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ABSTRACT

Rice Transformation as a Means to Study Gene Expression. 

(August 2009)

Yiming Jiang, B.S., Guangxi Agricultural College;

M.S., Yunnan Agricultural University

Chair of Advisory Committee: Dr. Timothy C. Hall 

An exceptionally effective transformation procedure has been established by using class

I embryo-derived rice callus. Every treated callus clump yielded multiple independently

transformed plants (average 40 plantlets). Analysis of genomic DNA blots and pollen expressing

green fluorescent protein (GFP) from T0 plants revealed that 64% bore a single locus T-DNA

insertion in which half  had one T-DNA copy.  Additive transgene  expression was observed

fromT0 plants with GFP driven by mUbi1 promoter. Transgenic plants could be rapidly

characterized by analyzing GFP pollen from T0 plants without the need for further generations

or genomic DNA blot analysis. 

             Agrobacterium tumefaciens-mediated transformation of microspore-derived callus for

generating large numbers of T-DNA haploid and doubled haploid(DH) plants has also been

investigated. The established transformation procedure  resulted in 100% transformation

frequency for class I microspore-derived rice callus. Each callus typically yields multiple

independent transgenic plants. Genomic DNA blot analysis suggested  98% of the transgenic

plants are independent events. About half  of the transgenic plants were identified as haploid
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plants, whereas half are DH hemizygous or homozygous transgenic plants.  DH homozygous

transgenic plants were obtained from T0plants and confirmed by  pollen GFP expression and

genomic blot analysis in T0transgenic DH plants. In this study, about 60% ofT0transgenic DH

plants had a single locus T-DNA insertion of which 45% bore one T-DNA copy. Furthermore,

in a population of over 2,000  haploid and doubled haploid T-DNA plants , about 25% showed

phenotypic differences from non-transformed haploid plants. Approximately 5% were seriously

phenotypically abnormal including lethal or semi-lethal mutants.  This highly efficient

transformation procedure using microspore-derived callus could be valuable  in speeding up

plant breeding and in new gene discovery.

            Diversification of the mUbi1 promoter led to a minimal  promoter that has a similar

function as the original mUbi1. Transient and stable transformation as measured from gene

expression driven by the minimal promoter suggested that it has a similar function as the original

wild type promoter. 
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This dissertation follows the format of Plant Molecular Biology.

CHAPTER I

INTRODUCTION

Rice, the main food for about half of the world's population, is one of the most

important crops in the world. Its high and stable production is crucial for feeding the 8.3 billion

people that are predicted to be in existence by the year 2025 (Borlaug, 2000). Therefore, rice

is a very attractive candidate for genetics and biology studies. Its small genome (400-430Mb)

also makes it an excellent monocot model for genomic sequencing and many other studies

(Shimamoto, 1995).  

ORIGIN, DISTRIBUTION AND VARIATION OF RICE 

            Indica and Japonica rice are the most common and important varietal types in Oryza

sativa  that are distributed in the rice cultivation countries around the world.  Due to their

economic importance in the world, these two types of rice have been studied extensively and

deeply at different levels, such as morphology, physiology, and genetics including classical

genetics and molecular genetics. Various studies between the indica and japonica types  show

that indica rice is quite different from japonica rice,  not only in origin and distribution, but also

in both morphology and molecular composition.
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Origin of rice

There are two hypotheses about the origin of indica and japonica rice; the diphyletic

hypothesis and the monophyletic hypothesis (Oka, 1991). The first hypothesis assumed that

indica and japonica originated independently, while the second hypothesis assumed that both

indica and japonica was domesticated from same wild rice. 

The monophyletic hypothesis was supported by  studies on intermediate wild-cultivated

rice from the Jeypore Tract, India (Oka, 1991).  The observations showed that japonica-like

plants can be produced from typical indica-indica crosses and indica-like plants can be

produced from typical japonica-japonica crosses (Oka, 1982). Therefore, it was believed that

indica and japonica were derived from the same progenitor.

The diphyletic hypothesis was widely supported by  studies at the biochemical and

molecular level. Studies of isoenzymes indicated the indica and japonica most likely originated

independently(Second, 1982; Morishima, 1986). The results from cpDNA comparisons of 93

cultivated rice, 32 indica and 61 japonica, also supported the diphyletic hypothesis and

suggested that indica and japonica are from different centers of origin (Sun et al., 1998). 

 RAPD, RFLP, nuclear SSLP and chloroplast SSLP analyses on 4 japonica and 5

indica rices (Bautista et al., 2001) showed that indica rice is similar to O. rufipogon from

tropical countries (India, Malaysia, Myanmar and Indonesia) and possibly originated from

these areas, while the japonica rice is strongly similar to O. rufipogon from China where the

japonica most likely originated. It is also supported by the archaeological evidence in which
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that the oldest japonica grains were discovered along the Changjiang river in China, further

suggesting that China is the origin center of japonica rice (Jiang et al., 1996).

Short interspersed nuclear elements (SINEs) was also used to study the origin of

cultivated rice. It was  found that the indica subspecies likely arose from one group of O.

rufipogon lines while the japonica arose from another group of O. rufipogon lines. This result

also supported the indica and japonica originated diphyletically (Cheng, 2003). 

Geographical distribution of  rice

Rice is  widely distributed from tropical countries to temperate countries. However,

indica rice is mainly grown in the tropical and subtropical areas while japonica rice is widely

planted from the tropics to northern temperate zones.  In Asia, the indica rice is mainly

distributed on the continent (mainly in India, China, Thailand and Vietnam), so it was called

"Continent" rice. The japonica is distributed both from Japan to Indonesia and the continent

areas, but it was also called "Island" rice (Jiang et al., 1996).

The distribution of Indica and Japonica is also affected by altitude. The studies on the

distribution of rice in Yunnan, China, found that the indicas are mainly cultivated in the

mountainous areas below 1,200m while both indicas and japonicas are distributed between

1200-1700m. Only japonica was found in the mountainous regions above 1,800 (up to

2,370m). From those data, it is clear that the distribution of indica and japonica in Yunnan is

mainly affected by temperature (Jiang et al., 1996).
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Morphological variations of  rice 

The morphological characters of typical indica plants are quite different from  typical

japonica rice. The most conspicuous difference may be in grain form in which indica is slender

and flattened while japonica is short and round. The typical indica leaf is broad and light green

while japonica is narrow and dark green. The tillering ability of indica is stronger than that of

japonica. There are many other characters that are different from each other (Jiang et al.,

1996). Although typical indica and japonica plants differ in many characters, there are still

many intermediate varieties that were difficult to group to either indica or japonica. Never is

it possible to distinguish the two subspecies from each other by single character comparison.

It was found that over 39% of rice cultivars were wrongly grouped when relying only on the

length-width ratio of grains (Morishima and Oka, 1981). Jiang (1996) investigated the indica

and japonica intermediates fromYunnan province, China. It was  inferred that those

intermediates are mixture of indica and japonica due to natural crosses between each other and

natural selection (Jiang et al., 1996). 

Isozymes variations of rice  

Investigation of 1,688 native cultivars from different Asian countries for allelic

frequencies at 15 isozymes loci using  a multivariate technique (Glaszmann, 1987)showed that

95% of those rices can be grouped into six enzymatic groups and 5% fall into an intermediate

type which can not be grouped into any other groups. In this study, the indica rices can be
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found in five different isozyme groups and showed great variation while japonica (both tropical

and temperate varieties) are relatively uniform and distributed  in one isozyme group. If the

allelic variability for isozyme loci is calculated by the average gene diversity u sing Nei's

formula (Nei 1975),  isozyme variation is observed more clearly between indica and japonica

lines than within (Oka, 1991).  

DNA variations of  rice

             Chloroplast DNA is very conservative in  evolution.  Rice cpDNA is 130kb (Hirai et

al., 1985). The study of fragment length polymorphism of chloroplast DNA using three

endonucleases found that nine types of chloroplast DNA are different between indica and

japonica rices (Ishii et al., 1988).  The cpDNA of indica and japonica subspecies were also

different from each other (Dally and Second, 1990). A study on the large chloroplast DNA

insertion on the long arm of chromosome 10 that the insertion is nearly identical in indica and

japonica. It suggested that the cpDNA transfer from wild rice occurred before the divergence

of indica and japonica rice (Yuan et al., 2002).   

               Rice mtDNA is very conserved in evolution as well. A study on  mtDNA in rice

showed that the mtDNA arrangement commonly found in wild rice mtDNA is mainly found

in indica, rarely in japonica. Further study showed that the common wild rice mtDNA found

in indica is very conservative. But the mtDNA in japonica is quite different from that in indica.

It is very interesting that some japonicas also have the common wild rice mtDNA. Studies on
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restriction fragment length polymorphism (RFLP) of mitochondrial DNA from rice showed that

the RFLP patterns in Indica rice were different from Japonica rice (Abe et al., 1999).

             Restriction fragment length polymorphism (RFLP), random amplified polymorphic

DNA (RAPD) and simple sequence length polymorphisms (SSLP) were used to study the

genetic variations of indica and japonica rice. (Sun et al., 2000; Bautista, 2001; Zhu et al.,

2001). RFLP results showed that the genetic variation of indica is larger when comparing with

japonica in O. sativa using proportion of polymorphic loci, average number of alleles per loci

and average gene diversity as the parameters. The RFLP data was used to calculate the genetic

distance  indica and japonica accessions. It was found that genetic distance within indica rice

is larger than that within japonica rice. 

The RAPD, RFLP, nuclear SSLP and chloroplast SSLP analyses on rice also showed

that the patterns of both RAPD and SSLP variants of indica rice is different from those of

japonica,  while no difference in RFLP variants was detected between these two subspecies

(Bautista, 2001).

Genome of rice

Rice (Oryza Sativa. L.)has a chromosome number of 2N=24. A draft sequence of both

indica and japonica rices was published (Goff et al., 2002; Yu et al., 2002). The complete

sequence of the japonica cultivar Nipponbare is available from TIGR database. From the

published data, the genome size of indica is 466 megabase, while that of japonica is 420 Mb.

The estimated number of genes in the  indica genome ranges from 46,022 to 55,615 genes,
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while that in japonica the range is from 32,000 to 50,000 genes. The difference between indica

and japonica on chromosome 4 is 16% estimated at the gross level(Yu et al., 2002). When

compared at the nucleotide level, although the alignment is only partial, the single nucleotide

polymorphisms (SNP) rate is 0.43% and the rate of divergences in insertion/deletion

polymorphisms (InDels) is 0.23%. 

