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ABSTRACT 

 

The Role of the TM2-HAMP Junction in Control of the Signaling State of the Aspartate 

Chemoreceptor of E. coli. (August 2009) 

Gus Alan Wright, B.S, University of Alabama at Birmingham 

Chair of Advisory Committee: Dr. Michael D. Manson 

 

The mechanism of allosteric coupling between the external ligand-binding 

domain and the internal signaling domain of bacterial chemoreceptors is poorly 

understood. Genetic, biochemical, and biophysical evidence suggests that 

transmembrane helix 2 (TM2) undergoes a piston-like displacement of approximately 1-

3 Ångstroms toward the cytoplasm upon the binding of aspartate to the Tar receptor. The 

signal is then transmitted to the cytoplasmic signaling domain via the HAMP domain, a 

conserved motif found in all methyl-accepting chemotaxis proteins (MCPs) and most 

histidine protein kinases (HPKs). HAMP forms a parallel four-helix bundle consisting of 

a dimer of two amphipathic helices (AS1 and AS2) connected by a flexible linker.  

The MLLT sequence between residues Arg-214, at the end of TM2, and the 

conserved residue Pro-219, at the beginning of AS1 of the HAMP domain (the TM2-

HAMP junction), is predicted to be able to form a helical extension of TM2.  We 

hypothesized that perturbing the native secondary structure and/or the length of the 

TM2-HAMP junction would disrupt the ability of HAMP to communicate the input 

signal from TM2 to the kinase-control domain. To test this hypothesis, we designed two 
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experiments. First, constructs were made in which 1 to 3 Gly residues were inserted 

between T218 and P219. Second, Tar variants were constructed in which 1 to 9 Gly 

residues were inserted between R214 and P219.  The results suggest that increasing the 

length and flexibility of the TM2-HAMP connection tends to uncouple signal 

propagation between the TM2 and the HAMP elements and suggests that HAMP alone 

causes an inhibitory effect on the cytoplasmic signaling domain.  

To determine whether the predicted helical register of the MLLT sequence is an 

important component of the propagation of the transmembrane signal from TM2 to the 

HAMP domain, we added and subtracted helical residues to the MLLT sequence.  The 

results suggest that helical register and length of the TM2-HAMP junction are essential 

for optimal receptor function. 
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CHAPTER I 

INTRODUCTION 

 

Escherichia coli cells are motile and respond to a plethora of environmental stimuli 

Escherichia coli is a gram-negative, rod-shaped enteric bacterium that is 2-4 µm 

long and 0.7 µm wide. Locomotion through liquid or semi-solid media is driven by the 

rotation of 4-8 peritrichous flagella. Counterclockwise rotation of the flagella results in 

the formation of a left-handed helical bundle of flagellar filaments (1). This bundle 

propels the cell forward in a “run,” at speeds of up to 40µm/s. Clockwise rotation of the 

flagella results in the dissociation of the bundle and a rapid, random reorientation of the 

cell, called a “tumble” (1). In a homogeneous liquid environment, E. coli cells alternate 

between intervals of running of several seconds interspersed with shorter intervals of 

tumbling. This motion generates a three-dimensional “random walk” (2). Modulating the 

CW/CCW bias of the flagellar motors allows the cell to move toward favorable or away 

from unfavorable environmental conditions, respectively.  

When a cell moves toward a favorable environment, tumbling (CW rotation) is 

suppressed. Since the reorientation of a tumbling cell in three dimensional space is 

random, the net movement up or down an attractant or repellant gradient is termed a 

“biased random walk” (2) (Figure 1). 

 E.coli cells move up an increasing gradient of attractant and down a decreasing 

gradient of repellent. This behavior is called chemotaxis.  In E.coli, there are four  

___________  
This dissertation follows the style of Biochemistry. 
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Figure 1.  Chemotaxis of E.coli in a gradient of chemoeffector.  Behavior of an E. coli 
cell in an isotropic environment (left) and in a gradient of attractant (right). In both 
cases the cell swims in a relatively straight line (runs), punctuated by transient and 
stochastically distributed three-dimensional reorientations (tumbles). The result is a 
three-dimensional random walk. In the presence of attractant, the cells suppress the 
probability of tumbling and thereby increase the time spent in a run as the cell moves 
toward higher concentrations of attractant. The cells exhibit a biased random walk as 
they migrate toward increasing concentrations of attractant.  
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transmembrane methyl-accepting chemotaxis proteins (MCPs):  the serine receptor 

(Tsr), the aspartate/maltose receptor (Tar), the dipeptide/thymine receptor (Tap), and the 

ribose/galactose/glucose receptor (Trg) (3-8). Aer, which is not methylated, mediates 

redox chemotaxis (9-11). Aspartate and serine bind directly to Tar and Tsr, respectively. 

In contrast, maltose, ribose, galactose, glucose, and dipeptides first bind to their cognate 

periplasmic binding proteins, which then interact with the MCPs. L-leucine and indole 

are sensed as repellents by Tsr, whereas Ni2+ and a few other divalent cations are sensed 

as repellents by Tar (5, 12, 13).    

  

E. coli chemoreceptors have a defined transmembrane architecture  

Tar and Tsr exist as homodimers and have five distinct functional domains (14) 

(Figure 2). The periplasmic sensing domain is composed of a four-helix bundle (α1-4) 

that binds attractants at the dimer interface (15-17). The transmembrane region anchors 

the receptor to the membrane and serves as a conduit for the signal generated in the 

periplasm to traverse the membrane to the cytoplasm. Transmembrane region one (TM1) 

anchors the receptor in the membrane and stabilizes the homodimer (18). 

Transmembrane region two (TM2) is more dynamic, and it transfers the signal from the 

periplasm to the cytoplasm. The HAMP (Histidine kinase, Adenylate cyclase, Methyl –

accepting chemotaxis proteins, Phosphatase) domain is a cytoplasmic extension of TM2 

that is composed of two amphipathic helices (ASI and AS2) connected by a 14-residue 

linker (19, 20). Adjacent to the HAMP domain is the cytoplasmic domain which consists   
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Figure 2. The chemoreceptor dimer.   A ribbon structure (left) and a cartoon (right) 
depict the three-dimensional structure of a chemoreceptor homodimer. The modules of 
the receptor (transmembrane-signaling, signal-conversion, and kinase-control) are 
indicated on the far left. The functional domains/regions within the modules are 
indicated in the middle. The transmembrane region is composed of TM1 and TM2. The 
important functional features of the receptor are indicated at the right.  The cytoplasmic 
domain is approximately 200Å in length.   
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of the adaptation and signaling domains.  The cytoplasmic domain is an extended four-

helix coiled coil composed of the CD1, CD2, CD1’, and CD2’ helices. The adaptation 

domain contains four glutamyl residues that are substrates for adaptive methylation. The 

highly conserved region at the distal tip of the four-helix bundle binds the CheW 

coupling protein and the CheA kinase (21-24). The extreme C-terminal tail of the 

receptor is flexible and ends in an NWETF sequence that binds the proteins that carry 

out adaptive methylation, CheR and CheB (25). The Tap and Trg chemoreceptors have 

the same structure, except that they lack the NWETF sequence (25). Therefore, Tsr or 

Tar must be expressed in the cell for Tap and Trg to mediate chemotaxis.  

Chemoreceptors function in higher order oligomers. The receptor homodimers 

form trimers of dimers that are stable in the presence of CheA and CheW (22, 26-31). 

These trimers of dimers can be composed of different types of receptor homodimers (27-

29, 32). In the presence of CheA and CheW, the trimers of dimers form clusters near the 

poles of the cell that contain at least some of all six of the soluble chemotaxis proteins 

(33-37). These higher-order arrays are proposed to be responsible for the approximately 

35-fold amplification of an attractant response (38). 

 

A phosphorelay controls flagellar rotation and receptor adaptation 

The response regulators CheY and CheB are substrates for CheA. CheA transfers 

a phosphoryl group to Asp-57 on CheY, and CheY-P binds with high affinity to the FliM 

protein in the flagellar basal body (39-44). When FliM binds enough CheY-P there is a 

high probability of CW rotation (45, 46). The transition from CW to CCW rotation 
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requires less than a 1 µM change in intracellular CheY-P levels(47). When attractant 

binds to a chemoreceptor, the kinase activity of CheA is inhibited, thereby decreasing 

the intracellular levels of CheY-P. This results in a decreased occupancy of FliM by 

CheY-P and CCW rotation of the flagellum. Although CheY-P spontaneously 

dephosphorylates, the CheY-specific phophatase CheZ accelerates this process to ensure 

that CheY-P levels change rapidly in response to an attractant stimulus (44, 48-50) 

Spatial chemical gradients are detected by a temporal mechanism that compares 

the current ligand occupancy to that of the ligand occupancy a few seconds earlier (51). 

This temporal comparison of the chemical gradient serves as a form of memory for the 

cells and is referred to as adaptation. Adaptation is mediated by the CheB methylesterase 

and the CheR methyltransferase, whose substrates are residues Glu 295, 302, 309, and 

491. The glutamyl residues at positions 295 and 309 are originally translated as 

glutaminyl residues. CheR constitutively methylates these Glu residues (52), whereas 

phosphorylated CheB continually removes the methyl groups and deamidates the 

glutaminyl residues at positions 295 and 309 (53, 54). Once attractant binds the receptor, 

the CheB-P level decreases, which results in an overall net increase in receptor 

methylation that restores the ability of the ligand-bound receptor to stimulate CheA 

activity. This increase in methylation allows the cells to return to their normal run-

tumble bias even though attractant is still present (55, 56). A schematic of the 

chemotaxis phosphorelay is depicted in Figure 3. 
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Several structural modules regulate chemoreceptor kinase-stimulating activity 

 Several structural elements of the chemoreceptor modulate the activity of the 

CheA kinase. In Tsr, the isolated output domain interacts with CheA and CheW to 

generate the kinase-activating state of the receptor (57, 58). Receptors that cannot form 

trimers of dimers lack the ability to stimulate CheA, suggesting that isolated signaling 

domains are able to form dimers and trimers of dimers (59, 60). A truncated Tsr receptor 

containing HAMP and the output domain exhibits lower kinase activity than the output 

domain alone (J. S. Parkinson, personal communication), demonstrating that HAMP 

imposes a conformation on the output domain that inhibits kinase activity. The intact Tar 

and Tsr receptors activate CheA enough to elicit switching between CCW and CW 

flagellar rotation, suggesting that the periplasmic and TM domains suppress the 

inhibitory effect of HAMP on the output domain. Binding of attractant restores the 

ability of HAMP to inhibit the output domain, perhaps by functionally decoupling it 

from the periplasmic and TM domains. Schematic views of the proposed structural 

regulatory elements of chemoreceptors are depicted in Figure 4. 

