
PHYSICAL REVIEW B VOLUME 44, NUMBER 21 1 DECEMBER 1991-I

Numerical relaxation approach for solving the general Ginzburg-Landau equations
for type-II superconductors

Z. D. Wang
Texas Center for Superconductivity, Uniuersity ofHouston, Houston, Texas 77204

C.-R. Hu
Center for Theoretical Physics, Department ofPhysics, Texas AdcM Uniuersity, College Station, Texas 77843-4242

{Received 26 April 1991)

A numerical relaxation approach for solving the general Ginzburg-Landau equations for type-II su-

perconductors is developed. It is erst applied to an isotropic type-II superconductor near H, &
in order

to establish the reliability and effectiveness of this approach. The strength of this approach should be in
dealing with anisotropic and/or inhomogeneous systems. As an initial test of this strength, we have ap-
plied it to some anisotropic cases. Distributions of the superconducting order parameter and the local
magnetic field, as well as the lower critical Geld for these cases, are presented.

I. INTRODUCTION

It is well known that the Ginzburg-Landau (GL)
theory provides us an important useful tool for studying
the basic phenomenology of superconductivity. Since the
discovery of the high-temperature superconductors, the
GL theory has played an especially useful role for under-
standing and analyzing some physical properties of these
superconductors, because there is at the present time no
clear understanding of the microscopic mechanism of
high-T, superconductors that will allow theorists to de-
velop a microscopic theory of high-T, superconductors.
Previously developed methods for solving the GL prob-
lem are mainly to first minimize the GL free-energy func-
tional analytically in order to obtain the variational equa-
tions, (i.e., the GL equations, ) and then to solve this re-
sulting set of nonlinear partial differential equations
analytically' or numerically. Unfortunately, these
methods are difficult to extend to anisotropic and/or in-
homogeneous systems. Since many superconductors,
especially high-T, superconductors, exhibit strong anisot-
ropy and/or inhomogeneity, including a difference in the
directional effective masses (m, )m, =mb), and the
effects of twin boundaries, etc., it is clearly useful to de-
velop a general numerical scheme to handle the GL prob-
lem for such cases.

Recently, an attempt was made by Doria, Gubernatis,
and Rainer to apply the simulated annealing method for
such a purpose. In this work, we make a different at-
tempt to treat the general GL problem based upon the re-
laxation method. This approach is to minimize the
discretized GL free-energy functional directly by using
numerical relaxation steps subject to the constraint of a
fixed average magnetic induction B. Compared to the
simulated annealing method, the present approach
should have the advantages of higher accuracy and much

reduced computational work, especially for low external
fields (H,„,((H,2).

The relaxation approach is a direct local-optimization
technique for, in general, a multivariable function. Let us
consider a real function F(x„.. . , x„,x *, , . . . , x„*) of
complex variables x „x2, . . . , x„which has a minimum
at (x i, . . . , x„,x ', , . . . , x„*), where x;* is the complex
conjugate of x;. Near this minimum, one can introduce
the iteration equation

(n+1) (n) aI:

Bx;

where n is an integer labeling the generations of iteration
and e is a positive constant to be adjusted in order to op-
timize the convergence rate. It can be shown that I' will
monotonically decrease to its optimum state as n in-
creases as long as we choose a proper starting state, mesh
size, and the step-size parameter e. Consequently, we can
iterate the x s until they converge to
(xi, . . . ) X„)xi ). . . , x„).

The function we wish to minimize is the lattice gauge
form of the GL expression for the free energy of a super-
conductor in the presence of a magnetic field. The vari-
ables we are concerned with are the values of the order
parameter and the vector potential on a chosen mesh of
points. This lattice formulation is similar to that used by
Doria, Gubernatis and Rainer.

