically applied. Simple segmentation methods such as the watershed method

will not give us the desired morphology information of particles because the simple

methods do not provide inference on the missing parts caused by particle overlaps.

The capabilities and limitations of the methods are summarized in Table 2.

II.4. General Image Processing Methods

This section reviews general image processing algorithms, which can be applied to

morphology analysis of nanoparticles.

II.4.1. Image Segmentation Methods

General image segmentation methods can largely be categorized into three classes:

(1) feature thresholding, (2) edge detection and (3) region-based segmentation. Feature

thresholding is the simplest approach to image segmentation. One or more threshold

values are determined, and a feature value at each image pixel is compared with the

threshold values in order to determine which subregion Xi the image pixel belongs

to. The histograms of colors or gray intensities in an image are sometimes used

for obtaining the threshold values (Gonzalez and Woods, 2002). Using clustering

techniques with multiple types of image features is a multi-dimensional extension
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of the feature thresholding method (Fu and Mui, 1981). Graph cut methods (Shi

and Malik, 2000; Felzenszwalb and Huttenlocher, 2004; Daněk et al., 2009) can be

regarded as a clustering approach. It models an image as a graph of image pixels

with the similarity of image features as the costs of links, and finds minimal (cost)

cuts of the graph.

Edge detection identifies discontinuities in image features, called edges, and then

uses the edges as boundaries of subregion Xi. There exist many edge detection

algorithms such as Sobel operator, Prewitt operator, Roberts cross operator and

Canny’s algorithm (Al-amri et al., 2010). There are several issues in this type of

image segmentation. First, the edges detected are too fragmented to represent a

complete contour of one sub-region. Therefore, the use of edge-linking algorithms

may be needed to connect the fragmented edges to a complete contour, e.g. Hough

transform and local edge processing (Nagabhushana, 2006). Second, when objects

overlap, forming a mixture of multiple objects, the edges detected also become a

mixture of multiple contours corresponding to the objects. Separating the mixture

into individual contours is not a trivial problem. Section III.1 presents an algorithm

that separates the mixture of contours.

Region-based segmentation uses one of the following approaches: (1) splits an

image into subregions having high degree of homogeneity by using a combination

of simple partitioning operations, i.e. recursive quad-tree partitioning (Lee, 1986;

Bhanu and Parvin, 1987); (2) merges neighboring pixels or grows smaller regions into

larger regions satisfying some homogeneity criteria (Burt et al., 1981; Browning and

Tanimoto, 1982; Beaulieu and Goldberg, 1989; Hojjatoleslami and Kittler, 2002); or

(3) uses a combination of partition-and-merges (Pietikainen et al., 1982; Cheevasuvit

et al., 1986). Morphological image segmentation methods such as watershed transfor-

mation (Serra, 1983) and waterfall algorithm (Beucher, 1994) fall in the category of
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the region-based segmentation. The segmentation method presented in Section IV.2

is a morphological image segmentation method specialized for segmenting a mixture

of overlapping convex sets.

II.4.2. Shape Classification Methods

A common underlying procedure in the shape classification is to extract the geometric

information of subregion Xi in a form of shape representation, then to compare the

shape representation with the representations of pre-defined reference shapes with

respect to a similarity measure, and finally to choose the most similar reference shape.

There exist various approaches to shape classification depending on different forms

of shape representations and different definitions of shape similarity measures.

In statistical shape analysis (Dryden and Mardia, 1993), a shape is represented

by a finite number of landmark points located on the contour of the object and its

similarity is measured by the Procrustes distance. One big issue is that obtaining the

landmark points is not straightforward.

There are approaches using the Hausdorff distance of various shape representa-

tions: Fourier descriptor (Kauppinen et al., 2002), chain code (Saghri and Freeman,

1981), medial axis transformation (Philbrick, 1968), curvature scale space (Zhang and

Lu, 2003; Wang and Teoh, 2007), and invariant moments (Zhao and Chen, 1997). For

a comprehensive review of shape representations and classifications, please refer to

Loncaric (1998); Zhang and Lu (2004). None of these methods except Fourier descrip-

tor and invariant moments can be used when some parts of a shape is not available

due to occlusion or other reasons.

Active contour methods discussed in the previous section represent the contour

of geometric shape as a parametric curve or a level set of smooth functions. The

shape similarity is measured by computing the distance between parametric curves
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or comparing the moments of the interior regions of two contours. The methods

naturally solve shape classification together with shape inference, but they are more

appropriate to handle a small number of complicated shapes.
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CHAPTER III

A DIVIDE-AND-CONQUER APPROACH FOR ANALYZING WEAKLY

OVERLAPPED NANOPARTICLES

The image processing softwares currently used for morphology analysis such as ImageJ

are ineffective because of particle overlaps, as discussed in Section II.2. To work

around the issue of particle overlaps, three problems of image segmentation, shape

inference and classification should be considered together. This chapter presents a

divide-and-conquer approach to solving these three problems in a step-by-step fashion.

To the best of our knowledge, this approach is one of the first attempts to provide an

automated procedure for morphology analysis of nanoparticles. This chapter is based

on Park et al. (2011).

This chapter is organized as follows. Section III.1 describes how image segmen-

tation is solved by decomposing mixtures of multiple contours. Section III.2 explains

an invariant curve space as a way of shape representation, and Section III.3 defines a

set of reference shapes. The definition of reference shapes is necessary for performing

shape classification and inference. Section III.4 explains how shape inference and

classification can be performed on the invariant curve space. Finally, Section III.5

presents the empirical evidence, showing that the new approach is more accurate than

ImageJ.

III.1. Decomposition of Composite Contours

Image segmentation is an algorithm to partition an image into subregions. In mor-

phology analysis, a subregion should be the region of one nanoparticle. As discussed

in Section I.4, the imaging process of TEM makes it easy to separate the region I

occupied by nanoparticles from the background. However, it is not straightforward to
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Fig. 2. A failing case of the contour decomposition method.

separate I into subregions so that one subregion corresponds to one particle, because

of the overlaps among nanoparticles. This section presents a method to partition I by

decomposing the contour of particle-aggregates (the boundary of I) into the contours

of individual particles.

Figure 1 shows the key idea of applying the contour decomposition of I for

partitioning I. The contour of I is the contour of the union of convex sets, because

nanoparticle are geometrically convex. The contour decomposition of I is that the

contour of I, ∂I, is partitioned into the minimal number of subpieces {∂J1, . . . , ∂Jm}

such that

• ∂I =
⋃m
i=1 ∂Ji and
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• conv(∂Ji) is a subset of I for i = 1, . . . ,m,

where conv(J) is the convex hull of J , i.e. the small convex set containing J . Since

conv(∂Ji) is always a subset of one convex set composing I, the following property

holds.

Proposition 1. (Contour-to-convex-set decomposition equivalence) The decompo-

sition of the contour ∂I is equivalent to the minimal convex decomposition of I

into {C1, . . . , Cn} if for every Ck there exists only one i ∈ {1, . . . ,m} such that

conv(∂Ji) ⊂ Ck.

The ‘if’-condition does not always hold. An example that does not satisfy the ‘if’-

condition is in Figure 2. In this example, three nanoparticles overlaps in a chain-link

cluster. When the contour decomposition method is applied, the result would look

like part (c) in the figure, namely that the contour of the middle particle is split into

two parts by the other two particles. In this section, only the cases satisfying the

‘if’-condition are considered; for the chain-link structure of particle overlap, it will be

considered in Chapter IV.

The contour-decomposition process uses the test of whether conv(∂Ji) is in I. To

be more specific, the contour-decomposition process breaks a composite contour at the

points on the contour where conv(∂Ji) is not in I. The breaking points mathematically

correspond to points where the internal angle between the left tangent vector and the

right tangent vector is larger than π; please see Figure 3. Such points are called

reflexes in computational geometry (Keil and Snoeyink, 2002).

Finding reflexes in a contour of a non-convex shape is as easy as computing the

left and right tangent vectors at every point on the contour. However, if a contour

is corrupted with image noises, it is not very easy to differentiate real reflexes from

the reflexes falsified by noises. This is because the tangent vector is purely a local
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Internal angle > 180
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Fig. 3. Reflex in a composite contour.

geometric property, which is vulnerable to noise corruption. What is proposed here

is a heuristic algorithm robust to noise.

Let I ⊂ R2 be non-convex. The heuristic algorithm to find reflexes of I uses the

distance function dI defined on the boundary ∂I that measures the minimum distance

from a point x ∈ ∂I to the boundary of conv(I), denoted by ∂conv(I). For x ∈ ∂I,

dI(x) = min{||x− y|| : y ∈ ∂conv(I)}.

The heuristic algorithm is based on the heuristic finding that the distance function

defined above is locally maximized at reflexes. This understanding suggests that it is

only necessary to take the local maxima of the distance function in order to identify

the reflexes.

In the implementation of the heuristic algorithm, the Qhull algorithm is used to

find a convex hull (Barber et al., 1996). Convex hulls of a few examples of composite

boundaries are illustrated in Figure 4. To locate the local maxima of the distance

function to the convex hull, wavelet smoothing is first applied to the distance function

in order to remove noises and the local maxima of the smoothed distance function is
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Fig. 4. Convex hulls of composite edges. The dotted lines with rectangular markers

are convex hulls and the rectangular markers are the extreme points of the

convex hulls.

identified by finding downward zero-crossing of the first derivative of the smoothed

distance function (Yang et al., 2009). Doing so helps filter out the reflexes caused by

noises. Some results of applying the contour-decomposition process are illustrated at

the fourth column of Figure 5.

III.2. Invariant Curve Spaces for Shape Feature Extraction

To characterize the size and the shape distributions of nanoparticles in a TEM im-

age, one should have the complete contours of nanoparticles. However, as seen on the

fourth column of Figure 5, the contour-decomposition process gives only the partial

information of the contours, so the complete contours should be inferred using the

partial information. As discussed in Section I.5, for shape inference, defining the refer-

ence shapes R1, . . . , Rk as well as a shape-similarity measure is necessary. Subsection
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Fig. 5. Illustration of decomposition of composite contours.



28

III.2.1 presents the representation of a shape by a parametric curve f and Subsection

III.2.2 defines the similarity measure df between two shapes, which is to measure

the similarity between the two corresponding parametric curves. Later, based on the

curve space with the pair (f, df ), Subsection III.3 discusses how to define reference

shapes using the sample shapes from real electron micrographs.

III.2.1. Location- and Scale-invariant Curve Space

Following Dryden and Mardia (1998), a geometric shape is defined as all the geomet-

rical information that remains when location, scale and rotational effects are filtered

out from an object. If an object is (topologically) simply connected, its geometric

information is summarized by its contour.

In the two dimensional space, a contour is naturally represented by a parametric

curve of a one-dimensional parameter t, f : [0, 1] → R2, which is a map from the

parameter t ∈ [0, 1] to the coordinate (x(t), y(t)) of one point on the contour. Sim-

ilarly, in the divide-and-conquer approach, a contour is represented by a parametric

curve that maps the parameter t to the polar coordinate of (x(t), y(t)), denoted by

(θ(t), r(t)). The polar coordinate is defined with respect to the center of mass of an

object, where r(t) is the distance from the center to point (x(t), y(t)) and θ(t) is the

angle between the x-axis and the line from the center to point (x(t), y(t)). If t is an

angular parameter, i.e. t = θ(t), the parametric curve f maps

t 7→ (θ(t), r(t)) ⇔ θ(t) 7→ (θ(t), r(t)).

In other words, f = Iθ ⊗ r, implying that f(θ(t)) = (Iθ(θ(t)), r(θ(t))), where Iθ is an

identity map over [0, 2π] and function r maps θ(t) to r(t). Since Iθ is the same for

every contour, a contour is uniquely identified by function r : [0, 2π]→ R+.

In a discrete setting, the function r is represented in the form of {ri}, where
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Fig. 6. Representation of nanoparticle boundaries. in the left figure, the black dot is

the gravity center of the triangle and the gray points are pixels sampled from

the boundary of the triangle, which correspond to the gray points in the right

figure.

ri = r(θi) for uniformly distributed θi over [0, 2π]. This is indeed what will be used

in this chapter. That is to say, a parametric curve refers to the set of values {ri}.

For shape analysis, a basic requirement for the function r is its invariance under

rotation, location, and scaling. The function is already location-invariant because it

is defined relative to the center of mass. To meet the invariance under scaling, r is

normalized as follows.

r =
1∫ 2π

0
r(θ)dθ

r.

In the discrete setting, the denominator is simply the arithmetic mean of {ri}. Note

that using the mean distance from the center of mass is a popular way to measure the

size of a shape, a.k.a centroid size, for the purpose of scaling (Dryden and Mardia,

1998, pages 23-24). The scaled parametric curve is shown in Figure 6 in the r-θ

coordinate system. Since both r and θ are defined relative to the center of mass,

they are invariant to translation. This parametric curve is scale invariant because the

distance is normalized. However, the parametric curve is not yet rotation invariant;

this issue will be addressed in Subsection III.2.2.