 

Transmembrane signaling relays allosteric input from periplasm to cytoplasm 

One important question that remains in bacterial chemotaxis is the nature of the 

allosteric mechanism that couples the periplasmic ligand-binding domain of the receptor 

to the activity of CheA. In E. coli Tar, aspartate binds to one of two rotationally 

symmetric sites in the periplasmic domain, and the receptor exhibits extremely negative, 

half-of-sites cooperativity (61). This binding event also induces an approximately 20  
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Figure 4. Illustration of the structural elements involved in chemoreceptor control of 
CheA kinase activity in the absence of CheRB. (A) In the absence of receptors, CheA 
activity is minimal. (B) In the presence of a receptor fragment containing the signaling 
domain (light gray rectangles) and CheW, CheA activity is increased several hundred 
fold, whether or not the adaptation domain (medium gray rectangles) is present. (C) The 
addition of HAMP (dark gray rectangles) to the adaptation and signaling domains 
presumably destabilizes the four-helix bundle of the signaling domain, resulting in a 
decrease in CheA activity. (D) In the absence of attractant, the periplasmic and TM 
regions in the intact receptor overcome the inhibitory effects of HAMP, resulting in a 
more-tightly packed four-helix bundle of the signaling domain, and therefore in CheA 
stimulation. (E) The addition of attractant (black circle) overcomes the inhibitory effects 
of the periplasmic and TM domains on HAMP, thereby restoring the inhibition of 
kinase activity by HAMP. Adaptive methylation restores the ability of receptors in 
panels C and E to stimulate kinase activity, presumably by allowing the helices of the 
signaling domain to pack more tightly. 
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degree rotation along the helical axes of the subunits (62, 63). Rotation of these helices 

breaks the rotational symmetry of the dimer. A small downward displacement of helix 4 

is proposed to elicit signal propagation through TM2. 

 EPR and inter-TM disulfide crosslinking studies with Tar demonstrate that 

attractant binding causes a 1-3 Ångstrom piston-like displacement of TM2 toward the 

cytoplasm (64, 65). Similar experiments show that if TM2 is displaced toward the 

cytoplasm by crosslinking, the receptor is locked in the kinase-inhibiting state, whereas 

when TM2 is displaced toward the periplasm, the receptor is locked in a kinase-

activating state (66). Similarly, methylation in response to attractant displaces TM2 

toward the periplasm, returning it to the unstimulated position (67).  

Using site-directed mutagenesis, Draheim et al. (68) modulated the signaling 

state of Tar by manipulating the positions of the (Trp209-Tyr210) aromatic anchor at the 

cytoplasmic end of TM2. As the tandem Trp-Tyr pair is moved toward the periplasm, 

TM2 is displaced toward the cytoplasm, causing the receptor to become increasingly 

biased toward the off state. If the tandem Trp-Tyr pair is moved toward the cytoplasm, 

TM2 is displaced toward the periplasm, resulting in receptors that are increasingly 

biased toward the on state. This experiment shows that the correct positioning of the 

aromatic anchor in the receptor is essential for normal CheA activation. Manipulating 

this position shifts the receptor toward the on or off states.  

 The adaptation region is considered to be the central processing unit (CPU) of the 

receptor (69). Mutations that neutralize acidic residues that reside on the cytosolic face 

of the CD1-CD2 four-helix bundle result in hyper-active receptors (70). Conversion of 
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four basic residues in the flexible C-terminal tail (Lys-523, Arg-528, Arg-540, and Arg-

542) to Ala enhances CheA activity. However, replacing Arg-505 in CD2 with Ala and 

Asp residues reduces and abolishes Tar activity, respectively (71), suggesting that the 

CPU controls the packing of the CD1-CD2 four-helix bundle.  

 

The HAMP domain plays a crucial role in transmembrane signaling 

HAMP appears to play a significant role in transmitting ligand-induced 

conformational changes between the input (periplasmic and TM2) domains and the 

output (adaptation and signaling) domains. The HAMP domain is a 50-residue domain 

whose general properties are conserved in many transmembrane-signaling proteins in 

bacteria and archae (72, 73). HAMP domains are typically located between input and 

output domains in these signaling proteins. Chimeric proteins fusing heterologous input 

and output domains—including Taz (74), Trz (75), and NarX-Tar (76)—retain signaling 

properties. Results from these chimeras suggest that the mechanism of HAMP signaling 

is conserved among signaling proteins, although details of this mechanism continue to 

remain elusive.  

Currently, a high resolution structure for a MCP HAMP domain does not exist. 

However, structural data obtained through an in vitro crosslinking experiment 

demonstrated that the MCP HAMP domain is composed of two amphipathic helices 

(AS1 and AS2) tethered by a flexible connector region (77). Recently, an NMR solution 

structure of the dimeric Af1503 HAMP domain from the thermophilic archeon 

Archaeoglobus fulgidis (78) revealed that AS1 and AS2 interact to form a parallel four-
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helix bundle. AS1 and AS2 associate in an unusual knob-on-knob packing arrangement 

in which large hydrophobic residues come into contact with one another at the helix 

interface (Figure 5). Intersubunit disulfide crosslinking between AS1 and AS2 reveals 

that the Tar HAMP domain closely resembles that of the Af1503 structure (79). 

Additionally, mutational analysis of the AS1/AS2 connector region in Tsr also suggests 

that the structure of Tsr HAMP is similar to that of the Af1503 HAMP structure (80).  

 Two models exist to explain the effect of conformational changes in HAMP on 

transmembrane signaling (Figure 6). The first model, proposed by Williams and Stewart 

(73), suggests that, in one signaling state, AS1 and AS1’ of the receptor dimer  lie 

roughly parallel to and embedded in the cytoplasmic face of the cell membrane. In the 

other signaling state, AS1 and AS1’ are displaced from the membrane, allowing them to 

interact with the hydrophobic face of AS2’ and AS2 to form the four-helix HAMP 

bundle.  

 The second model suggests that AS1 and AS2 are always in a four-helix bundle 

and rotate relative to one another. The knob-on-knob packing arrangement of the HAMP 

domain can, via a 26-degree rotation of the AS1 and AS2 helices relative to each other, 

be converted into a knob-in-hole packing arrangement, in which large aliphatic residues 

of one helix fit into holes (corresponding to small residues) in adjacent helices. The 

knob-in-hole conformation may correspond to one signaling state, and the knob-on-knob 

conformation may correspond to the other. Neither conformation has been assigned to 

the “on” or “off” state, although the knob-on-knob packing is predicted to correspond to 

the “on” state (J. S. Parkinson, personal communication). 
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Figure 5.  The four-helix bundle of the HAMP domain.  The structure is based on the 
solution NMR structure of the Af1503 HAMP domain (78). The structure is a parallel 
four-helix bundle with an unusual knob-on-knob packing arrangement. AS1 and AS1' are 
labeled in blue, AS2 and AS2' are labeled in red, and the connector regions are labeled in 
green. Three residues in AS1 are labeled: Pro-283 (yellow), Ile-294 (grey), and Ala-295 
(magenta). Pro-283 corresponds to Pro-219 in Tar; Ile-294 corresponds to Ile-230 in Tar; 
and Ala-295 corresponds to Ala-231 in Tar. These three residues are highly conserved in 
all MCPs, and the Pro residue is also conserved in most sensor histidine kinases (SHKs). 
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Figure 6.  Two proposed models for HAMP signaling. (A) The membrane-association 
model proposes that AS1 and AS1' (light gray rectangles) reside within the cytoplasmic 
face of the inner membrane, whereas AS2 and AS2' (dark gray rectangles) form a dimer in 
the absence of ligand. Upon ligand binding, TM2 (black rectangles) is displaced toward 
the cytoplasm relative to TM1 (open rectangle), releasing AS1 and AS1' from the 
membrane and allowing AS2 and AS2' to interact with AS1' and AS1 in a parallel four-
helix bundle. (B) The rotation model suggests that AS1-AS2' and AS1'-AS2 interact in a 
parallel four-helix bundle in the attractant-bound and unbound states. However, upon 
ligand binding, the helices undergo a 26o rotation relative to one another. (C) The 
attractant-bound state is the same for both models of HAMP function. Adaptive 
methylation of CD1 and CD2 returns the HAMP to its prestimulated state. 
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The rotation model receives support from disulfide-crosslinking studies between 

AS1-AS2’ and AS1’-AS2 in the intact Tar receptor (79). Crosslinking between AS1-

AS2’ and AS1’-AS2 results in receptors that are locked in kinase-activating or kinase-

inhibiting states. The rotation model is especially attractive for receptors such as Aer, in 

which signals are generated through interaction of the HAMP domain with a 

cytoplasmic, FAD-binding PAS domain (81, 82). 

Mutational analysis of the 14-residue connector region between AS1 and AS2 of 

Tsr HAMP suggests that relatively small conformational changes can shift the signaling 

states of the receptor (80). Amino acid substitutions at three residues within the 

connector (G235, L237, and I241) drastically affect receptor function. Replacements at 

L237 resulted in lock-on and lock-off outputs suggesting that this residue is important in 

the transition rate between signaling states. Mutations at I241 lock or bias the receptor 

toward the on-state. I241 packing thus seems to stabilize the off-state of the receptor. 

Presumably, substitutions at G235 disrupt the turn at the end of AS1 that is essential for 

the parallel helix packing.  

 

Dissertation overview 

The research presented in this dissertation investigates the importance of the 

MLLT residues between Arg-214 of TM2 and Pro-219 of AS1 (TM2-HAMP connector) 

on the ability of HAMP to communicate the input signal from TM2 to the kinase-control 

domain.  In Chapter II we used two experiments to examine the effects of perturbing the 

secondary structure and length of the TM2-HAMP connector on the ability of HAMP to 
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communicate the signal from TM2 to the kinase control domain.  First, Tar mutant 

constructs were made with 1, 2, and 3 Gly residues inserted between residues Thr-218 

and Pro-219 in AS1 (TnG mutants).  Second, Tar variants were made replacing the 

native sequence of the TM2-HAMP connector (MLLT) with 1 to 9 Gly residues (nG 

mutants).  The majority of the Gly mutants were deficient in aspartate chemotaxis with 

the exception of the 4G mutant, which exhibited 80% of wild type chemotaxis.  The 

majority were also CCW biased in a cheR+B+ strain, CCW-locked in a ∆cheRB strain, 

and over methylated in a cheR+B+ strain.   In the TnG mutants there were no phenotypic 

differences between adding one Gly residue versus adding two and three Gly residues.  

Whereas in the nG mutants the receptors became increasingly deficient in signaling and 

chemotaxis as residues were added or subtracted from the 4G mutant.   The results 

suggest that the addition of the Gly residues between TM2 and HAMP uncouples the 

communication between the two domains.  However, methylation seems to compensate 

for the uncoupling of TM2 from HAMP and restores some aspartate chemotaxis and 

receptor activity.  It also seems inconsistent with the idea that a rotation of TM2 within 

the membrane is propagated directly to HAMP. Thus, the simplest model to explain the 

mechanism of transmembrane signaling via direct rotational coupling of TM2 and AS1 

via rotation about a continuous helical axis seems unlikely to be correct. The results 

from the nG mutants suggest that there is an optimal length for the TM2-HAMP 

connector – four residues.   

