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ABSTRACT

Analysis of the Three-dimensional Superradiance Problem and Some

Generalizations. (August 2010)

Indranil Sen Gupta, B.E., Bengal Engineering and Science University, India;

M.S., The University of Texas- Pan American

Chair of Advisory Committee: Dr. Goong Chen

We study the integral equation related to the three and higher dimensional

superradiance problem. Collective radiation phenomena has attracted the attention

of many physicists and chemists since the pioneering work of R. H. Dicke in 1954.

We first consider the three-dimensional superradiance problem and find a differen-

tial operator that commutes with the integral operator related to the problem. We

find all the eigenfunctions of the differential operator and obtain a complete set of

eigensolutions for the three-dimensional superradiance problem. Generalization of

the three-dimensional superradiance integral equation is provided. A commuting dif-

ferential operator is found for this generalized problem. For the three dimensional

superradiance problem, an alternative set of complete eigenfunctions is also provided.

The kernel for the superradiance problem when restricted to one-dimension is the

same as appeared in the works of Slepian, Landau and Pollak. The uniqueness of the

differential operator commuting with that kernel is indicated. Finally, a concentra-

tion problem for the signals which are bandlimited in disjoint frequency-intervals is

considered. The problem is to determine which bandlimited signals lose the small-

est fraction of their energy when restricted in a given time interval. A numerical

algorithm for solution and convergence theorems are given. Orthogonality properties

of analytically extended eigenfunctions over L2(−∞,∞) are also proved. Numerical

computations are carried out in support of the theory.
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CHAPTER I

INTRODUCTION

A. Collective radiation and superradiance

The collective radiation phenomenon has been an interesting subject since the pio-

neering work of Dicke [12] in 1954. In that classic paper, Dicke considered two types

of collective radiation phenomena: superradiance and subradiance in a collection of

two-level atoms when all atoms are confined inside a volume much smaller than ra-

diation wavelength. Dicke introduced the notion of super-radiance when discussing

the formation of a short-lived state in a radiant gas of N identical two level atoms.

When the gas is confined to a volume with a size smaller than the wave length of

the radiation, the atoms are coherently coupled through the common radiation field.

By considering the entire collection of atoms as a single quantum-mechanical system,

Dicke found that under certain conditions the individual atoms cooperate to emit ra-

diation at a rate which is much greater than their incoherent emission rate. A system

which exhibits cooperative effects of this nature is said to be “superradiant”.

In quantum mechanics, superradiance refers to a class of radiation effects (or

enhanced radiation effects) typically associated with the acceleration or motion of a

nearby body (which supplies the energy and momentum for the effect). Superradiance

allows a body with concentration of angular or linear momentum to move towards

a lower energy state, even when there is no obvious classical mechanism for this to

happen. In this sense, the effect has some similarities with quantum tunnelling.

The theory of superradiance was further developed by the improvement of ex-

perimental ability to manipulate coherently large collections of optically resonant

This dissertation follows the style of Journal of Functional Analysis.
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atoms. The experimental ability to manipulate coherently large collections of optically

resonant atoms is provided by the experimental observations of photon echoes, self-

induced transparency, optical nutation and optical adiabatic inversion ([1, 17, 21, 33])

etc. It is clear that in the optical region of the spectrum it is no longer practical to as-

sume that all of the active atoms are confined to a region which has linear dimensions

smaller than a wavelength. Rehler and Eberly [34] generalized Dicke’s description of

superradiance to an extended system. They considered an arbitrary number of atoms

coupled to all radiation modes with the atoms contained in a volume which may be

large or small compared with the cube of the average emitted wavelength.

The research on cooperative emission was further developed by Bonifacio and

Lugiato [4]. They brought up the concept of superfluorescence which describes the

cooperative emission from a system of uncorrelated excited atoms. This process is usu-

ally started by normal spontaneous emission but later develops correlation among the

system. This has been studied extensively by Skribanowitz, Hermann, MacGillivray

and Feld [45] and MacGillivray and Feld [27].

Collective spontaneous radiation is interesting for both developing a mathemati-

cal theory for a physical model and applications to many other related problem. From

the physical standpoint cooperative spontaneous emission is an example of a many-

body quantum problem of N atoms collectively interacting with an electromagnetic

field. Cummings and Dorri [9] showed that interaction of N atoms, in the equivalent

mode position, with the single-mode resonant field leads to the radiation suppression.

Successively Cummings ([10, 11]) presented the exact solution for the spontaneous

emission of a single atom which is initially excited in the presence of the N−1 initially

unexcited atoms, interacting with the M modes of the field. Buzek [7] studied the

dynamics of the system of N identical, but distinguishable, two-level atoms in free

space interacting with the radiation field, when at the initial time (t = 0) only one of
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the atoms is in the excited state and all others are in the ground state. The problem

of cooperative spontaneous emission of N atoms reduces to finding all eigenstates of a

related integral equation. From these eigenstates the evolution of an arbitrary initial

state is obtained by expanding the initial condition in terms of the set of eigenstates.

A similar eigenvalue problem occurs for a spherical atomic cloud in Weisskopf and

Wigner theory. This problem was studied by Ernst [14]. Ressayre and Tallet [35] and

many others studied the same problem in various geometries.

Superradiance is very useful as one of the methods for producing coherent emis-

sion without coherent pumping. This is especially important in x-ray or γ-ray where

there are no effective mirrors which limits the use of ordinary stimulated emission

process. Besides, with the recent advances of quantum informatics, decoherence free

subspace [22] has been proposed to be one of the strategies to combat the effects

of decoherence in quantum computation and quantum communication. Decoherence

is the process whereby the quantum-mechanical state of any macroscopic system is

rapidly correlated with that of its environment in such a way that no measurement on

the system alone (without a simultaneous measurement of the complete state of the

environment) can demonstrate any interference between two quantum states of the

system. Decoherence-free subspace(DFS) is a special set of quantum states which is

insensitive to some particular noise. These subspaces prevent destructive environmen-

tal interactions by isolating quantum information. They are important in quantum

computing, where coherent-control of quantum systems is the desired goal. Since

quantum computers cannot be isolated from their environment and information can

be lost, the study of DFSs is important for the implementation of quantum computers

into the real world. A collective system of many two-level particles is one of the ideal

candidates to realize decoherence free subspace. An ensemble of N two-level atoms

with one excitation also plays an important role in quantum memory and quantum



4

networking [8].

Recent quantum optical computations and experiments study the problem in

which a single photon is stored in a gas and then retrived at a later time ([40, 41]).

In [53] the correlated spontaneous emission from N atoms in free-space is studied.

In very recent works of Svidzinsky et. al. [54, 55] the problem of single photon

spontaneous emission is discussed in detail. The paper clarifies many issues of recent

interest namely the effect of virtual processes and situations when the quantum N

atom problem is analogous to the radiation of a system of N harmonic oscillators.

The mathematical motivation of our work is to find a complete set of eigenfunctions

of the superradiance integral equation omitting the contribution of virtual photons.

This turns out to be a problem of solving the integral equation

∫

V

sin(k0|r− r′|)
k0|r− r′| β(r′)dr′ = λβ(r), (I.1)

where r, r′ ∈ V ⊂ R3 and the integral is taken over the volume V of a sphere of radius

R. Our work will focus on several concepts and results involving the solution of the

above integral equation. We will also show that this three-dimensional superradiance

problem is a special case of a more generalized integral equation for dimension ≥ 2.

B. Mathematical motivations

A similar problem to (I.1) in one-dimension has been in the literature since the pio-

neering work by Slepian, Landau and Pollak (cf. [46, 47, 48, 49, 50]) in communication

theory. Suppose f(t) ∈ L2(−∞,∞) and denote the Fourier transform of f(t) by F (ω).

We write

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωtdω
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and

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt.

Define Ω = 2πW where W is a positive real number. The bandlimited version of f(t)

is defined by

Bf(t) =
1

2π

∫ Ω

−Ω

F (ω)eiωtdω

and the timelimited version of f(t) is defined by

Df(t) =























f(t), |t| ≤ T/2

0, |t| > T/2

The problem considered by Slepian, Landau and Pollak (cf. [46, 47, 48, 49, 50]) was

to maximize µ for

µ = ||BDf ||2∞/||f ||2∞

for f(t) ∈ L2(−∞,∞). This reduces to a problem of solving the integral equation

λf(t) =

∫ T/2

−T/2

sin Ω(t− s)

π(t− s)
f(s)ds, (I.2)

where |t| ≤ T/2. The maximum µ equals the largest eigenvalue λ0 of (I.2). Finding

the eigenfunction of a finite convolution integral operator is not easy, even if one is

satisfied with quite good numerical approximations. Of all the strategies one can

dream of to solve this problem, none sounds so appealing as that of finding a second

order differential operator with simple spectrum which will commute with the given

integral operator and thus will have same eigenfunctions as the integral operator.

This is exactly what Slepian, Landau and Pollak did in their work. The prolate

spheroidal wave function pops up as a solution of the related differential equation

and thus solves (I.1). Spheroidal wave functions are solutions of the Laplace equation
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that are found by writing the equation in spheroidal coordinates and applying the

technique of separation of variables, just like the use of spherical coordinates leads

to spherical harmonics. They are called oblate spheroidal wave functions or oblate

harmonics if oblate spheroidal coordinates are used and prolate spheroidal wave func-

tions or prolate harmonics if prolate spheroidal coordinates are used. Originally, the

spheroidal wave functions were introduced by C. Niven [32] in 1880 when studying the

conduction of heat in an ellipsoid of revolution, which lead to a Helmholtz equation

in spheroidal coordinates.

Slepian [49] has found that a similar situation holds in higher dimensional Eu-

clidean space Rn. Slepian [50] also showed that a similar situation holds for the case

of the integers or the circle. Grünbaum [19] proved a similar result for the group of

roots of unity. Grünbaum et. al. [18] gave many analogous commutation results with

the real line replaced by either a non-Abelian group or a symmetric space. Their

work includes topological groups, the rotational group SO(n), the sphere S2, real

two-dimensional projective space, higher dimensional spheres, hyperbolic Minkowski

space etc. The analysis depends on special functions and the theory of Group Rep-

resentations [57]. Grünbaum [20] also gave an account of commutator of convolution

integral operator that contains differential operator of fourth order. Simons et. al.

[43, 44] gave an analogue of Slepian’s time-frequency concentration problem on the

surface of the unit sphere to determine an orthogonal family of strictly bandlimited

functions that are optimally concentrated within a closed region of the sphere. They

posed and solved the spherical spatiospectral concentration problem for a geograph-

ical region of arbitrary shape. Remarkably there is also a differential operator that

commutes with the relevant integral operator which was extremely helpful in solv-

ing the eigenvalue problem. The solution for this problem is useful in a variety of

geophysical, planetary, cosmological and other applications.
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Motivated by all these works we will approach the three dimensional superra-

diance problem by finding a differential operator that commutes with the related

integral operator. We will find the eigenfunctions of the differential operator and

derive many properties of such commuting operators which will enable us to find the

solution for (I.1). We will generalize the kernel of (I.1) in dimensions ≥ 2 and find a

commuting differential operator. We will show that this kernel is exactly sin(k0|r−r′|)
k0|r−r′| in

three-dimensions where r, r′ ∈ R3, and thus we have a generalization of the integral

equation related to the superradiance problem.
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CHAPTER II

MOTIVATION AND ALREADY KNOWN RESULTS

A. Physical background and model from superradiance

Svidzinsky, Chang and Scully studied the correlated spontaneous emission from N

atoms in free-space. In [53] Svidzinsky and Chang considered the following problem:

• Consider a system of two level (a and b) atoms (at time t = 0) one of which is

in excited state a and all other atoms are in the ground state b.

• The energy difference between level a and b is Ea −Eb = ~ω.

• Atoms are located at positions rj (j = 1, 2, . . . , N).

• At t > 0 the initial state starts to decay by emitting a photon. The problem

we consider is to find how the state decays with time.

As observed in [53], the Hamiltonian for this system can be given by

Ĥint =
∑

k

N
∑

j=1

gk[σ̂j â
†
kE1(t) + σ̂†

j âkE2(t)]

where,

• E1(t) = exp(i(νk − ω)t− ik · rj)

• E2(t) = exp(−i(νk − ω)t+ ik · rj)

• σ̂j is the lowering operator for atom j

• âk is the photon operator

• νk = ck is the frequency of the photon with wave vector k
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• gk = atom-photon coupling constant for k mode = ω dab

~

√

~

ǫ0νkVph

• dab is the electric-dipole transition matrix element between level a and b

• Vph is the photon volume

Svidzinsky and Chang [53] looked for a solution of the Schrödinger equation as a

linear combination of Fock states

Ψ =

N
∑

j=1

βj(t)|b1b2 . . . aj . . . bN0〉 +
∑

k

γk(t)|b1b2 . . . bN1k〉

where,

• |b1b2 . . . aj . . . bN0〉 are states corresponding to zero number of photons and one

atom j is in the excited state a

• |b1b2 . . . bN1k〉 are states in which there is one photon and all N atoms are in

ground state b

Substituting this Ψ in the Schrödinger equation

i~
∂Ψ

∂t
= ĤΨ

and using

• σ̂j â
†
k|b1b2 . . . aj . . . bN0〉 = |b1b2 . . . bj . . . bN1k〉

• σ̂†
j âk|b1b2 . . . bj . . . bN1k〉 = |b1b2 . . . aj . . . bN0〉

we end up with the following equation for functions βj(t) and γk(t)

•

β̇j(t) = −i
∑

k

gkγk exp(−i(νk − ω)t+ ik · rj), (II.1)
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•

γ̇k(t) = −i
N
∑

j=1

gkβj(t) exp(i(νk − ω)t− ik · rj). (II.2)

Integrating (II.2) over time we obtain

γk(t) = γk(0) − i

∫ t

0

dt′
N
∑

j=1

exp(i(νk − ω)t′ − ik · rj)gkβj(t
′). (II.3)

Assuming no photon at t = 0 and substituting (II.3) into (II.1) gives

β̇j(t) = −
∑

k

N
∑

l=1

∫ t

0

dt′g2
kβl(t

′) exp[i(νk − ω)(t′ − t) + ik · (rj − rl)]. (II.4)

(II.4) can be reduced to

β̇j(t) = −γ
N
∑

l=1

fjlβl(t), (II.5)

where fjl =
sin(k0|rj−rl|)
(k0|rj−rl|) , k0 = ω

c
and and γ is the single atom spontaneous decay rate

given by

γ =
Vphk

2
0

πc
g2

k0
.

Now (II.5) can be written in the following matrix form

Ḃ = −γFB, (II.6)

where B =

































β1(t)

β2(t)

.

.

.

βN(t)

































, F =

























1 f12 . . . f1N

f21 1 . . . f2N

. . . . . .

. . . . . .

fN1 fN2 . . . 1

























The matrix F is symmetric because fjl = flj . Let |λi〉 be eigenvectors of F and λi (i =

1, 2, . . . , N) the corresponding eigenvalues. Then a general solution of the Schrödinger
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equation can be expressed as a superposition of eigenstates Ψ = C1e
−γλ1t|λ1〉 +

C2e
−γλ2t|λ2〉 + · · · + CNe

−γλN t|λN〉 +
∑

k γk(t)|b1b2 . . . bN1k〉, where C1, C2, . . . , CN

are constants determined by the initial conditions.

Dense Atomic Cloud: We calculate the eigenvalues and eigenvectors for a

dense spherically symmetric atomic cloud. The equation we need to solve is

























1 f12 . . . f1N

f21 1 . . . f2N

. . . . . .

. . . . . .

fN1 fN2 . . . 1

























































β1(t)

β2(t)

.

.

.

βN(t)

































= λn

































β1(t)

β2(t)

.

.

.

βN(t)

































This can be written in a more compact form as follows

N
∑

m=1

sin(k0|rj − rm|)
k0|rj − rm|

βm = λnβj .

For a dense cloud with uniform atom density N/V (V is the volume of the cloud) we

can replace the sum by an integral and treat βj as a continuous function. Then we

obtain

N

V

∫

dr′
sin(k0|r− r′|)
k0|r− r′| β(r′) = λnβ(r). (II.7)

It is well known that a set of solutions for (II.7) is given by

βnm(r) = jn(k0r)Ynm(θ, φ)

with

λn =
3N

2
[j2

n(k0R) − jn−1(k0R)jn+1(k0R)],
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where

jn(z) =

√

π

2z
Jn+ 1

2

(z),

and

Ynm(θ, φ) =

√

(2n+ 1)(n−m)!

4π(n+m)!
Pm

n (cos θ)eimφ

are spherical functions, Pm
n (cos θ) are associated Legendre polynomials.

When z << 1, jn(z) ≈ zn

(2n+1)!!
and therefore λn ≈ 3N

(2n+3)[(2n+1)!!]2
(k0R)2n. Thus

if k0R << 1 only one eigenvalue with n = 0 is large and approximately equal to N

(Dicke superradiance [12]) while eigenvalues with n > 0 are suppressed by a factor

(k0R)2n. Those states are trapped. But this set of eigenfunctions is NOT complete!

Our goal is to find a complete set of solutions for (II.7). For simplicity we will take

R = 1.

B. Spherical and hyperspherical harmonics

In mathematics, the spherical harmonics are the angular portion of a set of solutions

to Laplace’s equation. Represented in a system of spherical coordinates, Laplace’s

spherical harmonics Y m
ℓ (or Yℓm) are a specific set of spherical harmonics that forms

an orthogonal system, first introduced by Pierre Simon de Laplace. Spherical harmon-

ics are important in many theoretical and practical applications, particularly in the

computation of atomic orbital electron configurations, representation of gravitational

fields, geoids, and the magnetic fields of planetary bodies and stars, and character-

ization of the cosmic microwave background radiation. In 3D computer graphics,

spherical harmonics play a special role in a wide variety of topics including indirect

lighting (ambient occlusion, global illumination, precomputed radiance transfer, etc.)
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and in recognition of 3D shapes (cf. Wikipedia). They are given by

Y m
ℓ (θ, φ) =

√

(2ℓ+ 1)

4π

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ) eimφ,

where Pm
n (cos θ) are associated Legendre polynomials. θ and φ represent colatitude

and longitude, respectively. In particular, the colatitude θ, or polar angle, ranges

from 0 at the North Pole to π at the South Pole, assuming the value of π/2 at the

Equator, and the longitude φ, or azimuth, may assume all values with 0 ≤ φ < 2π.

When Laplace’s equation is solved on the surface of the sphere, the periodic boundary

conditions in φ, as well as regularity conditions at both the north and south poles,

ensure that the degree ℓ and order m are integers that satisfy ℓ ≥ 0 and |m| ≤ ℓ.

ℓ known as the orbital angular momentum quantum number, and m the magnetic

quantum number.

Spherical harmonics satisfy some remarkable properties (cf. [3]). For example

•
∫ π

θ=0

∫ 2π

ϕ=0

Y m
ℓ Y m′∗

ℓ′ dΩ = δℓℓ′ δmm′ ,

•

∇2Y m
ℓ (θ, φ) = −ℓ(ℓ + 1)Y m

ℓ (θ, φ),

where

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
.

• Spherical harmonics form a complete set of orthonormal functions and thus

form an orthonormal basis of the Hilbert space of square-integrable functions.

On the unit sphere, any square-integrable function can thus be expanded as a
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linear combination of these

f(θ, φ) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

fm
ℓ Y m

ℓ (θ, φ).

This expansion holds in the sense of mean-square convergence in L2 of the sphere

which is to say that

lim
N→∞

∫ 2π

0

∫ π

0

∣

∣

∣

∣

∣

f(θ, φ) −
N
∑

ℓ=0

ℓ
∑

m=−ℓ

fm
ℓ Y

m
ℓ (θ, φ)

∣

∣

∣

∣

∣

2

sin θ dθdφ = 0.

Let us now define a point in n = p+ 2 dimensional Euclidean space (p = 1, 2, 3, . . . )

by a vector x = (x1, x2, . . . , xp+2). We shall use hyperspherical polar coordinates

x = (r, θ1, θ2, . . . , θp, φ) defined by

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ3,

.

.

.

xp = r sin θ1 sin θ2 . . . sin θp−1 cos θp,

xp+1 = r sin θ1 sin θ2 . . . sin θp cos φ,

xp+2 = r sin θ1 sin θ2 . . . sin θp sinφ,

where r ≥ 0, 0 ≤ θj ≤ π (j = 1, 2, . . . , p), 0 ≤ φ ≤ 2π.
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In these coordinates, the (p+ 2)-dimensional volume element is given by

dV = rp+1(sin θ1)
p(sin θ2)

p−1 . . . (sin θp)drdθ1 . . . dθpdφ

and the surface element dΩ becomes

dΩ = (sin θ1)
p(sin θ2)

p−1 . . . (sin θp)dθ1 . . . dθpdφ.

