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Torsional-oscillator studies of very thin *He films have found nonuniversal behavior of the super-
fluid response as a function of coverage. The temperature width of the superfluid transition region
is nonmonotonic in the areal density n and exhibits cusplike variations at half of the layering period.
‘We explore the assumption that this additional broadening is caused by macroscopic inhomogeneities
in the substrate potential; such a theory for inhomogeneous broadening can be constructed from the
Kosterlitz-Nelson relation between the superfluid areal density ns and the transition temperature
T. by determining the theoretical “sensitivity” S of n, to variations in the strength of the substrate
potential. For substrate models that are atomically uniform, a simple microscopic hypernetted-chain
calculation (without either “elementary diagrams” or three-body correlations, but with an optimized
Jastrow function) finds this sensitivity always to be of the same sign, and yields reasonable order-of-
magnitude agreement with experiment. However, models for which the sensitivity does not change
sign appear to be incapable of yielding either the cusps or the half-periodicity of the data. We
suggest that these properties may occur with a more recently developed (and more sophisticated)
version of hypernetted-chain theory, wherein “elementary diagrams” and three-body correlations are
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incorporated.

I. INTRODUCTION

Although many theories! predict that long-range order
does not occur in two-dimensional systems with a con-
tinuous symmetry group, thin films of liquid “He are well
known to exhibit superfluid behavior below some critical
temperature T.. Kosterlitz and Thouless? (KT) showed
that for such systems a form of topological or quasi-long-
range order can exist at low temperatures and that the
thermal excitations responsible for the disappearance of
superfluidity at high temperatures are quantized vortices.
An important prediction of this theory?® is that the super-
fluid density at T, exhibits universal scaling. In particu-
lar, the superfluid areal density ngs(T") obeys a universal
scaling relation of the form

ns(T) _ ns(T7) _ 2mkp
T Te k%’

where m is the atomic mass of ‘He.

To compare the predictions of the KT theory with
physical measurements, one must take into account
the time dependent flow velocities that are normally
present in the experiments. In torsional oscillator
experiments,* © the helium film is adsorbed on substrates
with large surface areas that are mounted to a torsional
element. At high temperatures, the helium film is vis-
cously clamped to the substrate and therefore contributes
its entire moment of inertia to the resonant frequency of
the oscillator. Below the superfluid transition, as ns(T")
grows, the resonant frequency of the oscillator increases
as the fraction of the helium that decouples from the mo-
tion of the substrate increases. Furthermore, in addition
to the intrinsic mechanical damping Qg ! of the torsional
oscillator, one observes a damping associated with the
relative motion of the substrate and the superfluid frac-

lim
T-T:
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tion. In the analysis of vortex dynamics by Ambegaokar,
Halperin, Nelson, and Siggia? (AHNS), the response of
the helium film to the velocity field induced by the sub-
strate motion involves a characteristic diffusion constant
D for the vortices in the film. A direct consequence of this
analysis is that, because of the finite frequency w of the
oscillator employed in the measurement, the superfluid
transition is broadened: the apparent superfluid density
does not vanish immediately above T, as in the KT the-
ory, but smoothly decreases to zero as the temperature is
increased above T,. In this same temperature region, the
additional dissipation is strongly peaked, falling rapidly
to zero at both high and low temperatures. Overall, there
is good quantitative agreement between the AHNS pre-
dictions, for the temperature dependence of both the su-
perfluid density and the dissipation, and the experimen-
tal data* ® on helium films with transition temperatures
above 1 K.

A more ambitious test of the AHNS theory can be
made by comparing the superfluid response for films
of different coverages. By making a few additional
assumptions® within the AHNS theory, it is straightfor-
ward to show that the dynamical response of the film
should also obey a universal scaling relationship in the
region of T,. Specifically, the superfluid density and dissi-
pation, when normalized by T, should be universal func-
tions of the reduced temperature, T'/T.. Consequently,
when analyzed in this fashion, the superfluid density and
the dissipation from films of different superfluid coverages
should each collapse onto a single curve.