In Chapter III we consider different modifications of this region in which 

residues were added or deleted from the MLLT sequence in the TM2-HAMP connector 
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(LLT mutants) that would be expected to retain the helicity of this region.  This effort 

was undertaken to determine whether the predicted helical register of the MLLT 

sequence is an important component of the propagation of the transmembrane signal 

from TM2 to the HAMP domain.  Most of the LLT mutants were deficient in aspartate 

chemotaxis with exception to the -1 mutant which exhibited approximately 60% of wild 

type chemotaxis. The majority of the LLT mutants also exhibited a CCW biased 

phenotype in a cheR+B+ strain, and were CCW locked in a ∆cheRB with the exception of 

a few mutants. These mutants were also overmethylated in a cheR+B+ strain with the 

exception of the -2 mutant which was demethylated.  These results suggest that changing 

the helical register of the TM2-HAMP connection has profound effects on Tar function. 

Receptors in which the connector has roughly the same helical register as it does with 

the wild-type MLLT sequence are, as a rule, more active than receptors in which the 

helical register is altered. It appears that both the length and the proper helical register 

are important for optimal receptor function. 

In Chapter IV, I discuss the implications of the mutations affecting the TM2-

HAMP junction for our understanding of the control of CheA kinase activity and 

methylation-dependent adaptation.  I also discuss why some proposed mechanisms for 

communication between TM2 and HAMP cannot be correct and suggest new 

experiments to test the other models.    
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CHAPTER II 

THE EFFECT OF INSERTION OF VARIABLE NUMBERS OF GLY RESIDUES 

AT THE TM2-HAMP JUNCTION 

 

Introduction 

E. coli chemoreceptors are homodimers that consist of three control modules: 1) 

a transmembrane-sensing module; 2) a signal-conversion module; and 3) a kinase-

control module. The transmembrane-sensing module contains the periplasmic ligand-

binding domain, to which each monomeric subunit contributes a four-helix bundle, and 

transmembrane helices 1 and 2 (TM1 and TM2). The signal-conversion module is the 

HAMP (histidine kinase, adenylate cyclase, methyl-accepting chemotaxis protein, and 

phosphatase) domain, which is predicted to assume a dimeric, parallel four-helix bundle 

in at least one of its possible conformations. The cytoplasmic kinase-control module is 

an extended dimeric four-helix bundle that contains 36 heptad repeats in each monomer, 

18 in the descending CD1 helix and 18 in the ascending CD2 helix. In its membrane-

proximal portion, the CD1-CD2 bundle contains heptads with the four glutamyl residues 

in each subunit that are substrates for adaptive methylation and demethylation by CheR 

and CheB. The adaptation domain is joined, via a flexible glycine hinge, to a distal 

region that terminates with a distal hairpin loop. The heptads flanking the hairpin loop 

interact with CheA and CheW and comprise the signaling domain.  

 In the ligand-binding domain, aspartate binds to one of two rotationally 

symmetric sites in the periplasmic domain (61). Aspartate binding causes a symmetry-
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breaking 20o rotation along the helical axes of the domain (62, 63). It also causes a ~1-3 

Ångstrom axial displacement of helix 4 of one subunit towards the cytoplasm (65, 66, 

68, 83-87). This asymmetric signal is transmitted via TM2 to the adjoining HAMP 

domain, in which it is converted into a symmetric signal. From this point on, the signal is 

thought to be propagated as a rotation of the CD1-CD2 four-helix bundle that loosens 

the helical packing of the signaling domain to inhibit stimulation of CheA kinase 

activity.  

The methylation sites within the adaptation domain are proposed to act as an 

electrostatic switch between the kinase-activating (on) and kinase-inhibiting (off) 

signaling states (70, 88). The aspartate-induced conformational change that destabilizes 

the signaling domain also increases the rate of methylation of the adaptation domain. 

Furthermore, the decreased kinase activity leads to a net dephosphorylation of CheB, 

which in turn decreases the methylesterase activity that demethylates the receptor. 

Increased methylation counteracts the attractant-induced destabilization of the four-helix 

bundle by neutralizing the electrostatic repulsion of the glutamyl residues in the 

adaptation domain. The result is that the kinase-control domain returns to its pre-

stimulus conformation and resumes activation of CheA kinase to return the system to its 

original signaling state. 

The MLLT sequence between residues Arg-214, at the end of TM2, and the 

conserved residue Pro-219, at the beginning of AS1 of the HAMP domain (the TM2-

HAMP junction), is predicted to be able to form a helical extension of TM2 (77, 78). We 

hypothesized that perturbing the native secondary structure and/or the length of the 
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TM2-HAMP junction would disrupt the ability of HAMP to communicate the input 

signal from TM2 to the kinase-control domain. To test this hypothesis, we designed two 

experiments. First, constructs were made in which 1 to 3 Gly residues were inserted 

between T218 and P219. Second, Tar variants were constructed in which 1 to 9 Gly 

residues were inserted between R214 and P219. 

The capacity of each protein to support aspartate and maltose chemotaxis in a 

cheR+B+ strain was measured. The intrinsic signaling properties of all of these Tar 

proteins expressed as the sole chemoreceptor in cells with and without the adaptive 

methylation system (i.e., in cheR+B+ and ∆cheRB strains) were also examined. Finally, 

the baseline (unstimulated) methylation state and the methylation states after addition of 

aspartate (attractant) and Ni2+ (repellent) were determined for each protein. The results 

indicate that increasing the length and flexibility of the TM2-HAMP connection 

essentially decouples the transmembrane-sensing and HAMP domains. However, the 

significant residual function of some of these proteins also suggests that a continuous 

helical connection between TM2 and HAMP is not essential for either transmembrane 

signaling or for maintaining a nearly normal baseline CheA kinase-stimulating activity. 

  

Materials and methods 

Bacterial strains and plasmids.  Strains RP3098 (∆(flhD-flhB)4) and VB13 (thr+ 

eda+ ∆tsr7201 trg::Tn10 ∆tar-tap5201) are derived from the E. coli K-12 strain RP437. 

Strain HCB436 is a ∆cheRcheB derivative of VB13. Plasmid pMK113, a derivative of 

pBR322, was utilized to express the mutated tar gene at near-physiological 
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concentrations. Plasmid pBAD18 was used to over-express tar with an additional C-

terminus seven-residue linker (GGSSAAG) and V5 epitope attached to the 3’ end of tar. 

Mutations were introduced into the tar gene via standard site-directed mutagenesis 

(Stratagene). 

Measuring chemotaxis to attractants. Swarm assays were conducted to measure 

chemotaxis toward attractants carried out by VB13 cells expressing the various Tar 

variant proteins expressed from plasmid pMK113. Semi-solid motility media agar plates 

were made with the addition of 3.25 g/L BD Bactoagar, Che salts (10 mM potassium 

phosphate (pH 7.0), 1 mM (NH4)2SO4, 1 mM Mg SO4, 1mM glycerol), 1 mM MgCl2, 90 

mM NaCl, 0.1 mM attractant (aspartate and maltose, separately), 0.2% THML, 0.1% B1 

vitamin, and 100 µg/mL ampicillin. Plates were stabbed with isolated colonies and 

incubated at 30ºC. First measurements (ring diameter in millimeters) were taken after 8 

h. Subsequent measurements were taken every 4 h until colonies had swarmed for a full 

24 h. The rate of chemotactic-ring expansion was measured as mm/hour and is expressed 

as a percentage of the wild-type rate on the same plate. 

Observation of tethered cells. VB13 and HCB436 cells harboring the various Tar 

variant proteins expressed from plasmid pMK113 were grown overnight in tryptone 

broth (TB) with the addition of 50 µg/mL ampicillin (Amp50) at 30oC. Overnight 

cultures were then back-diluted 1:100 in TB-Amp50 and grown at 30oC with agitation 

until a culture OD600 of ~0.6. Cells were then harvested by centrifugation and 

resuspended in tethering buffer, containing 10 mM potassium phosphate, pH 7.0, 0.1 M 

NaCl, 0.01 mM EDTA, 0.02 mM L-methionine, and 20 mM sodium lactate. 
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Chloramphenicol was added at 20 µg/mL chloramphenicol to prevent regrowth of 

flagellar filaments after shearing. Cells were sheared in a Waring blender with 8 

repetitions of 7 second intervals of shearing with 13 second pauses. Cells were collected 

by centrifugation, washed 3 times, and finally resuspended in tethering buffer with 

chloramphenicol. A 20 µL aliquot of a 200-fold dilution of anti-flagellar filament 

antiserum was added to 20 µL of these cells. Round glass coverslips of 12 mm diameter 

were soaked in fuming nitric acid for 1 hour. Apiezon-L grease was added carefully 

around the edge of these cover slips using a syringe, and 40 µL of the cell/antibody mix 

was added to the center of the cover slip.  

The coverslips were incubated in a humidity chamber constructed by placing a 

ring of wet paper toweling around a piece of dry filter paper in a Petri dish. Cover slips 

were placed facing upward into the humidity chamber for 30 min at 30ºC. After 

incubation, cover slips were affixed to a flow chamber (89), and non-tethered cells were 

washed from the solution. Cells were observed under phase contrast at 1000x 

magnification using the 100x oil immersion objective and 10x eyepiece of an Olympus 

BH-2 microscope. Rotating cells were videotaped, and 100 individual cells were 

observed during a 30 sec playback to determine their rotational bias and switching 

frequency. 

In vivo methylation. VB13 cells containing plasmid pMK113 expressing the 

different V5-tagged Tar variants were grown overnight in tryptone broth (10 g/L 

tryptone, 8 g/L NaCl) containing 50µg/ml ampicillin at 30ºC. Overnight cultures were 

back-diluted 1:100 into the same medium and shaken at 30ºC for another 5.5 hours until 
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an OD600 of ~0.6 was reached. Cells were harvested by centrifugation, washed three 

times with 10 ml of 10 mM potassium phosphate buffer (pH 7.0) containing 0.1mM 

EDTA, and then resuspended in 5 ml of 10 mM potassium phosphate (pH 7.0), 0.1 mM 

EDTA, 10 mM sodium DL-lactate, and 200 µg/ml of chloramphenicol. One ml aliquots 

were placed into 10 ml scintillation vials and incubated for 10 min at 30ºC with shaking. 

The cells were then incubated for another 30 min after adding L-methionine to a final 

concentration of 0.01 mM. Buffer containing L-aspartate at 100 mM or NiSO4 at 10 mM, 

or an equal volume of buffer alone, was added to the cells, and they were incubated for 

another 20 min at 30oC. Reactions were terminated by addition of 100 µl of 100% TCA 

and incubated on ice for 15 min. Denatured proteins were pelleted and subsequently 

washed with 1% TCA and acetone. The dried pellet was resuspended into 100 µl of 2X 

SDS loading buffer.  