Denote the components of unit-vector by ξ = (θ1, θ2, . . . , θp, φ). Then the hyperspher-

ical harmonics of degree ℓ are denoted by Sm
ℓ . Here m = 1, 2, . . . , h(ℓ, p) is the number

of linearly independent surface harmonics of degree ℓ where h(ℓ, p) = (2ℓ+ p) (ℓ+p−1)!
p!ℓ!

.

They satisfy
∫

Ω

Sm
ℓ Sm′∗

ℓ′ dΩ = δℓℓ′ δmm′

and Sm
ℓ , ℓ = 0, 1, 2, . . . , m = 1, 2, . . . , h(ℓ, p) form a complete orthonormal basis in

Sn−1.

C. Prolate spheroidal wave function

The prolate spheroidal wave functions are extremely important tool for studying the

concentration problem in communication theory. The technique used in [46, 47, 48, 49,

50] is a major motivation for our work in the next chapter. Prolate spheroidal wave

functions are extensively studied in [15]. In this section for the sake of completeness

we draw freely from [15, 46].

When c is real, the differential equation

(1 − t2)
d2u

dt2
− 2t

du

dt
+ (χ− c2t2)u = 0

has continuous solutions in the closed t interval [−1, 1] only for certain discrete real

positive values 0 < χ0(c) < χ1(c) < χ2(c) < . . . of the parameter χ. Corresponding
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to each eigenvalue χn(c), n = 0, 1, 2, . . . there is a unique solution S0n(c, t) such

that S0n(c, 0) = Pn(0) where Pn(t) is the n-th Legendre polynomial. The functions

S0n(c, t) are called angular prolate spheroidal functions. As shown in [15] prolate

spheroidal functions are real for real t, are continuous functions of c for c ≥ 0, and

can be extended to entire functions of the complex variable t. They have many

remarkable properties. They are orthogonal in (−1, 1) and S0n(c, t) has exactly n

zeros in (−1, 1), reduces to Pn(t) uniformly in [−1, 1] as c→ 0. For a fixed c, S0n(c, t)

with n = 0, 1, 2, . . . are complete in L2(−1, 1). They are even or odd according as n

is even or odd, n = 0, 1, 2, . . . . The eigenvalues χn(c) are continuous functions of c

and χn(0) = n(n+ 1), n = 0, 1, 2, . . . .

As mentioned in [46], a second set of solutions R
(1)
0n (c, t), n = 0, 1, 2, . . . , called radial

prolate spheroidal functions, which differ from the angular functions only by a real

scale factor,

R
(1)
0n (c, t) = kn(c)S0n(c, t),

are of use in many applications. They also satisfy the following equations

2c

π
[R

(1)
0n (c, 1)]2S0n(c, t) =

∫ 1

−1

sin c(t− s)

π(t− s)
S0n(c, s)ds, (II.8)

2inR
(1)
0n (c, 1)S0n(c, t) =

∫ 1

−1

eictsS0n(c, s)ds. (II.9)

n = 0, 1, 2, . . . . These relations are valid for all t, real or complex. Equation (II.8)

shows that when |t| < 1 and ρc(τ) = 1
2π

∫ c

−c
eiωτdω, S0n(c, t) is a solution of the integral

equation

λf(t) =

∫ 1

−1

ρc(t− s)f(s)ds, (II.10)

corresponding to the eigenvalue

λn(c) =
2c

π
[R

(1)
0n (c, 1)]2, n = 0, 1, 2, . . . . (II.11)
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Remark II.1. A very important observation is made in [46] related to the dimension of

eigenspace of (II.10). The completeness of S0n in L2(−1, 1) gives that the quantities

given in (II.11) are the only eigenvalues of (II.10). If these quantities are distinct

then the S0n are (apart from multiplicative constants) the unique L2(−1, 1) solutions

of (II.10). If several of the quantities (II.11) are equal for different values of n, then

linear combinations of the corresponding S0n will also satisfy (II.10). Within the

sense of this degeneracy, the S0n are unique solutions of (II.10). It has been shown in

[46] that this degeneracy does not occur.

From the equation ρc(τ) = 1
2π

∫ c

−c
eiωτdω and Bochner’s theorem we observe the

kernel of (II.10) is positive definite. The quantities (II.11) are therefore strictly posi-

tive. Then

||S0n(c, t)||2 =

∫ 1

−1

[S0n(c, t)]2dt.

Since all the eigenvalues are nonnegative, we finally define

ψn(c, t) =
√

λn
S0n(c, t)

||S0n(c, t)||
.

We will drop the parameter c whenever there is no confusion in doing so. In the next

section we will prove some properties of S0n(t) and ψn(t).

D. Properties of prolate spheroidal functions

Prolate Spheroidal Functions have many remarkable properties. In this section for

the sake of completeness we draw freely from [46]. Define

ψn(t) =
√

λn
S0n(t)

||S0n(t)||

where S0n(t) is angular prolate spheroidal function.
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Lemma II.2.
∫ 1

−1

ψn(t)ψm(t)dt = λnδmn.

Proof. We have

ψn(t) =
√

λn
S0n(t)

||S0n(t)||
. (II.12)

where S0n(t) is angular prolate spheroidal function. It is known for real t that the

S0n(t) are real. The S0n(t) are orthogonal in (−1, 1) and complete in L2(−1, 1). Since

S0n(t) are orthogonal in (−1, 1) therefore

∫ 1

1

S0n(t)

||S0n(t)||
S0m(t)

||S0n(t)||dt = δmn.

Using (II.12) thus we obtain

∫ 1

−1

ψn(t)√
λn

ψm(t)√
λm

dt = δmn,

i.e.,
∫ 1

−1

ψn(t)ψm(t)dt =
√

λnλmδmn.

Hence
∫ 1

−1

ψn(t)ψm(t)dx = λnδmn.

Lemma II.3.
∫ ∞

−∞
ρc(t− u)ρc(u− s)du = ρc(t− s),

where

ρc(τ) =
1

2π

∫ c

−c

eiωτdω.

Proof. Since ρc(τ) is even,

ρc(t− u) = ρc(u− t) =
1

2π

∫ c

−c

eiω(u−t)dω.
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If we take f(u) = ρc(u − t), then the Fourier transform is given by F (ω) = e−iωt,

−c < ω < c. Then taking g(u) = ρc(u − s) we have G(ω) = e−iωs, −c < ω < c. We

use Parseval’s Theorem to get

〈f(u), g(u)〉 =
1

2π
〈F (ω), G(ω)〉.

i.e.,

∫ ∞

−∞
ρc(t−u)ρc(u−s)du =

1

2π

∫ c

−c

e−iωteiωsdω =
1

2π

∫ c

−c

eiω(s−t)dω = ρc(s−t) = ρc(t−s).

Lemma II.4.
∫ ∞

−∞
ψn(t)ψm(t)dt = δmn.

Proof. We know that for all n, m that ψn(t), ψm(t) are solutions of

λf(t) =

∫ 1

−1

ρc(t− s)f(s)ds, (II.13)

|t| < 1 where ρc(τ) = sin(cτ)
πτ

= 1
2π

∫ c

−c
eiωτdω. Now using (II.13) we obtain

∫ ∞

−∞
ψn(t)ψm(t)dt =

∫ ∞

−∞

(

1

λn

∫ 1

−1

ρc(t− s)ψn(s)ds

)(

1

λm

∫ 1

−1

ρc(t− u)ψm(u)du

)

dt

=
1

λnλm

∫ 1

−1

du

∫ 1

−1

ψn(s)ψm(u)ds

∫ ∞

−∞
ρc(u− t)ρc(t− s)dt.

Use Lemma II.3 to obtain

∫ ∞

−∞
ψn(t)ψm(t)dt =

1

λnλm

∫ 1

−1

du

∫ 1

−1

ψn(s)ψm(u)ρc(u− s)ds

=
1

λnλm

∫ 1

−1

ψm(u)du

∫ 1

−1

ρc(u− s)ψn(s)ds.

Finally using (II.13) twice we obtain

∫ ∞

−∞
ψn(t)ψm(t)dx = δmn.
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Lemma II.5. ψn(t) is even or odd according as n even or odd.

Proof. We know from [26], Smn(η) =



































(1 − η2)m/2

∞
∑

k=0

Cmn
2k (1 − η2)k (n−m) − even

η(1 − η2)m/2

∞
∑

k=0

Cmn
2k (1 − η2)k (n−m) − odd

where Cmn
2k are independent of η. In our case m = 0 and therefore

S0n(t) =



































∞
∑

k=0

C0n
2k (1 − t2)k n− even

t

∞
∑

k=0

C0n
2k (1 − t2)k n− odd

Clearly S0n(t) is even or odd if n is even or odd. Consequently ψn(t) is even or odd

according as n even or odd.

Lemma II.6. ψn(x) has exactly n zeros in (−1, 1).

Proof. We know ψn(x) satisfies

d

dx

(

(1 − x2)
dψn(x)

dx

)

+ (χn − c2x2)ψn(x) = 0. (II.14)

ψn(x) reduces to Pn(x) uniformly in [−1, 1] as c → 0 where Pn(x) is the n-th degree

Legendre polynomial. The eigenfunction ψn(x) corresponding to the eigenvalue χn

depends smoothly on parameter c. Suppose for c = c1, ψn(x) has k zeros in (−1, 1)

and for c = c2, ψn(x) has at least (k+1) zeros in (−1, 1). Without loss of generality let

us assume c1 < c2. Since ψn(x) depends smoothly on c there must exist c3 ∈ (c1, c2)

such that for arbitrarily small ǫ > 0 if c ≤ c3 − ǫ, ψn(x) has k zeros and if c ≥ c3

ψn(x) has (k + 1) zeros (at least).

When c ≤ c3−ǫ, let us assume the positions of zeros of ψn(x) are x1(c), x2(c), . . . , xk(c) ∈

(−1, 1). When c = c3 we must have xk+1(c3) ∈ (−1, 1) such that ψn(xk+1(c3)) = 0
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(also, xk+1(c3) is different from x1(c3), x2(c3), . . . , xk(c3)). We claim ψ′
n(xj(c3)) = 0

for some xj(c3) ∈ {x1(c3), x2(c3), . . . , xk+1(c3)}. [Note: x1(c3), x2(c3), . . . , xk+1(c3)

are not necessarily ordered.]

To prove this, first of all, we observe since ψn(x) when viewed as a complex

function is entire therefore the zeros are isolated. If ψ′
n(xj(c3)) 6= 0 for all j ∈

{1, 2, . . . , k+1} then for all xj(c3) there exists a neighborhood (xj(c3)− δ, xj(c3)+ δ)

such that

ψn(x) > 0 or < 0 in (xj(c3), xj(c3) + δ)

ψn(x) < 0 or > 0 in (xj(c3) − δ, xj(c3))

This is possible as we are given ψn(xj(c3)) = 0, j ∈ {1, 2, . . . , k + 1}.

We can take δ sufficiently small so that no two consecutive neighborhoods overlap. If

we change c3 to c3 − ǫ, as ψn(x) depends continuously on c, therefore in each of the

intervals (xj(c3) − δ, xj(c3) + δ) we still have ψn(x) > 0 for some x and ψn(x) < 0

for some other x in the interval. Since ψn(x) is continuous therefore we must still

have (k + 1) zeros (at least) when c3 changes to c3 − ǫ. But this contradicts that

when c ≤ c3 − ǫ, ψn(x) has k zeros. Thus we must have ψ′
n(xj(c3)) = 0 for some

xj(c3) ∈ {x1(c3), x2(c3), . . . , xk+1(c3)} and this proves the claim.

Now let us denote the xj(c3) for which ψn(xj(c3)) = 0 and ψ′
n(xj(c3)) = 0 by xj(c3) =

u. So for c = c3 we have u ∈ (−1, 1) such that

ψn(u) = ψ′
n(u) = 0. (II.15)

Using (II.15) we obtain from (II.14) that ψ′′
n(u) = 0. Repeated differentiation (which

is possible since ψn(x) is entire) shows if ψn(u) = 0, u ∈ (−1, 1) then ψn(x) ≡

0 in (−1, 1) which is a contradiction. Hence we conclude the number of zeros of

ψn(x) is independent of the parameter c. Thus it is sufficient to consider the case

when c = 0. In that case spheroidal wave function (ψn(x)) reduces to Legendre
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polynomials (Pn(x)). But it is well known that Pn(x) has exactly n zeros in (−1, 1).

As a consequence ψn(x) has exactly n zeros in (−1, 1).

The proof of the following two lemmas can be found in [46].

Lemma II.7. There cannot be two distinct S0n belonging to the same eigenvalue λ

in (II.10) when c > 0.

Lemma II.8. Eigenvalues of

∫ 1

−1

ρc(t− s)ψn(s)ds = λnψn(t), |t| < 1 (II.16)

where ρc(τ) = sin(cτ)
πτ

are nondegenerate.

E. Similar problem in communication theory

In [49] the problem considered is to find eigenfunctions and eigenvalues of integral

equation

αjψj(x) =

∫ 1

−1

eicxyψj(y)dy, |x| ≤ 1. (II.17)

The eigenfunctions can be analytically continued throughout the complex plane. They

possess many special properties that make them most useful for studying the ban-

dlimited functions. The ψj are also the eigenfunctions of the integral equation

λψ(x) =

∫ 1

−1

sin c(x− y)

π(x− y)
ψ(y)dy, (II.18)

and the relation between λ and α’s is given by

λ =
c

2π
|α|2.

For the sake of completeness of this discussion we draw freely from [49]. Denote

points in the Euclidean space of D dimension, RD, by vectors x = (x1, x2, . . . , xD).
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A square-integrable function of D variables, f(x), is said to be R-limited if it can be

represented as a Fourier integral

f(x) = (2π)−D

∫

R

exp(ix · y)F (y)dy, (II.19)

over the bounded region R. By Parseval’s theorem

∫

RD

|f(x)|2dx = (2π)−D

∫

R

|F (y)|2dy, (II.20)

whereas the energy of f in the bounded region S is

∫

S

|f(z)|2dz =

∫

S

dz(2π)−2D

∫

R

dx exp(iz · x)F (x)

∫

R

dy exp(−iz · y)F̄ (y)

= (2π)−D

∫

R

dx

∫

R

dyKS(x − y)F (x)F̄ (y),

where

KS(x − y) = (2π)−D

∫

S

exp(iz · (x − y))dz. (II.21)

The largest fraction of energy that an R-limited function can have in the region S is

therefore the maximum value of the fraction

∫

R

dx

∫

R

dyKS(x − y)F (x)F̄ (y)/

∫

R

|F (y)|2dy

taken over all functions F square-integrable through R. This maximum is the largest

eigenvalue of the integral equation

λψ(x) =

∫

R

KS(x − y)ψ(y)dy, (II.22)

where x ∈ R. This is analogous to (II.18). The kernel (II.21) of (II.22) is positive

definite, since

∫

R

dx

∫

R

dyKS(x − y)f(x)f̄(y) = (2π)−D

∫

S

dz|
∫

R

dxeiz·xf(x)|2 > 0
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whenever
∫

R

|f(x)|2dx > 0.

By well-known theorems the eigenvalues of (II.22) are real and positive and the eigen-

functions, orthogonal on R, are complete in the class of functions square-integrable

in R.

We can extend the domain of definition of ψ by defining

ψ(x) =
1

λ

∫

R

KS(x − y)ψ(y)dy

where x ∈ RD. Then for two different eigenvalues in (II.22) we have

∫

ED

ψi(x)ψ̄j(x)dx =
1

λiλj

∫

R

dx

∫

R

dyψi(x)ψ̄j(y)

∫

ED

dzKS(z − x)K̄S(z − y).

But
∫

ED

KS(z − x)K̄S(z− y)dz = K̄S(x − y).

Therefore

∫

RD

ψi(x)ψ̄j(x)dx =
1

λiλj

∫

R

dxψi(x)

∫

R

dyK̄S(x − y)ψ̄j(y)

=
1

λi

∫

R

dxψi(x)ψ̄j(x).

Thus the orthogonality of the ψi over R implies the orthogonality over RD as well.

1. Symmetry considerations

We will be considering the solution of (II.22). Simplification occurs when the region

R is symmetric, that is x ∈ R implies −x ∈ R and S is the scaled version of R. We

write S = cR where x ∈ cR if and only if x/c ∈ R with c a positive constant. We

start off with

αψ(x) =

∫

R

eicx·yψ(y)dy, (II.23)
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where x ∈ R. As shown in [49] the solution of (II.23) is completely equivalent to

solution of (II.22) when R is symmetric. Also when R is symmetric then if ψ(x) is a

solution of (II.22) then so is ψ(−x), so that both ψe(x) = ψ(x)+ψ(−x) and ψo(x) =

ψ(x) − ψ(−x) are solutions as well. The eigenfunctions of (II.23) can be chosen

either even or odd functions of x. Also the eigenvalues of (II.23) associated with even

eigenfunctions are real, the eigenvalues of (II.23) associated with odd eigenfunctions

are pure imaginary.

2. The case D = 2, when R is a circle

We now treat in detail the equation

αψ(x1, x2) =

∫

R

eic(x1y1+x2y2)ψ(y1, y2)dy1dy2, (II.24)

where R is the unit circle y2
1 + y2

2 ≤ 1. In polar coordinates (II.24) becomes

αψ(r, θ) =

∫ 1

0

dr′r′
∫ 2π

0

dθ′eicrr′ cos(θ−θ′)ψ(r′, θ′). (II.25)

But using the generating formula for Bessel functions

e
x
2 (z− 1

z ) =
∞
∑

−∞
Jn(x)zn,

we obtain by taking z = ieiθ

eix cos θ = in
∞
∑

−∞
Jn(x)einθ.

So (II.25) becomes

αψ(r, θ) =

∞
∑

−∞
imeimθ

∫ 1

0

dr′r′Jm(crr′)

∫ 2π

0

dθ′e−imθ′ψ(r′, θ′). (II.26)
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Eigenfunctions of (II.26) and their corresponding eigenvalues can be written as ψ0,n(r, θ) =

R0,n(r) with α0,n = 2πβ0,n and ψN,n(r, θ) = RN,n(r) cosNθ or ψN,n(r, θ) = RN,n(r) sinNθ

with αN,n = 2πiNβN,n, N = 1, 2, . . . , n = 0, 1, 2, . . . where

βR(r) =

∫ 1

0

JN (crr′)R(r′)r′dr′, (II.27)

where 0 ≤ r ≤ 1. With γ =
√
cβ and φ(r) =

√
rR(r), (II.27) becomes

γφ(r) =

∫ 1

0

JN(crr′)
√
crr′φ(r′)dr′, (II.28)

with 0 ≤ r ≤ 1. Also we observe φ(0) = 0.

Denote

KN(x) = JN (x)
√
x.

Let the operator M be defined by [Mφ](x) =
∫ 1

0
KN(cxy)φ(y)dy. Suppose

Lx =
d

dx
(1 − x2)

d

dx
+

( 1
4
−N2

x2
− c2x2

)

and C is the class of functions square-integrable in (0, 1) and twice differentiable there

that vanish at the origin. Then it is shown in [49] that on C, the operators M and L

commute. It follows that the solutions of

Lxφ(x) = −χφ(x)

in C are also solutions of (II.28). Solutions of

(1 − x2)
d2φ

dx2
− 2x

dφ

dx
+

( 1
4
−N2

x2
− c2x2 + χ

)

φ = 0 (II.29)

are explicitly studied in [49].
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3. The case D > 2, when R is unit sphere

In treating this general case we first assume

D = p+ 2

where p = 1, 2, . . . . Let x = rξ and y = r′η where ξ and η are unit vectors in Rp+2.

Therefore (II.23) becomes

αψ(r, ξ) =

∫ 1

0

dr′r′p+1

∫

Ω

eicrr′ξ·ηψ(r′, η)dΩ(η), (II.30)

where Ω is the surface of the unit sphere in Rp+2.

Theorem II.9. (Funk-Hecke Theorem) Let F (x) be a function of the real variable x

which is continuous for −1 ≤ x ≤ 1 and let Sn(ξ) be any surface harmonic of degree

n. Then for any unit-vector η

∫

Ω(ξ)

F (ξ, η)Sn(ξ)dΩ(ξ) = λnSn(η),

where the integral is taken over the whole area of the unit hypersphere Ω and where

λn =
ω′

C
p/2
n (1)

∫ 1

−1

F (x)Cp/2
n (x)(1 − x2)

p
2
− 1

2dx.

