
  

 

 

 

AN IMPROVED LAGRANGIAN RELAXATION METHOD FOR VLSI 

COMBINATIONAL CIRCUIT OPTIMIZATION 

 

 

A Thesis 

by 

YI-LE HUANG  

 

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

December 2010 

 

 

Major Subject: Electrical Engineering 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M University

https://core.ac.uk/display/147197034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Improved Lagrangian Relaxation Method for  

VLSI Combinational Circuit Optimization 

Copyright 2010 Yi-Le Huang  



  

 

 

 

AN IMPROVED LAGRANGIAN RELAXATION METHOD FOR VLSI 

COMBINATIONAL CIRCUIT OPTIMIZATION 

 

 

A Thesis 

by 

YI-LE HUANG  

 

Submitted to the Office of Graduate Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Co-Chairs of Committee,  Jiang Hu 

 Weiping Shi 

Committee Members, Duncan M. Walker 

Head of Department, Costas N. Georghiades 

 

December 2010 

 

Major Subject: Electrical Engineering 



 iii 

ABSTRACT 

 

An Improved Lagrangian Relaxation Method for VLSI Combinational Circuit 

Optimization. (December 2010) 

Yi-Le Huang, B.S., National Tsing Hua University; 

M.S., National Tsing Hua University 

Co-Chairs of Advisory Committee: Dr. Jiang Hu 

         Dr. Weiping Shi 

 

Gate sizing and threshold voltage (Vt) assignment are very popular and useful 

techniques in current very large scale integration (VLSI) design flow for timing and 

power optimization. Lagrangian relaxation (LR) is a common method for handling 

multi-objectives and proven to reach optimal solution under continuous solution space. 

However, it is more complex to use Lagrangian relaxation under discrete solution space. 

The Lagrangian dual problem is non-convex and previously a sub-gradient method was 

used to solve it. The sub-gradient method is a greedy approach for substituting gradient 

method in the deepest descent method, and has room for further improvement. In 

addition, Lagrangian sub-problem cannot be solved directly by mathematical approaches 

under discrete solution space. Here we propose a new Lagrangian relaxation-based 

method for simultaneous gate sizing and Vt assignment under discrete solution space. In 

this work, some new approaches are provided to solve the Lagrangian dual problem 

considering not only slack but also the relationship between Lagrangian multipliers and 

circuit timing. We want to solve the Lagrangian dual problem more precisely than did 
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previous methods, such as the sub-gradient method. In addition, a table-lookup method 

is provided to replace mathematical approaches for solving the Lagrangian sub-problem 

under discrete size and Vt options. The experimental results show that our method can 

lead to about 50% and 58% power reduction subject to the same timing constraints 

compared with a Lagrangian relaxation method using sub-gradient method and a state-

of-the-art previous work. These two methods are implemented by us for comparison. 

Our method also results in better circuit timing subject to tight timing constraints.  
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CHAPTER I 

INTRODUCTION 

 

 In deep sub-micron technologies, minimization of leakage power becomes the 

dominant concern as we try to combat the increase in the overall circuit power 

consumption. In addition, power consumption also directly relates to battery life, 

reliability, packaging and heat removal cost. Therefore, how to efficiently handle trade-

off between circuit performance and power consumption becomes a big issue in current 

design flow.  

In the past, due to chip area cost issue, people focused on area/timing 

optimization to minimize total chip area subject to circuit timing constraints. Gate sizing 

[1] is one of the most popular methods people used to perform area/timing, or 

area/timing/power, optimization for circuit designs. In recent years, leakage power 

becomes more and more important due to battery life, reliability, packaging and heat 

removal cost. People start to put attention on leakage power and try to optimize 

combinational circuit for leakage power reduction by using different threshold voltage 

(Vt) levels [2-4]. A gate with a higher Vt level will decrease performance but reduce 

power. Oppositely, a gate with a lower Vt level will result in better performance but 

more leakage power. Therefore, we can use gates with higher Vt level in non-critical 

paths to reduce leakage power and then keep gates in critical paths lower Vt level for  

____________ 

This thesis follows the style of IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems. 
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retaining desired performance. It is obvious that there are many similarities between 

traditional gate sizing and Vt assignment, and hence they can be easily combined with 

each other for combinational circuit optimization [5-10]. 

Most of simultaneous gate sizing and Vt assignment methods are either 

sensitivity-based heuristics [2,8] or mathematical programming methods [3,9,11]. In the 

sensitivity-based heuristics, people use their own sensitivity function to evaluate gates in 

the circuit and choose gate size and Vt level according to function value. Usually, the 

sensitivity function only considers about some local information, like the efficiency of 

trading power for performance for single gate. Hence, the timing critical gate which can 

speed up itself more and cost less power than others is the best candidate for bigger sizes 

or lower Vt levels. Unfortunately, the sensitivity function only takes local information 

into consideration, only caring about effect for current gate not whole circuit. The greedy 

nature makes sensitivity-based methods easily to fall into local optimal. 

