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ABSTRACT

Mathematical Foundations and Algorithms for Clique Relaxations in Networks.

(December 2011)

Jeffrey Lee Pattillo, B.S., Wheaton College; M.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Sergiy Butenko

Dr. Huafei Yan

This dissertation establishes mathematical foundations for the properties exhib-

ited by generalizations of cliques, as well as algorithms to find such objects in a

network. Cliques are a model of an ideal group with roots in social network analysis.

They have since found applications as a part of grouping mechanisms in computer

vision, coding theory, experimental design, genomics, economics, and telecommuni-

cations among other fields. Because only groups with ideal properties form a clique,

they are often too restrictive for identifying groups in many real-world networks.

This motivated the introduction of clique relaxations that preserve some of the var-

ious defining properties of cliques in relaxed form. There are six clique relaxations

that are the focus of this dissertation: s-clique, s-club, s-plex, k-core, quasi-clique,

and k-connected subgraphs. Since cliques have found applications in so many fields,

research into these clique relaxations has the potential to steer the course of much

future research.

The focus of this dissertation is on bringing organization and rigorous method-

ology to the formation and application of clique relaxations. We provide the first

taxonomy focused on how the various clique relaxations relate on key structural prop-

erties demonstrated by groups. We also give a framework for how clique relaxations

can be formed. This equips researchers with the ability to choose the appropri-

ate clique relaxation for an application based on its structural properties, or, if an

appropriate clique relaxation does not exist, form a new one.
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In addition to identifying the structural properties of the various clique relax-

ations, we identify properties and prove propositions that are important computa-

tionally. These assist in creating algorithms to find a clique relaxation quickly as it

is immersed in a network. We give the first ever analysis of the computational com-

plexity of finding the maximum quasi-clique in a graph. Such analysis identifies for

researchers the appropriate set of computational tools to solve the maximum quasi-

clique problem. We further create a polynomial time algorithm for identifying large

2-cliques within unit disk graphs, a special class of graphs often arising in communi-

cation networks. We prove the algorithm to have a guaranteed 1/2-approximation

ratio and finish with computational results.
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1. INTRODUCTION

Network is a popular term for a set of nodes with edges representing interaction.

The mathematical term most closely aligned with the concept of a network would

be a graph. While a graph is a rigorously defined mathematical term, the term

network is much more functional. People join a network anytime they purchase

a cell-phone, sign up for membership at a store or club, or simply connect to the

internet. Understanding the concept of a network has become essential to operate in

our society. The term network is typically associated with a set of points and lines in

space. A graph is defined to be a pair of sets (V,E) where V is a set of vertices, also

sometimes called nodes, and E is the set of edges between the vertices. Thus a graph

is simply a mathematical abstraction of the visualization most often associated with

the term network.

Representing information as a graph allows for interrelated data to be gathered

locally but then placed in a larger context. The resulting graph gives a global rep-

resentation of the data that lends itself to analysis that cannot be done using only

partial or local information. Typical analysis of a graph consists of identifying a sub-

graph with structure that holds meaning for the given data set. Structures that are

important in numerous applications are given their own definitions in graph theory.

One such structure is a clique.

A clique is a set of nodes in a graph for which every pair of nodes is directly linked

by an edge. Less formally, a clique is a “tightly knit” set of nodes within a graph [8].

In a social network, for example, a clique is a set of people for which everyone knows

everyone else. Cliques demonstrate behavior that we would most often associate

with a “group.” There is a high volume of connections within a clique, all of which

are direct, and accordingly the communication cannot be stopped by removing a few

This dissertation follows the style of Mathematical Programming.
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nodes. Because of these properties, cliques are almost always identified in a graph

for the purpose of grouping nodes to simplify and better understand the graph.

While cliques demonstrate properties of an ideal group, the structure is not ideal

for pinpointing groups in real-world networks [29, 52]. Cliques are not “noise” resis-

tant. A single missing edge disqualifies a node from the clique. Cliques are typically

too small to be of interest in real-world networks because they are so overly re-

strictive. In response to this, various structures have been defined that constitute

clique relaxations. A clique relaxation is a structure that takes a property by which

a clique can be defined, and it is defined to preserve this same property, but in a

relaxed form. Low diameter, high density, and high connectivity are just some of

the properties by which clique relaxations have been defined. The clique relaxations

we study in this dissertation include s-clique, s-club, s-plex, k-core, quasi-clique, and

k-connected subgraphs.

The focus of this dissertation is on studying clique relaxations in order to under-

stand their basic properties and develop tools to identify them in a graph. Under-

standing the properties of a clique relaxation is essential to choosing the best clique

relaxation model for an application. How vertices and edges are interpreted, as well

as what structure constitutes a “group,” depends heavily on the application. With a

good understanding of the properties of each clique relaxation, the clique relaxation

most resembling a desired structure can be chosen. Although most of the disserta-

tion studies clique relaxations on general graphs, it is helpful to consider some of the

specific networks to which they are indeed applied. While by no means a compre-

hensive list, the following networks help to demonstrate the ubiquity of graphs and

the utility of clique relaxations in analyzing them.

1.1 Sample Networks

Within communications, among the most studied data sets are internet and phone

call data. In an internet graph, vertices represent IP addresses while in a web graph,
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vertices represent websites. Edges are determined by hyperlinks [17]. In call graphs,

vertices represent telephone numbers and edges represent a phone call between two

nodes during a specified interval of time [1]. Communication data sets are often so

massive that data cannot be all stored in one location, much less analyzed in its en-

tirety. The call graph studied in [1] constituted 20 days of telecommunications data

and had over 290 million vertices and over 4 billion edges. Grouping can assist in

organizing websites by topic or in organizing call information so that it can be stored

in pieces, where most nodes are stored in a piece with the other nodes to which it

relates. This enables researchers to test search engine design or to estimate the aver-

age number of calls made by a customer, using only a portion of the communications

graph.

Within business and marketing, stock market networks and social networks are

highly studied. The study of social networks was in fact the original setting for which

the structure clique was defined [40]. Within a social network, vertices typically

represent people, and an edge represents some sort of connection between people.

Such a connection may be a relationship, a common interest, or any other sort of

sociological link. Groups may help to divide a network into regions by interests so

that marketing can be tailored for each region. In stock market graphs, vertices

represent stocks, and two stocks are connected if they have high correlation during

the time for which data is collected [16]. Stocks do not rise and fall in a vacuum,

and groups help to identify a collection of stocks whose behavior seem to be linked.

Basing decisions to buy or sell stock upon the behavior of a large collection is far

more reliable than simply making a decision based on the behavior of one stock.

Within biology, protein interaction networks and gene co-expression networks are

heavily studied. In a protein interaction network, vertices are proteins, and edges

represent all interactions between proteins within a given cell over a given time

frame [30]. A group, called a complex, represents a set of proteins that interact

within the organism to carry out a specific biological process. Identifying protein
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complexes and the specific biological process they carry out helps researchers identify

how diseases overcome the body’s defenses, with the hope of identifying treatments

[54]. In gene co-expression networks, the vertices are genes, and edges represent

genes that are co-expressed with high correlation [13]. Scientists can quantify the

level to which a gene is expressed in a cell, that is, the level at which each gene is

employed to produce proteins and functional RNA. Every cell has control over how

it uses genetic information, which is what allows cells to have different structure

and function. Groups within gene co-expression networks represent sets of genes

that express themselves at high levels at the same time [13]. Clustering in these

networks can also help reveal protein complexes by identifying sets of proteins built

simultaneously with the purpose of interaction.

1.2 Restricted Graphs

Several subclasses of graphs with extra structure have been defined that mimic

key features of real world networks. Such graphs place restrictions on how edges are

distributed in the graph, either locally or globally. Classes of graphs that mimic key

real-world networks often receive extra study. Tools can be developed to take ad-

vantage of the extra structure not necessarily exhibited by general graphs. One such

class of graphs are unit disk graphs. Study of such graphs is motivated by communi-

cations networks [24]. In a unit disk graph, nodes consist of unit disks, and edges are

completely determined by the distance between the centers of the disks. Assuming

all nodes in the network have equal power, and there is no physical interference,

the transmission distance of all nodes in a wireless communication network is well

represented by disks of equal size. Links in such a graph may represent anything

from communication capability to interference, making unit disk graphs amenable

to modeling a variety of broadcasting problems.

By using distance to determine what edges exist, formations such as a node

surrounded by six mutually independent nodes cannot exist in a unit disk graph.
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The extra structure makes some problems significantly easier to solve than for general

graphs. For instance, the maximum clique problem is well-known to be NP-hard for

general graphs [31], which means the number of steps needed to solve the problem

likely grows exponentially with the size of the problem. For unit disk graphs, the

maximum clique problem can be solved in polynomial time [24], meaning the number

of steps needed to solve the problem is bounded by a polynomial, where the size

of the problem is the variable. Any problem where connection or interference is

distance dependent is well modeled by unit disk graphs, and the extra structure can

significantly help analysis.

One feature of a graph that is easily measured is its edge density. The density

of a graph is the ratio of how many edges exist to how many edges can possibly

exist [26]. Erdös and Rényi used edge density as a parameter to define a subclass of

graphs known as random graphs [27,28]. A random graph G(n, p) is a graph with n

vertices where the probability that an edge exists between any two vertices, i.e., its

density, is p ∈ [0, 1]. By analyzing G(n, p), important features such as the expected

size of the largest clique can be established for any network where connections are

distributed randomly according to a uniform distribution.

The distribution of edges in many real-world networks, however, is often not

uniform. In web graphs, stock market graphs, and many biological networks, edges

are distributed among vertices following a power law degree distribution [4,11,16]. If

X(k) denotes the number of vertices in a graph with degree k, a graph exhibits a

power law distribution if X(k) is proportional to k−α where α ≥ 1 is a constant. This

means power law graphs, also referred to as scale-free graphs, may have an enormous

number of vertices, but are relatively sparse in number of edges. Further, the edges

that do exist exhibit preferential attachment, meaning they tend to attach to vertices

that already have a large number of neighbors. It would not be appropriate to study

power law graphs as a uniform random graph. The probability of an edge existing at

a vertex in a random graph is independent of other edges existing at the vertex and
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so such graphs emulate power law graphs poorly. Like unit disk graphs, scale-free

graphs have extra structure not necessarily exhibited by general graphs and have

been studied extensively because they model so many real-world networks.

1.3 Outline

We will return to the networks described above in order to demonstrate the

importance of each clique relaxation we study in this dissertation. First, however,

we need a clear understanding of the definition and structure exhibited by the various

clique relaxations. Key background information will be the focus of Section 2 before

we define and explore the structure of each clique relaxation in Section 3. At that

point we will return to some of our sample networks and restricted graph classes to

demonstrate applications for which the structure of precisely one clique relaxation

is well suited for grouping. The sections following will shift focus from the objects

themselves to algorithms used to find them within a network. In particular, Section

4 will focus on the MAXIMUM QUASI-CLIQUE problem, where we will establish

its complexity and explore an integer programming approach to solving the problem.

The MAXIMUM 2-CLIQUE problem on unit disk graphs will be the focus of Section

5, where we will present an algorithm with a guaranteed 1/2-approximation ratio.

Section 6 will conclude our study and present potential directions for future research.
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2. BACKGROUND

This section gives the background information necessary for this dissertation.

Definitions and background needed from graph theory are the focus of Section 2.1.

The necessary information from complexity theory will be the focus of Section 2.2.

2.1 Graph Theory Definitions and Notation

For a basic introduction to general graph theory, see [26]. For an introduction

to unit disk graphs, see [24]. We start with the most basic definitions for a graph.

We then give definitions and notations for subsets, definitions and notations for

individual vertices, and basic measurements for a graph. We conclude with some

basic background on unit disk graphs.

We consider only finite, simple, undirected, and unweighted graphs denoted by

G = (V,E) where V is a set of vertices and E is a set of edges. If G consists of n

vertices, we will typically label the vertices V = {1, . . . , n} and indicate the size with

|V | = n. If G contains m edges, we will express this as |E| = m and refer to a specific

edge as (i, j) ∈ E using the vertices i and j it connects. The number of vertices

of a graph is often referred to as its order. When the graph under consideration is

unambiguous, we may use n to indicate its order instead of |V |.

A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. For a

set S ⊆ V , we let V −S or V \S represent the set of vertices in G with S removed. We

let G[S] = (S,E ∩ (S × S)) denote the induced subgraph for a set of vertices S ⊆ V ,

where S×S = {(i, j) | i, j ∈ S} denotes a Cartesian product. It is obtained from G

by deleting all vertices in V −S and their incident edges. A graph G = (V,E) is called

complete if all its vertices are adjacent, i.e., if ∀ i, j ∈ V, i 6= j, we have (i, j) ∈ E.

By definition a clique C is a subset of vertices such that G[C] is complete. A clique

with n vertices is denoted by Kn. The complement Ḡ of G = (V,E) is defined by

Ḡ = (V, Ē), where Ē is such that K|V | = (V,E ∪ Ē). A bipartite graph consists of
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two independent sets P and Q such that all edges cross between vertices in P and Q.

A complete bipartite graph with partitions consisting of p and q vertices is denoted

Kp,q and the complete bipartite graph K1,n is often referred to as a star. A path

on n vertices, denoted by Pn, is an ordered tuple of vertices (p1, . . . , pn) such that

consecutive vertices are connected by an edge. A graph where every pair of vertices

share a path is called connected. A set of vertices S such that ∀i ∈ V , either i ∈ S

or ∃j ∈ S s.t. (i, j) ∈ E, is called a dominating set. If S is a dominating set with

|S| = k, we say the graph is k-dominated.

For a vertex i ∈ V , we refer to N(i) = {j ∈ V | (i, j) ∈ E} as the open

neighborhood of i. We refer to N [i] = {i}∪N(i) as the closed neighborhood of i. The

value degG(i) = |N(i)| is referred to as the degree of vertex i. For a pair of vertices

i, j ∈ V , we let dG(i, j) denote the length of the shortest path between i and j in

G. This value is referred to as the distance between vertices i and j in G. In order

to not confuse it with Euclidean distance in the setting of unit disk graphs, we will

sometimes refer to it as the geodesic distance of the vertices. By convention, the

distance between two vertices that are not connected is infinity.

For any graph G, the diameter measures the furthest geodesic distance between

any two vertices i and j in G and is denoted by diam(G). The edge density, or

simply, density of a graph is the ratio |E|/
(|V |

2

)
, which represents the fraction of

edges that exist over how many could possibly exist in G. We denote it with ρ(G).

The minimum and the maximum degree of a vertex in G are denoted by δ(G) and

∆(G), respectively. The vertex connectivity κ(G) denotes the minimum number of

vertices that must be removed to produce a disconnected graph. By convention a

subgraph of one vertex will be considered disconnected.

Unit disk graphs are a subclass of graphs that can be realized as a set of equal

radius disks in the Euclidean plane, where edges are completely determined by the

distance between the centers of the disks. In the intersection model, two disks are

connected by an edge if and only if the two disks of equal radius intersect. In the
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containment model, two disks are connected by an edge if and only if each disk covers

the center of the other. Not every graph can be represented as a unit disk graph.

For instance, the graph K1,7, which is a vertex surrounded by seven independent

neighbors, is not a unit disk graph. For seven disks to intersect one central disk, at

least two must intersect each other. The intersection and containment models of unit

disk graphs are equivalent, meaning they specify the same subset of graphs from the

collection of all graphs [24]. However, we will work exclusively with the containment

model in this dissertation because we will be examining the 2-clique problem on unit

disk graphs. All disks in a 2-clique on unit disk graphs must pairwise intersect under

the containment model. This fact allows us to apply some previous knowledge from

mathematics about piercing numbers on a set of pairwise intersecting disks, which

will be crucial to our results.

2.2 Complexity Theory

For a comprehensive study of complexity theory, readers are referred to [31].

The theory of NP-completeness was designed to help classify decision problems

based on difficulty. Decision problems answer with either “yes” or “no” to questions

about a given object. As an example, consider CLIQUE problem.

Definition 2.2.1 CLIQUE Problem: given a graph G = (V,E) and a positive inte-

ger k, does there exist a clique of size ≥ k in G?

Complexity theory classifies problems by how many steps it takes to solve the

problem given the size of the object that is the input to the problem. The frame-

work of NP-completeness within complexity theory separates decision problems with

solutions that are easy to verify but difficult to compute from those that are easy to

compute.



10

Definition 2.2.2 A decision problem is in class P or polynomially solvable if an

algorithm exists that can answer it correctly, where the number of steps is bounded

by a fixed polynomial in the size of the input.

An algorithm where the number of steps is bounded by a polynomial in the size

of the input is frequently referred to as a polynomial time algorithm. Completing an

algorithm at such a rate is often referred to as returning a solution in polynomial

time.

Definition 2.2.3 Suppose Q is a decision problem with input object O, and y is a

string with information related to O and length bounded by a fixed polynomial in the

size of O. Then the decision problem Q is in class NP if there exists an algorithm

A such that:

1. Given a yes-instance of Q, there exists a string y that, when given as input to

A, returns the answer “yes” to Q in polynomial time, both with respect to the

size of y and accordingly O.

2. Given a no-instance of Q, no string y input into A will return the answer “yes.”

Essentially, a decision problem is in NP if an algorithm A exists that, if given

a yes-instance O and information y, verifies the solution in polynomial time, and

if given a no-instance O, will not return a false solution no matter what informa-

tion y it is fed. Such an algorithm is called a non-deterministic polynomial (NP)

time algorithm because it verifies a yes-instance in polynomial time when given the

appropriate information y, but it cannot construct y in polynomial time.

It is clear that P ⊆ NP . This is because the polynomial time algorithm necessary

for all problems in P can be used as the non-deterministic algorithm A required for

a problem in NP . The algorithm for problems in P does not need to be handed

the information y to solve a yes-instance of the problem in polynomial time but

can construct it. The question remains open as to whether or not P = NP . One
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attempt to help solve this problem, which also helps to further classify the difficulty

of problems in NP , is the notion of NP -completeness.

The notion of NP -completeness was created to identify the most difficult prob-

lems in the class NP . Two problems can be compared for difficulty by a polynomial

time reduction of one problem to the other.

Definition 2.2.4 Given two decision problems Q1 and Q2, we say Q1 is polynomial

time reducible to Q2 if there exists a polynomial time algorithm A that, given an

input O to Q1, constructs an input A(O) to Q2 such that:

1. A(O) is polynomial in the size of O.

2. O is a yes-instance to Q1 if and only if A(O) is a yes-instance to Q2.

The contrapositive of the if and only if statement means the no-instances also

correspond. Essentially a polynomial time reduction demonstrates how to, in poly-

nomial time, transform any instance of Q1 into an instance of Q2 so that the solutions

precisely correspond. This means that if Q2 can be solved in polynomial time, so

can Q1, using this transformation. This gives the notion that Q2 is at least as hard

as Q1.

The crucial first step to creating a class of NP -complete problems, which are the

most difficult problems in the class NP , was to identify one problem to which every

problem in the class NP could be reduced in polynomial time. This was done by

Cook in 1971.

Theorem 2.2.1 Every decision problem in the class NP is polynomial time re-

ducible to the SATISFIABILITY problem.

The definition of the SATISFIABILITY problem and the proof can be found

in [31]. The result showed the following two classes of problems to be non-empty.
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Definition 2.2.5 A decision problem Q is NP -hard if every problem in NP is poly-

nomial time reducible to Q. An NP -hard decision problem Q is said to be NP -

complete if it is also in the class NP .

Cook made proving problems to be NP -complete much simpler. With one prob-

lem Q1 satisfying the definition of NP -completeness in hand, proving another prob-

lem Q2 to be NP -complete requires the following two basic steps:

1. Show Q2 is in NP.

2. Find a polynomial time reduction from Q1 to Q2.

The polynomial time reduction from Q1 to Q2 means Q2 is at least as hard as Q1,

and since Q1 is at least as hard as any problem in NP and both problems are in NP ,

they have equal levels of difficulty. This is the template by which most problems,

including quasi-clique in this dissertation, are proven NP -complete.

The list of NP -complete problems has grown considerably due to this method.

Each addition provides one more potential problem that might be used in a polyno-

mial time reduction to help classify a future problem as NP -complete. For a list of

many NP -complete problems, see [31].

A very crude generalization is that problems in P are “easy” or tractable, and

problems that are NP -complete are difficult and intractable. Classifying problems by

class is immensely practical. Identifying the basic class to which a problem belongs

terminates all need to search for a fundamentally faster solution. Assuming P 6= NP ,

which has not been proven but is the consensus of most experts in complexity, proving

a problem to be NP -complete means an exponential time solution is the best that

can possibly be found.
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3. DEFINITION AND STRUCTURE OF CLIQUE RELAXATIONS

“The whole is more than the sum of its parts.”–Aristotle (384-322 BC)

This section formally introduces the clique relaxations that are the focus of this

dissertation. We begin in Section 3.1 with the history of cliques and the subsequent

creation of clique relaxations. We then review some of the basic terms of graph theory

before formally defining our clique relaxations in Section 3.2. In Section 3.3 we give a

taxonomy for creating and classifying clique relaxations to help organize this quickly

growing field of study. In Section 3.4 and Section 3.5 we explore the computational

and structural properties of the most utilized clique relaxations respectively. The goal

of our analysis is to assist researchers in choosing an appropriate clique relaxation for

grouping by its properties. If no clique relaxation exhibits the properties desired in

a given application, the taxonomy in Section 3.3 demonstrates how to instead create

a new clique relaxation. We analyze the property of the most utilized weak clique

relaxation in Section 3.6 to show potential compromises in structure that might be

made for improved computational properties. We finish off with a set of applications

that demonstrate the need for each clique relaxation in Section 3.7 before concluding

the section.

3.1 History

Initially proposed by Luce and Perry in 1949 [40] as a model of a cohesive sub-

group within the context of social network analysis, a clique refers to a “tightly knit”

set of elements (referred to as “actors”), in which every pair of actors shares some

common attribute. The clique model possesses idealized cohesiveness properties,

guaranteeing a high level of familiarity, reachability and robustness within a group

of actors it describes. In graph-theoretic terms, a clique is a subset of vertices in-

ducing a complete subgraph comprising all possible edges between its vertices. This
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allows for perfect familiarity and reachability between members of a clique, since

elements are all directly connected to each other. Moreover, removal of any element

of a clique results in a slightly smaller clique and does not destroy the perfectly-tied

structure of the group, making cliques ideal in terms of the robustness criterion as

well. However, requiring all possible links to exist may prove to be rather restrictive

for many applications, where interaction between members of the group needs not

be direct and could be sufficiently accomplished through a number of intermediaries.