AGROBACTERIUM TUMEFACIENS-MEDIATED TRANSFORMATION OF RICE

The first green revolution was based on the introduction of high-yielding semi-dwarf

varieties of wheat and rice, in combination with applications of large amounts of nitrogen

fertilizer to increase grain yield. It was crucial to feed the almost doubled world population that

occurred in the 1960's. Sixty  years later, it was estimated the world population will reach 8.3

billion by 2025. A second green revolution for plant breeding and cultivation is needed to feed

the increasing world population. Genetic engineering of food crops has  turned out to play an

important role for the expected second revolution.  Rice is a staple food for almost half the

world's population. It is crucial to improve rice production to achieve the projected food

productivity to feed the growing world population. 

For almost a decade, the development of methods for genetic transformation of rice and

other cereals lagged in comparison with the progress for dicotyledonous crops. The major cause

of this delay was the fact that transformation mediated by the soil bacterium Agrobacterium

tumefaciens was initially thought to be inapplicable to cereal plants, necessitating the use of

direct transformation techniques such as bombardment (Cao et al., 1992). However, Hiei et
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al.(Hiei et al., 1994)demonstrated efficient transformation of rice by Agrobacterium and

similar procedures (Dong et al., 1996)are now widely used. Nevertheless, particle

bombardment remains a powerful tool for analysis of transient expression of foreign genes in

plant cells (Komari et al., 1998).

The soil phytopathogen Agrobacterium tumefaciens has been utilized routinely for

transformation of dicotyledons. Advantages include the transfer of pieces of T-DNA with

defined ends and minimal rearrangement, the transfer of relatively large and intact segments

of DNA, the integration of small numbers of copies of genes into chromosomes, and the high

fertility of resultant transgenic plants in contrast to direct DNA uptake methods (Sheng and

Citovsky, 1996; Hiei et al., 1997)

In the past few decades, although various attempts to infect monocotyledons with

Agrobacterium were made, no conclusive evidence of integrative transformation was obtained

until in the middle of 1990s. Successful transformation of cereal crops via  Agrobacterium has

been achieved in wheat (Cheng et al., 1997), maize (Ishida et al., 1996; Shen et al., 1999) and

rice. Efficient transformation of several subspecies of rice via Agrobacterium has been reported

(Chan et al., 1993; Hiei et al., 1994; Aldemita and Hodges, 1996; Dong et al., 1996; Komari

et al., 1996) and genes of interest have been transferred into rice for commercial purposes

(Burkhardt et al., 1997; Cheng et al., 1998; Ye et al., 2000).

An Agrobacterium-mediated rice transformation system using binary vectors has been

established in our lab. It is similar to previously published procedures (Aldemita and Hodges,

1996; Chan et al., 1993; Dong et al., 1996; Hiei et al., 1994; Zhang et al. 1997; Cheng et al.,

1998; Vijayachandra et al., 1995). An Agrobacterium-mediated transformation procedure
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using inflorescence as the explant source was also established (Dong et al., 2001). The

Agrobacterium-mediated transformation system has been used in generating a large number

(more than1500)  independent transformants from different gene constructs.(Vijayachandra et

al., 1995; Cheng et al., 1998) Recently, a dual T-DNA transformation system for the

production of marker-free transformants of rice was established in our lab.

TRANSGENE EXPRESSION AND SILENCING

       Although efficient protocols for transformation of some cereal crops are now available,

there are still many hindrances to the successful application of this biotechnology to crop

improvement. Transgene silencing is one important constraint. A variety of silencing effects has

been described in the literature, involving single transgene loci, interactions between unlinked

loci, or even interactions with or through an endogenous homologous gene (Meyer et al., 1992;

Iglesias et al., 1997; Iyer et al., 2000). Epigenetic silencing of transgenes and endogenous

genes can occur at the transcriptional level (TGS) or at the posttranscriptional level (PTGS)

(Fagard and Vaucheret, 2000). Aspects such as insert location, rearrangements, multiple-copy

loci, homology to an endogenous sequence, excessive level of transcription and others have

been claimed to be apparent triggers of silencing. Several studies make it evident that at least

some silencing mechanisms are part of normal gene regulation systems that operate during

plant growth and development. Additionally, silencing is now known to be involved in plant

defense systems against invasive DNA or RNA sequences (virus, transposons) and surveillance

processes that check the genome integrity to suppress the expression of abnormal or alien
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transcription units (Jorgensen et al., 1998; Kumpatla et al., 1998; Iyer et al., 2000). Recent

studies have shown that small RNA, such as small interfering RNAs (siRNAs) and micro-

RNAs (miRNAs) play important roles as regulators of gene expression in eukaryotes

(Hutvagner and Zamore, 2002; Lai, 2002; Rhoades et al., 2002).
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CHAPTER II

HIGHLY EFFICIENT PRODUCTION AND CHARACTERIZATION

OF DIPLOID TRANSGENIC RICE VIA AGROBACTERIUM

TUMEFACIENS-MEDIATED TRANSFORMATION

INTRODUCTION

Transformation of rice (Oryza Sativa L.) was conducted via naked DNA uptake

(Battraw and Hall, 1990; Battraw and Hall, 1992)or by biolistics (Christou, 1992). However,

multiple and rearranged copies of the desired gene together with the plasmid vector was often

integrated into the genome, which often results in gene silencing (Christou, 1992; Jorgensen

et al., 1998; Kumpatla et al., 1998; Iyer et al., 2000). Agrobacterium tumefaciens-mediated

transformation has been utilized routinely for transformation of dicotyledons where it has been

shown  that transfer of pieces of T-DNA with defined ends with minimal rearrangement. Also,

the method allows transfer of relatively large and intact segments of DNA, leads to  integration

of small numbers of copies of genes into chromosomes, and the resultant transgenic plants have

a high fertility  in contrast to direct DNA uptake methods (Shen and Ho, 1995; Hiei et al.,

1997). For almost a decade, the development of methods for genetic transformation of rice and

other cereals was not very successful until Hiei et al.(Hiei et al., 1994)demonstrated efficient

transformation of rice by Agrobacterium and Dong et al extended it to Javanica rice (Dong et

al., 1996). The established procedures of Agrobacterium tumefaciens-mediated transformation

of rice  are now widely used.



 12

With the complete genome sequence as well as abundant genetical and physiological

data, rice is a well established model for cereal crops. Now the challenge for the scientific

community is clearly to assign a biochemical, cellular, developmental or adaptive function to

the majority of the rice genes. There are several well established approaches to reach this great

goal: targeted/random gene disruption, gene detection, gene activation and/or gene silencing

methods to discover and validate the gene function in rice. RNA interference (Fire et al., 1998)

has been proved to be effective to inactivate the expression of a target gene or a gene family.

Homologous recombination (HR) was reported to be valuable in the targeted gene disruption

or gene replacement in rice (Terada et al., 2002). All those functional genomics resources will

benefit from a highly efficient transformation system. 

Characterization of transgenic rice can be conducted through both molecular analysis

and genetics approaches. PCR has proved to be very limited for the determination of transgene

copy numbers. Genomic Southern blot analysis is valuable in characterization of transgenic

rice,   although it is time-consuming. The characterization for the number and location of

genomic inserts in transgenic plants has to be performed through genetics analysis in their

progeny. It needs at least one  generation  and considerable  examination including molecular

tests on each of many progeny. In this chapter, a simple approach was described to characterize

the T-DNA locus number and the copy number on original transgenic rice (T0).
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MATERIALS AND METHODS

Plant material and tissue culture media

            Japonica rice (Oryza sativa L. cv Taipei 309 and Nipponbare) plants were grown in

a greenhouse as described previously (Battraw and Hall, 1990). Immature seeds or mature seed

was used for callus induction. Media used for tissue culture and transformation are listed in

table 2-1. 

Plasmid and Agrobacterium strains

              The binary plasmid pUbi1F (Figure 2.1) was constructed from pJD7 (Dong et al.,

2001), in which the GUS (uidA gene) reporter was replaced with an mGFP5-ER reporter and

the 35S promoter was replaced with mUbi1  promoter that was amplified from pJD4 (Dong et

al., 2001). The binary vector pJD7 (a derivative of pRPA-BL-150a that confers gentamycin

resistance for plasmid selection and extra copies of a DNA fragment encoding virulence genes

of Agrobacterium: virC, virD, virG and the 3' part of the virB operon from pTVK291 were

used in the transformation experiments. The T-DNA of pUbi1F contains selectable marker

genes for hygromycin resistance (35S-hpt-35S) and a gfp  reporter gene construct (mUbi1-gfp-

nos) for monitoring transformation events. The tri-parental mating procedure  was used to

mobilize pUbi1F and pTVK291 into Agrobacterium strain LBA4404. Agrobacterium strains
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 Figure 2.1. Schematic diagram of the T-DNA of the binary vector pUbi1F. Black

horizontal bars indicate the hpt and gfp  probes used for molecular analysis. The arrows

indicate the transcriptional orientation of each gene. RB, T-DNA right border; LB,

T-DNA left border; 35S, the 35S promoter from cauliflower mosaic virus; mUbi1 , the

ubiquitin-1 promoter from maize; hpt, the coding sequence of the gene for hygromycin

phosphotransferase conferring resistance to hygromycin B; GFP, the coding sequence of

the gene for green fluorescent protein; nos, the 3' nos terminator. The single HindIII site

facilitates molecular analysis of gene insertion number.
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Table 2.1 Media for scutellum-derived callus induction and Agrobacterium-mediated

transformation procedure

Medium Composition

N6M Basic Chu (N6) Basal salt mixture (Sigma), MS vitamins (Murashige and Skoog

1962), 30g/l sucrose

N6M N6M Basic, 500mg/l proline, 500mg/l glutamine, 300mg/l casein acid

hydrolysate, 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 2.5g/l Phytagel,

PH 5.8

2N6M N6M Basic+500mg/l proline, 500mg/l glutamine, 300mg/l casein acid

hydrolysate, 2mg/l 2,4-D, 2.5g/l Phytagel, PH 5.8

2N6M-AS 2N6M+10g glucose and 100:M acetosyringone, pH 5.2

AAM AAM ( Hiei et al. 1994)

2N6M-CH 2N6M+350 mg/l cefotaxime, 50 mg/l hygromycin.

PRN 2N6M Basic+500mg/l proline, 500mg/l glutamine, 300mg/l casein acid

hydrolysate, 3 mg/l 6-Benzylaminopurine (BAP), 0.5mg/l "-

Naphthaleneacentic acid (NAA), 5 mg/l ABA, 4g/l Phytagel, PH 5.8.

