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Microscopic model for the magnetic subsystem in HoNi2B2C
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We demonstrate that the system of localized magnetic moments in HoNi2B2C can be described by the
four-positional clock model. This model, at a proper choice of the coupling constants, yields several meta-
magnetic phases in magnetic field at zero temperature in full agreement with the experimental phase diagram.
The model incorporates couplings between non-nearest neighbors in the direction perpendicular to the ferro-
magnetic planes. The same model leads to ac-modulated magnetic phase near the Curie temperature. The
theoretical value of the modulation wave vector agrees surprisingly well with that observed by the neutron-
diffraction experiment without new adjustable parameters.
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In Refs. 1 and 2 transport and magnetic measurement
HoNi2B2C for various magnetic fields and low temperatur
have been reported. The magnetic phase diagram
HoNi2B2C with fields in thea-b plane is of particular inter-
est. In this compound easy magnetization axes are ident
with crystallographic directionŝ110& and ^11̄0&. The low-
temperature magnetization data show the existence of
meta-magnetic phases. The low-field phase has been id
fied by neutron-diffraction experiments3,5 and magnetic
measurements2 with the antiferromagnetic phase, which w
denote symbolically↑↓. The phase boundaries and magne
zation in other phases versus magnetic field found in
experiment2 can be readily explained by assuming that t
remaining three phases are as follows: phase 2 –↑↑↓, phase
3 – ↑↑→, and the high-field phase 4 –↑. It means that23 of
the spins in the phases 2 and 3 are parallel to one of the
axes whereas the remaining1

3 is antiparallel and perpendicu
lar, respectively, to the same axis. Note that all metam
netic phases are stoichiometric, i.e., the concentration
spins parallel, antiparallel, or perpendicular to the refere
axis are rational numbers. The phase diagram of HoNi2B2C
at zero temperature is especially simple if the component
magnetic fieldHi^110&, Hi^11̄0& are chosen as variable
The phase diagram of HoNi2B2C which follows from the
experiment is shown in Fig. 1.

The structure of Lu and Ho 1:2:2:1 compounds was
termined in Refs. 9 and 6 as the body-centered-tetrag
lattice with the space groupI4/mmm. The x-ray structure
analysis and the neutron-scattering experiments in Refs.
showed that incommensurate modulated magnetic struct
with the wave vectorsK c50.915c* andKa50.585a* occur
in the temperature range 4.7–6 K. At temperatures below
K they vanish and antiferromagnetic reflections correspo
ing to alternating ferromagnetica-b planes of Ho31 local-
ized moments appear. Though the spatial arrangement o
phases↑↑↓ and ↑↑→ cannot be directly derived from th
magnetization measurements, it is unplausible that the fe
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magnetic in-plane interaction changes suddenly by switch
on of the magnetic field. Therefore, we believe that our sy
bols ↑↑↓ and↑↑→ correspond to the real spatial sequenc
of in-plane magnetic moments.

In this article we present a simple microscopic model
magnetic subsystem in the 1:2:2:1 compound which expla
all experimental observations. We accept a model of str
anisotropy in which a single-ion moment is directed presu
ably along four easy directions@6(1,1,0),6(1,1̄,0) for the
Ho and Dy compounds#. Thus, the initially continuous mo
ment J is reduced to a discrete variable taking only fo
values. This is a kind of the so-called clock model with fo
positions of the ‘‘hand.’’

The main argument in favor of the clock model is that t
saturation magnetization in the range of fields larger th
7–10 T is directed not along the field, but along the closes
the field easy direction. It means that the applied field is s
smaller than the anisotropy fieldHA . The latter can be
roughly estimated as 60 T. The corresponding anisotr

FIG. 1. Magnetic phase diagram for HoNi2B2C. Hx axis corre-
sponds tô 110& direction.
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energy for Ho31 magnetic moment;10mB is about
40 meV'400 K. Nevertheless, a single ion with integerJ
has no average moment in the ground state in the absen
external magnetic field. Indeed, the tunneling with a sm
amplitudew between adjacent positions of the ‘‘hand’’ lea
to the ground state in which all four positions have eq
probabilities. The ground state is separated by a finite ene
gap equal to 2uwu from the first excited state. A detaile
analysis of the single-ion properties will be published se
rately. Here we focus on the description of collective effec
For this purpose we introduce an angular variableu r at any
lattice siter taking independently four values 0,p/2,p,3p/2.
Neglecting the tunneling, the most general Hamiltonian co
patible with the tetragonal symmetry is

