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Re-entry condition for ferromagnetic superconductors
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In the phenomenological theory of re-entrant superconductors, the ratio ( of the magnetic to supercon-

ducting free-energy densities plays a crucial role, %e present arguments which suggest that 3 & ( & 17 for
ErRh484, thus excluding values in excess of 100 &which have appeared in the literature.

Recent phenomenological-theoretical studies' 4 have dis-
cussed var1ous poss1ble modes of coexistence of supercon-
ducting and magnetic order in those ternary compounds
which exhibit re-entry from the superconducting state to a

normal-resistive (but ferromagnetic) state.
Thc dlscUsslons arc 811 based on 8 gcncrallzcd Glnzburg-

Landau model, fll st dcscrlbcd by K1cy. ' Oul notat10A 1s

that of Ref. 3.

2

F=j~d'»,'~, lql'+ ,'P, le—l'+ & —I' 'A
q + —,'~ l~l'+ —,'P l~l'+ —,'v l~l'+ —,'I')I'l&Ml'+

u = —i(). ()i(1 —T/T )

a, = —iu, oi(I —T/T, I) .

An important parameter in these studies is (:

F (GL) (0)/F (GL) (())

thc 18tlo of thc Ginzburg-Landau magnetic Bnd sUpcI'con-
ducting free-energy densities, extrapolated to zero tempera-
ture. %C then might ask which of the possible coexistence
modes is likely to be realized. The answer depends crucially
on (. Re-entry from the helical spin-density-wave state to
normal ferromagnetism can occur7 only if

If, following Ref. 1, we take 1 —10 z and in~ol i
=15„Ithe

criterion for re-entry is g & 100. Moreover, the linear spin-
density-wave state' is not stable relative to the vortex state
if ( becomes much smaller than 100.

In the literature, values of ( for ErRh484 as high2 as 500
and as low3 as 10 have been proposed. In the current Brief
Report, we present a series of arguments which support
values near the lo~er end of this range. %e also discuss
briefly the value of l(1 ol, since the re-entry condition (4)
depends on this dimensionless number.

Values of lo. Oi used in previous studies range from'8
l(). Oi =14 to n 0 =60.' But there is very recent direct
evidence that o. 0 may be as low as 5. Behroozi et al.9

have measured the paramagnetic susceptibility of polycrys-
talline Erkh484 in the absence of superconductivity. Upon
extrapoiating to zero applied fieid, they find i n oi = 5.5
+0.5. Jaric'0 had previously proposed a similarly "low"

vaiue, I ~ ol =7 5.
To establish reasonable bounds on (, we shall assume

5«l~, l
«15. With the lowest es~ima~e, ln, l =5, the

fc-clltl'y COIldltloll ffoIll thc llc11cal state [Eq. (4)] bccoIIlcs
( &35. The estimates which we shall present here suggest
that $ cannot be nearly as high as this; we therefore believe
that there are difficulties in accepting either the linear or the
helical spin-density-wave states as equilibrium states of
COCx1StCACC.

The parameter ( is defined as a ratio of "magnetic" Lan-
dau parameters to "superconducting" ones. %C shall first
present four essential1y independent estimates for the
numerator of Eq. (3). Because the Landau' theory of
second-order transitions is based on a power-series expan-
sion about the transition temperature, estimates based on
thermodynamic properties near the Curie temperature
should be more reliable than estimates based on properties
near T=O.

(a) According to the Landau theory,

—F (0) = —,
' T Ac(T ) (5)

How reliable is this estimate~ T can hardly exceed 1.3 K,
where extrapolation of the neutron-diffraction data of Sinha
et aI. ' gives zero magnetization. Furthermore, c,„ is more

whcre hc is the specific-heat discontinuity at the "bare"
Curie temperature T . However, the Curie point is not ac-
cessible experimentally, because at T the magnetic order is
suppressed by the superconductivity. And at the re-entry
point T,2=0.9 K, ErRh4B4 exhibits" a first order transition. -

Ho~ever, we get a naive order-of-magnitude estimate by
taking T = T,2 and Ac=c,, „=25 Jmol 'K ' in Eq. (1),
to glvc

—F (0) = 1.8 )& 106 erg cm
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likely an overestimate of Ac; HoRh484, which does have a
second-order transition, has Ac =14 Jmol 'K '. Despite
the uncertainties, Eq. (6) appears to us to be a reasonable
estimate —more probably an overestimate —of —F (0).

(b) We can estimate —F (0) from the spontaneous
magnetization M(0) at T =0; the effective magnetic mo-
ment of the Er'+ ion in ErRh484 at zero field is p, =5.6p, ~,
~hence the spontaneous magnetization is

M(0) = p, /v = 4.9 x 10' G (7)

[Here p,s is the Bohr magneton, 0.9 x 10 "erg G ', and v

is the atomic volume (i.e. , the molar volume/%0)
=1.03 x 10 22 cm3. ] Now, from the Landau theory,

M(o) = I-..I/u. ,

whcncc

-F.(o) =-,'
I .,I[M(0)i .