RN-1 MS and  vitamins (Murashige and Skoog 1962), 30 g/l sucrose, 2g/l BAP,

0.2g/l NAA, 4 g/l Phytagel, PH 5.8

RN-2 MS and  vitamins (Murashige and Skoog 1962), 30 g/l sucrose, 0.5g/l BAP,

0.1g/l NAA, 3 g/l Phytagel, PH 5.8

MS0 MS and  vitamins (Murashige and Skoog 1962), 30 g/l sucrose, 2 g/l

Phytagel, PH 5.8
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LBA4404(pUbi1F) was grown on AB minimal medium with 50 mg/L of gentamycin and 100

mg/L of kanamycin for 2 to 3 days at 28 oC. The bacteria were collected and resuspended in

AAM medium for co-cultivation with immature  embryo or mature embryo-derived callus.

pJD7 and pJD4 in LBA4404 were also used for transformation of embryo-derived callus as

control plasmid.

Induction of embryo-derived callus

Immature seed of each cultivar were collected, dehusked and surface-sterilized

essentially as described previously (Dong et al., 1996).The immature embryo was excised with

sterile forceps and callus was induced on a modified N6 medium (Chu et al., 1975) at 26°C

in the dark. After 4 weeks (wk), callus had developed and was ready for transformation.

Mature seeds from each cultivar were dehusked and rinsed with 70% ethanol for 1 min,

then soaked in 50% (v/v) bleach for 45 min on a shaker at 120rpm. The sterile seeds were

rinsed five times with sterile distilled water and placed on N6M medium (Chu et al., 1975)for

two weeks at 26°C in the dark. After 4 weeks (wk), callus had developed. The harvested calli

was cultured for another 2 weeks at 26°C in the dark. The class I type of callus (Figure 2.2)

was selected using a dissecting microscope. The morphological examination of three type of

callus was conducted using an ESEM microscope purchased under National Science

Foundation grant No. ECS-9214314.
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Transformation procedure

Class I type of embryo-derived callus was subcultured on 2N6M medium modified

from previous research (Hiei et al., 1994; Dong et al., 1996) at 28°C in dark for 3 days.

Actively growing Class I callus with turgid cells on the surface (Figure 2.2A) was chosen for

co-cultivation. About 50 pieces of callus, each with a diameter of approx. 5 mm were immersed

in 10 ml of liquid co- cultivation medium (AAM) containing  Agrobacterium cells  at a density

of 2-3x 108 cells/ml (OD595 = 0.5) in a 50 ml sterile centrifuge tube for 30 min.  

Callus pieces were blotted dry on sterile paper towels, transferred to solid co-cultivation

medium (2N6M-AS) and incubated for 3 days at 21°C in the dark. GFP-positive cells could

be detected by fluorescence microscopy after two days of co-cultivation(Figure 2.3). After co-

cultivation, the callus pieces were gently and briefly rinsed twice with 250 mg/l cefotaxime in

liquid 2N6 medium. Rinsed calli (25 pieces, approx. dia. 5 mm) were individually transferred

to one 100 mm-diameter Petri dish containing selection medium (250 mg/l cefotaxime; 50 mg/l

hygromycin B) (2N6M-CH) for two weeks at 28°C in dark. After two weeks selection,

resistant, light brown calli were evident on the surface of dead and dying (dark brown)

calli(Figure 2.3). The light brown calli (with some dark brown callus attached) were

transferred to fresh selection medium (2N6-CH) for 1 wk at 28°C in the dark. The surviving

light brownish globular calli were gently removed from the dead calli and placed in the medium

surrounding the original callus and cultured for another 5-7 days at 28°C in the dark. Four

weeks after the co-cultivation, the surviving calli were ready for regeneration.
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Figure 2.2. Classification of embryo-derived calli. Class I callus is shown in panels A and

D, class II in B and E and class III in panels C and F. Images in panels A-C were taken under

dissecting microscope and panels D-F are scanning electron micrograph(SEM) images at

270x. The arrows point to a robust, turgid cell characteristic of type I callus in panel D and

to a shrunken cell in type II callus in panel E.
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Figure 2.3. Stages in class I callus transformation. Panels A-F show images taken under

illumination with 500 nM UV light. Panels A and B show calli 2d and 3d, respectively, after

co-cultivation. Panel C shows calli 10d after co-cultivation (7d on selection). Panels D, E and

F show calli after 14d, 21d and 28d of selection, respectively. Panel G shows calli morphology

under white light after 28d of selection and immediately prior to transfer to pre-regeneration

medium. Panel H shows calli 7d (white light) after placement on pre-regeneration medium and

immediately prior to placement on regeneration medium. Panel I shows calli 7d after transfer

to RN-2 regeneration medium (white light).  White bar: 0.2mm; yellow bar: 1mm; blue bar:

2cm.
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The transformation efficiency and development of hpt-resistant callus was followed

throughout the selection step by fluorescence microscopy(Figure 2.3). Round, yellowish Class I

calli with turgid cells on the surface were chosen for culture on pre-regeneration medium

(PRN: (Sallaud et al., 2004))for 1 wk at 26°C in the dark. All of the surviving calli from a

single co-cultivated piece of callus were grouped into individual portion on  the PRN Petri dish

so that they would not co-mingle with calli surviving from other co-cultivated calli. After 1 wk

of culture on PRN medium, all remaining calli from the same original co-cultivated callus

piece were individually transferred to a single 100 mm dia. Petri dish containing RN-1. The

dish was kept in the dark at 26°C for one day, then at 26°C for 2 wk with a 16/8-h light/dark

cycle. Multiple green shoots, with or without small roots, regenerated from the light brown

surviving calli. All calli with green shoots derived from the original co-cultivated callus were

individually transferred to a 100 mm-diameter/25 mm-height Petri dish containing medium

(RN-2) for the second round of regeneration for 2 wk. The  plantlets were then individually

transferred to rooting medium (MS0) for one wk. The resulting plantlets were cataloged and

transferred to soil in the greenhouse.

Detection of gfp reporter genes

The expression of the gfp gene in transformed callus and plant tissues was observed

using a Stemi SV11 APO Microscope (Zeiss) fitted with an AxioCam HRc camera. Calli that

expressed GFP were imaged using a 500 nm filter and an exposure time of 3 sec. Pollen that

expressed GFP were imaged at an exposure time of 2 sec. The mean value of green 
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Figure 2.4.  Locus number of T-DNA insertion on rice chromosome revealed

by pollen GFP  expression. Panel A: Single genetic locus of T-DNA insertion on rice

chromosome revealed by pollen GFP expression.  In accord with the segregation of

the GFP reporter in pollen, 1:1 ratios for GFP positive : negative pollen (arrow)
showed under fluorescent microscope (P2 test for 1:1 of this transgenic plant,
P=0.488). Panel B: Two genetic loci of T-DNA insertion on two non-homologous

chromosomes revealed by pollen GFP expression. In accord with the segregation of

the GFP reporter in pollen, P2 test for 3:1 ratios for GFP positive : negative pollen
(arrow), P=0.796. Panel C: Three genetic loci of T-DNA insertion on three non-

homologous chromosomes revealed by pollen GFP expression.P2 test for 7:1 ratios
for GFP positive : negative pollen (arrow),  P=0.546. Panel D: Three genetic loci of
T-DNA insertion on three chromosomes(both members of one pair of homologous

chromosomes and one non-homologous chromosome)  revealed by pollen GFP
expression.P2 test for 1:2:1 ratios for 1GFP+++:2GFP++:1GFP+ ,  P=0.789.
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fluorescence for each pollen was measured using the interactive measurement module of

AxioVision 3.0 (Carl Zeiss). Each reading was normalized by subtracting the nearby

background fluorescence reading. Seeds that expressed GFP were imaged at an exposure time

of 1 sec. 

T1 segregation analysis for GFP activity of pollen fromT0plants

Five random chosen field of view of pollen fromT0plants were observed using a Stemi

SV11 APO Microscope (Zeiss) fitted with an AxioCam HRc camera. The image were taken

using an exposure time that does not saturate the exposure. Segregation for pollen GFP activity

was calculated by a statistical method using P2-test (Figure 2.4). 

T1 segregation analysis for hygromycin resistance and GFP activity of seeds

Fifty to one hundred were dehusked and observed for GFP activity under a Stemi SV11

APO Microscope (Zeiss) fitted with an AxioCam HRc camera.  The seeds were then

surface-sterilized, placed on a petri dish containing 30 mg/ml hygromycin and allowed to

germinate under light at 26°C. After 7-10days, seeds were scored for germination. Segregation

for seed GFP activity and  hygromycin resistance was calculated by a statistical method using

P2-test.
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Nucleic acid extraction and Southern blot analysis

Rice genomic DNA was isolated from fresh leaves as described previously (Buchholz

et al., 1998). Genomic DNA (2 :g) was digested with 20 units of HindIII for 12 h. After

electrophoretic separation in a 0.8% agarose gel, the DNA fragments were transferred to

Hybond-N+ membrane (Amersham). DNA probes were labeled using a DECAprime II™  kit

(Ambion). Hybridizations were performed using ULTRAhyb  (Ambion) according to the

manufacturer’s recommendations. Autoradiography of the membrane was done using a

PhosphorImager (Fuji, Stamford, CT).

RESULTS

Classification of embryo-derived callus

         Embryo-derived callus was examined under a dissecting microscope after 2 weeks of

subculture . The calli were classified into three types of callus according to morphological

characteristics of  the surface cell structure (Figure2-2).  Approximately 38% of the embryo-

derived calli were class I type of callus with many turgid cells on the surface (Figure 2-2A).

The callus surface was dry and no liquid could be detected. Anthoer 34% of  embryo-derived

calli were class II type of callus with a few of turgid cells on the surface. Liquid-like surface

covered a small portion of the callus (Figure 2-2B).  The final 28% of embryo-derived calli
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were  class III type of callus with no detectable turgid cells on the surface. Most of the surface

was covered with liquid.

Time course of production of transgenic plants from transformation of class I callus

Embryo-derived calli of cv.Taipei 309 and Nipponbare, were co-cultured with

Agrobacterium strain LBA4404 harbouring the pUbi1F, pJD4 and pJD7  binary plasmid

(Figure 2-1) according to the procedure described in Materials and Methods. GFP expression

in transgenic cells or callus was detected from 2 days after co-culture of the embryo-derived

callus pieces, until plant regeneration (Figure 2.3). Two days following the  co-cultivation of

callus with pUbi1F on 2N6-AS at 21°C in dark, a few portion of GFP positive cells were

detected using fluorescent microscopy on every co-cultivated class I type of callus (Figure 2.3).

