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For ferromagnets with exchange, dipolar interaction, and uniaxial anisotropy, by both analytic methods and
micromagnetic simulations we study Néel domain walls in thin ferromagnetic strips of finite width. Compari-
son of the numerical results with the analytics yields parameter values that had been unspecified by the
analytics, and determines the modifications needed to describe the magnetization both near the strip center and
near the boundaries. With no uniaxial anisotropy, the domain wall center can be described by the same
hyperbolic secant form as with uniaxial anisotropy, but the effective anisotropy constant must now be thought
of as increasing with increasing film thickness and decreasing with increasing film width.
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I. INTRODUCTION

Domain walls in ferromagnetic thin films have been a
subject of extensive research for the last 70 years.1 Among
many types of domain walls in thin ferromagnetic films, two
are of particular interest to both theoreticians and
experimentalists—the Néel wall �which, in the absence of
perpendicular surface anisotropy, applies to the very thinnest
films� and the Bloch wall. For the Néel wall,2,3 where the
magnetization lies in-plane, the initial descriptions of the
magnetization distribution included only exchange and
uniaxial anisotropy. The first attempt to treat the dipole-
dipole interaction considered it as a perturbation4; however,
the results were inconsistent with numerical simulations,5

which revealed that the domain wall exhibits a logarithmic
falloff of magnetization far away from domain wall center.
Later, again for systems with exchange, uniaxial anisotropy,
and dipolar interaction, it was shown6–8 that such logarithmic
behavior, originating from the presence of long-range dipole-
dipole interaction, can be obtained analytically by minimiz-
ing the domain wall energy, demonstrated in more detail in
Refs. 9 and 10. A typical geometry, which will also be used
in this work, is a Néel domain wall in a ferromagnetic strip
that is infinite along y, has a half-width w along x, and a
thickness h along z. The domain wall is centered in the
middle of the strip �x=0�.

The present work extends the analysis for samples of fi-
nite width and thickness, both with and without uniaxial an-
isotropy and directly compares the results of an approximate
analytical analysis and of our micromagnetic simulations,
performed with the help of our micromagnetics package
RKMAG.19 More specifically, we address the issue of both the
asymptotic behavior of the domain wall far from the center
as well as near the center. As a result we establish that an
asymptotic analytical formula can be indeed correct far from
the wall, but not too near the edge. Near the center one can
simply assume that in addition to uniaxial anisotropy an ef-
fective shape anisotropy field is present, due to the dipole-
dipole interaction. For numerical calculations we will take
material parameters appropriate to Permalloy-exchange stiff-
ness A=1.3�10−6 erg/cm, saturation magnetization Ms
=795 emu/cm3, and zero anisotropy constant K, unless oth-
erwise noted.

II. ANALYTICS

Let us first consider the problem of the Néel domain wall
in an infinite thin ferromagnetic film lying in the xy plane in
the presence of exchange, the dipole-dipole interaction, and
easy uniaxial crystalline anisotropy along y. Let the sample
thickness h be much smaller than both the exchange length le
and the anisotropy length la,

le =� A

2�Ms
2 , la =�A

K
,

for permalloy le=5.723 nm and la is very large. �Shortly we
will consider an effective anisotropy due to the short-range
part of the dipole-dipole interaction.� Then the magnetization
of the sample lies entirely in-plane, due to the dipole-dipole
interaction, and is approximately uniform along v�x�
=My�x� /Ms. Therefore the magnetization M� in the film can
be described by the two dimensionless functions u�x�
=Mx�x� /Ms and v�x�=My�x� /Ms, with u�x�2+v�x�2=1.

To obtain the magnetization distribution one minimizes
the magnetostatic energy functional with the boundary con-
ditions v����= �1, u�0�=1. The first condition specifies a
magnetization reversal across the domain wall, and the sec-
ond condition centers domain wall at x=0. The energy
functional11 in the limit of a thin sample, with the account of
translation symmetry along the y axis, can be simplified to10

E�u� =
Ah

2
�

−�

+� ��du�x�
dx

	2
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dx

	2
dx

−
h2Ms

2

4
�

−�

+� �
−�
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�x − x� − i0�2

+
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�x − x� + i0�2	u�x�u�x��dxdx� + Kh�
−�

+�

u�x�2dx ,

�2.1�

where K is the anisotropy constant. In this equation the first
term is due to exchange, the second term is due to the long-
range part of the dipole-dipole interaction, and the last term
is due to in-plane uniaxial �crystalline� anisotropy in the di-
rection perpendicular to the domain wall.
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In this section we are interested in the “tail” region out-
side the domain wall center, where �v�x���1 and
�dv�x� /dx�2� �du�x� /dx�2. Thus10

E�u� �
Ah

2
�

−�

+� �du�x�
dx

	2

dx − h2Ms
2�

−�

+� �
−�

+� � 1

�x − x� − i0�2

+
1

�x − x� + i0�2	u�x�u�x��
4

dxdx� + Kh�
−�

+�

u�x�2dx .