In this paper we will illustrate the use of the relaxation
approach in solving the nonlinear GL equations by first
applying it to an isotropic superconductor in order to es-
tablish the approach and then extending the approach to
some simple anisotropic cases. In Sec. II, we will de-
scribe the lattice gauge form of the free-energy function-
al, the relaxation equations for minimizing it, and the ap-
propriate boundary conditions. In Sec. III, we will
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present the results of our calculation for the case when
the external field is very close to H, &, assuming the sys-
tem is homogeneous and isotropic and compare our re-
sults with previous results obtained by solving the radial
nonlinear differential GL equations. In the same sec-
tion, we will also present our calculations of some simple
anisotropic cases with different parameter va1ues. Final-
ly, in Sec. IV, a short summary and conclusion will be
given.

II. LATTICE EQUATIONS
AND BOUNDARY CONDITIONS

We begin with the simple anisotropic Ginzburg-
Landau functional for the difference F between the free
energies per unit volume of the superconducting state
and the normal state, when choosing the magnetic field to
be along the z direction (which is assumed to be one of
the principal directions of the system):

F=—f dx f dy alp(r)l +—I@(r)l +
S

—.V k

2

Ak g(r) + [V XA(r) ]c 8m
(2)

where g(r) is the superconducting order parameter, A is the vector potential, 5 is the total area of the xy plane, m and
m„are the effective masses in the x and y directions, respectively, and m =m for the isotropic case. The variations of
F with respect to the fields g(r) and A(r) lead to the usual dift'erential GL equations. We will not need these equations
in the following. In order to describe a superconductor in the presence of an external field, we should impose constraint
on the field A. We use the constraint of fixing the average magnetic induction B.

To apply the numerical relaxation method, we should discretize the GL free-energy functional. Before doing this,
we wish first to put it into a dimensionless form. Scaling energies by twice the bulk superconducting condensation ener-
gy a Ip and lengths by the x direction-al coherence length g, =( —iri /2m„a)'», setting also iti=itig„(where

= Ial IP) and A =(2irg„l@0)A, Eq. (2) becomes

F= f dx f d—y [ I
yl—'+-,'

I
yl4+

I (&. iA—.)Pl'+R. I(&» iA—»)@l'+~.'(V ~A)'], (3)

where

=(m c/2efi)v P/2', R =m /m», and R =1

for the isotropic case. Then, with the use of forward difference approximation for the derivatives and taking into ac-
count gauge invariance, we can rewrite Eq. (3) as

g [ —liT(i, j)I'+-,'
I iT(i, j') I']+F; +F .

y (i j)

g [If(i+1,j) g(i j)e " —'

I Id +R lg(i, j+1)—iT(i, j)e ' ' ' I2/d2],
y (i j)

K
F„,id= g [[A„(ij) A, (ij +—1)]/d +[A (i+ 1,j) A(i j )]ld—„]

x y (I j)

(4)

where N„and N are the number of lattice points in the x and y directions. On each lattice point (i,j ), the normalized
order parameter has the value f(i,j ), and with each point we associate horizontal and vertical bonds. The lattice con-
stants along these bonds are d and d, and the vector potential components on bonds [(i;j)~(i+1,j)] and
[(ij )~(i j + 1)] are denoted as A „(ij ) and A (i j ), respectively. In the above lattice notation, it is easy to verify that
the above expressions are invariant with respect to the gauge transformation

p(i j )~g(i j )e'~"",

A„(ij )~A„(ij )+ [y(i+ 1 j ) y(i j)]ld-
A»(i,j ) +A (i,j )+[y(i,j—+1) y(i,j )]Id» . —

Accordingly, so are E and other physical quantities, such as the magnetic field and the current distribution gauge in-
variant.