In [1], continues gate/transistor sizing is formulated as geometric 

programming and [11,12] solves it by Lagrangian relaxation. In [12], constraints are 

defined on circuit components rather than circuit paths. Therefore, the number of timing 

constraints is only linearly proportional to the number of circuit components rather than 

an exponential number of circuit paths. Then, the Lagrangian relaxation method solves 

the constrained optimization problem by relaxing constraints into objective function with 

Lagrangian multipliers and the constraint-reduced problem can be solved easier than 

original one. By iteratively changing Lagrangian multipliers with decreasing step size, 
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this work is proved to converge and guarantee optimality. Therefore, the mathematical 

method becomes one of the main approaches to solve circuit optimization problems.   

Nowadays, circuits are implemented by gates in standard library provide by 

foundries. Sizes and threshold voltage options of logic gates are limited and discrete 

specified in the standard library. Usually people use traditional continuous optimization 

methods for circuit optimization at first and then solutions are rounded to the nearest 

feasible options. Existing rounding continuous optimization methods [13,14] result in 

remarkable rounding errors and the errors can be significant if options in standard library 

are highly discrete [15].  

The continuous gate sizing method by Lagrangian relaxation [12] gives us a good 

starting point for simultaneous gate sizing and Vt assignment. Even though the 

Lagrangian relaxation method is proved to converge and guarantee optimality, there are 

still many practical implementation details which weaken this work [16] due to the 

nature of greedy approaches when solving Lagrangian dual problem. For instance, 

different step size method and initial Lagrangian multipliers affect solution quality and 

make run time much longer.  

Besides, the shape of Lagrangian dual problem under discrete solution space 

becomes sharper and non-convex, and the greedy nature makes sub-gradient method 

used in [12] struggle when applied on discrete solution space. Sub-gradient method tends 

to oscillate and those oscillating iterations have no benefit for approaching the optimal 

solution of Lagrangian dual problem. Therefore, sub-gradient method using in 
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continuous solution space is not powerful enough to guide Lagrangian relaxation and 

guarantee optimality under discrete solution space anymore.  

In this work, we consider simultaneous discrete gate sizing and Vt assignment for 

general very large scale integrated (VLSI) circuits by Lagrangian relaxation. Timing 

constraints reside in circuit components and objective function is to minimize total 

circuit power consumption. Due to the weakness of sub-gradient method under discrete 

solution space, we propose some new approaches for solving Lagrangian dual problem. 

We also solve the Lagrangian sub-problem directly under discrete solution space by a 

table lookup method without rounding errors. Compared with those sensitivity based 

heuristics, our method using Lagrangian relaxation is more systematic and therefore 

leads into better solution quality. Our new approach for solving Lagrangian dual 

problem distinguishes our method from those previous Lagrangian relaxation based 

methods using sub-gradient method. Experimental results show that our dual problem 

approach gives Lagrangian relaxation better direction toward optimal solution and 

results in faster convergence than sub-gradient method.  

The rest of this thesis is organized as follows. In Chapter II, we introduce some 

notations and terminology that we use in this paper. In Chapter III, we write down the 

detailed problem formulation of this work. In Chapter IV, we briefly present how 

Lagrangian relaxation solves constrained optimization problem. In Chapter V, we show 

how to improve Lagrangian relaxation with our algorithm for dual problem under 

discrete sizes and Vt levels and our algorithm for sub-problem is in Chapter VI. In 

Chapter VII, we show experimental results compared with the dual problem method in 
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[12] and sub-problem method in [17] under two different timing requirements. The 

convergence of our method is demonstrated by results of an ISCAS85 benchmark.  
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CHAPTER II 

PRELIMINARIES 

 

 Given a combinational logic circuit, usually it can be described by a directed 

acyclic graph (DAG)       , where   is a set of nodes representing circuit components, 

including logic gates  , input drivers   and output loads  ,        , and   is a 

set of edges indicating the wire connection between components. Each edge       

indicates the connection between    and      and logic signal propagates from    to   . 

Each logic gate      has a size    and a Vt level   , total |  |  |  | possible 

options. The simultaneous gate sizing and Vt assignment problem is to assign       

and       for all      such that the total power consumption is minimized subject to 

timing constraints. For example, for the circuit in Figure 1,   ,    and    are logic gates 

and     and     are edges between    and   , and    and   , respectively. The gates    

and    are called the fan-in gates of   ,          . On the other hand,    is called the 

fan-out gates of    and   ,           .  