�2.2�

The magnetization distribution, which minimizes the energy
functional, can be obtained using the variational method,
subject to the constraint that Mx�0�=Ms. Because our model
does not describe the central part of the wall accurately, di-
rect application of this constraint will give an incorrect nor-
malization to u�x�. Therefore we introduce the parameter �
=u�0�, which will be obtained from the best fit of analytic
solution to numerical data, or from matching the analytic
solutions for the central and the tail regions. To deal with
normalization, we therefore introduce a Lagrange multiplier
� via

�E�u� = �
−�

+� �− A
d2u�x�

dx2 −
hMs

2

2
�

−�

+� � 1

�x − x� − i0�2

+
1

�x − x� + i0�2	u�x��dx� + Ku�x�
�u�x�dx

− hMs
2��u�0� . �2.3�

At the energy minimum �E�u�=0 for any small �u�x�. Thus
we obtain the equation for the magnetization distribution as
follows:

− A
d2u�x�

dx2 −
hMs

2

2
�

−�

+� � 1

�x − x� − i0�2

+
1

�x − x� + i0�2	u�x��dx� + Ku�x� = hMs
2���x� .

�2.4�

Here we employ the Dirac delta function ��x�. Equation �2.4�
greatly simplifies in the Fourier representation, with ũ�q�
=−�

+�u�x�eiqxdx,

�2lex
2

h
q2 + �q� +

2lex
2

hla
2 	ũ�q� =

�

�
. �2.5�

The solution in the coordinate representation,

u�x� =
�

�2�
0

� cos�qx�
	laq2 + �q� + 	/la

dq, 	 =
lex
2

lah
, �2.6�

where 	 is a dimensionless parameter. �For our permalloy
calculations, 	 is determined by dipole-induced shape aniso-
tropy, and is on the order of 0.1.� This integral can be ex-
pressed in terms of sine and cosine integrals.

For now, we are interested only in the tail of the domain
wall. The corresponding values of x are of the order of la, so
the values of q that provide the main contribution to the

integral �2.6� are of the order of 	 / la. Performing the inte-
gration for 	�1 one obtains a very good approximation for
u�x� as follows:

u�x� =
�

�2�cos�	
x

la
	ci�	

x

la
	 + sin�	

x

la
	si�	

x

la
	
 ,

�2.7�

where ci�x�=x
��cos t / t�dt is the cosine integral, and si�x�

=x
��sin t / t�dt is the sine integral.
Let us discuss the asymptotic behavior of the solution. For

large x / la �the “far tail”�, Kronmüller found that u�x� can be
approximated by power law dependence,12 or as follows in
this case from Eq. �2.7�,

u�x → �� �
�

�2	2

la
2

x2 . �2.8�

For x
 la �the “near tail”�, Eq. �2.6� can be approximated as

u�x� �
�

�2�const − ln�	

2

x

la
	
 . �2.9�

Thus in the near tail, by Eq. �2.9� Mx should display a loga-
rithmic decay as x increases, and in the far tail by Eq. �2.8�,
Mx should display an inverse square dependence on x.

In a ferromagnetic strip of finite width the integral �2.6�
should have a cutoff for small q. For large enough la the last
term in the denominator of Eq. �2.6� plays exactly the same
role as the proposed cutoff. Therefore we propose that the
sample size can be accounted for by renormalizing la. In the
absence of crystalline anisotropy la should approximately
equal the half width w. The presence of crystalline aniso-
tropy should decrease la. We propose therefore a simple phe-
nomenological equation for the renormalized anisotropy
length l� entering Eq. �2.6� in place of la,

1

l�
�

1

w
+

1

la
, �2.10�

where w is the half width.

III. MICROMAGNETICS

Analytical theory gave us a number of important clues to
the asymptotic behavior of the magnetization, but so far of-
fered little indication of how it depends on the parameters of
a finite width sample, much of such dependence being con-
tained in the dimensionless parameter �. We attempt to gain
an additional insight by comparing Eq. �2.6� with micromag-
netic calculations performed using our RKMAG code.19 We
take the sample to be infinite along y, with the other param-
eters within physically acceptable ranges: for the half width
w we chose values between 75 and 5000 nm, and for the
thickness h we chose values between 3 and 40 nm, which is
below the critical thickness at which the Néel wall to Bloch
wall transition occurs. As noted above we take material pa-
rameters appropriate to permalloy, unless otherwise noted. In
each calculation we obtain the equilibrium configuration us-
ing the relaxation method,13 followed by a Lyapunov14 local
stability analysis to confirm the convergence. Since we dis-
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cretize the magnetic system by representing it as a large
number of uniformly magnetized parallelepipeds, we test the
discretization parameters for convergence by halving the par-
allelepiped size along any given direction. For the param-
eters above we obtain consistent, discretization-independent
results for parallelepipeds that are 4 nm along x, 4 nm along
y, and no more than 7.5 nm along z. As often done in nu-
merical micromagnetics, free boundary conditions are imple-
mented at the sample’s boundaries.