The parametric curve characterizes convex shapes such as polygons and circles
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very well. For example, the curve with three modes shown in Figure 6(b) corresponds

to the triangular shape in Figure 6(a). Similarly, the representing curve has four

modes for a rectangle and so forth for other polygons. Nanoparticles are geometrically

convex as discussed, so using the parametric curve is appropriate for the morphology

analysis.

III.2.2. Shape-Similarity Measure on the Curve Space

This section defines a shape-similarity measure on parametric curves. The shape-

similarity must be independent of the rotation effect on parametric curves. Hence,

the rotationally invariant distance between two parametric curves is first defined, and

subsequently, the shape similarity measure is defined using the rotationally invariant

distance.

Let fi and fj be two parametric curves. Please recall that a parametric curve is

a function of θ. The rotation of shape by ∆ is equivalent to the circular shift of the

parametric curve by ∆ along its domain θ. The circular shift of θ by ∆ is a function

s∆(θ) that maps

θ 7→ θ + ∆− 2π

⌊
θ + ∆

2π

⌋
.

A rotationally invariant distance between fi and fj is defined as

df (fi, fj) = min
∆∈[0,2π]

||fi − fj ◦ s∆||, (1)

where || · || is the L2 norm, and fj ◦ s∆ is a composition of function fj and function

s∆.

Let f i and f j be the parametric curves in the discrete form, i.e. f i = (fi1, fi2, . . . , fip)
t,

where fij = fi(θj) for uniformly distributed θj over [0, 2π]. A rotationally invariant
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distance between f i and f j is defined as

df (f i,f j) = min
∆=1,2,...,p

‖f i − s∆ ◦ f j‖, (2)

where ‖ · ‖ is the Euclidean distance and s∆ ◦v is an operator circularly shifting each

element of v downward by ∆ elements, which is defined by: for v = (v1, . . . , vp)
t ∈ Rp,

s∆ ◦ v = (v∆+1, . . . , vp, v1, . . . , v∆)t.

A shape can be defined as an equivalence class of parametric curves under the

rotationally invariant distance, i.e.,

[f i] = {f ∈ Rp; df (f ,f i) = 0}.

The shape space is the set of [f i]’s. The shape space forms a curved manifold, instead

of a Euclidean space.

In the curved manifold, the distance is defined by the geodesic distance rather

than the Euclidean distance. For this reason, the shape similarity measure in the curve

space should also be based on the geodesic distance in the curve space. The geodesic

distance is the length of the shortest arc connecting two points over the curvature in

a manifold. For neighboring points, the Euclidean distance, i.e. df , provides a good

approximation to the geodesic distance and for far apart points, the geodesic distance

can be approximated by adding a sequence of local hops between neighboring points.

To get approximate geodesic distances, first construct is a graph of data points having

edges with the distance df as weights only for k-nearest neighbors and then define

the geodesic distance as the distance of the shortest path between a pair of two data

points. In the sequel, g(·, ·) is used to denote the geodesic distance.

For example, please see the left subfigure in Figure 7. Suppose that f i’s are in

a p-dimensional subspace embedded in Rn (also called p-manifold.) The subspace is
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Fig. 7. Basic idea of feature extraction.

roughly approximated by a surface generated from meshes of the k-nearest neighbor-

hood graph, so the distance in the subspace is the distance in the graph, which is

geodesic distance g(·, ·). In the figure, the geodesic distance between f i and f j is

approximately the summation of the weights of the edges that are on the shortest

path from f i to f j on the graph.

In summary, the shape space is the set of equivalence classes of parametric curves

equipped with the shape distance g as its shape-similarity measure.

III.3. Define Reference Shapes

Suppose that the contours of n sample nanoparticles are extracted from electron

micrographs. The corresponding parametric curves are denoted by f 1, . . . , fn, where

f i = (fi1, fi2, . . . , fip)
t is the p-dimensional vector as in the discrete setting of the

parametric curve. Defining m reference shapes from the n parametric curves is done

by grouping the parametric curves into m subgroups. A reference shape is in turn

defined by a set of parametric curves which belong to one of the subgroups. The set

of the curves can be used to compute the mean and the variation of a reference shape,

corresponding to that specific subgroup.
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Grouping n parametric curves into m groups demands a shape clustering method.

There is a technical difficulty that hinders accurate shape clustering. The dimension of

the resulting parametric curves from a particle is high. It is well known that clustering

analysis methods using similarity measure works poorly in high dimension spaces

(Steinbach et al., 2003, pages 12-13). To address this issue, Subsection III.3.1 presents

the non-linear dimension reduction method to project the parametric curves to a low-

dimensional feature space, and Subsection III.3.2 presents a clustering method on the

dimension-reduced feature space for grouping the low-dimensional projection of the

parametric curves by shapes.

III.3.1. Dimension Reduction of Parametric Curves

A projection of f i onto a low dimensional space is defined by an embedding map

φ : Rp → Rq such that q � p. It is desirable that the embedding map is an isometry,

i.e. the Euclidean distance in the low-dimensional space is equivalent to the shape

distance g in the shape space. In order to find the embedding map, our strategy is to

create an n×n dissimilarity matrix by applying the shape distance g to every pair of

the n parametric curves, and then apply the multidimensional scaling (MDS; Kruskal

and Wish, 1978) to obtain φ.

Given the dissimilarities gij = g(f i,f j) produced by the geodesic distance, the

low dimensional features φ1, . . . ,φn of curves f 1, . . . ,fn should be found such that

the Euclidean distances between the features are close to the corresponding geodesic

distances between the curves, that is,

g2
ij = (φi − φj)t(φi − φj). (3)

Denote by G the dissimilarity matrix whose (i, j)-entry is gij and denote the doubly
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centered geodesic distance matrix

τ(G2) = −1

2
HG2H t, (4)

whereG2 is the matrix whose elements are the squares of the elements ofG, andH is

the n×n centering matrix with (H)ij = δij− 1
n
. If the kernel matrix τ(G2) is positive

semi-definite, the classical MDS gives an explicit solution to the embedding problem.

Let τ(G2) = V ΛV t be the eigen-decomposition of τ(G2), then the collection of q-

dimensional features X = [φ1, ..,φn]t is given by X = V [ , 1 : q] Λ[1 : q, 1 : q]1/2,

where V [ , 1 : q] is the first q columns of V and Λ[1 : q, 1 : q] is the q × q upper-left

corner of Λ. Unfortunately, because of the use of geodesic distances in definingG, the

matrix τ(G2) is not guaranteed to be positive semi-definite. As a remedy, the author

uses a constant-shifting method that is well studied in metric MDS and replace G

in (4) by the matrix G̃ with entries g̃ij = gij + c(1− δij), where δij is the Kronecker

delta, and c is the largest eigenvalue of the matrix 0 2τ(G2)

−I −4τ(G)

 . (5)

According to Cailliez (1983), the matrix τ(G̃
2
) is positive semi-definite. Therefore,

the classical MDS procedure described above can be applied to the modified kernel

matrix τ(G̃
2
) to obtain the desired nonlinear embeddings. All necessary steps for the

nonlinear embedding is summarized in Algorithm 1.

In the nonlinear embedding method, there are two tuning parameters whose

choices are critical for the results: the number of nearest neighbors, k, and the reduced

dimension, q. To compute the geodesic distances, it is necessary to decide on the

number of nearest neighbors, k. If k is too large, it would cause the creation of “short

circuit” edges that shortcut the true geometry of a manifold reflecting the non-linear
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Algorithm 1. Feature Extraction by Isomap.

1. Construct a k-nearest neighbor graph on {f i; i = 1, . . . , n}.

2. Compute G with (G)ij = g(f i,f j)

3. Compute τ(G) using equation (4) and compute c by taking the largest

eigenvalue of matrix (5).

4. Compute τ(G̃
2
) using equation (4) and substituting in G̃

2
= G+ c(1n − In),

where 1n is an n× n matrix of ones and In is an n× n identity matrix.

5. Perform eigen-decomposition: τ(G̃
2
) = V ΛV t.

6. Obtain X = V [ , 1 : q] Λ[1 : q, 1 : q]1/2 for a specific dimension q.

structure of data; if k is too small, it will cause the manifold to fragment into a

large number of disconnected clusters. Following Samko et al. (2006), k is chosen by

maximizing |ρ(D,Φk,q)|, whereD and Φk,q are the matrices of the Euclidean distances

between a pair of points in the original space and the feature space, respectively, and

ρ(·, ·) is the linear correlation coefficient. Note that Φk,q depends on q, the dimension

of the space of the embeddings. Samko et al. (2006) argued that the data set has

its intrinsic dimension, and subsequently, they showed empirically that q does not

change even if k changes. Hence, q is first estimated for an arbitrary (but reasonable)

choice of k, and then, the optimal k is chosen with this q.

In the application to electron micrographs, the 420 (i.e., n = 420) parameterized

curves were extracted, where each curve was represented by a 315-dimensional vector

(i.e., p = 315). Subsequently, the shape similarity measure df was computed for

every pair of the n parametric curves and constructed the graph structure retaining

edges among the k-nearest neighbors with k = 12. Finally, f ’s are projected to a

rotationally invariant subspace of dimension three (i.e., q = 3) to obtain the features
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Fig. 8. Rotational invariance feature extraction. The left panel is the scatter plot

showing the projection of the 420 curves in the three-dimensional feature space.

The right panel shows a scree plot of the kernel matrix.

φ(f). The number of neighbors was chosen by maximizing the correlation criterion

given in the previous paragraph. The dimension of the low-dimensional subspace was

chosen by using the scree plot of the kernel matrix τ(G̃
2
); see Figure 8(b). Figure

8(a) shows the scatter plot of the 420 curves distributed in the feature space.

III.3.2. Semi-supervised Shape Clustering

The low-dimensional features obtained by the nonlinear embedding can be used as in-

puts to clustering algorithms to group the parametric curves into m groups. However,

our experience shows that generic clustering methods do not work well in our context.

Such methods tend to overly partition a dataset into far more number of groups than

what is needed in the nanomaterial research. A semi-supervised learning approach

is adopted; domain experts are asked to determine the number of reference shapes

and manually pick a small number of particles from each reference shape; then these

labeled cases are used as training data. It is known that semi-supervised learning is

able to significantly increase the accuracy of clustering by using a small number of
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labeled data, together with a large number of unlabeled data (Zhu, 2005).

There are various semi-supervised learning methods in the literature such as using

a generative model with the EM algorithm, self-training, information regularization,

and graph-based semi-supervised learning; see Zhu (2005) for a comprehensive re-

view. The graph-based approach proposed by Zhu et al. (2003) is employed for the

morphology analysis. The basic strategy is as follows: Labeled and unlabeled data

are represented as vertices in a connected graph, where each edge is assigned a weight

that measures the similarity between the two data points connected by the edge; the

method produces a label function that is smooth on the graph and correctly matches

the known label. The method in Zhu et al. (2003) was originally designed for binary

classification in this dissertation. The author extended it for multiclass classification.

Suppose that l labeled points (φ1, t1), . . . , (φl, tl) from K classes, and u unlabeled

points (φl+1, tl+1), . . . , (φm, tm) are given with m = l+u, where φi ∈ Rq is the feature

for the i-th case and ti ∈ {0, 1, . . . , K − 1} is the label associated to φi; for unlabeled

cases, the ti values are unknown. Construct a connected graph G = (V ,E), where V

is the collection of nodes corresponding to the m data points, where the coordinates of

a data point is specified by φi, and E is the collection of edges. The edge connecting

φi and φj is weighted by the similarity measure

wij = exp

{
−

p∑
d=1

(φid − φjd)2

σ2
d

}
,

where φid is the d-th component of the feature vector φi, and σd is a scale for the

d-th feature whose choice will be discussed later. Note that the σd-scaled Euclidean

distance in the feature space corresponds to the geodesic distance in the original

(curved) data space by the definition of the feature mappings. Therefore, the weight-

ings, wij, reflect well the similarities between data points in the original data. Our

use of geodesic distance is a major difference from Zhu et al. (2003), which defines
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the weightings using the scaled Euclidean distance in the data space.

A vector-valued label function h = (h0, . . . , hK−1) on G with certain properties

is constructed, which assigns labels based on h. An unlabeled feature φ is assigned

the label k∗ if hk∗(φ) = maxk=0,...,K−1 hk(φ). It is required that the label function

can reproduce the true label for the labeled data, that is, hk(φi) = δti,k, i = 1, . . . , l,

where δ is the Kronecker delta. Moreover, it is desirable to choose the label function

h such that unlabeled points have the same labels as their neighboring points in the

graph. These considerations motivate us to obtain the label function by minimizing

with respect to h the following loss function

L(h) =
1

2

∑
i,j

wij‖h(φi)− h(φj)‖2 =
1

2

∑
k

∑
i,j

wij{hk(φi)− hk(φj)}2,

subject to the constraints that hk(φi) = δti,k, i = 1, . . . , l.