Figure 1. A circuit example with three logic gates 
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Here we only consider two kinds of power consumption, dynamic and leakage 

power. Dynamic power      consumption is proportional to switching factor  , clock 

frequency     , load capacitance       and square of supply voltage level    . Detailed 

equation of dynamic power is           
            ⁄ . On the other hand, leakage 

power          consumption is related to supply voltage and off current      of gates, 

where      is given by cell library changed with size and Vt level. Detailed equation of 

leakage power consumption is               . There are still some other types of 

power consumption, like short circuit power, and they are relatively small so we ignore 

them in this work. However, they can be taken into consideration easily when they are 

significant.  

In this work, we take Elmore delay model as our delay model and model circuit 

components as resistance-capacitance (RC) circuits [18]. A logic gate      is modeled 

as input capacitance    and output resistance    plus intrinsic delay      
, as shown in 

Figure 2. A wire segment is modeled as a  -type RC circuit. The wire model for a wire 

      is shown in Figure 3 where     
 is length of     and       and       are the unit 

Figure 2. The RC model for a logic gate 
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length wire resistance and capacitance, respectively. The delay associated with a resistor 

is calculated by its resistance times its downstream capacitance. The delay for a path is 

the sum of the delay on resistors which it passes through. The Elmore delay model is 

relatively easy and proven to be applicable to distributed network of resistors and 

capacitors. However, our work can also deal with more complex delay model easily. 

Here we assume that the arrival time   at input resistors and required arrival time   at 

output capacitors are given. Then, arrival time for      is calculated by    

                                     
        and required arrival time is calculated 

by                                         
       . The timing information can be 

obtained easily by static timing analysis [19]. The arrival time is propagated in 

topological order and oppositely required arrival time is obtained in reversed topological 

order. In Figure 4, arrival time of gate 3,   , is propagated from gate 1 and 2, and the 

detailed equation is that                  where    is delay of gate 3. Required 

arrival time of gate 3,   , is propagated from gate 4 and 5, and the detailed equation is 

that                     where    and    are delay of gate 4 and 5, 

Figure 3. The RC model for a wire segment 
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respectively. Then, slack is used to indicate the timing criticality of components given by 

   . If the slack of a component is negative, it means that the timing constraint on this 

component is violated. The overall circuit timing is characterized by the minimum slack 

among components.  

  The size of a gate      affects some of its parasitic elements, including 

intrinsic delay, input capacitance, output resistance, dynamic and leakage power 

consumption. The Vt level of a gate also changes some of its parasitic elements, like 

intrinsic delay and dynamic power consumption. We use   
    to represent output 

resistance of      under       and       and other parasitic elements also 

symbolized by the same rule. All the parasitic information of logic gates is defined in a 

cell library. A gate with a bigger size results in smaller input capacitance, bigger output 

resistance, bigger intrinsic delay and higher power consumption. A gate with a higher Vt 

Figure 4. An example of static timing analysis 
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level will be converted to a gate model with bigger output resistance and lower power 

consumption. 
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CHAPTER III 

PROBLEM FORMULATION 

 

 Given a combinational circuit, we want to solve the problem of minimizing the 

total circuit power consumption with respect to gate size and Vt level subject to the 

timing constraints, no negative slack in the circuit. We formulate the problem as a 

constrained optimization problem with a polynomial number of constraints. These 

constraints are formulated with arrival time   and only applied on components rather 

than paths to reduce the number of constraints. We call the constrained optimization 

problem primal problem,   . 

             ∑     

    

 

                                  

                                          

                                   

                         

  ,   ,   and    are given required arrival time, power consumption, weighting factor 

and gate delay of   , respectively.  
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CHAPTER IV 

LAGRANGIAN RELAXATION 

 

 Lagrangian relaxation method is a well-known approach for solving constrained 

optimization problem. In [12], a timing constrained area optimization problem is solved 

by Lagrangian relaxation under continuous gate sizes. In Lagrangian relaxation method, 

constraints are relaxed and incorporated into the objective function by multiplying with 

Lagrangian multipliers  ⃗. A Lagrangian multiplier   is a non-negative value for each 

constraint. A Lagrangian multiplier     is associated on the arrival time constraint of the 

wire connection from    to   , where    is a fan-in gate of   . Then the new objective 

function becomes 

   ∑      

    

∑    

            

     

(     )  ∑    

            

     

(        )

 ∑    

    
 

        

For a given vector λ⃗⃗, we have a new optimization problem only with size and Vt 

constraints and the constraint-reduced optimization problem only with size and Vt level 

constraints is called Lagrangian sub-problem      .  