This gives bounds

Here —in contrast to the magnetic case —Ac,„and T, »

are directly measured. ' The uncertainty lies in the extrapo-
lation of the Ginzburg-Landau theory from its region of
validity near T, t ( =10 K), down to the Iow-«mperatu«
region T & 1 K. However, we are able to correct this
extrapolation. %'c are fortunate that the re-entry tempera-
ture is sufficiently low that all bare superconducting proper-
ties are nearly independent of the temperature. According
to the BCS theory, the superconducting condensation energy
ls propol'tlonal to thc sguarc of thc cncrgy gap, both Bt
T =0 and near T = T,»'. —I', ~ A2. This enables us to use
the Ginzburg-Landau parameters, measured near T,», to de-
fine a set of "effective" parameters valid at low tempera-
tures. Near T,», the microscopic theory gives

S/kT„= O(1 —T/T„) '~',
O= ~[8/7g(3) j'~'=3 06

while at T=o

0.3xlo'ergcm '& —F (0)&0.9&&10 ergcm . (9) A(0) =1.76kT, t (17)

(c) A third estimate is based on the Curie temperature Hence Eq. (15) has overestimated —F, (0) by a factor
(3.06/1.76)'=3.0; the corrected value is

—F (O) +kT /v . (Io)
—F, (0) =0.9 x 10' erg cm (18)

%ith 0.7 K ~ T ~1.3 K, this gives

0.9 &&106 erg cm 3&—F (0)&1.7 X 106 erg cm '. (l l)

We note that estimates (b) and (c) are essentially unaffect-
ed by the recent experimental suggestion that in ErRh484
the coefficient P may vanish, although in that case esti-
mate (a) becomes meaningless.

(d) However, the same experiment which yields P =0
also gives data for a and y from which a very direct esti-
mate may be made. Putting P =0, the minimum condition
on Fis

—F.(0) = —,
'

I ~.ol"'y. '"

Inserting the measured values9 In Ol =5.5, y =1&&10
6, wc immediately find

—F (0) =0.43 xlo' ergcm

The four estimates are reasonably consistent. The most
"precise" experimentally is probably (b), but it is also the
most uncertain theoretically, since Eq. (8) involves the ex-
trapolation of the Landau theory to T =0. Probably (d) is
the most reliable. Moreover, our main interest is in finding
a reliable upper bound for (, and we therefore prefer to be
"pessimistic" and to give the higher estimates of —F
somewhat more weight. %C take as our final set of bounds
on -F (0)

(f) A second estimate follows from the thermodynamical
critical field at zero temperature:

-F,(o) =0,'(0)/8~ .

However, this estimate is necessarily indirect since (i) the
material is of type II (except perhaps close to re-entry), and
it is therefore not H, but rather H, » and H, 2 which are
directly measured, and (ii) the material is not superconduct-
ing at T=o. %hat we can try to do is to make a BCS
extrapolation of H, » and H, 2 from near T, » to low tempera-
tures. This extrapolation is reasonably consistent with the
estimated value of H, for the non-re-entrant material"
LuRh4B4, H, (0) =1.8 &&10' G. This yields

—F,(0) = 1.3 && 10' erg cm

(g) Our final estimate is a rather crude theoretical one:

—F,(o) = —,
' x, (kT, t)'/«,

where we take X, =2 &&1023 cm 3 (i.e., 20 electrons per unit
cell, of volume u), T, t =10 K, and for the Fermi energy eF
we take eF/k =104 K. (Simple metals, e.g. Na, tend to
have eF/k =105 K, but although the electron density in
ErRh484 is not very different from that in a simple metal,
the conduction electrons are largely d electrons of the Rh,
and they have a rather large effective mass). Inserting
these values in (21), we find

0.4&&10 ergcm 3 & F (0) &1.5 x106ergcm 3. (14)
—F,(0) = 1.3 x 10' erg cm (22)

Our next task is to estimate the Ginzburg-
Landau-extrapolated superconducting free-energy density at
zero temperature. Again we give several independent esti-
mates.

(e) Analogously to method (a) for the magnetic free en-

ergy, we use the Ginzburg-Landau relation6

—F,(0) = —T,the, „(T„)= 2.7 x 105 ergcm

The three estimates (e), (f), and (g) are consistent. We
therefore believe that

0.9 x 10' erg cm ' & —F,(0) & 1.3 x 10' erg cm ' (23)

lcplcscAt rcasonablc bounds, BAd cspcclally that thc lower
bound is reliable.

Finally, from Eqs. (14) and (23), (—= F (0)/F, (0) has as
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3&(&17
conclusion that the simple Ginzburg-Landau approach is
1nadcguatc.

Thus, while the estimate (=10 of Ref. 3 may conceivably
be slightly on the lmv side, the values necessary to give re-
entry from the helical state (( + 100, of even + 35) would

appear to bc vcly 1Inplauslblc.
Neutron-diffraction cxpcfilTlcnts on E1Rh484 Bppc81 to

favor some type of 8 llncarly polarized spin-density-%'Bve
state. Should it bc confirmed that this observed state is

slIHply thc plane-%ave-like 11ncar spin-density-%ave state en-
visioned in Ref. 2, our low value for ( would lead to the
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