A dramatic departure from this predicted scaling be-
havior is observed® for helium films adsorbed on a Mylar®
substrate that have transition temperatures less than 1
K, corresponding to coverages of less than 1 atomic layer
of superfluid at 7' = 0. The discrepancy is observed in the
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coverage dependence of both the reduced superfluid den-
sity and the reduced dissipation, but is most clearly seen
in the behavior of the dissipation peaks. As a function of
coverage, most of the scaled dissipation peaks are consis-
tent with the scaling prediction in that they have similar
shapes, but at a few special coverages the scaled dissipa-
tion peaks are significantly narrower. Moreover, it is the
narrower dissipation peaks rather than the broader dis-
sipation peaks that are consistent with the theoretically
predicted temperature dependence.

A clue to understanding this unusual behavior can be
found by examining the integrated area of the dissipa-
tion peaks. Although the dissipation peaks have dif-
ferent shapes, the area under each peak does approxi-
mately scale with T, as expected from the scaling pre-
diction. We thus hypothesize that there exists a mecha-
nism that preserves the scaling behavior of the area un-
der the peaks, and broadens the superfluid transition
at most coverages, but is ineffective at certain cover-
ages. One such mechanism is inhomogeneous broadening
caused by spatial variation of T, due to macroscopic inho-
mogeneities in n, that are induced by spatial variations
of the substrate interaction potential.

For simplicity, we assume that the macroscopic inho-
mogeneity, or roughness, of the substrate, is character-
ized by R,, its spatial scale, and by A\, a dimensionless
measure of its amplitude (AX = 0 for a perfectly uniform
potential). If R, is large in comparison with the dynamic
length scale rp = 4/14D/w (Refs. 7 and 9) probed by the
experiment, then one can expect n, and, by Eq. (1), T,
to be inhomogeneous. (If R, is very small compared to
rp, then the system will appear to be uniform.) Thus,
for R, > rp, in addition to the homogeneous broaden-
ing associated with the vortex dynamics,” there should
also be an inhomogeneous broadening in the width of
the transition region, due to the dependence of n, on
the local strength of the substrate potential. For a typi-
cal experiment at 1300 Hz, we expect that rp ~ 300 o,
where rg, the vortex core radius, is on the order of atomic
dimensions (4 A). For comparison, Mylar contains small
bubbles and imperfections, the smallest bubbles having
diameters less than 2.5 um with average separation of
12 pum, and larger bubbles having diameters of about 8
pm and average separation of 150 pum; there can also be
flakes as large as 50-100 um on the surface.® Thus it is
not unreasonable to expect macroscopic inhomogeneities
to occur on a scale larger than 1000 A.

In this work, we reanalyze existing torsional oscillator
datal®ll to estimate the additional contribution to the
broadening of the transition due to inhomogeneities in
the substrate. We then employ a simple model for which
the inhomogeneous broadening can be calculated from
the sensitivity of s to inhomogeneities in the substrate
potential. Using a simple microscopic hypernetted-chain
(HNC) theory for an atomically uniform substrate (i.e.,
the substrate potential depends only on the distance z
from the substrate) we calculate this sensitivity and show
that, for AX ~ 0.005, it leads to good order-of-magnitude
agreement with the data. However, it does not explain
the cusplike behavior nor the half-periodicity of the data.
It is possible that recent developments using a more so-
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phisticated HNC theory will be capable of explaining the
data.

II. EXTRACTION OF INHOMOGENEOUS
BROADENING FROM DATA

To simplify the following analysis we choose the full
width at half maximum of the dissipation peaks to be
the measure of the characteristic temperature width of
the superfluid transition, AT. We assume that the
experimental width, AT**P* has two contributions: a
homogeneous coverage-independent contribution, AT,ﬁh,
computed as in Refs. 7 and 9, and an inhomoge-
neous coverage-dependent contribution, AT}P*, caused
by macroscopic inhomogeneities in the areal density at
fixed chemical potential:

(AT = (ATR)? + (AT, (2)