                   

                             

 



 13 

 It can be shown that there exists a vector of Lagrangian multipliers λ   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  such that 

the optimal solution of Lagrangian sub-problem is also the optimal solution of original 

constrained optimization problem. How to find the λ   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is called Lagrangian dual 

problem    . To reduce the complexity of   , we apply Kuhn-Tucker (KKT) conditions 

to it, requiring       ⁄    at the optimal solution for     . Applying       ⁄   , 

we can get the optimal conditions for λ⃗⃗,  

∑ λ  

             

 ∑ λ  

            

           

The optimal conditions say that for all logic gates and input resistors, the sum of 

Lagrangian multipliers on the wire connected from its fan-in gates must be equal to the 

sum of Lagrangian multipliers on the wire connected to its fan-out gates. We use Figure 

5 to illustrate the KKT conditions where             must be equal to        .  

Using the result of KKT conditions, the problem can be further reduced to  

Figure 5. An example of KKT condition 
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   ∑      

    

∑  ∑     

             
      

    

                             

Replacing ∑ λ               
 by    for          , the problem can be written as  

   ∑      

    

∑     

      

  

                             

We can see that there is only power and component delay left in    without arrival time. 

The part of    affected by a component is independent from that affected by others. 

Therefore, the Lagrangian sub-problem can be solved much easier than the original 

objective function with arrival time.  

In [12], for a given    
⃗⃗⃗⃗⃗, the Lagrangian sub-problem       can be solved 

optimally by a greedy algorithm when the gate sizes are continuous. The algorithm 

iteratively performs local optimal sizing for a gate while the other gates are fixed. For 

    , the local optimal size is √               ⁄ , where    ∑                 
 and 

   is the downstream capacitance of   . For the convenience of presentation, we ignore 

gate size constraints in this equation.  

The problem of finding the optimal set of Lagrangian multipliers λ   
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is called 

Lagrangian dual problem    . 
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              ( ⃗) 

       ( ⃗)     (∑      

    

∑  ∑     

             
      

   )                    

In    , we try to find a vector  ⃗ such that  ( ⃗) is the maximum.  

 In general,   λ  is not differentiable, so the gradient direction used in steepest 

descent method does not work and therefore is replaced by sub-gradient direction here. 

For each arrival time, its sub-gradient is defined as the arrival time constraint and then 

evaluated with current situation. The sub-gradient direction  λ⃗⃗ is the vector of all the 

sub-gradients. Next, the sub-gradient direction  λ⃗⃗ is multiplied by a step size  . Then, 

the next point for Lagrangian multipliers λ⃗⃗ is obtained by current point plus sub-gradient 

direction. Given that the step size satisfies the following conditions:            and 

∑   
 
     , the sub-gradient method will converge to the optimum under continuous 

solution space. The equations for updating Lagrangian multipliers associated with a gate 

by corresponding sub-gradients are shown as followed.  

                         {

      (     )              

      (        )     

                            

 

 



 16 

CHAPTER V 

IMPROVED ALGORITHM FOR SOLVING LDP 

 

 As we mentioned before, Lagrangian relaxation methods are easily weakened by 

the practical implementation details. The sub-gradient direction does not always guide 

Lagrangian relaxation method to the optimal solution for discrete cases. Here we want to 

find a better way to solve     to make Lagrangian relaxation method to converge faster 

with better solution quality under discrete solution space.  

The importance of KKT conditions  

Here we want to spend some time to look into KKT conditions. In Lagrangian 

relaxation method, the Lagrangian multipliers work like weight of constraints. If a 

constraint is violated, its Lagrangian multiplier will be increased according to its slack. 

Then, gates with bigger   are allowed trading more power for timing by using bigger 

gate size or lower Vt level. Unfortunately, it does not make sense to choose gate size and 

Vt level only considering about local information of a gate. If that, Lagrangian relaxation 

Figure 6. An example of circuit with -5 slack on all the components 
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will fall into local optimal easily due to lack of global information. In Figure 6, there are 

three gates in the circuit and the slack on all components are the same, -5. We assume 

that the initial value of Lagrangian multiplier is zero. Without KKT conditions, the sub-

gradient  λ for each constraint is 5, assuming that     for simplicity. Then Lagrangian 

multiplier λ is 5 and   is 10 when we calculate   by the sum of λ from fan-in gates. We 

can see that the weights for these three gates are the same, as shown in Figure 7. It 

means that the power allowed to trade for timing on these three gates is the same. For 

simplicity, we assume that the efficiency of trading power for timing among these three 

gates is the same. If we change the solution of    to make constraints on    satisfied, 

then the constraints on    and    will also be satisfied. However, if the change is made 

on either    or   , the constraints on    is still violated unless the change is made on    

and    concurrently. The power consumption of changing    and    will be twice than 

that of changing   . However, KKT conditions provide us a very good way to avoid the 

above situation. KKT conditions can help us to solve     with global information. The 

Figure 7. The distribution of Lagrangian multipliers of circuit in Figure 6 without 

  KKT condition 
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distribution of λ and   with KKT conditions for the circuit in Figure 6 is shown in Figure 

8. Both of    and    are only half of   . Hence only when the efficiency to trade power 

for timing of    and    are both twice better than that of   , the situation of changing    

and    concurrently, instead of    will happen. By the example, we can see the 

importance of KKT conditions when we solve    .  