To overcome the clique’s overly conservative nature, alternative graph-theoretic

models have been introduced in the literature. The s-clique model, first introduced

by Luce in 1950 [39], relaxes the requirement of direct interaction. Associating the

number of intermediary links with the graph-theoretic notion of distance, the s-

clique definition requires vertices within the group to be at most s-distant. Since

intermediaries may not be part of the s-clique itself, Alba [3] proposed a definition

of the so-called sociometric clique of diameter s, more commonly known as s-club,

requiring the intermediary interactions to exist solely through elements belonging to

the group. Star-like graphs possess a 2-club structure and suffer from a low familiarity

and a high vulnerability to the incident of a hub dysfunction. This drew the attention

towards the necessity in some applications to consider clique-like models emphasizing

high level of familiarity and robustness. In particular, Barnes [12] adopted the notion

of edge density to address familiarity within a group. More recently this concept

was formalized under the so-called γ-quasi-clique model, which ensures a certain

minimum ratio γ of the number of existing links to the maximum possible number of

links within the group. Seidman [51] argues that edge density is a rather averaging

property and may result in a group with highly cohesive regions, where vertices

present a large number of direct interactions with their neighbors, coupled with

highly sparse regions, where vertices rely more on indirect interactions with the rest

of the group. His observation led to defining the k-core, a concept restricting the

minimum number of direct links an element must have with the rest of the cluster.



15

While a k-core guarantees a certain minimum number k of neighbors within the

group, the number of non-neighbors within the group may still be much higher than

k, indicating a low level of familiarity within the group relative to its size. In 1978,

Seidman and Foster [52] proposed the notion of s-plex, controlling the number of non-

neighbors that elements within the group are allowed to have. In addition to high

level of familiarity within the group ensured by its definition for low values of s, s-plex

fares well in terms of robustness expressed in terms of vertex connectivity, which is

the minimum number of vertices that need to be removed in order to disconnect the

graph. The vertex connectivity has recently been linked to social cohesion in social

network analysis literature [46], where it quickly became a central concept referred

to as structural cohesion. Thus, the related notion of k-connected subgraph, which

ensures that the group remains connected unless more than k elements are deleted,

can be used as another natural model of a cohesive subgroup or a cluster. Yet

another model of a cluster was introduced recently in a study of protein interaction

networks [59], where an s-defective clique, which differs from a clique by at most s

missing edges, was used to predict protein interactions. Some of the more recent

cluster models proposed in the literature appear to be “hybrids” enforcing a mix

of desired group properties. For instance, the (λ, γ)-quasiclique model [18] ensures

minimum levels of connections and direct interactions to be met by the group by

setting lower bound λ on the fraction of γ-quasi-clique members that each vertex

must neighbor.

Note that all concepts mentioned as alternatives to clique in the previous para-

graph were defined using a parameter, s; k; γ; or λ. Moreover, for s = 1 (s = 0 for

an s-defective clique); k = n−1; γ = 1; and λ = 1, where n is the number of vertices

in the group being defined, each of the above definitions describes a clique. Hence,

defining each of these concepts for an arbitrary value of the corresponding parameter

yields a generalization of the notion of a clique, since it includes the clique definition

as a special case. On the other hand, defining any of the concepts above for a fixed
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value of the corresponding parameter, i.e., positive integer s or k > 1; real γ and

λ ∈ (0, 1), provides what we call a clique relaxation1. Using this term is justified by

the fact that fixing the corresponding parameter as just described, each definition is

less restrictive than that of a clique (of size at least k for the definitions involving

parameter k).

The described clique relaxation concepts, as well as numerous other similar def-

initions have emerged in an ad-hoc and somewhat spontaneous fashion and were

motivated by cluster-detection problems arising in a wide variety of applications.

Moreover, some clique relaxation models have been reinvented under different nomen-

clature. Despite the obvious practical importance of these models, little work has

been done towards establishing theoretical and algorithmic foundations for study-

ing the clique relaxations in a systematic fashion. As a result, applied researchers

seeking an appropriate model of a cluster in their application of interest may quickly

get overwhelmed by the wide range of models available in the literature. This sec-

tion aims to start filling this gap by proposing a tentative taxonomy classifying the

previously defined clique relaxations under a unified framework. More specifically,

we build on the elementary graph-theoretic properties of cliques to provide a hi-

erarchically ordered classification of clique relaxation models. We complement the

taxonomy by comparing the so-called first-order clique relaxations, defined later on,

on the properties they guarantee. This exercise provides solid grounds for a more

comprehensive understanding of the relations among the various known clique relax-

ation models, which could serve as an essential guide for practitioners in selecting

a cluster model most suited for a particular application. Moreover, the proposed

taxonomy also uncovers potential horizons for developing and analyzing new clique

relaxation models.

1This is in analogy to how mixed integer programming (MIP) is a generalization of integer program-
ming (IP), however, a linear programming (LP) relaxation of an IP (which is a special case of MIP
with all variables being continuous) cannot be called a generalization of IP, even though an optimal
solution of the corresponding IP is feasible and sometimes even optimal for the LP relaxation.
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3.2 Definitions and Notations

Recall that a clique C is defined to be subset of vertices C ∈ V such that the

induced subgraph G[C] is complete. The size of the maximum clique in G is referred

to as the clique number, denoted by ω(G). A subset of vertices I is called an indepen-

dent set if the corresponding induced subgraph G[I] has no edges. The independence

number α(G) is the largest size of an independent set in G. It is easy to see I is an

independent set in G if and only if I is a clique in Ḡ.

We now formally define the well known clique relaxation models, which are central

for this study and were already mentioned in the previous section. We assume that

the constants s and k are positive integers and λ, γ ∈ (0, 1] are reals. In all definitions

below, we refer to a subset of vertices S in G = (V,E).

Definition 3.2.1 (s-clique) S is an s-clique if dG(v, v′) ≤ s, for any v, v′ ∈ S.

Definition 3.2.2 (s-club) S is an s-club if diam(G[S]) ≤ s.

Definition 3.2.3 (s-plex) S is an s-plex if δ(G[S]) ≥ |S| − s.

Definition 3.2.4 (s-defective clique) S is an s-defective clique if G[S] has at

least
(|S|

2

)
− s edges.

Definition 3.2.5 (k-core) S is a k-core if δ(G[S]) ≥ k.

Definition 3.2.6 (k-connected set) S is a k-connected set if κ(G[S]) ≥ k.

Definition 3.2.7 (γ-quasi-clique) S is a γ-quasi-clique if ρ(G[S]) ≥ γ.

Definition 3.2.8 ((λ, γ)-quasi-clique) S is a (λ, γ)-quasi-clique if δ(G[S]) ≥ λ(|S|−

1) and ρ(G[S]) ≥ γ.

Definition 3.2.9 (k-robust s-club) S is a k-robust s-club if diam(G[S \ S ′]) ≤ s

for any S ′ ⊂ S such that |S ′| ≤ k.
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It should be noted that, in general, depending on the choice of k and a graph

instance G, a k-core or a k-connected set may not exist in G. This observation,

together with the fact that a k-core can be easily computed by recursively removing

all vertices of degree less than k from the graph, has led to the introduction of the

notion of graph degeneracy based on the concept of a k-core. Namely, a graph is called

d-degenerate if it does not contain a nonempty k-core for k > d. The degeneracy of

G is the smallest d for which G is d-degenerate, which is the same as the largest k

for which G has a k-core.

3.3 A Taxonomy of Clique Relaxation Models

One can observe that most of the elementary graph concepts, such as degree,

distance, diameter, density, connectivity, and domination, can be used to derive

alternative, equivalent definitions of a clique. We will state this observation formally

in the following proposition, which is trivial to verify.

Proposition 3.3.1 A subset of vertices C is a clique in G if and only if one of the

following conditions hold:

a) dG(v, v′) = 1, for any v, v′ ∈ C;

b) diam(G[C]) = 1;

c) D = {v} is a dominating set in G[C], for any v ∈ C;

d) δ(G[C]) = |C| − 1;

e) ρ(G[C]) = 1;

f) κ(G[C]) = |C| − 1.

In the remainder of the paper, we refer to the specified conditions as elementary

clique defining properties. These properties are summarized in Table 3.1, together
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with the corresponding graph concepts defining each property. The table is split

into two parts, with the first part corresponding to the parameters whose value

is set to the lowest possible value in the clique definition (distance, diameter, size

of a set guaranteeing domination), and the second part containing the parameters

required to have the highest possible value for the set of a given size (degree, density,

connectivity).

Table 3.1
Alternative clique definitions based on elementary clique-defining properties.

Parameter Definition
Distance Vertices are distance one away from each other
Diameter Vertices induce a subgraph of diameter one
Domination Every one vertex forms a dominating set
Degree Each vertex is connected to all vertices
Density Vertices induce a subgraph that has all possible edges
Connectivity All vertices need to be removed to obtain a disconnected

induced subgraph

Aiming to derive a minimal set of simple rules based on the elementary clique-

defining properties that would allow us to obtain the known clique relaxation models

in a systematic fashion, we examine the relation of Definitions 3.2.1–3.2.9 to the alter-

native clique definitions summarized in Table 3.1. It becomes apparent that each of

the defined clique relaxation models essentially relaxes at least one of the elementary

clique-defining properties according to some simple rules that can be classified into

two broad categories. Namely, some relaxations are created by providing an upper

bound on the extent to which an elementary clique defining property is allowed to

be violated, while others aim to ensure the presence of an elementary clique defining

property that characterizes a clique of a given minimum size.
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3.3.1 Restricting Violation of an Elementary Clique Defining Property

Increasing a parameter that has the lowest possible value in a clique. In

some cases, we obtain a clique relaxation model by increasing a parameter that was

set to the lowest possible value in an alternative clique definition, as in the first three

rows of Table 3.1. Such models are created by naturally replacing one in one of

the elementary clique-defining properties with (at most) s. In particular, instead of

requiring the (upper bound on the) diameter of the induced subgraph to be equal to

one, an s-club relaxes this requirement to allow a diameter at most s. Similarly, by

replacing one with at most s in the elementary clique-defining properties based on

distance and domination, we obtain definitions of s-clique and s-plex, respectively.

In the case of s-plex, we use the fact that S is an s-plex if and only if any subset of

s vertices from S forms a dominating set in G[S] [52].

Reducing a parameter that has the highest possible value in a clique of

a given size. Note that, while we were able to define s-plex by relaxing an upper

bound on the number of vertices ensuring domination, the original definition of s-

plex was based on restricting the number of non-neighbors that a vertex can have

within the group. This definition naturally corresponds to allowing, for every vertex,

s exceptions (including the vertex itself) in the degree-based definition of a clique.

Namely, we just replace all by all but s in the degree-based definition of a clique to

obtain the s-plex definition. Similarly, the density-based clique definition yields the

s-defective clique model. By applying the same logic to the clique definition based

on connectivity, we obtain a new clique relaxation model, which we propose to call

an s-bond.

Definition 3.3.1 (s-bond) A subset of vertices is called an s-bond if κ(G[S]) ≥

|S| − s.

The s-bond model with a small value of s > 1 may prove to be a useful alternative to

a clique (which can be equivalently defined as a 1-bond) in applications emphasizing
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the robustness of a cluster. Moreover, it has some computational advantages, which

will be discussed later, over similar models, such as a k-connected set.

3.3.2 Ensuring the Presence of an Elementary Clique Defining Property

In other cases, we replace the overly restrictive requirement of a clique definition

to have the highest possible value for a parameter (assuming that the size of a set is

given) by, instead, imposing a fixed lower bound on that parameter. In such cases,

we replace all in one of the elementary clique-defining properties with (at least) k.

For example, a k-core, does not require each vertex to be connected to all, but to

at least k other vertices. Likewise, we can obtain the definition of a k-connected

set by relaxing the connectivity-based definition of a clique in the same fashion.

Similarly, we could define an analogous concept corresponding to the density-based

definition of a clique. We could call a subset of vertices a k-edge set if it induces

a subgraph with at least k edges. We are not aware of any studies of this concept

in the literature or its potential applications; therefore, we do not investigate it any

further in this dissertation. Note that, unlike the other two types of relaxations, the

clique relaxation models based on setting a fixed lower bound on a parameter can

potentially result in degeneracy (i.e., a structure of this type may be empty if the

value of k is set too high for a given graph). Hence, we will also refer to such models

as degeneracy-invoking. The two methods by which to define a clique relaxation are

part of our proposed classification of clique relaxation models, pictured in Fig. 3.1.

3.3.3 Absolute and Relative Relaxations

As suggested by the example of the γ-quasi-clique, size-relative or, simply, relative

clique relaxations is another category of models that needs to be considered. Thus,

it makes sense to refer to the above three categories that use the absolute parameter

values (s or k) as absolute. We can generate the relative clique relaxation models
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Clique Relaxations 

Restricting clique 
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Standard/Weak 

Absolute/Relative 

Fig. 3.1. The proposed classification of clique relaxation models.

from the absolute models by replacing s and k by α|S| and γ|S| (γ
(|S|

2

)
in case of

density), respectively, where 0 ≤ α, γ ≤ 1. While the γ-quasi-clique is, perhaps, the

most well known in this category, other relative size-dependent clique generalizations

can be defined similarly. For instance, the relative version of s-club would guarantee

the induced subgraph G[S] to have a diameter at most α|S|. Similarly, one could

ensure that at least all but α|S| vertices need to be removed to disconnect the induced

subgraph.

3.3.4 Standard and Weak Relaxations

In the definitions of most of the clique relaxation models discussed above (s-

clique being the only exception), we required the relaxed clique defining properties

to be satisfied within the induced subgraph. However, as the example of s-clique

suggests, in some cases we could require the same property to be satisfied within the

original graph instead of the induced subgraph. In particular, this can be done in the

situations involving the elementary clique defining properties based on distance and

connectivity, both of which can be defined through paths. In the case of connectivity,

this can be done using Menger’s theorem asserting that a graph is k-connected if and

only if there are at least k vertex-independent paths (i.e., paths with no common
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internal vertex) between any two of its vertices. Thus, by requiring the conditions

on pairwise distances and connectivity to hold in the whole graph rather than the

induced subgraph corresponding to a subset of vertices defining a cluster, we allow the

paths in the corresponding definitions to pass through vertices outside of the cluster.

As a result, we obtain a relaxation with weaker cohesiveness properties. We will refer

to such relaxations as weak, while the relaxations that require the relaxed clique

defining property to be satisfied in the induced subgraph will be called standard.

For example, s-club is a standard relaxation, while s-clique is its weak counterpart

and could be alternatively called weak s-club. Similarly, we could define a weak k-

connected set as a subset of vertices such that there are at least k vertex-independent

paths between any two of its vertices in the original graph.

3.3.5 Order of a Clique Relaxation

So far, we have considered examples of clique relaxations, obtained by relaxing

only one aspect of the clique definition. Calling the clique itself a zero-order clique

relaxation, the aforementioned clique-like objects are referred to as first-order clique

relaxations. Higher order clique relaxations can be obtained by relaxing more than

one aspect of the clique definition. The second-order relaxations would correspond

to relaxing two elementary clique-defining properties at the same time. For instance,

the (λ, γ)-quasiclique based on both degree and density, is a second-order relaxation.

Similarly, higher-order relaxations can be defined by relaxing more than two elemen-

tary clique-defining properties at a time. While any pair of properties can be enforced

simultaneously in order to define a second-order model, in some cases requiring an

extra property may be redundant. For example, as we will discuss in Section 3.5,

an s-plex usually has a low diameter and a high connectivity to start with, hence it

makes little sense to combine it with diameter or connectivity-based relaxations.
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Robust higher order relaxations. While a higher-order relaxation can be cre-

ated by enforcing several relaxed clique-defining properties simultaneously, one of

the properties, connectivity, can also be embedded into a definition of a clique relax-

ation. As an example, a k-robust s-club S can be viewed as a second-order clique

relaxation structure defined by embedding k-connectivity into the definition of an

s-club [56]. Unlike its simple second-order counterpart, which would be defined as a

subset of vertices S such that κ(G[S]) ≥ k and diam(G[S]) ≤ s and could be called

k-connected s-club, the k-robust s-club requires that not only does the s-club S in-

duce a k-connected subgraph, but also that removal of up to k vertices still preserves

the s-club property. The property of k-robustness, or, alternatively, k-heredity is

embedded within the structure defined by other properties involved in the definition

of a robust higher order relaxation, which makes it essentially different from the sim-

ple higher order relaxations that combine multiple properties in a straightforward

fashion.

3.4 Optimization Considerations

In most application scenarios dealing with clique relaxation models, one is inter-

ested in computing large clusters of a certain type. While typically multiple large

clusters, not necessarily largest possible, are of practical interest, the maximum size

of a clique relaxation of a given kind quantifies the global cohesiveness of the analyzed

network in terms of the considered clique relaxation model of a cohesive subgroup.

Besides, it provides the tight upper bound on the size of clusters of the considered

type that exist in the network, and hence facilitates computing such clusters. Thus,

in the remainder of this section, we are interested in issues associated with the cor-

responding optimization problems. In particular, we are interested in considerations

that may facilitate the process of selecting computational techniques that would be

appropriate for solving the corresponding optimization problems for different types

of clique relaxation models.
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First, let us formally define the general optimization problem for a clique relax-

ation model. Let relaxed clique refer to a subset of vertices that satisfies the

definition of an arbitrary clique relaxation concept. The following definitions are

general and can be adopted for a particular clique relaxation model by replacing the

term relaxed clique with the name of this model (i.e., s-club, s-plex, etc.).

Definition 3.4.1 A subset of vertices S is called a maximal relaxed clique if it

is a relaxed clique and is not a proper subset of a larger relaxed clique.

Definition 3.4.2 A subset of vertices S is called a maximum relaxed clique if

there is no larger relaxed clique in the graph. The maximum relaxed clique

problem asks to compute a maximum relaxed clique in the graph, and the size of

a maximum relaxed clique is called the relaxed clique number.

We will use the following notations for specific relaxed clique numbers: ωs(G) is

the s-clique number; ω̄s(G) is the s-club number; ω̃s(G) is the s-plex number; ω′k(G)

is the k-core number; and ω̌k(G) is the k-connectedness number.

Most of the discussion in this section is centered around the concept of heredity,

which could be thought of as a dynamic property, since it describes the characteristics

of a graph undergoing change, i.e., vertex addition or removal. Heredity is defined

with respect to a graph property Π and is formally introduced next.

Definition 3.4.3 (Heredity) A graph property Π is said to be hereditary on in-

duced subgraphs, if for any graph G with property Π the deletion of any subset of

vertices does not produce a graph violating Π.

The presence of heredity on induced subgraphs implies certain properties that may

help streamlining the study of the corresponding optimization problems. In particu-

lar, it turns establishing the computational intractability of the problem into a simple

exercise of checking several basic facts about the property Π. Namely, a property Π

is called nontrivial if it is true for a single-vertex graph and is not satisfied by every
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graph, and Π is called interesting if there are arbitrarily large graphs satisfying Π.

The following general complexity result is due to Yannakakis [58].

Theorem 3.4.1 (Yannakakis, 1978) The problem of finding the largest-order in-

duced subgraph not violating property Π that is nontrivial, interesting and hereditary

on induced subgraphs is NP-hard.

In addition, heredity on induced subgraphs is the foundational property for some of

the most successful combinatorial algorithms for the maximum clique problem [20,

48], which can be easily generalized to solve any other maximum relaxed clique

problem based on relaxed clique defining properties that are hereditary on induced

subgraphs. By analyzing the taxonomy introduced in Section 3.3, we can conclude

that the only models that fall within this category are the standard, absolute clique

relaxation models obtained by restricting violation of a clique-defining property and

based on reducing a parameter that has the highest possible value in a clique of

a given size. These are the models described in the second paragraph of subsec-

tion 3.3.1, namely, s-plex, s-defective clique, and s-bond. Hence, the corresponding

optimization problems are NP-hard and can be solved by adopting the combinatorial

algorithms proposed in [20, 48]. The presence of the heredity property also suggests

that these problems are good candidates for solving by methods based on polyhe-

dral combinatorics, as was already demonstrated for two of these models, s-plex

and s-defective clique, in [9] and [53], respectively. Moreover, computing maximal

relaxed clique is trivial in this case, as maximality is guaranteed whenever the

current solution cannot be expanded by adding any single vertex from outside.

Even though the properties defining other first-order clique relaxation models

do not posses heredity, they have closely related characterizations that can also

be utilized in designing solution methods. We propose to define these dynamic

properties of weak heredity, quasi-heredity, and k-heredity as follows.
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Definition 3.4.4 (Weak heredity) A graph property Π is said to be weakly hered-

itary, if for any graph G = (V,E) with property Π, all subsets of V demonstrate the

property Π in G.

Definition 3.4.5 (Quasi-heredity) A graph property Π is said to be quasi-hereditary,

if for any graph G = (V,E) with property Π and for any size 0 ≤ r < |V |, there

exists some subset R ⊂ S with |R| = r, such that G[S \R] demonstrates property Π.

Definition 3.4.6 (k-Heredity) A graph property Π is said to be k-hereditary on

induced subgraphs, if for any graph G with property Π the deletion of any subset of

vertices with up to k vertices does not produce a graph violating Π.

Note that weak heredity considers whether a certain property is still applicable

for all subsets in the original graph, as opposed to heredity on the induced subgraph.

On the other hand, quasi-heredity essentially requires the existence of a sequence of

vertices such that their removal in this sequence preserves, at every step of the vertex

removal process, the property in the remaining subgraph. However, property Π may

not exist for every subset R of vertices removed from S. Also, observe that heredity

implies both weak heredity and quasi-heredity, whereas the latter two do not have

any definitive relation.

The weak heredity property holds for s-cliques and weak k-connected sets, both

of which are weak clique relaxation models. The weak heredity property provides

significant computational advantages due to the fact that the corresponding clique

relaxation structures can be reduced to cliques in auxiliary graphs. In the case of

s-clique, the auxiliary graph is given by power graph. Given a graph G = (V,E), its

t-th power graph Gt = (V,Et) has the same set of vertices V and the set of edges

Et that connects pairs of vertices that are distance at most t from each other in G.

Obviously, S is an s-clique in G if and only if S is a clique in Gs. Similarly, for

the weak k-connected set, we can define an auxiliary graph G(k) = (V,E(k)), where

(v1, v2) ∈ E(k) if and only if there are at least k vertex-independent paths between
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v1 and v2 in G. Then, again, S is a weak k-connected set in G if and only if S is a

clique in G(k). Thus, the numerous algorithms developed for the maximum clique

problem, can be directly applied to auxiliary graphs in order to solve the optimization

problems dealing with weak clique relaxations.