LetW denote the matrix whose (i, j)-th entry is wij and let hk = (hk(φ1), ..., hk(φm))t.

The loss function can be rewritten as a quadratic form

L(h) =
1

2

∑
k

htk ∆hk, (6)

where ∆ = D −W , and D is the m×m diagonal matrix whose i-th diagonal entry

is di =
∑

j wij. To present the solution of this minimization problem, the matrix W

and D and the vector hk are written in block forms according to labeled parts and

unlabeled parts

W =

 W ll W lu

W ul W uu

 , D =

 Dll O

O Duu

 , hk =

 h
(l)
k

h
(u)
k

 , (7)

where O’s denote matrices of zeros whose dimensions can be determined from the

context. Note that h
(l)
k is given by the constraint hk(φi) = δti,k for i = 1, .., l.

Ignoring the term that is purely determined by h
(l)
k , the loss function can be written
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as

1

2
(h

(u)
k )t(Duu −W uu)h

(u)
k − (h

(l)
k )tW ulh

(u)
k .

The following closed-from expression that minimizes h
(u)
k is obtained.

h
(u)
k = (Duu −W uu)

−1W t
ulh

(l)
k . (8)

Given the label function in (8), the label k∗ = arg maxk hk(φl+i) is assigned to the

unlabeled feature φl+i for i = 1, . . . , u.

To choose a suitable scale σd in the weighting function, the author extended the

heuristic rule by Zhu et al. (2003) to the multiclass setting. A σd that can make

the most confident decision of labels is preferred. For a K-vector p with p′1K = 1,

the Shannon’s entropy H[p] measures the uncertainty associated with the random

variable whose probability distribution is p. Thus a small value of H[p] is associated

with a case that the random variable is more focused on certain value. Since the

label function after appropriate normalization induces a probability distribution on

the labels, the author proposed to find σd by minimizing the following average entropy

H(h) =
1

u

l+u∑
i=l+1

Hi{h(φi)}, (9)

where

Hi{h(φi)} = H

[
h0(φi)∑
k hk(φi)

,
h1(φi)∑
k hk(φi)

, . . . ,
hK−1(φi)∑
k hk(φi)

]
is the entropy associated with the i-th unlabeled case. This minimization problem can

be solved by the gradient descent algorithm. Derivation of the gradients is straight-

forward and omitted.

In the application to the real electron micrographs, the author asked domain

experts to determine the number of reference shapes and manually pick ten particles

from each reference shape to form labeled data. According to the experts, it is
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Fig. 9. Results of the semi-supervised learning. Each marker represents a low-dimen-

sional embedding of a parametric curve. The triangular, rectangular, circular

and diamond-shaped markers represent respectively triangular, rectangular,

circular and rod-shaped particles, respectively. The left panel shows a mix of a

few manually assigned shape labels and the unassigned ones, which is marked

using small dots.
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sufficient to distinguish a gold nanoparticle into one of the four shapes: triangles,

rectangles, circles, and rods. These four shapes were assigned labels 0–3 respectively.

Figure 9 presents the results of applying our semi-supervised learning procedure.

As a result of the clustering, the reference shapes are defined as a set of parametric

curves that are classified to the zth reference shape,

Rz = {f i; z = arg max
j
hj(φi),φi := φ(f i)}.

III.4. Principal Component Analysis on the Curve Space for Shape Inference

The reference shapes R1, . . . , Rm are determined in the previous section, along with

a shape-similarity measure. This section discusses the shape inference problem. Note

that the shape classification problem must be considered together with the shape

inference problem, as explained in Section I.5, because each of them requires the

result from the other. In the divide-and-conquer approach, the shape classification

problem is solved using only the incomplete contours, and the shape inference is then

solved using the result of the classification problem.

A k-nearest neighbor (k-NN) classifier is used to classify a nanoparticle with in-

complete contour information. A rough estimate of the gravity center for the nanopar-

ticle is obtained by taking the center of a circle fitted with the incomplete contour,

where the circle minimizes the mean square distance between itself and the incom-

plete contour. With this estimated gravity center, the method in Section III.2 can

be used to yield a partially observed parametric curve representation of the parti-

cle for further analysis. Note that our gravity center estimate would be inaccurate

if the missing part is significant and such inaccuracy would have a big impact on

subsequent analysis. More sophisticated method needs to be developed for such a

situation, which is left out for future research. The subsequent analysis is applied
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only to those particle contours whose missing part, if there is any, is no more than

twenty percent of the entire contour, measured in terms of polar angles. In Section

IV.3, a better classification method will be presented, which is able to perform the

shape classification under larger portions of the missing part.

To apply a k-NN classifier, the author modified the rotationally invariant distance

df defined in Subsection III.2.2 for it to be used with the incomplete contours. For

a complete parametric curve f i ∈ Rp and the partially-observed curve f ∗obs ∈ Rs, the

modified distance is defined as

d∗(f i,f
∗
obs) = min

∆=1,..,p
‖f ∗obs − f i(∆, s)‖, (10)

where f i(∆, s) is a circularly completed subpart of f i starting from ∆ and having

length s. That is, the distance is the minimum of the distances between f ∗obs and all

possible continuous subparts of f i with the same length as f ∗obs.

Based on d∗, the k nearest neighbors of f ∗obs are chosen among {f 1,f 2, . . . ,fn},

denoted by f (1), . . . ,f (k), and then estimate the shape label of f ∗obs by a majority

vote of these neighbors.

z = arg max
t=1,...,k

|{f (j) ∈ Rt}|,

where |A| is the cardinality of A. The neighborhood size k can be determined by a

ten-fold cross validation.

Once Rz, the reference shape of f ∗obs, is defined, Rz can be used to recover

the missing part of the incomplete contour f ∗obs. Note that Rz is the set of the

complete contours classified to the zth reference shape (Subsection III.3.2). The shape

inference procedure takes the following steps. First, the method of functional principal

component analysis by Huang et al. (2008) is applied to summarize the variations of

the complete contours in Rz. Next, the observed part of the incomplete contour (f ∗obs)
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is used to obtain the corresponding principal component scores. Finally, combine the

principal component basis functions and the principal component scores to fill in the

missing part for f ∗obs.

Let f ∗ = (f ∗tobs,f
∗t
mis)

t ∈ Rp be a partially observed curve, where f ∗obs ∈ Rs and

f ∗mis ∈ Rp−s denote respectively its observed and unobserved parts. Let f z,1, ..,f z,r ∈

Rz and let f̄ be the sample mean of these curves. Consider the following expansion

f i = f̄ + v1u1i + · · ·+ vkuki, i = 1, . . . , r, (11)

where v1, . . . ,vk are the principal component curves and u1i, . . . , uki are the cor-

responding scores. The principal component curves are obtained by sequentially

minimizing a regularized least squares criterion that penalizes the roughness of the

curves (Huang et al., 2008). In particular,

v1 = arg max
v

{ r∑
i=1

‖f i − f̄ − v1u1i‖2 + α
r∑
i=1

u2
1i v

tΩv

}
,

where α is a penalty parameter and Ω is a penalty matrix, defined in Huang et al.

(2008, page 687). Subsequent principal component curves are obtained similarly by

using the residuals after removing preceding components. Following Huang et al.

(2008), the Generalized Cross-Validation (GCV) is used to select the penalty param-

eter α, and the number of principal components is chosen so that the majority (i.e.,

99%) of the sample variation is accounted for. The reason of using roughness penal-

ties is to ensure that the recovered particle boundaries are smooth. Note that (11)

can be rewritten in a matrix form as f i = f̄ + V ui where V = (v1, . . . ,vk) and

ui = (u1i, . . . , uki)
t. Similarly, by partitioning f̄ and V , the partially observed curve

has the expansion  f ∗obs

f ∗mis

 =

 f̄ obs

f̄mis

+

 V obs

V mis

u∗. (12)
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A regression using the first part (i.e. obs part) of the system is executed to obtain the

vector of principal score u∗, and the vector is in turn plugged into the second part

(i.e. mis part) to get the missing part of the curve. See the last column in Figure 5

for some examples of the recovered boundaries.

III.5. Results and Discussion

The ultimate objective of the morphology analysis problem is to obtain the summary

statistics of the morphology of nanoparticles, which usually includes three major

distributions: (a) the size distribution (the size of a particle is characterized by the

length of the longest axis of the corresponding boundary.), (b) the shape distribution,

and (c) the distribution of the aspect ratios, defined as the length of the perimeter

of a boundary divided by the area of the same boundary. The three statistics are

widely adopted in nano science and engineering to characterize the morphology of

nanoparticles, and are believed to strongly affect the physical or chemical properties

of the nanoparticles (El-Sayed, 2001; Nyiro-Kosa et al., 2009). For example, the aspect

ratio is considered an important parameter relevant to certain macro-level material

properties because physical and chemical reactions are believed to frequently occur

on the surface of particles so that as the aspect ratio of a nanoparticle gets larger,

those reactions are more active.

Now reported are the results of applying our procedure to six actual electron

micrographs under different scales. One image consists of Palladium (Pd) nanoparti-

cles prepared by microwaving a Palladium solution with a surfactant. The remaining

five images contain gold nanoparticles reduced from a gold salt solution heated and

stirred, adding different ratios of citrate concentration. The results are the distri-

butions of size, shape, and aspect ratio in the form of histogram. We also applied
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the ImageJ to the same six electron micrographs, and we compared the result from

ImageJ with that from the divide-and-conquer approach for each micrograph. Figure

10 and 11 is the comparison for the first micrograph; Figure 12 and 13 for the second

one; Figure 14 and 15 for the third one; Figure 16 and 17 for the fourth one; Figure

18 and 19 for the fifth one; and Figure 20 and 21 for the sixth one.

For those particles that are successfully identified and classified, they are labeled

by an integer number in the image. One can observe that our procedure recognizes

the majority. Most of the unlabeled particles are those located on the border of the

image, of which a significant portion was not observed. Domain experts deem these

particles unnecessary to be identified so that they are intentionally removed before

our analysis. Our classification results of particle type are also verified by domain

experts and deemed satisfactorily accurate. This verification is done manually by the

domain experts, who looked through each image, compared the identification result

with the original image, and then counted the number of correctly and incorrectly

identified subjects. This manual verification appears the only valid way for the time

being.

As part of the verification process, the author compared the accuracy of our

method with the imaging tool ImageJ that is popularly used in the nanotechnology

research. The author chose six electron micrographs and categorized the images into

two groups by the frequency of particle overlaps; ‘slight and rare’, and ‘slight but

pervasive’. The images in the former group (the images in Figure 10 through Figure

14) have few overlaps among nanoparticles, and the images in the latter group (the

images in Figure 16 through Figure 20) contain many nanoparticles entangled with

other ones. Note that, according to the way of classifying electron micrographs in

Chapter IV, both of these groups mostly correspond to the cases for low degree of

particle overlaps; Image 6 corresponds to medium degree.
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Fig. 10. Identification results from our method for Image 1. 66 particles manually

identified, and 62 identified by our method, identification rate = 94%. The

top figure shows the boundaries of the identified ones.

Fig. 11. Identification results from ImageJ for Image 1: Only the identified particles

are shown. Out of the 66 particles, 52 are identified. Identification rate =

79%.
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Fig. 12. Identification results from our method for Image 2. 91 particles manually

identified, and 88 identified by our method, identification rate = 97%. The

top figure shows the boundaries of the identified ones.

Fig. 13. Identification results from ImageJ for Image 2: Only the identified particles

are shown. Out of the 91 particles, 87 are identified. Identification rate =

96%.
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Fig. 14. Identification results from our method for Image 3. 64 particles manually

identified, and 64 identified by our method, identification rate = 100%. The

top figure shows the boundaries of the identified ones.

Fig. 15. Identification results from ImageJ for Image 3: Only the identified particles

are shown. Out of the 64 particles, 53 are identified. Identification rate =

83%.
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Fig. 16. Identification results from our method for Image 4. 259 particles manually

identified, and 252 identified by our method, identification rate = 97%. The

top figure shows the boundaries of the identified ones.

Fig. 17. Identification results from ImageJ for Image 4: Only the identified particles

are shown. Out of the 259 particles, 124 are identified. Identification rate =

47.8%.
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Fig. 18. Identification results from our method for Image 5. 26 particles manually

identified, and 24 identified by our method, identification rate = 92%. The

top figure shows the boundaries of the identified ones.

Fig. 19. Identification results from ImageJ for Image 5: Only the identified particles

are shown. Out of the 26 particles, 13 are identified. Identification rate =

50%.
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Fig. 20. Identification results from our method for Image 6. 396 particles manually

identified, and 363 identified by our method, identification rate = 91.7%. The

top figure shows the boundaries of the identified ones.

Fig. 21. Identification results from ImageJ for Image 6: Only the identified particles

are shown. Out of the 396 particles, 110 are identified. Identification rate =

27.8%.
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Table 3. Comparison of the divide-and-conquer approach with ImageJ in terms of

particle identification rate.