 The optimal constraints of KKT conditions for λ⃗⃗ of gates are very similar to the 

flow constraints for nodes in flow network, in flow must being equal to out flow. In 

order to keep KKT conditions hold when solving    , we calculate sub-gradient 

direction by using the same idea of distributing flows in flow network. At first, we 

calculate flows,  λ⃗⃗, at source nodes and then distribute flows toward sinks in circuit, 

      , without edge capacity limits. With that, we can guarantee that the KKT 

conditions are always met.  

Figure 8. The distribution of Lagrangian multipliers of circuit in Figure 6 with  

  KKT condition 
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The disadvantage of sub-gradient method  

In the sub-gradient method,  λ⃗⃗ is decided by slack. Under discrete solution space, 

circuit timing on some sensitive paths changes drastically and oscillates between big 

number of positive and negative slack. Sub-gradients on those paths are relatively large 

and that makes Lagrangian relaxation jumping over the optimal solution. Those 

oscillations will result in stall iterations and make Lagrangian relaxation hard to reach 

the optimal solution. In the other hands, if small slack happen on less sensitive paths, 

sub-gradients on those paths are small. The small steps for those paths cause us a lot of 

iterations to approach optimal solution. Hence, in this work we want to find  λ⃗⃗ 

considering about slack and sensitivity of paths, or sub-circuits, concurrently.  

Furthermore, in some cases the sum of sub-gradients on fan-in edges of a gate is 

far away from that on fan-out edges. It is hard to keep KKT constraints satisfied under 

above situation. Here we take gate 3 in Figure 9 for example. The slack on         and 

Figure 9. An example circuit with different values of Lagrangian multiplier on fan-in and   
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    is -5, 20 and -5, respectively, and sub-gradients on those edges are 5, -20 and 5. 

Therefore, the sum of sub-gradients on fan-in edges is -15 and that on fan-out edges is 5. 

It is confusing that how to make KKT conditions satisfied on gate 3 and which number 

    should be. Generally, value of Lagrangian multiplier on a gate with negative slack 

should keep increasing until its slack become positive. When solving    , it should be 

avoided to decrease value of Lagrangian multipliers, applying negative   , on those 

gates with negative slack. However, the sub-gradient method cannot deal with the 

situations we mention above well because the sub-gradient direction is only related to 

slack. 

Sensitivity of Lagrangian multiplier and arrival time  

In the following chapters, we will introduce our methods to find directions for 

Lagrangian relaxation better than the sub-gradient method. When solving    , if  λ is 

distributed to a component, it will keep being distributed in the sub-circuit rooted by the 

Figure 10. The effect of distributing  λ 
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component, fan-in cone, as shown in Figure 10. Therefore the effect of distributing  λ to 

the component is equal to that of distributing  λ to the sub-circuit. Then, due to the 

distribution of  λ in the sub-circuit, timing inside the sub-circuit may change and arrival 

time of the component also change. Thus, the arrival time of a component will change 

along with its Lagrangian multiplier and there must be a kind of relationship between 

Lagrangian multiplier and arrival time of a component. Here we assume that the 

relationship can be modeled as a function   for each component, where       . 

Arrival time a of a component is a function of its Lagrangian multiplier value  . Each 

component has its own   function. Then the first order differentiation of   function 

means the ratio of trading Lagrangian multiplier for arrival time,           . With 

the known    function, it is more reasonable to calculate  λ for a component using its 

slack divided by         ,                 ⁄ , where      is its current value of 

Lagrangian multiplier. The  λ is what the component needs now to make its constraint 

satisfied. We think that considering about ratio of trading Lagrangian multiplier for 

arrival time can assign Lagrangian multipliers for constraints more accurately than sub-

gradient method.  

Unfortunately, it is impossible to directly figure out the equation of  ( ) because 

sizes and Vt levels are not continuous, resulting in non-smooth Lagrangian multiplier 

and arrival time curve. The curve shown in Figure 11 is extracted from simulation results 

of a component in C432 benchmark. It shows that the curve of Lagrangian multiplier and 

arrival time is not only non-smooth but complex so that we cannot use either a linear 
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function, or even quadratic function, to model it. Therefore, the well-known curve-fitting 

method cannot be applied here. 

