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ABSTRACT 

  

Catalytic Nanoparticles in the Combustion of AP/HTPB Composite Solid Propellant. 

(December 2010) 

Kevin R. Kreitz, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Eric Petersen 

 

Presented in this thesis is a study of the effects of nano-sized particles used as a 

catalytic additive in composite solid propellant. This study was done with titanium oxide 

(titania)-based particles, but much of the findings and theory are applicable to any metal 

oxide produced by a similar method. The process required for efficiently producing 

larger batches of nanoparticle additives was seen to have a significant impact on the 

effectiveness of the additive to modify the burning rate of composite propellant 

consisting of ammonium perchlorate (AP) and hydroxyl terminated polybutadiene 

(HTPB). Specifically, titania was seen to be both an effective and ineffective burning 

rate modifier depending on how the nanoparticle additive was dried and subsequently 

heat treated. Nanoadditives were produced by various synthesis methods and tested in 

composite propellant consisting of 80% AP. Processability and scale-up effects are 

examined in selecting ideal synthesis methods of nanoscale titanium oxide for use as a 

burning rate modifier in composite propellant. Sintering of spray-dried additive 

agglomerates during the heat-treating process was shown to make the agglomerates 

difficult to break up during mixing and hinder the dispersion of the additive in the 
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propellant. A link between additive processing, agglomerate dispersion mechanics and 

ultimately catalytic effect on the burning rate of AP/HTPB propellants has been 

developed by the theories presented in this thesis. This thesis studies the interaction 

between additive dispersion and the dispersion of reactions created by using fine AP in 

multimodal propellants. A limit in dispersion with powder additives was seen to cause 

the titania catalyst to be less effective in propellants containing fine AP. A new method 

for incorporating metal oxide nanoadditives into composite propellant with very high 

dispersion by suspending the additive material in the propellant binder is introduced. 

This new method has produced increases in burning rate of 50 to 60% over baseline 

propellants. This thesis reviews these studies with a particular focus on the application 

and scale-up of these nanoparticle additives to implement these additives in actual motor 

propellants and assesses many of the current problems and difficulties that hinder the 

nanoadditives’ true potential in composite propellant.  
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NOMENCLATURE 

 

AP  Ammonium Perchlorate 

HTPB  Hydroxyl Terminated Polybutadiene 

r  Burning Rate 

P  Pressure 

a  Temperature Coefficient 

n  Combustion Index 

Pσ   Temperature Sensitivity of Burning Rate 

Kπ   Temperature Sensitivity of Pressure 

K  Ratio of Burning Surface to Nozzle Throat Area 

DSC  Differential-scanning Calorimetry 

TGA  Thermogravimetric Analysis 

LTD  Low-temperature Decomposition 

HTD  High-temperature Decomposition 

AMPAC Advanced Materials Processing and Analysis Center 

UCF  University of Central Florida 

TAMU  Texas A&M University 

SEM  Scanning Electron Microscope 

TEM  Transmission Electron Microscopy 

IPDI  Isophorone Diisocyanate 

ESD  Electro Static Dissipating 

XRD  X-Ray Diffraction 
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fc   Catalyzed Reaction Fraction 

DOA  Dioctyl Adipate 

DAgg  Agglomerate Dispersion Size 

DAP  AP Dispersion Size  
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1. INTRODUCTION 

 

Solid propellant is a self-sustaining combustible material containing both fuel 

and oxidizer in a solid state. In composite solid propellant, the oxidizer is a solid crystal 

particle of various sizes that is mixed into long hydrocarbon chains that are polymerized 

into rubber providing the fuel. The most common oxidizer crystal used in composite 

propellant is ammonium perchlorate (AP). Composite solid propellant is widely used in 

several applications such as gas generators for airbags, propulsion for large space 

vehicles and tactical missiles, attitude control systems, and as pressure generators in 

deep sea oil operations. Most applications of solid propellant only require a simple 

mechanical design. For example, when used in rocket motors, solid propellant is stored 

in the combustion chamber, and the burned gaseous products are exhausted through a 

nozzle creating thrust from a relatively simple design that requires no moving parts like 

those required by liquid propellant systems. However, the drawback to this simple 

system is the lack of in-flight throttling that is seen in liquid propellant systems, and it is 

for this reason it is important to understand the exact combustion characteristics of solid 

propellants to create safe and efficient applications of solid propellant.  

Tailoring propellants is a common goal in the propellant community that 

involves adjusting the propellant formulation or the addition of additives (NASA, 1967). 

The ability to take existing formulations and disperse small amounts of additives, 1% by 

weight, throughout the propellant grain and modify the combustion characteristics of the 

_________ 
This thesis follows the style of Combustion, Science, and Technology. 
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propellant while keeping similar physical properties can be very useful. Tailoring allows 

a wide array of propellants to be developed quickly and efficiently.   

Advances in materials science and engineering have made the use of 

nanoparticles feasible in several applications. The increase of surface-area-to-mass ratio, 

produced by the reduction in diameter, in conjunction with the ability to engineer 

particles with different surface chemistry present many favorable characteristics for 

combustion. These advances have led to much research to investigate the use of 

nanoparticles in composite propellant for various purposes. Through the addition of 

nano-scale metal oxide additives to composite solid propellant, it is possible to modify 

burning rate and achieve propellant tailoring (Stephens et al., 2010). Controlling the 

composition, morphology, and amount of these additives in the formulation of solid 

propellant allows the propulsion community to develop propellants with specific 

combustion characteristics. Such additives at mass loadings of 1% or even less can 

modify propellant in several ways including affecting material properties, partaking in 

the combustion process, or acting as catalysts. Characterization of how these additives 

affect propellant combustion can provide important information needed to tailor the 

burning rate of solid propellant to that desired by specific applications.  

The use of nanoparticles as additives in solid propellant has many inherent 

benefits. First, the increase of surface area-to-mass ratio produced by the reduction in 

diameter has been shown to be favorable for affecting the combustion process through 

catalytic activity (Fujimura and Miyake, 2009). Second, nanoparticles can be 

synthesized from the ground up to have specific surface chemistry and crystal structure. 
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This ability to engineer particles allows for more customization and tailoring of 

propellant formulations when compared to conventional, micron-scale additives. With 

the increasing technologies associated with nanoparticles, they have become much more 

practical for use in the propellant and combustion fields. Laboratory-scale 

demonstrations using small samples of propellant are useful for diagnosing the 

effectiveness of nano-scale additives. However, when scaling up the propellant to larger, 

more realistic batches, the larger amount of additives required to realize a comparable 

mixture to those tested in the laboratory will most likely require the nanoparticles to be 

processed in a manner that is not exactly the same as utilized in the lab-scale 

experiments.  

These types of scale-up studies are not only necessary from a material synthesis 

point of view but also from the solid propellant aspect. The burning rate of propellants 

has been known to vary when used in larger rocket motors (Fry, 2001). In actual motors, 

small changes in burning rate can translate into a large difference in specific impulse 

(Miller, 1971). Large-scale-batch burning rate validation tests and scaled motor tests 

have been conducted on the additives and formulas presented in this thesis. The 

investigations presented in this thesis were a necessary, preliminary step to make the 

motor-scale tests possible. However, the results of the larger-batch tests are not 

presented in this thesis. 

This thesis presents recent work with nano-scale titanium oxide (titania) as a 

burning rate modifier in composite propellant consisting of ammonium perchlorate (AP) 

and hydroxyl terminated polybutadiene (HTPB). The work investigates particle 
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processing, agglomeration, dispersion, and scale-up that will be important for practical 

application of these additives. Additionally the effects of changes in propellant 

formulation for scale-up are investigated. New alternative methods of additive dispersion 

are investigated. Provided first is a background on the use of additives and catalysts in 

composite propellant, followed by details on the additives, propellants formulations, 

constituents, and testing procedure. Following a summary of each experiment is a 

discussion on the possible mechanisms for the observed behaviors.  
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2. BACKGROUND 

 

2.1 Burning Rate of Solid Propellant 

The combustion of solid propellant is typically evaluated by how its burning rate 

changes as a function of pressure, which is an important parameter in propellant motor 

design. This relationship between burning rate and pressure is traditionally expressed by 

the power function in Equation 1, where r is the burning rate, P is the chamber pressure, 

a is an empirical constant influenced by ambient grain temperature that is sometimes 

called the temperature coefficient, and the burning rate exponent n, which is sometimes 

called the combustion index (Sutton and Biblarz, 2001). This power law is also known 

as the St. Roberts’ or Vielle’s law. When plotted on a log-log plot, propellants that 

follow this law will exhibit a linear relationship between burning rate and pressure.  

nr aP=       (1) 

The burning rate exponent, n, determines how sensitive the burning rate of a 

propellant is to pressure change. In additions to pressure, temperature can affect the 

burning rate of a propellant and this would be reflected in changes in the constant a. The 

sensitivity of burning rate to temperature can be expressed by temperature coefficients. 