Here ω′ denotes the total area of the unit-hypersphere in the (p+1)-dimensional space

ω′ =
2π

p
2
+ 1

2

Γ(p
2

+ 1
2
)
,

and Cν
n(x) is the Gegenbauer polynomial of degree n and order ν.

Now let

h(N, p) = (2N + p)
(N + p− 1)!

p!N !

where N = 0, 1, 2, . . . and let Sl
N(ξ), l = 1, 2, . . . , h(N, p), be a complete set of
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orthonormal surface harmonics of degree N . Then by Funk-Hecke theorem

∫

Ω

eicrr′ξ·ηSl
N(η)dΩ(η) = HN(crr′)Sl

N(ξ), (II.31)

where

HN(crr′) =
2π(p+1)/2N !(p− 1)!

Γ((p+ 1)/2)(N + p− 1)!

∫ 1

−1

eicrr′uC
p/2
N (u)(1 − u2)(p+1)/2du (II.32)

is independent of l. Expanding ψ in surface harmonics

ψ(r, ξ) =

∞
∑

N=0

h(N,p)
∑

l=1

RN,l(r)S
l
N(ξ)

we can obtain from (II.30) and (II.31)

αN,lRN,l(r) =

∫ 1

0

dr′r′p+1HN(crr′)RN,l(r
′) (II.33)

from which it is seen that RN,l(r) and αNl are independent of l. As shown in [49]

HN(crr′) can be simplified to

HN(crr′) = iN (2π)1+p/2JN+ p
2
(crr′)/(crr′)p/2.

The solution of (II.30) is thus given by

ψN,l,n(r, ξ) = RN,n(r)Sl
N(ξ),

where l = 1, 2, . . . , h(N, p) and αN,n = iN (2π)1+p/2βN,n and N, n = 0, 1, 2, . . . where

βN,nRN,n(r) =

∫ 1

0

JN+ p
2
(crr′)

(crr′)p/2
r′p+1RN,n(r′)dr′. (II.34)

Setting γ = βc(p+1)/2 and φ = r(p+1)/2R, (II.34) becomes

γφ(r) =

∫ 1

0

JN+ p
2
(crr′)

√
crr′φ(r′)dr′. (II.35)
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But (II.35) is (II.28) with N replaced by N + p/2. Consequently we can completely

solve (II.30). All these above computations are given in more details in [13] and [49].
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CHAPTER III

SOLUTION AND GENERALIZATION OF SUPERRADIANCE PROBLEM

A. Introduction

Our main objective is to find a complete set of eigenfunctions for the problem

αψ(x) =

∫

B(0,1)

sin(c|x − y|)
c|x − y| ψ(y)dy, x,y ∈ B(0, 1) (III.1)

where B(0, 1) denotes the unit ball in R3. As mentioned in the Introduction the idea

here is to find a differential operator which commutes with the given integral operator

and then to solve the eigenvalue problem for the differential operator.

We will first generalize this problem in such a way that the kernel of the integral

equation takes the same form as the kernel of (III.1) in three dimensions (up to

some constant multiple). We will then find a differential operator that commutes

with the generalized integral operator. Restricting the differential operator in 3-

dimension we will get the required operator that commutes with the integral operator

in (III.1). Then we will solve the eigenvalue problem for the differential operator

that corresponds to the 3-dimensional case. We will have a singular Sturm-Liouville

problem and finally we will show that the solution indeed forms a complete orthogonal

set. Throughout our work we will reserve the letter n for the dimension of the related

space.

B. Generalization to dimensions ≥ 2

Let x and y be two vectors in Rn with ||x|| = r and ||y|| = r′. Suppose the

angle between two vectors be φ. That is x · y = ||x||||y|| cosφ. We define ̟ =
√

r2 + r′2 − 2rr′ cosφ. Suppose Jν be the Bessel function of order ν. First we will
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state some of the well known results for Bessel functions. Proofs of the following two

theorems can be found in [59].

Theorem III.1. (Lommel’s expansion formula)

Jν(
√

(ζ + h))

(ζ + h)
ν
2

=
∞
∑

p=0

(−1
2
h)p

p!

Jν+p(
√
ζ)

ζ
1

2
(ν+p)

.

Theorem III.2. For Z ∈ C

Jν+p+q(Z)

Zq
=

q
∑

k=0

q!

k!(q − k)!

ν + p+ 2k

2q

Γ(ν + p+ k)

Γ(ν + p+ q + k + 1)
Jν+p+2k(Z).

Gegenbauer Polynomials: The Gegenbauer Polynomials C
(α)
n (x) can be de-

fined as the coefficients of tn in the expansion of (1 − 2xt + t2)−α.

i.e.,

1

(1 − 2xt+ t2)α
=

∞
∑

n=0

C(α)
n (x)tn.

Gegenbauer Polynomials satisfy the following theorem.

Theorem III.3.

Cν
m(cos φ) =

≤ 1

2
m

∑

k=0

(−1)k2m−2kΓ(ν +m− k) cosm−2k φ

(m− 2k)!k!Γ(ν)
.

Next we will state and prove the theorems which will be very relevant for our

work. They are taken from [59].

Theorem III.4. Suppose Z, z ∈ C. Then

J0(̟) =
∞
∑

m=−∞
Jm(r)Jm(r′)eimφ.

Proof. We consider Parseval’s integral formula

J0(̟) =
1

2π

∫ π

−π

ei̟ cos θdθ =
1

2π

∫ π

−π

ei̟ cos(θ−α)dθ
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which is valid for all (complex) values of ̟ and α, the integrand being a periodic

analytic function of θ with period 2π.

Suppose we choose α as a solution of the equations

̟ sinα = r − r′ cosφ

and

̟ cosα = r′ sin φ.

Then

J0(̟) =
1

2π

∫ π

−π

ei(r−r′ cos φ) sin θ+ir′ sinφ cos θdθ

=
1

2π

∫ π

−π

{
∞
∑

m=−∞
Jm(r)eimθ}eir′ sin(φ−θ)dθ

=
1

2π

∞
∑

m=−∞
Jm(r)

∫ π

−π

eimθ+ir′ sin(θ−φ)dθ

=
1

2π

∞
∑

m=−∞
Jm(r)

∫ π

−π

eim(θ+φ)−ir′ sin θdθ

=

∞
∑

m=−∞
Jm(r)Jm(r′)eimφ.

The interchange of the order of summation and integration follows from the uniformity

of convergence of the series.

Theorem III.5. Suppose Z, z ∈ C. Then

Jν(̟)

̟ν
= 2νΓ(ν)

∞
∑

m=0

(ν +m)
Jν+m(Z)

Zν

Jν+m(z)

zν
Cν

m(cosφ).



33

Proof. In Theorem III.1 if we take ζ = Z2 + z2 and h = −2Zz cosφ then we have

Jν(̟)

̟ν
=

∞
∑

p=0

(Zz cosφ)p

p!

Jν+p(
√
Z2 + z2)

(Z2 + z2)
1

2
(ν+p)

=
∞
∑

p=0

∞
∑

q=0

(−1)qzp+2q cosp φ

2qp!q!

Jν+p+q(Z)

Zν+q
,

where in the last step we used Theorem III.1 with ζ = Z2 and h = z2. Next, using

Theorem III.2 we obtain

Jν(̟)

̟ν
=

∞
∑

p=0

∞
∑

q=0

q
∑

k=0

(−1)q(ν + p+ 2k)Γ(ν + p+ k)zp+2q cosp φ

22qp!k!(q − k)!Γ(ν + p+ q + k + 1)

Jν+p+2k(Z)

Zν
. (III.2)

The triple series on the right hand side is absolutely convergent by comparison with

∞
∑

p=0

∞
∑

q=0

q
∑

k=0

∣

∣

∣

∣

Γ(ν + p+ k)zp+2qZν+p+2k

2p+2q+2kp!k!(q − k)!Γ(ν + p + 2k)Γ(ν + p+ q + k + 1)

∣

∣

∣

∣

.

But for an absolutely convergent series we have

∞
∑

q=0

q
∑

k=0

uk,q =

∞
∑

k=0

∞
∑

n=0

uk,k+n.

Hence from (III.2) we obtain

Jν(̟)

̟ν
=

∞
∑

p=0

∞
∑

k=0

∞
∑

n=0

(−1)k+n(ν + p+ 2k)Γ(ν + p+ k)zp+2k+2n cosp φ

22k+2np!k!n!Γ(ν + p+ 2k + n + 1)

Jν+p+2k(Z)

Zν

=

∞
∑

p=0

∞
∑

k=0

(−1)k2ν+p(ν + p+ 2k)Γ(ν + p+ k) cosp φ

p!k!

Jν+p+2k(Z)

Zν

Jν+p+2k(z)

zν

=
∞
∑

k=0

∞
∑

m=2k

(−1)k2ν+m−2k(ν +m)Γ(ν +m− k) cosm−2k φ

(m− 2k)!k!

Jν+m(Z)

Zν

Jν+m(z)

zν

=

∞
∑

m=0

≤ 1

2
m

∑

k=0

(−1)k2ν+m−2k(ν +m)Γ(ν +m− k) cosm−2k φ

(m− 2k)!k!

Jν+m(Z)

Zν

Jν+m(z)

zν
.
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Applying Theorem III.3 we thus obtain

Jν(̟)

̟ν
= 2νΓ(ν)

∞
∑

m=0

(ν +m)
Jν+m(Z)

Zν

Jν+m(z)

zν
Cν

m(cosφ). (III.3)

This is valid for all values of Z, z and φ and for all ν with the exception of 0,−1,−2, . . . .

Corollary III.6.

sin̟

̟
= π

∞
∑

m=0

(m+
1

2
)
Jm+ 1

2

(Z)
√
Z

Jm+ 1

2

(z)
√
z

Pm(cosφ),

where Pm(x) is the Legendre polynomial of m-th order.

Proof. We take ν = 1
2

in Theorem III.5 and observe that Cν
m(cosφ) = Pm(cosφ).

Zonal spherical harmonics: In the mathematical study of rotational symme-

try, the zonal spherical harmonics are special spherical harmonics that are invariant

under the rotation through a particular fixed axis. The zonal spherical functions are a

broad extension of the notion of zonal spherical harmonics to allow for a more general

symmetry group. The zonal harmonics appear naturally as coefficients of the Poisson

kernel for the unit ball in Rn. For ξ and η unit vectors

1

ωn−1

1 − r2

|ξ − rη|n =

∞
∑

k=0

rkZ
(k)
ξ (η),

where ωn−1 is the surface area of (n−1) dimensional sphere. If we define Cn = π
n
2

Γ(n
2
+1)

then ωn−1 = nCnR
n−1 = 2 πn/2

Γ(n/2)
Rn−1 where R is the radius of the hypersphere. For

x and y in Rn zonal spherical harmonics are related to Gegenbauer Polynomials as

Z(l)
x (y) = cn,lC

α
l (x · y), (III.4)

where α = (n−2)
2

and cn,k = 1
ωn−1

2k+n−2
(n−2)

. Zonal spherical harmonics satisfy a remark-

able property which will be used in our later work.
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Theorem III.7. Let Sk
l be an arbitrary orthonormal basis of the space Hl of de-

gree l spherical harmonics on the n-sphere. Then Z
(l)
x (y) of degree l zonal harmonic

corresponding to unit vector x decomposes as

Z(l)
x (y) =

dim(Hl)
∑

k=1

Sk
l (x)Sk

l

∗
(y).

Let us rewrite (III.3) as

Jν(̟)

̟ν
=

23ν

π2ν
Γ(ν)

∞
∑

m=0

(ν +m)
( π

2Z

)ν

Jν+m(Z)
( π

2z

)ν

Jν+m(z)Cν
m(cos φ)

=
23ν+1

πν−1

∞
∑

m=0

cn,k

( π

2Z

)ν

Jν+m(Z)
( π

2z

)ν

Jν+m(z)Cν
m(cosφ), (III.5)

where cn,k is defined in (III.4) and ν = (n−2)
2

. Writing ∆m(ν, r) =
(

π
2r

)ν
Jν+m(r) we

thus have

Jν(̟)

̟ν
=

23ν+1

πν−1

∞
∑

m=0

cn,k∆m(ν, Z)∆m(ν, z)Cν
m(cos φ). (III.6)

Theorem III.8. Suppose x = (r, ξ) and y = (r′, η) are in R2 where ξ and η are

angular parts of x and y respectively. Then

∫

S1

J0(c|x − y|)eikηdη = 2πJk(cr)Jk(cr
′)eikξ.

Proof. Applying Theorem III.4 we obtain

∫

S1

J0(c|x − y|)eikη)dη =

∞
∑

t=−∞
Jt(cr)Jt(cr

′)eitξ

∫ 2π

η=0

eiη(k−t)dη

= 2π
∞
∑

t=−∞
Jt(cr)Jt(cr

′)eitξδkt

= 2πJk(cr)Jk(cr
′)eikξ.

Theorem III.9. Suppose x = (r, ξ) and y = (r′, η) are in R
n where where ξ and η



36

are angular parts of x and y respectively and ν = (n−2)
2

. Then

∫

Sn−1

Jν(c|x − y|)
(c|x − y|)ν

Ss
k(η)dη =

23ν+1

πν−1
∆n(ν, cr)∆n(ν, cr

′)Ss
k(ξ).

Proof. Applying Theorem III.5 we obtain

∫

Sn−1

Jν(c|x − y|)
(c|x− y|)ν

Ss
k(η)dη =

23ν+1

πν−1

∞
∑

t=0

ct,m∆t(ν, cr)∆t(ν, cr
′)

∫

Sn−1

Cν
t (cos φ)Ss

k(η)dη.

But

ct,mC
ν
t (cosφ) =

dim(Ht)
∑

m=1

Sm
t (ξ)Sm

t
∗(η).

Hence

∫

Sn−1

Jν(c|x − y|)
(c|x− y|)ν

Ss
k(η)dη =

23ν+1

πν−1

∞
∑

t=0

dim(Ht)
∑

m=1

∆t(ν, cr)∆t(ν, cr
′)Sm

t (ξ)

∫

Sn−1

Sm
t

∗(η)Ss
k(η)dη

=
23ν+1

πν−1

∞
∑

t=0

dim(Ht)
∑

m=1

∆t(ν, cr)∆t(ν, cr
′)Sm

t (ξ)δtkδms =
23ν+1

πν−1
∆k(ν, cr)∆k(ν, cr

′)Ss
k(ξ).

1. Dimension n = 2

Suppose n = 2 and x = (r, ξ) and y = (r′, η) are in R2. Let D denote the unit disk

in 2-dimension centered at the origin. We want to solve for x,y ∈ D the eigenvalue

problem:

αψ(x) =

∫

D

J0(c|x − y|)ψ(y)dy. (III.7)

We write

ψ(y) = ψ(r′, η) =

∞
∑

N=−∞
RN(r′)eiNη, (III.8)
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where RN(r′) are to be determined. Hence (III.7) becomes

α

∞
∑

N=−∞
RN(r)eiNξ =

∞
∑

N=−∞

∫

D

J0(c|x− y|)RN(r′)eiNηdη

=

∞
∑

N=−∞

∫ 1

0

r′dr′
∫

S1

J0(c|x − y|)RN(r′)eiNηdη)

= 2π

∞
∑

N=−∞

∫ 1

0

r′dr′RN(r′)JN(cr)JN(cr′)eiNξ,

where in the last step we used Theorem III.8. So it is sufficient to solve

αNRN (r) = 2π

∫ 1

0

r′RN (r′)JN(cr)JN(cr′)dr′,

i.e.

α′
NRN (r) =

∫ 1

0

JN(cr)JN(cr′)RN(r′)r′dr′, (III.9)

where α′
N = αN

2π
. Let

φN(r) = r
1

2RN (r). (III.10)

Then (III.9) becomes

γ′NφN(r) =

∫ 1

0

JN(cr)JN(cr′)c
√
rr′φN(r′)dr′, (III.11)

where γ′N = cα′
N . So the eigenfunctions of (III.7) are

ψ(x) = ψN,k(r, ξ) = RN(r)eiNξ (III.12)

and eigenvalues are given by

αN =
2πγ′N
c

, (III.13)

N, k = 0, 1, 2, . . . .
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2. Dimension n ≥ 3

Suppose n = p + 2 where p = 1, 2, 3, . . . and x = (r, ξ) and y = (r′, η) are in Rn.

Let B(0, 1) denote the unit ball in n dimensions. First we observe p = n − 2. But

ν = (n−2)
2

. Hence

ν =
p

2
. (III.14)

We want to solve for x,y ∈ B(0, 1) the eigenvalue problem:

αψ(x) =

∫

B(0,1)

Jν(c|x− y|)
(c|x − y|)ν

ψ(y)dy. (III.15)

It is known [13] that dim(HN) = h(N, p) = (2N + p) (N+p−1)!
p!N !

, N = 0, 1, 2, . . . . Let

Sl
N(ξ), l = 1, 2, . . . , h(N, p) be a complete set of orthonormal surface harmonics of

degree N . Then we can write

ψ(y) = ψ(r′, η) =

∞
∑

N=0

h(N,p)
∑

l=1

RNl(r
′)Sl

N(η) (III.16)

where RNl(r
′) are to be determined. Hence (III.15) becomes

α

∞
∑

N=0

h(N,p)
∑

l=1

RNl(r)S
l
N(ξ) =

∞
∑

N=0

h(N,p)
∑

l=1

∫

B(0,1)

Jν(c|x− y|)
(c|x − y|)ν

RNl(r
′)Sl

N(η)dy

=

∞
∑

N=0

h(N,p)
∑

l=1

∫ 1

0

r′p+1dr′
∫

Sn−1

Jν(c|x − y|)
(c|x − y|)ν

RNl(r
′)Sl

N(η)dη

=
∞
∑

N=0

h(N,p)
∑

l=1

∫ 1

0

r′p+1dr′
23ν+1

πν−1
∆N(ν, cr)∆N(ν, cr′)RNl(r

′)Sl
N(ξ),

where in the last step we used Theorem III.9. So, it is sufficient to solve

αNlRNl(r) =

∫ 1

0

r′p+1dr′
23ν+1

πν−1
∆N(ν, cr)∆N(ν, cr′)RNl(r

′)
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from which it is seen that RNl(r) and αNl are independent of l.

The last equation can be written as

α′
NlRNl(r) =

∫ 1

0

∆N(ν, cr)∆N(ν, cr′)RNl(r
′)r′p+1dr′

where α′
Nl = αNlπ

ν−1

23ν+1 . The last equation can be written as

α′
NlRNl(r) =

∫ 1

0

( π

2cr

)ν ( π

2cr′

)ν

JN+ν(cr)JN+ν(cr
′)RNl(r

′)r′p+1dr′,

i.e.,

β ′
NlRNl(r) =

∫ 1

0

(rr′)−νJN+ν(cr)JN+ν(cr
′)RNl(r

′)r′p+1dr′, (III.17)

where β ′
Nl = α′

Nl
(2c)2ν

π2ν . Let

φNl(r) = r
p+1

2 RNl(r). (III.18)

Then (III.17) becomes (with the use of ν = p
2
)

γ′NlφNl(r) =

∫ 1

0

JN+ν(cr)JN+ν(cr
′)c

√
rr′φNl(r

′)dr′. (III.19)

where γ′Nl = cβ ′
Nl. So the eigenfunctions and eigenvalues of (III.15) are

ψ(x) = ψN,l,k(r, ξ) = RNk(r)S
l
N(ξ) (III.20)

and

αNk =
(2π)ν+1γ′Nk

c2ν+1
(III.21)

where N, k = 0, 1, 2, . . . and l = 1, 2, . . . , h(N, p) and γ′Nk and RNk(r) are given by

(III.18)-(III.19).

Combination of results for n = 2 and n ≥ 3: We observe (III.19) takes the form

of (III.11) when ν = 0. But ν = 0 also corresponds to n = 2. Therefore from now

on we will consider the equation (III.19) for ν = 0, 1
2
, 1, 3

2
, 2, . . . which corresponds to

dimensions n = 2, 3, 4, 5, . . . respectively.
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3. Commuting differential operator

Denote the kernel of (III.19) byKer(r, r′) = cJN+ν(cr)JN+ν(cr
′)
√
rr′. DenoteKN(x) =

√
xJN (x) therefore

Ker(r, r′) = KN+ν(cr)KN+ν(cr
′). (III.22)

We will now deduce some standard results

Lemma III.10.

d2

dr2
(KN(cr)) = −

(

c2 +
1
4
−N2

r2

)

KN(cr).

