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An exact analytic expression for the mean-field phase boundary T.(H) of a cubic superconduct-
ing circuit in an arbitrary external-magnetic-field vector H is derived. The phase boundary of this
circuit is shown to depend in a complex and sensitive way on both the magnitude and the direction
of the magnetic field. Some practical applications of these properties are also suggested.

A large number of experimental' and theoretical® pa-
pers have now been published on the phase boundaries of
superconducting networks of various geometries in an
external magnetic field. Almost all of these papers con-
sidered two-dimensional networks in a perpendicular
magnetic field, perhaps because so far only two-
dimensional networks of various geometries have been
conveniently fabricated in the laboratories using lithogra-
phy techniques. A few of the above-cited theoretical pa-
pers® have touched upon some properties of three-
dimensional regular (i.e., latticelike) networks, but the
main purposes of those papers were not to systematically
study the phase boundary of three-dimensional networks
in an arbitrary magnetic field vector. Thus in those dis-
cussions the applied magnetic field was restricted to a sin-
gle principal direction of the network. Recently, Jeffery
et al.* pointed out that random three-dimensional net-
works may be used to model the reproducible oscillatory
behavior in the microwave-absorption spectrum of high-
T, ceramic superconductors and other granular super-
conductors. To illustrate their idea they have studied
several physical properties, viz., magnetoconductance,
magnetization, and susceptibility, of one regular finite cu-
bic network and one random finite network in certain
directions of the applied magnetic field. But their ap-
proach is cruder than the Ginzburg-Landau theory (in
the sense that they did not allow the magnitude of the su-
perconducting order parameter to vary in the networks)
and they did not study the phase boundaries of those net-
works. Three-dimensional superconducting networks
with prescribed geometric and physical characteristics may
be more difficult to fabricate in the laboratory than two-
dimensional networks of similar characteristics, but once
made they will have the additional interesting property
that their phase boundaries will not only depend nontrivi-
ally on the magnitude of the applied magnetic field, but
also on its direction, which we believe will have some ap-
plicational value. (See some suggestions near the end of
this paper.) Thus in this paper we present a systematic
study of the phase boundary of one of the simplest and
most fundamental three-dimensional finite superconduct-
ing network, viz., a cubic superconducting circuit made
of 12 superconducting straight line segments of identical
length and cross-sectional area, in an applied magnetic
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field of arbitrary magnitude and direction. [As in most
previous studies of superconducting networks>* we as-
sume that the lateral dimensions of the links are small in
comparison with their superconducting coherence length
&(T).] This particular finite network we have chosen to
study here is sufficiently simple to allow us to obtain ex-
act analytic solution, so we can present a more thorough
and accurate study of the dependence of the phase
boundary on the magnitude and direction of the applied
magnetic field.

In the mean-field (i.e., Ginzburg—-Landau-de Gennes)
approach to the normal-superconducting phase boun-
daries of thin superconducting-wire networks, each
strand is assumed to obey a linearized one-dimensional
Ginzburg-Landau equation, which may be solved in
closed form. After enforcing a certain set of boundary
conditions first derived by de Gennes,” at the nodes of the
network, one then obtains a set of equations governing
the values of the order parameter at the nodes, and hav-
ing the structure of a generalized eigenvalue problem.?
In the case when all of the strands have the same cross-
sectional area and physical characteristics, the equation
corresponding to the node i reads

A; S cot[L; /E(T)= 3, Ase' ™ /sin[Ly; /E(T)]
; :

J

where A, is the value of the (complex) superconducting
order parameter at the ith node (or vertex) of the net-
work, L;; is the length of the strand (or link) connecting
the node i with the node j, £(T)=&0)1—T/T,y) /% is
the temperature-dependent Ginzburg-Landau coherence
length of the superconducting material that the strands
are made of, with T, being the zero-field transition tem-
perature of the superconducting material used, and also
the transition temperature of the network at no applied
field. y; =(2m/®,) [/ A-dl, with A the vector potential,
and ®y(=hc/2e) the flux quantum; the integral being
along the strand connecting the nodes i and j, in the
direction from i to j. The summation “3;” is over all
nodes j which are linked to the node i. Clearly we have
as many equations as the number of nodes in the network
which must be solved as coupled equations. The temper-
ature 7 may be considered as the generalized eigenvalue
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of this set of equations, and the transition temperature
T.(H) should be identified as the largest among all such
generalized eigenvalues. For the case when all links of
the network are of equal length (i.e., all L;=L) and
every node is connected to the same number Z of
“nearest-neighbor” nodes, the above generalized eigen-
value problem further reduces to an ordinary eigenvalue
problem, with Z cos[L /£(T)] being the eigenvalue (after
multiplying both sides of the resultant equations by the