Equations 2 and 3 show two of the most common temperature coefficients, temperature 

sensitivity of burning rate ( Pσ ) and temperature sensitivity of pressure ( Kπ ) (Sutton and 

Biblarz, 2001). 

ln 1
P

P P

r
T r T

δσ
δ δ

⎛ ⎞ ⎛= =⎜ ⎟ ⎜
⎝ ⎠ ⎝

rδ ⎞
⎟
⎠

    (2) 
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ln 1
K

K K

P
T P T

δ δπ
δ δ

⎛ ⎞ ⎛= =⎜ ⎟ ⎜
⎝ ⎠ ⎝

P ⎞
⎟
⎠

     (3) 

Where T is temperature, P is pressure and K is a geometric function, namely the 

ratio of burning surface to nozzle throat area. These temperature coefficients express 

how much a differential change in initial temperature affects the burning rate at a 

constant pressure or the pressure increase at a constant K. The two temperature 

coefficients can be related by the Equations 4 (Sutton and Biblarz, 2001). More details 

on effects of temperature on the burning rate of solid propellant can be found in a report 

by Kishore and Sridhara (1986). 

1
1K Pn

π σ=
−

     (4) 

The burning rate of a specific propellant can be determined from a variety of 

experimental tests. Currently, there have been many breakthroughs in modeling the 

burning of solid propellant, but it is not yet possible to accurately predict the burning 

rate of new propellant formulations from a purely theoretical origin. Therefore motor 

designs rely heavily on empirical data collected from experimental setups such as the 

strand bomb, which is discussed later in this thesis.  

 The burning of solid propellant is also heavily dependent on several parameters 

related to the oxidizer particle, AP, used in the formulation, such as particle size, 

distribution, loading. The mass loading of AP in a solid propellant formulation affects 

the fuel-to-oxidizer ratio, which changes the adiabatic flame temperature and ultimately 

the burning rate. Figure 1 shows how variations of AP mass loading in an AP/HTPB 
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propellant change the flame temperature, which is calculated using the ProPep software 

(Cruise, 1979). 
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Figure 1. Flame temperature of AP/HTPB propellant for different AP percentages. 

 

 The burning rate of composite solid propellant is dependent on the particle size 

of the AP crystals. Propellants with smaller AP particle size will have a higher burning 

rate, where larger AP will result in a slower burning rate. This behavior is due to the 

smaller AP or fine AP being better mixed within the binder creating a more premixed 

flame, and the propellant with the large AP particles burns more like a diffusion flame. 

Figure 2 shows how changing particle size will vary burning rate (Jeppson et al., 1998). 

A major breakthrough in propellant modeling came from a paper by Beckstead et al. 

(1970) that modeled the burning AP propellants as three flames and was able to capture 
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this relationship between particle size and burning rate. This model became known as 

the BDP model and has since become the basis for many current propellant models.  

 

Figure 2. Combustion regimes and effect of particle size on the burning rate of 

monopropellant AP (Jeppson et al., 1998) 

 

 Solid propellant can contain one size of oxidizer particles, a monomodal 

propellant, a blend of two sizes, bimodal, or several sizes of particles, multimodal (Renie 

et al. 1978). When multiple sizes of oxidizer particles are used in a propellant, smaller 

oxidizer crystals are used to fill the space between larger crystals and hence increase the 

total amount of oxidizer while maintaining a viable physical propellant. Increasing the 

portion of small or fine particles in comparison to the portion of large or coarse particles 

will increase the burning rate (NASA, 1967). 

 Small changes in the parameters of the AP can change the way a propellant 

reacts. More details on the dependence of AP are reported by Price (1998). All of these 
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sensitivity parameters not only affect the burning rate but also how effective the additive 

is. Care must be taken to modify propellant formulations in a controlled way such that 

changes in burning rate are understood, due to the numerous parameters that can affect 

burning rate.  

 

2.2 Additives for Solid Propellant 

 Additives for composite solid propellant add additional complexity to an already 

complicated system and have been the focus of many research studies for numerous 

years. Early work with additives for solid propellant involved micron-sized additives, 

but with the increase in technologies it is now practical to use nano-sized additives. 

There are several reviews on additives for AP/HTPB propellants which are referenced in 

this thesis. The most common types of additives used in solid propellant are inorganic 

oxides such as the additive used in this study, titania, which is considered to be a 

catalyst. However, there has been some interesting work with organic additives such as 

melamine (Stoner and Brill, 1991). A common method for studying a catalytic additive 

for composite propellant is to measure the decomposition of AP-catalyst pellets, but as 

questioned by Boggs et al. (1988) this approach may not directly relate to the 

performance of an additive in the actual combustion of propellants. This method for 

studying how catalysts affect the combustion of solid propellant only accounts for the 

solid decomposition and does not account for the gas phase reactions where much of the 

catalytic activity may take place. 
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 Ammonium perchlorate has been shown to have two steps in thermal 

decomposition, which can be seen in differential-scanning calorimetry and 

thermogravimetric analysis (TGA). The two steps are known as the low-temperature 

decomposition (LTD), which is an exothermic reaction, and the high-temperature 

decomposition (HTD), which is an endothermic reaction involving the simultaneous 

dissociation and sublimation of AP to HClO4 and NH3 (Jacobs and Whitehead, 1969). It 

has been shown by Lang and Vyazovkin (2006) that the HTD can become exothermic if 

there is a catalytic surface for the produced gasses to undergo an oxidation reduction.  

 In addition to studies that investigate the effects of catalysts on the thermal 

decomposition of AP, there have been studies that investigate the effects of additives on 

actual propellant formulations. Knowing that metal oxides are good catalysts in the 

oxidation of high polymers, Rastogi et al. (1977) studied the effect of additives on the 

burning rate of composite solid propellant and suggest that enhanced flame temperature 

is due to accelerated reactions in the gas phase, which results in an increase in burning 

rate. However it is unlikely the actual flame temperature is increased since the additives 

do not partake in the reactions and heat is taken away from the reaction to heat the 

additives, which are essentially inert. It is however possible that the accelerated reactions 

create an increased surface temperature (rather than flame temperature), which increases 

burning rate. 

 A common approach to modeling or visualizing the combustion of solid 

propellant is to divide the system into three regions: the solid phase, the condensed-

mixed phase, and the gas phase (Beckstead et al., 2004). Each phase interacts with 
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another through mass flow and heat transfer. The combustion that takes place in the gas 

phase provides the system with a heat source. This heat combined with the pressure of 

the system cause decomposition and melting of the solid phase into the condensed-

mixed phase and eventually producing the gas phase. These gas products in turn feed the 

combustion taking place in the gas phase. Figure 3 shows a schematic of these regions in 

a propellant. When a catalyst is added to the propellant, accelerating the reactions in the 

gas phase, it is possible for the reacting gas phase to be smaller and get hot faster, which 

produces more heat that is transferred into the condensed phase, increasing burning rate. 

 

Bubbles 
containing 
reacting 

decomposition 
products

Final Flame 
Zone

Burning Surface

Melt Front

Liquid

 

Figure 3. Three-phase model of propellant combustion. 

 

 Two common metal oxides studied as catalysts for AP-HTPB propellants are 

titanium oxide and ferric oxide. Extensive work on ferric oxide (iron oxide) has been 

done by Strahle et al. (1972), Handley and Strahle (1975), and Chakravarthy et al. 