Proof. With y = cr, we have JN(cr) = JN (y). Now JN(y) satisfies

y2d
2JN (y)

dy2
+ y

dJN(y)

dy
+ (y2 −N2)JN(y) = 0. (III.23)

But dJN (y)
dy

= 1
c

dJN (cr)
dr

and d2JN (y)
dy2 = 1

c2
d2JN (cr)

dr2 . Hence (III.23) gives

r2d
2JN(cr)

dr2
+ r

dJN(cr)

dr
+ (c2r2 −N2)JN(cr) = 0. (III.24)

Now JN(cr) = KN (cr)√
cr

. Substituting this in (III.24) we have

d2

dr2
(KN(cr)) = −

(

c2 +
1
4
−N2

r2

)

KN(cr).

Lemma III.11.

2rc
K ′

N(cr)

KN(cr)
= 1 + 2rc

J ′
N(cr)

JN(cr)
.

Proof.

KN (cr) =
√
crJN(cr)
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Differentiating with respect to r, we have

cK ′
N(cr) =

√
c

2
√
r
JN(cr) +

√
crcJ ′

N(cr).

So

2rc
K ′

N(cr)

KN(cr)
= 1 + 2rc

J ′
N(cr)

JN(cr)
.

Theorem III.12. Suppose

Lx ≡ d

dx

(

p(x)
d

dx

)

+ q(x)

is a differential operator with p(1) = 0 and K is an integral operator such that

Kg =

∫ 1

0

Ker(x, y)g(y)dy

for g ∈ Λ where Λ is the class of functions square integrable in (0, 1) and twice

differentiable there that vanish at the origin. Suppose p(x) is twice differentiable.

Also, suppose Ker(x, y) is twice differentiable with respect to x and y. Assume that

Ker(x, y) = Ker(y, x) and Ker(0, y) = Ker(x, 0) = 0. Then the necessary and

sufficient condition for two operators L and K to commute on the functions in Λ is

LxKer(x, y) = LyKer(x, y).

Proof. We have for g ∈ Λ

Lx[Kg] = Lx

∫ 1

0

Ker(x, y)g(y)dy =

∫ 1

0

g(y){LxKer(x, y)}dy. (III.25)
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On the other hand

K[Lxg] =

∫ 1

0

Ker(x, y){Lyg(y)}dy =

∫ 1

0

Ker(x, y)

[

∂

∂y

(

p(y)
∂

∂y

)

+ q(y)

]

g(y)dy

=

∫ 1

0

Ker(x, y)
∂

∂y

(

p(y)
∂g

∂y

)

dy +

∫ 1

0

Ker(x, y)q(y)g(y)dy

=

∫ 1

0

Ker(x, y)
∂

∂y

(

p(y)
∂g

∂y

)

dy +

∫ 1

0

Ker(x, y)q(y)g(y)dy

=

[

Ker(x, y)p(y)
∂g

∂y

]y=1

y=0

−
∫ 1

0

∂Ker(x, y)

∂y
p(y)

dg

dy
dy

+

∫ 1

0

Ker(x, y)q(y)g(y)dy.

But the first term drops as Ker(x, 0) = 0 and p(1) = 0. Therefore

K[Lxg] = −
∫ 1

0

[

∂Ker(x, y)

∂y
p(y)

]

dg

dy
dy +

∫ 1

0

Ker(x, y)q(y)g(y)dy

= −
[

∂Ker(x, y)

∂y
p(y)g(y)

]y=1

y=0

+

∫ 1

0

∂

∂y

(

p(y)
∂Ker(x, y)

∂y

)

g(y)dy

+

∫ 1

0

Ker(x, y)q(y)g(y).

Again, the first term drops as p(1) = 0 and for the class of functions we are considering

we have g(0) = 0. Hence

K[Lxg] =

∫ 1

0

[

∂

∂y

(

p(y)
∂Ker(x, y)

∂y

)

+ q(y)Ker(x, y)

]

g(y)dy.

That is,

K[Lxg] =

∫ 1

0

g(y){LyKer(x, y)}dy. (III.26)

Now (III.25) and (III.26) gives

LxKg −KLxg =

∫ 1

0

g(y) [LxKer(x, y) − LyKer(x, y)] dy, (III.27)

for all g ∈ Λ. Hence the necessary and sufficient condition for two operators L and
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K to commute is

LxKer(x, y) = LyKer(x, y).

Now with Ker(r, r′) given in (III.22) we want to find a self-adjoint differential

operator Mr such that

MrKer(r, r
′) = Mr′Ker(r, r

′).

Let Mr = d
dr

(

p(r) d
dr

)

+ q(r). Then

MrKer(r, r
′) = p′(r)

d

dr
(KN+ν(cr))KN+ν(cr

′)+

p(r)
d2

dr2
(KN+ν(cr))KN+ν(cr

′) + q(r)KN+ν(cr)KN+ν(cr
′). (III.28)

Using Lemma III.10 we obtain from (III.28)

MrKer(r, r
′) = p′(r)

d

dr
(KN+ν(cr))KN+ν(cr

′)

+

(

−p(r)
(

c2 +
1
4
− (N + ν)2

r2

)

+ q(r)

)

KN+ν(cr)KN+ν(cr
′). (III.29)

Now, let q(r) = q1(r) + q2(r). Suppose we choose p(r) = 1 − r2,

q1(r) = −p′(r)
d
dr

(JN+ν(cr))

JN+ν(cr)
= −cp′(r)J

′
N+ν(cr)

JN+ν(cr)

and

q2(r) =

( 1
4
− (N + ν)2

r2
− c2r2

)

.

Then

MrKer(r, r
′) = Mr′Ker(r, r

′).
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Hence the solutions of

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
− (N + ν)2

r2
− c2r2

)

φ(r)+2rc
J ′

N+ν(cr)

JN+ν(cr)
φ(r) = −χφ(r),

(III.30)

with φ(0) = 0, are the solutions of (III.19). Solutions of (III.30) gives φNl(r) and

then we can find RNl(r) from (III.18) and hence we can find ψ of (III.16). Thus we

solve (III.15).

4. Special case

When n = 3, then p = 1 and ν = 1
2
.

Then
J 1

2

(c|x − y|)
√

c|x − y|
=

√

2

π
j0(c|x − y|),

where jN(cr) =
√

π
2cr
JN+ 1

2

(cr).

Therefore
J 1

2

(c|x − y|)
√

c|x − y|
=

√

2

π

sin(c|x − y|)
c|x − y| .

This is the kernel required for the study of three dimensional superradiance problem

and the corresponding differential operator is identical to the operator we will obtain

in next section.

C. Commutative operator in three dimensional case

We will just restrict to three-dimensions our discussion of the previous section.

1. Finding the operator

To begin we reproduce (up to a constant multiple) Theorem III.9 for n = 3.
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Lemma III.13.

∫

Ω

sin(c|x − y|)
c|x − y| Yks(η)dΩ(η) = 4πjk(cr)jk(cr

′)Yks(ξ),

where x = (r, θ, φ) and y = (r′, θ′, φ′) are in R
3, ξ = (θ, φ) and η = (θ′, φ′) and where

Ω is the surface of the unit sphere in three dimensions and jN (cr) =
√

π
2cr
JN+ 1

2

(cr).

Proof. We use the expansion of sin(c|x−y|)
c|x−y| from [2].

∫

Ω

sin(c|x − y|)
c|x − y| Yks(η)dΩ(η) =

∫

Ω

4π
∞
∑

n=0

n
∑

m=−n

jn(cr)jn(cr′)Ynm(ξ)Y ∗
nm(η)Yks(η)dΩ(η)

= 4π

∞
∑

n=0

n
∑

m=−n

jn(cr)jn(cr′)Ynm(ξ)

∫

Ω

Y ∗
nm(η)Yks(η)dΩ(η)

= 4π

∞
∑

n=0

n
∑

m=−n

jn(cr)jn(cr′)Ynm(ξ)δnkδms

= 4πjk(cr)jk(cr
′)Yks(ξ).

Next, we shall solve for x,y ∈ B(0, 1) the eigenvalue problem:

αψ(x) =

∫

B(0,1)

sin(c|x − y|)
c|x − y| ψ(y)dy. (III.31)

Let h(N, 1) = 2N + 1, N = 0, 1, 2, . . . and YNl(ξ), l = 1, 2, . . . , h(N, 1) be a complete

set of orthonormal surface (here same as spherical) harmonics of degree N . Then we

can write

ψ(y) = ψ(r′, η) =
∞
∑

N=0

h(N,1)
∑

l=1

RNl(r
′)YNl(η), (III.32)
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where RNl(r
′) are to be determined. Hence (III.31) becomes

α

∞
∑

N=0

h(N,1)
∑

l=1

RNl(r)YNl(ξ) =

∞
∑

N=0

h(N,1)
∑

l=1

∫

B(0,1)

sin(c|x − y|)
c|x − y| RNl(r

′)YNl(η)dy

=

∞
∑

N=0

h(N,1)
∑

l=1

∫ 1

0

r′2dr′
∫

Ω

sin(c|x − y|)
c|x − y| RNl(r

′)YNl(η)dΩ(η)

=
∞
∑

N=0

h(N,1)
∑

l=1

∫ 1

0

r′2dr′4πjN(cr′)jN (cr)RNl(r
′)YNl(ξ).

where in the last step we used Lemma III.13. So, it is sufficient to solve

αNlRNl(r) =

∫ 1

0

r′2dr′4πjN(cr′)jN(cr)RNl(r
′)

from which it is seen that RNl(r) and αNl are independent of l. The last equation

can be written as

αNlRNl(r) =

∫ 1

0

r′2dr′4π

√

π

2cr′

√

π

2cr
JN+ 1

2

(cr′)JN+ 1

2

(cr)RNl(r
′),

i.e.,

βNlRNl(r) =

∫ 1

0

r′2
c√
rr′

JN+ 1

2

(cr′)JN+ 1

2

(cr)RNl(r
′)dr′. (III.33)

where βNl = c2αNl

2π2 . Let

φNl(r) = rRNl(r). (III.34)

Then (III.33) becomes

βNlφNl(r) =

∫ 1

0

JN+ 1

2

(cr′)JN+ 1

2

(cr)c
√
rr′φNl(r

′)dr′. (III.35)

So the eigenfunctions and eigenvalues of (III.31) are

ψ(x) = ψN,l,k(r, ξ) = RNk(r)YNl(ξ) (III.36)
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and

αNk =
2π2βNk

c2
, (III.37)

where N, k = 0, 1, 2, . . . and l = 1, 2, . . . , h(N, 1) and βNk and RNk(r) are given

by (III.33). Denote the kernel of (III.35) by Ker(r, r′) = cJN+ 1

2

(cr′)JN+ 1

2

(cr)
√
r′r.

Denote KN(x) = JN (x)
√
x. Therefore

Ker(r, r′) = KN+ 1

2

(cr)KN+ 1

2

(cr′). (III.38)

Now, with Ker(r, r′) given in (III.38) we want to find a self-adjoint differential oper-

ator Mr such that

MrKer(r, r
′) = Mr′Ker(r, r

′).

Let Mr = d
dr

(

p(r) d
dr

)

+ q(r). Then

MrKer(r, r
′) = p′(r)

d

dr

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′)+

p(r)
d2

dr2

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′) + q(r)KN+ 1

2

(cr)KN+ 1

2

(cr′). (III.39)

But it is known that

d2

dr2

(

KN+ 1

2

(cr)
)

= −
(

c2 +
1
4
− (N + 1

2
)2

r2

)

KN+ 1

2

(cr). (III.40)

Using (III.40) we obtain from (III.39)

MrKer(r, r
′) = p′(r)

d

dr

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′)

+

(

−p(r)
(

c2 +
1
4
− (N + 1

2
)2

r2

)

+ q(r)

)

KN+ 1

2

(cr)KN+ 1

2

(cr′). (III.41)

Now, let q(r) = q1(r) + q2(r). Suppose we choose p(r) = 1 − r2,

q1(r) = −p′(r)
d
dr

(

JN+ 1

2
(cr)

)

JN+ 1

2

(cr)
= −cp′(r)

J ′
N+ 1

2

(cr)

JN+ 1

2

(cr)
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and

q2(r) =

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

.

Then (III.41) gives (by using Lemma III.11)

MrKer(r, r
′) =

(

−1 − c2 +
1

4
− (N +

1

2
)2

)

KN+ 1

2

(cr)KN+ 1

2

(cr′).

Similarly,

Mr′Ker(r, r
′) =

(

−1 − c2 +
1

4
− (N +

1

2
)2

)

KN+ 1

2

(cr)KN+ 1

2

(cr′).

Hence the solutions of

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

φ(r) + 2rc
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
φ(r) = −χφ(r).

(III.42)

with φ(0) = 0, are the solutions of (III.35). Solutions of (III.42) give φNl(r) and then

we can find RNl(r) from (III.34) and hence we can find ψ of (III.32). Thus we solve

(III.31). For notational convenience we will now consider the problem

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
−N2

r2
− c2r2

)

φ(r) + 2rc
J ′

N(cr)

JN(cr)
φ(r) = −χφ(r), (III.43)

with φ(0) = 0.

Remark III.14. r = 0 is a regular singular point for (III.43) (also of (III.42)). To

check this it is sufficient to show

lim
r→0

r2

(

2cr
J ′

N(cr)

JN(cr)

)

exists. But we know when r is near 0 we have

JN(cr) ≈ (cr)N

2NΓ(N + 1)
(III.44)
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and differentiating with respect to r we have

cJ ′
N(cr) ≈ N

cNrN−1

2NΓ(N + 1)
. (III.45)

Hence

lim
r→0

r2

(

2cr
J ′

N(cr)

JN(cr)

)

= 0

and thus the limit exists and hence r = 0 is a regular singular point.

Remark III.15. Let us now compute (for r ∈ (0, 1)) the limit

lim
c→0

2cr
J ′

N(cr)

JN(cr)
.

Since r is bounded therefore when c is tending to 0 using (III.44) and (III.45) we have

lim
c→0

2cr
J ′

N(cr)

JN(cr)
= lim

c→0
2r
N cN+1

2 rN−
1
2

2NΓ(N+1)

(cr)N+ 1
2

2NΓ(N+1)

= 2N.

2. Solution of the eigenvalue problem for three dimensions

Eigenvalues and eigenfunctions of (III.43):

Case I: Consider first the case c = 0 in (III.43).

Then (III.43) becomes

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
−N2

r2

)

φ(r) + (2N + χ)φ(r) = 0. (III.46)

Let χ̃ = 2N + χ. Then (III.46) takes the form

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
−N2

r2
+ χ̃

)

φ(r) = 0. (III.47)

We substitute

φ(r) =

∞
∑

j=0

a2jr
α+2j
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into (III.47). Then we have α = 1
2
±N . If N 6= 0, the negative sign leads to solutions

having a singularity at r = 0. If N = 0, a second solution can be found, but it has a

logarithmic singularity at r = 0. We must have therefore

α =
1

2
+N

The coefficients are given by the recurrence relation

a2j+2 = a2j
(α + 2j)(α+ 2j + 1) − χ̃

(α + 2j + 2)(α+ 2j + 1) + 1
4
−N2

.

Substituting the value of α thus we have

a2j+2 = a2j

(N + 2j + 1
2
)(N + 2j + 3

2
) − χ̃

4(j + 1)(N + j + 1)
. (III.48)

For large j,
a2j+2

a2j
→ 1, so unless the series terminates, this solution becomes un-

bounded as r → 1. Choosing χ̃ to terminate the series at rα+2l, we have

χ̃ = χ̃N,l(0) = (N + 2l +
1

2
)(N + 2l +

3

2
), (III.49)

where l = 0, 1, 2, . . . and the series solution [i.e., eigenfunctions of (III.47)] becomes

(choosing a0 = 1):

φ(r) = rN+ 1

2RN,l(r), (III.50)

RN,l(r) = F (−l, l +N + 1;N + 1; r2), (III.51)

where

F (a, b; c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ . . .

is the usual Gaussian hypergeometric function. Clearly from (III.49) we get the eigen-

values for (III.43) with c = 0 are given by

χ = χN,l(0) = (N + 2l +
1

2
)(N + 2l +

3

2
) − 2N (III.52)
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where l = 0, 1, 2, . . . .

Case II: We consider (III.43) with arbitrary values of c. We consider a series solution

of (III.43) of the form

φ(r) =

∞
∑

j=0

ajr
α+j, (III.53)

where the index α and the coefficients aj ’s are to be determined.

We write

2rc
J ′

N(cr)

JN(cr)
=

∞
∑

j=0

bjr
j, (III.54)

where bj ’s are Taylor coefficients of the expansion. We can find

b2k+1 = 0, (III.55)

k = 0, 1, 2, 3, . . . and

b0 = 2N, (III.56)

b2 =
−4

N + 1

(c

2

)2

, (III.57)

b4 =
−8

2!(N + 1)2(N + 2)

( c

2

)4

, (III.58)

b6 =
−48

3!(N + 1)3(N + 2)(N + 3)

(c

2

)6

, (III.59)

b8 =
2(−240N − 528)

4!(N + 1)4(N + 2)2(N + 3)(N + 4)

( c

2

)8

, (III.60)

. . . , etc.

In general, we have

b2k =
2

k!g(N, 2k − 1)

( c

2

)2k

, (III.61)

where g(N, 2k − 1) is a function of N of order (2k − 1) and k = 0, 1, 2, 3, . . . . Then

2rc
J ′

N(cr)

JN(cr)
φ(r) =

( ∞
∑

j=0

bjr
j

)( ∞
∑

j=0

ajr
α+j

)

=
∞
∑

j=0

γjr
α+j , (III.62)
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where

γj =

j
∑

k=0

akbj−k.

(Note: The coefficients bk−j are known. Therefore γk is actually dependent on the

set {a0, a1, a2, . . . , ak}.)

We will now substitute (III.53) in the following equation (equivalent to (III.43)):

(1 − r2)
d2φ(r)

dr2
− 2r

dφ(r)

dr
+

( 1
4
−N2

r2
− c2r2 + 2rc

J ′
N(cr)

JN(cr)
+ χ

)

φ(r) = 0. (III.63)

We observe that

(1 − r2)
d2φ(r)

dr2
− 2r

dφ(r)

dr

= α(α− 1)a0r
α−2 +

∞
∑

j=1

aj(α + j)(α + j − 1)rα+j−2 − α(α− 1)a0r
α

−
∞
∑

j=1

aj(α+ j)(α + j − 1)rα+j − 2αa0r
α − 2

∞
∑

j=1

aj(α + j)rα+j

= α(α− 1)a0r
α−2 + (α+ 1)αa1r

α−1 + (α + 2)(α+ 1)a2r
α + (α+ 3)(α + 2)a3r

α+1

+

∞
∑

j=2

(α + j + 2)(α + j + 1)aj+2r
α+j − α(α− 1)a0r

α − (α + 1)αa1r
α+1−

∞
∑

j=2

aj(α + j)(α + j − 1)rα+j − 2αa0r
α − 2(α + 1)a1r

α+1 − 2
∞
∑

j=2

aj(α + j)rα+j.

(III.64)
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Also using (III.53) and (III.54) we have

( 1
4
−N2

r2
− c2r2 + 2rc

J ′
N(cr)

JN(cr)
+ χ

)

φ(r)

=

(

1

4
−N2

)

[a0r
α−2 + a1r

α−1 + a2r
α + a3r

α+1] +

(

1

4
−N2

) ∞
∑

j=2

aj+2r
α+j

− c2
∞
∑

j=2

aj−2r
α+j + γ0r

α + γ1r
α+1 +

∞
∑

j=2

γjr
α+j + χ(a0r

α + a1r
α+1) + χ

∞
∑

j=2

ajr
α+j .

(III.65)

Substituting (III.64) and (III.65) into (III.63) and equating different coefficients of

rα+j we have:

• coefficient of rα−2 :

α(α− 1)a0 +
(

1
4
−N2

)

a0 = 0. We take

a0 6= 0. (III.66)

Hence using the same argument as in c = 0 case (i.e., Case I), we have

α =
1

2
+N. (III.67)

• coefficient of rα−1 :

α(α+ 1)a1 +
(

1
4
−N2

)

a1 = 0 which gives (using the value of α in (III.67)):

(2N + 1)a1 = 0.