 The resuspended pellets were subjected to 3 freeze/boil cycles, each lasting 10 

min in order to denature proteins. A 20 µl aliquot of each sample was loaded into a 7.5% 

SDS-PAGE gel. Current was applied to the gel in order to separate proteins based on 

apparent molecular weight. Once electrophoresis was complete, protein from the gels 

was transferred to nitrocellulose paper. A Western blot was performed by adding anti-V5 

epitope antibody (Invitrogen) to the nitrocellulose paper. Visualization of protein was 

achieved using goat-anti-mouse antibody conjugated to an alkaline phosphatase (Bio-

Rad). 

  Standards were run with a mixture of Tar proteins containing equal proportions 

of the V5-tagged versions of the EEEE, QEQE, and QQQQ forms of the receptor. The 



 24

glutaminyl residues have the same effect on protein migration as methylated glutamyl 

residues(90) , so that the standard serves as an estimate of the extent of methylation of 

Tar in the samples. Each charge neutralization, whether by methylation or amidation, 

increases the migration rate of the corresponding protein by a detectable amount. 

 

Results 

Inserting a flexible Gly linker between Thr-218 and Pro-219 of AS1 in Tar. We 

examined the effect of inserting one, two, and three Gly residues (T1G, T2G, and T3G) 

between Thr-218 and Pro-219. In these constructs, the MLLT helical extension of TM2 

remains intact (Figure 7). In particular, the Leu-216 equivalent in Tsr, which has been 

shown to be particularly critical for normal signaling by the closely related Tsr 

chemoreceptor of E. coli (J. S. Parkinson unpublished results) is retained.  

The ability of the Tar TnG proteins to mediate chemotaxis. Each of the TnG 

mutants was tested for its ability to perform aspartate taxis in semi-solid minimal agar 

when expressed in strain VB13. The rate of ring expansion supported by wild-type and 

each mutant Tar expressed at near-physiological levels was measured. The T1G mutant 

supported 50% of the chemotaxis-ring expansion rate seen with wild-type Tar (Figure 8). 

The T2G and T3G were slightly worse, supporting 40% of the expansion rate observed 

with wild-type Tar.  Maltose chemotaxis and aerotaxis exhibited the same trends as the 

aspartate taxis. However, all of these proteins did support some level of chemotactic ring 

formation and expansion. Tellingly, the chemotactic rings on aspartate plates were 

sharper, indicating that cells expressing the mutant proteins might accumulate more  
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Figure 7. Insertion of multiple Gly residues between Thr-218 and Pro-219. (A) A cartoon 
of the transmembrane-signaling module (green rectangles), which is connected to AS1 
(blue rectangles) and AS2 (orange rectangles) through the TM2-HAMP junction (gray 
rectangles). The transmembrane-signaling module contains the periplasmic ligand-
binding domain and transmembrane helices 1 (TM1) and 2 (TM2), which traverse the 
membrane. AS1 is predicted to be a helical extension of TM2 that is connected to AS2 
through a flexible connector. (B) The wild-type sequence of the C-terminal end of TM2, 
the TM2-HAMP junction, and the N-terminus of AS1. The TnG mutants are shown 
below the wild-type sequence. Inserted Gly residues are colored red. 
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Figure 8. The aspartate chemotaxis-ring expansion rates of cells expressing the TnG 
mutant receptors. The rate at which the chemotaxis-ring diameter increased, measured in 
mm/h, was measured in VB13 (cheR+B+) cells expressing wild-type or mutant receptors 
from pMK113CV5. The error bars represent the standard deviation of the mean, with 
n=3. 
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strongly in regions in which the aspartate gradient is particularly steep. The inescapable 

conclusion, however, is that TM2 and the kinase-control domain are not completely 

uncoupled in these proteins.  

Rotational biases and mean reversal frequencies of TnG Tar-expressing cells. 

VB13 cells expressing the T1G, T2G, and T3G mutants from plasmid pMK113 were 

more CCW biased than VB13 cells expressing wild-type Tar. Of 99 cells expressing 

wild-type Tar, 63 had approximately equal distributions of CCW to CW rotation, 33 

cells were CCW biased, and 3 were CCW locked (Figure 9A). The wild-type mean 

reversal frequencies (MRF values) were also somewhat lower, being 0.672 for cells 

expressing wild-type Tar, 0.45 reversals/sec for T1G, and 0.42 reversals/sec for T2G and 

T3G (Figure 10). Notably, little if any difference in either the bias or MRF values was 

seen among the three TnG variants, suggesting that the effect of inserting only one Gly 

residue at this position imposes almost the full effect seen with insertions at this point. 

Adaptive methylation of the TnG proteins in vivo. The methylation state of the 

various V5-tagged receptors was measured in VB13 cells. Previous work (90) has shown 

that these proteins function essentially as their untagged variants. In the absence of 

ligand, the wild-type receptor was primarily in the unmethylated state. Addition of 10 

mM NiSO4 further decreased methylation, resulting in a totally unmethylated receptor. 

With addition of 100mM aspartate, the wild-type receptor is primarily in the fully 

methylated state. All of the TnG receptors were overmethylated, although they still 

showed additional methylation after the addition of aspartate and decreased methylation 

after the  
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B. A. 

Figure 9. Rotational biases of flagella of tethered cells expressing the TnG mutant 
receptors in strains with and without the adaptive methylation machinery. (A) 
Transducer-depleted, methylation-competent cells (VB13) expressing wild-type or TnG 
mutant receptors were tethered, and their flagellar rotation was monitored over a 30 sec 
interval. The cells were placed into one of five categories based on their CW/CCW 
rotational biases: CCW locked, CCW biased, CCW/CW, CW biased, and CCW locked 
(graphically depicted above from left to right). One hundred cells were measured for 
each strain. (B) The rotation of tethered cells lacking the adaptive methylation machinery 
(HCB436) and expressing wild-type or TnG mutant receptors was monitored over a 30 
sec interval. The cells were put into one of five categories, as described above. One 
hundred cells were measured for each strain. 
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addition of Ni2+ (Figure 11).  Thus, these receptors can partially compensate for their 

intrinsic CCW bias by increasing their level of methylation.   

Signaling defects of the TnG mutants are exaggerated in the absence of the 

adaptation machinery. The rotational biases and reversal frequencies were measured for 

wild type and each of the TnG mutants in the ∆cheRB strain HCB436. Cells expressing 

the T1G, T2G, or T3G protein were all CCW locked, with no reversals being observed 

for cells expressing any of them (Figure 9B). Apparently, the QEQE level of covalent 

modification is inadequate to rescue the ability of the mutant proteins to support CW 

flagellar rotation.   

Replacing the native MLLT sequence with variable numbers of Gly residues. One 

might argue that the added Gly residues in the TnG series of proteins might simply loop 

out from what could remain a continuous helix running from the MLLT sequence 

through Pro-219 and beyond. Therefore, residues Met-215, Leu-216, Leu-217, and Thr-

218 were replaced with different numbers of Gly residues, a treatment that might alter 

the TM2- HAMP connection more drastically by completely removing the structural 

constraints that the transmembrane-sensing domain normally exerts on HAMP. The first 

construct replaced the MLLT sequence with four Gly residues to yield the 4G variant. 

Additional variants were made by adding Gly residues in single steps to create the 5G to 

9G proteins and deleting Gly residues one at a time to generate the 3G through 0G 

proteins (Figure 12). 

 



 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Mean reversal frequencies of cells expressing the TnG mutant receptors. 
Reversal frequencies were recorded for each strain. Mean frequencies are expressed as 
reversals/sec, with a reversal defined as a single change in direction (CW  CCW or 
CCW  CW). Data for cells with intact adaptation machinery (cheR+B+) are shown in 
black, whereas data for ∆cheRB cells are shown in gray. The error bars represent the 
standard deviation of the mean, with n=100. 
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Figure 11. Adaptive methylation of the TnG mutant receptors in vivo. In vivo 
methylation levels of Tar were determined in VB13 cells expressing wild-type or TnG 
mutant receptors from pMK113CV5 after 20 min exposure to 1 mM aspartate, 10 mM 
Ni2+, or buffer. The methylation state of the receptor is indicated by the rate of migration 
during SDS-PAGE, with the more-highly methylated receptor forms migrating faster. 
Migration standards of the EEEE, QEQE, and QQQQ forms of wild-type receptor were 
loaded in the left lane. The QQQQ form mimics the fully methylated receptor and 
migrates faster than the QEQE form, and the QEQE form migrates faster than the EEEE 
form.  The proteins were detected using anti-V5 primary antibody and visualized using 
goat-anti-mouse secondary antibody conjugated to an alkaline phophatase. 
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The ability of the MLLT-G replacement proteins to mediate chemotaxis. The 

effect of the substituted Gly residues on the Tar TM2-HAMP junction was first assessed  

by the rate of chemotactic-ring formation of VB13 cells expressing the different variant 

Tar proteins in minimal semi-solid agar. The 4G mutant had ~80% of the wild-type rate 

of aspartate ring expansion (Figure 13). Aspartate taxis decreased in a stepwise manner 

as Gly residues were subtracted or added. The most extreme mutations, such as -3G, -

4G, and +5G, exhibited a complete loss of chemotaxis ability, since plasmids expressing 

those proteins did not support ring expansion significantly better than the vector control. 

Maltose chemotaxis and aerotaxis exhibited similar trends as the aspartate taxis.  

Rotational biases and the mean reversal frequencies of MLLT-G replacement 

mutants in a cheR+B+ strain. The baseline signaling states supported by the different Tar 

variants were measured by examining tethered cells. The 4G mutant had rotational 

characteristics very similar to those of cells expressing wild-type Tar. However, as 

additional Gly residues were added or subtracted, cell rotation became increasingly 

CCW biased, and the -3G, -4G, and +5G mutants became CCW locked (Figure 14 ). 

The 4G and 5G proteins yielded MRF values of 0.577 and 0.518 reversals/sec, 

respectively, not much lower than the MRF value of 0.672 obtained with wild-type cells. 

The MRF values decreased progressively as more Gly residues were added (6G through 

8G) or subtracted (3G and 2G) (Figure 15). 