(1997). In these studies, the combustion of composite propellant is tested by a sandwich 

method, where additives are placed in a thin strip between pressed AP and binder. This 
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setup is used to evaluate both chemical and physical phenomena in the combustion of 

composite propellant. 

Titanium oxide (titania) has been investigated in several studies as an additive for 

composite propellant. These studies have investigated titania as a catalyst to the thermal 

decomposition of ammonium perchlorate as well as to the reactions between binder and 

oxidizer. Titania’s effect on propellant burning rate has also been studied, and the results 

have led to a variety of different conclusions. Some studies have even described titania 

as inactive or less active: e.g., Ramamurthy and Shrotri (1996), and Pearson (1971). In 

recent work by Stephens et al. (2010) and Reid et al. (2007), TiO2 has been shown by a 

parametric study to increase the burning rate of composite propellant with particle sizes 

at both the nano- and micro-scale. Titania has also been implemented to promote plateau 

burning by Stephens et al. (2009). Plateau-burning propellants are defined as propellants 

that have a pressure range where burning rate is constant, where normal propellants 

would otherwise show an increase in burning rate as pressure increases. Although the 

present paper focuses on non-plateau-burning propellants, in both published and 

unpublished studies the author has not seen the addition of titania change a non-plateau-

burning propellant into a propellant with a plateau.  

 Work by Solymoi and Fonagy (1967) as well as Boggs et al. (1988) found titania 

to have little to no increase in burning rate of composite propellant. Boggs et al. reported 

a decrease in deflagration rate of AP with the presence of titania additives. However, 

these experiments were conducted with micron-sized particles at loadings of 2 and 8 %. 

The results presented later in this report are for titania additives synthesized at the nano-
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scale and used at loadings of 1% or less. The additives Boggs et al. (1988) reported to be 

good burning rate modifiers produced a burning rate increase of 20-30%. 

There have been several studies that have investigated how titania could affect 

the combustion of solid propellant. In an investigation of plateau-burning propellants, 

TGA showed that the weight loss of AP was faster in the presence of titania (Freeman et 

al., 1998). In a characterization of the thermal decomposition of AP with and without 

titania catalysts, titania was shown to affect the high-temperature decomposition of AP 

(Fujimura and Miyake, 2009) similar to most catalysts previously used in solid 

propellants. These studies show empirical evidence, both from burning rate studies as 

well as AP thermal decomposition studies, that titania can have catalytic effects on the 

combustion of composite propellant.  

When reviewing the literature, one can conclude there are inconsistencies with 

regards to titania as an effective additive. Some research has shown it to be effective, 

while others show evidence that it is not effective. The present study uncovers why 

different results might be seen with seemingly the same titania additive when 

synthesized on a nano-sized scale. Additionally, the work previously reported in 

literature is for small-scale laboratory results, both burning rates and thermal 

decomposition studies that may not translate directly to a scaled-up environment. There 

is a need for research into the details needed to fully utilize any metal oxide nano-

particle additives, not just titania, in solid propellant. The implementation of these nano-

additives is not as simple of a process as it may seem and often is problematic in 

application and large quantities. Often the formulations used for laboratory-scale tests of 
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burning rate are simplified versions of AP/HTPB formulations, such as modifications to 

physical properties, and this simplification may create unknown effects of the additives’ 

ability to tailor combustion. More importantly, modifications to the production of 

additives that may not seem to cause any change in the final additive but ultimately do 

change how the additive performs in a propellant. For example, in an initial attempt to 

produce scale-up additives for a large motor firing of nano-titania catalyzed solid 

propellant, additives that were expected to perform well ultimately showed no effect. 

Figure 4 shows a plot of strand bomb burning rates of what was expected from the 

addition of titania and how well the additive produced for scale-up performed compared 

to a baseline propellant. More information about these kinds of tests and results thereof 

are presented later in this thesis, but this result is an example of how the scale-up of 

propellant additive is not a trivial process. 

In addition to producing important scale-up information, these scale-up 

investigations add valuable knowledge to the underlying physical and chemical 

understanding of additive behavior in actual solid propellant grains and in motor 

configurations.   
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Figure 4. Pressure dependence of the burning rate for an initial scale-up of Al-

doped titania additive at 1% in a 80% monomodal propellant, an example of 

problems that can occur from the scale-up of nanoadditives in composite 

propellant. 
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3. ADDITIVES AND PROPELLANT 

 

One benefit of the present study is the ability to examine the full process of 

testing additives’ effects on solid propellant burning rate from start to finish. The 

additives are synthesized in a controlled way by the Advanced Materials Processing and 

Analysis Center (AMPAC) at the University of Central Florida (UCF) and sent to the 

solid propellant research facility at Texas A&M University (TAMU). The additives are 

then formulated into composite solid propellant samples and tested. This procedure 

allows the research team to examine additive production, propellant mixing, sample 

production, burning and testing for effects on combustion outside the range of other 

research. For example, this collaboration minimizes uncertainty and unknown variables 

that can occur with purchased additives while still being able to fully analyze the effects 

on burning rate. The propellant processing and burning rate results can then directly 

impact the details of future additive synthesis in a timely manner. 

 

3.1 Additives 

Based on previous work that showed nano titania produced in the authors’ 

laboratory to be an effective additive for composite propellant (Stephens et al. 2010) 

(Reid et al., 2007), nano titania was selected for a scale-up study. In addition to pure 

titania, various doping of titania was used including Fe and Al. These additives were 

studied in non-metalized propellant formulations first at the laboratory scale and then in 

a scaled-up rocket motor environment. For such a test, the additives must be produced in 
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quantities several times larger than the amount needed for laboratory-scale testing. 

Testing the particles made for the larger batch first in a lab-scale setting gave the 

opportunity to quickly examine the effects such a scale-up process would have on the 

titania additives’ performance.  

Additives used in this study were synthesized by the sol-gel method, which 

allows for detail control of several properties of the particles. Titanium isopropoxide was 

hydrolyzed in an ethanol/water mixture, and the suspension was held at elevated 

temperature (84 °C) to promote crystallization. TiO2 powders were obtained by 

centrifugation followed by drying with a rotary evaporator and grinding by hand with a 

mortar and pestle. The powders consisted of agglomerates of anatase nanoparticles with 

a 5-nm average crystallite size and a small amount of amorphous content. The powders 

were then heat-treated at 400 °C for 3 hours to ensure full crystallization to anatase was 

achieved, and during this process the nanocrystallite size grew to 7 nm. 

The method for synthesizing the scaled-up titania additives was modified to 

accommodate for the larger quantity of additives. The scaled-up synthesis method stayed 

essentially the same except the particles were spray dried instead of being dried with a 

rotary evaporator (rotovapped). After the drying process, the additives were heat-treated 

just as they were for previous experiments at 400°C for 3 hours. The spray drying 

process allows for faster and more uniform additive production because the particles do 

not need to be ground with a mortar and pestle like the additives that are dried in the 

rotary evaporator. Additionally, the spray drying process produces spherical 

agglomerates with a narrow size distribution as shown by the scanning electron 
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microscope (SEM) images in Figure 5. The process using the rotary evaporator followed 

by grinding generates random-shaped agglomerates with a very wide size distribution. 

SEM images of the rotovapped titania additives are shown in Figure 6. In addition to 

being more-homogeneous agglomerates, the spray-dried particles have excellent flow 

properties and create minimal dust. These attributes are considered to be a product of the 

agglomerates’ smooth spherical shape, and make the additives easier and safer to work 

with than other types of nanoparticle materials, such as conventional nano-aluminum, 

especially in large-scale processing. 

 

 

Figure 5. SEM image of heat-treated additives produced with the spray-drying 

method. 
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Figure 6. SEM image of heat-treated titania additive dried with a rotary evaporator 

then ground. 

 

 It is important to note, the images in Figure 5 and Figure 6 show agglomerates of 

several particles of the titania additive. The agglomerates are made up of several nano-

sized particles that have clumped together. In an actual application of nanoparticles in a 

propellant, some agglomeration would be unavoidable, so it is important to understand 

how different agglomerations could be more beneficial for actual use in a propellant. 