The definition of quasi-heredity was motivated by observation that this property

holds for the γ-quasiclique model, since the iterative removal of the lowest degree

vertex will preserve at least the same density in the induced subgraphs at every

step. The presence of this property suggests that developing heuristics based on

greedy sequencing of vertices may prove effective in practice. Finally, the k-heredity

property is what we enforce in robust higher-order clique relaxations discussed in the

previous section. Not surprisingly, the first robust second-order relaxation studied

involves an s-club, which does not posses any type of heredity considered. It is also

known that computing a maximal s-club is NP-hard [44].

3.5 Cohesiveness Properties of Standard First-Order Clique Relaxation Models

The hierarchical classification proposed in Section 3.3 allows the definition of

a wide variety of relaxations with different levels of proximity to the clique struc-

ture. However, care must be vested while investing in higher order characterizations.

This in fact requires a detailed understanding of the properties of lower-order re-

laxations. For instance, it may not be worth restricting an additional property for

some first-order relaxation if its structure automatically guarantees good bounds on

the desired property. This observation motivates the current section, in which we

provide a comprehensive study of the various structural properties guaranteed by

well-known first-order relaxations. Not only can this help discern useful higher-order

characterizations, but it also assists practitioners in appreciating what each of the

currently developed models offer in terms of group structure.

This section concentrates on well-known first-order clique relaxations defined

within the induced subgraph, notably s-club, s-plex, k-core, γ-quasi-clique and k-
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connected subgraph. We treat these models as the canonical models for the cor-

responding parameters used to formulate the elementary clique-defining properties.

For instance, s-club is the canonical clique relaxation model for diameter. All of the

canonical models, except for the quasi-clique, are absolute clique relaxation mod-

els. We selected the quasi-clique over s-defective clique to represent a density-based

relaxation in this study due to two reasons. First, the concept of density is tradition-

ally discussed as a relative measure by definition; and second, γ-quasi-clique is by far

more widely represented in the literature. Table 3.2 associates every canonical re-

laxation with its defining property on the diagonal. Note that the distance property

for standard clique relaxations is equivalent to the same property for the diameter,

since we limit the analysis to induced subgraphs. Furthermore, dominating set refers

to the smallest size for which any subset of vertices is guaranteed to dominate the

entire set. In an attempt to fully understand the behavior of these characterizations,

this section aims at exploring the best bounds that could be ensured for each of the

non-defining relaxation properties.

Table 3.2
Clique relaxation defining properties.

S ⊂ V Diameter Dominating Set Degree Density Connectivity

Clique “one” “one” “all” “one” “all”
s-club “at most s”

s-plex “at least s ”

k-core “at least k”

γ-quasiclique “at least γ”

k-connected “at least k”
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3.5.1 Bounds on Diameter

By definition, s-clubs ensure that any two vertices in the group are no more than

distance s apart in the induced subgraph G[S]. This subsection presents bounding

results on the diameter property for the remaining canonical clique relaxations. Note

that we use distance and diameter interchangeably, since we only consider induced

subgraphs. Any clique relaxation consisting of pieces from two or more components

G† and G‡ in G clearly results in an unbounded distance between any two vertices

v1, v2, such that v1 ∈ G† and v2 ∈ G†, implying an unbounded diameter. To rule out

such situations, we assume that clique relaxations are connected. We next present

diameter bounds for each of the s-plex, k-core, γ-quasiclique, and the k-connected

clique relaxations.

s-Plex model. We first note that every connected s-plex is also an s-club. The

familiarity requirements are stringent enough that they result in low diameter. To

see this, consider the shortest path between the two most distant vertices v1 and v2

in an s-plex. If this path contained two neighbors of v1, a shorter path could have

been obtained by connecting v1 directly to its second neighbor in the sequence. By

contradiction, the shortest path contains at most one neighbor of v1. Now, since v1

has at most s− 1 non-neighbors in an s-plex, the path between v1 and v2 is at worst

of length s, consisting of one neighbor of v1 and s− 1 non-neighbors of v1, including

v2. As a result, the largest distance in the worst case is s yielding a diameter s.

This proves our claim that every connected s-plex is an s-club. As a result, any

connected s-plex ensures a diameter, and therefore a distance, of no more than s

within the subgraph. This bound is sharp because a path on s + 1 vertices is an

s-plex of diameter s. Moreover, if an s-plex has size n, and s < n
2
, the s-plex will

only have diameter two, since every pair of vertices will have a common neighbor.
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k-Core model. We cannot claim a fixed upper bound on the distance between

vertices in a k-core, even if it is connected. We back this claim by considering the

following construction: consider a clique Kk of size k and two vertices a, b /∈ Kk such

that they are each connected to all elements within the clique. The resulting graph

denoted by G is obviously a k-core since each vertex is connected to at least k other

elements in G. Also consider a (k − 1)-core G′ created in a similar fashion, labeling

the two outer vertices a′ and b′. Between any two copies of G, one could place an

arbitrarily large number of subgraphs G′, connecting a′ of the first copy of G′ with

b of the first copy of G, a′ with b′ for all intermediate copies of G′, and b′ of the

last copy of G′ with a of the second copy of G (refer to Fig. 3.2). We denote this

construction by G1. Note that G1 is a k-core allowing for arbitrarily large distances

between any two vertices. While no absolute bound on the distance may be claimed

for a k-core model, a tight bound may be generated as a function of the k-core size

ω′k(G).

a b a’ b’ a ba’ b’

. . .

GG’ G’G

clique of size k clique of size k-1 clique of size k-1 clique of size k

Fig. 3.2. Illustration of G1 construction.

Lemma 3.5.1 If there exists vertices u, ν in a connected k-core such that dG(u, ν) ≥

3d, for d ≥ 1, then the size of the k-core ω′k(G) ≥ (d+ 1)(k + 1).

Proof Label the vertices along the shortest path connecting u and ν as u =

x0, x1, . . . , x3d = ν and consider the subset S = {x0, x3, . . . , x3d}, |S| = d + 1. Each
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xi ∈ S must have k neighbors to be a member of the k-core. No vertex xi ∈ S can

be connected to {xj}∪N(xj), for any xj ∈ S with j 6= i, or else the considered path

would not have length 3d. This means that each vertex in S is connected to k distinct

vertices outside S, themselves not connected to any other vertex within S. Each of

the (d+1) vertices in S along with its corresponding k neighbors represent a set of at

least k+ 1 distinct vertices that must be in the k-core. Thus ω′k(G) ≥ (d+ 1)(k+ 1).

Next, we present a proposition providing a tight upper bound on pairwise distance

within G using construction G1.

Proposition 3.5.1 If ω′k(G) is the size of the k-core, the maximum distance between

vertices is given by the function:

d′k =



1 if ω′k(G) = k + 1

2 if ω′k(G) = k + 2

3c if ω′k(G) = (c+ 1)(k + 1) & c ≥ 1

3c+ 1 if ω′k(G) = (c+ 1)(k + 1) + 1 & c ≥ 1

3c+ 2 if (c+ 1)(k + 1) + 2 ≤ ω′k(G) < (c+ 2)(k + 1) & c ≥ 0.

(3.1)

Also, d′k provides a tight bound.

Proof By Lemma 3.5.1, we know the distance d between any two vertices satisfies

d ≤ 3c when ω′k(G) = (c + 1)(k + 1). Clearly the bounds 3c + 1 when ω′k(G) =

(c+1)(k+1)+1 and 3c+2 when ω′k(G) = (c+1)(k+1)+2 hold since by adding one

vertex to a graph, the distance can only increase by one. The first two bounds are

special cases. A k-core can only have distance one when it has k + 1 vertices since

it must be a clique, and adding one vertex can only increase the maximum distance

to two.

To show that these bounds are tight, consider our construction G1. The portion

of the graph we labeled G alone shows that a k-core of k + 2 vertices can achieve
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distance two. The bound 3c+2 is obtained for ω′k(G) = (c+1)(k+1)+2 by G1 where

we include two copies of G, unless c = 0, and c− 1 copies of G′ when c ≥ 1, as given

in the description of G1. The bound 3c+ 1 is achieved for ω′k(G) = (c+ 1)(k+ 1) + 1

by taking the previous exact construction and contracting the vertex a in the second

copy of G with its immediately preceding vertex. The bound 3c is achieved for

ω′k(G) = (c + 1)(k + 1) by taking the same construction with the edge between a

and its preceding vertex contracted but then also removing vertex b from the second

copy of G.

γ-Quasi-clique model. Similarly to the k-core model, no guarantee can be made

about the distance between vertices in a γ-quasi-clique. To show this, we consider

construction G2 in Fig. 3.3, for which we denote the maximum distance between its

vertices by L, such that L can be chosen arbitrarily large. Consider a clique of size

|V | missing only one edge between vertices x0 and x2 in V . Attach to the graph a

sequence of L− 2 vertices and build a single path between vertex x2 and the added

sequence. The number of edges in G2 is the total number of edges in the clique at the

exception of edge (x0, x2) plus the added path length L− 2, i.e.,
(|V |

2

)
− 1 + (L− 2).

With the total number of vertices in G2 reaching |V |+(L−2), the possible number of

edges among vertices in G2 grows up to
(|V |+L−2

2

)
. Assuming at least one additional

vertex is added to the original clique, i.e., L ≥ 3, it is easy to see that, for fixed

0 ≤ γ < 1,

γ

(
|V |+ L− 2

2

)
≤
(
|V |
2

)
≤
(
|V |
2

)
− 1 + (L− 2) (3.2)

holds for large enough |V |. Therefore, considering the outer inequality, we observe

that G2 is a γ-quasiclique. Note that the longest path in G2 corresponds to the

path between vertex x0 and the tip of the added vertex sequence, whose length

is L. Since L can be chosen to be arbitrarily large, no fixed bounds can be set

on the pairwise distances between vertices in the γ-quasiclique. While no absolute
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bound on the distance may be claimed for a γ-quasiclique model, we could however

generate a tight upper bound as a function of the γ-quasiclique size ωγ(G), as shown

in Proposition 3.5.2.

. . .

.

.

.

x1

x2x0 x3 x4 x5 xL

Clique without edge x0x2

Fig. 3.3. Illustration of G2 construction.

Proposition 3.5.2 If ωγ(G) is the size of the γ-quasiclique, the maximum distance

between vertices is given by the function:

dγ =

⌊
ωγ(G) +

1

2
−
√
γ.ω2

γ(G)− (2 + γ)ωγ(G) +
17

4

⌋
. (3.3)

Also, dγ provides a tight bound.

Proof Suppose Q is a γ-quasi-clique of size ωγ(G) in G and let d denote the longest

distance between any two of its vertices. Label the sequence of vertices along the

corresponding path in order, {xi}i=0,...,d, i.e., x0, x1, ..., xd. Note that for all vertices

x0, . . . , xd along the path, N(xi)∩N(xj) = ∅ unless i ∈ {j − 2, . . . , j + 2}. Indeed,

if vertices more than a distance two apart on this path shared a common neighbor,

the path could be shortened. However this would contradict the assumption that

this path is the shortest between x0 and xd. If vertex y connects to xi, it cannot

connect to xi−3.

Now with this remark, we would like to transform G[Q] into a subgraph of our



35

earlier construction G2, as illustrated in Fig. 3.3. Starting with i = d, we proceed

as follows: For any vertex y /∈ {x0, . . . , xd} and connected to xi, remove this edge

and replace it with an edge between y and xi−3. Index i is then decreased and the

procedure is repeated until i = 2. Note that, by applying this reduction, both the

longest distance and the number of edges are not modified. The resulting graph G′

is a subgraph of G2. The number of edges in G′[Q] is at most equal to the number

of edges in G2, where now |V | = ωγ(G) − d + 2. Thus, if a path of length d exists

in any γ-quasi-clique, then G2 must also have a density γ setting L = d. Applying

(3.2), we obtain

γ

(
ωγ(G)

2

)
≤
(
ωγ(G)− L+ 2

2

)
− 1 + (L− 2). (3.4)

If we solve ( 3.4) at equality for the largest value of L, we obtain the longest distance

in G2, which is the longest distance any gamma quasi-clique can achieve. Solving

(3.4) for L reduces to solving for the root of a quadratic function yielding L ≤⌊
ωγ(G) + 1

2
−
√
γ.ω2

γ(G)− (2 + γ)ωγ(G) + 17
4

⌋
.

This bound is sharp since construction G2 has the distance

L =

⌊
ωγ(G) +

1

2
−
√
γ.ω2

γ(G)− (2 + γ)ωγ(G) +
17

4

⌋

and density γ.

k-Connected subgraph model. The following proposition presents a bounding

value to the pairwise distance within the graph as a function of the size of the k-

connected subgraph.

Proposition 3.5.3 If ω̌k(G) is the size of the k-connected subgraph, then G has

distance at most
⌊
ω̌k(G)−2

k
+ 1
⌋

. This bound is tight for k even.

Proof By Menger’s theorem [26], every pair of vertices in a k-connected graph must

have k vertex-independent paths between them. Consider the most distant vertices
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x and y in a k-connected graph and denote by d the distance between them. Each

of the k paths between x and y must have a distance of at least d. This means that

ω̌k(G) ≥ k(d− 1) + 2. In other terms, the subgraph consists of at least k(d− 1) + 2

vertices. Solving for d gives the desired bound.

.

.
.

.

.

.

.
.

.

.
. .

.

.
.

.

.

.
.

.
.

.
. .

a

b
1

2

-1

-2

-1

-2

1

2

k/2 k/2

k disjoint paths between a, b

Fig. 3.4. Illustration of G3 construction.

To show the tightness of this bound, consider the following construction denoted

by G3 (see Fig. 3.4). Place on a circle ω̌k(G) independent vertices labeled {x0, . . . , xz}

where z = ω̌k(G) − 1. Connect each vertex to its
⌈
k
2

⌉
immediate neighbors on each

side. The resulting graph is k-connected since every pair of vertices xi and xj has

k disjoint paths between them. To form these paths, connect xi to a neighbor xi+a

or xi−a where a ∈ {0, . . . ,
⌈
k
2

⌉
}. Proceed by connecting xi+a to xi+a+d k2e then to

xi+a+2d k2e (or alternatively xi−a to xi−a−d k2e and then to xi−a−2d k2e) until eventually

the path reaches vertex y. These k paths will remain disjoint at all steps yielding

a k-connected graph. The furthest distance between two vertices in this graph is⌊
ω̌k(G)−2
2dk/2e + 1

⌋
, which shows that the given bound is tight when k is even.

While a relative bound can be generated, we cannot guarantee a fixed bounding value

for distance in k-connected subgraphs. In fact, for a fixed k, the size of construction

G3 can be chosen arbitrarily large suggesting that no absolute bound exists.
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3.5.2 Bounds on Domination

In this section, we explore which set size is guaranteed to be a dominating set

for each of the canonical clique relaxations. The goal is to find the threshold set

size above which any set of vertices that is selected from the subgraph of size at

least the threshold size indubitably forms a dominating set. While cliques guarantee

that any one vertex dominates the entire subgraph, the s-plex relaxation ensures the

subgraph is dominated by any set of s vertices. Since any s-club must be connected,

any set of size ωs(G)−1 dominates the subgraph. To prove this bound is tight, let us

consider the special case of a star graph. To guarantee a dominating set, one should

choose at least all but one vertex from the subgraph. Otherwise, selecting a set of

size ωs(G)−2 could overlook the hub vertex and one of its peripheral vertices, which

would not result in a dominating set.

No absolute bound on the domination for a k-core can be made knowing that

construction G1 remains a k-core for arbitrarily large sizes. However, a relative

bound can be deduced in terms of the size of the k-core. The initial vertex along

the major chain in G1 can only be dominated by a set if this vertex or one of its k

neighbors is contained in the set. Hence, we can only guarantee any set of size at

least ω′k(G)− k to be a dominating set.

For a γ-quasi-clique, no relative bound better than ωγ(G) can guarantee a re-

sulting dominating set. The reason is that for a γ-quasi-clique S, γ
(|S|+l

2

)
≤
(|S|

2

)
may hold for some fixed γ < 1, l and large enough |S|. A γ-quasi-clique could then

contain an independent vertex accompanied by a large enough clique S. In this case,

only sets containing all vertices in the subgraph are guaranteed to be dominating.

Knowing that a k-connected subgraph is also a k-core, any set of size at least

ω̌k(G) − k is a dominating set. This bound is indeed tight, since a k-connected

subgraph could contain a clique of size ω̌k(G)− 1 with an additional vertex linked to

exactly k vertices from the clique. In this special case, excluding more than k vertices
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from the set would no longer guarantee that the additional vertex is dominated by

the set.

3.5.3 Bounds on Degree

The k-core relaxation ensures that each vertex in the induced subgraph has degree

at least k. Observing construction G1, it can be noted that guaranteeing a high

minimum degree within the induced subgraph does not necessarily result in a cohesive

subgroup on a global scale, especially for relatively large graphs.

The s-club model guarantees little regarding the minimum vertex degree. For

instance, a star graph is an s-club for any s ≥ 2 with a degree 1 for all of its

peripheral vertices.

The s-plex model restricts each vertex within the induced subgraph to have at

most s− 1 non-neighbors. The best lower bound on vertex degree within an s-plex

is found to be ω̃s(G)− s.

While a γ-quasi-clique guarantees a dense subgraph, it may allow independent

vertices within its structure. For instance, a structure consisting of a clique and an

independent vertex is a dense graph, however with zero minimum degree. Knowing

that the minimum possible degree is no less than the graph’s connectivity, a formal

bound on the minimum degree for γ-quasi-cliques can be deduced from the lower

bound on connectivity, i.e., max{0, γ
(
ωγ(G)

2

)
−
(
ωγ(G)−1

2

)
}, as will be discussed in

Subsection 3.5.5.

Along the same direction, the minimum vertex degree in a k-connected subgraph

is at least k.

3.5.4 Bounds on Density

By definition, the γ-quasiclique ensures a minimum subgraph density of γ.
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Given its connectivity requirement, an s-club should comprise at least ωs(G)− 1

edges, and hence possesses a density of at least 2
ωs(G)

. This bound is tight in the

case of a star graph.

For k-cores and k-connected subgraphs, each vertex is at least connected to k

other vertices, summing to a total of at least
kω′

k(G)

2
and kω̌k(G)

2
edges, guaranteeing

a minimum density of k
ω′
k(G)−1

and k
ω̌k(G)−1

respectively. Note that construction G3,

which is both a k-core and a k-connected subgraph, contains precisely this density,

implying the tightness of the given bounds.

By a similar argument, the largest s-plex is guaranteed a density of at least

1− s−1
ω̃s(G)−1

. While for a fixed k a smaller size k-core would result in a higher density,

the same is true for larger sized s-plex with a fixed s.

3.5.5 Bounds on Connectivity

The k-connected subgraph requires the deletion of k vertices to disconnect the

graph.

In the case of s-clubs, the removal of only one vertex could potentially disconnect

the graph, as illustrated by star graphs. No matter how large these relaxations could

be, they do not ensure connectivity, especially if they comprise a star subgraph within

their structure.

On the other hand, the larger the size of an s-plex, the higher is its connectivity

level. Seidman and Foster [52] have shown that any s-plex ensures a connectivity of

at least ω̃s(G)−2s+2, linearly increasing with its size. This expression suggests that

an s-plex is connected when its size exceeds 2(s − 1). Two independent cliques of

size s− 1 form a set of 2(s− 1) vertices that are not connected, showing this bound

is tight.

Oppositely, the smaller the size of a k-core, the higher is its connectivity level.

The following proposition gives a lower bound on connectivity in terms of the k-core

size ω′k(G).



40

Proposition 3.5.4 If ω′k(G) is the size of k-core S, then

κ(G[S]) ≥ 2k + 2− ω′k(G). (3.5)

This bound is also tight.

Proof Consider an arbitrary graph G = (V,E) with the minimum degree δ(G).

G will be connected as long as 2(δ(G) + 1) − |V | > 0, since in this case, any two

vertices that are not directly connected must have a common neighbor. Therefore,

for a k-core S with minimum degree k and size ω′k(G), S is connected provided

2(k + 1)− ω′k(G) > 0.

When removing one vertex from G, |V | is reduced by exactly one and δ(G) may

decrease by at most one, causing the expression 2(δ(G) + 1) − |V | > 0 to decrease

by at most one, and so does its connectivity. Thus, the connectivity of the k-core

satisfies κ(G[S]) ≥ 2(k + 1)− n = 2k + 2− n.

The bound is sharp since two separate cliques of size (k+ 1) form a k-core whose

connectivity is zero.

For γ-quasi-cliques, the following proposition provides the lower bounds on con-

nectivity.

Proposition 3.5.5

κ(G[Q]) ≥
⌈
γ

(
ωγ(G)

2

)
−
(
ωγ(G)− 1

2

)⌉
. (3.6)

This bound is also tight.

Proof Let a = γ
(
ωγ(G)

2

)
−
(
ωγ(G)−1

2

)
define the number of edges necessary beyond

a clique of size (ωγ(G) − 1) to achieve a density γ. By definition, any γ-quasi-

clique Q of size ωγ(G) comprises at least γ
(
ωγ(G)

2

)
edges. Q can then be represented

as a clique of size ωγ(G) missing at most
(
ωγ(G)

2

)
− γ

(
ωγ(G)

2

)
edges. Knowing that,
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ωγ(G)

2

)
= ωγ(G) − 1 +

(
ωγ(G)−1

2

)
, Q is therefore a clique Kωγ(G) missing at most

[ωγ(G)− 1 +
(
ωγ(G)−1

2

)
]− γ

(
ωγ(G)

2

)
= [ωγ(G)− 1− a] edges.

Kωγ(G) being (ωγ(G)− 1)-connected, the removal of (ωγ(G)− 1− a) edges could

destroy at most (ωγ(G) − 1 − a) edge disjoint paths. The resulting graph Q has at

least ωγ(G)− 1− (ωγ(G)− 1− a) = a disjoint paths. By Menger’s theorem, Q is at

least a-connected, yielding κ(Q) ≥ γ
(
ωγ(G)

2

)
−
(
ωγ(G)−1

2

)
. Knowing the integrality of

a graph connectivity, the desired result is obtained by taking the ceiling of the latter

expression.

To show that the above bound is tight, let us consider a clique of size ωγ(G)− 1

and a single vertex. Connecting this vertex to a = γ
(
ωγ(G)

2

)
−
(
ωγ(G)−1

2

)
vertices in the

clique, the resulting graph becomes a γ-quasi-clique of size ωγ(G). Its connectivity

is exactly equal to the number of edges connecting that single vertex to the clique,

i.e., γ
(
ωγ(G)

2

)
−
(
ωγ(G)−1

2

)
.