Samples Overlap
Total # of # of the identified ones

particles Our

method

ImageJ

Image 1 (Figure 10) Slight/Rare 66 62 52

Image 2 (Figure 12) Slight/Rare 91 88 87

Image 3 (Figure 14) Slight/Rare 64 64 53

Image 4 (Figure 16) Medium/Pervasive 259 252 124

Image 5 (Figure 18) Slight/Pervasive 26 24 13

Image 6 (Figure 20) Slight/Pervasive 396 363 110

Table 3 summarizes the numbers of nanoparticles identified by the proposed

method and ImageJ for the six electron micrographs. For three electron micrographs

in ‘slight and rare’ group, the proposed method identified 94 - 100% of the total

particles, comparing with 78 - 95% identification rates of ImageJ. For three other

electron micrographs in ‘slight but pervasive’ group, the proposed method obtained

91.7 - 97% identification rates, whereas ImageJ’s identification rates are ranged 28

- 50%. Considering frequent occurrence of overlaps in the electron micrographs of

nanoparticles, the existing software tool cannot be more than a supporting tool. The

high identification rate of our method can facilitate a great deal the nano-material

exploration.
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CHAPTER IV

A CONVEX SHAPE ANALYSIS FOR ANALYZING CHAIN-LINKED

NANOPARTICLES

In Chapter III, the divide-and-conquer approach was examined, which sequentially

solves the image segmentation, the shape classification and the shape inference prob-

lems. The sequential approach is designed for fast extraction of particle size and

shape distributions when particle overlaps are not very severe. However, solving the

three inter-related problems sequentially may produce less ideal outcomes in the mor-

phology analysis than solving them all together, because the quality of outcome from

one problem can affect the next step of the problem-solving.

Natural enhancements in the divide-and-conquer approach can be possible in two

ways. The first one is to develop more accurate methods for each of the three compo-

nent problems. The second one is to combine all three component problems or some

of them into one unified framework. This chapter presents a better approach than

the divide-and-conquer approach by following both enhancement directions. The new

method enhances the solving of shape inference and shape classification problems by

combining them into one problem, and enhances the solving of the image segmenta-

tion problem by introducing a new morphological erosion procedure and association

of evidence.

This chapter starts in Section IV.1 with the discussion about the limitation

of the divide-and-conquer approach. The enhanced image segmentation method is

presented in Section IV.2. The new formulation for the combined shape classification

and inference problem is presented in Section IV.3. Section IV.4 is devoted to showing

the enhanced performance of the new approach with comparison to the divide-and-

conquer approach and other state-of-the-art methods.
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IV.1. Limitation of the Divide-and-Conquer Approach

The divide-and-conquer approach has two major limitations in terms of handling var-

ious cases of particle overlaps. The first limitation is related to the capability of the

image segmentation method used in the divide-and-conquer approach, which provides

the desirable solution only if the condition in Proposition 1 holds. However, there

are many cases where Proposition 1 does not satisfy. For an example, please look at

Figure 2. In this example, three nanoparticles overlaps in a chain-link cluster. When

the contour decomposition method in the divide-and-conquer approach is applied, the

result would look like part (c), namely that the contour of the particle in the middle is

split into two parts by the other two particles; this leads to over-segmentation. Such

problems occur whenever nanoparticles are linked in a chain structure. Since the

chain-linked structure is often observed in actual electron micrographs of nanoparti-

cles, an image segmentation method having the capability of properly handling the

chain-linked overlaps is pressingly needed.

The second limitation is related to the sequential way of solving shape classifica-

tion and shape inference in the divide-and-conquer approach. Please recall that the

gravity center of an incomplete contour needs to be estimated for the k-NN shape

classification (Section III.4). The rough estimate of the center is inaccurate when the

degree of particle overlaps is high and the missing part of the incomplete contour is

significant. An inaccurate estimate of the center leads to inaccurate shape classifica-

tion and shape inference. The inaccurate center estimate is mainly caused by that no

accurate inference of the missing contour is available when the shape classification is

performed. Therefore, if one can solve the shape classification along with the shape

inference, the problem would be much alleviated, and a unified formulation of shape

inference and classification can handle particle overlaps at a much higher degree. The



55

combined formulation will be presented in Section IV.3.

IV.2. Convex Decomposition of Chain-linked Nanoparticles

As discussed in Section I.4, the image segmentation in the morphology analysis be-

comes a convex decomposition problem, namely segmenting a complicated morphol-

ogy into convex sub-pieces. In the meanwhile, the divide-and-conquer approach could

suffer from over-segmentation in the cases of chain-linked structure of particle over-

laps. This section presents a new convex decomposition approach that enhances the

experience of image segmentation.

The basic strategy is to identify the convex subsets of individual convex sets

composing a chain-structure (one subset per convex set). The convex subsets are

called the markers of the individual convex sets. The contour segments to be associ-

ated with the markers are called the contour evidences, because the contour segments

are in fact the evidences used for inferring the complete contours later in the shape

inference and classification problem. Subsection IV.2.1 explains how to find the mark-

ers of individual convex pieces while Subsection IV.2.2 explains how to associate the

contour segments with the markers.

The proposed convex decomposition method is built upon the existing morpho-

logical segmentation method, called ultimate erosion (Dougherty, 1994, UE). But

the proposed method has a couple of key differences from UE. First, the stopping

criterion for iterative erosion is different, and the one used in the proposed method

produces more robust segmentation results for convex sets. Second, the proposed

method skips the marker-growing step used in a typical morphological segmentation

method. Rather, it directly identifies the contour evidences relevant to each marker

by detecting contour segments and relating the segments as contour evidences to
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(a) grayscale image (b) binary silhouette (c) result of the UE (d) result of the UECS

Fig. 22. Ultimate erosion for convex sets. (a) the original grayscale image, (b) binary

silhouette of clustered convex shaped objects, (c) markers identified by the ul-

timate erosion (UE) (d) markers identified by the ultimate erosion for convex

sets (UECS).

one of the markers. To relate the contour segments, an evidence-to-marker relevance

measure is defined, which is also different from those used in the marker-growing

approach.

IV.2.1. Ultimate Erosion for Overlapping Convex Sets

Suppose that a binary silhouette of overlapping objects from a grayscale image is

given (please see Figure 22-(b) for an example). Since nanoparticles have only convex

morphologies, the binary silhouette is a union of the convex silhouettes of individual

particles. This section describes how to decompose the binary silhouette into disjoint

convex sets.

Suppose that there are n nanoparticles in a micrograph. Let I be the binary

silhouette of the particles and Ci be a set of pixels in the interior or on the boundary

of nanoparticle i, where Ci should be a convex set due to the convexity of the particle’s

morphology. As such I =
⋃n
i=1Ci. Given a non-empty set I, the objective is to obtain

a connected subset for each Ci, called the marker of Ci, so that the markers are

pairwise disjoint. The marker plays an important role to locate Ci in a micrograph
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and to guide the particle segmentation. A possible way to produce the marker is

to use a morphological erosion. A morphological erosion is performed by using a set

operator called a Minkowski subtraction in the mathematical morphology (Schneider,

1993), defined as follows.

Definition 2. (Schneider, 1993, Page 133) A Minkowski subtraction to I with respect

to ∆ is

I 	∆ ≡ {x : ∆x ⊂ I},

where ∆x is the translation of ∆ by x, i.e. {x+ y : y ∈ ∆}.

Intuitively, if ∆ = B(0, 1), where B(x, r) is a closed ball in R2 centered at x with

radius r, the result of the set operator is equivalent to peeling off I from its boundary

by size one. Repeated applications of the operator may disconnect the junctions of

overlapping objects. The question is when to stop the morphological erosion. A

popular choice is to keep applying the erosion process to each object just before it is

completely removed. This is called the ultimate erosion (Dougherty, 1994, Chapter

II).

In this section, the author shows that the ultimate erosion (UE) is capable of

identifying exactly one marker for each Ci in I when Ci’s are convex and when I is

specially structured as described in Assumption 3. The author also shows that the

UE is susceptible to over-segmentation when Ci is corrupted by noise so it is not

perfectly convex. The author proposes a noise-robust morphological erosion process

with an earlier stopping criterion than that of the UE. The author calls the erosion

process ‘ultimate erosion for convex sets’, shortly UECS.

Assumption 3. (Chained cluster of overlapping objects) The intersection of every

three of the n convex sets composing I is at most one point and for every pair i 6= j,

Ci\Cj is not empty and it is connected.
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C1 C2

C3

C1 C2 C3

(a) Cases satisfying Assumption 1

C1 ∩ C2 ∩ C3 = empty  

C2

C1

(c) C1 \ C2 is empty

C1

C2

(d) C1 \ C2 is disconnected(b) C1 ∩ C2 ∩ C3 = 

non-empty 

Fig. 23. Intuitive examples explaining Assumption 3. (a) and (b) satisfy the assump-

tion, and (c) and (d) violate the assumption.

Intuitively, the assumption is related to the degree of overlaps among particles;

please refer to Figure 23 for an illustration. In real micrographs, one could observe

that many overlapping nanoparticles satisfy the assumption. For examples, please see

Figure 24. The exemplary micrographs depict the complicated chain-linked clusters

of overlapping nanoparticles. The chain-linked clusters of nanoparticles are separable

by the UE defined below.

Definition 4. (Ultimate erosion, UE (Dougherty, 1994, Page 72)) The ultimate ero-

sion to I is an iterative process to update I(t):

Initialization: Start with I(0) = I.

Iteration t: For the ith connected component A
(t−1)
i in I(t−1), compute Ri and update

I(t) =
⋃
iRi.

Ri =

 A
(t−1)
i 	B(0, 1) if A

(t−1)
i 	B(0, 1) 6= ∅

A
(t−1)
i otherwise

End: The iteration stops when I(t) = I(t−1).

Each connected set resulting from the UE becomes a marker. If there is one

marker for each Ci, the author says that I is separable by the UE. In the following
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Fig. 24. Electron micrographs picturing the chain-linked clusters of nanoparticles.

text, the author will prove that I is separable by the UE under some regularity

conditions on I.

First, new notations and functions are defined to characterize the process of the

UE. For a connected set C in R2, let dC(x) be the distance function from x ∈ R2 to

∂C such that dC(x) = inf{||x− y|| : y ∈ ∂C}, where ∂C is the boundary of C.

The UE repeatedly applies the Minkowski subtraction to C with respect to

B(0, 1). Let us denote by C	 rB(0, 1) the r successive applications of the Minkowski

subtraction to C with respect to B(0, 1). The result of the iterative erosion process

is characterized by the level-set of the distance function dC(x).

Lemma 5. Let C be a connected set in R2. C 	 rB(0, 1) = C 	 B(0, r) = {x ∈ C :
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dC(x) ≥ r}.

Proof. The proof is straightforward by the definition of Minkowski subtraction. Please

see (Dougherty, 1994, page 324).

Note that a marker resulting from the UE is a local maximum of the distance

function by definition. Hence, it is important to understand the modes of dC(x).

Define rC = supx∈C dC(x) and ΩC as a subset of C satisfying

ΩC = {x ∈ C : dC(x) = rC}.

The points in ΩC are the global maxima of dC(x) by definition. If C is convex, ΩC

is equivalent to the set of all local maxima of dC(x). This is implied in the following

lemma (for its proof, please refer to Appendix A. Same for Lemma 7.)

Lemma 6. If C is a convex set, the function dC(x) has the following properties: for

x ∈ ΩC and y ∈ C,

(i) dC(λx+ (1− λ)y) is a concave function of λ on [0, 1].

(ii) dC(λx+ (1− λ)y) is a monotone (increasing) function of λ on [0, 1].

The author has so far discussed about the local maxima of the distance function

dC(x) for a single convex set C. Based on the results, the local maxima of the

distance function will be studied for a union of convex sets I, which is essential for

understanding the separation capability of the UE.

Let C1, C2, . . . , Cn be n convex sets in R2 with I =
⋃
i=1Ci, satisfying Assumption

3. Let Ui = conv(Ci\
⋃
j 6=iCj). It is easy to show that I =

⋃n
i=1 Ui. A supporting set

S(x) is defined by

S(x) = {y ∈ ∂I : ||x− y|| = dI(x)} for x ∈ I.
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(a) the center of the circle is not a local maximum (b) the center of the circle is a local maximum

Fig. 25. Practical Implication of Lemma 7. (a) does not satisfy the ’if-and-only-if’

condition for the local maxima of dI(x) and (b) does satisfy.

Lemma 7. A point x in Ui is a local maximum of dI(x) if and only if there exists

ε > 0 such that B(x, ε) ⊂ {
∑

k λkzk : zk ∈ S(x),
∑

k λk = 1, λk ≥ 0}.

Lemma 7 is about where the local maxima of the distance function dI(x) locate.