The TEM (Transmission Electron Microscopy) image in Figure 7 shows the individual 

particles that make up the agglomerates.   
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Figure 7. TEM image of a titania agglomerate showing the individual particles that 

combine to make the agglomerate. 

 

3.2 Propellant Mixing 

 All of the propellant samples prepared for the studies presented in this thesis 

were produced by a hand mixing method that has been compared with good agreement 

to a mechanical mixing method, which simulates large-scale industrial mixers (Stephens 

et al., 2007). The general procedure is described as follows. Twenty grams of propellant 

are produced in a beaker for each propellant batch. First, the binder is developed by 

mixing the proper masses of all binder ingredients except the curing agent for several 

minutes in a beaker. Then the binder is placed in a desiccator and vacuumed to remove 

air voids that have developed while mixing. The binder is held under vacuum for at least 

45 minutes until all voids have been removed and one transparent, homogeneous mixture 

remains. One must be careful when vacuuming the binder not to decrease pressure too 
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quickly or the binder will violently flow out of the beaker and the measured masses will 

become incorrect. In the case of simple AP/HTPB propellants, this binder would only 

consist of HTPB and therefore does not require mixing and vacuuming. To the binder, 

solid particles are added in order of size from largest to smallest, starting with coarse 

AP. This order has been found to produce an even distribution of ingredients without 

drying out the propellant. After massing the correct amount of a solid constitute and 

adding it to the propellant, the mixture is mixed with a glass stirring rod for a minimum 

of ten minutes until a uniform propellant is formed. One must be careful to thoroughly 

mix any propellant that may stick to the side of the beaker or glass stirring rod. Between 

the additions of each solid constitute, the propellant is placed in a desiccator and 

vacuumed for two hours to once again remove any voids that have developed while 

mixing and bring the binder and particles into intimate contact. When powder additives 

are added to the propellant, they are mixed in the same manner as other powder 

ingredients, and since they will have a smaller size than any of the AP particles they 

would be added last followed by proper mixing and vacuuming. Using a pipette, the 

curing agent isophorone diisocyanate (IPDI) is added to the propellant and mixed as 

before for ten minutes then placed in the desiccator and vacuumed for 20 minutes. 

During this time the HTPB chains are beginning to be linked together by the IPDI 

forming a stiff rubber matrix and if allowed to sit in the desiccator for too long, the 

propellant will cure and be unable to be extruded to complete the propellant sample. The 

maximum time a propellant can sit after mixing the IPDI and still be able to extrude the 

propellant is about 40 minutes.  
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 The propellant test samples are prepared by allowing the propellant to cure in a 

6.35-mm (0.25 in) Teflon tube which has an internal diameter of 4.76-mm (0.1875 in). 

To get the propellant into the tubing, the propellant is first place into a syringe where it 

is once again placed under a vacuum. The plunger to the syringe is not allowed to 

compress, until 3 minutes of vacuuming. Then, the plunger is allowed to compress, 

slowly compacting the propellant free of air voids. Depending on the viscosity of the 

propellant, it is then either injected into the Teflon tubing, or if the viscosity is too high 

the plunger is removed and the propellant is pressed into the tubing. The propellant 

samples are then placed into an oven to finish curing at 63°C for one week. Once cured, 

the propellant samples are removed and stored in a licensed propellant magazine until 

needed for testing.  

 The hardness of the propellant may be adjusted in the propellant formulation by 

adjusting the cure ratio, which determines the ratio of HTPB to IPDI. For HTPB-based 

binders, the cure ratio is defined as the ratio of –NCO groups in the IPDI to the –OH 

groups in the HTPB as shown in Equation 5. In practice, it more useful to have the ratio 

in terms of the mass ratio, which can be expressed by the mass fraction of IPDI divided 

by IPDI’s equivalent weight all over the mass fraction of HTPB divided by HTPB’s 

equivalent weight as shown in Equation 6. 

NCOCure Ratio
OH

−
=

−
      (5) 

. .

. .

IPDI

IPDI

HTPB

HTPB

m
EqWtCure Ratio m
EqWt

=      (6) 
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 As stated previously, the particle size and distribution of AP used in the 

formulation of solid propellant is very important. The AP used for the propellants in 

these studies was purchased from FireFox inc. at 200 microns. The AP was sized using 

imaging software on digital photographs of individual particles taken on an optical light 

microscope and stage micrometer. The AP particles were determined to have an average 

size of 193 μm with a standard deviation of 77 μm. A histogram of the AP particle size 

distribution is shown in Figure 8. 
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Figure 8. Ammonium perchlorate particle size distribution. 

 

 Due to the complex nature of the combustion of propellant, when evaluating the 

effectiveness of an additive the propellant is compared to a baseline formulation. The 

baseline is a propellant formulation with the same oxidizer-to-fuel ratio as the propellant 

with the additives, but without the presence of the additive. For example, a propellant 
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with 80% AP and 20% IPDI-cured HTPB binder would be used as a baseline to compare 

a propellant with 1% additive, 79.2% AP and 19.8% IPDI-cured HTPB binder.  
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4. EXPERIMENTAL TESTING 

 

4.1 Strand Bomb Testing 

The propellant samples presented in this thesis were tested at the solid propellant 

testing facilities at Texas A&M University, located at the Turbomachinery Laboratory. 

This facility is able to burn samples of propellant in a controlled environment at elevated 

pressures. The burning facility is designed to determine how the combustion properties, 

namely the burning rate, of solid propellant vary for different formulations. Over the past 

few decades, there have been many breakthroughs in modeling the combustion of solid 

propellant, but the primary method for designing new propellants remains empirical 

testing. The high-pressure burning facilities implemented at Texas A&M University are 

capable of conducting this type of empirical testing on solid propellant. 

Once a new formulation is created, extruded into samples, and cured the 

propellant is ready to be burned. For each formulation, several samples of approximately 

one gram are burned inside a pressure vessel known as a strand bomb. The strand bomb 

is a cylindrical vessel, 12 inches long and 6 inches in diameter, made of a low-carbon 

steel alloy. Propellant samples can be burned in the strand bomb up to pressures of 5,000 

psi (340 bar). This pressure range allows the characterization of the combustion of solid 

propellant as a function of pressure at high pressures. The strand bomb is capable of 

being oriented in a horizontal or vertical position and contains four optical ports. Three 

of the optical ports are located on the side of the strand bomb to give a view of the 

propellant regressing as it burns. The fourth optical port is located at the top of the strand 
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bomb and aligned concentric to the burning surface of the propellant sample. These 

optical ports allow the use of several optical diagnostic tools including: a broadband 

photoreceiver, spectrometer, and high-speed camera. Figure 9 and Figure 10 show the 

setup of the strand bomb in the more common vertical position. In addition to optical 

diagnostics, the strand bomb is equipped with three pressure transducers.  

 

 

Figure 9. High-pressure strand burner at Texas A&M University. 
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Figure 10. Schematic of strand bomb and data acquisition equipment. 

 

The facility is designed to maximize the safety of those conducting the 

experiment. The high-pressure strand bomb is located inside a test cell constructed of 

reinforced concrete with a reinforced steel door. For safety, the circuit to ignite the 

propellant is connected to a relay that is triggered from the control room once the test 

cell has been evacuated. In addition to controlling ignition, the control room is able to 

remotely control the pressure in the strand bomb. This protocol ensures no technician is 

present in the test cell while the strand bomb is pressurized. The test cell containing the 

strand bomb is shown in Figure 11. Several aspects of the facility are designed to 

prevent any electro-static discharges from causing an unexpected ignition of propellant 

or any of its constituents. The use of conductive-soled shoes and a special electro static 

dissipating (ESD) coating on the floor keep the researchers grounded and prevent the 

build of any static charge.  
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Figure 11. Strand bomb test cell. 

 

Propellant samples are cut into 1-in (25.4-mm) long samples. Approximately 10 

samples are tested per batch. The tangential sides of the cylindrical samples were coated 

in a thin layer of inhibiter (liquid HTPB) to ensure proper end burning. Once a 

propellant sample is in place, the vessel is purged and filled with Argon to the test 

pressure, the sample is ignited. Ignition is achieved by passing high current through 

nichrome wire that is placed across one end of the sample.  