Adaptive methylation of the MLLT-G replacement proteins in vivo. The in vivo 

methylation state of the various Tar proteins was measured in VB13 cells expressing the 

V5-tagged variants of the mutant proteins. All of the Gly variants were overmethylated  
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Figure 12. Replacing the native TM2-HAMP connector sequence with multiple Gly 
residues. (A) A cartoon of the transmembrane-signaling module (green rectangles,) 
which is connected to AS1 (blue rectangles) and AS2 (orange rectangles) through the 
TM2-HAMP junction (gray rectangles). The transmembrane-signaling module contains 
the periplasmic ligand-binding domain and transmembrane helices 1 (TM1) and 2 
(TM2), which traverse the membrane. AS1 is a predicted to be a helical extension of 
TM2 that is connected to AS2 through a flexible connector. (B) The wild-type sequence 
of the C-terminal end of TM2, the TM2-HAMP junction, and the N-terminus of AS1 are 
depicted. The 4G mutant has the wild type TM2-HAMP junction sequence (Met-215, 
Leu-216, Leu-217, and Thr-218) replaced with four Gly residues. The longer and shorter 
Gly insertion mutants are also depicted. Inserted Gly residues are colored red.  
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Figure 13. The aspartate chemotaxis-ring expansion rates of cells expressing the nG 
mutant receptors. The rate at which the chemotaxis-ring diameter increased, measured in 
mm/h, was measured in VB13 cells expressing wild-type or mutant receptors from 
pMK113CV5. The error bars represent the standard deviation of the mean, with n=3. 
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relative to wild-type Tar except for the 2G protein, which was undermethylated, and the 

1G protein, which was truncated and presumably totally non-functional. The 0G protein,  

in which TM2 is joined directly to the Pro residue in AS1 of HAMP, was relatively 

stable and overmethylated (Figure 16). 

Signaling defects of the Gly replacement mutants are exaggerated in the absence 

of the adaptation machinery. Reversal frequencies and rotational biases were observed 

in HCB436 cells, which lack CheR and CheB, to observe the effects of removing the 

compensating effects of the adaptation machinery on the baseline signaling state of the 

receptor. In these cells, all of the Tar proteins remain in the QEQE form in which they 

are translated (data not shown). All of the cells, except those expressing the 4G and 0G 

variants, were locked CCW (Figure 17). The 4G mutant was also overwhelmingly CCW 

biased, with only 3 cells out of 100 reversing to give a mean MRF of 0.032 reversals/sec 

for the all the cells tested. The 0G mutant exhibited a less CCW-biased phenotype than 

the 4G mutant and had an MRF value of 0.34 reversals/sec, about half of the wild-type 

value. 

  

Discussion 

The mechanism by which the signal transmitted across the cell membrane by 

TM2 is communicated to the HAMP domain to modulate CheA kinase activity remains 

elusive. To address this question, we used two different sets of mutants to examine the 

effects of manipulating the secondary structure and the length of the TM2-HAMP 

junction. Our working hypothesis was that increasing the length and flexibility of the  
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Figure 14. Rotational biases of flagella of tethered cells expressing nG mutant receptors 
in strains with the adaptive methylation machinery. Transducer-depleted, methylation-
competent cells (VB13) expressing wild-type or nG mutant receptors were tethered, and 
their flagellar rotation was monitored over a 30 sec interval. The cells were placed into 
one of five categories based on their CW/CCW rotational biases: CCW locked, CCW 
biased, CCW/CW, CW biased, and CCW locked (graphically depicted above from left to 
right). One hundred cells were measured for each strain.  
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Figure 15. Mean reversal frequencies of cells expressing the nG mutant receptors. 
Reversal frequencies were recorded for each strain. Mean frequencies are expressed as 
reversals/sec, with a reversal defined as a single change in direction (CW  CCW or 
CCW  CW). Data for cells with intact adaptation machinery (cheR+B+) are shown in 
black, whereas data for ∆cheRB cells are shown in gray. The error bars represent the 
standard deviation of the mean, with n=100. 
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connection between TM2 and HAMP could serve to uncouple the transmembrane-

sensing domain from HAMP and the kinase-control domain. 

An NMR structure of the HAMP domain of the Af1503 transmembrane protein 

of unknown function from Archaeoglobus fulgidus was published in 2006 (78). Modeled 

on that structure, the MLLT sequence in E. coli Tar that intervenes between the 

cytoplasmic end of Tar TM2 (the WYGIRR sequence at residues 209-214) and Pro-219 

of AS1 should be able to assume a helical conformation in an intact HAMP domain. In 

the isolated Af1503 HAMP, this helix is continuous with the remainder of AS1 in the 

structure, and the Pro-219 residue packs against the N-terminal end of AS2 in the HAMP 

parallel four-helix bundle (see Figure 5 in Chapter I). However, the strong conservation 

of Pro at this position in a wide variety of HAMP domains suggests that it plays an 

important role. Based on the effect of Pro residues in other helices, it could confer a 

“kink,” or abrupt turn, at the N-terminal end of AS1 in at least one possible 

conformation of the HAMP domain. The possibility cannot be excluded that 

isomerization of this Pro residue between its cis (helix-breaking) and trans (helix 

compatible) forms might play an important role in transmembrane signaling 

Insertion of Gly residues. The mechanism by which TM2 and HAMP 

communicate was first probed by inserting 1, 2, or 3 Gly residues between the MLLT 

sequence and Pro219 to generate the T1G to T3G (TnG) series of Tar variants. We 

reasoned that these potentially helix-breaking substitutions might compromise 

communication between TM2 and HAMP.  In general, the results supported our 

expectations.  Inserting even one Gly residue between Thr-218 and Pro-219 drastically 
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Figure 16. Adaptive methylation of the nG mutant receptors in vivo. In vivo methylation 
levels of Tar were determined in VB13 cells expressing wild-type or TnG mutant 
receptors from pMK113CV5 after 20 min exposure to 1 mM aspartate, 10 mM Ni2+, or 
buffer. Migration standards were as in Figure 11. 
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Figure 17. Rotational biases of cells expressing nG mutant receptors in a strain lacking 
adaptive methylation machinery. The rotational biases were determined over a 30-sec 
interval in cells lacking the adaptive methylation machinery (HCB436). The cells were 
classified as described previously, with one hundred cells monitored for each strain. 
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reduced the ability of the modified protein to mediate aspartate chemotaxis, and insertion 

of one or two additional Gly residues did not seem to make the situation much worse.  

None of these changes destabilized the affected proteins. To a significant extent, 

adaptive methylation in cheR+B+ cells could reverse the CCW-locked phenotype 

associated with these proteins in a ∆cheRB cell, in which Tar remains in the QEQE state, 

and all three mutant proteins were overmethylated in cheR+B+ cells. The general 

conclusion is that the ability of the transmembrane-sensing domain to override the 

inhibitory effect of HAMP on the CheA-kinase stimulating activity of the kinase-control 

domain is largely abrogated by the Gly insertions. However, the uncoupling is not 

complete, because the TnG proteins can still mediate aspartate taxis to some degree, and 

they do change their methylation levels in response to attractant and repellent signals. 

This result seems inconsistent with the idea that a rotation of TM2 within the membrane 

is propagated directly to HAMP. Thus, the simplest model to explain the mechanism of 

transmembrane signaling via direct rotational coupling of TM2 and AS1 via rotation 

about a continuous helical axis seems unlikely to be correct. 

Replacement of the MLLT sequence with Gly residues. The second approach to 

investigating the TM2-HAMP connection was to remove the MLLT sequence 

completely and replace it with different numbers of Gly residues to create the nG series 

of Tar mutants. This approach introduced two additional variables: 1) the importance of 

the inferred MLLT helical connector between TM2 and Pro-219 could be examined; 2) 

the effect of the absolute number of residues between TM2 and Pro-219 could be 

assessed. Some of the results from this analysis were unanticipated. 
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 The first surprise was that the 4G variant, which contains the same number of 

residues between TM2 and Pro-219 as wild-type Tar, functioned quite well in both 

chemotaxis (80% of the wild-type aspartate ring diameter) and baseline signaling (very 

nearly the wild-type rotational bias for tethered cells). Addition or deletion of additional 

Gly residues deteriorated all aspects of receptor function, although only the 1G variant 

appeared to be substantially less stable than wild-type Tar. The ability of the proteins to 

support rotational reversals in tethered cheR+B+ cells was, as expected, strongly 

correlated with their chemotactic ability. Most of the proteins were overmethylated in 

unstimulated cells, the exceptions being the unstable 1G variant and the 2G variant, 

which, despite its CCW bias, was undermethylated. The latter result suggests that a 

CCW signaling bias and increased adaptive methylation can be uncoupled in a particular 

mutant receptor. 

 HCB436 (∆cheRB) cells expressing the majority of the MLLT-G replacement 

proteins were CCW locked. In these cells, the receptors should remain in the QEQE state 

of covalent modification in which they are translated. This level of covalent modification 

is obviously insufficient to allow significant CW signaling, although increased covalent 

modification through methylation is adequate to foster CW signaling by several of these 

proteins. Remarkably, ∆cheRB cells expressing the 0G variant were not CCW locked 

and exhibited nearly the same rotational bias as cells expressing wild-type Tar. This 

result is peculiar in that the 0G protein was overmethylated in cheR+B+ cells, but the 

cells were still CCW locked. This finding provides a second example of deviation from 

the canonical connection between receptor signaling and covalent modification states.  
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Previous studies (57, 58) have shown that cells expressing receptor fragments 

containing the cytoplasmic signaling and adaptation domains are constitutive CW 

signalers. In vitro experiments (91, 92)  have also shown that when such fragments are 

mixed with CheW and CheA, kinase activity increases several hundred-fold over its 

level in their absence. A similar fragment containing the HAMP domain has less CheA-

stimulating ability than the fragment containing the signaling and adaptation domains (J. 

S. Parkinson personal communication). Addition of the transmembrane-sensing domain 

to this fragment reverses the inhibition of kinase activity by HAMP. The simplest 

interpretation of the results reported here is that increasing the length and flexibility of 

the TM2-HAMP connection tends to uncouple signal propagation between those two 

elements to approach the signaling behavior shown by the soluble HAMP-kinase-control 

fragment. However, in most cases increased adaptive methylation can reverse this effect 

and some level of normal communication between attractant and repellent binding to the 

periplasmic domain and regulation of kinase-stimulating function. 

The “frozen-dynamic” model for chemoreceptor signaling suggests that the 

allosteric inputs modulate the dynamics of the CD1-CD2 four-helix bundle. In the kinase 

inhibiting (attractant-bound) state, the four-helix bundle becomes more dynamic, 

whereas in the kinase-activating (repellent-bound) state the four-helix bundle becomes 

less dynamic (22, 93). Covalent modification of glutamyl residues in the adaptation 

subdomain neutralizes their negative charge, decreasing the electrostatic repulsion 

between subunits within the four-helix bundle and stabilizing it (i.e., making it less 

dynamic) (70, 88). This model potentially explains how increased methylation can 



 44

compensate for increased CCW signaling. Introducing flexibility into the TM2-HAMP 

junction may stabilize the conformation of the HAMP domain that destabilizes the CD1-

CD2 four-helix bundle. The underlying principle is that the HAMP domain in an 

unstimulated receptor must be maintained at an intermediate stability to enable it to 

respond to both attractant and repellent signals. Input from the transmembrane-sensing 

domain and the adaptation subdomain both work to achieve this balance. 