 My slope function 

Due to complex curves of Lagrangian multiplier and arrival time of components, 

it is impossible to directly formulate   function and then calculate    function we 

mention in previous chapter. Here, we use a history-based method to substitute the    

function. A table T associated with each component is used to record pairs of its 

Lagrangian multiplier and arrival time,      , and updated iteratively. Those pairs stored 

in T are sorted by   value. We assume that the value of    function at a given point is 

similar to that at its neighbors. Therefore, we use a function called slope to replace the    

function for calculating   . The slope function has two parameters, T and  , where T is 

the table associated with a component and   is the Lagrangian multiplier value of this 
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component. The slope function uses historic information stored in table T to predict the 

ratio of trading Lagrangian multiplier for arrival time at current   value, slope at current 

point. We assume that the correlation between ratios is inversely proportional to the 

difference between values of their Lagrangian multipliers. Here, we use weight variables 

w to present the correlations and the sum of all the weight variables is one. Then, the 

return value of       function is the sum of product of each slope between two 

consecutive pairs in the table T and its corresponding weight variable. The function 

              can be written as 

              ∑ (  (       ) (       )⁄ )(         ) (     )  , where    

| ((       )  ⁄      )⁄ |. The pseudo code of our history based method for 

calculating       function is shown in Figure 12. Here we use a simple example in 

Figure 13 to show the calculation of slope function. There are four pairs in a table T and 

  is 2. Then the return value of            is calculated by  

 |        ⁄    ⁄ |           ⁄  |        ⁄    ⁄ |             ⁄  ⁄  

ALGORITHM slope 

Input :                                            
Output :           
  
For j = 1 to size(T)  

                                     –               

 total_weight+=         

                                     

 total_slope+=              ; 

          = total_slope/ total_weight;  

Figure 12. The pseudo code of calculating       function 
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 |        ⁄    ⁄ |  |        ⁄    ⁄ |       

 The solid curve is formed by the data in T and the dashed line is the prediction based on 

the return value of           . The slope of the dashed line is -1.5.  

In order to keep history data accurate, we perform pruning in each table. 

Generally, a larger value of Lagrangian multiplier allows more power for timing, 

resulting in smaller arrival time for a component. Therefore, if a bigger Lagrangian 

multiplier results in larger arrival time, it means that the distribution of Lagrangian 

multiplier in the fan-in cone of the component is not good enough. Some power is spent 

to speed up some unnecessary paths and those timing improvements have no benefit for 

the timing of the fan-in cone. We define that  λ      is inferior to (λ    ) if λ  λ  and 

      and those interior pairs will be pruned. 

 On the other hand, size of table keeps growing with the increase of simulation 

iterations. To prevent from memory explosion, we need to remove some data which is 

less useful to reduce table size. We know that finally the vector of Lagrangian 

Figure 13. An example of calculation of slope function 
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multipliers will converge so that the Lagrangian multipliers only change in a small 

region. The information which is far away from current operating region has little 

influence when calculating slope function. Therefore, the pair         with biggest value 

of Lagrangian multiplier difference, |           |, is the least useful data so it will be 

removed when the size of the table exceeds a user-defined limit.  

Distribution of Lagrangian multipliers 

With the slope function for each component, we can start to distribute 

Lagrangian multipliers in       . Here, we distribute Lagrangian multipliers in 

reversed topological order, from output loads to input resistors, working with arrival 

time information. For a circuit, output loads are treated as sources and input resistors 

work as sinks. The process of distribution can also be performed in topological order 

with required arrival time information.  

In each iteration, we calculate the change of Lagrangian multipliers  λ at sources 

and the  λ for each source is equal to                    ⁄  where     . The symbol 

            is arrival time, given required arrival time, data table and Lagrangian 

multiplier of   , respectively. Then those  λs are propagated toward sinks in reversed 

topological order. For each logic gate, it receives  λ  from its fan-out gates and then 

propagate the sum of  λ it receives,   , to its fan-in gates. The difference between  λ 

propagation and common flow propagation in flow network is that  λ can be negative. 

In general,  λ is negative if the constraint on the component is met, positive slack. 

When distributing  λ, it is not always possible to assign as much  λ as a 

component needs to satisfy its constraint without violating KKT conditions. In static 
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timing analysis, the arrival time of a gate is the maximum arrival time among its fan-in   

gates. It is not useful to reduce arrival time on those non-timing critical fan-in gates. 

Thus for a gate, when distributing its    for fan-in gates, the main goal is to make arrival 

time of them equal. Therefore, we will not waste power on the non-timing critical sub-

circuits by assigning too large number of Lagrangian multiplier to them. At first, we 

calculate the expected arrival time      for all the fan-in gates such that the sum of  λs 

on them is equal to that on fan-in gates. The equation for calculating      for      is 

∑                      ⁄            
 ∑                   

    . With     , we 

Figure 14. A circuit example with five logic gates and     is -5 

    
2 

    
3 

    
5 

    
1 

    
4 

  

  

 
  

       

      

      

   

   

   

   