During the burn of a sample of propellant, two data acquisition computers, 

located in the control room, are used to record the stand bomb pressure, the signal from 

the broadband photoreceiver, and spectrometer data, all as a functions of time. The 

burning time was determined by the inflection points in the pressure signal and validated 

by the photodiode’s time history of the flame’s visible emission. Typically the pressure 

rise within the chamber is observed to not exceed 10% of the initial pressure. The 
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recorded burning rate measurement for each test corresponds to the average pressure 

seen during the burn. Figure 12 shows sample pressure trace and photoreceiver signal.  
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Figure 12. Example of how the pressure trace and photoreceiver signal are used to 

determine the burn time of a propellant strand. 

 

 Knowing the length of the sample, which is measured with a digital caliper 

before testing, and its burn time, the burning rate of the propellant can be calculated. As 

shown in Equation 7, the burning rate is the sample length divided by the burn time. 

Several samples are tested at varying initial pressures, and the burning rates are plotted 

as a function of pressure on a logarithmic plot. For the tests presented in this thesis, 

pressure was varied from 500 psi to 2000 psi. Typical propellant formulations will 
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exhibit a linear relationship on the logarithmic plot. An example logarithmic plot of 

burning rate as a function of pressure is shown in Figure 13. 

Xr
t

Δ
=

Δ
      (7) 

 

Figure 13. Example of a logarithmic plot of burning rate as a function of pressure 

for an AP-HTPB composite propellant. The different colors represent different 

batches of the same propellant, showing repeatability. 

 

 The logarithmic linear relationship between pressure and burning rate can be 

expressed by Equation 1. The constant a and exponent n will vary for different 

formulations of propellant.  

 

4.2 Burning Rate Uncertainty  

 As with any experiment, there is a certain level of uncertainty associated with the 

measurements made and several precautions have been taken to minimize the 
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uncertainty of this experiment. Due to the large number of steps it takes to produce these 

data and the complex, sensitive nature of the combustion of propellant, the uncertainty in 

the measurements made by this experiment can come from several places. Several, a 

minimum of 10, samples are tested for each batch of propellant to determine its burning 

rate characteristics. Samples are checked for consistent density and steady burning. 

Pressure traces that exhibit a non-linear pressure increase are suspected of non-steady 

burning and are not used. Several pressures are retested after producing the first burning 

curve to validate any new trends. Additionally, propellant batches are repeated to ensure 

correct mixing when needed.  

 The uncertainty in the burning rate calculation can be made using the standard 

root-sum-squared method based on the propagation of error from the sample length 

measurement and burn time calculation. The uncertainty for the calipers used measure 

the sample’s length is ±0.00025 in, and the uncertainty in the interpolation of the burn 

start and end time was found to be ±0.0321 s. For a burning rate of 0.5 in/s and a sample 

length of 1 in, the uncertainty was found to be ±0.0080 in/s or 1.6%. However, due to 

additional uncertainty in mixing and sample variation, an overall uncertainty of 3 to 5 % 

is assumed, depending on the propellant formulation.  
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5. SCALE-UP ADDITIVE INVESTIGATION 

 

 As alluded to earlier in this thesis, there can be unseen problems associated with 

the scale-up of additives as shown by Figure 4, where one variation of the additive 

produced little if any change in the burning rate of the baseline propellant. To investigate 

possible differences in the additives due to the changes in the scaled-up processing, two 

variables in the additive synthesis were isolated by a set of formulations that varied the 

additive’s drying method and whether it was heat treated or not heat treated. The 

resulting four synthesis methods are shown in Table 1. Each synthesis method was 

investigated with pure titania and Al-doped titania. This parametric approach resulted in 

a set of 8 additives. 

 

Table 1. Variations of the additive synthesis methods to investigate scale-up issues. 

 

Synthesis Method Drying Method Heat Treating
Method 1 Spray Yes
Method 2 Roto Yes
Method 3 Spray No
Method 4 Roto No

 

Each additive was tested in composite propellant consisting of 79.2% 

monomodal AP, 1% additive, and a HTPB binder cured with isophorone diisocyanate 

(IPDI). This formula is compared to a baseline propellant consisting of 80% monomodal 

AP and no additive in an IPDI-cured HTPB binder. Propellant samples were prepared 

with each additive as detailed earlier in this thesis.  
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5.1 Results 

Samples with 1% undoped titania were tested first. Figure 14 shows the resulting 

burning rate as a function of test pressure on a log plot for the four additive synthesis 

methods. The dotted line shows the corresponding 80% AP baseline, which contains no 

additive. The effect on burning rate for the titania additives doped with 3% aluminum is 

shown in the same manner in Figure 15. The burning rate for each propellant is fitted to 

the power curve from Equation 1. Values for a and n for each propellant are given in 

Table 2. 
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Figure 14. Burning rate as a function of test pressure for propellant with 1% titania 

for each additive synthesis method. Method 1 (spray-dried and heat-treated) shows 

no impact on burning rate. 
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Figure 15. Burning rate as a function of test pressure for propellant with 1% titania 

doped with 3% aluminum for each additive synthesis method. 

 

In both the pure and Al-doped titania (Figure 14 and Figure 15, respectively), the 

method used for the scaled-up additives, method 1, showed little increase in burning 

rate. This effect becomes more evident as the test pressure increases. However, spray 

drying is not the only parameter causing a negative effect on the ability of the additive to 

increase the propellant’s burning rate. Additives that are not heat treated exhibit a 

slightly higher burning rate, but a complete loss in effectiveness in the additive is only 

seen when the additive material is spray dried and then heat treated. Additives that were 

only spray dried or only heat treated resulted in an increase in burning rate compared to 

the baseline. 

In addition to the pure and Al-doped titania, TiO2 doped with 3% iron was 

investigated to confirm the above results. Propellant samples were created using 

methods 1 and 3 and were tested as before. The results of the strand-bomb testing are 
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shown in the log plot in Figure 16. The same 80% AP baseline is shown by the dotted 

line. 
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Figure 16. Burning rate as a function of test pressure for propellant containing 

titania additives doped with 3% iron. 

 

Identical results as seen with the pure and Al-doped titania are likewise seen in 

the Fe-doped titania, i.e., the additives that are both spray dried and heat treated show no 

ability to alter the propellant’s burning rate. When the additives are not heat treated after 

being spray dried, they are able to effectively increase burning rate. 
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Table 2. Values for a and n in the burning rate equation (Equation 1) for each 

propellant tested in this study. Pressure, P, is in units of MPa, and burning rate, r, 

is in units of mm/s. 

 

a n
- Baseline 4.29 0.3425

Method 1 4.85 0.2874
Method 2 4.47 0.4151
Method 3 4.11 0.4724
Method 4 4.31 0.4631
Method 1 5.06 0.2793
Method 2 3.71 0.5017
Method 3 4.44 0.4517
Method 4 4.58 0.4243
Method 1 4.64 0.3124
Method 3 5.14 0.4103

Pure

Al-doped

Fe-doped

 

In summary, these results show the effect synthesis method has on titania 

additives’ ability to modify the burning rate of composite propellant. Changes in titania’s 

drying and heat-treating produced both effective and ineffective additives. Some titania 

additives increase burning rate, as previous work showed (Stephens et al., 2010), while 

the other titania additives had little effect on burning rate, producing results similar to 

those described in other studies (Ramamurthy and Shrotri, 1996) (Pearson, 1971). 
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5.2 Discussion 

Within the same study are several methods for producing titania additives for 

composite propellant that produce varying burning rate results, not unlike similar 

discrepancies seen in past studies. Small differences in the additive’s synthesis may have 

gone unknown in other studies and, as shown in this study, can be the difference 

between an effective and ineffective burning rate modifier. 