All the bounds developed in this section are summarized in Table 3.3.

Table 3.3
Bounds on guaranteed cohesiveness of canonical clique relaxations.

S ⊆ V Diameter Dominating Set Minimum Degree Edge Density Connectivity

Clique “one” “one” “all” “one” “all”

s-club s ω̃s − 1 1 2
ωs

1

s-plex s s ω̃s − s 1− s−1
ω̃s−1

∗
ω̃s − 2s+ 2∗

k-core d′k ω′k − k k k
ω′
k−1

∗
2k + 2− ω′∗k

γ-quasiclique dγ ωγ
⌈
γ
(
ωγ
2

)
−
(
ωγ−1

2

)⌉
γ

⌈
γ
(
ωγ
2

)
−
(
ωγ−1

2

)⌉
k-connected

⌊
ωc−2
k

+ 1
⌋

ωc − k k k
ωc−1

k
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3.6 Cohesiveness Properties of Weak First-Order Clique Relaxations

To illustrate the lack of cohesiveness in weak clique relaxation models, we examine

the properties of s-clique to see how they compare with s-club. Since s-clique exhibits

weak heredity and s-club does not exhibit heredity to any extent, k-clique offers an

attractive alternative in applications where computational speed is critical.

We first present the diameter bounds of s-clique. Consider an independent set

of vertices S = {x1, ..., xz}, where z ≥ 2s + 3. Connect each pair of vertices xi and

xj by a path {xi, cij1, cij2, ..., cijs−1, xj} of length exactly s, where cijt, t = 1, .., s− 1

denote the linking vertices, while ensuring that paths between any two pairs (xi, xj)

and (xi, xs) are disjoint for any i, and j 6= s 6= i. The resulting construction is

represented in Fig. 3.5. Clearly, the distance between any two vertices xi and xj is

s, and S therefore constitutes an s-clique. From the set S, any linking vertex cijt,

t = 1, ..., s− 1 can only be connected to xi and xj through a path of length at most

s. Since no vertices could be added to S while remaining an s-clique, S is maximal

and is an independent set.

Since an s-clique can be an independent set, it can have infinite diameter. As

we did in Section 3.5.1, we will force the s-clique to be connected and repeat the

analysis. We will show that even with enforcing connectivity, an s-clique does not

necessarily have a low diameter. We will show that we cannot guarantee a diameter

less than ωs − 1.

Proposition 3.6.1 There exists a connected maximal s-clique S of size ωs(G) such

that the induced subgraph G[S] has a diameter ωs(G)− 1.

Proof To show this, we consider the construction in Fig. 3.5. As shown previously,

the independent set S = {x1, ..., xz} constitutes a maximal s-clique, with z = ωs(G).

To form a connected subgraph, we replace the paths of length s between xi and

xi+1, i = 1, ..., z − 1, with edges. Note that x1 and xz are still connected through a

path of length s. The resulting subgraph G[S] consists of an acyclic path {x1, ..., xz}
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Fig. 3.5. Illustration of G4 construction.

forming a connected s-clique (refer to Fig. 3.5). In the construction, any linking

vertex cijt, t = 1, ..., s − 1 can be connected to at most 2s + 2 vertices from the set

S. To see this, note that paths of length at most s exist between cijt and each of

xi−(s−t), ..., xi−1, xi, xi+1, ..., xi+(s−t) and xj−t, ..., xj−1, xj, xj+1, ..., xj+t. With the set

S consisting of at least 2s + 3 vertices, no cijt can be connected to all elements

in S with paths of length at most s, yielding the maximality of the s-clique S.

Furthermore, the subgraph G[S], consisting of the acyclic path {x1, ..., xz}, has a

diameter of ωs(G)− 1, corresponding to the distance between x1 and xz.

In analyzing our other structural properties for s-cliques, we see the only guar-

anteed dominating set is one that includes all vertices. This conclusion stems from

the special case of an independent set of vertices that could form an s-clique, as

demonstrated in construction G4. As a result, we could only make the obvious

observation in this case that every set of size ωs(G) in an s-clique dominates the

s-clique. Furthermore, an s-clique can also be formed while excluding the hub vertex

within the star graph, resulting in independent vertices with zero minimum degree.

Since an s-clique may consist of an independent set of vertices, no minimum density
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can be guaranteed. Finally no connectivity can be guaranteed because once again,

an s-clique can be an independent set.

3.7 Applications

Table 3.3 can be very useful in identifying which clique relaxation is particularly

fit for a given application. When choosing a clique relaxation, the properties essential

for a set to be considered a group in a particular application must first be chosen.

The clique relaxations demonstrating these properties in the table are candidates

for grouping. However, to decide between candidates, the properties that cannot be

avoided by a relaxation should also be considered. A set S that should be considered

a group will be missed if the clique relaxation necessarily requires extra structure

that S does not demonstrate. While a property gained “for free” may indicate that

a relaxation more closely resembles a clique, it also means the relaxation cannot

avoid having that property. Thus it is crucial to pay attention to properties both

ensured and omitted in the table to choose the appropriate clique relaxation for a

given application.

In the discussion that follows, we attempt to highlight the important character-

istics for each clique relaxation in Table 3.3. We demonstrate applications for which

each clique relaxation is particularly fit because of its characteristics as evidence of

the importance of the properties.

The s-clique and s-club relaxations were designed to guarantee reachability. A

unique feature of these relaxations from the table is they require little for minimum

degree, dominating set size, density, and connectivity. These clique relaxations are

particularly adept when data should be clustered with low diameter, but also low

density. The s-clubs have had success in clustering topically related information

on the internet to facilitate faster searches for this reason [55]. The internet, along

with numerous other networks, demonstrates preferential attachment, meaning new

edges tend to appear at nodes that already have high degree. Sets of nodes with low
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diameter but also low density permeate such graphs and often should be clustered

despite sparsity. When this is the case, s-clubs or s-cliques are the appropriate

choices. We refer the reader to [10,44] for more information.

The cohesiveness properties of s-club are stronger than those of s-clique. However,

the s-clique relaxation has two distinct properties that keep it from being obsolete.

First, it demonstrates weak heredity, which makes constructing s-cliques by heuristics

much simpler. Second, the largest s-clique in a graph coincides with a clique in the sth

power of a graph. The clique problem has been so well studied that this immediately

gives a trove of tools with which to identify the largest s-clique.

The key property of the k-core relaxation is that it is solvable in polynomial time.

It has proven a useful tool for pruning a graph in order to find cliques and clique

relaxations where a lower bound is known on the degree of the vertices in the induced

subgraph. At times, it has removed enough vertices that the optimal solution can

be found, as was the case with the market graph [15]. In addition, k-core has been

used to detect molecular complexes and predict protein functions [5, 7].

The s-plex relaxation is unique in that it ensures nearly every property in Ta-

ble 3.3 to an extent. It was specifically designed to be an alternative to s-clique and

s-club with more guaranteed structure because the internal structure of diameter 2

graphs was so “poorly understood” [52]. Accordingly, it is often useful in applica-

tions where cliques are desired but a few missing edges are tolerated, perhaps caused

by errors in data collection such as noise. Because it ensures high interaction by

all members, it has become a key tool in protein interaction networks for grouping

proteins. Proteins that are part of a s-plex in a protein interaction network, which is

often called a core, tend to have similar structure since they have many interactions

in common [41].

Quasi-cliques, like the s-plex relaxation, demonstrate a high level of interaction

between all members. This inevitably results in numerous other properties, as was

true with s-plex. What makes it unique from s-plex, however, is that depending on
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size, no minimum degree is required. This makes it useful in data mining applications

where high density sets should be grouped regardless of structure. Quasi-cliques

were successfully used to mine massive sets of telecommunications data in order to

find a good way of organizing it [2]. By storing high density sets, regardless of

structure, in the same section of memory, fewer calls to memory are necessary for

data analysis. This can save significant time. A relaxation similar to the quasi-

clique proved useful in mining biological data for functional relationships between

attributes [22]. They found cohesive subgroups that dwarfed the largest cliques and

helped reveal relationships previously missed due to a small subset of missing edges.

It is likely in both applications that high density groups would be missed by s-plex,

due to the extra structure it requires.

The k-connected subgraph is unique because it is specifically defined to guarantee

communication that can survive breakdowns in the network. It is often referred to as

a “survivable” or “redundant” network outside of graph theory and is more often used

in design rather than analysis of a network. It has been proposed as an alternative

to density-based relaxations in [32] for identifying complexes in protein interaction

networks. Further research on uses for this clique relaxation could prove extremely

valuable, especially in applications where network survivability is key.

3.8 Conclusion

We introduced a taxonomy of clique relaxation models that encompasses many of

the popular models studied in the literature and establishes foundations for a system-

atic study of the corresponding optimization problems and their applications. The

section opens the door for many interesting research directions that can be under-

taken in exploring the existing, as well as newly identified clique relaxation models. In

particular, the established bounds on cohesiveness properties of the canonical clique

relaxation models should help to identify higher-order relaxations that are worth

investigating. The relationship between optimization problems dealing with abso-
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lute and relative relaxations based on relaxing the same elementary clique-defining

property is another interesting question to study.
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4. ON THE MAXIMUM QUASI-CLIQUE PROBLEM

The previous section introduced us to a clique relaxation built around density

known as quasi-clique. A γ-quasi-clique requires at least the fraction γ of all possible

edges between vertices to be present. As a density-based relaxation, γ-quasi-cliques,

also sometime referred to as γ-cliques, provide a reasonable way for grouping ob-

jects that possess no inherent reason to display the structure of many other clique

relaxations. The previous literature related to the MAXIMUM γ-CLIQUE problem

concentrated on heuristic detection of large quasi-cliques in various application sce-

narios. The goal of this section is to start examining the MAXIMUM γ-CLIQUE

problem from the mathematical perspective, including establishing the computa-

tional complexity of the problem for any fixed γ, exploring structural properties of

γ-cliques, deriving analytical upper bounds, and developing mixed-integer program-

ming (MIP) formulations.

The remainder of this section is organized as follows. Section 4.1 introduces the

necessary definitions and notations. The NP-completeness of the decision version of

the MAXIMUM γ-CLIQUE problem is proved in Section 4.2. Section 4.3 defines the

quasi-heredity property and establishes analytical bounds on the γ-clique number

of a graph. Mathematical programming formulations are derived in Section 4.4 and

results of preliminary numerical experiments are reported in Section 4.5. Finally,

Section 4.6 concludes the section.

4.1 Definitions, Notations, and Motivation

Let G = (V,E) be a simple undirected graph with the set V of n vertices and

the set E of m edges. Recall that a clique is a set of vertices that induce a complete

subgraph. A clique is maximal if it is not a subset of a larger clique, and maximum

if there is no larger clique in the graph. The MAXIMUM CLIQUE problem is to
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find a clique of maximum cardinality in G, which is called the clique number and is

denoted by ω(G).

Given G = (V,E) and fixed real γ satisfying 0 < γ < 1, a subset of vertices

Q is called a γ-clique if the edge density of the induced subgraph G[Q], which is

given by the ratio of the number of edges in G[Q] to
(|Q|

2

)
, is at least γ. The

MAXIMUM γ-CLIQUE problem asks for a γ-clique with the maximum possible

number of vertices in G. We will denote the γ-clique number of a graph G, which

is the cardinality of a largest γ-clique in G, by ωγ(G). Note that for γ = 1 the

MAXIMUM γ-CLIQUE problem would become the classical MAXIMUM CLIQUE

problem, while for γ = 0 the problem would be trivial. For a fixed γ ∈ (0, 1) the

problem has not been well studied. The earliest publication on the topic is attributed

to Abello et al. [1] who defined the concept of γ-quasi-clique and proposed greedy

randomized adaptive search procedures (GRASP) for detecting large quasi-cliques in

graphs representing telecommunications data. Similar approaches were implemented

in semi-external memory algorithms that handled massive graphs with hundreds of

millions of vertices [2]. Several other papers, some of which use modified definitions

of quasi-cliques, presented heuristic approaches to detecting large quasi-cliques in

graphs arising in various applications [14,18,38,45,49,60]. In summary, the previous

work on the problem of interest concentrated mainly on heuristic detection of large

quasi-cliques in graphs arising in a diverse set of applications. This section provides

a formal study of the computational complexity of the γ-clique problem, establishes

analytical bounds on the γ-clique number and proposes mathematical programming

formulations of the problem that can be used for finding provably optimal solutions.

4.2 Computational Complexity

This section presents the computational complexity analysis for the the MAX-

IMUM γ-CLIQUE problem for any fixed density γ between 0 and 1. To simplify

the analysis, we first replace a real γ in the definition of a γ-clique with a rational
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p
q
, where positive integers p and q are given, resulting in the p

q
-clique model. Af-

terwards, the results obtained for p
q
-cliques will be extended to the general γ-clique

case. Following the standard approach [31], we define the recognition version of the

problem, p
q
-Clique, as follows: Given a graph G = (V,E) and positive integers p, q

and k, does there exist a p
q
-clique of size at least k in G?

Proposition 4.2.1 The p
q
-Clique problem is NP-complete for any positive integer

constants p, q, p < q.

Proof The proof is done by observing that p
q
-Clique is, obviously, in the class NP

and by reducing the classical Clique problem to p
q
-Clique. Namely, for the given

k and p
q
, we will construct an auxiliary graph G′ = (V ′, E ′) and prove that G has a

clique of size k if and only if G ∪G′ has a p
q
-clique of size |V ′|+ k.

The construction proceeds as follows. We build the set of vertices V ′ with |V ′| =

4(|V |2 + k2)q − k and construct edges to obtain a 2|V |-regular graph. It is easy to

observe that one can always construct a graph with any specified even regularity,

provided there are enough vertices. This can be done by, e.g., placing all the vertices

of V ′ on a circle and connecting each vertex to its immediate |V | neighbors on each

side in the circle. Next we randomly place edges so that we have p
q
·
(|V ′|+k

2

)
−
(
k
2

)
edges between the |V ′| vertices. The value of p

q
·
(|V ′|+k

2

)
−
(
k
2

)
is integer since |V ′|+k is

a multiple of 2q. |V ′| is sufficiently large to guarantee that the following inequalities

hold: (
|V ′|
2

)
≥ p

q

(
|V ′|+ k

2

)
−
(
k

2

)
≥ |V ||V ′|.

The first inequality can be verified by multiplying through by 2q, combining terms

to one side of the inequality, factoring out 4(|V |2 + k2)q from all terms, and finally

by replacing (q − p) with 1 since it must be at least 1. The second inequality is

relatively simple to verify. The first inequality ensures that we can fit in the number

of edges needed for a p
q
-clique of size |V ′|+ k in G∪G′, where k vertices would come
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from a clique in G. The second inequality allows us to build a 2|V |-regular graph on

|V ′| vertices with no more edges than the desired value of p
q

(|V ′|+k
2

)
−
(
k
2

)
.

Consider the union G ∪ G′ of the two graphs. Then we can show that for any

p
q
-clique Q with |Q| > |V ′| in G ∪ G′ there exists a p

q
-clique Q′ in G ∪ G′ such that

|Q′| = |Q| and V ′ ⊂ Q′. Indeed, suppose that there is a p
q
-clique Q that has more

than |V ′| vertices and does not include the entire V ′. Define Vin to be the vertices

from G′ that are included in this p
q
-clique and Vout to be the ones missing. Then

|Vout| ≤ |V |, so a vertex from Vout cannot be connected to more than |V | − 1 vertices

of Vout. Since every vertex in G′ has degree at least 2|V |, each vertex in Vout must be

connected to at least |V |+ 1 vertices in Vin. Therefore, any vertex from Q \ Vin can

be replaced with any vertex from Vout in Q with no reduction in the edge density of

the subgraph induced by Q. Substituting arbitrary |Vout| vertices from Q \ Vin with

Vout, we obtain a p
q
-clique Q′ of the same size as Q that includes the entire V ′.

To complete the proof, we will show that G has a clique of size k if and only if

G ∪ G′ has a p
q
-clique of size |V ′| + k. Given a clique C of size k in G, combining

G[C] with all of G′ we have |V ′|+ k vertices and p
q
·
(|V ′|+k

2

)
−
(
k
2

)
+
(
k
2

)
= p

q
·
(|V ′|+k

2

)
edges, making this collection of vertices a p

q
-clique by definition. On the other hand,

assuming that G ∪ G′ has a p
q
-clique of |V ′| + k vertices, we know that there is p

q
-

clique Q′ of size |V ′|+k in G∪G′ that contains all of the vertices from G′ and hence

precisely k of the vertices come from G. To see that the k vertices in Q \ V ′ form

a clique, consider the density of G′. It is precisely p
q
·
(|V ′|+k

2

)
−
(
k
2

)
by construction.

If the k vertices from G don’t contribute
(
k
2

)
edges, then the set of |V ′|+ k vertices

forming Q cannot have density p
q
. Thus the existence of a p

q
-clique of size |V ′| + k

means the set of k vertices in the original graph induces a subgraph with
(
k
2

)
edges

and hence forms a clique. This establishes the NP-completeness of the p
q
-Clique

problem.



52

Corollary 4.2.1 For any given fixed real γ ∈ (0, 1), the γ-Clique problem is NP-

complete.

Proof First observe that instead of assuming that p
q

is a fixed value, we could allow

p and q to be given with the problem instance, only placing the restrictions that

p = p(n) and q = q(n) be functions of the order O(n2) and 0 < p(n) < q(n). Clearly,

any possible edge density for a graph on n vertices can be specified by p(n)
q(n)

with

p(n), q(n) ≤ n(n − 1)/2. The resulting p(n)
q(n)

-Clique problem is also NP-complete,

using the same proof we have given above. Based on this observation, it suffices to

show that for any γ ∈ (0, 1) there exist two functions p(n), q(n), of the order O(n2)

such that 0 < p(n) < q(n) for any n, and the resulting p(n)
q(n)

-Clique problem and

γ-Clique problem are equivalent. Showing p(n) and q(n) of order O(n2) ensures

they do not need to grow too large in size in order to sufficiently approximate any

irrational value γ ∈ (0, 1).

Let γ be fixed. Define for any positive integer s

p̄(s) =

⌈
γ
s(s− 1)

2

⌉
, q̄(s) =

s(s− 1)

2
.

Note that p̄(s) defines the minimum possible number of edges in the induced subgraph

of any γ-clique of size s, so p̄(s)/q̄(s) ≥ γ and the actual edge density of any γ-clique

of size s is at least p̄(s)/q̄(s). Hence, any γ-clique of size s is also a p̄(s)
q̄(s)

-clique and

vice versa. Next, for any positive integer n we define

p(n) = p̄(s∗), q(n) = q̄(s∗), where s∗ = arg min
1≤s≤n

p̄(s)

q̄(s)
.

Then 0 < p(n) < q(n) for any n and p(n), q(n) are of order O(n2). Moreover, for

any s ≤ n, any s-vertex subgraph Gs = (Vs, Es) of G is p(n)
q(n)

-clique if and only if it is

a γ-clique, so p(n)
q(n)

-Clique problem is equivalent to γ-Clique problem.
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4.3 Properties of γ-cliques

In this section we will discuss some properties of γ-cliques that may be useful

in designing solution procedures for the MAXIMUM γ-CLIQUE problem. Unlike

cliques, the γ-cliques fail to display a key property used in successful algorithms for

the MAXIMUM CLIQUE problem: heredity. Recall from Section 3, a property is

called hereditary if, when it exists in a graph, it exists in all its induced subgraphs. It

is easy to identify γ-cliques containing subsets of vertices that induce subgraphs with

edge density less than γ. Because of this, even checking maximality by inclusion is a

non-trivial task for quasi-cliques. However, γ-cliques do display a related property,

which we will call quasi-heredity.

4.3.1 Quasi-Heredity

If, given any graph G = (V,E) satisfying a property P , there exists v ∈ V such

thatG−v := G[V \{v}] also has property P , we call the property P a quasi-hereditary

property and say that the property P displays quasi-heredity or quasi-inheritance.

Proposition 4.3.1 The graph property of having edge density of at least γ displays

quasi-inheritance. In other words, any γ-clique with s > 1 vertices is a strict superset

of a γ-clique with s− 1 vertices.

Proof Consider a γ-clique Q that induces a subgraph with s > 2 vertices and e

edges (the statement is trivially true for s = 2). Then a smaller γ-clique of size s− 1

can always be formed by removing a vertex v with the lowest degree within Q. Since

this vertex will have the degree less than or equal to the average, which is given by

2e/s, the edge density of the subgraph induced by Q \ {v} will be at least

2e− 4e/s

(s− 1)(s− 2)
=

2e

s(s− 1)
,

i.e., no less than that of G[Q], and hence Q \ {v} is a γ-clique.
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The quasi-heredity property implies that, provided the vertices are placed in the

right order, a maximum γ-clique can be found by starting with the first vertex in

the list and sequentially adding next vertex if the resulting subset of vertices is still

a γ-clique. This gives us a hope that if we apply some “smart” vertex ordering

rules, perhaps based on vertex degrees, there is a chance that we will be able to find

large γ-cliques quickly (even though we cannot say how far their size will be from

optimal). This observation suggests metaheuristic procedures such as GRASP [2] as

a natural choice for solving the problem of interest. The successful computational

experience reported by Abello et al. [2] provides a practical evidence in support of

this hypothesis.

4.3.2 Upper Bounds

The proposed upper bound on the γ-clique number is a generalization of the

classical Amin-Hakimi bound on the clique number [6].

Proposition 4.3.2 The γ-clique number ωγ(G) of a graph G with n vertices and m

edges satisfies the following inequality:

ωγ(G) ≤ γ +
√
γ2 + 8γm

2γ
. (4.1)

Moreover, if a graph G is connected then

ωγ(G) ≤
γ + 2 +

√
(γ + 2)2 + 8(m− n)γ

2γ
. (4.2)

Proof The first bound is obtained by solving the quadratic inequality

γ
ωγ(G)(ωγ(G)− 1)

2
≤ m.
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Assuming that the graph G is connected and has a γ-clique of size ωγ(G), the fol-

lowing inequality must hold:

γ
ωγ(G)(ωγ(G)− 1)

2
+ n− ωγ(G) ≤ m.

Solving this quadratic inequality for ωγ(G), we obtain the second bound.

For γ = 1 the second of the bounds becomes the Amin-Hakimi bound on the

clique number, which is the only constant-time computable upper bound used in the

comparison performed by Budinich [19].

4.3.3 Relation Between ωγ(G) and ω(G)

Next we derive an inequality that will relate the γ-clique number to the clique

number of G. We will need the following classical lower bound on the clique num-

ber that can be easily obtained from the Motzkin-Straus [47] formulation for the

MAXIMUM CLIQUE problem:

ω(G) ≥ 1

1− δ
, (4.3)

where δ = 2m/n2.