 This relatively simple model is complicated by the aberrant behavior of the 0G 

and 2G proteins, in which the normal connection between the extent of covalent 

methylation and signaling state is altered.  Possible interpretations of their behavior and 

a consideration of what they may tell us about receptor structure-function relationships 

will be considered in the general discussion in Chapter IV.   
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CHAPTER III 

THE EFFECT OF CHANGING THE HELICAL REGISTER OF THE TM2-

HAMP JUNCTION 

 

Introduction 

 Chapter II described experiments in which varying numbers of glycyl residues, 

which should break helicity of the polypeptide chain, were introduced into the TM2-

HAMP junction region of the E. coli aspartate/maltose chemoreceptor Tar. In this 

chapter we consider different modifications of this region in which residues were added 

or deleted from the MLLT sequence in the TM2-HAMP connector that would be 

expected to retain the helicity of this region. This effort was undertaken to determine 

whether the predicted helical register of the MLLT sequence is an important component 

of the propagation of the transmembrane signal from TM2 to the HAMP domain. 

 The most crucial residue in this sequence appears to be the second one, Leu-216. 

Changes of the Leu residue at the equivalent position in the TM2-HAMP linker of the E. 

coli serine receptor Tsr severely disrupted its function, whereas changes at the other 

three positions, which are not conserved between Tsr and Tar, had little effect (J. S. 

Parkinson unpublished results). In keeping with this trend, the 1G variant of Tar, which 

has the MLLTP sequence replaced with MGP, is unstable and non-functional. However, 

the 0G and 2G Tar variants, in which Pro-219 is joined directly to TM2 or in which TM2 

and Pro-219 are separated by two Gly residues, are stable and at least partially 
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functional, although they show unusual relationships between kinase stimulating activity 

and covalent modification state. 

 The conclusion from the work described in this chapter is that changing the 

helical register of the TM2-HAMP connection has profound effects on Tar function. 

Receptors in which the connector has roughly the same helical register as it does with 

the wild-type MLLT sequence are, as a rule, more active than receptors in which the 

helical register is altered. It appears that both the length and the proper helical register 

are important for optimal receptor function. 

 

Materials and methods 

Bacterial strains and plasmids. The strains and parental plasmids used in this 

work are identical to those described in Chapter II. Mutations were introduced into the 

tar gene via standard site-directed mutagenesis (Stratagene). 

Measuring chemotaxis to attractants. Swarm assays were conducted exactly as 

described in Chapter II. 

Observation of tethered cells. Tethered cells were prepared, observed, and 

analyzed exactly as in Chapter II.  

 In vivo methylation. In vivo methylation assays were performed exactly as 

described in Chapter II. 
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Results 

Shortening and lengthening the predicted helical extension between Arg-214 of 

TM2 and Pro-219 of AS1. To examine the effects of the helical periodicity and length of 

the TM2-HAMP junction on the communication between TM2 and HAMP, we 

constructed Tar variants that have shorter or longer predicted helical stretches between 

Arg-214 and Pro-219 (Figure 18). The shorter constructs have the following residues 

between Arg-214 and Pro-219: -4, none; -3, M; -2, ML; -1 MLL. The -4 construct is 

identical to the 0G construct described in Chapter II. The longer constructs contain the 

following residues between the MLLT sequence and Pro-219: +1, L; +2, LL; +3, LLT; 

+4, LLTL; +5, LLTLL; +6, LLLTLLT; +7, LLTLLTL; +8, LLTLLTLL.  

Aspartate chemotaxis mediated by Tar TM2-HAMP mutants containing 

shortened or lengthened helical connectors.  The effects of the deletions or additions of 

residues to the TM2-HAMP connector were tested with VB13 cells containing pMK113-

derived plasmids expressing the respective variant proteins at near-physiological levels 

(Figure 19). The -4, -3, and +5 through +8 proteins supported no aspartate taxis, giving 

chemotaxis swarms indistinguishable from those produced by VB13 cells containing the 

vector plasmid. Cells expressing the -2 and -1 Tar variants had aspartate chemotaxis 

rings with 15% and 50% the diameter of rings produced by cells expressing wild-type 

Tar. Cells expressing the +1, +2, +3, and +4 variants formed aspartate rings with 10%, 

20%, 22%, and 35% of the diameter, respectively, of the aspartate rings formed by cells 

expressing wild-type Tar. The superior performance of cells expressing the +4 variant, 

which should come closest to restoring the same helical register as the wild-type protein,  
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Figure 18. Shortening and lengthening the helical extension between Arg-214 and Pro-
219. (A) A cartoon of the transmembrane-signaling module (green rectangles), which is 
connected to AS1 (blue rectangles) and AS2 (orange rectangles) through the TM2-
HAMP junction (gray rectangles). The transmembrane-signaling module contains the 
periplasmic ligand-binding domain and transmembrane helices 1 (TM1) and 2 (TM2), 
which traverse the membrane. AS1 is a predicted helical extension of TM2 that is 
connected to AS2 through a flexible connector. (B) The wild-type sequence of the C-
terminal end of TM2, TM2-HAMP junction, and the N-terminus of AS1 are depicted. 
The red letters show the residues that were present at the TM2-HAMP junction. 
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Figure 19. The aspartate chemotaxis-ring expansion rates of cells expressing the LLT 
mutant receptors. The rate at which the chemotaxis-ring diameter increased, measured in 
mm/h, was measured in VB13 cells expressing wild-type or mutant receptors from 
pMK113CV5. The error bars represent the standard deviation of the mean, with n=3. 
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was notable. There was also no indication of the symmetrical decay in aspartate 

chemotaxis behavior shown by cells expressing proteins shorter or longer than the 4G 

variant described in Chapter II.  Maltose chemotaxis and aerotaxis exhibited similar 

trends as aspartate chemotaxis. 

Rotational biases and mean reversal frequencies of Tar TM2-HAMP mutants 

containing shortened or lengthened helical connectors. To examine the effects of 

shortening or lengthening the TM2-HAMP junction on the baseline signaling activity of 

the receptor, we measured the rotational biases and mean reversal frequencies of the -4 

through +8 variants in VB13 cells (Figure 20 and 21). One hundred cells were measured 

for the wild-type and each mutant receptor. Cells expressing wild-type Tar made 

frequent reversals between CW and CCW rotation, as seen previously. The -4, -3, +6, 

+7, and +8 variants showed CCW locked rotation. Cells making the -1 protein, which 

supported the best chemotaxis among the mutant variants, exhibited a nearly wild-type 

rotational bias, being only slightly more CCW biased. The remaining mutant proteins 

showed a strong correlation between their ability to generate CW rotation and their 

ability to support aspartate taxis. Cells producing the -2 and +2 proteins were more CCW 

biased than cells expressing the +3 and +4 proteins but less CCW biased than cells 

producing the +1 protein. The CCW bias of the +3and +4 mutants was similar and 

somewhat greater than for -1 or wild-type Tar.  

The mean reversal frequency (MRF) of cells expressing wild-type Tar was 0.60 

reversals/sec. The -1 mutant had a MRF value of 0.55 reversals/sec. The MRF values for 

cells expressing the -2, +1, +2, +3, +4, and +5 mutant proteins were 0.25, 0.2, 0.35, 0.4,  



 51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Rotational biases of flagella of tethered cells expressing LLT mutant receptors 
in strains with the adaptive methylation machinery. Transducer-depleted, methylation-
competent cells (VB13) expressing wild-type or nG mutant receptors were tethered, and 
their flagellar rotation was monitored over a 30 sec interval. The cells were placed into 
one of five categories based on their CW/CCW rotational biases: CCW locked, CCW 
biased, CCW/CW, CW biased, and CCW locked (graphically depicted above from left to 
right). One hundred cells were measured for each strain. 
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Figure 21. Mean reversal frequencies of cells expressing the LLT mutant receptors. 
Reversal frequencies were recorded for each strain. Mean frequencies are expressed as 
reversals/sec, with a reversal defined as a single change in direction (CW  CCW or 
CCW  CW). Data for cells with intact adaptation machinery (cheR+B+) are shown in 
black, whereas data for ∆cheRB cells are shown in gray. The error bars represent the 
standard deviation of the mean, with n=100.  
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0.45, and 0.05, respectively. These MRF values closely reflect the degree of chemotaxis 

and the CW/CCW rotational bias supported by the various proteins.  

Adaptive methylation of the Tar TM2-HAMP mutants containing shortened or 

lengthened helical connectors in vivo. The methylation states of the -4 through +8 

mutants were measured in strain VB13 (Figure 22). Methylation levels of wild-type Tar 

receptor were similar to those seen previously in the unstimulated state and after the 

addition of L-aspartate or NiSO4. No bands were seen with the -3 and +5 through +8 

proteins, which are presumably unstable and/or not inserted into the membrane. The -1 

mutant showed methylation patterns very similar to those of the wild-type protein but 

was slightly more methylated in the unstimulated state. The +1, +4, and -4 proteins were 

over-methylated compared to wild-type Tar but still showed the appropriate responses to 

aspartate and Ni2+. The +2 and +3 mutants maintained an intermediate level of 

methylation that did not change upon addition of aspartate or NiSO4. The -2 mutant was 

noticeably undermethylated relative to wild-type Tar, and it did not change its 

methylation level with the addition of aspartate or NiSO4.  

Signaling defects in most of the deletion and extension mutants are exaggerated 

in the absence of the adaptation machinery. We also measured the rotational bias and 

MRF values of ∆cheRcheB cells expressing the various mutants Tar proteins (Figures 23 

and 21). One hundred cells each were monitored for cells expressing the wild-type and 

mutant receptors. Cells expressing wild-type Tar had similar rotational biases and MRF 

values as VB13 cells expressing wild-type Tar, except that a somewhat higher 

percentage of cells were CCW locked. Cells expressing the +1, +4, and +5 variants were 
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Figure 22. Adaptive methylation of the LLT mutant receptors in vivo. In vivo 
methylation levels of Tar were determined in VB13 cells expressing wild-type or LLT 
mutant receptors from pMK113CV5 after 20 min exposure to 1 mM aspartate, 10 mM 
Ni2+, or buffer. Migration standards were as in Figure 11. 
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Figure 23. Rotational biases of cells expressing LLT mutant receptors in a strain lacking 
adaptive methylation machinery. The rotational biases were determined over a 30-sec 
interval in cells lacking the adaptive methylation machinery (HCB436). The cells were 
classified as described previously, with one hundred cells monitored for each strain. 
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CCW locked. The result with the +4 mutant is particularly striking, since cells 

expressing that protein showed reasonably good chemotaxis. Cells expressing the -1 and 

+3 variants were severely CCW biased. Cells expressing the +2 protein were less CCW 

biased than cells expressing the -1 and +3 proteins but more CCW biased than cells 

expressing wild-type Tar. Remarkably, cells producing the -2 Tar variant were only 

modestly more CCW biased than wild-type cells. As with the identical 0G mutant 

discussed in Chapter II, cells expressing the -4 receptor were CCW biased but still able 

to reverse.  