The first calculation neglects uniaxial anisotropy �K=0�,
so that the domain wall is limited by the physical boundaries.
The numerically obtained magnetization profile, given in
Fig. 1, shows the presence of three distinctive regions, which
we denote as “center”, near tail, and “edge” �the region
where boundaries play a significant role�.

In the central region, which corresponds to x
100 nm in
Fig. 1, Eq. �2.6� overestimates u�x�. This is because for K
=0 the typical fitted values of � are of order 0.2, which is
about 20% of the analytical prediction. This disagreement
could have been anticipated since the assumption u�x��1 is
clearly violated. Thus � cannot be obtained from u�0�=1,
but rather by stitching together the solutions in the “central”
and tail regions.

We can modify the analytical approach by taking into
account that in this case the domain wall formation is due to
the competition of exchange and the effective shape aniso-
tropy, Therefore we assume the form15,16 to be the same as in
the anisotropy dominated case u�x�=sec h�x /�� �an example
of a numerical fit is shown in Fig. 2�, however, � is related
not to the uniaxial anisotropy length, but, �� le

�1 /�, where
effective shape anisotropy field Hani=�My and � is a dimen-
sionless function of the sample geometry. One can make a
more precise estimate of � by studying how the shape aniso-
tropy field depends on h and w. The magnetic field along y,
produced in a uniformly magnetized magnetic prism that is
infinite in the y direction and averaged along the x-z plane, is
given by17

� �
1 − p2

2p
ln�1 + p2� + p ln p + 2 arctan�1

p
	p =

h

2w
.

�3.1�

Assuming that h�w, i.e., the sample is thin, we can expand
� as ����0�+ �d��h� /dh�h. Here ��0�=const, the leading
term in d��h� /dh is proportional to 1 / w and �� h / w , so
that �� le

�w /h.
Returning to Fig. 1 and K=0, we see that in the near tail

region the magnetization profile falls off logarithmically,
which is consistent with Eq. �2.9�. The far tail region de-
scribed by Eq. �2.8� does not occur. Thus, near the edge of
the sample Eq. �2.6� predicts a logarithmic or slower falloff
of the magnetization, whereas the numerics gives a falloff
that is definitely faster than a logarithm of x. This is not
surprising, since the formalism was developed for an infinite
sample and nonzero uniaxial anisotropy, and thus neglected
edge effects.

For nonzero K the situation changes. If the anisotropy
length is much smaller than the sample size, then edge ef-
fects are irrelevant. As shown in Fig. 3, the domain wall
behavior outside of the central region can be very well de-
scribed by Eq. �2.6�, with the magnetization falloff as 1 /x2,
rather than logarithmic, for x�0.5l�. The anisotropy then
also defines the domain wall parameters � and l�.

Because the anisotropy-dominated regime has been stud-
ied extensively,15 we proceed to determine the contribution
of the dipole-dipole interaction to domain wall parameters in
the central and logarithmic tail regions. The sample has to be
relatively wide or thin in order to observe the logarithmic
asymptotics. Otherwise, if le

2�wh, then most of the magne-
tization profile will be exchange-dominated with u�x�
=sec h�x /��. With this knowledge we proceed to fit the nu-
merically obtained u�x�, for different sets of parameters
�w ,h ,A ,Ms�, to the following function:

u = sec h� �x − x0�
�

	, x 
 xc,

FIG. 1. Micromagnetic result and logarithmic fit u�x�
=a ln�x /b� for the following parameters: no anisotropy, A=1.3
�10−6 erg /cm, Ms=795 emu /cm3, w=1000 nm, h=5 nm.

FIG. 2. Micromagnetic result and u�x�=sec h�x /�� fit, central
portion of the domain wall, no anisotropy, A=1.3�10−6 erg /cm,
Ms=795 emu /cm3, w=1000 nm, h=5 nm, �=110 nm.
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u = a ln��x − x0�/l��, xc 
 x 
 xe. �3.2�

Here a is the normalization constant, l� determines the speed
of logarithmic falloff, � is the domain wall center half width,
x0 is the position of the domain wall, and xc and xe define the
region where the logarithmic approximation is valid. All
these variables are fitting parameters. The following con-
straints are employed: xc must be relatively small since it
separates the central and near tail regions; xe must be close to
w, since xe separates the tail and edge regions; and x0 should
be 0 according to Eq. �2.6�. A logarithmic dependence is
used instead of Eq. �2.6� since, as was shown earlier, only in
a logarithmic regime Eq. �2.6� is applicable since then edge
effects can be neglected and u�1.