Proposition 4.3.3 The γ-clique number ωγ(G) and the clique number ω(G) of graph

G satisfy the following inequalities:

ω(G)− 1

ω(G)
≤ ωγ(G)− 1

ωγ(G)
≤ 1

γ

ω(G)− 1

ω(G)
. (4.4)

Proof The first inequality is trivial due to the fact that ω(G) ≤ ωγ(G). To prove the

second inequality, consider a γ-clique C of largest size ωγ(G) in G. Then, according



56

to (4.3), the size ω(G[C]) of the largest clique in the induced subgraph G[C] satisfies

the inequalities

ω(G) ≥ ω(G[C]) ≥ 1

1− δC
,

where δC = 2mC/n
2
C , mC is the number of edges in G[C], and nC = ωγ(G) is the

number of vertices in G[C]. Since C is a γ-clique, we have

δC =
2mC

n2
C

=
2mC

nC(nC − 1)

nC − 1

nC
≥ γ

nC − 1

nC
.

Therefore,

ω(G) ≥ 1

1− γ nC−1
nC

,

which, taking into account that nC = ωγ(G), is equivalent to

ωγ(G)− 1

ωγ(G)
≤ 1

γ

ω(G)− 1

ω(G)
.

Corollary 4.3.1 If γ > 1− 1
ω(G)

then

ωγ(G) ≤ ω(G)γ

1− ω(G) + ω(G)γ
. (4.5)

Proof The result follows directly from the second inequality in (4.4).

Bound (4.5) can be especially useful for large sparse networks that often arise

in real-life applications. Such networks typically have very small clique number

compared to the total number of vertices and the size of their largest clique can be

computed using effective preprocessing procedures. Table 4.1 provides the value of

bound (4.5) with γ = 0.95, 0.9, 0.85 for graphs with the clique number between 3 and

10. As can be seen from this table, in some cases the bound allows to claim that a

maximum clique of G is also a maximum γ-clique of the same graph.
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Table 4.1
The value of upper bound (4.5) on γ-clique number with γ =
0.95, 0.9, 0.85 for graphs with small clique number.

ω(G) 1− 1
ω(G)

0.95 0.9 0.85

3 0.667 3.35 3.86 4.64
4 0.75 4.75 6 8.5
5 0.8 6.33 9 17
6 0.83 8.14 13.5 51
7 0.86 10.23 21 –
8 0.88 12.67 36 –
9 0.89 15.55 81 –
10 0.9 19 – –

4.4 MIP Formulations of the Maximum γ-Clique Problem

The lack of structure in γ-cliques as opposed to cliques and some other clique

relaxations, such as k-plex [9], makes this problem extremely difficult to solve to

optimality. Indeed, the most successful combinatorial algorithms for the MAXIMUM

CLIQUE and MAXIMUM k-PLEX problems rely on the heredity property of these

structures, which is not an option in our case. Tight bounds and effective pruning

strategies within a branch-and-bound framework are not easy to develop for the

MAXIMUM γ-CLIQUE problem. This section develops mixed integer programming

formulations for the MAXIMUM γ-CLIQUE problem.

We consider a graph G = (V,E) with the set V = {1, . . . , n} of n vertices. We

denote by A = [aij]
n
i,j=1 its adjacency matrix, which is an n×n matrix with aij equal

to one if (i, j) ∈ E, and zero otherwise. We introduce n binary decision variables

xi, i = 1, . . . , n, one for each vertex, such that the value x∗i assigned to the variable

xi in the output optimal solution will indicate whether the corresponding vertex i is



58

a part of the maximum γ-clique C∗ computed. Namely, i ∈ C∗ if and only if x∗i = 1.

Then the MAXIMUM γ-CLIQUE problem can be formulated as follows:

ωγ(G) = max
n∑
i=1

xi (4.6)

subject to
n∑
i=1

n∑
j=i+1

aijxixj ≥ γ

n∑
i=1

n∑
j=i+1

xixj, (4.7)

xi ∈ {0, 1}, i = 1, . . . , n. (4.8)

This problem has a linear objective, but its single constraint is quadratic. Next, we

introduce new variables to make this problem linear. We define xij = xixj. We need

only n(n−1)/2−n new variables since xij = xji. The quadratic constraint xij = xixj

with binary variables is equivalent to the following three linear constraints:

xij ≤ xi, xij ≤ xj, xij ≥ xi + xj − 1. (4.9)

Therefore, we can formulate our graph problem as a mixed integer linear optimization

problem:

ωγ(G) = max
n∑
i=1

xi, (4.10)

subject to
n∑
i=1

n∑
j=i+1

(γ − aij)xij ≤ 0, (4.11)

xij ≤ xi, xij ≤ xj, xij ≥ xi + xj − 1, j > i = 1, . . . , n (4.12)

xij ≥ 0, xi ∈ {0, 1}, j > i = 1, . . . , n. (4.13)

This formulation contains n(n− 1)/2 variables and 3
2
n(n− 1) + 1 constraints.
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Next we consider an alternative linearization. Recall that the original formulation

(4.6)-(4.8) had a single constraint that can be replaced with

n∑
i=1

xi

(
γxi +

n∑
j=1

(aij − γ)xj

)
≥ 0. (4.14)

Let us define a new variable yi for i = 1, . . . , n as follows:

yi = xi

(
γxi +

n∑
j=1

(aij − γ)xj

)
. (4.15)

Let us denote by

ui = (1− γ)
n∑
j=1

aij; li = −(n− 1−
n∑
j=1

aij)γ, (4.16)

where ui is the sum of all the positive coefficients and li is the sum of all the negative

coefficients for the variables in the expression in parenthesis of (4.15). Since all

variables are binary, the constants ui and li satisfy the following inequalities:

li ≤ γxi +
n∑
j=1

(aij − γ)xj ≤ ui, i = 1, . . . , n, (4.17)

li ≤ yi ≤ ui, i = 1, . . . , n. (4.18)

Thus, the quadratic equality (4.15) with binary variables is equivalent to the following

four linear inequalities:
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yi ≤ uixi, (4.19)

yi ≥ lixi, (4.20)

yi ≥ γxi +
n∑
j=1

(aij − γ)xj − ui(1− xi), (4.21)

yi ≤ γxi +
n∑
j=1

(aij − γ)xj − li(1− xi). (4.22)

Therefore, the problem of finding a maximum γ-clique can be represented as the

following mixed integer linear optimization problem with 2n variables, n of which

are 0-1 variables and n – continuous, and 4n+ 1 constraints:

ωγ(G) = max
n∑
i=1

xi (4.23)

subject to
n∑
i=1

yi ≥ 0, (4.24)

yi ≤ uixi, yi ≥ lixi, i = 1, . . . , n, (4.25)

yi ≥ γxi +
n∑
j=1

(aij − γ)xj − ui(1− xi), i = 1, . . . , n, (4.26)

yi ≤ γxi +
n∑
j=1

(aij − γ)xj − li(1− xi), i = 1, . . . , n, (4.27)

xi ∈ {0, 1}; yi ∈ R, i = 1, . . . , n. (4.28)

The proposed formulations allow to use standard optimization solvers to find optimal

γ-cliques in graphs that are not very large.
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4.5 Results of Numerical Experiments

To provide a preliminary evaluation of the relative practical efficacy of the pro-

posed mathematical programming formulations, sample numerical experiments have

been conducted using a state-of-the-art commercial solver. All experiments were per-

formed on a Dell Optiplex 980 PC with Intel Core i7 CPU 860 2.80 GHz processor,

8 GB RAM, running 64-bit Windows 7 Professional operating system. The proposed

formulations were used in conjunction with FICO Xpress-IVE Version 1.21.02 solver

on a number of instances.

The testbed used included two types of instances: uniform random graphs on 50

and 100 vertices and power-law random graphs on 100 vertices. A uniform random

graph G(n, p) has n vertices, where each pair of vertices is connected by an edge

independently with the probability p, whereas in a power-law graph the probability

that a node has a degree k is proportional to k−β. Generating test instances of

uniform random graphs with given n and p is straightforward, whereas in the case

of power-law graphs one can use the procedure described in [23], which essentially

assigns the probabilities pij for each pair of nodes (i, j) to be connected, using the

extended random graph model for a general degree distribution and then adjusting

that model so that the resulting graph follows the power-law degree distribution.

Tables A.1 and A.2 in Appendix A present the description of the uniform random

graphs and the power law random graphs used, respectively. In Table A.1, the first

column specifies the name of the graph, while the second and third columns marked

by “n” and “p” contain the number of vertices and probability used to generate

the corresponding graph G(n, p), respectively. The next column “m” contains the

actual number of edges in the corresponding graph. The remaining columns show

the computed γ-clique number ωγ(G) for γ = 1, 0.95, 0.9, 0.85, 0.8, and 0.75. The

only difference in notations used in Table A.2 compared to Table A.1 is in the third

column, where the parameter β needed to generate a power law random graph is

used instead of p.
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The running times for the two proposed formulations applied to the above de-

scribed uniform and power law random graphs are compared in Tables A.3 and A.4

of Appendix A, respectively. The first column of these tables, again, contains the

graph name. The remaining eight columns are subdivided into four pairs correspond-

ing to four reported values of γ; γ = 1, 0.95, 0.85, and 0.75, respectively. In each of

the four pairs of columns, the first column, marked with “F1”, shows the running

time for formulation (4.10)-(4.13), and the second column, “F2”, reports the running

time for formulation (4.23)-(4.28). All running times are reported in seconds. If the

MIP gap did not show much improvement after 50,000 seconds, the corresponding

run was terminated with “> 50, 000” reported in the respective table entry. One

can observe that, in most cases, the running times for both formulations grow sig-

nificantly with the increase of graph density and the decrease in γ value. While the

second formulation consistently outperforms the first one for higher values of γ on the

considered uniform random graphs, the first formulation takes over when γ ≤ 0.85

and the graph’s edge density is at least 0.15. The difference becomes dramatic on

the last 10 graphs in Table A.3 and the last 5 instances in Table A.4, for which the

second formulation requires over 50,000 seconds in multiple cases, while the first one

often finds the solution in much shorter time spans and never takes more than 40,000

seconds.

To provide a deeper insight into the performance of the two formulations, Ta-

ble A.5 of Appendix A presents a comparison of upper bounds for the MAXIMUM

γ-CLIQUE problem. The first bound is based on analytical expression (4.1) (if the

graph is not connected; such graphs are marked with ∗) or (4.2) (for connected

graphs). The other two bounds are given by the optimal objective function value

of LP relaxations for the first formulation (LPRF1), and the second formulation

(LPRF2). Solving times for the LP relaxations are given in seconds. One represen-

tative problem instance from each subtype included in the testbed is used for the

comparison. All uniform random graphs generated for the experiments were verified
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to be connected, therefore, upper bound (4.2) applies. On the other hand, none of

the power law random graphs in the testbed were connected, therefore, bound (4.1)

was used for the corresponding two instances included in the table. One can ob-

serve that both LP bounds are of rather poor quality and could be improved by

adding the constraints corresponding to the proposed analytical bounds. However,

adding such constraints results in even higher running times, as finding high-quality

feasible solutions becomes more challenging for the MIP solver. The LP bounds

obtained from the MIP formulations are comparable, with the second formulation

being slightly tighter in most cases. Moreover, the second formulation requires less

time to compute. Surprisingly, the first formulation still comprehensively outper-

forms the second one on several instances, as reported in Tables A.3 and A.4. This

is due to the fact that typically the number of branch-and-bound nodes explored by

the solver for the first formulation is significantly lower than for the second formula-

tion. For example, for graph u50-1 with γ = 0.75 the first formulation terminates at

node 541, while the second formulation – at node 17,459. It should be noted that in

the reported preliminary experiments we just used default solver settings. Perhaps

more advanced branch-and-bound strategies, tailored specifically for the MAXIMUM

QUASI-CLIQUE problem, may lead to significant speedups.

4.6 Conclusion

This section is the first attempt to establish rigorous mathematical foundations

for the MAXIMUM γ-CLIQUE problem that finds numerous practical applications.

We show that the decision version of the problem is NP-complete, develop analytical

bounds on the γ-clique number of a graph, and provide mixed-integer programming

formulations for the problem of interest. In addition, we report the results of prelim-

inary computational study employing the proposed formulations in conjunction with

a modern commercial MIP solver. The lack of well-defined structure in γ-cliques

makes the problem extremely challenging for exact solution methods. The results on
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small graph instances with up to 100 vertices underline the necessity of developing

more advanced techniques in order to be able to solve larger-scale instances to opti-

mality. The analytical bounds and MIP formulations proposed in this section could

motivate future research on exact algorithms for the MAXIMUM QUASI-CLIQUE

problem.
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5. 2-CLIQUES ON UNIT DISK GRAPHS

In this section we investigate the problem of finding 2-cliques on unit disk graphs.

The section is organized as follows. In Section 5.1, we motivate the problem by exam-

ining potential applications and by demonstrating how it can contribute to already

completed research. In Section 5.2, we give the necessary definitions, notation, and

background to understand the paper. In Section 5.3, we outline the proof that 2-

cliques are 4-dominated on unit disk graphs, which is completed in Section 5.5, and

provide an example to show this bound is nearly tight. In Section 5.4, we discuss how

to solve the 2-clique problem effectively on unit disk (UD) graphs using our proof,

ultimately establishing a 1
2
-approximation ratio for our polynomial time algorithm,

as well as how to the solution performs on random unit disk graphs, showing both

theoretical and computational results.

5.1 Related Research and Applications

As discussed in the introduction, clique relaxations and unit disk graphs merit

research independent of each other. However, at the intersection of these two areas of

research are some interesting problems. Routing on dynamic broadcasting networks

is one such problem. A proposed method for highly stable routing in a dynamic

network is to partition a graph into cliques, treating each clique as a super-vertex in

the graph [37]. As nodes move around, it is unlikely they break communication with

all vertices in their group before the graph can be re-examined and re-partitioned into

cliques. When this is the case, routing tables only have to be updated within each

group, since the general route remains fixed, consuming less bandwidth and allowing

the network to scale to handle a higher capacity of nodes. Clique relaxations could

be substituted for cliques in this algorithm and would constitute a trade of slightly

less stability in routing for the ability to scale the network to even larger sizes.
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Another problem that might be assisted by identifying 2-cliques in a unit disk

graph is flight scheduling. The hub and spoke model has been the dominant route

structure for most airlines since flights were deregulated in 1978. This model helps

ensure full flights and gets most customers to their destination with only one layover,

but it lacks flexibility. Inclement weather at a hub or other delays can make re-

scheduling quite difficult. A hub and all its spokes, in the context of graph theory,

constitute a 2-clique in a unit disk graph, where the radius of the disks represent

the flight capabilities of a plane or perhaps restrictions on a crew. To take pressure

off some of the hubs, replace the centralized 2-cliques, consisting of a hub and its

spokes, in the unit disk graph with 2-cliques found by the method in this paper. All

flights scheduled between cities in a 2-clique still get customers to their destination

with one layover. Further, our 2-cliques will have at most two dominating vertices,

which can be used as hubs for the traditional hub and spoke method when there are

no delays.

The solutions to both the routing and airline scheduling problems are better when

the clique relaxation found is large. In the routing problem, the more vertices we

place in each super-vertex the larger the network can scale with fixed bandwidth

capabilities. Having more cities included in our diameter 2 clique relaxation in flight

scheduling gives us more flexibility in scheduling and more insurance of full flights

while still getting customers to their destination with only one layover. We suggest

2-cliques specifically to solve these problems because we can find large 2-cliques on

unit disk graphs very effectively, as we will show in this section.

Considerable research has already been invested into clique relaxations on unit

disk graphs. In [8] the author emphasizes the importance of identifying the complex-

ity of this set of problems:

Complexity of maximum k-plex, k-club, and k-clique problems on re-

stricted graph classes such as planar and perfect graphs is important,
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even more so on graph classes that have practical applicability such as

unit disk graphs.

One reason identifying the complexity of the aforementioned problems is so important

is assumptions are being made that may or may not be true. For instance, in [36]

the author writes of the k-clique problem:

There are some strong indications that this problem is NP-hard in unit

disk graphs. We claim this as a conjecture and give complexity results for

some geometric graphs which may be helpful in verifying our conjecture.

The complexity of the k-clique problem on unit disk graphs remains open. Research

into k-cliques on unit disk graphs would most certainly help give validity to many of

the methods employed in [36]. Instead of tackling the whole problem, we will focus

our attention on the 2-clique problem for unit disk graphs, with the hope that our

findings will alleviate the proof of the complexity of k-cliques on unit disk graphs in

general.

5.2 Definitions and Notation

We introduce a few definitions not already in the literature that will help in the

discussion that follows.

Definition 5.2.1 For any set of pairwise overlapping disks centered at c1, c2, and

c3, define their circular triangle 4c1c2c3 to be the shape outlined by p1, p2, and p3

and the boundaries of the disks, where pi is the intersection of the disks centered at

cj and ck closest to the disk centered at ci as in Fig. 5.1. We will refer to pi as

the vertices of this triangle and the pairwise intersections of disks with the circular

triangle removed as leaves.

Note that the circular triangle may not be contained within any of the disks if they

do not share a mutual intersection. We will often call this a concave circular triangle,
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Fig. 5.1. Circular triangles.

just to clarify we are dealing with the case where three circles do not have a mutual

overlap.

Part of our proof will make use of a set of points in space S overlapped by all

disks in a set of disks. We next define an object relative to this set S to help in our

proof.

Definition 5.2.2 Suppose S is a set of points in space overlapped by all disks and

suppose the boundary of S is formed by n different circles. We will refer to these

circles as border circles, as in Fig. 5.2.

Definition 5.2.3 The intersection A∩B of any pair of disks {A,B} will be referred

to as a lens. The extreme points of this intersection will be referred to as the vertices

of the lens.

Note that a lens is always the full intersection of a pair of disks and thus in some

cases differs from a leaf.
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Fig. 5.2. Border circles and lens.

5.3 Domination for 2-Cliques on Unit Disk Graphs

We outline a proof that 2-cliques are 4-dominated on unit disk graphs, which

is completed in Section 5.5. This is not true for 2-cliques on general graphs. It is

shown in [42] how to construct graphs of diameter 2 with minimum dominating set

exceeding any size n. This means that in order to prove 2-cliques are 4-dominated

on unit disk graphs, we must take advantage of the extra structure we have with

unit disk graphs.

Let K be any 2-clique in a unit disk graph. A key detail to note is that we do

not require the elements in a dominating set for K to be members of K. Another

important note is that we will be working exclusively with the containment model

for UD graphs. By working with the containment model, every pair of disks A and

B in our 2-clique K must intersect and there must be a vertex in their intersection

to ensure they have distance at most 2. Recognizing all intersections of disks in K

must contain a vertex of the graph, we will break our proof down into two cases. The

first case is where there exist three disks A, B, and C in K that intersect pairwise
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but A ∩ B ∩ C = ∅, meaning there is not a mutual intersection for all three disks.

The other case is where all disks A, B, and C in K satisfy A ∩B ∩ C 6= ∅.

5.3.1 Case 1: ∃ A,B,C ∈ K s.t A ∩B ∩ C = ∅

p2

p3

p1

Larger 
Circular
Triangle

A

B

C

p1
p2

p3

Entire Leaf
Overlapped

A

B C

A

B

C

Fig. 5.3. An illustration to the proof of Case 1.

The general idea of the proof in this case is first to take the concave circular

triangle between three circles of the 2-clique that has largest area. Suppose A, B,

and C are the circles forming the border of this circular triangle. It is clear from

Fig. 5.3 that every other disk in the 2-clique must overlap at least one of its three

vertices p1, p2, or p3. Otherwise it would produce a circular triangle with larger area

as in the figure, a contradiction to how we chose A, B, and C. We then prove that,

since every disk must overlap one vertex of this triangle, they must in fact overlap at

least one entire leaf A∩B, A∩C, or B∩C. This is given credibility by the fact that

even when the three vertices p1, p2, and p3 are concurrent, making the outer tips of

the leaves as spread apart as possible in Case 1, a disk cannot squeeze in between

the 3 leaves. This special case, as pictured at right in Fig. 5.3, is proven in [35].

Since the leaves A ∩ B, A ∩ C, or B ∩ C must contain vertices of the graph for A,

B, and C to be distance 2 apart, and since all disks in K must overlap one of these
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three leaves entirely, all disks are connected to one of these 3 vertices. Hence, K is

3-dominated in this case.

5.3.2 Case 2: A ∩B ∩ C 6= ∅ ∀ A,B,C ∈ K

A key aspect to the proof in this case is a well-known theorem from convex

geometry.

Theorem 5.3.1 (Helly’s Theorem in Two Dimensions [25]) Suppose F is a

finite family of at least 3 convex sets in <2. Then if every 3 members of F have

a common point, there is a point common to all members of F .

Since in case 2 we are assuming A∩B∩C 6= ∅ ∀A,B,C ∈ K, by Helly’s theorem

this means there exists a set of points in space S that all members of K overlap, as

shown in Fig. 5.4.

S

Fig. 5.4. The area guaranteed by Helly.

Clearly, if there is a vertex in S, the 2-clique is 1-dominated. If instead there are

two vertices in a lens formed from two discs on the border of S that are separated

by S, as in Fig. 5.5, the 2-clique is 2-dominated. There is no way to squeeze between

these two vertices without changing the border of S, which would be a contradiction
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Fig. 5.5. A border lens with 2 vertices.

since all disks must overlap S entirely. Assuming neither of these are true, we are in

a third case, pictured in Fig. 5.6. In this case, we will use a finite sequence of steps

A

B

C

Fig. 5.6. Discs A, B, and C with no mutual neighbor.

to identify three disks A, B, C that border S in K such that no vertex of the graph

lies inside A∩B∩C, that is N(A)∩N(B)∩N(C) = ∅. To produce this set of disks,

we choose a pair of disks A and B that do not make up consecutive pieces of the

border of S and consider their intersection, as in Fig. 5.7. Since A and B belong to
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S

S2

S1

p

p

Fig. 5.7. The lens formed from A and B.

the 2-clique K, there must be a node(s) p in A ∩ B that cannot be in S. Further,

since A and B are border disks for S that are not consecutive, S will divide A ∩ B

into two pieces, S1 and S2, only one of which can contain a node p or else the graph

would be 2-dominated, as we established previously. Suppose these points lie in S1.