The minimization procedure needs to be constrained to produce a given value of B. In practice we fix the magnitude
of B by specifying the total reduced Aux N in the unit cell and implement this B or N by imposing what will be called
the "magnetic periodic boundary conditions. " Let us analyze the boundary conditions. We first define the total re-
duced flux per unit length in the y direction, P(y;) as

L
P(y;)=(2irg„l@o)f H(x, y;)dx = f rA dl/5y, , (6)

a

where the closed path I is defined in Fig. (1). This equation gives
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L
[A (L,y, ) —A (Oy;)]By; —f [A (x,y, +, ) —A„(x,y, )]dx=g(y, )6y, ,

where L„=—N~dx, I~ =N~dy, 6y,. =y, +,—y;, 4o =—hc/2e
is the Aux quantum, and H (x,y) = V XA is the local mag-
netic field. We choose a gauge in which A. is indepen-
dent of x and satisfies the following relation:

[A„(y,+, ) —A (y;)]L =[&/L» —P(y;)]&y; .

Consequently, we obtain a very simple boundary condi-
tion connecting the values ofA at x =0 and L:

(n)

'
all(i, j)

aF,
A,'"+"(i,j)=A,'"'(i,j)—e,

c)A» l,J
(n)

A"+'(j)=A'"'( j)—e3
BAx j

(n)

A (L,y;) —A (O,y;)=@/L (9) where eI, e2, and e3 are all positive numbers, F, =N N~F.

A (x,L )=A»(x, O),

g(x, L»)=f(x, O) exp(i4/2),

g(L,y)=g(0, y) exp[iy(@/L )] .

(10)

Here, it is worth noting that the A 's cannot be fixed be-
fore optimization (to zero, for example), since they must
also be regarded as independent variables. They should
therefore be determined by optimization also. However,
in Ref. 7, the authors chose all A (y;)=0 and also re-
quired Eq. (9), which should lead to P(y) independent of
y. Obviously, this is not sufticiently general, since the final
results can show that (t(y) ~ JH(x, y)dx does depend on

y in general. The present treatment avoids this problem.
The other boundary conditions need only obey gauge

invariance, ' and can be taken as

III. RESULTS

In our numerical calculation, the parameters chosen
are (1) N =N =100 (for a=10, N =N =200) and (2)
the lattice constants d„=d» =0.4$„(d =d» =0.2g„was
also chosen for ~= I, and we found no obvious differences
in our calculated results for H„between these two cases).
These choices ensure that our calculation satisfies the
condition B «H, &. The relaxation step-size parameters
( e i, E2, E3 ) are chosen to range from 0.0007 to 0.0 1, and
they are adjusted in order to ensure convergence of itera-
tion and fast iteration speed. We iterate Eq. (11)until the
relations (BF,/Bx ")&e and max(BF, /Bx, '") &eM are
satisfied. Here ( . ) represents taking the average over

5.0
i

1.0

Furthermore, using Eq. (8) we can show that
A (0)=A (L»), and can both be set equal to zero as
part of the gauge freedom. [Note that Eq. (8) is otherwise
not needed in our approach, unless one wishes to deter-
mine P(y).]

In the following, we only consider the low-field or
"isolated vortex" case, i.e., the external field
(H,„, H„)&(H„(or B—(&H, i). In this case, there is a
negligible difFerence in energy between different choices
of the lattice as long as the vortex cell is suf5ciently large,
so we can choose one quantum of Ilux (i.e., +=2~) in a
square unit cell containing N XN lattice points.

With Eq. (4) and the above boundary conditions, we
can now realize the relaxation procedure. Choosing
g(i, j), g*(ij ), A»(i,j ), and A (j) as independent vari-
ables, we write the relaxation iteration equations as fol-
lows:

(a) —0.8

—0.6

1.0 0.2

2.0 0.2
x,'

1.0

x
0.1

0.0 0.0
-20.0 -15.0 -10.0 -5.0 0.0 5.0 10.0 1~,0 20.0

r

(0 yi+~) (Lx ye+i)
0.0 0.0

0.0 2.0 1.0 G.O 8.0 10.0
r

(0, y;) (Lx yi)

FIG. 1. The contour I used in Eq. (6).