 27 

can calculate  λ for each fan-in gate and also guarantee KKT satisfied. The equation for 

calculating  λ is For all             ,                           ⁄ . Here we 

use an example to illustrate the distribution of Lagrangian multipliers in our work. When 

distributing    of a gate, we regard    as flows passing among the gate and its fan-in 

gates. If    of a gate is negative/positive, it means the gate work as a sink/source and all 

its fan-in gates are treated as either sources or sinks to satisfy the flow constraints. We 

take the circuit in Figure 14 for example. There are five gates and     is -5. So gate 5 is 

treated as a sink and we need to generate flows toward it from its fan-in gates and the 

sum of coming flows is 5. By the equations we mention above, the result of 

distributing   as flows is shown in Figure 15 where the number on an arrow presents 

flows going on the corresponding edge. We take gate 1 for example. Due to its arrival 

time,      and value of slope function,     is 2. Hence gate 1 works as a sink to receive 

flows from other gates and the total number of flows is 2. We can see that the total flows 

going to gates 5 are 5 so the flow constraint on gate 5 is satisfied.  
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Figure 15. The result of distributing    as flows 
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CHAPTER VI 

IMPROVED ALGORITHM FOR SOLVING LRS/λ 

 

For Lagrangian sub-problem, we apply the local optimal sizing method to solve 

gates individually. We find size and Vt level for a gate while keeping all other gates 

fixed. For a gate     , the    can be written as 

       
     (∑               

  )   
         

                              , 

where            . Due to discrete sizes and Vt levels, we cannot solve    by any 

mathematical method. Here we use a table look-up method to find the solution for each 

gate. For a gate     , we have known   
     and   

     for different combination of size 

ALGORITHM solve_sub_problem 
Input : combinational circuit G and cell library L 
Output : size and Vt level for all gates in G 
  
For all the gates      in G 

 For         and             in L 

  now_l =     
  

     
  

   

  For              

   now_l +=      
  

 

                 

        = now_l 
          
         
For all the gates      in G 

Implement    by       and     

Figure 16. The algorithm for solving Lagrangian sub-problem 
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      and Vt level      . Then we evaluate    with all the combinations of size and 

Vt level to find the size and Vt level combination resulting in minimum   . We show the 

algorithm for solving sub-problem in Figure 16. With that, we can avoid the remarkable 

errors to round continuous solutions into the nearest feasible size and Vt level. Due to 

the nature of greedy method, we need to iteratively solve the Lagrangian sub-problem 

until converge. However, sometimes       function may be not accurate enough due to 

some suddenly huge arrival time change when size or Vt level of gates change inside the 

sub-circuit. Therefore, we need to do some adjustment for  λ  when iteratively solving 

Lagrangian sub-problem. Here no new  λ comes into        at output loads, only 

redistributing  λ by       function with updated table data of each gate. Our result 

shows that the minor change for Lagrangian multipliers will not delay convergence too 

much.  
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CHAPTER VII 

EXPERIMENTAL RESULTS 

 

 We compare our method with a Lagrangian relaxation based method using sub-

gradient for dual problem. The initial Lagrangian multipliers and method for Lagrangian 

sub-problem are the same. Our experiments focus on the comparison between our 

Lagrangian dual problem method using slope function and sub-gradient method in [12]. 

Besides, we also compare our method with a state-of-the-art Lagrangian relaxation based 

method under discrete solution space [17]. The core idea of [17] is that the Lagrangian 

sub-problem is solved by a DP-like method including consistency relaxation and coupled 

bi-directional search. In this work, ISCAS85 benchmarks are used for comparison, 

synthesized by SIS [20] and placed by mPL [21]. The cell library is based on 70   

technology. There are eight size options, 0.25X, 0.5X, 1X, 2X, 3X, 4X, 6X and 8X of 

original size, and three Vt levels for each logic gate. There are totally 24 different 

implementations for each logic gate. The     is set to 0.9V. Elmore delay model and an 

analytical leakage power model [5] are used for delay and power calculation in our 

experiments. In addition, wire delay is also included in circuit delay. At first, we set all 

the gates to minimum power consumption implementation, smallest size and highest Vt 

level, and   for all constraints is zero. Table 1 shows the experimental results of our 

method, sub-gradient method [12] and [17] under loose timing constraints. The 

experimental results show that our method reduces 50% power consumption on average 

with only 35% run time overhead compared with sub-gradient method and 58% power  

Table 1. Experimental results with loose timing constraints 
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consumption on average with faster run time than [17]. Then we run experiments with 

tight timing constraints to change the main objective to circuit performance. The results 

in Table 2 show that our method can find the solution with positive slack for all the 

Table 1. Experimental results with loose timing constraints 

Table 2. Experimental results with tight timing constraints 
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benchmarks but sub-gradient method and [17] cannot. Therefore, the experimental 

results demonstrate the robustness of our method for either power reduction or circuit 

performance.  