To determine which synthesis method is ideal and to develop a theory for the 

fundamental reason for the differences in batch production, several parameters must be 

examined. In terms of which additive produced an increase in burning rate, methods 2, 3 

and 4 showed the ability to catalyze the reaction and produce an increase in burning rate, 

with the non-heat-treated additives performing slightly better. As discussed above, the 

additives that are spray dried have several scale-up and production benefits. The 

consistent spherical shape of the additive’s agglomerates can be seen in SEM images. A 

comparison of the two non-heat-treated additives is shown in the SEM images of Figure 

17 and Figure 18. This comparison leaves one ideal synthesis method; additives 

produced by spray drying and not heat treated, method 3, were determined to be ideal for 

the purposes of the authors’ current propellant research. 
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Figure 17. SEM image of non-heat-treated, rotovapped titania that shows the non-

uniform shape and wide size distribution of the additive agglomerates. 

 

 

Figure 18. SEM image of non-heat-treated, spray-dried titania that shows the 

consistent spherical geometry of the agglomerates. 

 

The remaining question is what chemical or physical mechanism is driving this 

difference in burning rate?  One mechanism that at first might seem most likely is that 

the crystalline structure of the titania is different between synthesis methods that 

produced an effective additive and those that did not. It is well known how heat treating 

can affect the crystal phase of titanium oxide (Su et al. 2004), and it has been shown 
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outside the realm of propellant reactions that the crystal structure of titania can affect its 

catalytic activity (Andersson et al., 2002). For this consideration, X-Ray diffraction 

(XRD) tests were performed on each additive. The major crystal phase for each additive 

was anatase. There is a crystallite size increase after heat treating, from about 5 nm 

before to 7 nm after, and prior to heat treating there is a very small amount of amorphous 

content and after there is none. These changes were observed with both the rotovapped 

and spray-dried additives, yet heat treatment was only detrimental with the spray-dried 

additives. It is a combination of the drying method and heat treating that produced an 

ineffective additive, which makes the theory that heat treating is affecting the crystalline 

structure as the driving mechanism unlikely. With little difference in structure 

(comparing Figure 5 and Figure 18) and surface chemistry, it is believed the driving 

mechanism is in the physical properties of the additives when mixed into the propellant. 

One possible mechanism to explain the differences in additive effectiveness 

when mixed with the propellant is that the synthesis method is affecting the physical 

properties of the additive agglomerates. Additives produced by different combinations of 

drying and heat treating may have different agglomeration hardness or porosity, and this 

characteristic could cause the additive to be dispersed in the propellant differently during 

mixing. In this case, the synthesis method ultimately hinders how the additives are 

introduced to the reaction zones, resulting in a change in burning rate.  

Only reactions taking place in the presence of the catalyst will show an increase 

in burning rate. Therefore there is some fraction of the reacting propellant which is 

catalyzed, fc and some fraction that is not catalyzed 1-fc. Only the catalyzed fraction of 
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the reactions will show an increase in reaction speed causing more heat to be transferred 

into the propellant and increase burning rate as discussed above. An additive that is 

poorly dispersed will have a much lower fc. To investigate this theory, more SEM 

images were used to compare both backscattering images of cross-sections and images 

of individual agglomerates. According to this theory it is the production of the 

agglomerate and the transportation of the additive to the propellant that is hindering the 

catalytic ability of the additive, not merely the particle size. 

There are some difficulties in taking SEM images of additives in solid propellant, 

namely distinguishing the difference between AP particles and additives. When using 

the back-scattering detector, the images are produced based on atomic weight and since 

AP and titania have similar atomic weights they appear similar. However, to investigate 

the dispersion of the additives the AP crystals are not needed. Additives are mixed into 

the propellant binder, at 3% by weight, by the same method as making propellant and 

then cured. This method for producing a binder/additive mixture is assumed to break up 

the additive agglomerates the same way as mixing actual propellant. Figure 19 shows an 

image of the spray-dried, non-heat-treated additives in cured binder, and Figure 20 

shows an SEM image of the spray-dried, heat-treated additives.  
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500μm 

Figure 19. Backscattering SEM cross section image of spray-dried, non-heat-

treated titania additives well dispersed in cured binder. 
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600μm 

Figure 20. Backscattering SEM cross section image of spray-dried, heat-treated 

titania additives with large agglomerates after mixing in binder. 

 

 Comparing the SEM cross section images of the heat-treated to the non-heat-

treated spray-dried additives, there are much larger agglomerates in the heat-treated 

additives. In addition to having larger agglomerates, the heat-treated additives have a 

significantly larger number of undispersed or unbroken additive agglomerates. It may 

appear the non-heat-treated additives in Figure 19 have less additive mass than the 

spray-dried additives in Figure 20, but this effect is likely due to the better dispersion of 

the particles which are smaller and cannot be seen in magnification of this type of image.  

 It is believed by the author that the reason for this physical difference in the 

additives is caused by sintering that occurs during heat-treating. Sintering causes the 

particles to fuse together, making them much less likely to break up during mixing. 
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However the crushing process used in synthesis method 2 would break up a majority of 

the sintered agglomerates created during heat-treating, but as seen in the burning rate 

plots (Figure 14 and Figure 15), it is possible some of the sintered agglomerates 

remained after crushing in method 2 since method 4 had consistently higher burning rate 

than method 2. This trend is especially notable in Figure 15, which shows the two non-

heat-treated synthesis methods are higher than method 2. Figure 21 shows a close up of 

two different heat-treated additive agglomerates in which the presence of sintering is 

evident and caused the agglomerate to become smooth and seemingly one particle. 

Several agglomerates similar to those in Figure 21 were located throughout the 

propellant with the heat-treated additives. Figure 22 shows a close up of two of the few 

large agglomerations of the non-heat-treated additives remaining after mixing. The 

agglomerates in Figure 22 appear to be loosely held together and are distinct particles 

that do not contain a continuous, smooth surface. 
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A B 

Figure 21. SEM of spray-dried, heat-treated additive agglomerates that have 

seemingly undergone sintering in the heat treating process making them difficult to 

break up and disperse when mixed. 
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A 

B 

Figure 22. SEM images of non-heat-treated, spray-dried additive agglomerates that 

have seemingly not sintered and will break apart during mixing. 

 

There are several possible mechanisms at work here, and this complicated topic 

will require further investigation. Currently it is the author’s belief that it is a physical 

mechanism in the additive agglomerates, as opposed to a chemical mechanism, that 
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caused the stark difference between the effectiveness of additives that one would 

otherwise think would perform identically. In summary, there is much to be gained from 

the results herein when scaling up the production of nanoparticles for motor-sized 

batches; care must be taken when finalizing the synthesis method since seemingly minor 

changes in the production method can be the difference between an effective additive 

and one that does not work at all. 
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6. ADDITIVES IN MULTIMODAL PROPELLANT 

 

 As discussed above there are many properties of the oxidizer crystal AP that 

affect the burning rate of a propellant. It is possible these sensitivities can also affect 

how well an additive performs. An initial study into the sensitivity of various propellant 

parameters on additive performance was conducted by Stephens et al. (2010) and 

showed both AP percentage and distribution to highly affect how well an additive 

performs. The propellant formulations for various applications will vary, and for the 

scale-up tests conducted on these titania additives would be no different. The scale-up 

propellant formulation would vary slightly from the laboratory propellant the in which 

the additives were verified. The new scale-up propellant would be 85% bimodal AP 

propellant with a binder consisting of 2% dioctyl adipate (DOA) plasticizer, 0.3% HX-

752 bonding agent, and IPDI-cured HTPB at a cure ratio of 0.82. The bimodal AP 

consisted of a blend of 30%, 23-micron AP and 70%, 200-micron AP. The baseline 

laboratory propellant as stated above was an 80%, 200-micron, monomodal AP with 

IPDI-cured HTPB binder and contained no plasticizer or bonding agents.  

The scale-up propellant was prepared and tested as discussed above with 1% 

pure titania spray-dried additive. As expected, the same additive did not perform the 

same in the two different propellants. The burning rate as a function of pressure for the 

laboratory propellant and scale-up propellant with their respective baselines are shown in 

Figure 23 and Figure 24, respectively. The additive produces a much greater increase in 

burning rate in the laboratory propellant than in the scale-up propellant.  
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Figure 23. Laboratory propellant containing 80% monomodal AP with 1% pure 

titania. 
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Figure 24. Scale-up propellant containing 85% bimodal AP with 1% pure titania. 