FIG. 2. (a) At R =1.0 and a =3.0, the distribution of the
magnitude of the order parameter f and the reduced local mag-
netic field h =H/H„(b) at R =1.0 and ~ =10.0, the distribu-
tions off and h—:h/&2.
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an anisotropic scale transformation, followed by a rota-
tion, w ic is o ohich is followed by another simple scale trans or-

In this case, when the applied field is along one
of the principle directions (i.e., along e3 of Re . , w ic
is the z direction here), this sequence of transformation
reduces to a simple anisotropic scale transformation, viz. ,

(x,y)=(R ' ~X,R' y),
(ax, ay ) = (R.'"~„,R.-'"a, ),

1.0

0.8

0.2

0.0
0.0 2.0 3.0 4.0 G.O

FIG. 5. H, &/H, as a function of Kx for difterent anisotropy-
R =10 c: R =05;andparameter values. a:

d R„,=0.25.

Q 0.0—

1.2

LJ

~ 0.8

O. G

0.4

0.2

0.0
0.0 1.0 2.0 4.0 5.0 G.O

+0 0- 1.2
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0.4

O. O
0.2

FIG. 4. A.t ir„=5 and R =2.0, {a) constant-f contours with
n 0.04.the increment of f between neighboring contours being

The x and y intervals are 1.04; (b) Constant-h contours with t e
increment of h between neighboring contours being 0.03. The x
and y intervals are 1.56.

0.0
0.0 1.0 20 30 40

1/Rm
5.0 G.O

FIG. 6. (a) H, &/H, as a function of R for fixed K„. a:
K = 1.0 b: K =3.0. (b) H, &/H, as a function of 1/R for fixedX ' 0 ' X

K . a: Kx =1.0; b: K =3.0.
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(A„A )=(R'i A, ,R ' A ),
which leaves g and H=V XA invariant. It also converts
the third term of Eq. (2) to the isotropic form

2

—
Vk —

Ak p(r)
2m k ~,y

with m =Qm mt, which clearly implies that
H, (m, m )=H„(m, m), or H„(a,R ) depends only

on a„/QR—:17. Locally it also implies that

f(m, my, x,y)=g(m, m, R '~"x,R '~
y ),

(13)
H(m, m~, xy)=H(m, m, R'~ x,R '~ y) .

In fact, this transformation implies a lot more than these
results at H,„,=H„, since it is valid for all fields between
H„and H, 2, as long as the applied Geld is along a princi-
pal direction (called z). In fact, it implies that all thermo-
dynamic quantities in this case depend only on F, and
that Eq. (13) is valid at all H,„,. It also implies that nu-
merical solution of the static GL equations of an aniso-
tropic superconductor is actually not needed when the
applied field is along a principal direction. ' It is done
here only for the purpose of establishing the method so it
can be used for studying more complex situations, such
as where there are twinning boundaries present, or when
the anisotropy of the system cannot be described by the
anisotropic mass model.

IV. SUMMARY AND CONCLUSION

We have presented and demonstrated the utility of a
relaxation approach to the solution of the general GL

problem. Our main intent here is to make sure that the
relaxation approach works for this purpose and also to
set up the program. We believe we have achieved this
goal. Meanwhile, we have obtained accurate numerical
results for some simple anisotropic superconducting vor-
tex states. Our future objectives are to study complicated
anisotropic or inhomogeneous super conducting states
quantitatively using this approach, including the case
when twin boundaries exist, which is important for, for
example, the high-T, superconductor Y-Ba-Cu-O. In ad-
dition, we can calculate the M-H curves for anisotropic
superconducting states, and determine the structure of
the vortex lattice for these cases. Although the computa-
tional work will be substantially more than that in the
present work, it is still expected to be much less than if
the simulated annealing method is used for the same pur-
poses. Therefore, we believe that the relaxation ap-
proach can play an important role in studying the general
GL problem under complicated situations, including the
present of anisotropy and/or inhomogeneity.
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