A1 1 0 1 0
| a0 0 —iyn, o Rz 0
1 0 - 1 0 1
0 ™ 1 - 0 0 0
1 0 0 0 - 1 e’
0 ¢ ™ 0o o 1 —A 0
0 1 0 e 0 -
0 0 e ™ o it

where A=3cos[a /£(T)] is the eigenvalue; n, =sina cosf3,
n, =sina sinf, and n,=cosa are the directional cosines
describing the direction of the applied magnetic field H
relative to the axes of the cube, with @ and 8 the polar
angles of H, so that H=H(n,e, +n8, +nke,);
y=27® /P, with ®=Ha? and {A;li =1-8} are the
values of the superconducting pair-wave-function order
parameter at the eight nodes of the cubic circuit. (Their
precise definitions relative to the coordinate system are
given in Fig. 1.) The gauge chosen is such that the vector
potential A has components A,=Hzn,, A,=H (xn,
—zn, ),and 4,=0.

Setting the determinant of the above matrix equal to
zero, we obtain a polynomial equation of fourth degree:

x*=ayx3+a,x’+ax +ay=0, ()
where x =A% and
a;=—12, a,=42—4[cos(yn,)+cos(yn,)+cos(yn,)],
a,=4{cos’(yn,)+cos’(yn,)+cos’(yn,)
—[cos(ynx)-i-cos(ynyH—cos(ynz)-Z]2
—2cos(yn, )cos(yn,)cos(yn,)—7} ,
ag=[2cos(yn,)+2cos(yn,)+2cos(yn,)—3]*.

The four roots of this equation are obtained by solving
the following two quadratic equations:
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same constant factor sin[L/&(7T)]). Note that the
highest 7. also corresponds to the largest
Z cos[L /&(T)], so it is the largest eigenvalue we want in
this case.

In the present problem of a cubic superconducting cir-
cuit of length a on each side, Z=3, and there are eight
equations corresponding to the eight nodes which may be
combined into a single matrix equation:

4,
4,
0 A,
iyn, A4
=0 s

o A, (1)
iy(n,—n) A6
1 A
A
- 8

x2+[ay/2+ (@l /4+u,—ay) ?x +u, /2

+[(u,/2)*—ay,]"?=0, (a)
x2+[ay/2—(a%/4+u,—ay)"?1x +u, /2
—[(u,/2)*—a,]"?=0, (3b)
where
[(c§+4c%/27)1/2—c0 3
u,= 2

1/3
—(c244c321)*—c
+ [ 0 12 0 _b2/3 >

T H
Az f A4
Lo /
' \‘/1
A : )1
6 N 714
T, 1
1, :
1
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Tt bl 3 v
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FIG. 1. The coordinate system used and the definition of
{A;,i =1-8} relative to the coordinate system.
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with ¢, =b,—b3/3, co=2b3/27—b,b /3+b0, and
b,=—a,, b,=aa;—4ay, by= (a1+a0a3 4a0a2)
These four roots gives four positive values for (a /£)?, the

smallest one of which determines the phase boundary
T.(H) of the circuit, where the dependence on the magni-
tude of H enters through ¥, and the dependence on the
direction of H enters through the directional cosines
). Since &(T)=E£(0)N1—T /T,y '/?, the small-

est a 2y/ £2 obtained this way is directly proportional to the
percent reduction of the transition temperature,
(1—T,/T,).

The results are shown in the following 13 figures. In
Figs. 2—6 the a dependence of (a /£)? is plotted for five
values of S, viz., O, tan;l( )=9.46°, tan‘l( )=18.44°

tan~ Y g(‘)(‘,)—32 57°, and 45°, and each for ﬁve values of

/P, viz., 0, 1 + 7, 7, and 1. Figures 7—11 are simply ex-
tensions of Figs. 2—6, respectively, to three larger values
of ® /P, viz., 2, 5, and 10. Note that the full range for o
is 180° but the curves have mirror symmetry about
a=90° so only the range a=0°-90" needs to be present-
ed. Also the full range for S is 360°, but the curves have
90° periodicity, and within each period, they have mirror
symmetry about the midpoint, so only the range
B=0°-45° needs to be presented. These symmetries are,
of course, those of a cube. (The same cubic symmetry
also explains why there is a mirror symmetry in the
curves in Figs. 2 and 7, which are both for =0°, and
that an asymmetry evolves in the two sequences of figures
following these two figures which correspond to increas-
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ing B toward 45°. Figure 1 ought to help the readers to
see this point easily.) From these figures, it is seen that
the dependence of the transition temperature on the two
angles a and 3 becomes more sensitive and complex, as
® /D, is increased to larger values beyond unity, so that
even with five figures at five roughly equally spaced
values of 3, one must still struggle somewhat in order to
visualize the continuous variation of the transition tem-
perature with the angle B. On the other hand, for
®/P,< 1, this dependence is much less complex, so one
does not really need five figures to see this continuous
variation. But five are given also in this case (in Figs.
2-6), so one can also see how the T,-versus-a curve
evolves as @ /P, is increased, at several constant values
of B, by combining Fig. 2 with Fig. 7, Fig. 3 with Fig. 8,
etc.” (For more on this ® /P, dependence, see Figs.
12-14 below.)