So we must have

a1 = 0. (III.68)
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• coefficient of rα:

a2(α+ 2)(α+ 1)−α(α− 1)a0 − 2αa0 +

(

1

4
−N2

)

a2 + γ0 + χa0 = 0. (III.69)

But using (III.56): γ0 = a0b0 = 2Na0. Simplifying (III.69) using (III.67) we

have

4(N + 1)a2 = (N2 +
3

4
− χ)a0, (III.70)

which is equivalent to

4(N + 1)a2 = a0[

(

N +
1

2

)(

N +
3

2

)

− 2N − χ]. (III.71)

• coefficient of rα+1 :

a3(α+3)(α+2)+a1(α+1)α−2a1(α+1)+a3

(

1
4
−N2

)

+a1χ+γ1 = 0. Therefore

using (III.68) we have

a3[(α + 3)(α+ 2) +

(

1

4
−N2

)

] = −γ1. (III.72)

But γ1 = a0b1 + a1b0 = a0 · 0 + 0 · b1 = 0. Therefore (III.72) gives (with the

value of α from (III.67)

a3(6N + 9) = 0

i.e.,

a3 = 0. (III.73)

• coefficient of rα+j, where j = 2, 3, 4, . . . : (α + j + 2)(α + j + 1)aj+2 − aj(α +

j)(α + j − 1) − 2aj(α + j) + aj+2

(

1
4
−N2

)

− c2aj−2

+ ajχ + γj = 0. But γj =
∑j

k=0 akbj−k, and hence we have (with the value of

α from (III.67)): (j + 2)(2N + j + 2)aj+2 − aj [(N + j + 1
2
)(N + j + 3

2
) − χ] −

c2aj−2 +
∑j

k=0 akbj−k = 0.
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which gives

(j + 2)(2N + j + 2)aj+2 = aj [

(

N + j +
1

2

)(

N + j +
3

2

)

− χ− b0] − aj−1b1

+ (c2 − b2)aj−2 −
j−3
∑

k=0

akbj−k. (III.74)

We have now two cases :

Case I : (j in (III.74) is odd)

We already have found from (III.68) and (III.73): a1 = 0 and a3 = 0. Now, let j = 3

in (III.74). Then we can find (using b2k+1 = 0, for k = 0, 1, 2, 3, . . . )

a5 = 0

Proceeding in this way and using (III.74) we can show

a2k+1 = 0, (III.75)

k = 0, 1, 2, 3, . . .

Case II : (j in (III.74) is even)

Let j = 2m (Note: since in (III.74) j = 2, 3, 4, . . . . we have m = 1, 2, 3, . . . .) Then

using the values of b0 and b1 and (from Case I) a2m−1 = 0 in (III.74) we have:

(2m+ 2)(2N + 2m+ 2)a2m+2 = a2m[
(

N + 2m+ 1
2

) (

N + 2m+ 3
2

)

− χ− 2N ] + (c2 +

4
N+1

(

c
2

)2
)a2m−2 − (b4a2m−4 + b6a2m−6 + · · · + b2m−4a4 + b2m−2a2 + b2ma0),

Which is the same as: (2m+2)(2N+2m+2)a2m+2 = a2m[
(

N + 2m+ 1
2

) (

N + 2m+ 3
2

)

−

χ− 2N ] + c2
(

N+2
N+1

)

a2m−2 − (b4a2m−4 + b6a2m−6 + · · ·+ b2m−4a4 + b2m−2a2 + b2ma0).

(III.76)
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Remark III.16. Though (III.76) is valid for m = 1, 2, 3, . . . when m = 0, (III.76) gives

4(N + 1)a2 = a0[

(

N +
1

2

)(

N +
3

2

)

− 2N − χ]. (III.77)

But (III.77) is identical to (III.71) that we obtained earlier. So (III.76) is actually

valid for m = 0, 1, 2, 3, 4, . . . ...

Remark III.17. Let

χ′ = χ+ 2N. (III.78)

Then first few relations using (III.76):

• When m = 0:

4(N + 1)a2 −
(

N +
1

2

)(

N +
3

2

)

a0 = −χ′a0.

• When m = 1:

4 · 2(N + 2)a4 −
(

N +
5

2

)(

N +
7

2

)

a2 − c2
(

N + 2

N + 1

)

a0 = −χ′a2.

• When m = 2:

4 · 3(N + 3)a6 −
(

N +
9

2

)(

N +
11

2

)

a4 − c2
(

N + 2

N + 1

)

a2 + b4a0 = −χ′a4.

• When m = 3:

4·4(N+4)a8−
(

N +
13

2

)(

N +
15

2

)

a6−c2
(

N + 2

N + 1

)

a4+b4a2+b6a0 = −χ′a6.

• When m = 4:

4·5(N+5)a10−
(

N +
17

2

)(

N +
19

2

)

a8−c2
(

N + 2

N + 1

)

a6+b4a4+b6a2+b8a0 = −χ′a8.



57

• When m = 5:

4·6(N+6)a12−
(

N +
21

2

)(

N +
23

2

)

a10−c2
(

N + 2

N + 1

)

a8+b4a6+b6a4+b8a2

+ b10a0 = −χ′a10.

. . . etc.

So we have the equation

A · X = −χ′X, (III.79)

where

X =





















































a0

a2

a4

a6

a8

a10

.

.

.





















































, (III.80)
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and

A =





























































































f1 g1 0 0 0 0 0 . . . . . . . . .

−b′ f2 g2 0 0 0 0 . . . . . . . . .

b4 −b′ f3 g3 0 0 0 . . . . . . . . .

b6 b4 −b′ f4 g4 0 0 . . . . . . . . .

b8 b6 b4 −b′ f5 g5 0 . . . . . . . . .

b10 b8 b6 b4 −b′ f6 g6 . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .





























































































, (III.81)

where,

fj = −
(

N +
4j − 3

2

)(

N +
4j − 1

2

)

, j = 1, 2, 3, 4, . . . (III.82)

and

gj = 4j(N + j), j = 1, 2, 3, 4, . . . (III.83)

and

b′ = c2
(

N + 2

N + 1

)

, (III.84)

and we can find bj ’s from (III.54)-(III.61). Eigenvalues −χ′ of (III.79) should give

bounded φ(r) as r → 1. i.e.,
∑∞

j=0 a2j <∞.
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Approximation of eigenvalues:

We will now approximate eigenvalues −χ′ of (III.79) for large N and small c so that

|b4| << 1. In that case (III.79) approximately yields

−b′a2j−2 + (fj + χ′)a2j + gja2j+2 = 0, (III.85)

i.e.,

−c2
(

N + 2

N + 1

)

a2j−2−
((

N +
4j − 3

2

)(

N +
4j − 1

2

)

− χ′
)

a2j+4j(N+j)a2j+2 = 0,

(III.86)

j = 0, 1, 2, 3, . . . with the notation a−2 = 0.

This recursion formula for the expansion coefficients constitutes a linear homogeneous

difference equation of the second order. A second order difference equation corre-

sponds to a differential equation of second order, so that there are two non-trivial

independent solutions (cf. [28]). Examination of (III.86) reveals in fact that as r

approaches infinity, either
a2j

a2j−2
increases as 4j2

c2

(

N+1
N+2

)

, or goes to zero as − c2

4j2

(

N+2
N+1

)

.

Of these two solutions the former leads to a divergent series. Hence we choose the

latter. The condition that the limit of
a2j

a2j−2
be zero as j becomes infinity enables us

to obtain a transcendental equation in χ′. We will develop this idea now.

Suppose

Nj =
1

c2

(

N + 1

N + 2

)

a2j

a2j−2
, j = 1, 2, 3, . . . . (III.87)

Since we want a convergent series therefore we must have Nj → 0 as j → ∞. Suppose

γj =
(

N + 4j−3
2

) (

N + 4j−1
2

)

and βj = 4c2
(

N+2
N+1

)

j(N + j). Hence (III.85) becomes

Nj+1 = βj(γj − χ′) − βj

Nj

(III.88)

and reciprocally

Nj =
βj

βj(γj − χ′) −Nj+1
, j = 1, 2, 3, . . . (III.89)
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and

N1 =
1

c2

(

N + 2

N + 1

)

a2

a0
=

1

c2

(

N + 2

N + 1

)

(

N + 1
2

) (

N + 3
2

)

− χ′

4(N + 1)
.

By iteration of (III.89) we get from the condition that lim
j→∞

Nj = 0, the convergent

infinite continued fraction

Nj+1 =
βj+1

βj+1(γj+1 − χ′) −
βj+2

βj+2(γj+2 − χ′) −
βj+3

βj+3(γj+3 − χ′) − . . .

. (III.90)

On the other hand, by iteration of (III.88) we obtain, from the condition that a2j = 0

for j < 0, the finite continued fraction

Nj+1 = βjγj − βjχ
′ −

βj

βj−1(γj−1 − χ′) −
βj−1

βj−2(γj−2 − χ′) − . . .

, (III.91)

where the last partial denominator is β1(γ1 − χ′). Equating two continued fractions

of (III.90) and (III.91) we obtain a transcendental equation, the roots of which give

the required χ′. That is we have

χ′ = γj −
1

βj−1(γj−1 − χ′) −
βj−1

βj−2(γj−2 − χ′) − . . .

−
(

βj+1

βj

) 1

βj+1(γj+1 − χ′) −
βj+2

βj+2(γj+2 − χ′) −
βj+3

βj+3(γj+3 − χ′) − . . .

. (III.92)
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Once we find χ′ from (III.92) we can solve the system of equations (III.79) to get the

coefficients a2j , j = 0, 1, 2, 3, . . . . Hence we can approximate the solution of (III.43)

for arbitrary values of c by

φ(r) = k
∞
∑

j=0

a2jr
N+ 1

2
+2j

(where k is a constant and we can set k = 1 for simplicity), where the coefficients

a2j ’s are as described above. Also, once we find χ′ from (III.79) we can compute the

eigenvalues χ of (III.43) from the relation (III.78).

3. Comparison with other works

As mentioned in Svidzinsky, Chang and Scully’s papers [42, 53] a solution of (III.31)

is given by ψ(x) = jn(cr)Ynm(ξ). That is φ(r) = rjn(cr) is a solution of (III.35). But

φ(r) = rjn(cr) =
1

c

√

π

2
KN+ 1

2

(cr).

Plugging this to the LHS of (III.42) we have

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

φ(r) + 2rc
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
φ(r)

= (−c2 −N2 −N − 1)
1

c

√

π

2
KN+ 1

2

(cr)

= (−c2 −N2 −N − 1)φ(r).

This shows φ(r) = rjn(cr) actually satisfies (III.42) with χ = c2 +N2 +N + 1.

Another way of verification is as follows:
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We can write

φ(r) = rjN(cr) =

√

π

2
{ 1

0!Γ(N + 3
2
)

( c

2

)N

rN+1 − 1

1!Γ(N + 5
2
)

( c

2

)N+2

rN+3

+
1

2!Γ(N + 7
2
)

( c

2

)N+4

rN+5 − 1

3!Γ(N + 9
2
)

( c

2

)N+6

rN+7+

1

4!Γ(N + 11
2
)

( c

2

)N+8

rN+9 − . . . }.

Therefore a0 =
√

π
2

1
0!Γ(N+ 3

2
)

(

c
2

)N
, a2 = −

√

π
2

1
1!Γ(N+ 5

2
)

(

c
2

)N+2
, etc . . .

ReplacingN by (N+ 1
2
) in the equations (III.53)-(III.84) we have χ′ = χ+2

(

N + 1
2

)

=

χ + 2N + 1. Now with χ = c2 + N2 + N + 1, we obtain χ′ = (N + 1)(N + 2) + c2.

We can also show that with this value of χ′ the coefficients a0, a2, a4 . . . etc. satisfies

(III.79) [with N replaced by (N + 1
2
)]. Thus φ(r) = rjn(cr) actually satisfies (III.42).

4. Alternative set of complete eigenfunctions for (III.35)

Theorem III.18. rjN(cAkr) is a complete orthogonal basis of eigenfunctions of

(III.35) in L2(0, 1), where Ak are the roots of the equation Ak = ν jN (cAk)
jN−1(cAk)

and

ν =
N+ 1

2
−γ

c
where γ > −

(

N + 1
2

)

.

Proof. Using the relation

∫

r2jn(ar)jn(r)dr =
r2

1 − a2
[ajn(r)jn−1(ar) − jn−1(r)jn(ar)]

it is easy to prove the orthogonality of rjN (cAkr). Therefore we will now show that

rjN(cAkr) are actually complete in L2(0, 1).

We observe

rjN(cr) =

√

π

2cr
rJN+ 1

2

(cr) = λ
√
rJN+ 1

2

(cr),

where λ =
√

π
2c

.
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Differentiating with respect to r we obtain

jN(cr) + crj′N(cr) = λ

[

1

2
√
r
JN+ 1

2

(cr) + c
√
rJ ′

N+ 1

2

(cr)

]

.

Divide LHS by rcjN(cr) and RHS by its equivalent cλ
√
rJN+ 1

2

(cr) to get

1

2cr
+
j′N (cr)

jN (cr)
=
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
. (III.93)

We know the identity

N + 1

cr
jN (cr) + j′N (cr) = jN−1(cr).

This gives

j′N (cr)

jN (cr)
=
jN−1(cr)

jN (cr)
− N + 1

cr
. (III.94)

Using (III.94) we obtain from (III.93)

jN−1(cr)

jN(cr)
−
(

1

2
+N

)

1

cr
=
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
. (III.95)

Suppose

x = cr

Then we have

jN−1(x)

jN(x)
−
(

1

2
+N

)

1

x
=
J ′

N+ 1

2

(x)

JN+ 1

2

(x)
. (III.96)

Let us now denote the solution of

γJN+ 1

2
(x) + xJ ′

N+ 1

2

(x) = 0 (III.97)

by Bk, where we choose γ > −
(

N + 1
2

)

.

Hence (III.97) gives
J ′

N+ 1

2

(Bk)

JN+ 1

2

(Bk)
= − γ

Bk
.



64

Then we must have from (III.96) that Bk satisfies

jN−1(Bk)

jN (Bk)
−
(

N +
1

2

)

1

Bk
= − γ

Bk
,

i.e.,

jN−1(Bk)

jN (Bk)
=
N + 1

2
− γ

Bk
,

i.e,

Bk =

(

N +
1

2
− γ

)

jN(Bk)

jN−1(Bk)
.

Suppose that when x = Bk we have r = Ak. That is cAk = Bk.

Then we have

Ak =
N + 1

2
− γ

c

jN (cAk)

jN−1(cAk)
,

i.e.,

Ak = ν
jN(cAk)

jN−1(cAk)
, (III.98)

where ν =
N+ 1

2
−γ

c
. Hence the zeros Ak of (III.98) are zeros cAk of (III.97). But we

know from [16] that with cAk > 0 satisfying (III.97), JN+ 1

2

(cAkr) is an orthogonal

basis for L2
w(0, 1) where w(r) = r.

i.e.,
√
rJN+ 1

2

(cAkr) is an orthogonal basis for L2(0, 1).

i.e., rjN (cAkr) is an orthogonal basis of L2(0, 1).

Now we will show that the set of eigenfunctions obtained in the previous theorem

is different than the set of eigenfunctions obtained in our earlier work.

Theorem III.19. The only rjN (cAr) that satisfies (III.42) is when A = 1.

Proof. We have

rjN(Acr) =
1

Ac

√

π

2
KN+ 1

2

(Acr).
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Let φ(r) = 1
Ac

√

π
2
KN+ 1

2

(Acr) and we substitute this to

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
−N2

r2
− c2r2

)

φ(r)+2rc
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
φ(r) = −χφ(r). (III.99)

Then the LHS of (III.99) becomes (dropping the constant 1
Ac

√

π
2
)

LHS = A2c2r2KN+ 1

2

(Acr) +

(

1

4
− (N +

1

2
)2

)

KN+ 1

2

(Acr)

−A2c2KN+ 1

2

(Acr) − 2AcrK ′
N+ 1

2

(Acr) − c2r2KN+ 1

2

(Acr)

+ 2rc
K ′

N+ 1

2

(Acr)

KN+ 1

2

(Acr)
KN+ 1

2

(Acr) −KN+ 1

2

(Acr).

Thus in order to have (III.99) satisfied for some constant χ we must have

(A2 − 1)c2r2KN+ 1

2

(Acr) − 2AcrK ′
N+ 1

2

(Acr) + 2rc
K ′

N+ 1

2

(Acr)

KN+ 1

2

(Acr)
KN+ 1

2

(Acr)

= λ1KN+ 1

2

(Acr),

for some constant λ1. Hence we must have

(A2 − 1)c2r2 − 2Arc
K ′

N+ 1

2

(Acr)

KN+ 1

2

(Acr)
+ 2rc

K ′
N+ 1

2

(Acr)

KN+ 1

2

(Acr)
= λ1, (III.100)

which is equivalent to

(A2 − 1)c2r2 − 2Arc
J ′

N+ 1

2

(Acr)

JN+ 1

2

(Acr)
+ 2rc

J ′
N+ 1

2

(Acr)

JN+ 1

2

(Acr)
= λ1. (III.101)

(III.101) must be identically satisfied for all r ∈ (0, 1). Comparing the coefficient of

r2 we have

(A2 − 1)c2 +
4

N + 1

(

Ac

2

)2

− 4

N + 1

(c

2

)2

= 0.

This implies A = ±1. Discarding the negative solution we have

A = 1.
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D. Dependency of p(r) and q(r) in the three-dimensional problem

1. Special case with p(r) = 1 − r2

We want to find a self-adjoint differential operator Mr such that

MrKer(r, r
′) = Mr′Ker(r, r

′).

Take Mr = d
dr

(

p(r) d
dr

)

+ q(r) with p(1) = 0. Then,

MrKer(r, r
′) = p′(r)

d

dr

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′) + p(r)
d2

dr2

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′)

+ q(r)KN+ 1

2

(cr)KN+ 1

2

(cr′). (III.102)

But it is known that

d2

dr2

(

KN+ 1

2

(cr)
)

= −
(

c2 +
1
4
− (N + 1

2
)2

r2

)

KN+ 1

2

(cr). (III.103)

Using (III.103) we obtain from (III.102)

MrKer(r, r
′) = p′(r)

d

dr

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′)+
(

−p(r)
(

c2 +
1
4
− (N + 1

2
)2

r2

)

+ q(r)

)

KN+ 1

2

(cr)KN+ 1

2

(cr′). (III.104)

We choose

p(r) = 1 − r2.

Then,

MrKer(r, r
′) = −2rcK ′

N+ 1

2

(cr)KN+ 1

2

(cr′)+
(

−(1 − r2)

(

c2 +
1
4
− (N + 1

2
)2

r2

)

+ q(r)

)

KN+ 1

2

(cr)KN+ 1

2

(cr′),



67

i.e.,

MrKer(r, r
′) = −2rcK ′

N+ 1

2

(cr)KN+ 1

2

(cr′)−
((

c2 − 1

4
+ (N +

1

2
)2

)

+

( 1
4
− (N + 1

2
)2

r2
− c2r2

))

KN+ 1

2

(cr)KN+ 1

2

(cr′)+

q(r)KN+ 1

2

(cr)KN+ 1

2

(cr′). (III.105)

We denote

k =

(

c2 − 1

4
+ (N +

1

2
)2

)

and

A(r) =

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

,

where k is a constant. Therefore (III.105) becomes

MrKer(r, r
′) = −2rcK ′

N+ 1

2

(cr)KN+ 1

2

(cr′) − (k + A(r))KN+ 1

2

(cr)KN+ 1

2

(cr′)

+ q(r)KN+ 1

2

(cr)KN+ 1

2

(cr′), (III.106)

i.e.,

MrKer(r, r
′) =

(

−2rcK ′
N+ 1

2

(cr) − (k + A(r))KN+ 1

2

(cr) + q(r)KN+ 1

2

(cr)
)

KN+ 1

2

(cr′).

(III.107)

But we want

MrKer(r, r
′) = Mr′Ker(r, r

′).

Hence (III.107) gives the necessary condition

−2rcK ′
N+ 1

2

(cr) − (k + A(r))KN+ 1

2

(cr) + q(r)KN+ 1

2

(cr) = µ′KN+ 1

2

(cr), (III.108)

where µ′ is a constant independent of r. Let

µ = µ′ + k.
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Then

−2rcK ′
N+ 1

2

(cr) − A(r)KN+ 1

2

(cr) + q(r)KN+ 1

2

(cr) = µKN+ 1

2

(cr), (III.109)

which gives

q(r) = µ+ A(r) + 2rc
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
, (III.110)

i.e., (by the expression for A(r)): the most general form of q(r) is given by

q(r) = µ+

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

+ 2rc
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
, (III.111)

where µ is a constant independent of r.