If the broadening mechanism preserves the universal scal-
ing, then the area under the dissipation curve should not
change from its value without inhomogeneous broaden-
ing. As a consequence, a knowledge of H}, defined as
the value of the maximum dissipation (Q~! — Qg5 )max
for the homogeneous case, yields AT{? via the relation

AT Hy (1 — x) ~ ATPLHP, (3)

where (1 — x) is the fraction of the superfluid that is
free to decouple from the motion of the substrate and
contribute to the dissipation.® Substitution into Eq. (2)
yields the dimensionless width

argrt  arest [ gee \Y "
Tp  Tp Hp(1—x) '

where Tp is the temperature where the dissipation peak
of the transition reaches its maximum. Formally one
should use T, but Tp is more easily identified from the
experimental data than T, and is not significantly differ-
ent from T,. In the above equation, all but Hp can be
determined from experiment. To obtain Hj, we employ®

Am
M

where A is the area of the film, M is the total mass of
the oscillator, ng is the superfluid areal density due to
nonvortex excitations, and € is the “dielectric constant”
due to the polarization caused by bound pairs of vor-
tices in the static limit of zero oscillator frequency. This
assumes that ng varies only slightly in the temperature
range of the dissipation peak, which permits an anal-
ogy between vortices in the superfluid and the neutral
two-dimensional Coulomb gas.® Since € is well behaved
throughout the phase transition, in Eq. (5) we take

&Tp) =~ &(Te) (6)

and employ®

Hp = no(Te)e™ ! (Tp), (5)

—1T=) = | ns(T)
€ I(Tc ) - TLI?; no(T)’ (7)
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FIG. 1. Hexpt/Hn(1 — x) vs n, where n is the active cov-
erage.

which, with Eq. (1), leads to

2Am2k3
Hy~ ——
" TMreR?

In order to check that this approximation for Hj is
reasonable, we compute H®*P*/H} (1 — x) to verify that
it is less than unity at all coverages. The data on He*Pt
and AT®*P* are taken from Refs. 10 and 11, and the value
x = 0.144 is taken from Ref. 6. Both of these works em-
ployed a Mylar substrate, with an inert coverage of 1.6
atomic layers. The horizontal scale in Fig. 1 considers
n to include only the active coverage. One layer corre-

sponds to a coverage of 0.078 A_2, which is given by the
product of the layer thickness [3.6 A = (m/p)1/3, where p
is the mass density of the bulk fluid] and the bulk number
density p/m.

Figure 1 shows that at certain coverages the exper-
imental height is slightly greater than the x-modified
theoretical height. In the vicinity of these points the
variation is very rapid, which we consider to be more
like what occurs at a cusp rather than what occurs at a
smooth peak. Consequently, we set H®*P* = Hp(1 — x)
at these points, thus assuming that there is essentially no

Tp. (8)

0.014 T v T T

0.012 L

0.010 R

0.008

ATRP/TP

0.006

0.004 1

0.002 E

0 . L A L
0 0.02 0.04 0.06 0.08 0.10 0.12

n(/‘i_z)

FIG. 2. AT;’;I’” /Tp = S*P*AX vs n, where n is the active
coverage.
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inhomogeneous broadening at these coverages and enforc-
ing the cusplike interpretation of the data. Then, with
Eq. (8), Eq. (4) can be evaluated, yielding Fig. 2, the
“experimental” inhomogeneous width. Figure 2 shows
that the inhomogeneous width has half-layer periodicity

(about 0.039 A_z) rather than the full-layer periodicity

0f0.078 A7, In addition, the reanalyzed data show even
more pronounced cusplike behavior at the minima than
do the original data.

III. INHOMOGENEOUS BROADENING AND
THE “SENSITIVITY” S

To obtain the inhomogeneous broadening ATfI{‘h, we
note that different regions of the substrate are charac-
terized by a common value of the chemical potential u,
despite the variation in the substrate potential. Then,
by Eq. (1) we have

AT /Te = (AN)S, (9)
where we define the “sensitivity”
1 9n,

of ny to dimensionless variations A\ in the strength of
the substrate potential. (The sign convention is taken
so that, in the hypernetted-chain calculations to follow,
S is positive; the widths AT{! and A) are necessarily
positive.)