In Figs. 12—14 we have plotted (a /£)? as a function of
O /P, for three choices of the polar angles (a,). These
three choices represent three distinct types of behavior of
this dependence. The first choice (Fig. 12) is such that
the directional cosines (n,,n,,n,) are in the rational ra-
tios 6:2:3. The curve is seen to be periodic with the
period 7, which is nothing but the square root of
62422+ 3%2—just what is needed to normalize (ny,n,,n,)
such that nf+ny2+nz2= [This period, of course, does
not have to be always an integer. For example, for

n,:n,:n,=1:2:3, the period would be (12+22+32)!/2
=V 4 We have chosen it to be an integer here, so it can
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FIG. 2. Plot of (a/£)*<(1—T./T,,) as a function of a for B=

0 and for five values of ®/®y, viz,, 0, 1, 1, 2, and 1. The mirror

symmetry about @ =45" in these curves simply reflects the mirror symmetry of the cube about the plane spanned by the two directions
(1,0,1) and (0,1,0). This symmetry is gradually lost as 3 is increased from zero toward 45°, as is shown in the next four figures.
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FIG. 3. Same as Fig. 2 except that B=tan™'(1)=9.46".

be easily confirmed on the figure.] The second choice
(Fig. 13) is such that (n,,n,,n,) are in the partially ra-
tional ratios 2:1:V'3. The curve is then only quasiperiod-
ic, and it also exhibits a beatlike phenomenon. This is be-
cause that the plotted quantity is a nonlinear combination
of only two simple harmonic components of mutually in-

commensurate periods. Finally in Fig. 14 we have the
third choice which is such that (n,,n,,n,) are in the to-
tally irrational ratios V'5:V'2:V'3. In this case the curve
is also only quasiperiodic, but it no longer exhibits any
beatlike phenomenon, because it is now a nonlinear com-
bination of three simple harmonic components of mutual-
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FIG. 4. Same as Fig. 2 except that S=tan " ( %)= 18.44°.
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FIG. 5. Same as Fig. 2 except that B=tan " '(3}})=32.57".

ly incommensurate periods. [The periods are simply  the applied magnetic field can switch the system among
1/ny, 1/n,, and 1/n,, so that the beat period in Fig. 13is  the three cases as represented in Figs. 12-14. (To see
just (n, —n,) 1~10.56. See below for explanations.] this, imagine an infinite cubic lattice of points. Then any

To digest the above results, it is important to realize  direction which is pointing from a special lattice point
first that even an infinitesimal change of the direction of  designated as the origin toward any other lattice point is
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FIG. 6. Same as Fig. 2 except that 3=45°. There is no need to go beyond 45° because of the fourfold symmetry of the cube, and
the mirror symmetry of the cube about the plane of constant 3=45°.
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FIG. 7. Same as Fig. 2 except that it is now for three new values of ® /®,, viz., 2, 5, and 10. One may combine this figure with Fig.
2 to visualize to some extent how the (a /£)*-vs-a curve changes (continuously) with ® /@, at the given value of B.
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FIG. 8. Same as Fig. 7 except that /3=tan_‘(%)=9.46" as in Fig. 3. One may combine this figure with Fig. 3 to visualize to some
extent how the (a /£)-vs-a curve changes (continuously) with ® /&, at the given value of 3.
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FIG. 9. Same as Fig. 7 except that B=tan™ (1