Particular Case: When µ = −1, using Lemma III.11

2rc
K ′

N(cr)

KN(cr)
= 1 + 2rc

J ′
N(cr)

JN(cr)

we have from (III.111):

q(r) =

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

+ 2rc
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
.

We used this q(r) in our previous works.

2. Generalization

Let us now generalize the concept of the last subsection.

Let Mr = d
dr

(

p(r) d
dr

)

+ q(r), with p(1) = 0.

Then, as we have found in (III.104) we have

MrKer(r, r
′) = p′(r)

d

dr

(

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′)+
(

−p(r)
(

c2 +
1
4
− (N + 1

2
)2

r2

)

+ q(r)

)

KN+ 1

2

(cr)KN+ 1

2

(cr′),
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i.e.,

MrKer(r, r
′) = p′(r)cK ′

N+ 1

2

(cr)KN+ 1

2

(cr′)+
(

−p(r)
(

c2 +
1
4
− (N + 1

2
)2

r2

)

+ q(r)

)

KN+ 1

2

(cr)KN+ 1

2

(cr′).

Let

B(r) =

( 1
4
− (N + 1

2
)2

r2

)

,

i.e.,

MrKer(r, r
′) =

(

p′(r)cK ′
N+ 1

2

(cr) +
[

−p(r)
(

c2 +B(r)
)

+ q(r)
]

KN+ 1

2

(cr)
)

KN+ 1

2

(cr′).

(III.112)

Let

f(r) =
(

p′(r)cK ′
N+ 1

2

(cr) +
(

−p(r)
(

c2 +B(r)
)

+ q(r)
)

KN+ 1

2

(cr)
)

.

Then (III.112) gives

MrKer(r, r
′) = f(r)KN+ 1

2

(cr′).

But, we want

MrKer(r, r
′) = Mr′Ker(r, r

′).

Therefore

f(r)KN+ 1

2

(cr′) = f(r′)KN+ 1

2

(cr).

Which gives

f(r)

KN+ 1

2

(cr)
=

f(r′)

KN+ 1

2

(cr′)
.

LHS is a function of r whereas RHS is a function of r′. So we must have :

f(r)

KN+ 1

2
(cr)

=
f(r′)

KN+ 1

2
(cr′)

= µ′,
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where µ′ is a constant independent of both r and r′., i.e., we have

p′(r)cK ′
N+ 1

2

(cr) +
[

−p(r)
(

c2 +B(r)
)

+ q(r)
]

KN+ 1

2

(cr) = µ′KN+ 1

2

(cr). (III.113)

As a consequence

q(r) = −p′(r)c
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
+ p(r)c2 + p(r)B(r) + µ′. (III.114)

Also the boundary value is given to be p(1) = 0. So given a function q(r) there exist

unique p(r) that satisfies (III.114) with p(1) = 0.

Lemma III.20. Choose µ′ = −
(

c2 − 1
4

+ (N + 1
2
)2
)

− 1 = −
(

c2 + 3
4

+ (N + 1
2
)2
)

in

(III.114). Then p(r) = 1− r2 if and only if q(r) =
(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

+2rc
J ′

N+1
2

(cr)

J
N+1

2

(cr)
.

Proof. We have already proved in last subsection that if p(r) = 1 − r2 then we must

have q(r) = µ +
(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

+ 2rc
K ′

N+1
2

(cr)

K
N+1

2

(cr)
for any constant µ. Choosing

µ = −1 we have shown previously that q(r) =
(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

+ 2rc
J ′

N+1
2

(cr)

J
N+1

2

(cr)
. We

also observe from the last subsection that µ = µ′ + k = µ′ +
(

c2 − 1
4

+ (N + 1
2
)2
)

.

Hence µ = −1 actually gives µ′ = −
(

c2 + 3
4

+ (N + 1
2
)2
)

.

We will now prove the converse. Let q(r) =
(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

+ 2rc
J ′

N+1
2

(cr)

J
N+1

2

(cr)
=

(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

+ 2rc
K ′

N+1
2

(cr)

K
N+1

2

(cr)
− 1.

Let A(r) =
(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

. Then q(r) = A(r) + 2rc
K ′

N+1
2

(cr)

K
N+1

2

(cr)
− 1.

So, from (III.114) we can write

p′(r)c
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
= p(r)(c2 +B(r)) − A(r) − 2rc

K ′
N+ 1

2

(cr)

KN+ 1

2

(cr)
+ 1 + µ′. (III.115)

But observe that with A(r) =
(

1

4
−(N+ 1

2
)2

r2 − c2r2
)

and B(r) =
(

1

4
−(N+ 1

2
)2

r2

)

we have

(1 − r2)(c2 +B(r)) = k + A(r),
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where k =
(

c2 − 1
4

+ (N + 1
2
)2
)

.

So, (III.115) can be written as

p′(r)c
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
= p(r)(c2 +B(r))− (1− r2)(c2 +B(r)) + k− 2rc

K ′
N+ 1

2

(cr)

KN+ 1

2

(cr)
+ 1 + µ′.

(III.116)

But with µ′ = −
(

c2 + 3
4

+ (N + 1
2
)2
)

we have k+1+µ′ = 0. Therefore (III.116) gives

p′(r)c
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
=
(

p(r) − (1 − r2)
)

(c2 +B(r)) − 2rc
K ′

N+ 1

2

(cr)

KN+ 1

2

(cr)
. (III.117)

But the differential equation of p(r) given in (III.117) with the boundary condition

p(1) = 0 is satisfied by p(r) = 1− r2. By the uniqueness of solution thus we have the

the only possibility p(r) = 1 − r2.

E. Completeness of eigenfunctions

Notation: We define Ω = D(L) = domain of L = {φ ∈ L2(0, 1)|Lφ ∈ L2(0, 1), φ(0) =

0, lim
r→1

|φ(r)| < ∞}. For short we speak the boundary conditions φ(0) = 0, φ(1) =

lim
r→1

|φ(r)| <∞ of B1, B2 respectively.

Lemma III.21. Consider self-adjoint operators L and K such that LKf = KLf ,

for all f ∈ D(L). Assume for L with boundary conditions B1 and B2 the eigenspace

corresponding to each eigenvalue is one-dimensional. Also, assume that the set of all

eigenfunctions of L with B1 and B2 is a complete system in L2(0, 1). Then the set of

the eigenfunctions of L is a subset of the set of eigenfunctions of K, and hence there

exist a complete set of eigenfunctions of K in L2(0, 1). Moreover, if the eigenspace

corresponding to each eigenvalue of K is one-dimensional then the eigenfunctions of

L and K are identical.

Proof. Let Lφ = λφ with φ satisfying B1 and B2. Now, since LK = KL, L(Kφ) =
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K(Lφ) = λ(Kφ). But L has eigenspace of dimension one corresponding to λ. So

Kφ = µφ. Therefore the set of the eigenfunctions of L is a subset of the set of

eigenfunctions of K. Given the eigenfunctions of L with B1 and B2 are complete in

L2(0, 1). Thus there exist a complete set of eigenfunctions of K in L2(0, 1). Next,

suppose that the eigenspace corresponding to each eigenvalue ofK is one-dimensional.

Let S = {φ1, φ2, φ3, . . . } be the complete set (in L2(0, 1)) of eigenfunctions of L cor-

respondind to the eigenvalues {µ1, µ2, µ3, . . .} of K (we have already proved eigen-

functions of L are eigenfunctions of K). From the given criteria we must have all the

µi’s are distinct. We observe K has a set of eigenfunctions having subspace S. Let ξ

be an eigenfunction of K corresponding to the eigenvalue µ. Let ξ =
∑

i aiφi where

the convergence of the series is in L2(0, 1). Then Kξ = µξ gives ai(µ − µi) = 0, for

all i. If µ 6= µi, for all i, then ai = 0, for all i and hence ξ = 0. If µ = µi for some i

then we can take ai 6= 0 for that i. Hence ξ = aiφi. The lemma is proved.

Let us reconsider the equation

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

( 1
4
− (N + 1

2
)2

r2
− c2r2

)

φ(r) + 2rc
J ′

N+ 1

2

(cr)

JN+ 1

2

(cr)
φ(r) = −χφ(r).

(III.118)

We consider the eigenfunctions of (III.118) with B1(φ) and B1(φ). That is,

φ(0) = 0, (III.119)

and

lim
r→1

|φ(r)| <∞. (III.120)

Remark III.22. We observe the boundary conditions given by (III.119) and (III.120)

are self-adjoint with respect to the differential operator given by LHS of (III.118).

Lemma III.23. For the singular Sturm-Liouville problem (III.118) with boundary
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conditions (III.119) and (III.120), all the eigenvalues are real and the eigenfunctions

corresponding to distinct eigenvalues are orthogonal in L2(0, 1).

Proof. Since the boundary conditions are self-adjoint the proof goes in the same way

as in a regular Sturm-Liouville problem. (cf. [16]).

Lemma III.24. The eigenspace for any eigenvalue χ in (III.118) is 1-dimensional.

Proof. The fundamental existence theorem for ordinary differential equations says

that for any constants c1 and c2 there is a unique solution for (III.118) satisfying

the initial conditions φ(0) = c1 and φ′(0) = c2. That is, a solution is specified by

two arbitrary constants c1 and c2. Hence the space of all solutions of (III.118) is at

most 2-dimensional. For our problem φ(0) = 0, gives c1 = 0. So the dimension of

the solution space is reduced to one. Hence the eigenspace for any eigenvalue χ in

(III.118) is 1-dimensional.

Liouville Normal Form: The general second-order differential equation

a(X)
d2Y

dX2
+ b(X)

dY

dX
+ {λ− c(X)}Y = 0

can be reduced to the normal form as follows: Suppose a(X) > 0 almost everywhere,

and let

x =

∫

dX
√

a(X)
.

Then

d2Y

dx2
+ β(x)

dY

dx
+ {λ− γ(x)}Y = 0,

where

β(x) =
b(X) − 1

2
a′(X)

√

a(X)
,

γ(x) = c(X).
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Putting

Y = f(x)y

where

f(x) = e−
1

2

R

β(x)dx

we obtain:

d2y

dx2
+ {λ− 1

4
β2(x) − 1

2
β ′(x) − γ(x)}y = 0.

This is the standard form. The argument assumes that b(X) is differentiable and

a(X) twice differentiable.

We will now transform (III.118) into Liouville’s normal form. We rewrite (III.118) as

d

dr

(

(1 − r2)
dφ(r)

dr

)

+

(

χ+
1
4
− (N + 1

2
)2

r2
− c2r2 + 2rc

J ′
N+ 1

2

(cr)

JN+ 1

2

(cr)

)

φ(r) = 0,

(III.121)

where r ∈ [0, 1]. Let

r = sin x

and

φ = y
√

sec x.

Then x ∈ [0, π/2] and (III.121) becomes

d2y

dx2
+ (χ+ (

1

4
− (N +

1

2
)2) csc2 x− c2 sin2 x+ 2c sin x

J ′
N+ 1

2

(c sin x)

JN+ 1

2

(c sin x)

− 1

4
tan2 x+

1

2
sec2 x)y = 0,

which is equivalent to:

d2y

dx2
+ (χ+ (

1

4
− (N +

1

2
)2) csc2 x− c2 sin2 x+ 2c sin x

J ′
N+ 1

2

(c sin x)

JN+ 1

2

(c sin x)

+
1

4
tan2 x+

1

2
)y = 0, (III.122)
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i.e.,

d2y

dx2
+ (χ− q(x)) y = 0, (III.123)

where

q(x) = −
(

(
1

4
− (N +

1

2
)2) csc2 x− c2 sin2 x+ 2c sin x

J ′
N+ 1

2

(c sin x)

JN+ 1

2

(c sin x)
+

1

4
tan2 x+

1

2

)

,

(III.124)

where x ∈ [0, π/2].

Remark III.25. Singularities of (III.118) at r = 0 and r = 1 are same as the singular-

ities of (III.123) at x = 0 and x = π/2 respectively.

Endpoint Classifications: Define Lloc(J,C) to be the set of functions f satis-

fying f ∈ L ([a, b],C) for every compact subinterval [a, b] of J . Also define L2(J, w) =

{f : J → C,
∫

J
|f |2w < ∞} the Hilbert space of square integrable functions with

weight w if w > 0 a.e. on J .

Consider the equation

(py′)′ + (λw − q)y = 0 (III.125)

where λ ∈ C, on J with

J = (a, b), −∞ ≤ a < b ≤ ∞, 1/p, q, w ∈ Lloc(J,C). (III.126)

We use the definitions from [61]. The (finite or infinite) endpoint a:

• is regular (R) if, in addition to (III.126)

1/p, q, w ∈ L((a, d),C)

holds for some (and hence any) d ∈ J ;

• is limit-circle (LC) if all solution of the equation (III.125) are in L2((a, d), |w|)
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for some (and hence any) d ∈ (a, b);

• is limit-point (LP) if it is not LC;

• is oscillatory (O) if 1/p, q, w, λ are all real-valued and there is a nontrivial real-

valued solution with an infinite number of zeros in any right neighborhood of

a;

• is non-oscillatory (NO) if 1/p, q, w, λ are all real-valued and is not O;

• is limit-circle-oscillatory (LCO) if it is both LC and O;

• and is limit-circle-non-oscillatory (LCNO) if it is both LC and NO.

Similar definitions are made at b. An endpoint is called singular if it is not regular.

We now state two lemmas. Proofs of the lemmas can be found in [61].

Lemma III.26. LC and LP classification are independent of λ ∈ C.

Lemma III.27. For an endpoint in the LC case and p > 0 a.e., the LCO and LCNO

classifications are independent of λ ∈ R.

Next we proceed to prove the following lemmas.

Lemma III.28. For (III.118) the endpoint r = 1 [or, for (III.123) the endpoint

x = π/2] is of LC type. (More precisely it is of LCNO type).

Proof. Since lim
x→π

2
−
(x− π

2
)2 tan2 x = 1 and tan2 x ≤ 1

(x−π
2
)2

near x = π
2
−, therefore

|q(x)| ≤ 1
4
(x − π

2
)−2 + A, near x = π

2
(from left side) for some constant A. Thus it

follows from [37] (or, [56], section 5.25, pp-127) that for (III.123) the endpoint x = π
2

(consequently the endpoint r = 1 for (III.118)) is of LC type. Also, with

χ = c2 + (N + 1)(N + 2) − 2N − 1
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a solution of (III.118) is

φ(r) = rjN(r) =
1

c

√

π

2
KN+ 1

2

(cr)

while the second independent solution will also be non-oscillatory. Hence r = 1 is of

LCNO type for χ = c2 + (N + 1)(N + 2)− 2N − 1. Moreover, by using Lemma III.27

we obtain that for any χ, the endpoint r = 1 of (III.118) is LCNO. Same is true for

the endpoint x = π/2 of (III.123). This proves the Lemma.

Lemma III.29. For (III.118) when N ≥ 1 the endpoint r = 0 [or, for (III.123) the

endpoint x = 0] is of LP type. For (III.118) when N = 0 the endpoint r = 0 [or, for

(III.123) the endpoint x = 0] is a regular type.

Proof. From (III.124) we have

q(x) = −
(

(
1

4
− (N +

1

2
)2) csc2 x− c2 sin2 x+ 2c sin x

J ′
N+ 1

2

(c sin x)

JN+ 1

2

(c sin x)
+

1

4
tan2 x+

1

2

)

,

where x ∈ [0, π/2].

When N = 0 there is no singularity of q(x) at x = 0 and so the endpoint is regular.

When N ≥ 1 if x near 0 and positive then sin x ≤ x gives 1
x2 ≤ csc2 x. Thus

1

x2
≤ −

(

1

4
− (N +

1

2
)2

)

1

x2
≤ −

(

1

4
− (N +

1

2
)2

)

csc2 x.

Hence we can choose constant A so that for sufficiently small x

q(x) ≥ 3

4
x−2 + A

So by cf. [56], section 5.25, pp-127 we conclude x = 0 is a limit point for (III.123).

That is, when N ≥ 1, r = 0 is of LP for (III.118).

Lemma III.30. Given any Sturm-Liouville Problem (SLP) with endpoints which are

either regular or LCNO there exists a regular SLP which has exactly same spectrum
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as in this singular problem and furthermore the eigenfunctions of the given singular

problem {yn : n ∈ N} are related to the eigenfunctions {zn : n ∈ N} of the corre-

sponding regular problem by the equation yn(t) = v(t)zn(t), t ∈ (a, b), n ∈ N for some

function v in the maximal domain of the singular problem which satisfies v(t) > 0 for

t ∈ (a, b).

Proof. cf. [31].

Corollary III.31. For a singular SLP with endpoints which are either regular or

LCNO the spectrum is discrete.

We write x ∈ [0, π/2] = I1 ∪ I2 where I1 = {x ∈ [0, π/4]} and I2 = {x ∈

[π/4, π/2]} [ or, we write r ∈ [0, 1] = I1 ∪ I2 where I1 = {r ∈ [0, 1/2]} and I2 =

{r ∈ [1/2, 1]}]. Let θ1(x, χ), θ2(x, χ) be solutions of (III.123) such that θ1(π/4) = 0,

θ′1(π/4) = −1, θ2(π/4) = 1, θ′2(π/4) = 0 Then there are functions m1(χ) and m2(χ)

such that for non-real χ

ξ1(x, χ) = θ2(x, χ) +m1(χ)θ1(x, χ)

is L2(0, π/4), and

ξ2(x, χ) = θ2(x, χ) +m2(χ)θ1(x, χ)

is L2(π/4, π/2).

Then the Wronskian:

W (ξ1, ξ2) = m1(χ) −m2(χ).

m1 and m2 are known as Weyl-Titchmarsh functions and they are meromorphic if

and only if the corresponding spectrum is discrete.

Lemma III.32. m1(χ) is a meromorphic function.
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Proof. We use Lemma III.29 for (III.123) on I1. Therefore we have either only sin-

gularity at x = 0 of LP type (for N ≥ 1) or no singularity at x = 0 (for N = 0).

The spectrum is clearly discrete for N = 0 and hence in that case m1(χ) is meromor-

phic.

For N ≥ 1 we have for some suitable constant A

q(x) ≥ 3

4
x−2 + A ≥ −1

4
x−2 + A

Hence by cf. [56], section 5.25 pp-127, the spectrum is discrete for N ≥ 1. Thus

m1(χ) is meromorphic.

Lemma III.33. m2(χ) is a meromorphic function.

Proof. For (III.123) on I2 we have the only singularity at x = π
2

is of LCNO type (by

Lemma III.28). Now on I2 for (III.123) applying Lemma III.30 (and the corollary for

Lemma III.30) we have (since the endpoint x = π
4

is regular) the spectrum is discrete.

So, m2(χ) is meromorphic.

Let G(x, y, χ) =



























ξ2(x, χ)ξ1(y, χ)

m2(χ) −m1(χ)
y ≤ x

ξ1(x, χ)ξ2(y, χ)

m2(χ) −m1(χ)
y > x

and

Φ(x, χ) = −
∫ π

2

0

G(x, y, χ)f(y)dy

where f is the arbitrary function to be expanded. We know from [56] that the expan-

sion of f will reduce to a series if both m1(χ) and m2(χ) are meromorphic functions.

In the present case by Lemma III.32 and Lemma III.33 we have both m1(χ) and

m2(χ) meromorphic functions. So, any function f ∈ L2(0, π/2) can be expanded in

a series of eigenfunctions of (III.123). Also, by Lemma III.23 the eigenfunctions are
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orthogonal (since Liouville’s reduction transforms orthogonal functions in L2(D) to

orthogonal functions in L2(D)). So we have the following theorems:

Theorem III.34. Eigenfunctions of (III.123), with φ(0) = 0 and lim
x→π

2

|φ(x)| < ∞

form a complete orthogonal set in L2(0, π/2).

Theorem III.35. Eigenfunctions of (III.118), with φ(0) = 0 and lim
r→1

|φ(r)| < ∞

form a complete orthogonal set in L2(0, 1).

F. Uniqueness of operator for one-dimensional problem

We prove the uniqueness of differential operator for one-dimensional problem. For

one-dimensional problem we have

Ker(x, y) =
sin c(x− y)

c(x− y)
.