The UE stops when it identified the local maxima, which become the markers for

Ci’s. Therefore, the lemma is essential for showing the separation capability of the

UE in Lemma 8. Before introducing Lemma 8, the author wants to elaborate the

practical meaning of the ’if-and-only-if’ condition in Lemma 7 by an example. The

condition is related to the size of the allowable overlappings between particles. Please

look at Figure 25. In the figure, a triangle and a circle overlap. The author wants

to check if the location at the cross (x) is a local maximum of dI(x). The solid dots

are the elements in the supporting set S(x), which are on the dotted circles centered

at x. Let θ be the angle between the following two lines: a line connecting two

intersection points of the triangle and the circle, a tangent line to the dotted circle.

If the length of the former line is greater than d sin θ, x is a local maximum satisfying

the ’if-and-only-if’ condition of Lemma 7 (Figure 25-(b)); otherwise, it is not a local

maximum (Figure 25-(a)). In this example, the triangle has another local maximum

and the circle has its own local maximum. Therefore, if the size of the overlapping

region is greater than d sin θ in this example, there are at least three local maxima
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for two objects, which results in three markers (over-segmentation). In general, if the

size of the overlapping region, specified by the length of the line cutting through an

overlapping region, is greater than a certain threshold (e.g. d sin θ here), the over-

segmentation will happen due to excessive number of local maxima in the distance

function caused by the overlaps.

Lemma 8. (Separability of the UE) Suppose that I is a union of n overlapping convex

sets, namely C1, . . . , Cn, satisfying Assumption 3. Then, I is separable by the ultimate

erosion (UE) if and only if Ui is not empty and there exists at most one x ∈ Ui and

ε > 0 such that B(x, ε) ⊂ {
∑

k λkzk : zk ∈ S(x),
∑

k λk = 1, λk ≥ 0} for i = 1, . . . , n.

Proof. I is separable by UE if and only if for every Ui there exists exactly one marker,

which is equivalent to that there is only one local optimum of distance function dI(x)

in Ui for i = 1, . . . , n. By Lemma 7, the latter condition is in turn equivalent to the

if-and-only-if condition of this lemma.

As implied by the conditions in Lemma 8, the UE is capable in handling a chain-

linked cluster of convex sets when Ci is perfectly convex, but it is prone to producing

more than one marker for each Ci when Ci is not perfectly convex (e.g., due to

noise corruption). Having more than one marker for Ci leads to over-segmentation of

nanoparticles, e.g. Figure 22-(c). To avoid over-segmentation, the iterative erosion

process should stop before the process separates small non-convexities caused by noise.

The author proposes a modified ultimated erosion process that stops at an earlier

time than the UE and shows that it is as capable as the UE in terms of separating

a mixture of convex sets into individual ones. The author calls this modified process

the ultimate erosion for convex sets (UECS).

Definition 9. (Ultimate erosion for convex sets, UECS) The ultimate erosion to I
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is an iterative process to update I(t):

Initialization: Start with I(0) = I.

Iteration t: For the ith connected component A
(t−1)
i in I(t−1), compute Ri and update

I(t) =
⋃
iRi.

Ri =

 A
(t−1)
i 	B(0, 1) if A

(t−1)
i is not convex and

A
(t−1)
i otherwise

End: The iterations stop when I(t) = I(t−1).

The UECS stops the erosion process when the marker is still convex. When

I conforms with Assumption 3 and when the ’if-and-only-if’ condition in Lemma

8 holds, the equivalence of the UECS and the UE in terms of identifying markers

is indirectly shown by proving the following lemma; it implies that the UE cannot

identify more markers than the UECS when Ci is perfectly convex.

Lemma 10. Suppose that I is a union of n overlapping convex sets, namely C1, . . . , Cn.

If I is convex, then none of Ci is separable by UE.

Proof. By Lemma 6, if I is convex, dI(x) is a convex function on I. Therefore,

I 	 rB = {dI(x) ≥ r} is convex, which is connected for every r > 0.

Theorem 11. (Separability of the UECS) Suppose that I is a union of n overlapping

convex sets, namely C1, . . . , Cn, satisfying Assumption 3. Then, I is separable by

the UECS if and only if there exists ε > 0 such that B(x, ε) ⊂ {
∑

k λkzk : zk ∈

S(x),
∑

k λk = 1, λk ≥ 0} for i = 1, . . . , n.

Proof. By Lemma 10, the separation capability of the UE is equivalent to that of the

UECS. Therefore, the if-and-only-if condition for the separability of the UECS is the

same as the condition for the separability of the UE in Lemma 8.
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Different from the UE, the UECS can avoid over-segmentation by using a noise-

robust measure of ‘convexity’ (or conversely, a measure of concavity) that determines

the stopping criterion of erosion operations. Many previous works have already been

reported regarding how to measure the size of concavity in digital images (Ronse,

1989). Rosenfeld (Rosenfeld, 1985) compared three popular measures for the concav-

ity in terms of their sensitivity to the coarseness of digital grids. According to the

comparison, the following concavity measure is the least sensitive to the coarseness.

Definition 12. (Rosenfeld, 1985, Page 72) Let I be a connected set. If O = conv(I),

V = O\I is called a concavity of I. Suppose that V consists of m connected sets.

If the boundary of the jth connected set is denoted by Vj, the size of concavity V is

defined by

c(V ) = max
j=1,...,m

d(Vj
⋂
∂O, Vj

⋂
∂I)

l(Vj
⋂
∂O)

,

where d(X, Y ) = maxx∈X miny∈Y ‖x− y‖ and l(L) is the length of a line segment L.

The concavity measure ranges in [0, 0.5] and its largeness implies that V is not

convex. If the measure is applied to the UECS, the stopping criterion of the UECS is

defined by comparing the measure with a threshold ρ, i.e. continue erosion if c(V ) > ρ

or stop otherwise.

The choice of ρ determines the noise-robustness degree of the UECS. If ρ is large,

the UECS will be more robust to boundary protrusion and intrusion by noise but it

will lose its separation capability. Conversely, if ρ is too small, the UECS will be less

robust but it is more capable in separating overlaps. Empirically, the author observed

that ρ in between 0.2 and 0.3 worked well with real micrographs. An exemplary

result from the UECS (ρ = 0.2) is presented in Figure 22-(d), where the markers are

depicted as the white regions inside the nanoparticles. However, the choice of ρ could

be dependent on the field of applications. The results of the UECS with different
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choices of ρ under different degrees of particle overlaps and different noise levels are

presented in Appendix B. This will be a good guideline for practitioners to choose

the ρ appropriate for their own applications.

In summary, in the stage of image segmentation, the author proposed a modified

ultimate erosion process, UECS, for noise-robust marker generation. The essence of

UECS is to introduce a new stopping criterion to the existing UE process. The author

showed that its separation capability is the same as that of the UE in the noise-free

cases, and empirically showed that the UECS is less prone to over-segmentation where

the particle images are corrupted by noises.

IV.2.2. Extraction and Association of Contour Evidences

Once the markers are obtained, most existing image segmentation methods grow

the markers by repeated applications of geodesic dilations to the markers, and the

growth of a marker usually stops when it collides with the growth of other markers.

For instance, marker-controlled watershed follows this approach (Dougherty, 1994).

The contours of the grown-up markers are used as the contour evidences to infer

the complete contours of objects. In such an approach, the growing process can be

regarded as an implicit way to get the contour evidences for the final inference of

the complete contours. Different from the marker growth approach, the proposed

approach retrieves the contour evidences in two steps; first, extract all the edge pixels

from an image, and secondly, associate the edge pixels with each individual marker

according to a relevance measure. This edge-to-marker association is used as our

contour evidences. This section focuses on defining the relevance measure for this

evidence association.

Suppose that there are n markers from the UECS, denoted by {T1, T2, ..., Tn},

where Ti is the marker of Ci and it is represented by a set of point coordinates. There
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are also m edge pixel coordinates detected by an arbitrary edge detection method,

which is denoted by E = {e1, . . . , em}. Note that the edges are the locations where

image intensities abruptly change and they have been used as evidences of object’s

contours previously, e.g. in Gonzalez and Woods (2002). In order to measure the rele-

vance of ei to Tj, denoted by rel(ei, Ti), the author defines a compound measure rather

than a simple measure like distance alone. A component composing the compound

measure is a distance from ei to Tj, the same as what is used in the marker-growing

approach. The author defines the distance measure in order to exclude the edge

points that locate closely to an irrelevant marker by chance. The distance is defined

with respect to I (the same I used in the previous section) as

g(ej, Ti) = min
x∈Ti

gj(x), (13)

where gj(x) is the Euclidean distance |ej − x| if the line from ej to x entirely resides

within I and ∞ when any portion of the line is outside I. By the convexity of Ci,

if ej is a substance of the Ci’s contour, the line from x ∈ Ti to ej must be in Ci and

also in I. Such treatment helps avoid over-emphasizing the markers irrelevant to but

close to ej.

The other component in the compound measure is the divergence index of ej

from Ti, which compares the direction of intensity gradient at ej with the direction

of line from x ∈ Ti to ej. Technically, it is expressed as a cosine function:

div(ej, Ti) = min
x∈Ti

~g(ej) ·~l(x, ej)
‖~g(ej)‖‖~l(x, ej)‖

,

where ~g(ej) is the direction of intensity gradient at ej, and ~l(x, ej) is the direction

of line from x ∈ Ti to ej. The use of the divergence index is motivated by how

electron micrography works. In a typical electron micrograph, the regions occupied

by nanoparticles have lower image intensities than the background. For this reason,
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(a) original image (b) binary silhouette (c) markers (d) contour evidences
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Fig. 26. Classification of edge pixels by the relevance to markers. (c) illustrates how

to compute the geodesic distance (g) and the divergence index (div) between

edge pixel ej and marker Ti. (d) is the classification result, where different

classes are labeled as different colors of edge pixels.

if ej is a substance of the Ci’s contour, the gradient at ej diverges from Ti. Since Ci

is convex, the gradient direction is very close to the vector direction from Ti to ej,

i.e. the cosine of the angle between the two directions is close to being maximized.

In Figure 26-(c), the solid-line arrow outbound from ej is ~g(ej), the (image intensity)

gradient vector at ej, and the dotted-line arrow represents ~l(x, ej), the straight line

from Ti to ej. The divergence index is simply the cosine of the angle between the two

vectors.

Compounding g(ej, Ti) and div(ej, Ti), the author defines the relevance measure

of ej to Ti as

rel(ej, Ti) =
1

1 + g(ej, Ti)/nIter
+
div(ej, Ti) + 1

2
, (14)

where each of the two terms is normalized to (0, 1] and nIter is the number of erosion

iterations in the UECS. If i = arg maxk rel(ej, Tk), ej becomes an element of the

contour evidences for Ci.
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IV.3. Gaussian Mixture Model for Contour Inference and Shape Classification

Suppose that there are a set of mi edge points as the contour evidences for Ci, which

are denoted by {ei1, ei2, . . . , eimi
}, where eij is a 2×1 vector since our images are two

dimensional. The markers identified in Section IV.2 are used to locate the Ci’s but

they will not be used explicitly in the subsequent inference.

The objective here is to infer a contour, fitted to the evidences and regulated by

the prior shape knowledge (known reference shapes). One difficulty is that a contour

can have several possible (convex) shapes, whereas most previous research only dealt

with a single predetermined reference shape. To deal with multiple reference shapes,

the author proposes an approach that performs simultaneously the shape classification

and contour inference.

A contour for Ci is assumed to be a uniform periodic B-spline curve with order

d and p control points; for t ∈ [0, 1],

f i(t) =

p−1∑
h=0

φh,d(t)pi,h, (15)

where t is a parameter to identify a point on the curve, φh,d(t) is the hth periodic

B-spline bending function, and pi,h ∈ R2 is the hth control point.

Suppose that eij is a noisy observation of f i(t) at a B-spline parameter value tij,

i.e.

eij = f i(tij) + εij, εij ∼ N (0, σ2I2),

where the parameter value tij is unknown and it needs to be estimated. The problem

assigning tij to each data point eij is called the data parameterization problem in the

literature (Hoschek, 1988; Goshtasby, 2000; Saux and Daniel, 2003). For the time

being, tij is assumed known. The mi contour evidences collectively is denoted by a

2mi × 1 vector xi, which is formed by binding eij in rowwise. The likelihood of f i(t)
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given xi, or equivalently, the likelihood of pi,h’s given xi, is then

P (xi|pi, σ2) = N (xi; Φipi, σ
2I2mi

),

where Φi is a 2mi × 2p matrix with φr,d(tij)I2 as its (j, h)th 2× 2 submatrix and pi

is a 2p× 1 vector binding pi,h in rowwise.

The pi is affected by shape information. It also varies with the pose parame-

ters such as scaling, shifting and rotation of shapes. Hence, before constraining pi

with shape information, the pose parameters are separated from pi. Given the scale

parameter s, rotation angle θ and horizontal-vertical shifts c, the model for pi,h is

pi,h =
1

s
Rθp̃i,h + c,

where p̃i,h is the normalized shape feature independent of the pose parameters, c

is a two-dimensional column vector of horizontal and vertical shifts, and Rθ is a

transformation matrix for a rotation by θ in counter-clock wise. The model for the

whole feature pi is

pi =
1

s
Qθp̃i +Hc, (16)

whereQθ is a Kronecker product of the p×p identity matrix with Rθ andH := 1p⊗I2

is a Kronecker product of the p× 1 vector of ones with a 2× 2 identity matrix.