6.1 Parametric Study 

 To investigate the different level of additive effectiveness seen in the two 

propellant formulations, a parametric study varying the propellant formulations was 
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conducted. Two variables were isolated, the percentage of AP and the AP size 

distribution, which produced 4 propellant formulations as shown in Table 3. This study 

will determine whether the additives are more sensitive to the percent AP or the 

distribution of the AP that caused scale-up propellant to show a smaller increase in 

burning rate due to the additive. Each formulation contained 2% DOA, 0.3% HX-752 

and 1% pure TiO2 spray-dried non-heat-treated powder. The four propellants and their 

corresponding baselines were produced and tested at various pressures as discussed in 

previous sections of this thesis.  

 

Table 3. Parametric study varying AP loading and distribution. 

Propellant 
Mixture

AP Loading AP Distribution

1 85% Bimodal
2 85% Monomodal
3 80% Bimodal
4 80% Monomodal

 

 

6.2 Results 

 The burning rate as a function of pressure according to Equation 1 for the four 

propellant mixtures can be found in Figure 25 to Figure 28. Each plot shows the 

propellant containing 1% pure titania and a baseline for the same propellant mixture 

without additive.  
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Figure 25. Propellant 1: 85% bimodal AP. The catalyzed propellant showed a 

12.7% average increase in burning rate compared to the baseline over the tested 

pressure range. 
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Figure 26. Propellant 2: 85% monomodal AP. The catalyzed propellant produced a 

27.7% average increase in burning rate compared to the baseline over the tested 

pressure range. 
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Figure 27. Propellant 3: 80% bimodal AP. The catalyzed propellant produced an 

11.3% average increase in burning rate compared to the baseline over the tested 

pressure range. 
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Figure 28. Propellant 4: 80% monomodal AP. The catalyzed propellant produced a 

25.2% average increase in burning rate compared to the baseline over the tested 

pressure range. 
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6.3 Discussion 

 Both monomodal propellants showed an increase over the baseline, 25.2% for 

80% AP and 27.7% for 85% AP, that are comparable to the increases seen previously by 

this additive and performed as expected. However, the bimodal propellants showed 

increases of only 11.3% for 80% AP and 12.7% for 85% AP, which are less than half the 

increases seen in the monomodal propellants. The additives are slightly more effective in 

the 85% AP propellants, but the additives are much more sensitive to AP distribution 

and effective in the monomodal propellants.  

 The proposed mechanism for this difference in effectiveness is related to 

distribution, similar to the driving mechanism in the differences seen in the additive 

scale-up investigation. However the problem is more complex than the agglomeration 

size of the additive determining the distribution and ultimately the effectiveness of the 

additive as a burning rate modifier. As discussed above, the additive is only as effective 

as the number of reactions between the AP and binder it is able to catalyze, which is fc, 

the fraction of reaction catalyzed. In the bimodal propellant, 30% of its AP consists of 

fine AP particles that are 23 microns. These fine AP particles disperse the reactions that 

the additive attempts to catalyze due to the increase in diffusion area between the AP and 

binder, ultimately decreasing fc. The additive is still affecting the same amount of 

reactions around the coarse AP, as it does in the monomodal propellants, but it is unable 

to affect all of the reactions around the fine AP, reducing its effectiveness. The 

introduction of smaller AP particles effectively increases the number of reaction sites 

that require the presence of the catalyst to perform as expected. fc and thus the burning 
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rate depend on a relative dispersion, which is a ratio of the additive dispersion over the 

dispersion of AP binder reactions, or as stated in Equation 8, for a given amount of 

additive, fc is a function of additive agglomerate size over the AP size for each AP size 

present in the propellant. According to this theory, the additive is less effective in the 

bimodal propellant only because it contains coarse AP used in the monomodal propellant 

plus smaller, fine AP. The results would not be the same if the bimodal propellant 

contained coarse and fine AP, and the monomodal propellant contained only fine AP. In 

this case, according to the theory presented, the monomodal propellant would show less 

increase in burning rate than the bimodal propellant. 

1 Agg
c

AP i

D
r f f

D
⎛ ⎞

= − ⎜
⎝ ⎠

∼ ⎟      (8) 

 To maximize fc and the effectiveness of the additives, the larger AP can be used; 

however this apparent solution is not favorable due to a decrease in burning rate and 

requires a modification to the baseline propellant or the additive can be better dispersed. 

Better dispersion of the additive will result in more reaction sites being catalyzed and a 

higher burning rate. There is a limit to the increase in burning rate gained by increasing 

the dispersion of the additive, and that limit is determined by the AP particle size. After 

this dispersion limit, additional additive dispersion would produce little to no increase in 

burning rate. Maximum additive performance would be achieved at this limit and would 

be ideal for additive use. The limit will be reached sooner with larger AP particles, but 

as finer AP is used to achieve higher burning rate, a better dispersion will be needed to 

reach this ideal limit.     
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7. NEW ADDITIVE INCORPORATION METHOD 

 

 Problems with applications of nanoparticle additives have become of particular 

notice in the solid propellant community. Tingming et al. (2009) stated, “Nanometer 

metal oxides were highly desirable to increase the burning rate of composite solid 

propellant because of their high catalytic activities. However, poor dispersibility limits 

their wide applications.”  Tingming et al. are currently working with similar problems to 

those reported in this thesis and attempting to modify additive production methods of 

CuO with silica to increase dispersion. The current research at Texas A&M and UCF has 

also produced a new method for increasing dispersion of additives within the grain of 

composite solid propellant. 

 Additives produced with the Sol-gel method have a small particle size, but due to 

limitations in the preparation and mixing, the advantages gained by the small particle 

size can be lost in agglomeration, which can lead to poor dispersion and a less effective 

additive. Work continues to improve the dispersion of additives within composite solid 

propellant and determine propellant preparation methods that allow for more effective 

additives. One of the new methods for improved dispersion produces an ultra-fine 

suspension of additives in the HTPB before the HTPB is added to the propellant. The 

additive is produced by the sol-gel reaction in a liquid suspension, which is then mixed 

with HTPB. Then the solvent is removed, leaving an ultra-fine additive suspension in 

HTPB. The HTPB/additive suspension is then used to create the binder of the propellant. 

Since the additive does not need to be stored in a powder form, this method significantly 
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reduces the agglomeration of the additive material, and the agglomerates produced are 

much smaller compared to other methods. 

 

7.1 Results 

 This new method of suspending additives in HTPB was first tested with the 

laboratory propellant formulation. A propellant containing 79.2% monomodal AP and 

1.0% Fe-doped titania was produced as before with the exception of using the ultra-fine 

suspension of the additive in HTPB. The additive was synthesized and suspended in the 

HTPB at the proper ratio for the specific propellant formulation. Samples were tested as 

described above at varying pressure from 500 to 2000 psi. Figure 29 shows the burning 

rate results of the ultra-fine additive suspension, the same formulation using the spray-

dried powder, and the corresponding baseline propellant. The 1.0% Fe-TiO2 spray-dried 

powder shown in Figure 29 is the highest-performing powder additives for this 

propellant formulation to date.  
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Figure 29. Burning rates as a function of pressure for the new ultra-fine HTPB 

suspension additives, spray-dried additives of the same formulation and the 

corresponding baseline. 

 

 The propellant containing the ultra-fine suspension of Fe-doped titania in HTPB 

produced a burning rate which was an average of 62.8% higher than the baseline 

propellant. The best-performing powder additive, as shown in Figure 29, produced an 

increase of 34.4% average increase in burning rate over the baseline in the pressures 

region tested. In the same propellant formulation with the same additive type and 

percentage, the new method produced a much better dispersion and therefore a much 

higher burning rate.  
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Additionally, the new ultra-fine suspension method was tested in the scale-up 

propellant, which is seen in Figure 24. Recall that additives have not been able to 

increase the propellant’s burning rate to the same extent in this scale-up formulation as 

other propellant formulations (see Section 6). Propellant consisting of 85% bimodal AP, 

2% DOA, 0.3% HX-752, with 0.5% Cu-doped titania suspended in HTPB was produced 

as stated above. The bimodal AP consisted of 70%, 200-micron and 30%, 23-micron 

particles, which is the same bimodal mix as before. Initially, an additive loading of 1.0% 

was tested, but during mixing the propellant binder became too dry and did not produce 

testable, quality samples, so the propellant was produced with only 0.5% additive.  