In addition to ISCAS’85 benchmark, we also run experiments on a chain 

benchmark. The chain structure is a simple but special case.  In a chain, almost all 

conditions for each gate are the same, including slack, value of Lagrangian multiplier, 

input resistance and output load. Once the value of Lagrangian multiplier reaches certain 

threshold values, a lot of gates will change at the same time. Because the circuit input 

Figure 17. Initial setup of a chain 

 0  0  0  0  0  0 

Figure 18. The first five gates size up to option 1 

 1  1  1  1  1  0 

Figure 19. The first four gates size up to option 2 

 2  2  2  2  1  0 
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driver is always fixed and relatively small, so the first gate will size up at first, then the 

change will keep passing along the chain. If output resistance of a gate reduces, the 

reduction will facilitate the sizing up of the following gate. In other words, for a gate, 

once its input resistance becomes smaller, the gate can size up with smaller Lagrangian 

multiplier value. Oppositely, the last gate in a chain needs a bigger Lagrangian multiplier 

value to size up due to smaller output load than other gates. Generally, the 

implementation of gates in the middle will be the same unless the input resistances or 

output loads of certain gates change. We use an example to show how Lagrangian 

relaxation-based method works in a chain case. In Figure 17, all gates are initialized to 

size option 0, smallest size, and then we start to increase Lagrangian multipliers of gates. 

When reaching a certain value, the first five gates will size up to option 1 to speed up the 

chain. If we keep increasing values of Lagrangian multipliers, then the first four gates 

will size up to option 2 at the same time. Because the value of Lagrangian multipliers of 

all gates is the same, many gates will change their implementations at the same time. So 

it is impossible for Lagrangian relaxation to find the optimal solution of a chain for 

certain timing constraints under discrete solution space. In other words, there is no any 

vector of Lagrangian multipliers which can result in the optimal solution under certain 

timing constraints in a chain case. For example, we assume the circuit delay in Figure 18 

is 10 and that in Figure 19 is 15. We set the timing constraint of this circuit to 13 and we 

assume both the circuit solutions in Figure 18 and Figure 19 are not the optimal solution. 

Then Lagrangian relaxation-based method will oscillate between them.  Hence, it is the 

reason that our method cannot reach optimal solution even in a simple chain benchmark. 
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 In our chain benchmark, there are 11 identical gates and the distance between 

any two consecutive gates is the same. Under the setup we used in Table 1, the optimal 

power of chain benchmark is 26.6114 with 0.057 slack. Our method, sub-gradient 

method and [17] all cannot reach the optimal solution. The result of our method of the 

chain benchmark is shown in Figure 20 and the optimal solution is shown in Figure 21. 

The number above a gate means its implementation. The number 2/2 means size option 2 

and Vt level 2.  

 2/2     2/2     2/2     2/2     2/2      2/2     2/2    2/2     2/2     2/2     1/2 

Figure 20. Solution of our method for the chain benchmark 

 2/2     2/2     2/2     2/2     2/2      2/2     2/2    2/2     2/2     1/1     1/2 

Figure 21. The optimal solution for the chain benchmark 
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In addition, we show the detailed slack and power information iteratively for 

C432 benchmark. In Figure 22, it shows that the power consumption of the circuit only 

change in small region close to 250. In Figure 23, we can see that the slack of the circuit 

only has minor change around 0. The results show the convergence of our method. 

However, in Figure 24 and 25, the slack and power information for each iteration show 

that sub-gradient method under discrete solution space oscilates and does not converge 

to a feasible solution. We can see that the timing information oscilate far away from 

feasible solution with slack greater than zero in several iterations. Therefore, our 

improved algorithm for solving dual problem make Lagrangain relaxation stable and 

converge faster to final result. 

Figure 22. Power information of iterations by using our method 
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Figure 23. Slack information of iterations by using our method 

Figure 24. Power information of iterations by using sub-gradient method 
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Figure 25. Slack information of iterations by using sub-gradient method 
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CHAPTER VIII 

CONCLUSION 

 

 In this work, we propose an improved Lagrangian relaxation method for 

simultaneous discrete gate sizing and Vt assignment. The main idea of this work is that 

we distribute Lagrangian multipliers based on not only slack but sensitivity of timing 

and Lagrangian multipliers by our slope function. The Lagrangian multiplier distributed 

on each component is more accurate so that timing constraints will be just satisfied and 

no extra power will be wasted. We use a practical cell library in this work with discrete 

sizes and Vt levels. Therefore, our method can be applied to any industrial standard cell 

based designs for circuit optimization. The experimental results show that our method 

can improve 50% and 58% in power consumption under the same timing constraints 

than a Lagrangian relaxation method using sub-gradient method and [17]. In addition, 

our method can also find feasible solution but sub-gradient and [17] cannot when tight 

timing constraints are given. As a result, our improved Lagrangian relaxation method is 

powerful enough to handle discrete sizes and Vt levels with good solution quality and 

tolerable run time cost. 
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