The normalized shape feature p̃i should be constrained by the prior shape knowl-

edge, which is summarized as follows. The shapes of nanoparticles are grouped into

K possible shapes. If particle i belongs to the kth shape group, p̃i follows a Gaussian

distribution with µk as its mean and Σk as its variance-covariance matrix. The hid-

den group membership vectors gi = (gi1, . . . , giK)t are defined such that gik is equal

to one, if particle i belongs to shape group k, and zero otherwise. Then, the prior
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distribution on p̃i given gi is then

P (p̃i|gi,µ,Σ) =
K∏
k=1

N (p̃i;µk,Σk)
gik ,

where µ is a set of µk’s and Σ is a set of Σk’s. Since pi is the linear transformation

of p̃i, pi is also characterized as Gaussian with parameters depending on the pose

parameters. The pose parameters might depend on the shape group that particle i

belongs to. Hence, they are defined separately for each shape group by sik, θik and

cik, and they are denoted collectively for all k’s by si, θi and ci. Using (16), pi is

distributed as

P (pi|gi, si,θi, ci,µ,Σ)

=
K∏
k=1

N
(
pi;Aikµk +Hcik,AikΣkA

t
ik

)gik ,
(17)

where Aik = 1
sik
Qθik

. A multinomial distribution is put on the hidden matrix gi as

its prior distribution, i.e.,

P (gi|α) =
K∏
k=1

αgik

k , (18)

where
∑

k αk = 1 and α = (α1, α2, . . . , αK)t.

The ultimate goal of this section is to obtain the contours of convex shapes Ci’s

and to determine which shape group Ci belongs to. This problem is corresponding

to estimating the hidden variables Z = {pi, gi; i = 1, . . . , N}. However, the hidden

variables depend on the unknown parameters Θ = {σ2,α, {µk,Σk}, {si,θi, ci}}. The

unknown parameters are estimated by maximizing the following marginal likelihood

of observing contour evidences X = {xi; i = 1, . . . , N} with respect to Θ,

P (X|Θ) =

∫
Z

P (X,Z|Θ)dZ. (19)

Given the estimated Θ̂, Z is estimated by taking its posterior mode, a maximizer of
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the following posterior distribution,

P (Z|Θ̂,X) =
P (X,Z|Θ̂)

P (X|Θ̂)
. (20)

Conceptually, solving (20) involves two complicated optimization problems, which

are not easy to handle. In practice, (20) is solved through an iterative solver, the

expectation conditional maximization (ECM), which has been proved to converge to a

local maximum (Meng and Rubin, 1993).

IV.3.1. Expectation Maximization via the ECM algorithm

When Θ is considered as the unknown parameters, the complete likelihood of the

parameters given contour evidences X and hidden variables Z is as follows:

P (X,Z|Θ) =
n∏
i=1

K∏
k=1

[αkN (pi;Aikµk +Hcik,AikΣkA
t
ik)

N (xi; Φipi, σ
2I2mi

)]gik .

At iteration t, the expectation maximization (EM) algorithm first computes the

expected value of the complete log-likelihood function with respect to the posterior

distribution, P (Z|X,Θ) (E-step). The expected log likelihood is

EZ[logP (X,Z|Θ)]

∝
N∑
i=1

K∑
k=1

βik[2 logαk − log det(Σk) + 4p log sik

− (µk + sikQ
t
θik
Hcik)

tΣ−1
k (µk + sikQ

t
θik
Hcik)

+ 2sikm
t
ikQθik

Σ−1
k (µk + sikQ

t
θik
Hcik)

− s2
iktrace(Qθik

Σ−1
k Q

t
θik

∆ik)− 2mi log σ2

− σ−2xtixi + 2σ−2γtikΦ
t
ixi

− σ−2trace(Φt
iΦi∆ik)],

(21)
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where βik = αkqik, ∆ik = Sik +mikm
t
ik,

qik = N
(
xi; ΦiAikµk +Hcik, σ2I2mi + ΦiAikΣkA

t
ikΦ

t
i

)
,

mik = AikΣkA
t
ikΦ

t
i

(
σ2I2mi + ΦiAikΣkA

t
ikΦ

t
i

)−1

(xi −ΦiAikµk −Hcik) +Aikµk +Hcik,

Sik = (A−tik Σ−1
k A

−1
ik + σ−2Φt

iΦi)−1.

A lengthy derivation of the expectation is moved to Appendix C. In the M-step,

the expectation in (21) is maximized with respect to Θ. The first order necessary

condition (FONC) with respect to αk, along with the constraint
∑

k αk = 1, gives us

the local optimum for αk,

αk =

∑N
i=1 βik∑N

i=1

∑K
k′=1 βik′

.

The local optimum for σ2 also comes directly from the FONC,

σ2 =

∑
∀i,k βik

[
xtixi − 2mt

ikΦ
t
ixi + trace(Φt

iΦi∆ik)
]

2
∑N

i=1(mi

∑K
k=1 βik)

.

The author cannot derive the closed form expressions of the local optima for µk, Σk,

θik, sik and cik, since their FONCs are entangled with one another in complicated

forms. Instead, the M-step can be solved iteratively by the Newton Raphson, but

the author wants to avoid expensive iterations as well. There are two other possible

options to proceed the M-step without iterations; the first one is to improve the

expected log-likelihood (21) rather than to maximize it for every M-step, resulting in

a GEM algorithm (Dempster et al., 1977), and another one is to use the ECM algorithm

(Meng and Rubin, 1993). The first option does not in general converge appropriately,

but the second option does. For this reason, the author takes the second option.

The ECM algorithm partitions Θ into L subgroups and solves L optimizations,

where each optimization maximizes (21) with respect to one subgroup of Θ , provided

that the other groups remained to be their previous values. In this paper, L = 5 with

five subgroups of parameters {µk}, {Σk}, {θik}, {sik} and {cik}. From the FONCs
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with respect to each subgroup, we have the following solutions for the M-step of the

ECM algorithm

µk =

∑N
i=1 βiksikQ

t
θik

(mik −Hcik)∑N
i=1 βik

,

Σk =

∑N
i=1 βik(µik + sikQ

t
θik
Hcik)(µik + sikQ

t
θik
Hcik)

t∑N
i=1 βik

+
s2
ikQ

t
θik

∆ikQθik
− sik(µk + sikQ

t
θik
Hcik)m

t
ikQθik∑N

i=1 βik

−
sikQ

t
θik
mik(µk + sikQ

t
θik
Hcik)

t∑N
i=1 βik

,

cik = (H tQθik
Σ−1
k Q

t
θik
H)−1H tQθik

Σ−1
k

(
Qt
θik
mik −

µk
sik

)
,

sik =
v +

√
v2 + 8pβiku

2u
,

where

u = trace[Qθik
Σ−1
k Q

t
θik

(∆ik +Hcikc
t
ikH

t − 2Hcikm
t
ik)]

v = (mik −Hcik)tQθik
Σ−1
k µk.

The solution for θik is more complicated. The equation governing x = sin(θik) is

4(a2 + b2)x4 + 8(bd− ac)dx3 + 4(c2 + d2 − a2 − b2)x2

+ 4(ac− 2bd)x+ a2 − 4d2 = 0,

where

a =siktrace((Σ−1
k I

t
p∗ + Ip∗Σ

−1
k )(∆ik +Hcikc

t
ikH

t)),

b =siktrace((Σ−1
k − Ip∗Σ

−1
k I

t
p∗)(∆ik +Hcikc

t
ikH

t))

− 2siktrace((Σ−1
k − Ip∗Σ

−1
k I

t
p∗)Hcikmik)),

c =(mik −Hcik)tΣ−1
k µk,

d =(mik −Hcik)tIp∗Σ−1
k µk,
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and Ip∗ is an anti-symmetric matrix defined as

Ip∗ = Ip ⊗

 0 −1

1 0

 .
The solution of the above quartic equation can be obtained by means of a method

discovered by Ferrari (Tignol, 2001, pages 22–24).

Once a convergence is attained from iterations of the E-steps and the M-steps

through the ECM, the posterior distributions for gi and pi given the converged pa-

rameters Θ and evidences X are obtained by

P (gik = 1|X,Θ) ∝ βik

P (pi|X,Θ) ∝
K∑
k=1

βikN (pi;mik,Sik).

Accordingly, the posterior mode of gi is ĝik = 1 if k = arg maxk′ βik′ and 0 otherwise.

The posterior mode for pi is given by

p̂i =

(
K∑
k=1

βikS
−1
ik

)−1 K∑
k=1

βikS
−1
ik mik.

Finally, the shape group of Ci is determined to be k if ĝik = 1 and reconstruct the

contour by plugging p̂i into (15).

IV.3.2. Approximate Data Parameterization

It has been assumed that the spline parameter value tij for evidence eij is known. In

real problems, however, it is unknown and needs to be obtained. In the literature,

assigning a parameter value tij to data point eij is called data parameterization,

where several methods were available, including the chord length parameterization,

the centripetal method (Epstein, 1976; Lee, 1989), or the intrinsic parameterization

(Hoschek, 1988). Among these methods, the chord length parameterization is easy



75

to use and efficient in computation. But, it requires the ordering information of

the points to be parameterized, which is not available. On the other hand, the

intrinsic parametrization is more general but it will add another family of parameters

to the already large set of parameters under estimation in the ECM. In the end, the

author chooses to base our approach on the chord length parameterization but use

an approximation to get the ordering of the data points.

The basic idea of our approximate chord length parameterization is as follows:

find a convex hull inscribing the evidences and then use the parameterization of

points on the convex hull to get the approximate spline parameter tij. The detailed

procedure is as follows: given a set of contour evidences for Ci, {ei1, ei2, . . . , eimi
},

1. Find a convex hull inscribing the contour evidences by the Qhull algorithm

(Barber et al., 1996).

2. Sequentially order all points on the convex hull in counter-clock wise (or clock-

wise) into q0, . . . ,qL and then parameterize the points by the chord-length

parameterization: the parameter tl for ql is assigned as

tl =

∑l
s=1 |qs − qs−1|∑L
s=1 |qs − qs−1|

3. In order to get tij, find the point closest to eij among the points in the convex

hull, say qs. Set tij = ts.

The main advantage of this parameterization is its simplicity and computation-

ally efficiency. In addition, the parameterization is not effected by the noisy contour

evidences which locate inside an nanoparticle. When the noisy evidences locate out-

side an nanoparticle, the approximate data parameterization may be distorted. This

problem can be addressed if the convex hull inscribing the majority of points except

for a few outliers is taken.
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IV.4. Results and Discussion

The results of segmentation and contour inference of the twelve micrographs are pre-

sented in Figures 27 through 30. Each figure has four columns. The first column is

the original micrograph. Its binary silhouette is obtained by applying the alterna-

tive sequence filtering (Gonzalez and Woods, 2002), followed by the Otsu’s optimum

global thresholding (Otsu, 1979). The UECS proposed in Subsection IV.2.1 was ap-

plied to the binary silhouette for obtaining the second column, where a white-colored

connected region implies one marker. Contour evidences (pixels at the boundaries of

particles) have first been extracted by the Canny’s edge detection method (Canny,

1986), and then they were associated with the markers by using the procedure in

Subsection IV.2.2. After the association, the algorithm filters out some noise edge

outliers based on the mean and standard deviation of g defined in equation (13). In

the third column of the figures, the association to different markers is illustrated by

different colors of the contour evidences. The last column shows the final result from

the contour inference proposed in Section IV.3.

The proposed UECS correctly identified one marker per particle for most of the

cases from Figure 27 through 29. Figure 30 has severe overlaps among the nanoparti-

cles, and as a result, the UECS sometimes identified one marker for multiple nanopar-

ticles. The association between the markers and the edge pixels look reasonable, al-

though some noise edge pixels have been classified as valid contour evidences. The

inference results were matched well with the original image. In some cases where

the contour evidences are not sufficient, especially for the nanoparticles cropped by

image borders, the shapes of the nanoparticles cannot be inferred correctly, and the

recovered contours do not look good. The author wants to note that most of those

cases cannot be easily handled even by human vision.
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(a) (b) (c) (d)

Fig. 27. Results from low-degree overlapping cases. (a) original images, (b) markers

from the UECS, (c) contour evidences (Section IV.2.2) , (d) final contours by

the ECM
(a) (b) (c) (d)

Fig. 28. Results from medium-degree overlapping cases.
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(a) (b) (c) (d)

Fig. 29. Results from medium-degree overlapping cases (continued).