H5
1

2(r,r 8
@K~r2r 8!cos~u r2u r8!1L~r2r 8!cos 2~u r2u r8!#

2hx(
r

cosu r2hy(
r

sin u r , ~1!

where K(r ) and L(r ) are coupling constants andhx,y are
components of the magnetic field. We employ the refere
frame in which axes coincide with the easy-axis directio
The higher harmonic terms are generated by the excha
interaction. Indeed, the operator of two particle permutat
for spinsJ contains higher powers of the spin scalar prod
up to 2J. The dipolar interaction, in metamagnetic system
is proportional to a small factor exp(22pc/a),10 wherec is
interplane anda is in-plane lattice constants, and can
neglected. For the four-positional spins only the invaria
S1S25cos(u12u2) and (S1S2)25@cos(u12u2)#

2 are indepen-
dent.

Let us restrict the set of coupling constants to a few in
pendent values. We assume that the in-plane interactio
characterized by one nearest-neighbor negative constaK
with all other in-planeK r and all in-planeL r equal to zero.
The in-plane interaction is assumed to be dominant to p
vide the in-plane ferromagnetic order. The interplane int
action is characterized by several constantsKn ,Ln . We shall
see that interaction with several neighbors is essential.

All spins in each plane are parallel. Thus, the ground s
is determined by minimization of a spin-chain Hamiltonia

H5 (
i ,52`,n51

`

@Kn cos~u i2u i 1n!1Ln cos2~u i2u i 1n!#.

~2!

It should be noted that in the absence of an applied magn
field it is known that the Ne´el antiferromagnetic state con
sists of alternating ferromagnetica-b planes. This require-
ment is satisfied, ifK1.0. A natural desire to simplify the
model leaving one or two independent coupling consta
cannot be fulfilled. For example, if one leaves nonzeroK1
andK2 and setsL1 ,L2 and all the restKn ,Ln(n>3) to zero,
two kinds of phase diagrams occur. The first diagram, F
2~a!, corresponds to 0,K2,K1/2 ~the latter inequality is
necessary to have the antiferromagnetic state in zero field!. It
contains six different phases. Due to the symmetry only
sector 0,hy,hx must be considered. Figure 2~b! corre-
sponds toK2,0. It is simpler and contains only thre
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phases. Neither of the phase diagrams fits the experim
which clearly displays four phases as shown in Fig. 1. Ot
coefficientsKn andLn must be incorporated to describe th
experimental situation in HoNi2B2C. We shall show later
that the coefficientL3 is not zero. Thus, we restrict ou
model to six nonzero coupling constantsKn ,Ln , n51,2,3.
This is a generalization of the so-called anisotropic ne
nearest-neighbor Ising~ANNNI ! model.11,12 Our model dif-
fers from the standard ANNNI one by two features: the thi
neighbor interaction and the four positions of the ha
instead of two.

In order to understand why the second- and third-neigh
interaction must be incorporated, one should compare e
gies of the simplest periodic sequences in the chain.
phases we anticipate to be realized as the ground state
different values of the fieldh are:↑↓ ~AF!, ↑ ~F!, ↑↑↓ and
↑↑→ ~period 3!. Others, having rather close energies, a
↑→; ↑↑↑↓, ↑↑↑→, ↑↑↓→, and ↑↓↑→; ↑↑↓↑↓, ↑↑↑↑↓,
and↑↑→↑→; ↑↑↑↑↑↓ and↑↓↑→←→. We have found by
numerical sorting that other phases have larger energies
can be omitted. With these 14 phases participating in
competition, a number of inequalities must be satisfied
ensure the existence of the experimentally observed ph
diagram. Namely, on the phase boundaries the energie
the phases other than those being in equilibrium must
larger. For the reader’s convenience the energies of the c
peting 14 phases are given in Table I. All are linear functio
of the magnetic field. Therefore only their values at the c
ners of the phase diagram should be compared.

The general investigation of the phase diagram in
eight-dimensional space ofKn ,Ln andhx ,hy is too cumber-
some. Instead we assume that the phase diagram has
phase boundaries, separating the experimentally establi
four phases, and find the constraints imposed by the exp
ment onto the model. The four phase boundaries found in
experiment are

AF ↔↑↑↓↔↑↑→↔ F↔↑↑↓.