The number of GFP positive cells or callus  increased when the time of co-cultivation and

selection increased (Figure 2.3). One week after transfer to selective medium, growth of the

co-cultured callus  was completely inhibited by hygromycin. However, the GFP positive cells

could be detected all over the top surface of the co-cultivated callus. Two weeks  following the

selection, hundreds of  translucent globules with different GFP fluorescence intensity under UV

light excitation could be detected all over the callus surface (Figure 2.3). Whitish resistant cell

lines from structurally independent regions of the callus surface were potentially independent

transgenic calli. Most of transgenic calli exhibited different GFP activity at this stage (Figure

2.3).
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After one more week of selection on the selection medium, the surviving transgenic

calli were examined under a light dissecting microscope (Figure 2.3). Class I type of transgenic

callus could be detected(Figure 2.3). The transgenic calli were classified into three types as

previously described (Figure 2.2). The selected calli were pre-regenerated for 1 week at 26°C

in dark Then  all calli were transferred to regeneration medium for 2 weeks at 26°C in 16h

light/8 h dark.  About 8 weeks was needed to produce  transgenic plantlets from co-cultivation

using class I type of embryo-derived callus. 

Exceptionally efficient transformation of class I type of embryo-derived callus

          The results of the co-culture experiments of three type of callus from each cultivar are

summarized in Table 2-2. Every class I type of co-cultivated calli (100%) yielded multiple

transgenic calli while ~15% class II type of calli yielded at least one transgenic callus. Only

~1% of class III type calli developed at least one transgenic callus. Transformation of the three

type of callus together (mixture) resulted in very low efficiency (~23%) not only in transgenic

callus production but also in transgenic plantlets per co-cultivated callus (Table 2-2).

Exceptionally efficient transformation of embryo-derived callus was observed only on

class I type of callus. The mean number of hygromycin-resistant cell lines for both cultivars

were 23.6 on each co-cultivated callus. The mean number of GFP positive cell lines reached

45.3 on each co-cultivated callus. ~40 plantlets could be regenerated on those transgenic cell

line from a single piece of co-cultivated class I type of callus. More than one thousand



 26

independent transgenic rice plants could be obtained using this exceptionally efficient

transformation protocol. 

Table 2.2  Summary of transformation using different types of callus 

Callus

 Type

 

Cultivar

Number of

co-cultured

calli

Percentage of 

co-cultured

calli yielding

resistant cells

Mean ( ±SD) 

number of GFP+

calli per

co-cultured 

callus

Mean ( ±SD) 

number of 

resistant calli 

(GFP!)per co-

cultured callus

Mean ( ±SD) 

number of 

plantlet per 

co-cultured

callus

  

   I

T309 62 100.0 47.2 ± 13.4 25.4 ± 9.2 43.1 ± 15.2

Nip 52 100.0 43.4 ± 11.3 23.6 ± 8.3 40.3 ± 12.7

  

  II

T309 54 15.6 1.5 ± 0.83 1.1 ± 0.06 1.8 ± 1.12

Nip 58 13.4 1.2 ± 0.46 1.3 ± 0.04 1.6 ± 0.86

  III

T309 150 0.6 0.2 ± 0.08 0.3 ± 0.12 0.04 ± 0.02

Nip 165 1.2 0.3 ± 0.12 0.2 ± 0.07 0.06 ± 0.04

Mix

T309 220 22.3 2.4 ± 1.1 2.8 ± 1.6 0.42 ± 0.23

Nip 216 18.7 2.8 ± 1.5 3.2 ± 1.1 0.51 ± 0.34
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Exceptionally efficient regeneration of class I type of transgenic cell line

The results of regeneration experiments of three types of transgenic callus from each

cultivar are summarized in Table 2.3. An average of 67.6% of class I type of transgenic calli

from both cultivars  yielded at least one green plantlet (Figure 2.5). Among those class I type

 

 Table 2.3  Summary of regeneration using different types of callus 

Callus

 Type

 Genotype Number of survived calli

for regeneration

Number of calli with

regenerated plant

Percentage of 

regeneration 

  

   I

T309 562 387 68.9

Nipponbare 558 370 66.3

  

  II

T309 758 36 4.75

Nipponbare 588 32 5.44

  III

T309 850 2 0.24

Nipponbare 678 0 0

Mix

T309 1228 199 16.2

Nipponbare 1167 249 21.3
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Figure 2.5 Regeneration of three type of transgenic callus. Most of class type I of
transgenic calli were able to develop at least one green plantlet(Panel A). Only a few green
plantlets could be recovered from class II type of transgenic calli(Panel B). Almost no green
plantlet could be regenerated from class III type of calli(Panel C). Regeneration of the
mixture of three type of callus was presented in panel D. 
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of calli with regenerated plantlets, ~20% bore multiple green plantlets (Figure 2.5A). Only ~5%

of class II type  transgenic calli yielded at least one transgenic plantlet. Most of those class II

type of calli with regenerated plant only bore one recovered plantlet (Figure 2.5B). None of

class III type of  transgenic calli from Nipponbare yielded any transgenic plantlets (Table 2.3).

Only 2 out of 850 class III type transgenic calli from Taipei 309 yielded regenerated plants.

~20% of the mixture of three types of transgenic calli gave rise to regenerated plants (Figure

2.5D and Table 2.3).

 Analysis of the transgenic plants regenerated from the same co-cultured callus

The green plants recovered from each co-cultivated callus were numbered and grown

in a greenhouse essentially as described previously (Battraw and Hall, 1990). 200 transgenic

plants from both cultivars were analyzed by Southern blotting as described in Materials and

Methods. Genomic DNA was isolated from a single leaf of each plant, digested by a restriction

enzyme (HindIII) that cut once in the middle of the T-DNA (Figure 1) and hybridized with the
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Table 2.4   Summary of the number of independent transgenic plants obtained from

individual callus transformed with pUbi1F

Calli

No.

Number of 

resistant calli 

(Survived)

Number of

regenerated

plants

Plants

analyzed

by Southern

Plants

analyzed

by pollen

Independent

plants by

Southern:

Number    (%)

Independent*

plants by

pollen:

Number (%)

1 73 52 47 38 44           (93.6) 36      (94.7)

2 56 39 36 34 36          (100) 34     (100)

3 50 32 32 26 32          (100) 26    (100)

4 65 41 37 30 36          (97.3) 29    (96.7)

5 82 54 48 32 48          (100) 32     (100)

Total 326 218 200 160 196       (98.0) 157  (98.1)

*Percentage of independent events from the number of transgenic plants analyzed.
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hpt and gfp  probes localized at both T-DNA ends. As illustrated in Figure 2.6 for callus no. 1

(Table 2.4), all but one of the 25 plants was a transgenic plant. All but one of those transgenic

plants exhibited a distinct hybridization pattern, indicating that 23 plants were all derived from

independent events, whereas plants 17 and 18 were of clonal origin (sibling). Overall~98%

were independent transgenic events (Table 2.4). Only two plants were from callus that escaped

from the selection and turned out to be wild type. For those multiple plants recovered from a

single co-cultivated callus, Southern blot anlysis indicated almost all of them were independent

transformants.

T-DNA integration pattern

The Southern blot analysis described above also allowed us to distinguish integration

patterns among those independent plants of both rice cultivars. Most of the transgenic plants

bore more than one T-DNA copy. Many of the plants with multiple T-DNA copies showed a

putative tandem structure. As an example in Figure 2.6,  plants numbered 3, 5, 8, 9, 11, 15, 19,

the number of bands hybridizing to the hpt (RB) and the gfp(LB) probes were different (Figure

2.6). Head-to-head tandem repeat or truncated T-DNA copies could result in this kind of band

pattern. The highest number of bands observed either with the hpt or the gfp  probe was used for

the purpose of estimating the T-DNA copy number. For many practical purposes, single T-

DNA insertion is desired. As illustrated in Figure 2.6, plants numbered 2, 4, 6, 7, 10, 12, 14,

24, both probes indicated one copy of T-DNA insertion. Overall, an average of ~34% 
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Figure 2.6 Genomic blot analysis of T0 lines of transgenic T309. Genomic DNA from lines

1 to 25 (all from one piece of co-cultivated callus) was digested with HindIII, and hybridization

was performed  with the hpt or gfp  probe. The sizes of the bands visualized for each plant with

either the hpt or gfp probes were different, indicating that T-DNA integrated at different locations

in the rice genome and that 23 out of 25 transgenic plants were independent transformation

events. (*) indicates the two primary transformants showing the same pattern of hybridization

with hpt and gfp  probes. Black arrow indicates the plant without transgenic insertion.
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of the transgenic plants for both cultivars bore one copy of T-DNA. The number of T-DNA

inserts on each plant averaged 2.6 in a population of 200 transgenic plants as determined by

Southern analysis.

 Because the GFP reporter gene driven by pUbi1F was expressed in pollen (Figure 2.3

and 2.6),  it also could be used to characterize the transgenic plants. To estimate the  number

of functional inserts,  segregation analysis for gfp  expression of pollen in T0 plants was

conducted as described in Material and Methods.  According to pollen segregation analysis of

gfp, 217 out of 339, ~64% transgenic plants with gfp  expression in pollen bore one T-DNA

insertion at a single locus (Table 2.5). ~22% plants bore two independent loci. About 14% of

plants bore 3 or more independent loci(Table 2.5). 

GFP expression  was observed in mature seed on those plants with GFP expression in

pollen. The estimate of locus number was analyzed by seed GFP segregation in F1 progeny

along with the pollen segregation on T0 original transgenic plants (Table 2.6). For the single

locus transgenic plants, the segregation for hygromycin resistance was analyzed by germinating

seeds on media as described previously.  All tested T1 lines were found to exhibit a 3:1

segregation ratio for hygromycin resistance (data not shown), thereby confirming the presence

of one locus insertion.

The  copy number of T-DNA insertion at a single locus varies from one to four copies

(Table 2.7).  Southern blot analysis of those transgenic plants with single T-DNA insertion that

was confirmed by pollen segregation revealed that ~55% of single locus T-DNA plants bore
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Table 2.5. T-DNA locus number on chromosome revealed by pollen segregation

One

locus

2 loci (2 non-

homologous 

chromosomes)

3 loci (3 non-

homologous 

chromosomes)

4 loci (4 non-

homologous 

chromosomes)

$2 loci ( both of a

pair of homologous

chromosomes )

Total

Plant No. 217 75 34 10 3 339

 % 64.0 22.1 10.0 3.0 0.9 100
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Table 2.6  Segregation analysis for GFP activity in pollen of T0 and seed of T1 progenies

Pla nt

No.