We start with the following parameters: A
=1.3·10−6 erg /cm, Ms=795 emu /cm3, h=12 nm, and w
=500 nm. Then we successively adjust each of the param-
eters, while keeping the others fixed:

�a� A is changed from 1.3�10−6 to 3.6�10−6 with a step
size of 10−7 erg /cm

�b� h is changed from 3 to 38 with a step size of 0.5 nm.
�c� Ms is varied from 795 to 525, with a step size of

15 emu /cm3.
�d� w is varied from 250 to 1350, with a step size of 50

nm.
The resulting equilibrium magnetization is then fitted us-

ing Eq. �3.2�. As a result, the behavior of �, a, and l� can be
analyzed. Unfortunately, since the number of fitting param-
eters is relatively large, such methods as
Levenberg-Marquardt18 fail to lead to a global minimum.
Moreover, because there is only a relatively small difference
in quality of fit between the global and local minima, nu-
merical uncertainty in the equilibrium configuration can eas-
ily cause the global and local minima to interchange. To sort
this out, we employed a Monte Carlo method and obtained a

number of local minima. Grouping them together shows the
relative fitting error. For example, Fig. 4 shows a linear de-
pendence of l� on w. Since the global minimum gives a sig-
nificantly better correlation between the data and the fitting
function than other minima, we can form a conclusion based
solely on this graph.

Figure 5 shows the dependence of a on le. There are a
number of minima with similar correlations between the fit
and the given data set; by performing numerous fittings we
conclude that despite the large fitting error of about 14%, the
fitting parameters tend to group together and yield a linear
dependence. In another case, shown in Fig. 6, a 5% or so
lower rms between the data and the fit can be obtained if c
=−0.42 in �=�0+ahc. However, c=−0.5 makes more sense
from a physical point of view, since c=−0.42, unlike

FIG. 3. Micromagnetic result, logarithmic fit of the logarithmic
tail section �u�x�=a ln�x /b� ,a=−0.3,b=250 nm� and “analytical”
�la=150 nm,�=0.5� fit of the entire domain wall, Hani=200 Oe,
A=1.3�10−6 erg /cm, Ms=795 emu /cm3, w=1000 nm, h
=5 nm.

FIG. 4. Fitted value of la �logarithmic fit� as a function of w,
A=1.3�10−6 erg /cm, Ms=795 emu /cm3, h=12 nm.

FIG. 5. Fitted value of a logarithmic fit as a function of lex, h
=12 nm, w=500 nm. A is changed from 1.3�10−6 to 3.6�10−6

with a step 10−7 erg /cm, experiment repeated twice with different
values corresponding to different local minima. Alternatively, Ms is
varied from 795 to 525, step size 15 emu /cm3.
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c=−0.5, would require the presence of significant nonzero
�0. However, the fitting error for c=−0.5 is obviously large.

As a result of the numerical computations we were able to
determine the following dependences:

u � sec h�� h

w

x

le
	, x 
 xc,

u �
le

�wh
ln� x

w
	, xc 
 x . �3.3�

Thus x0 is approximately 0, as required by the sample’s sym-
metry. Expression for xc can be obtained by stitching the
above two solutions together.

We see that �� le
�w /h, which agrees well with our ana-

lytical interpretation of the dipole field as a shape anisotropy
field in this region. We find that in Eq. �2.9� one can indeed
employ the effective anisotropy length l��w and a compari-
son to the numerical results reveals the values of dimension-
less constants �=−�2�e , C=ln�	 /2�.

IV. SUMMARY

Using both analytic and numerical methods we have stud-
ied the behavior of Néel walls in thin ferromagnetic strips
subject both to exchange and the dipolar interaction with
negligible uniaxial anisotropy. This problem is of interest
because of the unusual logarithmic long-range tails that oc-
cur, and because it is relevant to permalloy.

Our studies establish that
�a� Equation �2.5� describes the magnetization profile of

the Néel domain wall sufficiently far away from the domain
wall center. When the anisotropy length la is significantly
greater than the sample width w, then w should be used in
place of la. Although we were not able to analytically iden-
tify the coefficients involved in Eq. �2.10�, we have shown
numerically that it corresponds to a logarithmic dependence
of the form u��le /�wh�ln�x /w�, except for a small region
near the boundary where edge effects cannot be neglected.

�b� In the domain wall center the same formula applies for
both dipole-dipole and anisotropy-dominated domain walls.
However, for the dipole-dipole dominated case, the shape
anisotropy field replaces the uniaxial anisotropy field and �
� le

�w /h.
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