Starting at any node p, we choose a disk C bordering S that does not contain p,

hoping that N(A) ∩N(B) ∩N(C) = ∅. If that is not the case, we replace either A

or B with C, and repeat. Since every repetition reduces the number of border disks

between A and B by at least one, we eventually will produce two border disks A

and B close enough together on the border of S such that there exists a point p in

A ∩ B but the disk C separating the node p from S does not contain any node in

A ∩ B ∩ S1. But the set of points {p | p ∈ A ∩ B ∩ S1} = {p | p ∈ A ∩ B} since

the set is not 2-dominated and hence C cannot overlap any node of A∩B. Thus we

have produced N(A) ∩N(B) ∩N(C) = ∅, which we needed to know so that each of

A∩B, A∩C, and B ∩C must contain a vertex of the graph, similar to Case 1. Call

these vertices v1, v2, and v3 respectively.
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B
C

A

v1

v2

v3

S

Fig. 5.8. An illustration of the hexagon forming a border around S.

It is obvious there is no way to “squeeze” a disk between v1, v2, and v3 with

a point outside the hexagon pictured in Fig. 5.8 without making either A, B, or

C be no longer a part of the border of S. Since every point must overlap S, this

means every point in K is either connected to v1, v2 or v3 directly or else inside this

hexagon. It is possible that a point D inside this hexagon avoids v1, v2, and v3. The

disk centered at D in Fig. 5.9 is one such example.

We show that any point that does not connect to one of v1, v2, or v3 inside the

hexagon is connected to one other vertex, making the graph 4-dominated.

5.3.3 A Lower Bound on the Domination Number

In [33] it is proven that for a set of congruent disks that intersect pairwise, the

piercing number, which is the fewest points in space that intersect every object in a

given set, is precisely 3. They give an example similar to the one in Fig. 5.10, which

is discussed in detail in [21].
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A

B
C

A

B

C

v1

v2

v3

v1

v2

v3

D
D

S

Fig. 5.9. A disc inside the hexagon that avoids vertices v1, v2, and v3.

A

B C

x y

z

A1

A2

B1
B2

C1

C2

x1x2

y1 y2

z1

z2

Fig. 5.10. A 2-clique with a minimum dominating set of 3 vertices.

In [21], the sequences of points {Ai}ni=1, {Bi}ni=1, and {Ci}ni=1, are created such

that no unit disk contains more than 1
3
|{{Ai}ni=1, {Bi}ni=1, {Ci}ni=1}|+1 of them. That

example is adapted here so that the path ABi contains midpoint xi, the path BCi

contains midpoint zi, and the path CAi contains midpoint yi. These midpoints are
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necessary because we are dealing with a set of disks that form a 2-clique rather than

a clique and we are using the containment model for unit disk graphs. If Vn =

{{Ai}ni=1, {Bi}ni=1, {Ci}ni=1, {xi}ni=1, {yi}ni=1, {zi}ni=1}, then in the adapted example it

is true that no two disks contain and hence dominate more than 5
6
|Vn| + 1 points.

The set as a whole forms a 2-clique and so the lower bound on domination number

for 2-cliques in UD graphs is 3.

5.4 Effectively Finding 2-Cliques on Unit Disk Graphs

Theorem 5.4.1 The maximum 2-clique problem can be solved in polynomial time

on unit disk graphs with a 1
2
-approximation ratio.

Proof Let G be our unit disk graph. We claim we can find the largest 2-clique

dominated by 2 elements in any graph in polynomial time. First, extract a pair

{v1, v2} of vertices and their neighbors and square the extract to produce a co-

bipartite graph with partitions N [v1] and N [v2]. Note that as we square the extract,

we connect vertices that are distance 2 or less in G, even if they are not distance 2

in the subgraph induced by our extract. The result is still a co-bipartite graph, and

the maximum clique problem can be solved on such graphs in polynomial time [24].

A clique in the square of a graph by definition is a 2-clique in the original graph

and hence by extracting the closed neighborhoods of all subsets {v1, v2} of size 2, we

can identify the largest 2-clique dominated by 2 elements in the graph in polynomial

time. For ease below, we will define this method to be called the extraction method.

We claim that the largest 2-clique dominated by 2 elements must be at least half

the size of the largest 2-clique. To see this, note k-cliques are weakly hereditary,

meaning every subgraph of a k-clique will be a k-clique. This is because the distance

between two elements in a subset is the shortest path between the elements, and

that path is not restricted to only use elements in the subset. Thus, while each

subset of a k-clique will have a different induced subgraph, the distance between
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elements in those subsets remains k, and hence, every subset is a k-clique. Next

note that at least half of the vertices of the largest 2-clique will be dominated by 2

elements in the graph. We showed in Section 5.3 that all 2-cliques are 4-dominated

on unit disk graphs, and hence, at least half of the elements must be connected to

two of the members of the dominating set. Since these two dominating points and all

their neighbors form a 2-clique independently by weak heredity, and such a 2-clique

would be detected by our extraction method, the largest 2-clique produced by the

extraction method must be at least half as large as the largest 2-clique, and the proof

is done.

Theorem 5.4.2 With asymptotic probability 1, the largest 2-clique in random unit

disk graphs can be found with 2
3
-approximation ratio in polynomial time.

Proof In [34], it is proved that given a set of random points in a punctured unit

disk, with asymptotic probability 1, there exist two points that will cover all the

points in the unit disk. In the case where Helly’s theorem established the existence

of a set S overlapped by all disks, we can take any point in S as the center of a

punctured unit disk that will cover all points of the 2-clique, since all members of

the 2-clique are within the circle of radius 1 of every point in S. In this case, with

asymptotic probability 1, the set of disks in such a 2-clique are 2-dominated. In the

other case, where A ∩ B ∩ C = ∅, we proved the graph 3-dominated, rather than

4-dominated. Combining these results we can say that our solution to the 2-clique

problem is, with asymptotic probability 1, a solution with 2
3
-approximation ratio to

the 2-clique problem on random unit disk graphs.

While we can guarantee with asymptotic probability 1 that the largest 2-clique in

a random unit disk graph can be found with 2/3-approximation ratio, the algorithm

actually performs even better in practice. We generated 3500 random unit disk

graphs of 50 nodes and 100 random unit disk graphs of 100 nodes for each density

in the range from .05 to 1 in increments of .05. In order to build our random unit
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disk graphs G(n, p) with the specified edge probability p, we made use of the results

established in [50]. In [50] a formula for the probability distribution for distance

between random points in a box is established. We use the formula in reverse,

starting with our fixed probability p and using the distribution to identify the radius

necessary for any pair of disks to overlap in a fixed size box with probability p.

In all 70,000 experiments with 50 nodes and all 2000 experiments with 100 nodes,

the size of the largest 2-clique and the largest 2-clique generated by our algorithm

matched. Practically speaking, the 2-clique problem has been solved for random unit

disk graphs in polynomial time.

5.5 Proof that 2-Cliques are 4-Dominated on UD Graphs

Our proof assumes we have a 2-clique K and is broken into the two cases as

outlined in Section 5.3. The following lemmas are basic results about intersecting

circles with equal radius that are needed in both cases.

Lemma 5.5.1 In Fig. 5.11, disks A, X, and Y all have the same radius. If the

intersection points {x1, x2} of X and A are both inside circle Y , then A ∩ X ⊆

A ∩ Y . If the intersection points {y1, y2} of circles A and Y are both outside of

circle X, then either A ∩ Y ⊇ A ∩ X or else these intersections don’t overlap, i.e.

(A ∩X) ∩ (A ∩ Y ) = ∅.

Proof Suppose the intersection points {x1, x2} of X and A are both inside circle

Y . First note that given the radius of a circle and two points on the circle, we can

set up a system of two equations to solve for two unknowns (h, k) representing the

center of the circle. It is not difficult to see that since they have the same radius,

this will yield at most two potential solutions for the centers, one on each side of the

line between the two given points on the circle and curving in opposite directions.

Next note that disks X and Y either do not intersect at all or intersect twice

within A. Two circles can intersect 0, 1, or 2 times. In order for extreme points
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x1

x2

y1

y2

A

X

Y

Fig. 5.11. An illustration to the proof of Lemma 5.5.1.

x1 and x2 of the intersection of A with X to be both within Y , the disk X must

cross the boundary of Y an even number of times within A, which means either 0

or 2 intersections. Suppose X and Y intersect twice within A, at points p1 and p2.

Since X and Y have the same radius, this means they must be centered on opposite

sides of the line between p1 and p2 as we argued above. But this means X and Y

are curving in opposite directions, which means {x1, x2}, the intersections of X with

A, cannot be contained within Y , a contradiction. If they were contained within

Y , then X must intersect A ∩ Y four times and hence have diameter less than the

maximum distance of points in A ∩ Y . This contradiction means X and Y must

not intersect within A. Since the boundaries of disks are continuous and X and Y

do not intersect within A, this means either A ∩ X ⊆ A ∩ Y , A ∩ Y ⊆ A ∩ X, or

(A ∩X) ∩ (A ∩ Y ) = ∅. Since x1 ∈ A ∩X also belongs to A ∩ Y and y1 /∈ A ∩ Y , it

must be that A ∩X ⊆ A ∩ Y .

The proof for the case that the intersection points {y1, y2} of circles A and Y

are both outside of circle X is analogous, with the conclusion again that either

A ∩X ⊆ A ∩ Y , A ∩ Y ⊆ A ∩X, or (A ∩X) ∩ (A ∩ Y ) = ∅. In this case, however,

we can only include either A∩X ⊆ A∩ Y or (A∩X)∩ (A∩ Y ) = ∅ because we are

not aware of any point in A ∩X necessarily in A ∩ Y .



80

Lemma 5.5.2 Suppose two disks A and B of radius r intersect to form a lens A∩B.

Then any disk C of radius r intersects the boundary of the lens A∩B at most twice.

Proof We showed in the proof of Lemma 5.5.1 that if C intersects the boundary

of A ∩ B twice along A, then C cannot intersect B; or if C intersects it twice along

B, it cannot intersect A. But in order to intersect the lens more than twice it must

intersect one of A or B twice, which contradicts the proof of Lemma 5.5.1.

Corollary 5.5.3 Suppose two disks A and B of radius r intersect to form a lens

A ∩ B. Let v1 and v2 be the intersections of the circles A and B. Any disk C of

radius r that does not overlap v1 and v2 cannot intersect the boundaries of both A

and B within A ∩B.

Proof By Lemma 5.5.2, C can only intersect the lens A ∩ B twice. If it intersects

the boundaries of both A and B within A ∩ B, it by necessity must contain one of

the vertices of the lens to be a closed object.

The previous result shows there is no way to “squeeze” a disk between the vertices

of a lens and intersect both disks forming the lens beyond those points contained in

the lens.

5.5.1 Case 1: ∃ A,B,C ∈ K s.t A ∩B ∩ C = ∅

We begin with a simple observation for Case 1, since we know there exist three disks

without a mutual intersection.

Lemma 5.5.4 Let A, B, and C be the members of K that form the concave circular

triangle with largest area. Let p1, p2, and p3 be the vertices of this triangle. Then

any disk centered outside of triangle p1p2p3 not coinciding with one of A, B, or C

must properly contain at least one of p1, p2, or p3.
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Fig. 5.12. An illustration to the proof of Lemma 5.5.4.

Proof We claim any disk X that does not properly contain p1, p2, or p3 will form a

concave circular triangle with larger area, which contradicts our choice of A, B, and

C. By Lemma 5.5.1, a disk centered outside of triangle p1p2p3 cannot intersect any

side of triangle 4p1p2p3, provided the curvature is oriented in the same direction,

without overlapping at least one of the intersection points p1, p2, or p3. But this

means either X has opposite curvature from all sides of the concave circular triangle

and is centered within 4p1p2p3 or else it must form a concave circular triangle that

contains triangle 4p1p2p3 within it as in Fig. 5.12. This is because X must intersect

all of A, B, and C as a member of K and hence forms a circular triangle of its own,

but cannot intersect 4p1p2p3 except at p1, p2, or p3 since it cannot intersect a side

of 4p1p2p3 as explained above. Since it does not properly contain any of p1, p2, or

p3 and does not coincide with any of A, B, or C, the disk X must form a concave

circular triangle with strictly larger area than that formed by A, B, and C. But this

contradicts our choice of A, B, and C as forming the concave circular triangle with

largest area, and the proof is done.

We now present a few more results about intersecting circles with equal radius.
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Lemma 5.5.5 If three disks A, B, and C overlap pairwise but A∩B ∩C = ∅, then

the triangle formed by connecting their centers will be acute.

A

B

C
m

A

B

C
m<= 1

<= 1

> 1

q

Fig. 5.13. An illustration to the proof of Lemma 5.5.5.

Proof Consider the midpoint m of side BC, which lies in the intersection B ∩ C

as in Fig. 5.13. Since A ∩ B ∩ C = ∅, it must be that A is greater than distance

1 from m. Consider the circle centered at m of radius |mC|. Then the center of A

cannot be in this circle. Consider the point q where side BA intersects disk m. The

angle ∠BqC then is a right angle. But this means ∠BAC is acute because triangle

4CqA has right angle ∠CqA. By similar arguments we can conclude angles ∠BCA

and ∠ABC are acute and hence 4ABC is acute.

We next give a lemma describing what happens as a circle rotates around an inter-

section point.

Lemma 5.5.6 In Fig. 5.14, all circles have the same radius, and circles c and d

both intersect circle a at a shared point s. If the center of circle d is on or inside

∠csx, then x is on or inside circle d, and y, z are on or inside circle c.
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Fig. 5.14. An illustration to the proof of Lemma 5.5.6.

Proof ∠csx = ∠cxs since |cs| = |cx|. If d is outside 4csx then since d is on or

inside ∠csx, this implies ∠dxs > ∠cxs = ∠csx > ∠xsd. Thus it must be that

|dx| < |ds| = 1 since side ds is across from the larger angle. On the other hand, if

d is on or inside 4csx, then clearly |ds|+ |dx| ≤ |cs|+ |cx| since the triangles share

side sx, and since |cs| = |ds| = 1, it must be that |dx| ≤ |cx| = 1. Thus in either

case x is on or inside circle d since it has distance less than or equal to 1 from x.

We can conclude y and z are on or inside circle c using the exact same argument

with c on or inside ∠ds∗, where ∗ represents either y or z, which must be true since

∠csx+ ∠cs∗ = ∠xs∗ = ∠dsx+ ∠ds∗ and we hypothesized ∠csx > ∠dsx.

We break down the remainder of our proof into three cases. First we examine

the case where a disk properly contains none of p1, p2, or p3. Following that, we

handle the case where the disk contains at least one of p1, p2, or p3 properly inside

it but only overlaps part of 4p1p2p3. Finally we will handle the case where a disk

overlaps all of 4p1p2p3. We will prove in all possible scenarios that an entire leaf is

overlapped, implying that K is 3-dominated.
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Lemma 5.5.7 Suppose A, B, and C are three circles in a 2-clique such that A∩B∩

C = ∅ and produce the concave circular triangle with largest area. Let the vertices of

this concave circular triangle be p1, p2, and p3 as in Fig. 5.15. Then it is impossible

for a disk Q of identical radius not coinciding with A, B, or C to not properly contain

at least one of p1, p2, or p3 inside of it.

A

B

C

x1

y2
p1

p2
p3

x2
y1 y

x

O

Fig. 5.15. Setup for the proof of Lemma 5.5.7.

Proof Since none of p1, p2, or p3 are properly contained in Q, by Lemma 5.5.4 it

must be that Q is centered within circular triangle 4p1p2p3. Our strategy will be to

build a sequence of disks that increase in area, starting with Q and ending with a

disk of maximum possible size that still does not properly contain p1, p2, or p3. We

will show this final disk to have radius less than 1 and the proof will be done.

Let Q be an arbitrary circle with center inside 4p1p2p3. Suppose Q intersects

side p3p2 at points x1 and x2 and intersects side p1p2 at y1 and y2 as labeled in

Fig. 5.15. Note that if x1 coincides with p3 or y2 coincides with p1, we skip one of the

next two steps in our construction. Because x1, x2, y1, and y2 are all on one circle,

we can conclude ∠x2x1y2 + ∠x2y1y2 = ∠x2Qy2
2

+ 2π−∠x2Qy2
2

= π.
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p3 y2
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Fig. 5.16. The start of a sequence of circles with increasing area.

Without loss of generality (WLOG), we can assume ∠x2x1y2 ≤ π
2
. We can

calculate the radius of the circle through the four points to be r0 = x2y2
sin∠x2x1y2

. Note

from Fig. 5.16 that ∠x2p3y2 = ∠x2p3m+∠mp3y2 < ∠x2x1m+∠mx1y2 = ∠x2x1y2, so

we can conclude the radius of the circle through x2, y2 and p3 to be r1 = x2y2
sin∠x2p3y2

>

x2y2
sin∠x2x1y2

= r0, that is greater than the radius of the circle through x1, x2, y1, and

y2.

The circle through x2, y2 and p3 must intersect circle C in a second location.

Let y be this point. Note that since this circle intersects p3p2 twice, at p3 and x2, it

cannot overlap p2. Thus y must be on p1p2. Consider the circle through x2, y2, p3 and

y. Repeating the analysis from above, we can conclude that ∠p3y2y + ∠p3x2y = π.

Assume WLOG that ∠p3y2y ≤ π
2
. Since ∠p3p1y < ∠p3y2y using the same argument

as before, we can conclude r2 = p3y
sin∠p3p1y

> p3y
sin∠p3y2y

= r1, since both angles ∠p3y2y

and ∠p3p1y are between 0 and π
2

where sin is increasing. Thus the circle through p3,

p1, and y will have greater radius than the circle through x2, y2, p3 and y.

We now break down the argument into two cases. The first case is where ∠p1yp3 ≥
π
2
. Let O and I be points on B as pictured in Fig. 5.17, separated by p1p3. We

know that ∠p1Ip3 + ∠p1Op3 = ∠p1Bp3
2

+ 2π−∠p1Bp3
2

= π. Using the same trick as

above, we see that ∠p1Ip3 = ∠p1Ik + ∠kIp3 > ∠p1yk + ∠kyp3 = ∠p1yp3. Thus

∠p1yp3 + ∠p1Op3 < π. Since ∠p1yp3 ≥ π
2
, this means ∠p1Op3 <

π
2
. It also means
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Fig. 5.17. Continuing the sequence of circles with increasing area.

∠p1yp3 < π − ∠p1Op3. Thus we have 0 < ∠p1Op3 < ∠p1yp3 < π − ∠p1Op3 < π,

which means sin(∠p1yp3) > sin(∠p1Op3). Thus r2 = p1p3
sin(∠p1yp3)

< p1p3
sin(∠p1Op3)

= 1 since

this last circle is B. The proof is done in this case because the circle through x1, x2,

y1, and y2 had radius r0 and we have shown r0 < r1 < r2 < 1.

To handle the case ∠p1yp3 < π
2
, note that since y is on arc p1p2, it must be

inside 4p1p2p3. Then, as in Fig. 5.17, ∠p1yp3 = ∠p1yn + ∠nyp3 > ∠p1p2n +

∠np2p3 = ∠p1p2p3. Thus 0 < ∠p1p2p3 < ∠p1yp3 <
π
2

in this case, so sin(∠p1p2p3) <

sin(∠p1yp3). Thus the radius of the circle through p1, p2, and p3 satisfied r3 =

p1p3
sin(∠p1p2p3)

> p1p3
sin(∠p1yp3)

= r2.

Assume that 4p1p2p3 is acute. If not and ∠p1p2p3 ≥ π
2
, then choose points I

and O on circle B just as before, establish ∠p1p2p3 < ∠p1Ip3 so that ∠p1p2p3 +

∠p1Op3 < π, and the argument proceeds exactly as in the first case we argued

above. The same could be done with circle A if ∠p3p1p2 ≥ π
2

and with circle C

if ∠p1p3p2 ≥ π
2
. Thus assume 4p1p2p3 is acute. Assume WLOG that ∠p2Ap3 is

the smallest in {∠p2Ap3,∠p1Bp3,∠p1Cp3}. We want to prove ∠p2p1p3 > ∠p2Ap3.

If we can do this, then because ∠p2p1p3 <
π
2

as part of an acute triangle, we can
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establish sin(∠p2p1p3) > sin(∠p2Ap3) > sin(∠p2Ap3
2

), which means r3 = p2p3
sin(∠p2p1p3)

<

p2p3

sin(
∠p2Ap3

2
)

= 1, and the proof will be finished by the chain r0 < r1 < r2 < r3 < 1.

To prove ∠p2p1p3 > ∠p2Ap3, note that ∠p2p1p3 = 2π − ∠Bp1C − ∠Bp1p3 −

∠Cp1p2. Using ∠Bp1C = π − 2∠p1BC, π = 2∠Bp1p3 + ∠p1Bp3, which yields

∠Bp1p3 = π
2
− ∠p1Bp3

2
, and π = 2∠Cp1p2+∠p1Cp2, which yields ∠Cp1p2 = π

2
− ∠p1Cp2

2
,

we see that ∠p2p1p3 simplifies to 2∠p1BC+ ∠p1Bp3
2

+ ∠p1Cp2
2

. Then we have ∠p2p1p3 =

2∠p1BC + ∠p1Bp3
2

+ ∠p1Cp2
2
≥ ∠p1Bp3

2
+ ∠p1Cp2

2
≥ ∠p2Ap3 since ∠p2Ap3 is the smallest

in {∠p2Ap3,∠p1Bp3,∠p1Cp3}. Since ∠p2p1p3 > ∠p2Ap3, the proof is done.

Note that in our above proof, we showed that a circle that contains two of the

three vertices from the set {p1, p2, p3} on its border, as well as a point y that could

be the third point from this set, cannot have radius 1.

Lemma 5.5.8 Let A, B, and C be three circles in our 2-clique K with A∩B∩C = ∅

and which produce a concave circular triangle with largest area. Then any other disk

Q in K that does not strictly contain the entire circular triangle must strictly contain

one of A ∩B, A ∩ C, or B ∩ C entirely.

A

B

C

p1

p2
p3

Fig. 5.18. The general setup for the proof of Lemma 5.5.8.
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Proof Suppose the setup is as seen in Fig. 5.18, where A, B, and C are the 3 circles

in our 2-clique K that form a concave circular triangle with most area, and p1, p2,

and p3 are the vertices of this triangle. Since the disk being added cannot strictly

contain the entire circular triangle, there will always be at least one vertex that it

will not strictly contain. We will let that vertex be p2. In order to contain one of p1

or p3, any disk Q in K must intersect at least one of the sides p1p2 or p2p3 of triangle

4p1p2p3 an odd number of times. Since disks can intersect each other at most twice,

we can break down the proof into three essential cases, based off the number of times

Q intersects each of p1p2 and p2p3.