The MRF for cells expressing wild-type Tar in the ∆cheRB strain was 0.60 

reversals/sec. Cells expressing the -4, -2, -1, +2, +3, and +4 mutant proteins, all of which 

were present in reasonable amounts, had MRF values of 0.34, 0.50, 0.11, 0.35, 0.11, and 

0 reversals/sec, respectively. Unlike cheR+B+ cells expressing these mutant proteins, no 

clear correlation between the helical periodicity of the TM2-HAMP junction and the 

MRF is apparent. Thus, the critical parameter of a Tar protein’s ability to function in 

aspartate taxis is its ability to support flagellar reversal in a cell that can carry out 

compensatory adaptive methylation to offset an intrinsic signaling bias. 

 

Discussion 

 The results presented in Chapter II argue that both the length and flexibility of 

the TM2-HAMP connector are important factors in setting the signaling state of Tar. 

They also argued that even receptors with intrinsically CCW-locked signaling could, in 

most cases, be made capable of kinase-stimulation by virtue of increased methylation by 
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the adaptation system. Furthermore, even with longer and/or more flexible (i.e., Gly-

rich) connectors, some aspartate chemotaxis was retained, indicating that ligand-induced 

conformational changes could still be transmitted, although perhaps in attenuated form, 

to the kinase-control domain. No clear evidence for the importance of helical periodicity 

was obtained. The most crucial feature of the connector seemed to be its total length, 

since the protein in which the four-residue MLLT sequence was replaced with GGGG 

behaved the most like wild-type Tar.  

 A rather different picture emerges when residues are subtracted from or added to 

what should remain a helical connector. Although the -1 (MLL) receptor retained the 

ability to support reasonably good aspartate taxis and CW flagellar rotation, the +1 

receptor was very poor at supporting aspartate taxis, and cheR+B+ cells expressing either 

the +1 and +2 receptors were very CCW biased. Given a 100o rotation per residue in a 

free helix, the +3 and +4 receptors come within 60o and exceed by 40o restoration of the 

helical register of the connector. These proteins were significantly better at supporting 

chemotaxis and CW flagellar rotation than the +1 and +2 receptors. Thus, the helical 

register seems to be an important consideration. However, length clearly is also 

important, because the +5 through +8 receptors were not detected by immunoblotting, 

even though the +7 receptor should come within 20o of restoring the proper helical 

register. It seems likely that, in these proteins, the HAMP and or kinase-control domains 

may be simply too far away from the cell membrane to allow proper assembly of the 

receptor dimers or trimers of dimers.  
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The -3 receptor has only one residue between TM2 and the conserved Pro-219 

was unstable and non-functional, like the 1G mutant in the previous chapter. In both 

proteins, the critical Leu-216 residue is absent, although the partial function of the 2G 

Tar variant, which also lacks Leu-216, suggests that this residue is not absolutely 

essential to achieve some level of receptor function.  

 Taken together, the results presented here and in Chapter II suggest the following 

properties about the TM2-HAMP connector. 1) It is important that the connector be of 

the correct length – four residues. This is particularly true when the connector is made 

up in part, or entirely, of Gly residues, since the 3G variant is much less active than the   

-1 (MLL) variant, although both have a three-residue connector.  

 2) Shortening the connector does not automatically lead to a CW-biased signal 

output. It has been previously observed (68) that moving the aromatic Trp-209/Tyr-210 

anchor at the cytoplasmic hydrophobic/hydrophilic interface of Tar TM2 in the N-

terminal direction increases CCW signal output. Moving the Trp-209/Tyr-210 anchor in 

the C-terminal direction increases the CW signal output. These findings were interpreted 

as meaning that moving the Pro-219 farther from the aromatic anchor favors CCW 

signaling and moving Pro-219 closer to the aromatic anchor favors CW signaling. 

However, none of the shortened connectors studied here increased CW signal output, 

although they should bring Pro-219 closer to the aromatic anchor. Thus, the simplest 

interpretation of the earlier work is not correct. Of course, it could be that shortening the 

connector directly distorts the conformation of the HAMP domain in some way that 

moving the aromatic anchor does not. 
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 3) The helical periodicity of the connector is important for determining signal 

output if the connector is lengthened, but not if it is shortened. The +4 receptor, which 

comes within 40o of restoring the proper helical register of the connector, retains 

reasonably good chemotactic function and supports CW rotation in a cheR+B+ strain. It 

functions much better than the +1 and +2 receptors, although not as well as the -1 

receptor. Its behavior is much like that of receptors in which the aromatic anchor was 

moved in the N-terminal direction (68): they also were overmethylated and gave CCW 

locked rotation in a ∆cheRB strain. It could be that if the connector is shortened it loses 

its ability to pack as a helix and becomes disordered, much like the Gly residues. 

However, the somewhat different phenotypes associated with the 2G and -2 receptors 

indicate that the ML linker and 2G linker are not identical. 

 4) The inputs to the adaptation domain and signaling domain can be uncoupled. 

Three of the Tar constructs discussed here do not show the typical correlation between 

rotational bias and extent of covalent modification. i) The first exception is the variant in 

which the WYIGRR sequence at the C-terminus of TM2 is positioned directly adjacent 

to the Pro residue of AS1 (the 0G or -4 variant). This protein does not support any 

aspartate taxis. In a cheR+B+ strain, the protein is overmethylated and is CCW locked.  

However in a ∆cheRB strain, this protein is capable of producing a CW signal.  This is 

the only TM2-HAMP junction variant of Tar that is capable of producing a CW signal 

but incapable of supporting chemotaxis. It may be that the close juxtaposition of Pro-219 

to the membrane in this protein does not allow the ligand-induced, piston-like movement 

of TM2 to be communicated to HAMP. 
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 ii) The second exception is the 2G variant of Tar, which is capable of supporting 

some level of chemotaxis but gives CCW-locked rotation in its unstimulated state in the 

∆cheRB cells but becomes capable of CW rotation in a cheR+B+ strain.  In its 

unstimulated state, the intrinsic CCW-signaling bias of this receptor does not lead to 

increased methylation. However, exposure of cells containing this protein to aspartate 

does generate increased methylation, presumably a prerequisite for these cells to be able 

to respond to aspartate gradients. 

 iii) The third exception is the -2 protein, which is in some ways the most 

puzzling of all. It supports some level of ring expansion in aspartate-minimal semi-solid 

agar, it is undermethylated in its unstimulated state, its methylation level does not 

change upon addition of either aspartate or NiSO4, and cheR+B+ cells expressing it are 

CCW biased. However, in its QEQE state, as it is found in ∆cheRB cells, it is capable of 

generating nearly as much CW signal as wild-type Tar. Presumably this protein must 

still relay conformational changes generated by attractant binding to the transmembrane-

signaling domain to the signal-output domain. However, aspartate (or Ni2+) binding have 

no effect on the adaptation subdomain. 

 One possible explanation is that whatever distortion is imposed by the -2 

mutation has a greater effect on the adaptation subdomain of the receptor than on the 

kinase control domain. For example, the -2 protein might become a poor substrate for 

CheR but retain its capacity to be deamidated by CheB. Thus, there would be less 

electrostatic repulsion within the adaptation subdomain in the QEQE form of the protein 

present in ∆cheRB cells than in the form found in cheR+B+ cells. The result would be a 
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less-dynamic CD1-CD2 four-helix bundle in the ∆cheRB cells and a greater extent of 

CheA kinase stimulation. If this idea is correct, a ∆cheB strain expressing the -2 protein 

should behave like a ∆cheRB strain expressing the -2 protein, whereas a ∆cheR strain 

expressing the -2 protein should behave like the cheR+B+ strain expressing the -2 protein. 

 The results reported here and in Chapter II do not solve the problem of how 

HAMP converts the presumed piston-like transmembrane signal into a change in the 

dynamics of helical packing in the CD1-CD2 four-helix bundle. However, they do 

eliminate some possible mechanisms and suggest experiments to test other models for 

communication between TM2 and HAMP. These issues will be discussed in Chapter IV. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 62

CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

Summary 

The HAMP domain is thought to convert the asymmetric signal from the piston-

like movement of TM2 into a symmetric signal in the kinase control module. How this 

signal is communicated through the HAMP is not known.  In this dissertation, I address 

how the TM2-HAMP junction is important in the communication between the TM2 and 

HAMP and how manipulating the secondary structure and length of this region can 

disrupt the communication of the TM2 signal into HAMP, thereby interdicting normal 

regulation of the kinase control module.  The results from Chapters II and III suggest the 

following features of the TM2-HAMP connector are important. 1)  The normal length of 

the TM2-HAMP connector (4 residues) is important for proper receptor function. 2)  

Shortening the TM2-connector does not result in a CW-locked or CW-biased receptor.  

3)  The helical periodicity of the TM2-HAMP connector is important for determining 

signal output only if the connector is lengthened.  4)  The inputs from the adaptation to 

the signaling domain can be uncoupled.  In this chapter, I discuss the implications of the 

mutations affecting the TM2-HAMP junction for our understanding of the control of 

CheA kinase activity and methylation-dependent adaptation.  I will also discuss why 

some proposed mechanisms for communication between TM2 and HAMP cannot be 

correct and suggest new experiments to test the other models.    
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A multi-state frozen-dynamic model for receptor signaling 

As discussed in Chapter II, the results obtained with the Gly mutants support the 

frozen-dynamic model for receptor signaling. In this model, covalent modification by 

methylation or amidation of certain Glu residues acts as an electrostatic switch to 

modulate the dynamics of the kinase control domain.  A recent mutational analysis of the  

connector between AS1 to AS2 (80) suggests that the CD1-CD2 four-helix bundle can  

become so tightly packed that it also produces a kinase-inhibiting state.  Several of the 

connector mutants impose a bipolar phenotype such that in the presence of the CheRB 

adaptation machinery the receptor is CCW biased, whereas in a ∆cheRB strain the 

receptor is CW biased. In those experiments methylation states were not determined, but 

the suggestion is that there is an optimal packing and stability of the kinase control 

domain four-helix bundle that elicits a kinase activating receptor.  If the four-helix 

bundle of the kinase control domain is too loosely packed or too tightly packed, kinase 

activity is inhibited.   

  The three mutants (0G, 2G, and -2) that show abnormal coupling of the 

adaptation and signal-output domains complicate the simple frozen dynamic model.  My 

interpretation of the properties of these proteins in the two preceding chapters is that the 

mutant receptors had differentially altered accessibility to CheR and CheB. As an 

alternative interpretation, I will discuss other possibilities for the effects of the 0G, 2G, 

and -2 mutants on the helical packing of the kinase-control domain and consider how the 

compensatory methylation can affect the signaling state of the mutant receptors.  
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Cells expressing the 0G receptor were CCW-locked in the presence of the 

adaptation machinery.  In its absence, the cells were not CCW-locked, although they did 

show a CCW bias relative to cells expressing wild-type Tar. The 0G mutant receptor is 

also incapable of mediating a chemotaxis response toward aspartate.  This suggests that, 

in the presence of the methylation machinery, the drastic shortening of the TM2-HAMP 

junction of the unstimulated 0G receptor may cause HAMP to assume a conformation 

that causes the adaptation subdomain to become overmethylated. This overmethylation, 

in turn could cause the signal-output domain to pack so tight that it inhibits kinase 

activation.  In the absence of the methylation machinery, no increase in methylation can 

occur, and the signal-output domain will remain in a conformation that allows some 

activation of CheA.  If this is true, mutations that are thought to destabilize the kinase-

control domain, such as the one leading to the R505E substitution in the adaptation 

domain (71), might reverse the CCW-locked phenotype of the 0G mutant.      