1)=18.44° as in Fig. 4. One may combine this figure with Fig. 4 to visualize to some

extent how the (a /£)*-vs-a curve changes (continuously) with ® /& at the given value of 3.
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FIG. 10. Same as Fig. 7 except that f=tan™(3L)=32.57°
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as in Fig. 5. One may combine this figure with Fig. 5 to visualize to

some extent how the (a /£)*-vs-a curve changes (continuously) with ® /@, at the given value of .
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FIG. 11. Same as Fig. 7 except that S=45° as in Fig. 6. One may combine this figure with Fig. 6 to visualize to some extent how
the (a /£)*vs-a curve changes (continuously) with ® /®, at the given value of 3.
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FIG. 12. Plot of (a/£)*<(1—T,/T.,) as a function of ® /®, for the special choice of the polar angles a and 3 as given, which is
such that the directional cosines of the applied magnetic field are in the rational ratios 6:2:3. The curve is seen to be periodic with the
period 7, which is the normalizing denominator of the directional cosines. This is because the three frustration parameters n, @ /®,,
n,® /Py, and n, & /P, are all defined modulo unity, which means that whenever the external magnetic field vector is such that the
fluxes through the six faces of the cube are all equal to integer multiples of the flux quantum, the transition temperature of the circuit
should become unaffected by the presence of the external magnetic field, due to the absence of frustration in any closed path in the

circuit.
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FIG. 13. Same as Fig. 12 except that the directional cosines are now in the partially rational ratios 2:1:V'3. In this case
(1—T./T,y) can no longer drop to exactly zero at any finite field value, due to the impossibility of satisfying the zero-frustration con-
dition at any finite field, although it can still sometimes come quite close to it. See the text for the explanation of the beatlike struc-
ture which is clearly visible in this figure.
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FIG. 14. Same as Fig. 12 except that the directional cosines are now in the totally irrational ratios V'5:V2:V'3. Here again
(1—T,./T,) cannot drop to exactly zero at any finite field value, but furthermore even the beatlike structure of the previous case is
no longer present. See the text for explanation.
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characterized by directional cosines that are in rational
ratios. Clearly, between any two such directions there is
at least another such direction, so there must exist a
countable infinity of such rational directions within any
angular neighborhood, however small, of any given direc-
tion, interspersed within an uncountable infinity of par-
tially rational or totally irrational directions.) Thus we
see that the transition temperature of a cubic supercon-
ducting circuit is a very sensitive function of both the
magnitude and the direction of the applied magnetic field,
especially at large ® /P,

The rich structure in the phase boundary of any super-
conducting network is due to the frustration effect, ©
which can suppress the superconducting transition tem-
perature. The amount of frustration imposed on a single
closed superconducting loop is measured by the deviation
from any integer value of the magnetic flux through the
loop in units of the flux quantum, due to the Aharanov-
Bohm effect.” For example, the phase boundary of a
two-dimensional infinite square superconducting network
in a perpendicular magnetic field H is periodic in ® /P,
with the period unity, where ® is the flux through each
square unit cell, and within each period the phase bound-
ary has cusps of various sizes at all rational values of
@ /®,,? precisely because at any integer values of ®/®,
no closed loops in the network are frustrated, whereas at
any rational values of ®/®,, only some closed loops of
the networks are not frustrated. Now a cubic supercon-
ducting circuit has square loops of area a? facing each of
the three axes x, y, and z. Thus the relevant frustration
parameters are n,®/®,, n,®/P,, and n, /P, which
correspond to the amounts of flux passing through the
three types of square loops measured in units of the flux
quantum, respectively, when the direction of the magnet-
ic field is such that its directional cosines are given by
(ny,n,,n,). Thus all of these three frustration parameters
prefer to have integer values. When they all do have in-
teger values, no frustration would be present in the cir-
cuit at all. Then T,(H) must become equal to T,y and
the (a /&)? curve must drop to zero, as is exemplified by
all the biggest dips in Fig. 12. This situation also occurs
in several places in Figs. 2—11. For example, in Fig. 7,
the dashed and dotted curves both dip to zero at
a=cos”'(£)=36.87" and cos” !(3)=53.13°, correspond-
ing to (n,,n,,n,) equal to (£,0,%) and (£,0,%), respec-
tively. Note that for these two curves, ®/®, are multi-
ples of 5, but not the third curve (i.e., the solid curve) in
the same figure which also does not drop to zero at these
values of a, as expected. In all of the plotted curves, all
major dips which do not quite touch the horizontal axis
can also be understood as (n,,n,,n,) all reaching almost
integer values. For example, in Fig. 9, the dotted curve
almost touched the horizontal axis at a=~72.4°, where
(ny,n,,n,)==(0.904, 0.301, 0.302), which, when multiplied
by ®/®;=10, becomes all very near integer values. In
the same figure, the dashed curve reaches a major max-
imum at the same value of a [corresponding to a major
local minimum in T,(H)] because for ® /®,=35, all three
frustration parameters become very near half-integer
values, corresponding to maximum frustration. Many
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major minima and maxima in the plotted curves can be
understood in this way, but we shall not go through all of
them here. The minor minima and maxima in these
curves are harder to understand in detail. Some of them
may be caused by minimum or maximum frustration in a
larger loop which encompasses two or three faces of the
cube. Figures 2-14 all reveal that all minima of all
curves are quadratic, whereas some maxima of some
curves are cusplike. Such features are typical of circuits
containing only a finite number of links, as is already
shown to be the case in two-dimensional networks. (See,
in particular, the work of Rammal et al. in Ref. 2)
Extensions of this study to some multicube circuits and
even to an infinite cubic network in three dimensions
should be interesting, and are presently under considera-
tion. The solutions to these extensions, however, must
resort to much more numerical work, and probably can-
not be as accurate or complete as the present study of a
single-cube circuit. However, from our general under-
standing of infinite, two-dimensional, periodic networks,
we expect that, if the single-cube circuit considered here
is extended to a three-dimensional infinite cubic network,
all minima of a*/& (corresponding to maxima of T,) as a
function of a, 8, or ® /®,, will become cusp shaped, and
that new smaller cusps (or slope discontinuities) will show