IV. INHOMOGENEOUS BROADENING FOR
ATOMICALLY UNIFORM SUBSTRATES

In practice, we assume that

én én
n: T ~ —n— T_O, (11)
and thus we determine S by rewriting Eq. (10) as
1 _(0p/0M)n
== , 2
n /o) ams 12)
and computing each of the partial deriva-

tives from ground-state properties determined by solving
the  hypernetted-chain-Euler-Lagrange  equations!?
(HNC-EL) for the T' = 0 ground-state structure of the
film. The theory starts from a Jastrow-Feenberg vari-
ational ansatz for the many-body wave function of the
form

1
Yo(ry,...,rn) =exp 3 Zul(ri) + Zu2(ri:rj) +...
i i<j
(13)
and determines the one-body and two-body correlation
functions wui(r;) and wue(r;,r;) by minimization of the
ground-state energy,

6 (Wo|H|¥o)

Sun (To|To) (n=1,2). (14)

(r1,...,rn) =0 .



8908

The theory leads to a hierarchy of equations—the HNC
equations—which, by inclusion of consecutively more
complicated “elementary diagrams,” permits a more ac-
curate evaluation of the pair distribution function and of
the ground-state energy. In the present work, the Jas-
trow function u;(r;) is not fixed, but rather is optimized,
but we have employed what is otherwise the simplest
version of the theory, the so-called “HNC approxima-
tion,” wherein all “elementary diagrams” are omitted.
The most significant (and desirable) contrast to pure den-
sity functional theory, which utilizes only the one-body
density n(r), is that, as the areal density increases, the
one-body density displays a marked layering effect. This
feature, which is due to competition between the corre-
lated hard-core repulsion among individual He atoms
and their attraction to the substrate, is already present
in the simplest implementation of the HNC-EL theory
used here. To determine S, the denominator is calcu-
lated numerically by fixing A, varying n, and finding the
associated variation in px. The numerator is calculated
by fixing n, varying A (A = 1 is the background value),
and finding the associated variation in u.

We have calculated S for models of hydrogen and
graphite substrates that are atomically uniform. The
model for the hydrogen substrate consists of a 10 A film
of solid H, adsorbed on a glass substrate, using the sub-
strate potential Vj(2) suggested by Dupont-Roc,3

Vir(z) = —9.32 (3)3 — 248 (;)5 +8.86 (;)9

~19.6 <z:10>3' (15)

Vg (z) is given in K, the coordinate normal to the sub-
strate, z, is given in A, and s = 3.6 A. The potential for
graphite, Vg(2), takes the form!4

1 /s\9 1 /s\3
Vd‘””[ﬁ ) -50) ] (16)
where e = 48 K and s is unchanged, giving a van der

Waals coefficient of 2240 K A®. The above potential
has a minimum at z = 2.75 A, whose value is about
a factor of 2.5 less than the expected value for an ac-
tual graphite substrate; this is necessary to keep the
HNC-EL equations from having a local instability due
to solid formation.!2

In order to numerically calculate 8u/9X for the given
potentials, the HNC-EL equations were first solved for
A = 1 with different number densities n as input, to
obtain u(n) and consequently to evaluate (Op/0n)|x=1.
The calculation was then repeated for fixed values of n
with different values of A: the hydrogen potential was
scaled down by a factor of 0.06 to 0.94Vy(z), whereas
the graphite potential was scaled up to 1.06Vg(z). This
yielded (Ap)n, from which (8u/8M)|, was evaluated.