The 2G receptor produced a CCW-locked phenotype in the absence of the 

methylation machinery, but its output became less CCW biased in the presence of the 

methylation machinery.  Cells expressing the 2G receptor are capable of some aspartate 

taxis, and the 2G receptor is undermethylated in a cheR+B+ strain.  In the absence of the 

methylation machinery, a distorted and essentially inactive HAMP domain allows the 

kinase-control module to become too tightly packed in the QEQE state, resulting in a 

kinase inhibiting state and a CCW-locked phenotype. In the presence of CheB, however, 

deamidation/demethylation of the adaptation domain may loosen the packing of the 

kinase control module four-helix to create a kinase-activating conformation. Once again, 
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the prediction would be that the helix-destabilizing R505E substitution might return the 

QEQE form of the 2G receptor to generate a less CCW-biased output.    

In the presence of the methylation machinery, cells expressing the -2 receptor 

were strongly CCW biased, and the receptor was undermethylated. However, in the 

absence of the methylation machinery, the -2 (ML) receptor supported CW/CCW rations 

only slightly more CCW biased than cells expressing wild-type Tar. In this protein, the 

HAMP domain may be perturbed enough that the kinase-control module becomes 

slightly overwound in the QEQE state, resulting in a slightly higher CCW bias. In the 

presence of CheRB, the tighter packing of the kinase control module may evoke 

deamidation/demethylation of the receptor that causes an overcompensated loosening of 

the kinase-control module that leads to a further decrease in kinase stimulation. In this 

case, mutations in the adaptation domain that favor tighter packing (71) might decrease 

the CCW bias seen with the -2 receptor expressed in a cheR+B+ strain. . 

Taken together, these results support a multi-state frozen dynamic model in 

which HAMP and the kinase-control module must be in an optimal packing of the CD1-

CD2 four-helix bundle for maximum kinase activity to be observed. Either too-loose 

packing or too-tight packing would compromise kinase-stimulation activity. Too-tight 

packing could elicit a demethylation response that could restore normal CW-CCW 

output, as with the 2G receptor, or which might overcompensate. The excessively tightly 

packed state may simply be an overshoot of the tighter packing, increased kinase 

stimulation, and compensatory demethylation elicited by a repellent with wild-type 

receptor (Figure 24).  
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Figure 24.  A diagram illustrating a multi-state frozen dynamic model for receptor 
signaling. The normal distribution bell curve represents the increasing kinase activity of 
the receptor as a function of increasing receptor methylation. As the glutamyl residues 
within the adaptation domain become increasingly methylated the kinase control domain 
four-helix bundle becomes more tightly packed. However as the glutamyl residues are 
demethylated the kinase control domain four-helix bundle becomes loosely packed.  If 
the kinase control domain four-helix bundle becomes too loosely packed or too tightly 
packed the kinase activity decreases. Therefore, there is an optimal packing of the kinase 
control domain four-helix bundle that allows for normal receptor function. The dotted 
lines on the curve represent the wild type Tar receptor kinase activity as a function of 
receptor methylation. The 0G/-4 mutant in a cheR+B+ strain (blue diamond) is 
overmethylated, CCW locked, and shows no aspartate chemotaxis. Whereas the 0G/-4 
mutant in a ∆cheRB strain (red diamond) becomes less CCW biased. This suggests that 
the 0G/-4 mutant induces a conformation in HAMP that causes the adaptation domain to 
become overmethylated. This overmethylation, in turn could cause the kinase control 
domain four-helix bundle to pack too tight that it inhibits kinase activity.  In the absence 
of the methylation machinery the lack of methylation results in the receptor retaining 
some kinase activation. The 2G mutant in a cheR+B+ strain (blue triangle) is 
demethylated, CCW biased, and is deficient in aspartate chemotaxis. However, the 2G 
mutant in a ∆cheRB strain (red triangle) is CCW locked.  This suggests that in the 
absence of the methylation machinery, a distorted HAMP domain allows the kinase-
control module to become too tightly packed in the QEQE state, resulting in a kinase 
inhibiting state and a CCW-locked phenotype. In the presence of CheB, however, 
deamidation/demethylation of the adaptation domain may loosen the packing of the 
kinase control module four-helix to create a kinase-activating conformation.  The -2 
mutant in a cheR+B+ strain (blue square) is demethylated, CCW biased, and is deficient in 
aspartate chemotaxis.  However, the -2 mutant in a ∆cheRB strain resembles wild type 
rotational bias.  This suggests that in this protein, the HAMP domain may be perturbed 
enough that the kinase-control module becomes slightly overwound in the QEQE state, 
resulting in a slightly higher CCW bias. In the presence of CheRB, the tighter packing of 
the kinase control module may evoke deamidation/demethylation of the receptor that 
causes an overcompensated loosening of the kinase-control module that leads to a further 
decrease in kinase stimulation.  
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Models for the mechanism of signaling from TM2 through HAMP to the kinase 

control module 

As stated in Chapter I, there are two classes of models for how TM2 signals 

through HAMP to the kinase-control module.  Briefly, one model for HAMP function 

suggests the AS1 and AS2 helices undergo a 26 degree rotation relative to each other 

upon the binding of attractant to the ligand-binding domain (78). An alternative model 

suggests that, in the absence of attractant, AS1 interacts with the cytoplasmic face of the 

membrane. Upon binding attractant, the AS1 domain is displaced from the membrane by 

the piston-like movement of TM2 (73).   

The analyses of the TnG receptors and most of the Gly-replacement receptors 

argue against the idea that a rotational signal is transmitted directly from TM2 to HAMP.   

If the signal were rotational, then the insertion of flexible Gly residues between TM2 and 

HAMP should essentially eliminate the ability of TM2 to signal to HAMP, which is not 

the case.  The results do not, however, eliminate the possibility that the conformational 

change within HAMP is a rotation of helices, but it is difficult to imagine how piston-

like movement of TM2 results in helical rotation within HAMP. 

 The results from the TM2-HAMP junction Gly mutants are consistent with the 

membrane association model for HAMP function.  The 4G receptor is very similar to 

wild-type Tar in every way except for its high level of methylation in vivo and the CCW-

biased rotation of cheR+B+ cells producing the 4G receptor. Either shortening or 

lengthening the length of the Gly tether decreases, in a progressive, step-wise fashion, 

performance on aspartate semi-solid agar, suggesting that the 4-residue separation of 
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Tm2 from Pro-219 is critical.  Shortening of the Gly connector does not lead to 

increased CW bias, which was the result seen when the distance between the aromatic 

WY tether and Pro-219 was decreased.  Instead, in unstimulated cells kinase activity 

decreased, as though moving AS1 closer to the membrane prevents its proper alignment 

with regard to the membrane.  However, the 2G receptor showed decreased methylation 

(or amidation) in its unstimulated state relative to the wild-type receptor, suggesting that 

the kinase-control domain may have been packed more tightly than in wild-type Tar.  

 In contrast, the experiments in which the MLLT putative helical connector was 

extended or shortened are not entirely consistent with the membrane-association model.  

Addition of residues decreases kinase-stimulating activity until the proper helical 

register is restored in the +3 and +4 receptors.  In the simplest view of the membrane-

association model, addition of residues in a helix should have the same effect as the 

addition of Gly residues.  However, changing the helical register could interfere with the 

proper alignment of AS1 as well as the formation of the HAMP four-helix bundle, and 

the +3 and +4 mutants would come closest to restoring the original helical periodicity. 

When the helical connection is shortened, the putative connector helix could be 

disrupted completely.  It is noteworthy that removing only the Thr-218 residue does not 

disrupt receptor function very much, although it should cause a 100 degree axial rotation 

of AS1 if TM2 has a direct helical connection to AS1.  However, the unstimulated -1 

(MLL) receptor is overmethylated, whereas when the WY+1 receptor in the series in 

which the aromatic anchor were moved toward the periplasm the receptor is 

undermethylated.  These two proteins should have the same number of residues between 
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the aromatic anchor and HAMP.  The difference is that the helical register of the 

connector is not altered in the WY+1 receptor, whereas it is in the -1 (MLL) receptor.   

The data presented here are completely consistent with the dynamic four-helix 

bundle model for regulation of the kinase control domain. However, although they 

eliminate a pure rotation model for transmembrane signaling, they do not 

unambiguously distinguish between the membrane-association and helical rotation 

models for HAMP function.  To test the membrane-association model directly, I propose 

to use NBD fluorescence intensity and quenching experiments.  The Tar protein has no 

native Cys residues, which makes it ideal for labeling with SH-reactive reagents.  A 

previous study (77) demonstrated that every position in the Tar HAMP domain except 

Pro-219, Ile-230, Lys-237, and Ser-242 tolerates substitution with Cys.  One can 

therefore substitute Cys at many positions within AS1 to label with the SH-reactive 

fluorescent probe NBD.  NBD will be used because of its sensitivity to polar and 

nonpolar solvents.   The individual cysteine substituted receptors will be overexpressed 

and enriched for in inner membrane vesicles (IMVs).  The cys-substituted receptors 

within IMVs will be labeled with NBD and fluorescence measurements will be 

measured in the absence and presence of aspartate. If the NBD-labeled Cys is located in 

a nonpolar environment, such as the membrane of hydrophobic core of a protein, then 

the NBD fluorescence increases.  However, if the NBD-labeled Cys residue is located in 

a polar environment, such as the cytosol, then the NBD fluorescence is decreased.  A 

potential caveat to this experimentation is that NBD increases its fluorescence in a non- 

polar environment such as the hydrophobic interior of a protein or membrane.   This 
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approach alone may not distinguish between residues interacting in the hydrophobic 

interior of the HAMP four-helix bundle and residues interacting with the hydrophobic 

core of the membrane. 

To distinguish between a NBD-labeled Cys residues embedded in the membrane 

from a NBD-labeled Cys residue in the hydrophobic core of the HAMP four-helix 

bundle, nitroxide-labeled lipids can be used in the IMVs to quench the fluorescence of 

NBD-labeled cysteines that are embedded in the membrane.  The IMVs which contain 

the mutant receptors that exhibited an increase in NBD fluorescence will be mixed with 

nitroxide-labeled phospholipids.  The residues that show an increase in NBD 

fluorescence in the normal and a decrease in NBD fluorescence in the nitroxide-labeled 

IMVs should be embedded within the membrane.  If the off state is the HAMP four-

helix bundle then, when attractant is added, the residues that showed NBD fluorescence 

quenching should increase in NBD fluorescence.    
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