We want to find a self-adjoint differential operator Mx such that MxKer(x, y) =

MyKer(x, y).

Let, Mx = d
dx

(

p(x) d
dx

)

+ q(x) with p(1) = p(−1) = 0.

Then we can derive

MxKer(x, y) =
1

c

(

cos c(x− y)

(x− y)2
[−2cp(x) + cp′(x)(x− y)]

)

+
1

c

(

sin c(x− y)

(x− y)3
[−c2p(x)(x− y)2 + 2p(x) − p′(x)(x− y) + q(x)(x− y)2]

)

.

So, to have

Mx
sin c(x− y)

c(x− y)
= My

sin c(x− y)

c(x− y)

we must have

[−2cp(x) + cp′(x)(x− y)]

(x− y)2
=

[−2cp(y) + cp′(y)(y − x)]

(x− y)2
, (III.127)
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i.e.,

−2cp(x) + cp′(x)(x− y) = −2cp(y) + cp′(y)(y − x), (III.128)

and

[−c2p(x)(x− y)2 + 2p(x) − p′(x)(x− y) + q(x)(x− y)2]

(x− y)3
=

[−c2p(y)(x− y)2 + 2p(y) − p′(y)(y − x) + q(y)(x− y)2]

(x− y)3
, (III.129)

i.e.,

− c2p(x)(x− y)2 + 2p(x) − p′(x)(x− y) + q(x)(x− y)2 =

− c2p(y)(x− y)2 + 2p(y) − p′(y)(y − x) + q(y)(x− y)2. (III.130)

Using (III.128) we obtain from (III.130)

−c2p(x) + q(x) = −c2p(y) + q(y). (III.131)

Since in (III.131) LHS depends only on x and RHS depends only on y we must have

−c2p(x) + q(x) = −c2p(y) + q(y) = λ, (III.132)

where λ is a constant. Thus,

q(x) = c2p(x) + λ. (III.133)

Now we proceed to find p(x). We have from (III.128) :

p′(x) + p′(y) = 2

(

p(x) − p(y)

x− y

)

. (III.134)

[Note: by the ′ notation we mean the derivative with respect to the argument vari-

able. Precisely p′(x) = dp(x)
dx

and p′(y) = dp(y)
dy

.]

Differentiating (III.134) with respect to x we have (also keeping in mind that x and
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y are independent variables):

p′′(x) = 2

(

p′(x)(x− y) − (p(x) − p(y))

(x− y)2

)

, (III.135)

and

p′′(y) = 2

(−p′(y)(x− y) + (p(x) − p(y))

(x− y)2

)

. (III.136)

Subtracting (III.136) from (III.135) we have

p′′(x) − p′′(y) =
2

(x− y)2
[(p′(x) + p′(y))(x− y) − 2(p(x) − p(y))] .

Using (III.134) we then have

p′′(x) − p′′(y) =
2

(x− y)2
[2(p(x) − p(y)) − 2(p(x) − p(y))] = 0.

So

p′′(x) = p′′(y)

Thus we must have

p′′(x) = p′′(y) = µ1.

where µ1 is a constant. Now p′′(x) = µ1 gives

p(x) = µ1x
2 + µ2x+ µ3.

But we have the boundary condition p(1) = p(−1) = 0. The boundary conditions

give µ1 + µ3 = 0 and µ2 = 0.

Therefore

p(x) = µ(1 − x2), (III.137)

where µ = µ3 is a constant. So, (III.137) gives the uniqueness of p(x) up to a

multiplicative constant. Let us take µ = 1 and λ = −c2 in (III.133). Then, from
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(III.133) we have:

q(x) = c2(1 − x2) − c2,

i.e.,

q(x) = −c2x2. (III.138)

Note: This q(x) is exactly what Slepian and Pollak used in [46].

Notation: Throughout the following work we will consider the φ square inte-

grable and twice differentiable in (−σ, σ) for some σ > 0. We define Λ = {φ ∈

L2(−σ, σ) ∩ C2([−σ, σ])| lim
r→±σ

|φ(r)| <∞}.

We proceed to prove the main theorem of this section.

Theorem III.36. Suppose K is a self adjoint operator with simple spectrum. Suppose

L1 =
d

dx

(

p1(x)
d

dx

)

+ q1(x)

and

L2 =
d

dx

(

p2(x)
d

dx

)

+ q2(x)

with p1(±σ) = p2(±σ) = 0 and p1, p2 ∈ Λ, are two operators on [−σ, σ] that commute

with K for the functions f ∈ Λ. Assume both L1 and L2 have a set of eigenfunctions

in Λ which are complete orthogonal in L2(−σ, σ). Then

p2(x) ≡ kp1(x)

and

q2(x) ≡ kq1(x) + k′

for some k, k′ ∈ C and x ∈ (−σ, σ).



84

Proof. It is easy to show that the conclusion for Lemma III.21 is valid for functions

f such that f ∈ Λ. Therefore from the condition of the above theorem using Lemma

III.21 for the operators L1 and K we have eigenfunctions of L1 and K are same

in L2(−σ, σ). Similarly using Lemma III.21 for the operators L2 and K we have

eigenfunctions of L2 and K are same in L2(−σ, σ). Hence the eigenfunctions for L1

and L2 are identical in L2(−σ, σ).

Since for both L1 and L2 when considered on functions on Λ have one-dimensional

eigenspace corresponding to each eigenvalue, therefore we must have

L1L2φ = L2L1φ, (III.139)

for all φ ∈ Λ. But

L1L2φ = Γ1(x)
d4φ

dx4
+ Γ2(x)

d3φ

dx3
+ Γ3(x)

d2φ

dx2
+ Γ4(x)

dφ

dx
+ Γ5(x)φ, (III.140)

where

Γ1(x) = p1(x)p2(x), (III.141)

Γ2(x) = 3p1(x)p
′
2(x) + p′1(x)p2(x), (III.142)

Γ3(x) = 3p1(x)p
′′
2(x) + 2p′1(x)p

′
2(x) + p1(x)q2(x) + q1(x)p2(x), (III.143)

Γ4(x) = p1(x)p
′′′
2 (x) + 2p1(x)q

′
2(x) + p′1(x)p

′′
2(x) + q2(x)p

′
1(x) + q1(x)p

′
2(x), (III.144)

Γ5(x) = p1(x)q
′′
2 (x) + p′1(x)q

′
2(x) + q1(x)q2(x). (III.145)

Similarly

L2L1φ = Γ̃1(x)
d4φ

dx4
+ Γ̃2(x)

d3φ

dx3
+ Γ̃3(x)

d2φ

dx2
+ Γ̃4(x)

dφ

dx
+ Γ̃5(x)φ, (III.146)

where

Γ̃1(x) = p1(x)p2(x), (III.147)
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Γ̃2(x) = 3p2(x)p
′
1(x) + p′2(x)p1(x), (III.148)

Γ̃3(x) = 3p2(x)p
′′
1(x) + 2p′2(x)p

′
1(x) + p2(x)q1(x) + q2(x)p1(x), (III.149)

Γ̃4(x) = p2(x)p
′′′
1 (x) + 2p2(x)q

′
1(x) + p′2(x)p

′′
1(x) + q1(x)p

′
2(x) + q2(x)p

′
1(x), (III.150)

Γ̃5(x) = p2(x)q
′′
1 (x) + p′2(x)q

′
1(x) + q2(x)q1(x). (III.151)

Now, L1L2φ = L2L1φ, for all φ ∈ D(L) implies

Γi(x) = Γ̃i(x),

for i = 1, 2, 3, 4, 5

• Γ1(x) = Γ̃1(x), gives an identity.

• Γ2(x) = Γ̃2(x), gives

p2(x) = kp1(x), (III.152)

for some constant k.

• Γ3(x) = Γ̃3(x), gives an identity when (III.152) is utilized.

• Γ4(x) = Γ̃4(x), gives (using (III.152))

q2(x) = kq1(x) + k′, (III.153)

where k′ is another constant (and k is the same constant appeared in (III.152)).

• Γ5(x) = Γ̃5(x), gives an identity when (III.152) and (III.153) are utilized.

Clearly (III.152) and (III.153) gives the required results and thus the theorem is

proved.

Corollary III.37. Suppose K is a symmetric, positive definite convolution operator

which admits eigenfunctions in Λ which are either even or odd. Then if there exist
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operators of the form as in Theorem III.36 which commutes with K then that operator

is unique.

Proof. A similar proof as of Lemma II.7 shows that K has simple spectrum. Hence

the result follows immediately from Theorem III.36.
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G. Numerical results

Notation: e ± xxx = 10±xxx We will consider the case for N = 10 and c = .5:

Eigenvalues −χ′ can be approximated from (III.92) and given by (with N replaced

by (N + 1
2
) in (III.79)-(III.87) of our previous work):

−χ1 = −132.250121139998e+ 000

− χ2 = −182.218606730622e+ 000

− χ3 = −240.198559950980e+ 000

− χ4 = −306.185016923963e+ 000

− χ5 = −380.175438302939e+ 000

− χ6 = −462.168414139272e+ 000

− χ7 = −552.163110205855e+ 000

− χ8 = −650.159007151745e+ 000

− χ9 = −756.155767878764e+ 000

− χ10 = −870.153165820800e+ 000

Corresponding approximated coefficients of 10 eigenvectors (v1 through v10) are given

in Table I to Table V at the end of this chapter. Table I to Table V thus gives the

coefficients {a0, a2, a4, . . . , a26} of the expansion of (N replaced by (N + 1
2
) in our

previous work):

φ(r) =
∞
∑

j=0

a2jr
N+1+2j

In Fig. 1 to Fig. 10 we present the graphs of first 10 eigenfunctions (v1 through v10).
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Fig. 1. Eigenfunction v1 corresponding to eigenvalue χ1.
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Fig. 2. Eigenfunction v2 corresponding to eigenvalue χ2.
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Fig. 3. Eigenfunction v3 corresponding to eigenvalue χ3.
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Fig. 4. Eigenfunction v4 corresponding to eigenvalue χ4.
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Fig. 5. Eigenfunction v5 corresponding to eigenvalue χ5.
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Fig. 6. Eigenfunction v6 corresponding to eigenvalue χ6.
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Fig. 7. Eigenfunction v7 corresponding to eigenvalue χ7.
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Fig. 8. Eigenfunction v8 corresponding to eigenvalue χ8.



92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−8

r

v
9

Fig. 9. Eigenfunction v9 corresponding to eigenvalue χ9.
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Fig. 10. Eigenfunction v10 corresponding to eigenvalue χ10.
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H. Tables

Table I. First few coefficients for the eigenvectors v1 and v2.

Coefficients v1 v2

a0 999.985217505498e− 003 675.451490685599e− 003

a2 −5.43733570832087e− 003 −737.396364703309e− 003

a4 12.2832064245212e− 006 3.44746409190612e− 003

a6 −17.2615745994078e− 009 −6.65444926119112e− 006

a8 14.6198528806105e− 012 8.30755720607264e− 009

a10 −14.6833939754400e− 015 −5.59295427236881e− 012

a12 −8.28549877604746e− 018 7.25300987182962e− 015

a14 −53.5167908775138e− 021 9.87677880991563e− 018

a16 −189.652472186803e− 024 43.6650178905477e− 021

a18 −720.767346429098e− 027 160.106580916380e− 024

a20 −2.75926299573150e− 027 607.789316300708e− 027

a22 −10.6772993307145e− 030 2.33297946895398e− 027

a24 −41.6842918575617e− 033 9.05060864842052e− 030

a26 −163.990074084501e− 036 35.4238897739336e− 033
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Table II. First few coefficients for the eigenvectors v3 and v4.

Coefficients v3 v4

a0 344.746087154042e− 003 155.800569267870e− 003

a2 −810.891960408735e− 003 −589.959234667101e− 003

a4 472.864253735594e− 003 733.064346527957e− 003

a6 −1.93944965262965e− 003 −300.482516229658e− 003

a8 3.25292595825168e− 006 1.09787705185421e− 003

a10 −3.69119792818096e− 009 −1.62099460118373e− 006

a12 1.86984573044179e− 012 1.70521201230316e− 009

a14 −3.65846582415599e− 015 −581.638219805724e− 015

a16 −7.55488718552041e− 018 2.02504177236703e− 015

a18 −29.9883009715888e− 021 5.22023202345821e− 018

a20 −111.264133545678e− 024 19.8898173991007e− 021

a22 −422.767245946025e− 027 74.1747256422476e− 024

a24 −1.62631077397138e− 027 282.210254943080e− 027

a26 −6.32297481792567e− 030 1.08761601566888e− 027
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Table III. First few coefficients for the eigenvectors v5 and v6.

Coefficients v5 v6

a0 64.6677714010751e− 003 25.0874901579561e− 003

a2 −348.890271989908e− 003 −180.067322612757e− 003

a4 691.590553351989e− 003 504.559934674806e− 003

a6 −599.004977171548e− 003 −692.260543633547e− 003

a8 192.324725052537e− 003 466.578934177618e− 003

a10 −633.579988524058e− 006 −124.277706948462e− 003

a12 832.065943847455e− 009 372.761193498578e− 006

a14 −825.610602969357e− 012 −439.108057967154e− 009

a16 143.872275976080e− 015 417.307708887440e− 012

a18 −1.19568775624226e− 015 −2.34433371048981e− 015

a20 −3.48623437668741e− 018 734.544959475480e− 018

a22 −13.0461452061164e− 021 2.29887772538821e− 018

a24 −48.7851623572161e− 024 8.52847800263557e− 021

a26 −185.850944617855e− 027 31.9454509242405e− 024
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Table IV. First few coefficients for the eigenvectors v7 and v8.

Coefficients v7 v8

a0 9.19765050162771e− 003 3.21219812264544e− 003

a2 −84.0111617684820e− 003 −36.1832476087941e− 003

a4 311.003322937772e− 003 169.403861559830e− 003

a6 −599.423409269805e− 003 −428.965133231587e− 003

a8 636.381163052443e− 003 636.544148893743e− 003

a10 −353.949032618667e− 003 −555.111858982462e− 003

a12 81.0252141424255e− 003 264.197488405026e− 003

a14 −223.065089704634e− 006 −53.2328830867823e− 003

a16 237.344951893137e− 009 135.428319681709e− 006

a18 −218.989961982175e− 012 −130.918067577922e− 009

a20 −35.9147894831927e− 015 118.691155485700e− 012

a22 −462.277048540968e− 018 39.5310741042795e− 015

a24 −1.50914392564148e− 018 295.379169415805e− 018

a26 −5.57355653972508e− 021 989.684359031189e− 021
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Table V. First few coefficients for the eigenvectors v9 and v10.

Coefficients v9 v10

a0 1.07522343804556e− 003 346.661990727125e− 006

a2 −14.5892806655314e− 003 −5.56281838967078e− 003

a4 83.7681182359883e− 003 38.2816528736560e− 003

a6 −266.921985849956e− 003 −148.918619346875e− 003

a8 518.013932645790e− 003 362.169449724903e− 003

a10 −628.794997076006e− 003 −572.770850244477e− 003

a12 467.435352356885e− 003 590.597547793815e− 003

a14 −195.102884267521e− 003 −383.787896145751e− 003

a16 35.1996995454345e− 003 142.994125609753e− 003

a18 −83.2331713482651e− 006 −23.4009021143565e− 003

a20 73.4641541750645e− 009 51.6872738576394e− 006

a22 −66.1406495808850e− 012 −41.8299333983849e− 009

a24 −33.0527088686279e− 015 37.7477344668050e− 012

a26 −190.629268922604e− 018 24.9953548059809e− 015
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CHAPTER IV

CONCENTRATION PROBLEM OVER DISJOINT INTERVALS

A. Introduction

It is important in communication theory to solve the concentration problem. There

are many different problems which fall into this category. In this chapter we shall

precisely study the problem to determine which bandlimited signals lose the smallest

fraction of their energy when restricted in a given time interval. Slepian et. al. in

their papers (see [46, 47, 51]) considered this problem for a connected symmetric time

and frequency interval. In their paper they obtained that for this problem the solution

actually correspond to the eigenfunction corresponding to the largest eigenvalue of

the integral equation
∫ 1

−1
sin c(x−y)
π(x−y)

ψ(y)dy = λψ(x), where |x| ≤ 1. A commuting

differential operator can be found for this integral operator and thus it is easy to

solve the problem for connected symmetric interval. However it turns out that for

disjoint interval cases the problem is more involved.

In this chapter we shall study the concentration problem for disjoint intervals. We

shall consider the problem of finding the bandlimited signals (for disjoint frequency

domains) which lose the smallest fraction of their energy when restricted in a given

connected and symmetric time interval.

Throughout this chapter we denote the Fourier transform pair as

G(ω) =

∫ ∞

−∞
g(t)e−iωtdt

and

g(t) =
1

2π

∫ ∞

−∞
G(ω)eiωtdω.
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We use Parseval’s Theorem to get 〈g(t), g(t)〉 = 1
2π
〈G(ω), G(ω)〉, that is

∫ ∞

−∞
|g(t)|2dt =

1

2π

∫ ∞

−∞
|G(ω)|2dω.

Suppose g(t) is a bandlimited signal, Fourier Transform of g(t) = G(ω) and

|G(ω)| = 0 when ω is outside E = [a1, b1] ∪ [a2, b2]. Then Bg = g and we want to

maximize

λ =
||DB(g)||2
∫ ∞

−∞
|g(t)|2dt

=

∫ c

−c

|g(t)|2dt
∫ ∞

−∞
|g(t)|2dt

, (IV.1)

where g(t) is a bandlimited signal, Fourier Transform of g(t) = G(ω) and |G(ω)| = 0

when ω is outside E = [a1, b1] ∪ [a2, b2]. Then

λ =
1

4π2

∫ c

−c
dt
∫

E
eiytG(y)dy

∫

E
e−ixtG(x)∗dx

1
2π

∫

E
|G(x)|2dx =

1

2π

∫

E
dx
∫

E
2 sin c(x−y)

(x−y)
G(x)∗G(y)dy

∫

E
G(x)G(x)∗dx

=

∫

E
dx
∫

E
sin c(x−y)
π(x−y)

G(x)∗G(y)dy
∫

E
G(x)G(x)∗dx

Here G(x) is an arbitrary function in L2(E). We will maximize λ in the above

expression. Observing ||G||2 = ||G∗||2 =
∫

E
G(x)G(x)∗dx, we can write

λ =

∫

E

dx

∫

E

sin c(x− y)

π(x− y)

G(x)∗

||G ∗ ||
G(y)

||G|| dy (IV.2)

If we denote A(x) = G(x)∗

||G∗|| and B(y) = G(y)
||G|| , then clearly ||A||2 = ||B||2 = 1. We

define

CB(x) =

∫

E

sin c(x− y)

π(x− y)
B(y)dy. (IV.3)

We shall consider the following problem:

Maximize

λ =

∫

E

A(x)CB(x)dx (IV.4)

under the condition ||A||2 = 1.
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To solve this variational problem we define (noting A(x)B(x) = A(x)A(x)∗ = ||A||2)

Ω(A) =

∫

E

A(x)CB(x)dx− ν(

∫

E

A(x)B(x)dx − 1)

=

∫

E

(CB(x) − νB(x))A(x)dx+ ν

where ν is the Lagrange multiplier. The Euler-Lagrange equation for this problem

will then yield

CB(x) − νB(x) = 0,

which gives
∫

E

sin c(x− y)

π(x− y)
B(y)dy = νB(x),

i.e.,
∫

[a1,b1]∪[a2,b2]

sin c(x− y)

π(x− y)
B(y)dy = νB(x), (IV.5)

where x ∈ E. Therefore to maximize λ in (IV.1) we must find the maximum eigen-

value ν for (IV.5). This is the Fourier Transform characterization of our problem.

For angular prolate spheroidal functions S0n(c, x) and λn(c) = 2c
π

[R
(1)
0n (c, 1)]2,

where R
(1)
0n (c, x) are radial prolate spheroidal functions and n = 0, 1, 2, . . . . Slepian

and Pollak defined in [46]

ψn(c, x) =

√

λn(c)

||S0n(c, t)||S0n(c, t).

We shall refer to this function as Slepian’s function. Slepian functions are studied

extensively in [46, 47, 48, 49, 50].