In all cases we will let Q denote the disk we wish to add. We will let x1 and

x2 denote the intersections of Q with A and y1 and y2 denote the intersections of Q

with C. Note that x1 can coincide with p3; x2 and y1 can coincide with p2; and y3

can coincide with p1. However, x1 cannot coincide with p3 at the same time when y3

coincides with p1 since one of p1 or p3 must be strictly contained in Q.

Subcase 1: Q intersects one of the edges p1p2 or p2p3 once and the other

not at all.

Suppose WLOG that Q does not intersect p1p2 at all and hence intersects p2p3 exactly

once. These together imply Q cannot overlap p1 and thus must overlap p3 only, as in

Fig. 5.19. Since Q is part of the 2-clique, it must overlap disks A and C, and since

it cannot overlap p2, it forms a concave circular triangle with these disks as in the

picture. This means 4AQC will be acute by Lemma 5.5.5.

Note that ∠x1Qy2 is less than π. This is because ∠x1Qy2 = ∠x1Qx2 +∠x2Qy1 +

∠y1Qy2 = 2∠x1QA + ∠x2Qy1 + 2∠y2QC ≤ 2∠AQC < π since 4AQC is acute.

Clearly x2 is outside of B, since circle Q must overlap p3. If we can show x1 is

outside of B, we will be done by Lemma 5.5.1, because {p3} ∈ (A ∩ Q) ∩ (A ∩ B)

which implies that A ∩Q ⊇ A ∩B and thus an entire leaf is overlapped.

To show x1 is outside of B, first note |Bx2| > 1. To make the notation less

tedious in specifying angles for our argument, we label the vertices involved with a
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A

B

C

x1

y2

Q p1

p2
p3

x2

y1

m1

m2

Fig. 5.19. An illustration for the proof of Subcase 1.

new polar coordinate system as in Fig. 5.20. We let Q be the origin of a new polar

m2

m1
x1

x2

y2

Q

B

Fig. 5.20. Polar coordinate system in Subcase 1.

coordinate system, and the midpoint of the arc between x2 and y2 on circle Q, which

is m2, will be the point (1, 0). Let x1 be the point (1, α1), y2 be the point (1, α2), m1

be the point (1, β), and B be the point (r, γ).

Since ∠x1Qy2 < π, we can conclude 0 < β = ∠x1Qy2
2

< π
2
. Suppose by way of

contradiction |Bx1| ≤ 1 and hence x1 is not outside of B. Since we know |Bx2| > 1,

this means |Bx2| > |Bx1|. In order to be closer to x1 than x2, B must be on

the same side of the line through m1 and Q as x1. Further |Bx2| > |By2|, since

y2 ∈ B. This means B must be on the same side of the line through m2 and Q as

y2, that is, below the x-axis in our new coordinate system. Together these imply



90

that B must be in the third quadrant, since β < π
2
. That is π < γ < 3π

2
. Note

0 < α1 = ∠x1Qm2 < ∠x1Qy2 < π, and 0 < ∠m2Qy2 = ∠x2Qy2
2

< ∠x1Qy2
2

< π
2
, which

implies 3π
2
< α2 < 2π. Further note that ∠BQy2 = α2 − γ and ∠x1QB = γ − α1.

Adding these last two equations together we get α2 − α1 = ∠BQy2 + ∠x1QB. But

α2−α1 = 2π−∠x1Qy2 > π, so either ∠BQy2 >
π
2

or ∠BQx1 >
π
2
. But ∠BQy2 >

π
2

would mean |By2| > |Qy2| = 1, which would be contradiction since y2 is in B.

Further ∠BQx1 >
π
2

would mean |Bx1| > |Qx1| = 1, which is a contradiction to

what we supposed by way of contradiction. Thus it must be that |Bx1| > 1 and then

by Lemma 5.5.1, since x1 is outside of B, all of the leaf A ∩B is overlapped by Q.

Subcase 2: Q intersects p1p2 once and p2p3 once.

A

B

C

x1

x2

y1

y2

Q

p1

p2
p3

m1

m2

Fig. 5.21. An illustration for the proof of Subcase 2.

This case has very similar argument to Subcase 1 and is pictured in Fig. 5.21.

Since Q cannot strictly overlap p2, it forms a concave circular triangle with disks A

and C. This means 4AQC will be acute by Lemma 5.5.5.

Note that ∠x1Qy2 is less than π because ∠x1Qy2 = ∠x1Qx2+∠x2Qy1+∠y1Qy2 =

2∠x1QA + ∠x2Qy1 + 2∠y2QC ≤ 2∠AQC, and 2∠AQC < π since 4AQC is acute.

Clearly x2 is outside of B, since Q must overlap p3, and y1 is outside of B, since circle

Q must overlap p1. If we can show either x1 or y2 is outside of B, we will be done
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by Lemma 5.5.1, because {p3} ∈ (A ∩ Q) ∩ (A ∩ B) and {p1} ∈ (C ∩ Q) ∩ (C ∩ B)

implies either A∩Q ⊇ A∩B or C ∩Q ⊇ C ∩B and thus an entire leaf is overlapped.

The only way an entire leaf will not be overlapped is if |Bx1| ≤ 1 and |By2| ≤ 1.

To make the notation less tedious in specifying angles for our argument, we again

label the vertices involved with a polar coordinate system as in Fig. 5.22. We let Q

m2

m1
x1

x2

y2

Q

B

Fig. 5.22. Polar coordinate system in Subcase 2.

be the origin of a new polar coordinate system, and the midpoint of the arc between

x2 and y2 on circle Q, which is m2, will be the point (1, 0). Let x1 be the point

(1, α1), y2 be the point (1, α2), m1 be the point (1, β), and B be the point (r, γ).

Since ∠x1Qy2 < π, we can conclude 0 < β = ∠x1Qy2
2

< π
2
. Suppose by way of

contradiction both |Bx1| ≤ 1 and |By2| ≤ 1. Since we know |Bx2| > 1, this means

|Bx2| > |Bx1| and |Bx2| > |By2|. In order to be closer to x1 than x2, B must be on

the same side of the line through m1 and Q as x1. Likewise B must be on the same

side of the line through m2 and Q as y2, which means it must be below the x-axis

in our new coordinate system. Together these imply that B must be in the third

quadrant, since β < π
2
. That is π < γ < 3π

2
. Note 0 < α1 = ∠x1Qm2 < ∠x1Qy2 < π,

and 0 < ∠m2Qy2 = ∠x2Qy2
2

< ∠x1Qy2
2

< π
2
, which implies 3π

2
< α2 < 2π. Further

note ∠BQy2 = α2 − γ and ∠x1QB = γ − α1. Adding these last two equations

together we get α2 − α1 = ∠BQy2 + ∠x1QB. But α2 − α1 = 2π − ∠x1Qy2 > π so

either ∠BQy2 >
π
2

or ∠BQx1 >
π
2
. But BQy2 >

π
2

would mean |By2| > |Qy2| = 1,

which would be contradiction since y2 is in B. Further ∠BQx1 >
π
2

would mean
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|Bx1| > |Qx1| = 1, which is also a contradiction. Thus neither ∠BQy2 >
π
2

nor

∠BQx1 >
π
2

can hold, and we have a contradiction. This means either x1 or y2 is

outside circle B and then by Lemma 5.5.1, since x2 and y1 are outside of B, either

all of the leaf A ∩B or B ∩ C is overlapped by Q.

Subcase 3: Q intersects one of the edges p1p2 and p2p3 once and the other

twice.

Suppose WLOG Q intersects p1p2 once and p2p3 twice, as in Fig. 5.23.

A

B

C

x1

y2

Q

p1

p2
p3

x2
y1

R

Fig. 5.23. An illustration for the proof of Subcase 3.

For small ε, draw a new circle R passing through p3 + ε and y1 whose center is

within angle ∠p3y1y2, as in Fig. 5.23. It will either be the case that the center of

Q is inside ∠Ry1y2 or the center of R is inside ∠Qy1y2. By the contrapositive of

Lemma 5.5.6, since both Q and R pass through the point y1 and p3 is not inside Q,

we can conclude that R cannot be on or inside ∠Qy1y2. Thus it must be that Q is

inside angle ∠Ry1y2. Using Lemma 5.5.6 in the forward direction, with knowledge

that Q is inside ∠Ry1y2 and both Q and R pass through y1, we conclude that both

intersections of Q with C are on or outside R and so by Lemma 5.5.1, R∩C ⊆ Q∩C.

Note that R intersects the arc p2p3 once and p1p2 once, namely at y1. If it

intersected p1p2 twice, then at some point in the process of rotating around y1,
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it must have intersected both p1p2 and p2p3 each twice. But that would mean R

overlaps none of p1, p2, and p3 and hence must be centered inside triangle 4p1p2p3.

But this is impossible, as we established in the proof of Lemma 5.5.7.

Since R intersects each of p1p2 and p2p3 once, then, for small enough ε, R matches

the setup as in Subcase 2. From that case we can conclude R overlaps B ∩ C, since

having an intersection at p3 + ε precludes it from overlapping A∩B for small enough

ε. Thus since B ∩ C ⊆ R, we can conclude that B ∩ C ⊆ R ∩ C ⊆ Q ∩ C ⊆ Q and

hence Q covers an entire leaf, the leaf B ∩ C.

To finish Case 1, we need to show that even when the entire concave circular

triangle formed by A, B, and C in the above scenario gets overlapped by a disk Q

in the 2-clique, Q still overlaps one of the leaves A ∩B, A ∩C, or B ∩C. First, one

more theorem and one more lemma are in order.

Theorem 5.5.9 For i = 1, 2, 3, let the circles γi have center Ci and equal radius r.

Assume that 4C1C2C3 is acute, and has signed circumradius c > 0. Let γ1 ∩ γ2 =

{A3, B3}, γ1 ∩ γ3 = {A2, B2}, and γ2 ∩ γ3 = {A1, B1} be their intersection points.

Let A1, A2, and A3 be the three outer intersection points, and let δ = sign(r2 − c2).

Let a be the signed circumradius of 4A1A2A3 and let b be the signed circumradius

of 4B1B2B3. Then

0 ≤ a, b ≤ r ≤ c ≤ a+ b if δ < 0

0 ≤ b, c ≤ r ≤ a ≤ b+ c if δ > 0.

Proof This is just an adaptation of Theorems 3 and 4 in [43].

We use this theorem in the proof of Lemma 5.5.11.

Lemma 5.5.10 Suppose three circles A, B, and C overlap pairwise but A∩B∩C =

∅. Let x, y, and z be the outer vertices of the leaves A ∩ B, A ∩ C, and B ∩ C

respectively. Then 4xyz is acute.
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A

B

C

x

y

z

m

z’

y’

Q

Fig. 5.24. An illustration to the proof of Lemma 5.5.10.

Proof Draw another circle Q as in Fig. 5.24 such that A∩B ∩Q = {m}. Suppose

that it intersects circle C at point z′ and does not overlap the point z. Note that

Lemma 5.5.8 can be extended to the case where p1, p2, and p3 coincide, provided the

requirement of strict containment is dropped. This means that sinceQ cannot overlap

B∩C, it must be that Q contains A∩C. Thus y is inside Q and ∠zxy ≤ ∠zxy′. Let

ε = ∠z′xz so that ∠zxy ≤ ∠zxy′ = z′xy′ + ε. This will hold no matter how small ε

is made.

By Johnson’s Theorem [35], 4z′xy′ is similar to the triangle made of the centers

of the three circles, which is acute by Lemma 5.5.5. Thus ∠z′xy′ is acute, and no

matter what degree less than 90 this angle is, ε can be made small enough such that

∠zxy is also acute.

With the same method, we can conclude ∠zyx and ∠xzy are acute, so the triangle

is acute. The angle ∠zxy was an arbitrary angle in the triangle when we showed it

acute.

Theorem 5.5.11 Suppose K is a 2-clique in a unit disk graph and ∃ A,B,C ∈

K suchthat A ∩B ∩ C = ∅. Then K is 3-dominated.
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Proof Because of Lemma 5.5.8, we need only show that a disk that strictly overlaps

the entire concave circular triangle formed from A, B, and C must also overlap one

of the leaves A∩B, A∩C, or B ∩C entirely, making our graph 3-dominated by the

vertices inside these leaves. Suppose by way of contradiction that a circle Q could

overlap the entire concave circular triangle formed by A, B, and C and not overlap

a leaf entirely. Then it must overlap with each leaf at two points. Call these points

j,k,m,n,r, and s, as in Fig. 5.25.

A

B

C

x

y

z

j m

n

k

r s

Fig. 5.25. Hypothetical intersections of Q with leaves.

From the picture, if Q is to overlap the entire concave circular triangle, it must

be on the opposite side of the line jn from A. Both A and Q go through the points

j and n and if they were on the same side of jn then Q could not cover the entire

concave circular triangle. Similarly Q must be on the opposite side of the line ks

from B and the line rm from C. This is more than enough to ensure that Q must

be centered strictly within the triangle 4xyz.

If any of x, y, or z is inside Q then Q covers an entire leaf and we have contradicted

our assumption above. Thus it must be that |Qx| > 1, |Qy| > 1, and |Qz| > 1.

Suppose WLOG the minimum of {|Qx|, |Qy|, |Qz|} is |Qx|. If we draw a circle

centered at Q with radius Qx, then y and z must still be outside this circle with

enlarged radius, since |Qx| is smallest. Thus this circle must have intersection points

on both xy and xz, which we will call u and v respectively.
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We wish to show that |uv| < |yz|. If that is the case, then we can say that if R

is the radius of the circumcircle through x, y, and z, then R = |yz|
sin∠yxz >

|uv|
sin∠yxz =

|uv|
sin∠uxv = |Qx| > 1. But we can show this contradicts Theorem 5.5.9. To apply this

theorem, let c be the radius of the circle through the centers of circles A, B, and C.

Clearly c > 1 since otherwise A∩B ∩C would not be empty because there would be

a point within unit distance of all three. Under this definition of c, Theorem 5.5.9

says that since δ = sign(1 − c2) < 0, it must be that 0 ≤ R ≤ 1, where R is the

circumradius of the circle passing through the outer intersections of circles A, B, and

C. But this is a contradiction to R > 1 above and thus it must be impossible that

a circle Q exists as described.

x

y

z

Q

u

v

t

w

Fig. 5.26. An illustration for the proof of Theorem 5.5.11.

To show |uv| < |yz|, note 4uxv must be acute. Angle ∠uxv = ∠yxz is acute

since 4xyz is acute by Lemma 5.5.10. If one of ∠xuv or ∠xvu were right or obtuse,

then Q would not lie strictly within ∠uxv. But this would mean Q cannot lie within

4xyz, a contradiction. Thus 4uxv must be acute. Construct lines parallel to yz

through u and v, as in Fig. 5.26. Call where these lines intersect triangle xyz the

points t and w respectively. One of tu and vw will be outside of 4uxv. Suppose

WLOG vw is outside 4uxv. Then ∠vuw is supplementary to angle vux, which is

acute, and hence ∠vuw is obtuse. Since ∠vuw is obtuse, this means |vw| > |uv|.
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But clearly |yz| > |vw|. Hence |uv| < |yz| and the proof of the lemma is complete.

5.5.2 Case 2: A ∩B ∩ C 6= ∅ ∀ A,B,C ∈ K

Since in Case 2 we are assuming A∩B∩C 6= ∅ ∀A,B,C ∈ K, by Helly’s theorem

this means there exists a set S of points in space that all members of K overlap. We

prove a few lemmata before proving our main result.

Lemma 5.5.12 Suppose A, B, and C are three disks that intersect pairwise, but

A ∩ B ∩ C = ∅. Suppose WLOG that B ∩ C has area less than or equal to that of

A ∩ B and A ∩ C. Let p1, p2, and p3 be the vertices of the concave circular triangle

A ∩ B ∩ C. Then any circle D with center in B ∩ C will cover the entire circular

triangle of A, B, and C.

A B

C C’

A B

C’

p1p2

p3

p2

p3
p1’

D D’D’

Fig. 5.27. An illustration to the proof of Lemma 5.5.12.

Proof It is sufficient to show the circle D centered at the outer vertex of B ∩ C

covers the vertices of the circular triangle, specifically p2 and p3 since they are most

distant from A ∩ C. Assume WLOG that A ∩ C has less area than A ∩B, in which
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case we rotate circle C around p2 to create a new circle C ′ such that A∩C ′ = B∩C ′,

as in Fig. 5.27. If this is false, we rotate B around p3 instead. By Lemma 5.5.6, it

is clear that A ∩ C ⊆ A ∩ C ′. Since D is on arc p′1D
′, it is clear that |p2D

′| ≥ |p2D|

and |p3D
′| ≥ |p3D|. Further |AC ′| = |BC ′| ≥ |AB| because the area of leaf A∩B is

larger than that of leaf A ∩ C, which is larger than the area of leaf A ∩ C ′.

Note that |Ap3| = |Bp3| = |Bp′1| = |C ′p′1| = |C ′p2| = |Ap2| = 1. Since ∠p3AB =

∠p3BA, we will call this angle α. Similarly ∠p3Ap2 = ∠p3Bp
′
1 so we refer to these

angles as β, and ∠p2AC
′ = ∠p2C

′A = ∠p′1C
′B = ∠p′1BC

′, which will be referred to

as γ. Lastly we will refer to ∠p2C
′p′1 as δ.

The key to the proof is showing that β ≤ δ. To that end, first note that γ ≤ α.

Because |AC ′| = |BC ′| ≥ |AB|, which implies that ∠C ′p′1B and ∠Cp2A are greater

than ∠Ap3B, there are fewer degrees available for γ in 4p′1BC ′ so that γ ≤ α.

Suppose for contradiction that δ < β. Then |p2p
′
1| < |p2p3|. But at the same time

∠p2p3p
′
1 = 2π − ∠Ap3B − ∠Ap3p2 − ∠Bp3p

′
1 = 2π − (π − 2α)− ∠Ap3p2 − ∠Bp3p

′
1.

But ∠Ap3p2 = ∠Ap2p3 and ∠Bp3p
′
1 = ∠Bp′1p3 since they are isosceles triangles,

implying that 2∠Ap3p2 +∠p3Ap2 = π and 2∠Bp3p
′
1 +∠p3Bp

′
1 = π. Thus ∠p2p3p

′
1 =

2π − (π − 2α) − (π
2
− β

2
)− (π

2
− β

2
) = 2α + β. Similarly ∠p3p

′
1p2 = 2π − ∠Bp′1C

′ −

∠Bp′1p3 − ∠C ′p′1p2 = 2π − (π − 2γ) − (π
2
− β

2
) − (π

2
− δ

2
) = 2γ + β

2
+ δ

2
. If δ < β

then ∠p3p
′
1p2 = 2γ + β

2
+ δ

2
< 2α + β = ∠p2p3p

′
1 since we know γ ≤ α. But

∠p3p
′
1p2 < ∠p2p3p

′
1 implies that |p2p3| < |p2p

′
1|. But |p2p

′
1| < |p2p3| was already

established above. Because of this contradiction, it must be that δ ≥ β.

Since β ≤ δ, we can conclude that ∠D′Bp3 = 2γ + β ≤ 2γ + δ = ∠BC ′A, and

∠BC ′A ≤ π
3

since |AC ′| = |BC ′| ≥ |AB|. Similarly ∠D′C ′p2 = ∠BC ′A ≤ π
3
. Recall

|p2D
′| ≥ |p2D| and |p3D

′| ≥ |p3D| as we established above. Further |p3D
′| ≤ 1 and

|p2D
′| ≤ 1 since these are the edges across from an angle at most π

3
in triangles

4p3D
′B and 4p2D

′C ′ that have the other sides of length 1. Thus, by the transitive

property, we can conclude |p3D| ≤ 1 and |p2D| ≤ 1 so that the circle centered at D

covers both p2 and p3 and the proof is done.
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Lemma 5.5.13 Suppose a 2-clique K in a unit disk graph is such that A∩B ∩C 6=

∅ ∀A,B,C ∈ K and suppose S is the convex area overlapped by all elements of K,

as guaranteed by Helly’s theorem. Then if K is not 1-dominated or 2-dominated,

there exists a set of three disks A, B, C in K that help to form the border of S such

that the leaves A ∩ B, A ∩ C, and B ∩ C each contain vertices of the graph in their

interiors but no vertex of the graph lies inside A ∩B ∩ C.

Proof Let S be the convex space overlapped by all members of K as guaranteed

by Helly’s theorem. If K is not 1-dominated then S must contain no vertices of the

graph in its interior since every disk must overlap S. If the border of S is formed by

1 or 2 disks, then K must be 1-dominated, which would be a contradiction. Every

pairwise intersection of disks must contain a vertex, since K is a 2-clique, and thus

an area bordered by 1 or 2 disks must have a vertex of the graph inside. If the border

of S is formed by 3 disks, there must be no vertices in the interior of S since it is

not 1-dominated, which means the three leaves surrounding S must contain vertices,

and the lemma is true. Thus we can assume the border of S is formed by 4 or more

disks.

Let A and B be any two border circles that do not form consecutive pieces of

the border of S. Two such disks must exist since the border is defined by 4 or more

disks. Note that (A ∩ B) − S is separated into two pieces, S1 and S2. Since K is a

2-clique, there must be a vertex of the graph in A∩B, and since we are assuming K

is not 1-dominated, this vertex must not be in S. Thus either S1 or S2 must contain

a vertex of the graph. If both S1 and S2 contain vertices of the graph, K must be

2-dominated by Corollary 5.5.3, where a point in S1 is substituted for v1 and a point

in S2 is substituted for v2. It is clear that there is no way to “squeeze” a disk between

two such points and overlap all of S since A and B form the border of S. Thus we

can assume WLOG there is a vertex of the graph in S1 and none in S2. Call this

vertex p1.
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Since p1 cannot be in S, there must be a disk bordering S1 and S that does

not contain p1. Call this disk D1. If there is no point of the graph inside D1 ∩ S1

then N(D1) ∩ N(A) ∩ N(B) = ∅ and the proof is done. Suppose there is a point

of the graph inside D1 ∩ S1. Call this point p2. Again there must be a disk on

the border of S1 and S that does not contain p2. Call this disk D2. If this disk is

between D1 and A on the border of S then replace B with D1. If D2 is between

D1 and B then replace A with D1. Assume WLOG we replaced B with D1. We

now consider A ∩D2 ∩D1. A ∩D1 ∩ S1 is non-empty since it contains p2. No graph

point can exist in (A ∩ D1) − S1 or else the graph would be 2-dominated because

A ∩D1 ∩ S1 ⊂ A ∩ B ∩ S1 and A ∩ B ∩ S1 has S separating the space from S2 and

hence S must also separate A ∩D1 ∩ S1 from space between A ∩D1 but outside S1,

which we will call S ′2. If S ′2 contained a vertex of the graph, the graph would be

2-dominated by the same argument as before. Since D2 does not contain p2, it might

be that N(A) ∩N(D2) ∩N(D1) = ∅. If so, the proof is done. Otherwise, begin the

process again by calling this point inside D2 to be p3, finding D3, and then replacing

either A or D1 with D2.