(a) (b) (c) (d)

Fig. 30. Results from high-degree overlapping cases.
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The accuracy of the proposed method is quantitatively compared with the divide-

and-conquer approach and the four state-of-the-art methods introduced in Section

II.3: marker-controller watershed segmentation (Malpica et al., 1997, MCWS), normalized-

cut (Shi and Malik, 2000, N-Cut), multi-phase active contour (Vese and Chan, 2002,

MPAC), sliding band filter (Quelhas et al., 2010, SBF). The results of ImageJ were

not included for the comparison, because ImageJ performed far worse than the other

methods.

For each of the twelve micrographs, the author manually counted the total num-

ber of nanoparticles and the number of the particles correctly inferred by each of the

methods in comparison. The numbers are tabularized in Table 4. The convex shape

analysis method was the best performer in most cases (only one exception is the first

row of Figure 6). The N-cut and the MPAC method did not perform well, because

their image segmentation are guided by image intensities but overlapping particles

have too similar image intensities to be separated. It is not easy to guide these meth-

ods by multiple reference shapes due to the prohibitive computational demand from

the current technology. The SBF method performed comparably well but it struggled

with the cases that the particle sizes vary drastically. The third micrograph in Figure

27 corresponds to such a case.

Figure 31 presents one exemplary result of the contour inference performed by

the convex shape analysis and the four competing methods. The under-segmentation

could be clearly observed in the MPAC and the N-Cut, and over-segmentation was

observed in the MCWS due to its sensitivity to noise. The contour estimation by

the SBF looks rough, but this roughness can be smoothed by curve fitting. SBF also

missed a few particles.

The author recorded the total computation times spent by the methods for the

same micrograph used in Figure 31. The SBF spent the longest time, 541 seconds;
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Table 4. Comparison of performances on nanoparticle identification. CSA: convex

shape analysis, DCA: divide-and-conquer approach, N-Cut: normalized cut

method, MPAC: multiphase active contour, MCWS: marker-controlled wa-

tershed, SBF: sliding band filter.

Samples
Degree of # of # of the correctly identified ones
overlap particles CSA DCA N-Cut MPAC MCWS SBF

Figure 27, row 1 Low 64 64 64 62 57 64 57
Figure 27, row 2 Low 259 251 252 236 151 235 167
Figure 27, row 3 Low 26 26 24 20 17 20 1
Figure 28, row 1 Medium 28 26 7 6 2 20 28
Figure 28, row 2 Medium 52 48 29 29 22 39 43
Figure 28, row 3 Medium 396 374 363 235 84 358 199
Figure 29, row 1 Medium 19 17 7 10 8 6 15
Figure 29, row 2 Medium 108 103 24 56 44 70 99
Figure 29, row 3 Medium 29 25 14 12 13 14 19
Figure 30, row 1 High 63 54 21 31 12 34 42
Figure 30, row 2 High 44 34 10 23 11 23 28
Figure 30, row 3 High 45 33 0 20 6 20 25

the N-cut spent 256 seconds, and the MPAC spent 273 seconds. The MCWS took

less than one second. The DCA method took 14 seconds, and the CSA method took

72 seconds, where 28 seconds are for the UECS and association of contour evidences,

and the rest of time is for contour inference and shape classification. The convex

shape analysis method is not the fastest among the five methods. However, please

note that the convex shape analysis method performed shape inference and classifi-

cation along side with segmentation, while the other four methods performed either

segmentation/inference (MPAC) or only segmentation (the other three methods).

IV.4.1. Results of Shape Classification

The author chose four micrographs among the twelve micrographs to evaluate the ac-

curacy of shape classification. The four figures have various types of particle shapes.

The classification results are presented by labeling the nanoparticles with one char-
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(a) CSA

(d) DCA

(b) N−Cut (c) MPAC

(e) MCWS (f) SBF

Fig. 31. Results of contour inference. The red lines correspond to the contours identi-

fied by the convex shape analysis method and the four state-of-the-art meth-

ods.

acter symbol representing shape classes; ’t’ = triangle, ’b’ = rectangle, ’c’ = circle

and ’r’ = rod. Please refer to Figure 32.

The automated classification outcomes is compared with what human would

classify the shapes. In the top-left figure, the result was accurate except for two

miss-classifications; the convex shape analysis method classified a triangle as a circle

and classified a circle as a triangle. Such miss-classification are also observed in a

few other cases at the bottom-left figure and the bottom-right figure. The circle-to-

triangle misclassification is mostly caused by insufficient contour evidences. The other

type of miss-classification was caused by a faulty data parameterization for the spline

curves in the ECM. Looking for a more capable data parameterization is certainly

desirable but does not appear to be a simple task. The author leaves out this issue

to our future research. Overall, the author believes that our automated method did

the shape classification reasonably well.
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Fig. 32. Results of shape classification. Each particle’s shape is labeled as: t = trian-

gle, b = rectangle, c = circle and r = rod.

IV.4.2. Discussion

In this chapter, the author proposed a convex shape analysis approach to tackle the

contour inference and shape classification problems for automating the morphology

analysis of overlapping nanoparticles in electron micrographs. The unique contribu-

tions of this approach are:

1. to propose a modified ultimate erosion process with an earlier stopping time

(UECS) to separate overlapping convex objects,

2. to provide the justification on the use of UECS in terms of its separation capa-

bility for a chained-link cluster of convex objects,

3. to propose a new way to convert the segmented edge pixels into contour evi-

dences by using a compound marker-to-edge relevance measure, and

4. to integrate the ECM with the UECS and the evidence association, which al-
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lows us to solve a complicated image segmentation and recognition problem.

Although the ECM-solution approach for shape classification and inference is

not entirely new by itself (Tu et al., 2008), our proposed model and solution

procedure can solve the morphology analysis problem for a large number of

overlapping nanoparticles, evolving an equally large number of contours with

guidance of multiple reference shapes. To our best knowledge, there is no other

method that has such capability.

The proposed method was tested with twelve electron micrographs of overlapping

nanoparticles. The result shows that the proposed method performs better than the

existing methods when both accuracy and computation efficiency are considered. It

is not surprising that the proposed method performed better, because it is specially

designed for the morphology analysis of nanoparticles in the sense that it is more

capable of segmenting the chain-aggregate structure of overlapping convex-shaped

nano-objects. The author would like to re-iterate here that the two morphologi-

cal characteristics (chain-aggregated and convex-shaped) are particularly relevant to

nanoparticle’s formation, as told by the physical laws governing the formation process.
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CHAPTER V

CONCLUSION

The objective of this dissertation research is to automate the morphology analysis of

nanoparticles in electron micrographs. One technical challenge is that nanoparticles

mostly overlap. The current practice is a labor-intensive manual counting process sup-

ported by general image processing softwares such as ImageJ. In order to design the

automated morphology analysis method with enhanced accuracy, the author formu-

lated the morphology analysis problem with three components: image segmentation

for decomposing particle overlaps, shape inference for inferring particle morphology

hidden by overlaps, and shape classification for grouping particles by their morpholo-

gies.

The three components of the morphology analysis are linked in the sense that

solving each component problem could benefit, and be benefited by, the solving of

the other component problems. In other words, solving the image segmentation

and the shape classification requires the result of the shape inference, whereas the

shape inference requires solving the shape classification. Thus, developing one uni-

fied formulation is ideal. However, current methodological development cannot solve

such a unified formulation for electron micrographs having hundreds or thousands of

nanoparticles.

In Chapter III, the author proposed the divide-and-conquer approach that solves

the three components of the morphology analysis sequentially. The divide-and-

conquer approach is especially designed for providing a computationally efficient

solution of the morphology analysis, which is able to process electron micrographs

having a large number of weakly overlapping nanoparticles. This divide-and-conquer

approach is not capable of handling nanoparticles of high degrees of overlaps for two
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reasons. First, the image segmentation component is not very accurate under signifi-

cant particle overlaps. Second, the shape classification component is solved by using

a rough estimate of the gravity center of a nanoparticle, and the rough estimate is no

longer accurate when the degree of particle overlaps is high.

In Chapter IV, the author proposed an alternative approach, the convex shape

analysis method, which is more capable of handling particle overlaps than the divide-

and-conquer approach. It improves morphology analysis in two ways. First, the

image segmentation method in the divide-and-conquer approach suffers from over-

segmentation in the cases where particle overlaps in a chain structure. The convex

shape analysis method associates fragmented contour segments with one of the mark-

ers of nanoparticles to form a coherent piece of evidence for an individual particle.

A challenge facing the new image segmentation method is about how to identify a

unique marker for each particle. For that purpose, the author proposed a modified

ultimate erosion process, which uses a new stopping criterion of the iterative erosion

process. The erosion process is especially capable of identifying markers for the chain-

linked structure of particle overlaps. Second, the new approach jointly solves shape

inference and shape classification, which produces greater accuracy of classification

and inference.

The application of the proposed methods to real electron micrographs showed

that the two proposed methods were capable of extracting the morphology informa-

tion, effectively decomposing the various degrees of particles overlaps, and satisfacto-

rily inferring the morphologies hidden by particle overlaps.

The author believes that the proposed methods contribute to the following ap-

plication fields.

1. Efficient characterization of nanoparticles: Automating the otherwise
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time-consuming morphology analysis helps accelerate the characterization pro-

cess of nanoparticles. The robustness of the proposed methods to a wide range

of overlaps among the particles makes it possible to reduce the trial-and-error

iterations for preparing samples with an appropriate concentration level.

Moreover, the high quality of morphology analysis from the proposed meth-

ods could help inspectors to design a testing procedure for quality assurance,

or process designers to calibrate nanoparticle synthesis processes. Fast and ac-

curate morphology analysis makes it possible to accumulate the large amount

of data and build up statistics demanded for acceptance testing.

2. Applications to general image segmentation: This dissertation only ap-

plies the two proposed methods for morphology analysis of nanoparticles. How-

ever, the proposed methods also work for general image segmentation to sep-

arate overlapping convex objects. Such generality makes the proposed meth-

ods valuable alternatives to be used in, for example, cell segmentation prob-

lems. The research showed empirically that the proposed convex shape analysis

method in Chapter IV outperforms the state-of-the-art methods currently avail-

able for cell segmentation.

The author suggests three directions for future research.

1. Control charting with geometric data: The final result of the morphol-

ogy analysis problem includes the particle size and shape distributions that

summarize the characteristic of geometrical shapes of nanoparticles. A natural

question that quality engineers might ask is “how do the geometric character-

istics of nanoparticles from two different processes differ”. Particularly, it is

important to answer whether the geometrical characteristic of the current pro-

cess is significantly different from that of the normal process. Answering that
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question requires the development of a hypothesis testing on samples of geo-

metric shapes. A natural extension of this dissertation study is to develop this

hypothesis testing with appropriate statistics.

2. Characterizing the dynamic changes of particle morphology evolu-

tion: The primary goal of particle characterization is to fine-tune the synthesis

process of nanoparticles such that the synthesized nanoparticles have the de-

sired morphology. The author believes that analyzing the changes of particle

morphology during the synthesis process helps understand how nanoparticles

grow during the synthesis, and this understanding in turn helps find control

factors in the synthesis process. The analysis requires obtaining the time-series

data of particle morphology, extracting the morphology information of nanopar-

ticles for each time frame in the time series, and combining the series of the

morphology-at-fixed-time into a dynamic morphology change model or a particle

growth model. The technology to obtain the time-series data of particle growth

is already available in literature (Zheng et al., 2009). The proposed methods

in this dissertation become valuable tools that can extract the morphology of

nanoparticles at each snapshot when an electron micrograph is taken. Some-

thing not yet available but precisely needed, beyond this dissertation study, is

a dynamic morphology change model in order to provide the understanding of

how particles grow in their synthesis process.

3. Characterizing the three-dimensional morphology: Most available meth-

ods only conduct two-dimensional characterizations of particle’s morphology,

because the micrographs produced by conventional electron microscopes are

the two-dimensional projections of the three-dimensional objects. The emerg-

ing technologies, 3D TEM and 3D SEM, takes a series of two-dimensional pro-
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jection images from different observing angles and combines them to a three-

dimensional image. One way to obtain the 3D morphology analysis is to stitch

together the series of 2D results with the reconstruction of the 3D objects. Al-

though the undertaking does not appear straightforward, the research required

can build upon the work described in this dissertation.
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APPENDIX A

THEORETICAL STUDY ON THE SEPARATION CAPABILITY OF THE

ULTIMATE EROSION

This appendix is dedicated to proving the two key lemmas related to the separation

capability of the ultimate erosion (UE).

Proof of Lemma 6.

(i) Let Aλ be a set of points inside the circle that is centered at λx + (1 − λ)y

with radius dC(λx+ (1−λ)y). Then, both A0 and A1 are in C according to the

definition of the distance function dC(x). Since C is convex, conv(A0∪A1) ⊂ C,

where conv(A) is a minimal convex set including A i.e. the convex hull of A.

For λ ∈ [0, 1], the maximal circle centered at λx+(1−λ)y in conv(A0∪A1) has

radius λdC(x) + (1− λ)dC(y). By the definition of dC(x), dC(λx+ (1− λ)y) ≥

λdC(x) + (1− λ)dC(y).