Proposition IV.1. Let {ψn(c, x)}∞n=0 be the Slepian’s functions. Then

sin c(x− y)

π(x− y)
=

∞
∑

n=0

ψn(c, x)ψn(c, y),

in L2((−1, 1) × (−1, 1)).
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Proof. Fix x ∈ (−1, 1). Then sin c(x−y)
π(x−y)

is a square integrable function with respect to

y. Therefore it can be represented as an expansion of {ψn(y)}∞n=0 as

sin c(x− y)

π(x− y)
=

∞
∑

n=0

cn(x)ψn(y), (IV.6)

and the cn(x)’s can be calculated as

cn(x) =

(∫ 1

−1

sin c(x− y)

π(x− y)
ψn(y)dy

)

/

(∫ 1

−1

|ψn(y)|2dy
)

.

On the other hand, Slepian’s functions {ψn(x)}∞n=0 are by definition normalized to

satisfy
∫ 1

−1

sin c(x− y)

π(x− y)
ψn(y)dy = λnψn(x),

and
∫ 1

−1

|ψn(y)|2dy = λn.

Hence

cn(x) = λnψn(x)/

∫ 1

−1

|ψn(y)|2dy = ψn(x).

This completes the proof.

B. Proof of existence and some properties

We consider symmetric disjoint intervals. For our convenience we consider J =

[a1, b1] ∪ [a2, b2] = [−2,−1] ∪ [1, 2]. We have the following problem

∫ −1

−2

sin c(x− y)

π(x− y)
f(y)dy +

∫ 2

1

sin c(x− y)

π(x− y)
f(y)dy = µf(x) (IV.7)

where x ∈ [−2,−1] ∪ [1, 2]. The integration on the left hand side defines an operator

from L2((−2,−1) ∪ (1, 2)) → L2((−2,−1) ∪ (1, 2)) as follows

K(f)(x) =

(∫ −1

−2

+

∫ 2

1

)

sin c(x− y)

π(x− y)
f(y)dy,
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with the kernel given by

Ker(x, y) =
sin c(x− y)

π(x− y)
.

Clearly Ker(x, y) is bounded (as |Ker(x, y)| = | sin c(x−y)
π(x−y)

| ≤ c
π
), and thus square

integrable. Moreover it is symmetric with respect to x and y. It follows from a

classical theorem in functional analysis that K is a compact symmetric operator (cf.

[23, 29]). Therefore K is a compact, symmetric operator from L2((−2,−1) ∪ (1, 2))

to L2((−2,−1)∪ (1, 2)). Furthermore, it possesses countably many eigenvalues which

can be ordered as

µ0 ≥ µ1 ≥ . . . µn ≥ µn+1 ≥ · · · → 0

and its orthonormal eigenfunctions is complete in L2((−2,−1) ∪ (1, 2)).

Proposition IV.2. K is positive definite.

Proof. Define an extension operator Ē : L2((−2,−1)∪ (1, 2)) → L2(−2, 2) as follows:

Ē(f)(x) =























f(x), x ∈ (−2,−1) ∪ (1, 2)

0, x ∈ (−1, 1)

Then

K(f)(x) =

∫ 2

−2

sin c(x− y)

π(x− y)
Ē(f)(y)dy,

and

〈K(f), f〉 =

(
∫ −1

−2

+

∫ 2

1

)

K(f)(x)f(x)dx =

∫ 2

−2

(
∫ 2

−2

sin c(x− y)

π(x− y)
Ē(f)(y)dy

)

Ē(f)(x)dx.

(IV.8)

It is well known that the kernel sin c(x−y)
π(x−y)

is positive definite over any connected sym-

metric interval, i.e.,

∫ 2

−2

(
∫ 2

−2

sin c(x− y)

π(x− y)
Ē(f)(y)dy

)

Ē(f)(x)dx ≥ 0.
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Hence we must have 〈K(f), f〉 ≥ 0, ∀f ∈ L2((−2,−1) ∪ (1, 2)) and 〈K(f), f〉 = 0

implies that Ē(f)(x) ≡ 0 where x ∈ [−2, 2]. That is, f(x) ≡ 0, x ∈ (−2,−1) ∪ (1, 2).

This completes the proof.

Suppose we are considering the interval E = [−b2,−a2] ∪ [a2, b2], where a2, b2 >

0. Let φn(x) and φm(x) be eigenfunctions of (IV.7) corresponding to two distinct

eigenvalues µn and µm. We define

Φi(x) =
√
µi

φi(x)

||φi(x)||L2(E)

, i = 0, 1, 2, · · ·

Then the following proposition follows easily.

Proposition IV.3.

∫

[−a2,−b2]∪[a2,b2]

Φn(x)Φm(x)dx = µnδmn.

Next we shall prove that {Φi(x)}∞i=0 are orthonormal in (−∞,∞). We extend

Φi(x), i = 0, 1, 2, · · · from E to (−∞,∞) analytically by using (IV.7) for the gener-

alized case.

Lemma IV.4. Suppose c1 ≥ c2 > 0. Then

∫ ∞

−∞
ρc1(t− u)ρc2(u− s)du = ρc2(t− s)

where ρc(τ) = sin cτ
πτ

.

Proof. It is clear that we can rewrite ρc(τ) = 1
2π

∫ c

−c
eiωτdω. Since for any c, ρc(τ)

is even, ρc(t − u) = ρc(u − t) = 1
2π

∫ c

−c
eiω(u−t)dω. If we take f(u) = ρc1(u − t) then

the Fourier transform is given by F (ω) = e−iωtχ(−c1,c1), where χ(a,b) is the character-

istic function of the interval (a, b). Then taking g(u) = ρc2(u − s) we have G(ω) =

e−iωsχ(−c2,c2). We use Parseval’s Theorem to get 〈f(u), g(u)〉 = 1
2π
〈F (ω), G(ω)〉. Us-
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ing c1 ≥ c2 > 0, we thus obtain

∫ ∞

−∞
ρc1(t−u)ρc2(u−s)du =

1

2π

∫ c2

−c2

e−iωteiωsdω =
1

2π

∫ c2

−c2

eiω(s−t)dω = ρc2(s−t) = ρc2(t−s).

We shall now prove the following proposition.

Proposition IV.5.
∫ ∞

−∞
Φn(t)Φm(t)dx = δmn.

Proof. We know that for all n and m, Φn(t), Φm(t) are solutions of

µf(t) =

∫

[−a2,−b2]∪[a2,b2]

ρc(t− s)f(s)ds, t ∈ [−a2,−b2] ∪ [a2, b2], (IV.9)

where ρc(τ) = sin(cτ)
πτ

= 1
2π

∫ c

−c
eiωτdω. Now using (IV.9) we obtain

∫ ∞

−∞
Φn(t)Φm(t)dt

=

∫ ∞

−∞

(

1

µn

∫

[−a2,−b2]∪[a2,b2]

ρc(t− s)Φn(s)ds

)(

1

µm

∫

[−a2,−b2]∪[a2,b2]

ρc(t− u)Φm(u)du

)

dt

=
1

µnµm

∫

[−a2,−b2]∪[a2,b2]

du

∫

[−a2,−b2]∪[a2,b2]

Φn(s)Φm(u)ds

∫ ∞

−∞
ρc(u− t)ρc(t− s)dt

Use Lemma IV.4 to obtain

∫ ∞

−∞
Φn(t)Φm(t)dt =

1

µnµm

∫

[−a2,−b2]∪[a2,b2]

du

∫

[−a2,−b2]∪[a2,b2]

Φn(s)Φm(u)ρc(u− s)ds

=
1

µnµm

∫

[−a2,−b2]∪[a2,b2]

Φm(u)du

∫

[−a2,−b2]∪[a2,b2]

ρc(u− s)Φn(s)ds

Finally using (IV.9) and Proposition IV.3 we obtain

∫ ∞

−∞
Φn(t)Φm(t)dx = δmn.

This completes the proof.
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C. Algorithm description

We consider disjoint interval problems. Let E be any bounded measurable set of

positive measure in [−1, 1]. Consider

∫

E

sin c(x− y)

π(x− y)
f(y)dy = µf(x). (IV.10)

For E not in [−1, 1], we may transform the problem into [−1, 1] by changing variable.

We may not find an equivalent differential operator, since the interval is irregular.

Suppose a solution is represented as an expansion of the Slepian’s eigenfunctions as

f(x) =
∞
∑

n=0

anψn(x). (IV.11)

Then using Proposition IV.1 and (IV.11) in (IV.10), we have

∫

E

∞
∑

n=0

ψn(x)ψn(y)
∞
∑

m=0

amψm(y)dy = µ
∞
∑

n=0

anψn(x).

or
∑

n

ψn(x){
∑

m

∫

E

ψn(y)ψm(y)dy}am = µ
∑

n

anψn(x)

Comparing the coefficients of ψn(x) on both sides, we get

∑

m

{
∫

E

ψn(y)ψm(y)dy}am = µan, n = 0, 1, 2, · · · (IV.12)

We define

d̃nm =

∫

E

ψn(y)ψm(y)dy (IV.13)

D̃ = (d̃nm)∞×∞,

and

Ã = (a0, a1, a2, · · · )T .
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Then (IV.12) can be represented as

D̃Ã = µÃ. (IV.14)

It is easy to see that (IV.12) is a eigenvalue problem of linear algebraic equations

system of infinite order. An approximate solution can be described as

fN(x) =
N−1
∑

n=0

anψn(x).

Its corresponding linear algebraic equations system would be

D̃N ÃN = µÃN , (IV.15)

where D̃N = (d̃nm)N×N and ÃN = [a0, a1, · · · , aN−1]
T .

D. Convergence analysis

It is clear that

|d̃nm| = |
∫

E

ψn(y)ψm(y)dy| ≤
√

∫

E

|ψn(y)|2dy
√

∫

E

|ψm(y)|2dy

≤
√

∫ 1

−1

|ψn(y)|2dy
√

∫ 1

−1

|ψm(y)|2dy =
√

λnλm.

Therefore

d̃2
nm ≤ λnλm, (IV.16)

where λi satisfies
∫ 1

−1
sin c(x−y)
π(x−y)

ψi(y)dy = λiψi(x), i = 0, 1, 2, · · · In [48] it is proved

that
∞
∑

i=0

λi = ∆ <∞ (IV.17)

and for m ≥ 2c
π

,

λm ≤
log+ c

π2 + 1

m− 2c
π

.
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where log+ c = max{log c, 0}. Another important tool is the Wielandt-Hoffman the-

orem as follows (see [60]).

Proposition IV.6. If C = A+B, where A, B and C are symmetric matrices having

eigenvalues αi, βi and γi respectively arranged in non-increasing order, then

∑

i

(γi − αi)
2 ≤ ‖B‖2

E,

where ‖ · · · ‖E refers to the Frobenius norm of matrices. For matrix A = (aij)m×n,

Frobenius norm is defined by ||A||Frob =
√

∑m
i=1

∑n
j=1 |aij |2.

Now we prove the following convergence theorem.

Theorem IV.7. Let µ
(N)
0 , µ

(N)
1 , · · · , µ(N)

n be the first n + 1 eigenvalues of (IV.15).

Then they converge as N → ∞. That is to say

lim
N→∞

µ
(N)
i = µi, i = 0, 1, · · · , n.

Proof. LetN andM be two non-negative integer, µ
(N)
i and µ

(N+M)
i , i = 0, 1, · · · , N−1

be the first N eigenvalues of D̃N and D̃N+M respectively. For convenience, we extend

D̃N to N +M rows and columns by zero. Denote the extension by D̃(N,M), i.e.,

D̃(N,M) = (d̃
(N,M)
ij )(N+M)×(N+M),

where

d̃
(N,M)
ij =











d̃ij, 0 ≤ i, j ≤ N − 1

0, N ≤ i or j ≤ N +M − 1.

Of course, µ
(N)
i , i = 0, 1, · · · , N − 1 are also the first N eigenvalues of D(N,M), and
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the remainders are zero. It follows from Proposition IV.6, (IV.16) and (IV.17) that

N−1
∑

i=0

|µ(N+M)
i − µ

(N)
i |2 ≤ ‖D̃N+M − D̃(N,M)‖2

E

=

N+M−1
∑

m=0

N+M−1
∑

n=N

d̃2
nm +

N−1
∑

n=0

N+M−1
∑

m=N

d̃2
nm

<

∞
∑

m=0

N+M−1
∑

n=N

d̃2
nm +

∞
∑

n=0

N+M−1
∑

m=N

d̃2
nm.

≤
∞
∑

m=0

N+M−1
∑

n=N

λnλm +

∞
∑

n=0

N+M−1
∑

m=N

λnλm

= 2∆
N+M−1
∑

n=N

λn

Fix ǫ > 0. Choose N in such a way that
∑∞

n=N λn <
ǫ

4∆
. The choice of such N is

possible as
∞
∑

n=0

λn <∞. Therefore we have ∀ǫ > 0, ∃N such that for all M > 0

N−1
∑

i=0

|µ(N+M)
i − µ

(N)
i |2 < ǫ

2
.

Then for any N1, N2 > N , |µ(N1)
i − µ

(N2)
i |2 < ǫ and hence {µ(N)

i }∞N=0 is a Cauchy

sequence for i = 0, 1, 2, · · · . This completes the proof.

Remark IV.8. The above deduction did not take into account the result that for any

fixed c, the λn(c), n = 0, 1, 2, · · · , form a positive sequence bounded away from 1 and

approaching 0 exponentially with n. This fact has been stated or used in a number

of papers (see [5, 6, 24, 25, 30, 36, 51, 52, 58]). So for sufficiently large N , µ
(N)
i is

actually rapidly converging to µi.

Remark IV.9. Letting M → ∞ we obtain from the proof of Theorem IV.7

N−1
∑

i=0

|µ(N)
i − µi|2 ≤ 2∆

∞
∑

n=N

λn.
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From [58] it follows that for a fixed c, and sufficiently large n, λn ∼ 1
e3

(

4
ec

(n + 1
2
)
)−2n−1

.

Therefore for large n λn <
1
e3

(

4n
ec

)−2n−1
. Choose n large enough so that 4n

ec
> 2. Hence

for sufficiently large n, λn <
1
e3

1
22n+1 . Hence

∑∞
n=N λn <

1
3e322N−1 , for sufficiently large

N . Therefore for sufficiently large N ,

N−1
∑

i=0

|µ(N)
i − µi|2 < 2∆

1

3e322N−1
.

This implies that the error of numerical eigenvalues decays at an exponential rate.

Remark IV.10. The convergence of the eigenvectors follows from the rapid decay of

the d̃’s and the perturbation theory of eigenvectors (see section 24 in Chapter II of

[60]). Let Ã
(i)
N and Ã

(i)
N+1 be two eigenvectors related to µ

(N)
i and µ

(N+1)
i respectively.

Then it follows from arguments as in [60] that

‖Ã(i)
N+1 − Ã

(i)
N ‖2 ≤ (N + 1)3/2

√

√

√

√2∆λN

∞
∑

n=N

λn.

So it follows from Remark IV.9, that for sufficiently large N

‖Ã(i)
N+1 − Ã

(i)
N ‖2 < (N + 1)3/2 1

e322N

√

2∆

3
.

Therefore the error of numerical eigenvectors decays at an exponential rate.

E. Numerical results

We took E = [−1,−0.5]∪ [0.5, 1], N = 8 and solved (IV.15) with Matlab7. Our max-

imum eigenvalue is µ0 = 0.2638, its corresponding eigenfunction is φ0 = 0.9991ψ0 +

0.042ψ2; the second largest eigenvalue is µ1 = 0.0542, its corresponding eigenfunction

is ψ1; the other eigenvalues are of below 10−4 degree. We computed µ0φ0(x) at

x = −0.9,−0.8,−0.7,−0.6,−0.5, 0.5, 0.6, 0.7, 0.8, 0.9,
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and got data as follows.

0.1305, 0.1341, 0.1374, 0.1402, 0.1426, 0.1426, 0.1402, 0.1374, 0.1341, 0.1305.

Then we computed [
∫ −0.5

−1
+
∫ 1

0.5
] sin(x−y)

π(x−y)
φ0(y)dy at

x = −0.9,−0.8,−0.7,−0.6,−0.5, 0.5, 0.6, 0.7, 0.8, 0.9,

and got data as follows.

0.1305, 0.1341, 0.1373, 0.1402, 0.1426, 0.1426, 0.1402, 0.1373, 0.1341, 0.1305.

The values of µ1φ1 at those points are

−0.0146,−0.0132,−0.0118,−0.0102,−0.0086, 0.0086, 0.0102, 0.0118, 0.0132, 0.0146.

The values of [
∫ −0.5

−1
+
∫ 1

0.5
] sin(x−y)

π(x−y)
φ1(y)dy at those points are

−0.0147,−0.0132,−0.0118,−0.0102,−0.0086, 0.0086, 0.0102, 0.0118, 0.0132, 0.0147.

The numerical experiments show that our algorithm converges rapidly at high

accuracy.
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CHAPTER V

CONCLUSIONS

In our work we have found a complete set of eigenfunctions for the superradiance

problem in three dimensions. The commuting differential operator obtained for the

radial part for three-dimensional problem is significant as this can be generalized

easily for higher dimensions. We have also studied many interesting properties of this

differential operator. As we have already seen the three dimensional superradiance

problem actually reduces to solving some integral equation of the radial part which

has separable kernel. Thus only one (up to multiplicity) eigenfunction corresponds

to non-zero eigenvalue. All the rest of the eigenfunctions correspond to the zero-

eigenvalue of the problem. We extracted a complete set of eigenfunctions from this

null set of the radial integral operator by finding a differential operator that commutes

with the integral operator. However it is clear that this differential operator is non-

unique. In our case we took p(r) = 1− r2 and chose q(r) accordingly. The reason for

this is twofold. First it keeps our calculations as simple as possible, and second, our

differential operator is surprisingly similar (though not identical) with the differential

operator obtained by Slepian [49] with a different kernel integral equation in two

dimensions. But we could as well have chosen a different p(r) as long as it is sufficiently

smooth and p(1) = 0. Correspondingly it is essential to modify q(r) as well. A detailed

study of the dependence of q(r) over p(r) has been given in Chapter III, section D.

However the uniqueness of the commuting differential operator for the superradiance

kernel restricted in one dimension [46] is established in Chapter III, section F. Indeed

without doing any computation it follows from the main result of that section.

In our problem we considered the integral over the unit ball with center at the

origin. This can be generalized to any ball in 3-dimension without much difficulty.
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However, there are still some questions which are to be addressed. For instance

the generalization that we have provided is a natural generalization when we view

the series expansion of the kernel for the three-dimensional superradiance problem

sin(c|x − y|)
c|x − y| = 4π

∞
∑

n=0

n
∑

m=−n

jn(cr)jn(cr′)Ynm(ξ)Y ∗
nm(η),

where x = (r, ξ) and y = (r′, η) are in R
3. That is in our work we generalized the

series expansion for the kernel. In near future we want to study the superradiance

problem with kernel

sin(c|x − y|)
c|x− y|

where x,y ∈ R
n for any dimension n and find a complete set of eigenfunctions for that

problem. Also it might be useful to find a self adjoint operator in higher dimension

that commutes directly with the original integral operator (i.e., we do not need to

derive an equation for the radial part of the eigenfunctions). In that case we can

carry out an analysis similar to [18] or [57] to obtain a complete set of solutions for

the original problem.

The eigenfunctions that appeared as the solution of the differential equation have

many interesting properties. They are complete in L2(0, 1) and with the increasing

eigenvalue the number of zeros in (0, 1) for the corresponding eigenfunction also in-

creases. The difference between the number of zeros in (0, 1) of any two successive

eigenfunction is exactly 1. Other properties of the solution worth further investiga-

tion. Another interesting further research may be carried out on the properties of the

eigenvalues of the differential equation related to the three-dimensional superradiance

problem. More research is needed for better approximation of these eigenvalues as

the truncation of continued fraction is not always very effective for computational

purpose. It will be useful if a convergence rate formula for the eigenvalues can be
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derived.

It will be useful to consider the three dimensional problem over different domains.

The domains can be disconnected set, topological groups etc. Even the domain may

be non-symmetric. It will be a challenging problem to extend our results for such

generalized domains.

In Chapter IV, we mostly worked over the union of disjoint intervals E. In fu-

ture we want to consider any set E ⊆ [−1, 1], having positive measure. Numerical

methods may not be useful in that case and we need to develop a technique of finding

analytic eigenfunctions. A problem similar to the higher dimensional generalization

of Slepian’s original concentration problem has many physical applications. For ex-

ample, they are used in the superradiance problem in quantum optics (see [38, 39]).

In future we want to generalize the concentration problem over higher dimensions.

This generalization will be useful for physical applications.
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