Figure 30 shows the burning rate as a function of pressure for the 85% bimodal AP 

propellant with 0.5% Cu-doped titania ultra-fine suspension in HTPB, the burning rate 

for 85% bimodal AP propellant with 1.0% pure titania spray-dried powder, and the 

corresponding baseline. 
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Figure 30. Burning rate as a function of pressure for the 85% bimodal AP 

propellants containing 0.5% Cu-TiO2 ultra-fine suspension in HTPB, 1.0% TiO2 

spray-dried powder and baseline. 

 

 The 85% bimodal AP propellant containing 0.5% ultra-fine suspended additive in 

HTPB produced a 53.4% average increase in burning rate over the baseline propellant. 

The same formulation containing 1.0% spray-dried titania powder previously showed an 

average increase of only 12.7%. Even at half the mass loading of the spray-dried 

additive, the ultra-fine suspended additive in HTPB performed extremely higher due to 

its better additive dispersion. The new additive incorporation has alleviated the 

problematic performance of powder additives in bimodal propellants containing fine AP.  

 The improved method for incorporating additives into composite solid propellant 

takes advantage of smaller agglomerate size to improve dispersion. This new method 
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follows the proposed theory of relative dispersion as the driving mechanism for the 

improved effectiveness of the additives. The better dispersion leads to more reactions 

being catalyzed and a higher burning rate, but as smaller AP is used the reactions 

become more finely dispersed allowing more reactions to take place without a catalyst. 

This smaller AP then results in a less effective additive, but with adequate dispersion, as 

in the ultra-fine suspension, this loss in effectiveness can be overcome. 

 The dispersion of the ultra-fine additive suspension can be seen in Figure 31 

using the same method of backscattering SEM imaging as in Figure 19 and Figure 20. It 

appears there is less additive in Figure 31, but this illusion is due to the reduced 

agglomeration size. Upon closer examination of the image, fine detections of additives 

can be seen between the larger agglomerates. Also, based on the scale of the image and 

the amount of additive seen in other images of the same quantity of additive, there is 

additive too small to be seen in this type of image. Images taken at higher magnification 

show a few large agglomerates of 2 to 3 microns, but a majority of the agglomerates are 

less than a micron in size. A sample of some of these images can be seen in Figure 32. 
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400μm

Figure 31. Backscattering SEM cross section image of the ultra-fine suspension 

additive in cured HTPB. 

 

 The new additive incorporation method of ultra-fine suspended additives in 

HTPB produces not only a higher burning rate but also effective bimodal propellants 

containing fine AP. According to the theories presented this thesis, these improvements 

result from an improved relative dispersion of the additive material and the catalyzed 

reactions. These results are another example of complex sensitivities associated with the 

application of nanoparticle additives in composite solid propellant. As reported, this 

catalytic additive and method increased the burning rate of the propellant by 53.4%, 

which are excellent results when compared to other reported catalysts. Recently, the 

work by Tingming et al. (2009) reported a new method for CuO additive preparation that 

produced an increase in burning rate of 9.5%.  
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A 

B 

Figure 32. SEM image of one of the few large agglomerates (A) and a sample of the 

average agglomerate size (B) of the ultra-fine suspension of additive in HTPB.
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8. CONCLUSIONS 

 

 In the current studies, titania has been seen to be both an effective and ineffective 

burning rate modifier when used as an additive in AP/HTPB composite propellant with 

numerous parameters influencing its effectiveness. Differences in manufacturing method 

were required to produce large amounts of additive for use in separate rocket motor 

experiments. The additive synthesis method when scaled up influenced how effective the 

additive was at increasing burning rate. Nano titania that is spray dried and then heat 

treated was shown by several propellant batches to produce an ineffective additive. The 

ideal synthesis method was found to be spray drying without heat treating. This 

procedure produced an effective burning rate modifier in powder form while retaining 

the benefits of spray drying. The theory is that the difference is not caused by chemical 

differences in the final additives but is instead caused by physical differences in the 

additive agglomerates. The agglomerates were unable to break-up in the mixing process 

and were not well dispersed in the propellant grain. Based on SEM images, the heat-

treating process was shown to sinter the particles together causing them to fuse into a 

hardened agglomerate. Ultimately this particle fusion limited the number of reactions the 

additive could catalyze during the burning process and made the additive ineffective.  

 The current additives were studied in various propellant formulations including 

monomodal and bimodal propellants and different AP loading levels. It was found that 

the spray-dried titania additives were more sensitive to AP distribution than AP loading 

level. The additives were more effective in monomodal propellant than in bimodal 
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propellant for the tests conducted. However, it was determined this was due to the 

bimodal propellant containing fine AP, which disperses the reactions that the additive 

attempts to catalyze to increase burning rate. The effectiveness of the additive was 

shown to be related to the additive’s relative dispersion, which is a ratio of the additive 

dispersion to the dispersion of the AP-binder reactions created by the smaller AP.  

 A new method for incorporating the titania additives into the solid propellant 

matrix was created to improve the dispersion of the additives, which according to the 

previous results should create a much more effective additive in propellants with smaller 

AP such as the bimodal formulation used in the previous study. The new method 

consisted of suspending ultra-fine titania additive in HTPB and using the additive 

suspended HTPB to create the binder. Propellant created with the new additive 

dispersion method showed a significantly higher burning rate in both monomodal AP 

propellants and bimodal propellants containing fine AP. The ultra-fine suspension of 

additive in HTPB was able to modify the burning rate of the bimodal propellant that the 

spray-dried powder was unable to modify. The results from the new additive 

incorporation method agreed with the theory of relative dispersion proposed in this 

thesis.  

The results presented in this thesis were for titanium dioxide nanoparticles 

produced by the sol-gel method, but the underlying concepts of additive processing, 

scale-up, incorporation, and dispersion apply to a variety of nanoparticles, especially 

those created by the sol-gel reaction. Problems with agglomeration and scale-up are 

typical for the application of nanoparticle additives and their use in composite propellant 
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is no exception. The large quantities of additives and the environment for producing an 

actual solid propellant motor add to the complexities and problems facing the application 

of nanoparticle burning rate modifiers in composite propellants. It is difficult to take 

additive results directly from laboratory experiments such as TGA tests and implement 

them directly into working propellant formulations. This work attempts to bridge the gap 

between those laboratory experiments and full-scale composite solid propellant motors 

using nanoparticle additives as a catalytic burning rate modifier.  
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9. RECOMMENDATIONS 

 

 After several decades of research into solid propellant, there are many unknowns 

remaining. Effects of specific additives are known but with numerous parameters 

associated with each additive, there is a need to understand the underlying fundamental 

concepts. Detailed empirical studies, such as those presented in this thesis, are a 

necessary stepping stone towards the goal of developing purely theoretical predictions of 

additive performance. Much work in both empirical testing and theoretical modeling of 

both propellant and additives exist between our current knowledge and this long term 

goal. 

 In addition to long term goals, there are several investigations that can help 

validate the theories presented in this thesis, some of which has already begun at TAMU. 

The author would recommend testing the limits of relative dispersion by testing 

additives of various dispersion in very fine and very coarse AP propellants. Possibly 

with this information it would be possible to correlate a function for relative dispersion. 

Additionally, more work developing different imaging techniques with the SEM is 

needed to better quantify the dispersion of additives within a propellant grain. It may be 

possible to make additives easier to detect using alternative or new additive doping 

materials.  

 Additionally, there are many studies of numerous additives and AP in TGA tests, 

but many of these tests lack detail burning rate, additive dispersion, and processing 

investigations. These detailed tested are needed to fully understand these potential 
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burning rate modifiers. Once good additives are identified, it will be necessary to 

determine the ideal method for producing the additive. It is recommended that various 

methods for producing titian other than the sol-gel method are investigated to examine 

possible differences in additive performance.  

 Finally, additional work in coupling detailed kinetics and three-dimensional mass 

transport modeling is needed to fully model combustion of solid propellant. Then 

incorporate the catalytic activity of the additives into the kinetics model. 
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