According to Table I, these lines are described by the f
lowing equations, in the same respective order as above

hx52~K122K213K3![Hc10, ~3!

hx1hy52~K11K2!24~L11L2![A2Hc20, ~4!

FIG. 2. Magnetic phase diagrams. All the parameters are
same as in Fig. 1 except:~a! L250.05, K35L350, and~b! K2

520.62, K35L350.
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57 5487MICROSCOPIC MODEL FOR THE MAGNETIC SUBSYSTEM . . .
hx2hy52~K11K2!14~L11L2![A2Hc30, ~5!

hx52~K11K2!. ~6!

The latter three lines intersect in the triple pointhx
t 52(K1

1K2), hy
t 524(L11L2). Note that Eqs. ~3!–~5! are

equivalent to empirical equations for the transition lin
found in Ref. 2. Thus, the theory suggests a natural expla
tion of all functional dependences,Hc1(u), Hc2(u), and
Hc3(u), found in the experiment. Hereu is the angle be-
tween magnetic field and easy-axis direction. The phase
gram in the planehx ,hy has an extremely simple shape~see
Fig. 1!. Note that all the above discussed functional dep
dences were derived from purely geometrical consideratio
However, the very existence of the phase diagram with
four phases observed in the experiment is highly nontriv
and imposes strong constraints on the coupling consta
These constraints are expressed as a long series of ineq
ties. We present here the two most important of them w
necessary comments on their meaning:

~i! K122K213K312(L112L2)16L3,0. The AF and
↑↑↓ phases have lower energy than the phase↑↓↑
→←→ on the phase boundaryhx5Hc10.

~ii ! K122K213K312(L122L2)16L3,0. The phases
↑↑↓ and ↑↑→ have lower energy than the phase↑
→ on the phase boundaryhx1hy5A2Hc20.

One can deduce from these inequalities that

K122K213K312~L11L2!16L3,0.

From Eqs.~3!–~5! we obtain

L3,2S Hc01

12
2

Hc202Hc30

12A2
D . ~7!

With the experimental valuesHc1054.1 kG, Hc20
58.4 kG, andHc3056.6 kG in inequality~7!, we find the
upper boundary forL3 :L3,20.24 kG. Thus, the coupling
constantL3 cannot be zero. The experimental data imply th
the interaction between magnetic planes separated by t
half-periods 3c/2 is essential. Taking this interaction int

TABLE I. Competing phases and their energies.

Phase Energy of the phase

AF (↑↓) 2K11K22K31L11L21L3

F (↑) K11K21K31L11L21L32hx

↑→ K22L11L22L32(hx1hy)/2
↑↑↓ 2(K11K2)/31K31L11L21L32hx/3
↑↑→ (K11K213K32L12L213L322hx2hy)/3
↑↑↑↓ L11L21L32hx/2
↑↑↑→ (K11K21K3)/22(3hx1hy)/4
↑↑↓→ 2K2/22(hx1hy)/4
↑↓↑→ 2(K12K21K3)/22(hx1hy)/4
↑↑↑↑↓ (K11K21K3)/51L11L21L323hx/5
↑↑↓↑↓ 2(3K12K22K3)/51L11L21L32hx/5
↑↑→↑→ (K113K213K323L11L21L323hx22hy)/5
↑↑↑↑↑↓ (K11K21K3)/31L11L21L322hx/3
↑↓↑→←→ 2(2K12K22L11L2)/32L32(hx1hy)/6
a-
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-
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ee

account, we otherwise follow the principle of minimal inte
action; we set as many as possible coupling constants t
zero. In particular, we setK35L250.