GFP +

po llen 

number

GFP-

pollen

number

Expected

segregation

ratio

P2

value

(P)

GFP+

seed

number

GFP-

seed

number

Expected

segregation

ratio

P2

value

(P)

Number of

inde pendent

integration loci

1 443 28 15:1 0.784 323 1 255:1 0.261 4

2 346 328 1:1 0.488 212 71 3:1 0.972 1

3 455 148 3:1 0.796 326 19 15:1 0.569 2

4 254 239 1:1 0.499 158 56 3:1 0.693 1

5 186 175 1:1 0.563 86 26 3:1 0.663 1

6 283 292 1:1 0.707 122 38 3:1 0.715 1

7 415 398 1:1 0.551 97 30 3:1 0.720 1

8 276 92 3:1 0.928 286 15 15:1 0.363 2

9 365 347 1:1 0.501 184 58 3:1 0.711 1

10 183 196 1:1 0.504 85 32 3:1 0.557 1

11 479 0 0 337 0 0 3

12 244 236 1:1 0.715 156 47 3:1 0.543 1

13 511 486 1:1 0.429 176 62 3:1 0.708 1

14 437 412 1:1 0.391 214 68 3:1 0.731 1

15 276 295 1:1 0.427 181 53 3:1 0.407 1

16 169 21 7:1 0.546 285 3 63:1 0.476 3

17 354 105 3:1 0.293 214 12 15:1 0.559 2

19 346 312 1:1 0.185 165 60 3:1 0.564 1

20 234 199 1:1 0.321 196 58 3:1 0.426 1

21 431 127 3:1 0.222 257 15 15:1 0.617 2

22 338 107 3:1 0.642 169 9 15:1 0.511 2
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Table 2.7 T-DNA copy number at one locus of chromosome 

one copy two copies three copies 4 copies total

Plant No. 78 36 20 8 142

 % 55.0 25.3 14.1 5.6 100

one T-DNA Copy, and ~25% of single locus T-DNA plants bore two T-DNA copies. However,

about 20% of the transgenic plants have multiple T-DNA copies (three or more) inserted at one

locus.

Additive gene expression of gfp driven by pUbi1F

Additive transgene expression was observed in pollen segregation on plants that bore two

or more independent loci (Figure 2.4). In those transgenic plants with multiple independent loci

of T-DNA insertion, the higher intensity of relative green fluorescence was displayed  in pollen

that bore more T-DNA copies (Figure 2.4). The pollen with different GFP intensity segregated

in a Mendelian fashion on T0 plants that could be used to estimate the T-DNA insertion loci

number (Table 2.6). Additive gene expression of gfp in pollen was confirmed by analysis of the

relative green fluorescence in pollen along with the Southern blots of each T0 transgenic plant

and its progeny (Figure 2.7). The relative green fluorescence (RGF) of pollen bearing both

copies of T-DNA was equal to the addition of RGF of pollen in plants number 1 and 3 bearing

a single copy of T-DNA (Figure 2.7 Panel C).
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Figure 2.7 Additive gene expression of gfp  in pollen. Panel A: Southern blot of
a T 0 plant (number 5) with two independent single copy insertions, and its

progeny(number 1, 2 and number 3, 4) that bore a single copy insertion. Panel B: gfp
expression  pollen in the plants corresponding to Southern blot. The relative green
fluorescence of pollen bore both copies of T-DNA (Panel C, number 5, corresponding
to pollen with higher GFP intensity), one copy of T-DNA(Panel C, number 1 and 3).



 38

DISCUSSION

An exceptionally efficient transformation procedure on class I type of embryo-derived callus

for japonica rice

A highly efficient transformation procedure has been established on the basis of class I

type of callus that was chosen using a dissecting microscope. With the help of the gfp reporter

gene driven by pUbi1F, transformation could be evaluated at a very early stage. Usually gfp

expression in transformed class I type of callus could be readily detected only two days after co-

cultivation. In some cases, gfp expression in transformed cell was detected 36 hours after co-

cultivation. Numerous transgenic cells with strong gfp expression were found all over the surface

of co-cultured class I type of callus. The technique is suited either for stable transformation or

for transient gene expression studies. Agrobacterium-mediated transformation could be

conducted  in a simple laboratory without requiring much equipment. With such high efficiency

at the early stage of transformation, the procedure could replace  particle bombardment at a

much lower cost for measuring transient gene expression.

The most attracting aspect of this improved procedure is the high efficiency for stable

transformation. 100% of co-cultivated class I type of callus resulted in multiple transgenic

hygromycin resistant calli. Furthermore, the class I type of transgenic callus was found to be

regenerated into green plant at very high percentage compared to class II or class III type of

callus. It was discovered that transformation of cells in class I type of callus can be detected
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early  during the selection process. As the selection culture time extended, class I type of callus

was gradually transformed to Class II type or Class III type of callus. Frequent subculture

proved to be helpful to maintain the class I type of callus.

Additive gene expression of gfp driven by pUbi1F

Additive transgene expression was previously reported mainly based on the studies

between homozygous transgenic plant and hemizygous plants that was derived from same

transgenic plant (Halfhill et al. 2003 )(Niwa et al., 1999; Stewart, 2001; James et al., 2002). In

our transgenic plants, gfp expression was presented in  the pollen at different level of green

fluorescence(Figure 2.4). Additive gene expression of gfp in pollen was confirmed by analysis

of the relative green fluorescence in pollen along with its Southern blot of T 0 transgenic plant and

its progeny(Figure 2.7). The relative green fluorescence of  pollen  in single locus T-DNA plants

also shows additive gene expression according to the T-DNA copy number(Figure 2.8). It is

interesting that  the pollen gfp expression for one copy at single locus varied from each other

among a few of independent one copy T-DNA plants(Figure 2.8 Panel A,B,C). The possible

interpretation for this is the different insertion position on chromosome that affect the gene

expression.  
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Figure 2.8 GFP expression in pollen of transgenic plants with one chromosome  insertion
( 1 locus). Panel A, B, C, are pollen images from transgenic plants with one copy of  T-DNA;
Panel D shows pollen from plant with two copies; Panel E shows pollen from plant with three
copies; Panel F shows pollen from plant with four copies.  
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Rapid characterization of transgenic plant via pollen gfp expression

          The additive gene expression in pollen could be used to rapidly to characterize the

transgenic plants. There are many pollens in a single T0 transgenic plant creating a large

segregating  population for genetical analysis on the T-DNA integration pattern without extra

cost. Only one or two florets from plants at the flowering stage could provide enough pollen for

the characterization of original transgenic plants. 

             In previous studies, the average number of integration loci was difficult to estimate in

multiple-copy plants due to gene silencing (Hiei et al., 1994; Sallaud et al., 2004). T1

segregation analysis for hpt was limited when both members of a pair of homologous

chromosomes bear at least one copy of T-DNA insertion(Figure 2.4D). In this case, there would

be no segregation for hpt. With the help of statistical analysis on the pollen data, we could

estimate the T-DNA insertion locus number and the copy number on a single locus without

much extra cost of the study. 
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CHAPTER III

HIGHLY EFFICIENT PRODUCTION OF HAPLOID AND

DOUBLED HAPLOID TRANSGENIC RICE VIA AGROBACTERIUM

TUMEFACIENS-MEDIATED TRANSFORMATION 

INTRODUCTION

Initial success with rice transformation was attained using naked DNA introduced into

rice cells by physical means, such as electroporation of protoplasts (Fromm et al., 1986) and

particle bombardment of callus tissues (Cao et al., 1992). However, it became evident from

studies in our lab and others that the transgenes inserted by these approaches were typically

rearranged and frequently silenced (Kumpatla and Hall, 1998b; Svitashev et al., 2002). In

contrast, Agrobacterium-mediated transformation generally resulted in insertion of intact

transgenes and relatively infrequent silencing (Dong et al., 1996; Hiei et al., 1997). However,

whereas homozygous lines are highly desirable for both practical and basic studies, all of these

procedures yield hemizygous plants.

The production of haploid rice through anther/microspore culture is widely used in rice

breeding since doubling of the chromosome compliment results in a homozygous plant (Afza et

al., 2000). Therefore, it would seem the transformation of haploid cells, such as microspores,

should provide an attractive route for production of homozygous plants and it is surprising that

very few articles exist describing the use of this approach. Indeed, we have located only one

paper (Brisibe et al., 2000) describing transformation of a monocot (wheat) via anther culture
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bombardment. There are several articles describing the production of homozygous rice plants

by anther culture, but these are quite different as they deal with plants that are already

transformed (Baisakh et al., 2001; Zeng et al., 2002). While an article describing the adaptation

of rice anther culture on gene transformation was found during the preparation of this

manuscript, the highest transformation efficiency was only 11.27% for hygromycin resistant calli

(Chen, 2006). 

Successful Agrobacterium-mediated transformation of microspore-derived embryos has

been described for the dicot genera Datura and Nicotiana (Sangwan et al., 1993); a patent

application exists for transformation of flax by this approach (Chen and Dribnenki, 2003).

However, for all three examples, transformation efficiency and production of homozygous

transgenic plants were very low.

In this study, a highly effective transformation procedure of microspore-derived callus

has been established. Hundreds even thousands of transgenic haploid and doubled haploid plants

could be generated in a single transformation experiment using high quality microspore-derived

callus. In this protocol, the high quality microspore-derived callus is readily selected under a

dissecting microscope. The modified protocol for selection and regeneration is easy to handle for

a high efficient transformation. The homozygous doubled haploid plants could be simply to

identified by the examination of pollen from theT 0plants without growing and examining the

next generation. Many phenotypic mutations even lethal or semi-lethal transgenic haploid and

doubled haploid have been detected.
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MATERIALS AND METHODS

Plasmid and agrobacterium strains

The binary plasmids pUbi1F (Figure 1), pJD4 and pJD7 in LBA4404 were used in this

study. It was constructed as described in Chapter II.. Agrobacterium strains LBA4404(pUbi1F)

was grown on AB minimal medium with 50 mg/L of gentamycin and 100 mg/L of kanamycin

for 2 to 3 days at 28 oC. The bacteria were collected and resuspended in AAM medium (Hiei

et al., 1994)for co-cultivation with microspore-derived callus.