*70°

25

FIG. 15. Three-dimensional plot of t=T,(H)/T,, as a func-
tion of a and B (the polar angles of H), for the range
60°<a<70° and 15°<f3<25°, at ®/P,=14. The cubic circuit
is assumed to be made of a type of aluminum film with £,=0.3
pm and ¢=3 um. The upward axis is ¢ at an arbitrary scale.
The axis pointing toward the lower left is « for the range given,
and the axis pointing toward the lower right is 8 for the range
given. The rectangular frame is drawn to show the viewing
direction. The major-peak value of ¢ at a=64.62° and
=18.43° is unity, and the lowest value of ¢ within this range is
0.991534. .. .
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up at values of a, 3, and ® /P, where all three frustration
parameters are equal to rational fractions. (For fields
along the principal directions of the cube, this can al-
ready be demonstrated in a way much similar to the cor-
responding solution of a infinite, two-dimensional, square
network.)

In summary, we have presented an exact analytic cal-
culation of the phase boundary of a cubic superconduct-
ing circuit made of 12 identical thin superconducting
straight line segments, in an external magnetic field of ar-
bitrary magnitude and direction. This is probably the
first and also one of the simplest calculation of its kind
which demonstrates the sensitive and complex depen-
dence of the phase boundary of a three-dimensional su-
perconducting network on both the magnitude and the
direction of an external magnetic field. The sensitive
directional dependence is particularly interesting and
should have some applicational value. For example, if
the magnitude and the directional cosines of an applied
magnetic field are all preset at such values as to hold the
T, of a cubic superconducting circuit at one of its major
maxima, and the temperature T is kept constant at a
value just below this 7,(H), then any slight change of the
relative orientation between the magnetic field and the
cubic circuit should lead to a large increase in the resis-
tance of the circuit which clearly can be used in a feed-
back circuit to control the orientation of a device or in-
strument. To help the reader visualize this point, we
have given in Fig. 15 a three-dimensional plot of
T.(H)/T,, as a function of both a and B in the small
range 60°<a<70° and 15°<f<25° assuming that
¢ /P,=14, and that the circuit is made of some type of
aluminum film with £,=0.3 um and ¢=3 um. We
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choose this region to plot T.(H)/T,, because we know
from Fig. 12 that it has a major peak of value unity at
a=cos” '(3)=~64.62° and B=tan '(1)~18.43°, which
correspond to a point in the chosen range, for any ®/®,
which is an integer multiple of 7, such as 14. The peak
will actually be narrower for higher multiples of 7 for
® /P, but more peaks will then show up in this narrow
range of a and f3, so that one would have to plot an even
smaller range of these angles in order to show clearly the
vicinity of one major peak. One can therefore understand
why we do not attempt to present a three-dimensional
plot of T.(H) /T, for the entire range of the two angles.

Other applications of this cubic superconducting cir-
cuit might include the accurate determination of the
magnitude and direction of an unknown feeble external
magnetic field. For any of such applications a network
containing a large number of cubes can definitely offer
more sensitivity than a single-cube circuit, much like the
improvement from a double-slit interferometer to a grat-
ing. But the fabrication of any such three-dimensional
circuits or networks is probably still a serious challenge
to the present-day technology, so one probably should
start by trying to make the simplest configuration first,
viz., a single-cube circuit, and perhaps test its charac-
teristics by comparing it with the present calculation
(probably also with much difficulty due to very small sig-
nal associated with a small circuit).
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