In Ref. 6, the experimental substrate, Mylar, has a van
der Waals coefficient of 2420 K Aa, and an inert coverage
of 1.6 atomic layers. The effective substrate of the Mylar
with an overlayer of inert helium should have a van der
Waals coefficient similar to the graphite model but with
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a weaker well depth.
Figure 3 shows that peaks in the sensitivity occur every
time that a new layer starts to form; this occurs roughly

every 0.065 A™2, and is to be compared with 0.078 A™>
of Sec. II. Note that the first peak in both curves of Fig. 3
corresponds to the start of the second layer. We will as-
sociate this layer with the first active layer of the experi-
mental substrate. Comparison of both of these figures to
Fig. 2 for Mylar shows good qualitative agreement. Each
curve has a pronounced maximum at the lowest cover-
age, followed by a minimum, a much smaller maximum,
and a more shallow minimum. This periodic sequence
disappears for higher coverages, where the system does
not display the pronounced layering that occurs at lower
coverages. A value of 0.005 for A\, the macroscopic in-
homogeneity, gives good agreement for the overall scale.
Given our relatively poor knowledge of the actual sub-
strate potential, and the relatively simple way in which
we have modeled the inhomogeneity, we take these results
to indicate the qualitative correctness of the separation
of the temperature width into homogeneous and inhomo-
geneous parts.

However, as mentioned earlier, Fig. 2 shows that the
inhomogeneous width has half-layer periodicity, rather
than the full-layer periodicity of the theoretical curves.
In addition, the data shows cusplike behavior at minima
that are essentially zero, whereas the theoretical minima
are small but non-negligible relative to the maxima, and
show no evidence of cusps.

V. SCENARIO FOR HALF-PERIODICITY
AND CUSPS

We now discuss a scenario that, because half-
periodicity, cusps, and true zeroes at the minima all occur
at once, may be a possibility for explaining the data.

First, note that the “sensitivity” S (to the underlying
substrate) should go to zero at high coverages, thus argu-
ing for an envelope function that has this property [e.g.,
exp(—anz), for some value of the parameter a]. Second,
note that if S has the periodicity of the full layers and,
through some unspecified mechanism, also changes sign
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le.g., sin{mz)], the sensitivity then would have two zeroes
per period. Since the value of S extracted from the data
appears in the inhomogeneous width through its square
[cf. Eq. (2)], the “experimental” value for S must be
positive, and thus the zeroes of S must correspond to
cusps. In Fig. 4 we plot an example consisting of the
absolute value of sin(nz)exp(—0.47z); the exponential
provides an envelope function that goes to zero at high
coverages, and its coefficient was readily obtained by trial
and error. Comparison with Fig. 2 shows a remarkable
similarity, even in the way the curves are skewed toward
lower coverages. Thus such a scenario can explain all
three peculiar aspects of the data. ’
The key, then, is to find a mechanism that causes such
a sign change in the sensitivity. A possibility that be-
came available only well after the analysis and calcula-
tions for this work had been completed is contained in a
more recent and more sophisticated version of the HNC
theory. The improved theory includes “elementary dia-
grams.” Moreover, the Jastrow-Feenberg wave function
of (13) is improved by including three-body correlations
uz(rs,rj, rg), which are determined by a three-body Eu-
ler equation corresponding to Eq. (14). This improved
theory reproduces the bulk equation of state for He,
as well as the properties of 3He-4He mixtures to better
than 0.1 K over a wide range of densities,!® and leads
to a significantly higher saturation density (0.0215 A~3
compared with 0.017 A—3 for the less sophisticated ver-
sion employed above). In such a more “compact” system,
hard-core effects are more pronounced. Preliminary re-
sults indicate that, when applied to the problem of films,
the improved HNC theory leads to a sequence of phase
transitions at half-filled layers.!® These transitions occur
when it becomes energetically favorable to elevate parti-
cles into the second layer rather than to further compress
the first layer, and similarly for promotion into the sec-
ond and the third layers (it is not yet clear how far this
sequence will be seen, before layering no longer occurs).
Thus, in addition to structure associated with the filling
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FIG. 4. |sin(rz) exp(—0.47z), to be compared with
Fig. 2.

of each layer, there will be additional structure associ-
ated with the transfer of particles from one layer to the
next. Each of these has the periodicity of the layers, but
the first is associated with half-filling, and the second is
associated with filling. In principle, then, there could
be two independent mechanisms that, together, yield the
observed half-periodicity. Whether this mechanism will
be able to explain the observed features awaits the full
development and application of the theory.
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