Plant materials and tissue culture media

Rice (Oryza sativa ssp Japonica, cv Nipponbare and Taipei309) plants were grown in

Redi–earth® in 5" pots in a greenhouse at 25°C-32°C under natural light from March to

October; supplemental light was provided from November to February to give 16 h day and 8 h

night. Water was supplied by an automatic system and the plants perpetually produced tillers for

anther culture at any season in a year. The media used for tissue culture and transformation in

this study was listed in Table 2.1. The medium used for anther culture was supplemented with

20g/L Sorbital in the N6M.
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Figure 3.1  Microspore-derived callus.  A. Anther on modified N6 medium. B.

After two weeks on N6M-A medium, globular calli, derived from individual

microspore, are visible using a dissecting microscope. C. Individual microspores from

a single anther give rise to many active calli after another two weeks. D. After 6

weeks of callus induction, about 50% of cultured anthers produced multiple calli

ready for transformation.  
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Induction of microspore-derived callus

In order to maximize collection of microspores at the mid-uninucleate to early binucleate

stages of development, disease-free panicles (boots) were collected from tillers of ratooned plants

when the distance of the flag leaf auricle to that of the next leaf was 2-7 cm. Collections were

made between 8 and 10 a.m. or between 4 and 5 p.m. as microspore mitosis is maximal at those

times. The panicles were wrapped with foil, accurately labeled with the date and time of

collection and placed in an incubator at 4-8°C. After 7 days the panicles were surface-sterilized

by surface-spraying with 70% ethanol. Boots were removed carefully with sterile forceps and

florets with anthers that did not exceed half of the floret length were selected. The anthers were

excised with sterile forceps and callus was induced on a modified N6 medium (Chu et al., 1975)

at 26°C in the dark. After ~6 weeks (wk), haploid callus had developed and was ready for

transformation (Figure 3.1).

Transformation procedure

Microspore-derived callus was subcultured on 2N6 medium (Hiei et al., 1994; Dong et

al., 1996) at 28°C in dark for 3 days. Actively growing Class I callus with turgid cells on the

surface (Figure 3.2) was chosen for co-cultivation.  About 50 pieces of callus, each with a

diameter of approx. 5 mm were immersed in 10 ml of liquid co- cultivation medium (AAM)

containing Agrobacterium cells at a density of 2-3x 108 cells/ml (OD595 = 0.5) in a 50 ml sterile
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Figure 3.2 Class I type of microspore-derived callus for transformation.  A. Class

I type of callus at diameter ~5mm was chosen and subcultured on 2N6M medium. B and

C was the image under dissecting microscope, many active turgid cells on the callus

surface that could be transformed during the co-cultivation. White bar: 1mm; Red bar:

0.1mm.
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centrifuge tube for 30 min. Callus pieces were blotted dry on sterile paper towels, transferred to

solid co-cultivation medium (2N6-AS) and incubated for 3 days at 21°C in the dark.  After co-

cultivation, the callus pieces were gently and briefly rinsed twice with 250 mg/l cefotaxime in

liquid 2N6 medium. Rinsed calli (~20 pieces, approx. dia. 5 mm) were individually transferred

to one 100 mm-diameter Petri dish containing selection medium (250 mg/l cefotaxime; 50 mg/l

hygromycin B) (2N6M-CH) for two weeks at 28°C in the dark. After two weeks selection,

resistant, light brown calli were evident on the surface of dead and dying (dark brown) calli. The

light brown calli (with some dark brown callus attached) were transferred to fresh selection

medium (2N6M-CH) for 1 wk at 28°C in the dark. The surviving light brownish globular calli

were gently removed from the dead calli and placed in the medium surrounding the original

callus and cultured for another 5-7 days at 28°C in the dark. Four weeks after the co-cultivation,

the surviving calli were ready for regeneration.

The transformation efficiency and development of hpt-resistant callus was followed

throughout the selection step by fluorescence microscopy. Round, yellowish Class I calli with

turgid cells on the surface (see Figure 3.2C) were chosen for culture on pre-regeneration medium

(PRN) (Sallaud et al., 2004) for 1 wk at 26°C in the dark. All of the surviving calli from a single

co-cultivated piece of callus were grouped into individual sectors of the PRN Petri dish so that

they would not co-mingle with calli surviving from other co-cultivated calli. After 1 wk of

culture on PRN medium, all remaining calli from the same original co-cultivated callus piece

were individually transferred to a single 100 mm dia. Petri dish containing RN. The dish was

kept in the dark at 26°C for one day, then at 26°C for 2 wk with a 16/8-h light/dark cycle. Many

green shoots, with or without small roots , regenerated from the light brown surviving calli. All
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calli with green shoots derived from the original co-cultivated callus were individually

transferred to a 100 mm-diameter/25 mm-height Petri dish containing medium (RN-2) for the

second round of regeneration for 2 wk. The  plantlets were then individually transferred to

rooting medium (MS0) for one wk. The resulting plantlets were cataloged and transferred to soil

in the greenhouse.

Detection of gfp reporter genes

The expression of the gfp gene in transformed callus and plant tissues was observed using

a Stemi SV11 APO Microscope (Zeiss) fitted with an AxioCam HRc camera. Calli that

expressed GFP were imaged using a 500 nm filter and an exposure time of 3 sec. Pollen that

expressed GFP were imaged at an adjusted exposure time so that none of pollen images was

saturated in pixels. Seeds that expressed GFP were imaged at an exposure time of ~1 sec.

T1 segregation analysis for hygromycin resistance and GFP activity of seeds

Fifty to one hundred were dehusked and observed for GFP activity under a Stemi SV11

APO Microscope (Zeiss) fitted with an AxioCam HRc camera.  The seeds were then

surface-sterilized, placed on a petri dish containing 30 mg/ml hygromycin and allowed

togerminate under light at 26C. After 7-10days, seeds were scored for germination. Segregation

for GFP activity and hygromycin resistance was calculated by a statistical method using P2-tests.
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T1 segregation analysis for GFP activity in pollen from T0 plants

Five random chosen field of view of pollen fromT0plants were observed using a Stemi

SV11 APO Microscope (Zeiss) fitted with an AxioCam HRc camera. The image were taken

using an exposure time that does not saturate the exposure. Segregation for pollen GFP

activitywas calculated by a statistical method using P2-tests. 

Nucleic acid extraction and Southern blot analysis

Rice genomic DNA was isolated from fresh leaves as described previously (Buchholz

et al., 1998). Genomic DNA (2 :g) was digested with 20 units of HindIII for 12 h. After

electrophoretic separation in a 0.8% agarose gel, the DNA fragments were transferred to

Hybond-N+ membrane (Amersham). DNA probes were labeled using a DECAprime II™ kit

(Ambion). Hybridizations were performed using ULTRAhyb  (Ambion) according to the

manufacturer’s recommendations. 

Ploidy determination by chromosome counting

The protocol used for chromosome counting was modified from the protocol described

by Dong et al. (2001). The root tips from haploid tiller and doubled haploid seedling were

treated with 0.035% hydroxyquinoline for 2 hours and fixed in 4:1 100% ethanol: acetic acid

solution. Fixed root tips were then digested with 5% w/v cellulase Onozuka R-10 (Yakult
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Honsha, Japan) and 1% w/v pectolyase Y-23 (Seishin Pharmaceutical, Japan) in 0.05M citrate

buffer pH 4.5 for 52 min at 37 °C. Chromosomes were stained with SlowFade® Gold antifade

reagent containing DAPI (Invitrogen) and their karyogram were revealed using Olympus

FV1000 confocal microscope .

Amplification and sequencing of T-DNA left border flanking regions

The amplification of T-DNA left border flanking region was carried out using the

Adaptor ligated PCR described in Siebert et al. (Siebert et al., 1995). The protocol consists of

three steps: ligation, polymerase chain reaction (PCR)1 and PCR2. Each DNA sample (1.5:g)

was digested with EcoRV and precipitated using a phenol/chloroform/isoamyl alcohol protocol.

The purified digested genomic DNA was ligated in 10:l volume with the ADP1/ADP2 adaptor

using T4 DNA ligase at 16 °C  overnight. The adaptor was prepared by annealing the

c o m p l e m e n t a r y  o l i g o n u c l e o t i d e s ,  A D P 1

(5'-CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAGGT-3') and ADP2

(5'-P-ACCTGCCC-NH2-3') by incubation at 97 °C  for 5 min in NEB restriction enzyme buffer

no 2 followed by gradual cooling to room temperature (~24 °C). PCR1 was conducted with a

specific adaptor primer, AP1 (5'-GGATCCTAATACGACTCACTATAGGGC-3'), AP2 

(5'-AATAGGGCTCGAGCGGC-3'), and a specific T-DNA left border primer, 

LB1: 5'-GAATTAGTCGAGACACGTCGAAATAAAGATTTCCG-3').

LB2: 5'-CGACGGATCGTAATTTGTCGTTTTATCAAAATGTAC-3'

LB3: 5'-CCATATTGACCATCATACTCATTGCTGATCCATG-3'
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If the previous PCR failed, the a specific T-DNA right border primer was used, 

RB1: 5'-GCTGAAAGCGACGTTGGATGTTAACATCTACAAATTG-3'

RB2: 5'-CGTAAGCGCTTACGTTTTTGGTGGACCCTTGAGG-3'

RB3: 5'-GATGGGGGGCATCGCACCGGTGAGTAATATTGTAC-3'

The thermocycling conditions were 5 min at 94  °C, followed by 29 cycles of 94 °C 30 s, 62 °C

for 45s,  and 72  °C for 2 min, with a final polymerization step at 72  °C for 10 min. PCR2 was

performed with a nested specific  adaptor primer, AP2 (5'-CTATAGGGCTCGAGCGGC-3'),

and a nested specific T-DNA left border primer, LB2 or RB2.  PCR2 was performed with a 1/50

dilution of the PCR1 product using the same conditions as for PCR1, except for the final volume

of the reaction which was adjusted to 100 ul. A 4-ul aliquot of the PCR2 reaction was loaded

on a 1.2% agarose gel for electrophoresis. After gel staining with ethidium bromide, PCR

products showing a unique band were then directly sequenced with a third nested specific

primer, LB3 or RB3.