(ii) Suppose that dC(λx + (1 − λ)y) is not monotone increasing for x ∈ ΩC and

y ∈ C\ΩC . If then, there exists λ1, λ2 ∈ [0, 1] so that λ2 > λ1 and dC(λ1x +

(1− λ1)y) > dC(λ2x + (1− λ2)y). Note that Aλ ⊂ C for λ ∈ [0, 1]. Since C is

convex and Aλ1 and A1 are in C, conv(Aλ1 ∪A1) ⊂ C. The convex hull includes

a circle centered at λ2x+ (1− λ2)y with radius,

1− λ2

1− λ1

dC(x) +
λ2 − λ1

1− λ1

dC(λ1x+ (1− λ1)y)

>

(
1− λ2

1− λ1

+
λ2 − λ1

1− λ1

)
dC(λ2x+ (1− λ2)y)

> dC(λ2x+ (1− λ2)y).

This is a contradiction.
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Proof of Lemma 7.

First, some notations are defined. Let W = {
∑

k λkzk : zk ∈ S(x),
∑

k λk = 1, λk ≥

0}. If B(x, ε) ⊂ W , for y ∈ B(x, ε)\{x}, there exists λk ≥ 0’s such that

||y − x||2 =

〈
y − x,

∑
k

λkzk − x

〉

=
∑
k

λk 〈y − x, zk − x〉 > 0,

where 〈·, ·〉 is an inner product. Therefore, there exists at least one zj ∈ S(x) such

that 〈y − x, zj − x〉 is greater than zero.

dI(y)2 = ||zj − y||2 = 〈zj − x+ x− y, zj − x+ x− y〉

= ||zj − x||2 + ||y − x||2 − 2 〈zj − x, y − x〉

= dI(x)2 + ε2 − 2εdI(x) cos θ

= dI(x)2 + ε(ε− 2dI(x) cos θ).

(A.22)

Since 〈y − x, zj − x〉 is positive, dI(x) cos(θ) is a positive constant and ε can be chosen

so that ε < 2dI(x) cos(θ). Then, dI(y)2 < dI(x)2. Since y ∈ ∂B(x, ε) is arbitrary, x is

a local maximum, which completes the ’if’ part.

The ’only-if’ part is shown by contradiction. Suppose that x is a local maximum

but there is no ε > 0 such that B(x, ε) ⊂ W . That is, x is not in the interior of W .

If x is not in W , z ∈ W can be chosen to be closest to x. Let y = ε
||x−z||(x− z) + x.

Since x is a local maximum, by (A.22), there exists at least one zj ∈ S(x) such

that 〈y − x, zj − x〉 is positive. Since 〈y − x, zj − x〉 = ε/||x − z|| 〈x− z, zj − x〉,

〈x− z, zj − x〉 is also positive. Since zj, z ∈ W and W is convex, z′ = λz + (1− λ)zj
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is in W for λ ∈ [0, 1].

||z′ − x||2 = 〈λz + (1− λ)zj − x, λz + (1− λ)zj − x〉

= 〈λ(z − x) + (1− λ)(zj − x),

λ(z − x) + (1− λ)(zj − x)〉

=λ2||z − x||2 + (1− λ)2||zj − x||2

− 2λ(1− λ) 〈x− z, zj − x〉 .

If λ ∈ [0, 1] is chosen such that (1 − λ2)||z − x||2 = (1 − λ)2||zj − x||2, the last line

is smaller than ||z − x||2 since 〈x− z, zj − x〉 is positive, meaning that ||z′ − x||2 <

||z − x||2. This is a contradiction, because z ∈ W is chosen to be the closest to x. If

x is on the boundary of W , y ∈ B(x, ε) can be chosen such that y − x is orthogonal

to the boundary of W at x, and the same logic can be applied.
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APPENDIX B

GUIDELINES FOR DETERMINATION OF ρ IN THE UECS

The results of the UECS with different choices of ρ under different degrees of particle

overlaps and different noise levels are presented. This will be a good guideline for

practitioners to choose the ρ appropriate for their own applications. Figure 33 shows

different settings of two overlapping rectangles under the different levels of noises

artificially generated. Each setting of the overlap is specified by the degree of overlap

(doo), which is proportional to the negative distance between the centers of the two

rectangles. Specifically, if the distance is x and the length of the diagonal of the

rectangle is d, the doo is related to the size of overlap relative to the rectangle size as

doo(x) = 5(1− x

d
) + 6.

The noise level, σ, is specified by the maximum allowable size of intrusion or extrusion.

The σ = 6 corresponds to six percents of the diagonal length d. The combinations of

different doo and σ values provide twenty four experimental settings.

Figures 34 through 36 show the results of the UECS for these experimental

settings, where ρ ∈ {0.1, 0.2, 0.3} and σ ∈ {0, 2, 4, 6}. The UECS with ρ = 0.2

generally keeps a good balance between under-segmentation (caused by two objects

located closely) and over-segmentation (caused by image noises).
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σ = 0

doo = 1

σ = 2 σ = 4 σ = 6

doo = 2

doo = 3

doo = 4

doo = 5

doo = 6

Fig. 33. Different configurations of overlaps with different level of noises σ. The ‘doo’

stands for the degree of overlap, inversely proportional to the distance between

the centers of two rectangles.



106

σ = 0

doo = 1

σ = 2 σ = 4 σ = 6

doo = 2

doo = 3

doo = 4

doo = 5

doo = 6

Fig. 34. Performance of the UECS (ρ = 0.3).
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σ = 0

doo = 1

σ = 2 σ = 4 σ = 6

doo = 2

doo = 3

doo = 4

doo = 5

doo = 6

Fig. 35. Performance of the UECS (ρ = 0.2).
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σ = 0

doo = 1

σ = 2 σ = 4 σ = 6

doo = 2

doo = 3

doo = 4

doo = 5

doo = 6

Fig. 36. Performance of the UECS (ρ = 0.1).
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APPENDIX C

FULL DERIVATION OF THE E-STEP

At iteration t, the expectation maximization (EM) algorithm first computes the ex-

pected value of the complete log-likelihood function with respect to the posterior dis-

tribution, P (Z|X,Θ(o)), where Θ(o) is an old estimate of Θ (E-step). The expected

value is given by (21). This appendix presents the full derivation of the expected

value.

The complete log likelihood is

logP (X,Z|Θ) =
N∑
i=1

K∑
k=1

gik
[
logαk + logN (pi;Aikµk +Hcik,AikΣkA

t
ik)

+ logN (xi; Φipi, σ
2I2mi

)
]

=
N∑
i=1

K∑
k=1

gik

[
logαk −

1

2
log |AikΣkA

t
ik| −

1

2
log |σ2I2mi

|

− 1

2
(pi −Aikµk −Hcik)t(AikΣkA

t
ik)
−1(pi −Aikµk −Hcik)

− 1

2σ2
(xi −Φipi)

t(xi −Φipi)

]
+ c,

where c is a constant that does not depend on Θ. Using thatAik is a scaled orthogonal

matrix such as Aik = 1
sik
Qθik

and Qt
θik
Qθik

= I,

logP (X,Z|Θ) =
N∑
i=1

K∑
k=1

gik

[
logαk −

1

2
log |Σk|+ 2p log sik −mi log σ2

− 1

2
(pi −Aikµk −Hcik)t(AikΣ

−1
k A

t
ik)
−1(pi −Aikµk +Hcik)

− 1

2σ2
(xi −Φipi)

t(xi −Φipi)

]
+ c.

(C.1)
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The expectation of (C.1) with respect to P (Z|X,Θ(o)) is

E[logP (X,Z|Θ)] =
N∑
i=1

K∑
k=1

E[gik]

[
logαk −

1

2
log |Σk|+ 2p log sik −mi log σ2

]
+ E[gikp

t
i](AikΣ

−1
k A

t
ik)
−1(Aikµk +Hcik)

− 1

2
E[gikp

t
i(AikΣkA

t
ik)
−1pi]

− 1

2
E[gik](Aikµk +Hcik)

t(AikΣkA
t
ik)
−1(Aikµk +Hcik)

+
1

σ2
E[gikp

t
i]Φ

t
ixi

− 1

2σ2
E[gikp

t
iΦ

t
iΦipi]

− 1

2σ2
E[gik]x

t
ixi

=
N∑
i=1

K∑
k=1

E[gik]

[
logαk −

1

2
log |Σk|+ 2p log sik −mi log σ2

]
+ E[gikp

t
i](AikΣkA

t
ik)
−1(Aikµk +Hcik)

− 1

2
trace((AikΣkA

t
ik)
−1E[gikpip

t
i])

− 1

2
E[gik](Aikµk +Hcik)

t(AikΣkA
t
ik)
−1(Aikµk +Hcik)

+
1

σ2
E[gikp

t
i]Φ

t
ixi

− 1

2σ2
trace(Φt

iΦiE[gikpip
t
i])

− 1

2σ2
E[gik]x

t
ixi.

(C.2)
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The expression for E[gik] is given as

E[gik] =P (gik = 1|xi,Θ(o))

=

∫
P (pi|xi,Θ(o), gik = 1)P (gik = 1)dpi

∝αk
∫
P (xi|pi,Θ(o), gik = 1)P (pi|Θ(o))dpi

=αkN
(
xi; ΦiAikµk +Hcik, σ

2I2mi
+ ΦiAikΣkA

t
ikΦ

t
i

)
,

where the integration is evaluated by the Gaussian identity in Section D. For nota-

tional convenience, the following is defined

qik = N
(
xi; ΦiAikµk +Hcik, σ

2I2mi
+ ΦiAikΣkA

t
ikΦ

t
i

)
.

Using
∑K

k′=1E[gik] = 1,

βik := E[gik] =
αkqik∑K

k′=1 αk′qik′
.

Since P (pi|gik = 1,Θ(o)) = N (pi;Aikµk + Hcik,AikΣkA
t
ik) and P (xi|pi,Θ(o)) =

N (xi; Φipi, σ
2I2mi

), the following posterior distribution can be obtained by simply

applying the Gaussian identity in Section D as

P (pi|gik = 1,X i,Θ
(o)) = N (mik,Sik),

where mik = AikΣkA
t
ikΦ

t
i

(
σ2I2mi

+ ΦiAikΣkA
t
ikΦ

t
i

)−1

(xi −ΦiAikµk −Hcik) +Aikµk +Hcik,

Sik = (A−tik ΣkA
−1
ik + σ−2Φt

iΦi)
−1.

Then, the following results can be obtained:

E[gikp
t
i] = P (gik = 1|xi,Θ(o))mik = βikmik,

E[gikpip
t
i] = P (gik = 1|xi,Θ(o))(Sik +mikm

t
ik) = βik(Sik +mikm

t
ik).
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To sum up, putting the following expression into (C.2),

βik = αkqik

γik = βikmik

∆ik = βik(Sik +mikm
t
ik),

the expected log likelihood is

(C.2) =
1

2

N∑
i=1

K∑
k=1

βik
[
2 logαk − log |Σk|+ 4p log sik − 2mi log σ2

+ 2mt
ik(AikΣkA

t
ik)
−1(Aikµk +Hcik)

− trace((AikΣkA
t
ik)
−1∆ik)

− (Aikµk +Hcik)
t(AikΣkA

t
ik)
−1(Aikµk +Hcik)

+2σ−2mt
ikΦ

t
ixi − σ−2trace(Φt

iΦi∆ik)− σ−2xtixi
]

∝
N∑
i=1

K∑
k=1

βik
[
2 logαk − log |Σk|+ 4p log sik − 2mi log σ2

+ 2sikm
t
ikQ

t
θik

Σ−1
k (µk + sikQ

t
θik
Hcik)

− s2
iktrace(Qθik

Σ−1
k Q

t
θik

∆ik)

− (µk + sikQ
t
θik
Hcik)

tΣ−1
k (µk + sikQ

t
θik
Hcik)

+2σ−2mt
ikΦ

t
ixi − σ−2trace(Φt

iΦi∆ik)− σ−2xtixi
]
.
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APPENDIX D

BASIC MATRIX CALCULUS

D.1 Gaussian Identity

The following two product forms of Gaussian distributions are equivalent.

N (f ;µ,Σ)N (y;Af ,D)

= N
(
y;Aµ,D +AΣAt

)
N
(
f ;µ+B(y −Aµ), (Σ−1 +AtD−1A)−1

)
,

where B = ΣAt(D +AΣAt)−1.

D.2 Matrix Calculus

d

dA
log detA = A−1

d

dA
atA−1b = −1

2
(A−1batA−1 +A−1abtA−1)

d

dA
trace(A−1B) = −A−1BA−1

d

dA
(atAb) = bat

d

dA
trace(XAY At) = Y AtX + Y tAtX t

D.3 Rotation Transformation

Rθ =

 cos θ − sin θ

sin θ cos θ

 = exp(θIa), where Ia =

 0 −1

1 0

 ,
and Ia is an anti-symmetric matrix.
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