This process must terminate with a set of 3 disks with intersection containing no

vertices from the graph. Every iteration reduces the number of disks on the boundary

of S and S1 between the two disks forming the lens around pi and there are only a

finite number of disks such as this between the original disks forming the lens, A and

B. Eventually, once the edges of the lens are close enough together, there has to be

a disk on the boundary of S and S1 that does not contain any of the vertices of the

graph that are also in that lens, since every point in S1 has some disk separating it

from S. Hence this process will terminate in a lens with a vertex and a disk that

does not contain any vertex inside that lens. This is a set of 3 disks with empty

intersection and the proof is done.

Theorem 5.5.14 If a 2-clique K on a unit disk graph satisfies A ∩ B ∩ C 6=

∅ ∀A,B,C ∈ K, then K is 4-dominated.
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Proof We know by the previous lemma there is a set of three border disks A, B, C

in K such that no vertex of the graph lies inside A ∩ B ∩ C. We know that each of

A∩B, A∩C, and B∩C must contain vertices of the graph since all points in K have

distance 2 or less. Call these vertices v1, v2, and v3 respectively. By Corollary 5.5.3,

B
C

A

v1

v2

v3

S

Fig. 5.28. The hexagon border of S in Theorem 5.5.14.

there is no way to “squeeze” a disk between v1, v2, and v3 with a point outside this

hexagon without making either A, B, or C be no longer a part of the border of

S (see Fig. 5.28), a contradiction. Thus every point of the 2-clique must be either

directly connected to v1, v2, or v3 or inside the hexagon. It is possible that a point

inside this hexagon avoids being directly connected to v1, v2, and v3, as can be seen

in Fig. 5.29. We claim that any point that does not connect to one of v1, v2, or v3

is connected to one other vertex. If there exists a vertex D inside the hexagon not

directly connected to v1, v2, or v3, it must be that v1 ∩ v2 ∩ v3 = ∅, and the vertex

must fall in the gap between disks v1, v2 and v3. But by Lemma 5.5.12, one of A, B,

or C, which exist in v1 ∩ v2, v1 ∩ v3, and v2 ∩ v3, must cover the entire middle area

and hence the proof is done.
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B
C

A

B

C

v1

v2

v3

v1

v2

v3

D
D

S

Fig. 5.29. A disk that avoids vertices of the hexagon in Theorem 5.5.14.

5.5.3 Putting It All Together

With all the groundwork done above, we easily prove the following theorem.

Theorem 5.5.15 All 2-clubs on unit disk graphs are 3-dominated and all 2-cliques

on unit disk graphs are 4-dominated.

Proof We conclude that 2-cliques are 4-dominated by combining Theorem 5.5.11

and Theorem 5.5.14. To see why 2-clubs are in fact 3-dominated, note that the reason

we could not conclude 2-cliques are 3-dominated is because in the case where A, B,

and C are in a 2-clique K and A∩B∩C 6= ∅, it was possible that v1∩v2∩v3 = ∅ and

a vertex fell in the gap between v1, v2, and v3. However, by definition of a 2-club,

v1, v2, and v3 must be in the 2-club, which is not the case with 2-cliques. Thus if

v1, v2, and v3 in the 2-club satisfy v1 ∩ v2 ∩ v3 = ∅, we are in fact in Case 1, where

we have already proven 3-domination. If v1 ∩ v2 ∩ v3 6= ∅, then our proof in Case

2 shows in fact 3-domination. Thus 2-clubs are 3-dominated no matter which case

characterizes the set.
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6. CONCLUSION

This dissertation explored and compared the structural and computational prop-

erties of clique relaxations. The overarching purpose for this research is to assist

researchers in making informed decisions as to the best clique relaxation and best

algorithm to use for grouping in a given application. We concentrated on first-order

clique relaxations, investigating the secondary properties that are a consequence of

the primary property defining each structure. We helped to resolve an open question

as to the number of steps required to identify the maximum quasi-clique within a

network and identified an effective algorithm for finding 2-cliques in unit disk graphs,

proving its merit. We now go into more detail about our precise contributions and

discuss areas for possible future research.

6.1 Foundations

The first contribution of this dissertation is in laying a foundation for creating

or choosing an appropriate clique relaxation based on its structure. We equipped

researchers with knowledge of both the primary and secondary properties of first-

order clique relaxations by filling in a table of structural properties. Table 3.3 reveals

not only which clique relaxations exhibit a pre-determined set of essential properties,

but also any extraneous structural requirements that may not be obvious from the

definition. If no clique relaxation exhibits the essential set of properties without

extraneous requirements that are problematic, we gave the first ever methodology

for how a researcher could create a new clique relaxation in hopes of matching the

desired set of properties.

All bounds on the properties in Table 3.3 were proven sharp, laying an excel-

lent foundation for making informed decisions about clique relaxations. There are,

however, still plenty of opportunities for future research. We examined properties

of first-order clique relaxations only. Second order clique relaxations such as the
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k-robust s-club and (λ, γ)-quasi-clique should have their structure studied to give

researchers even more information. In addition, there may be properties beyond

the key defining properties for clique relaxations that would be good to add to our

table. We examined the first-order clique relaxations for heredity because it was

important computationally. There may be similar properties with significant com-

putational implications that would be a good addition to our table of first-order

clique relaxations.

A classical result from complexity theory is that node deletion to find a set

defined by a nontrivial, interesting, hereditary property is NP -hard, which was The-

orem 3.4.1 in this dissertation. The list of problems proven NP -complete by this

general result include node-deletion to find the largest acyclic subgraph, the largest

symmetric subgraph, largest planar subgraph, largest outerplanar subgraph, largest

bipartite subgraph, and largest chordal graph among others [58]. More significantly,

many of these problems were proven NP -complete when restricted to planar and

acyclic graphs. Restricting problems to a specific set of subgraphs often makes prov-

ing complexity much more difficult and so the ramifications of this result cannot be

overstated. We believe the proof might be extended to sets exhibiting weak hered-

ity. If such a proof can be completed, it might prove the k-clique problem, among

others, to be NP -complete on various restricted graphs and could be a significant

contribution to complexity theory.

We were the first to label k-connected subgraphs as a clique relaxation, though

it had been used in that capacity previously [32]. For this reason, the computational

complexity of the k-CONNECTED SUBGRAPH problem has not yet been estab-

lished. It would be useful to explore this, as well as the complexity of the WEAK

k-CONNECTED SUBGRAPH problem, which has nicer computational properties

than k-connected subgraphs but deviates further from the structure of clique. Both

problems would benefit from a polyhedral study and the creation of heuristics.
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6.2 Quasi-clique

The second contribution of this dissertation is in resolving the complexity of the

maximum quasi-clique problem. By proving the maximum quasi-clique problem NP-

hard, we terminated the need to search for fundamentally faster algorithms to solve

the problem than those already in existence, assuming P 6= NP . While studying the

problem, we formulated it as an integer programming problem and helped to validate

GRASP as an effective heuristic for solving the problem. We showed there always

exists an ordering of vertices such that any γ-quasi-clique can be built one vertex

at a time and maintain density γ at every step. This means that any algorithm

that concentrates on vertex ordering, such as GRASP, has the potential to find the

optimal solution.

Although it likely cannot be solved in polynomial time, there is much work that

can still be done to improve exponential time algorithms designed to solve the MAX-

IMUM QUASI-CLIQUE problem. A polyhedral study of quasi-cliques could prove

effective in branch & cut methods for solving the problem. Establishing valid inequal-

ities for quasi-cliques has proven to be difficult, however. This is because quasi-clique

was specifically designed to be a clique relaxation with very flexible structure so that

it could be used in applications with randomly distributed noise. We established

valid inequalities for connected quasi-cliques based on the maximum possible dis-

tance between vertices in Table 3.3. If the maximum distance between two vertices

in a connected quasi-clique is k, we could use these distance results to build inequal-

ities identical to the independent set inequalities of [8] when applied to the graph Gk.

An opportunity for future research would be to find other small assumptions, like

connectivity, to extend more of the cuts in [8] to quasi-clique and then explore how

they perform in a branch & cut method.

In addition to general studies of the QUASI-CLIQUE problem, it would be ben-

eficial to study the problem in the settings of random graphs and power law graphs.

The graphs in many applications exhibit one of these two distributions of edges and
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the extra structure can make some problems significantly easier. Asymptotics for the

size of the largest quasi-clique in a random graph have already been developed [57].

Similar results for power law graphs would be extremely beneficial. As a clique

relaxation with very few structural requirements, quasi-clique is ideal for settings

where little is known about the structure of the groups desired. However, as a clique

relaxation that does not demonstrate heredity or pseudo-heredity, the problem can

be very difficult to solve. For this reason, provably efficient algorithms seem unlikely

in the setting of general graphs but might be possible in settings where more is

known about structure. Such algorithms would constitute a significant contribution

to research.

6.3 2-Cliques on Unit Disk Graphs

The third contribution of this dissertation is in establishing a highly effective

algorithm for solving the maximum 2-clique problem on unit disk graphs. Unit

disk graphs are a topic of much research because they can be used to model many

problems in wireless communication. While we prove our algorithm to have a 1/2-

approximation ratio, meaning the solution is at least half the size of the largest

2-clique in the graph, we demonstrate the algorithm to be much more effective than

that. We generated many instances of random unit disk graphs and in all cases our

algorithm returned the exact solution.

There is much more to be gained by future research into k-cliques on unit disk

graphs. The computational complexity of the problem still needs to be established.

The clique problem, which is highly related to k-clique but slightly simpler on general

graphs, is solvable in polynomial time on unit disk graphs. This was proven as part

of a fundamental paper on unit disk graphs [24] and helped solidify the value of

independent research into unit disk graphs. A similar result for k-cliques would

constitute a significant contribution to the theory of unit disk graphs. The diametric
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result would provide significant insight into some of the fundamental differences

between cliques and k-cliques.

While we prove our algorithm to have a 1
2
-approximation ratio, this ratio may

be improved to 2
3
. The example in Section 5.3.3 shows a unit disk graph with a

2-clique that is 3-dominated. We prove that 2-cliques are at most 4-dominated on

unit disk graphs. Finding an example of a 2-clique with a minimum dominating set

of size 4 would indicate a 1
2
-approximation is the best possible. On the other hand,

proving 2-cliques to, in fact, need only 3 vertices for a dominating set would give

us a 2
3
-approximation ratio. We have proven this to be so when no area of common

overlap exists for the disks in a given 2-clique. Thus it is only necessary to prove

3-domination in the case where the 2-clique has an area of common overlap.

We did show our algorithm has a 2
3
-approximation ratio with asymptotic proba-

bility 1 on random unit disk graphs. In showing this result, we made use of a proof

that with asymptotic probability 1, points scattered within a punctured unit disk are

2-dominated. It is not difficult to see this implies a 2-clique on unit disk graphs is

2-dominated with asymptotic probability 1 when there is an area of common overlap

for all members in the 2-clique. It would be a nice theoretical result to extend this to

the case of a 2-clique without an area of common overlap for all its members. This

would give theoretical justification to our computational results, where we found

our algorithm to always return the exact solution on randomly distributed unit disk

graphs.

A consequence of our proof that 2-cliques are 4-dominated on unit disk graphs is

that 2-clubs are 3-dominated on unit disk graphs. We mentioned it only in passing

in the dissertation because it is not as obvious how to use this information as part

of an algorithm to find a largest 2-club. With 2-cliques we had the advantage that

they can be solved as a clique on the square of the graph, and that information is

what motivated us to try to identify the size of the smallest dominating set for 2-

cliques. It would be beneficial to explore how this information about 2-clubs on unit
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disk graphs might assist algorithms to solve the problem. Beyond that, it would be

beneficial to analyze the entire spectrum of clique relaxations on unit disk graphs,

both for the insight they provide to unit disk graphs and for the many applications

to which they could provide valuable information.
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APPENDIX A

COMPUTATIONAL RESULTS FOR THE MAXIMUM QUASI-CLIQUE

PROBLEM

Table A.1
Description of the uniform random graphs used in experiments.

Name n p m ωγ(G) for γ = ...
1 0.95 0.9 0.85 0.8 0.75

u50-1 50 0.2 215 4 4 5 5 6 7
u50-2 50 0.2 231 4 4 5 5 6 6
u50-3 50 0.2 242 4 4 5 5 6 6
u50-4 50 0.2 221 4 4 5 6 6 7
u50-5 50 0.2 253 4 4 5 6 6 7

u50-6 50 0.3 355 5 5 6 7 8 9
u50-7 50 0.3 379 5 5 5 6 7 8
u50-8 50 0.3 367 5 5 6 7 8 9
u50-9 50 0.3 340 5 5 6 7 7 8
u50-10 50 0.3 354 5 5 6 7 8 9

u100-1 100 0.05 244 3 3 3 3 4 4
u100-2 100 0.05 248 3 3 3 3 3 3
u100-3 100 0.05 217 4 4 4 4 5 5
u100-4 100 0.05 249 3 3 3 3 4 4
u100-5 100 0.05 280 3 3 3 3 4 4

u100-6 100 0.1 536 4 4 4 4 5 5
u100-7 100 0.1 485 4 4 4 4 5 5
u100-8 100 0.1 500 4 4 5 5 6 6
u100-9 100 0.1 469 4 4 4 4 5 5
u100-10 100 0.1 490 4 4 4 4 5 5

u100-11 100 0.15 737 4 4 5 6 6 7
u100-12 100 0.15 711 4 4 5 5 6 6
u100-13 100 0.15 741 4 4 5 5 6 7
u100-14 100 0.15 746 4 4 5 6 6 7
u100-15 100 0.15 760 5 5 6 6 7 8

u100-16 100 0.2 974 5 5 5 7 7 8
u100-17 100 0.2 934 5 5 6 7 7 8
u100-18 100 0.2 977 5 5 6 6 7 8
u100-19 100 0.2 992 5 5 6 7 7 9
u100-20 100 0.2 1010 5 5 6 7 7 8
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Table A.2
Description of the power law random graphs used in experiments.

Name n β m ωγ(G) for γ = ...
1 0.95 0.9 0.85 0.8 0.75

pl100-1 100 0.1 312 6 7 7 9 11 12
pl100-2 100 0.1 339 6 7 7 9 10 12
pl100-3 100 0.1 313 6 7 8 9 11 12
pl100-4 100 0.1 334 6 7 7 9 11 12
pl100-5 100 0.1 333 6 7 7 9 10 12
pl100-6 100 0.1 340 6 6 7 8 10 11
pl100-7 100 0.1 323 6 7 8 9 11 13
pl100-8 100 0.1 327 6 7 8 9 10 11
pl100-9 100 0.1 347 6 7 7 9 10 11
pl100-10 100 0.1 325 6 6 7 8 9 10

pl100-11 100 0.2 974 15 20 24 27 31 34
pl100-12 100 0.2 986 16 19 23 26 31 34
pl100-13 100 0.2 985 16 20 23 27 31 35
pl100-14 100 0.2 1021 16 21 25 28 32 35
pl100-15 100 0.2 991 16 20 24 28 31 34

Table A.3
Comparison of running times for the experiments with uniform random graphs.

Running times, in seconds, for γ = ...
Graph 1 0.95 0.85 0.75

F1 F2 F1 F2 F1 F2 F1 F2

u50-1 0.7 0.1 2.6 1.5 2.9 3.9 5.0 22.2
u50-2 0.2 0.1 2.7 1.6 3.6 4.5 5.9 48.9
u50-3 0.6 0.2 2.5 1.7 4.0 5.0 6.6 120.3
u50-4 0.2 0.2 2.4 1.5 2.9 3.2 5.4 21.6
u50-5 0.7 0.2 2.6 1.7 3.5 6.5 10.6 108.7

u50-6 0.3 0.4 3.3 3.1 6.3 94.7 34.9 13,047.5
u50-7 1.1 0.6 4.0 2.9 8.4 158.2 61.4 41,796.1
u50-8 1.0 0.2 3.1 3.2 6.9 118.7 38.2 24,760.9
u50-9 1.2 0.3 9.9 2.1 6.6 42.7 39.3 4,971.8
u50-10 1.1 0.5 3.1 3.0 6.6 78.4 40.8 12,087.4

u100-1 2.4 0.3 15.5 6.1 146.0 12.8 128.7 36.6
u100-2 2.6 0.3 17.1 5.2 139.6 13.1 135.3 43.1
u100-3 1.1 1.2 17.6 6.1 137.9 9.3 123.1 28.5
u100-4 2.8 0.3 140.1 3.6 152.9 11.7 117.6 36.2
u100-5 2.3 0.5 26.0 6.9 141.8 16.5 106.4 44.5

u100-6 6.8 0.7 152.7 8.8 94.6 99.2 864.2 21,187.1
u100-7 6.3 1.6 139.1 10.7 102.8 72.5 773.8 3,925.0
u100-8 3.0 1.9 143.3 8.9 136.3 70.6 816.5 19,596.6
u100-9 4.8 2.2 138.6 8.4 143.4 45.6 689.5 2,188.1
u100-10 4.9 1.8 131.3 8.4 111.8 52.9 739.3 > 50, 000

u100-11 5.6 2.1 98.6 15.9 584.4 2,167.1 4,600.1 > 50, 000
u100-12 6.9 2.4 132.7 14.9 560.4 4,272.2 3,575.9 > 50, 000
u100-13 6.2 2.5 99.4 17.6 629.0 1,750.1 5,162.8 > 50, 000
u100-14 5.9 2.5 106.5 16.5 594.8 1,898.3 6,203.0 > 50, 000
u100-15 5.3 1.7 99.1 16.6 616.0 5,798.9 5,199.7 > 50, 000

u100-16 6.0 38.8 107.3 23.3 894.2 > 50, 000 31,544.5 > 50, 000
u100-17 5.2 2.1 109.7 22.8 801.5 > 50, 000 34,690.5 > 50, 000
u100-18 6.3 2.3 114.2 24.1 934.1 > 50, 000 37,704.0 > 50, 000
u100-19 5.8 2.2 116.5 27.4 1,033.0 > 50, 000 33,289.7 > 50, 000
u100-20 6.1 2.3 102.4 30.3 1,184.9 > 50, 000 35,457.6 > 50, 000
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Table A.4
Comparison of running times for the experiments with power law random graphs.

Running times, in seconds, for γ = ...
Graph 1 0.95 0.85 0.75

F1 F2 F1 F2 F1 F2 F1 F2

pl100-1 2.0 0.1 120.1 7.4 100.5 38.5 84.3 127.9
pl100-2 1.2 0.1 94.0 8.0 104.6 55.0 378.4 165.1
pl100-3 1.5 0.1 94.9 7.0 97.3 27.4 94.9 131.2
pl100-4 2.2 0.1 17.5 8.3 91.7 24.9 240.5 98.5
pl100-5 2.1 0.1 99.5 10.2 114.4 23.6 411.6 201.5
pl100-6 1.8 0.1 112.2 8.5 87.7 34.9 158.3 1,401.1
pl100-7 1.6 0.1 106.7 8.0 93.6 29.2 169.1 101.5
pl100-8 2.4 0.1 123.9 7.1 103.3 28.9 299.1 229.1
pl100-9 2.4 0.1 104.0 7.3 92.4 33.5 347.1 301.8
pl100-10 1.9 0.1 123.4 7.8 118.5 25.9 266.7 276.1

pl100-11 1.2 0.1 96.7 289.8 1,429.9 > 50, 000 29,272.6 > 50, 000
pl100-12 1.1 0.1 80.4 125.4 1,649.9 > 50, 000 26,196.4 > 50, 000
pl100-13 1.4 0.1 85.4 149.1 1,859.4 > 50, 000 26,335.3 > 50, 000
pl100-14 1.1 0.1 77.1 130.2 2,278.4 > 50, 000 42,761.2 > 50, 000
pl100-15 1.5 0.1 104.9 178.7 1,581.5 > 50, 000 39,742.2 > 50, 000
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Table A.5
Comparison of upper bounds for the maximum γ-clique problem.

Graph γ bound LPRF1 LPRF2
(4.1) or (4.2) bound time bound time

u50-1 0.75 22.8895 26.0652 0.187 25.9913 0.032
0.85 21.4513 25.5849 0.187 25.5126 0.032
0.95 20.2550 25.1768 0.218 25.1501 0.031

1 19.7277 25.0000 0.078 25.0000 0.031
u50-6 0.75 30.4112 27.056 0.234 26.9876 0.032

0.85 28.5178 26.1010 0.202 26.0082 0.032
0.95 26.9399 25.3336 0.202 25.2911 0.032

1 26.2437 25.0000 0.093 25.0000 0.031
u100-1 0.75 21.5148 50.4621 0.951 50.4469 0.094

0.85 20.1598 50.2447 0.999 50.2352 0.093
0.95 19.0332 50.073 0.983 50.0698 0.093

1 18.5367 50.0000 0.328 50.0000 0.093
u100-6 0.75 35.9805 51.0966 1.123 51.0581 0.093

0.85 33.7497 50.5881 1.186 50.5538 0.109
0.95 31.8892 50.1763 1.373 50.1637 0.109

1 31.0677 50.0000 0.296 50.0000 0.110
u100-11 0.75 43.0890 51.6616 1.529 51.5565 0.109

0.85 40.4274 50.9068 1.716 50.8102 0.110
0.95 38.2059 50.2771 2.169 50.2385 0.093

1 37.2246 50.0000 0.312 50.0000 0.093
u100-16 0.75 50.1451 52.2528 2.199 52.1858 0.110

0.85 47.0558 51.2018 1.451 51.1319 0.109
0.95 44.4759 50.3610 1.544 50.3319 0.125

1 43.336 50.0000 0.312 50.0000 0.093
pl100-1∗ 0.75 29.3487 50.6982 2.277 50.6889 0.109

0.85 27.5992 50.3720 2.463 50.3572 0.110
0.95 26.1338 50.1110 2.292 50.1048 0.109

1 25.4850 50.0000 0.296 50.0000 0.094
pl100-11∗ 0.75 51.4665 53.2654 4.054 53.7225 0.140

0.85 48.3750 51.7716 3.660 51.8166 0.100
0.95 45.7855 50.5436 3.809 50.5103 0.100

1 44.6390 50.0000 0.310 50.0000 0.100
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