RESULTS

Induction of microspore-derived callus of rice

Microspore-derived callus was induced using the method described as in Materials and

Methods. Globular callus derived from individual microspores in the anther could be observed

under a dissecting microscope after two weeks culture on N6M-A medium (Figure 3.1).  Many

independent microspore-derived calli could be observed without use of a dissecting microscope
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after 4 weeks culture. Approximately 50% of anthers cultured from Taipei309 and Nipponbare

could produce microspore-derived callus (Figure 3.1). After 6 weeks of anther culture,

microspore-derived  callus was ready for transformation. The modified medium used was based

on N6 medium (Chu et al. 1975) supplemented with 500mg/l proline, 500mg/l glutamine,

300mg/l casein acid hydrolysate, and 30g/l sucrose and 20g/l D-sorbital. 

Transformation of class I type of microspore-derived callus at exceptional efficiency

The transformation protocol was  essentially described in previous reports (Hiei et al.,

1994; Dong et al., 1996) . Class I type of microspore-derived callus (Figure 3.2) was pre-

cultured on 2N6M medium at 28 °C in the dark for 3 days,  followed by co-cultivation on 
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2N6M-AS medium at 21 °C in the dark for 3 days, first selection on 2N6M-CH medium at 28

°C in the dark for 14 days, and second selection on 2N6M-CH medium at 28 °C in the dark for

14 days. Four weeks after the co-cultivation, the surviving calli were generally ready for

regeneration. A highly efficient transformation procedure was established using class I type of

callus. All three gene constructs, pJD4, pJD7 and pUbi1F, resulted in almost 100%

transformation rate for co-cultivated class I type callus. Typically each co-cultivated callus at

approx. dia. 5mm could produce dozens of transgenic calli and multiple transgenic plants

(Figure 3.3).

Time course for the transformation of class I type of microspore-derived callus is similar

to that of embryo-derived callus. ~8 weeks was needed from the time callus was inoculated with

Agrobacterium to the recovery of regenerated green plants from class I type of microspore-

derived callus.
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Figure 3.3 Exceptionally efficient Transformation of class I type of microspore-

derived callus.  A. After 3 days of co-cultivation, the co-cultivated callus was placed on first

selection medium. B. After two weeks of selection, the surviving transgenic cell lines could

be observed on every co-cultivated callus surface without help of a microscope. C. After  two

weeks of second selection, dozens of surviving transgenic cell lines could be obtained on each

co-cultivated callus. D. Dozens of class I type of transgenic calli could be observed under a

dissecting microscope, Panel D indicates the active class I callus in high quality for

regeneration. E. Surviving calli from each co-cultivated callus were harvested and

subcultured on the pre-regeneration medium. All of the surviving calli from a single co-

cultivated piece of callus were grouped into individual sectors. F. Calli derived from the same

co-cultivated callus were placed on one petri-dish containing regeneration medium; most of

those class I type of transgenic calli could be regenerated into green plants. 
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Evaluation of transformation via GFP

     The transformation efficiency and development of hpt-resistant callus was followed

throughout the selection by fluorescence microscopy (Figure 3.4). Figure 3.4 illustrates the

efficiency of the protocol that I have developed for Agrobacterium-mediated transformation of

microspore-derived callus. Moreover, the use of pUbi1F (Figure 2.1) permits an early evaluation

of how successful the transformation event was. Indeed, several hundreds of GFP-positive cells

can normally be detected in any small region of virtually all calli by 3 days after co-cultivation

(Figure 3.4A). In most cases of the experiments, GFP cells could be detected under fluorescence

microscope only two days after co-cultivation with Agrobacterium on 2N6M-AS medium. More

GFP positive cells could be observed 5 days after co-cultivation (Figure 3.4B). Even though the

number of cells with GFP decreased at 7 days after the first selection (2N6M-CH),  overall,

hundreds of cell lines with GFP at different intensity of fluorescence level were observed on

small portions of a piece of co-cultivated callus (Figure 3.4C). Hundreds of globula r  calli

expressing GFP were visible at different position all over the surface of the co-cultivated callus

after surviving on the selection medium for 2 weeks (Figure 3.4D). Most of those GFP cell lines

survived another weeks of selection (second selection). The GFP cell lines could be observed

throughout the selection course (Figure 3.4E and F).  

As illustrated in Figure 3.3, dozens of green transgenic plants could be regenerated
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Figure 3.4 Highly efficient transformation of class I type of
microspore-derived callus of rice revealed by GFP. A. 3 days after co-cultured;
B. 5 days after co-cultured; C. 7 days after selection; D. 2 weeks after selection; E.
3 weeks after selection; F. 4 weeks after selection. White bar: 0.1mm; Red bar:
0.5mm; Yellow bar: 1mm.
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Table 3.1. Transformation efficiency for microspore-derived callus (cv. Nipponbare)

Experiment Number of class I

calli used

for transformation

Number of

independent

transgenic plants

Transgenic plants/

co-cultivated

callus

Transformation

rate (%)

1 20 913 45.65 4,565

2 46 1,862 40.48 4,048

3 50 1,173 23.46 2,346
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from a single piece of co-cultivated  type I callus. The production of high numbers of transgenic

plants from a single co-cultivation is exemplified by the data shown in Table 3.1 for three

typical experiments. Thousand of transgenic plants could be obtained from a single

transformation experiment on dozens of class I type of microspore-derived callus. The

calculation on the transformation rate (%) based on the number of transgenic plant for each co-

cultivated callus reached well above 100% (Table 3.1). We prefer to use the number of

transgenic plants per co-cultivated callus to indicate the transformation efficiency for each

transformation experiment.

The regenerated plants from each co-cultivated callus were cataloged and transferred to

soil in the greenhouse. Genomic DNA was isolated from a single leaf of each transgenic plant.

Southern blot analysis was conducted as described previously. That the plants are

overwhelmingly independent transformants is clear from the Southern blot analyses shown in

Figure 3.5. To date, we have analyzed over 200 individual plants and have only encountered 4

sibling plants.



 60

Figure 3.5 Genomic blot analysis of T 0 lines of transgenic plants from microspore-

derived callus. Genomic DNA from lines 1 to 24 (all from one piece of co-cultivated callus)

was digested with HindIII, and hybridization was performed  with the hpt or gfp  probe. The

sizes of the bands visualized for each plant with hpt or gfp probe were different, indicating that

T-DNA integrated at different locations in the rice genome and that all 24 transgenic plants

from a single co-cultivated callus were independent transformation events.
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Identification of homozygous plants inT0transgenic lines

             Anthers were isolated from florets of T0plants and crushed gently on a slide in one drop

of ddH2O. The pollen was immediately examined using a Zeiss SV-11 fluorescence microscope

and imaged using an AxioCam HR camera (Carl Zeiss, Jena, Germany). The exposure time was

adjusted so that the pixels in the spot images were not saturated. All pollen grains from

homozygous doubled haploid (DH) plants had a uniform green fluorescence, revealing the

absence of wt pollen grains that lack GFP (Figure 3.6A). The accuracy of the visual test was

confirmed by genomic blot analysis of progeny (Figure 3.6B).Hemizygous DH  transgenic plants

show (wt) pollen and GFP pollen segregation (Figure 3.6B; wt pollen is present as dense black

grains) that can be used to determine the number of chromsomes bearing a T-DNA insertion as

described in Chapter II. From our preliminary experiment results, about 60% of the hemizygous

transgenic DH plants have one T-DNA insertion locus (Table 3.2 ).
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Table 3.2.  Independent locus of chromosomes bearing T-DNA insertion revealed by pollen

segregation

1 locus

insertion

2 loci

insertion

3 loci

insertion

 4 loci

insertion

BHC*

insertion

Total

No. of plants 242 96 44 14 3 399

% 60.7 24.1 11.0 3.5 0.7 100

*BHC: Both members of a pair of homologous chromosome have one T-DNA insertion

Figure 3.6 Homozygous T-DNA doubled haploid plant revealed by GFP pollen.
A. All pollen grains from homozygous doubled Haploid (DH) plants had a uniform green
fluorescence; B. Half of the pollen from a hemizygous DH transgenic plant had  green
fluorescence, indicating a single locus T-DNA insertion after chromosome doubling; C.
A homozygous T-DNA DH plant as confirmed by Southern blot. All progeny from one
regenerated plant had the same pattern of T-DNA insertion.
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Distribution of haploid and doubled haploid transgenic plant in transformation of

microspore-derived callus

Although haploid plants are not readily distinguishable at the time they are transplanted

to soil from the Magenta box, visual differences are usually evident after culture in soil for 1

month. Haploid plants are sterile, have reduced floret size and are typically substantially smaller

in stature than are wt diploid plants (Figure 3.7A and B). The accuracy of the visual test of

haploid and DH plants were confirmed by chromosome counting (Figure 3.8),  as described in

Materials and Methods. Without colchicine treatment, about 45% of the transgenic plants were

haploid (Table 3.3, Control). About 46% of the transgenic plants were hemizygous T-DNA

plants,  indicating that nearly half of the haploid cells had already spontaneously doubled the

chromosomes before the time of transformation. 

         In order to increase the number  of  homozygous  transgenic DH plants in the T 0

transformants, several experiments were conducted on the colchicine treatment protocol during

selection  (Table 3.3). 0.03% colchicine (Sigma) (w/v) was added in selection medium

(2N6-CH). The experiments were conducted by keeping the co-cultivated calli on 2N6-CH with

colchicine  supplement for the first selection only, for both selections (first and second ) and a

control (2N6-CH with no colchicine supplement). Colchicine treatment following the co-

cultivation step  significantly increased the frequency of recovery of transgenic homozygous

plants and reduced the haploid plants for both experiments.  Up to 26% of the plants recovered

were homozygous transgenic doubled haploids (see Table 3.3).
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Figure 3.7. Transgenic haploid plants in greenhouse. A. The stature of transgenic haploid

(1n) plants is usually shorter than that of a diploid (2n) wt plant. B. Compared with the wt

diploid (2n) panicle, the haploid (1n) panicle is shorter and floret size is greatly reduced. C.