In the framework of our rough theory the magnetizati
in each phase does not depend on the magnetic field.
equal to zero in the AF (↑↓) phase. In the phase↑↑↓ it is
directed along an easy axis closest to the direction of
magnetic field, and its absolute value is equal to 1/3 of
easy-axis saturation value. In the phase↑↑→ the magnetiza-
tion is tilted by an angle arctan(1/2)526.6° to the easy axis
closest to the magnetic field, and its absolute value is eq
to A5/350.745 of the easy-axis saturation value. In t
ferro-phase↑ it is equal to 1 per site. In the experiment2 the
projection of magnetization onto the field direction was me
sured. According to the theory it is (1/3)cosu for phase↑↑↓
~phase 2!, 0.745 cos(u226.6°) in phase↑↑→ ~phase 3!, and
cosu in the ferro-phase. While theoretical values of the ma
netization in phase 2 and the ferro-phase are in a good ag
ment with the experimental data, there is a discrepancy
tween the theoretical and experimental magnetization
phase 3@see Fig. 5~c!, in Ref. 2#. In particular, in the experi-
ment there is no maximum ofMs2(u) at u526.6° as the
theory predicts. Instead the saturation magnetization
creases monotonically with the angle in the interval 15°,u
,45°. The reason can be that the determination of theMs2
at a small angle is very unreliable since the plateau is
clearly pronounced. On the other hand, the values of mag
tization at orientations closer to the easy axis, where
plateau is well pronounced, are in a good agreement with
theory. Finally, the relative difference of the magnetizati
at a maximum (u526.6°) and atu545° is only 5% which
may be beyond of the precision of the model without t
tunneling taken into account (w50).

From Eqs.~3!–~5! one can find

K154.22 kG, K251.08 kG,

L1520.32 kG, L3520.46 kG. ~8!

Thus, we demonstrated that the low-temperature magne
tion data and corresponding phase diagram can be natu
described in the framework of the four-position clock mod
with the values of the constants given by Eq.~8!.

Now we consider a vicinity of the Curie temperature. W
will show that the modulation along thec direction naturally
appears in the framework of the same model. The order
rameter~magnetization in a plane! is small near this tempera
ture allowing one to neglect the terms with the cos2un
2un8) in Hamiltonian~2!, proportional to the fourth powe
of the order parameters. The chain interaction Hamiltonian
becomes

H5 (
i 52`

`

(
n51

3

Knsi•si 1n . ~9!

The quadratic Hamiltonian~9! can be represented in terms
Fourier-componentssq5N21/2(n51

N eiqnsn :

H5(
q

Kqsq•s2q ~10!

with Kq5K1 cosq1K2 cos 2q. The valueKq has the abso-
lute minimum atq5arccos(2K1/4K2), if uK1u,4uK2u. For
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our dataK1 /(4K2)50.977 andq5167°50.93c* . Compar-
ing the theoretical value to the experimental oneq
50.915c* , we find the agreement to be surprisingly goo
maybe too good. We can introduce the constantK3 to com-
pensate a small discrepancy. The valueK3 established in this
way is 20.023. Though this value is not reliable, it show
that our minimal value was close to reality. No modulat
magnetic phase has been found for the Dy compoun13

From our point of view it means thatK1 /(4K2).1 in this
compound.

An important remark is in order: several phases which
not occur in the phase diagram have energies very clos
the ground-state energy. This means that a small perturba
~stress! can change the phase diagram drastically.

The next step toward a more realistic theory would be
incorporate the nonzero tunneling amplitudew. The crystal
electric-field spectrum numerical calculations14 for this am-
plitude give the magnitudew'3 kG, which is not small,
especially in comparison toL1 andL2. The incorporation of
the tunneling amplitude, probably weakens the strong li
tations imposed by the inequalities. We have performe
variational calculation of the ground state for the extend
n

ll,
y,

rve
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model includingw in the Hartree approximation. They wil
be published elsewhere.

Another important and not yet resolved question is
origin and the behavior of thea modulation with the wave
vector 0.585a* . It appears not only in the Ho compound, b
also in Er, Tm, and Tb.15 Its wave vector is very conserva
tive. Therefore, it is tempting to ascribe it to a spin-dens
wave in the conductivity electrons. This idea is supported
an observation of good nesting on the numerically calcula
Fermi surface.16 However, such a treatment does not agr
with the fact that in the Ho compound thea andc modula-
tions appear and disappear in the same temperature inte
Rathnayakaet al.1,8 have found an additional phase trans
tion in the same temperature interval. It can be considere
an implicit indication of the independence of these ord
parameters. From a theoretical point of view, there is
reason for them to appear in the same point. However, di
neutron-diffraction measurements do not distinguish the te
perature where these modulations appear.

We are grateful to P. C. Canfield and D. G. Naugle
numerous discussions of the experimental situation.
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