Haploid plants with abnormal (a), semi-lethal (b) and lethal (c) phenotypes. The tall plant is

a “wt” haploid control. D. Transgenic haploid plants from a single co-cultivation were labeled

and planted in greenhouse. E. Transgenic haploid plants growing in the same tray depict

various phenotypic aberrancies (arrows indicate wild type).
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Table 3.3. Transgenic plants from transformation of  microspore-derived callus 

Treatment

Haploid plants

(survived)

Doubled haploid

(hemizygous)

Doubled haploid

(homozygous)

Semi-lethal or

lethal plants

Total

Number        % Number       % Number       % Number     % No.     %

Control 416       45.56 425            46.55 33                3.62 39           4.27 913      100

I 185        35.1 258             48.8 67               12.7 18            3.4 528      100

II 74          22.8 158             48.6 85               26.2 8               2.4 325      100

I. Colchicine treatment for 1st selection period (14 d). II. Colchicine treatment over 2 selection regimes (28 d).

Figure 3.8. Chromosome examination of haploid and doubled haploid transgenic plants.
A. Representative karyogram from a transgenic haploid plant containing 12 chromosomes (1N
= 12); B. Representative karyogram from a transgenic doubled haploid plant containing 24
chromosomes (2N=24).
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 Phenotypical variation of haploid and DH transgenic plants

At flowering , visible phenotypic differences between transgenic haploid plants and wt

haploid plants often become apparent. Transgenic haploid plants with visible phenotypes are

readily identified from the original transgenic haploid plants by comparing them with

non-transgenic haploid plants that were regenerated and planted in greenhouse as controls.

         Three months after transfer to the greenhouse, about 25% of theT 0haploid plants were

visibly different from haploid plants recovered from calli that had not been subjected to

co-cultivation ("wt" haploid plants). About 6% of the T0 haploid plants exhibited seriously

abnormal phenotypes that were lethal or semi-lethal (see Table 3.4 and Figure 3.7C).

Table 3.4.  Distribution of transgenic haploid plants with visible phenotypes

Experiment Haploid plant

like wild type

Haploid plant with

visible phenotype

Haploid plant semi-

lethal or lethal

Haploid plant

(total)

Number % Number % Number % Number %

 1     332           72.9      84               18.5       39              8.6      455           100

 2     507           69.6      187            25.7       34              4.7      728           100

Identification of rice phenotypic mutants 

The homozygous DH transgenic plants were planted in the greenhouse (4 plants per line

using 2 wild type Nipponbare or Taipei 309 plants as a control). All plants were planted under

the same cultivation and environmental conditions (two mutant plants and one wild type plant
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in one pot). The growth-base phenotypic profile was collected and rice phenotypic mutants were

identified by comparing to the phenotypic profile of wild type plants. From the preliminary

experimental results, 57 rice phenotypic mutants were identified. Homozygous transgenic

insertion was confirmed in these plants by examination of pollen GFP and genomic Southern blot

analysis.

Diploidization of haploid transgenic plants by tissue culture

A large number of transgenic haploid plants have been obtained from a single

co-cultivation experiment using microspore-derived callus. However, for use in comprehensive

studies of  novel gene function, it is highly desirable to have a seed-bearing fertile plant. For this,

the chromosomes in a haploid have to be doubled. There are several published approaches for

diploidization of a haploid plant (Maluszynski et al., 2003). One of these is the use of colchicine

treatment on haploid tillers; another is the manipulation of haploid tissue culture.

In an exploratory experiment, haploid plants were removed from soil and washed with

water. The roots of the plants were cut 3-5cm from the plant base and the upper portion trimmed

to 20-30 cm before immersion in a 0.1% colchicine solution dissolved in 2% dimethysulfoxide

(DMSO) containing 0.01% Tween 20 for 5 h at room temperature. The efficiency of conversion

was only 30%. However, since no DH plants were recovered from the non-treated controls, the

experiment was very encouraging as it established the feasability of this approach. 

         The inflorescence (about 1 -2cm in length), leaf and stem tissues were cultured on MS

medium (Murashige and Skoog, 1962) supplemented with 2mg/l 2,4-D and 1mg/l kinetin ( plus
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30mg/l hygromycin B for selection) for 3 weeks at 26 C in the dark. The active callus that was

induced from the tissue was transferred to regeneration medium (MSD4) (Dong et al. 2001)at

26 °C in the dark for 3 weeks. 75% of young inflorescences from transgenic haploid could

produce active callus. Fertile doubled haploid plants have been regenerated for all tested haploid

sterile plants (see Table 3.5). This approach is especially useful to obtain doubled haploid plants

from the transgenic plants with serious abnormal phenotype that are not strong enough to go

through the colchicine treatment.

Table 3.5. Doubled haploid plants induced by tissue culture

Explant  Callus induction on tissue  Plant regeneration

No. of tissues 

on culture 

No. of tissues

with calli (%)

No.of sterile haploid

plants tested

No.sterile haploid giving 

fertile plants   (%)

Inflorescence          64   48        (75)              12          12                 (100)

Stem or shoot          30   11       (36.7)              10            3                 (30.0)

Leaf          28    0        (0.0)              12            0                 (0.0)

Determination of T-DNA chromosome insertion location

The amplification of T-DNA left border flanking region was performed using the

Adaptor-ligated PCR described in Siebert et al. (1995). The three step PCR was proved to be

effective to recover the left border flanking sequence from the tested mutant plants. A typical

agarose gel showing the PCR2 product corresponding to the flanking sequence amplification 
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Figure 3.9 Isolation of T-DNA flanking sequences from genomic DNA of 16
Transgenic haploid plants by adaptor-ligation PCR method. Visualization of the PCR
reaction product was performed by electrophoresis on 1% agarose Gel. For each plant,
genomic DNA was digested with EcoRV and ligated with Adaptor. Two step PCR was
performed using T-DNA left border specific primer with adaptor AP1 and AP2 primers.
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from DNA isolated from 32 T-DNA lines and digested with EcoRV restriction enzymes is shown

in Figure 3.9.

Through collaboration with Dr. Siva Kumpatla (Dow AgroSci.) and Dr. Sujata Pammi

(Ocimum Biosolutions), Inverse PCR protocol and Tail PCR (2003) were used to identify the

T-DNA insertion site in haploid transformants possessing aberrant phenotypes. In a preliminary

screen from 32 haploid transformants, regions flanking the left border of T-DNA in 6

transformants were successfully sequenced and data obtained were used as queries to search

against TIGR database. The T-DNA insertion sites in these 6 transformants were mapped to

their rice chromosome loci (Table 3.6).

 Table 3.6  BLAST results using TIGR databases 

Line Phenotypes Locus number

(From TIGR)

Gene Product

Mu t-2 Yellow leaves, small size, semi-lethal LOC_Os08g28930 unclassified putative retrotransposon

prote in

Mut-11 No flowers, yellow leaves LOC_Os01g71040 exp res se d p rotein (unknown func tion)

Mut-14 No  flowers, ye llow leaves , semi-

lethal

LOC_Os03g08680 Mitochondrial import  inner  membrane

translocase  subunit T im17  family  prote in

Mut-22 short stem LOC_Os06g46940 putative cyanogenic beta-glucosidase

precursor

Mut-24 few flowers LOC_O s05g51620.1 Unknown gene, Hypothetical pro tein

Mut-26 few flowers LOC_O s05g51620.1 Unknown gene, Hypothetical pro tein
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DISCUSSION

Rice, arguably the most important food crop worldwide, has become a model plant for

molecular studies of monocot crops. A major attraction is its relatively small genome; indeed,

sequencing of the entire genome of the Japonica rice, Oryza sativa L. var. Nipponbare genome

is complete (International et al., 2005). A second important attraction is the ease with which it

can be transformed, and our laboratory has made much use of this in studying various aspects

of gene silencing (Iyer et al., 2000; Yang et al., 2005).

The simplicity of rice transformation renders it particularly suitable for  T-DNA

insertional mutagenesis, and, with the published sequence available for guidance, attention has

rapidly turned to the use of this approach for the acquisition of genome-wide functional

information. It is well established that harmful mutations are often recessive and that harmful

genes in  the homozygous recessive state may well be lethal. Unfortunately, in undertaking

genomic screens for novel important genes, i.e. genes having a dramatic effect on the organism,

mutations in recessive genes appear to be under-represented. This is not surprising. For example,

if a recessive gene is mutated, the functional dominant counterpart will completely mask the

effect. Thus, the presently available hemizygous insertional libraries show no phenotype in the

primary transformants (T0) and at least one additional generation is required to obtain any

homozygous recessive transgenic plants. Forward screening for the desired homozygous

recessive mutants is in any case laborious and, compared with Arabidopsis, substantially more

containment greenhouse space is needed for rice. Based on the calculation developed for the
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Arabidopsis genome, over 660,000 independent rice transformants are needed to ensure a 99%

probability that an insertion occurs every 3 kb or so (Krysan et al., 1999). Screening for this

number of insertional mutant lines and for identifying the homozygous mutants would be a huge

amount of work. If there are two or more T-DNA insertion loci, screening of homozygous

mutants from hemizygous trangenic lines becomes considerably more onerous. 

          The problems associated with hemizygous insertional mutational libraries, mentioned

above, can be overcome by the use of haploid cells as the target for transformation. Several

successful experiments using a microspore culture system as the target for transformation have

been reported (Palmer et al., 2005). These include Brassica napus (Pechan, 1989) , Datura

innoxia and Nicotiana tabacum (Sangwan et al., 1993) Zea mays (Fennell and Hauptman, 1992)

and Triticum aestivum (Leob and Reynolds, 1994).

The potential benefits of using haploid and doubled haploid (DH) plants in crop breeding

has been known for over 80 years (Kasha and Maluszynski, 2003) but, until recently (Palmer

et al., 2005),  remarkably little effort has been put into their utilization for either applied or basic

purposes. In part, difficulties in the routine production of haploid plants have decreased

enthusiasm for their use. Here, we report for the first time details of procedures not only for

highly effective and reproducible production of haploid cultures of a commercial rice variety but

also for, to our knowledge, unprecedented high rates of Agrobacterium-mediated transformation

together with very low occurrence of siblings. Further, we have pioneered the use of GFP

expression in pollen for effective, rapid and inexpensive identification of homozygosity and

estimation of the number of chromosomes bearing T-DNA insertions. We believe these

procedures will greatly enhance progress in the functional genomics of rice, a vital crop for much
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of the world's population and one of the few plants for which the genome is completely

sequenced.

The routine regeneration of thousands, rather than the typical dozen or so, of

independently transformed plantlets from a single co-cultivation is a major technical advance of

substantial value in studying functional genomics of rice. The ability for early detection of a

failed transformation vastly reduces costs incurred  in maintaining failed cultures. The reliable

GFP-fluorescence tests for transformation efficacy and homozygosity of individual transformants

are rapid, inexpensive, very simple and exceptionally beneficial in reducing the need for

radioactive materials.

While the merits of the rapidity, reliability and low cost of the transformation system we

have developed are extremely beneficial, its greatest attribute is likely to be its high potential for

revealing novel gene functions, especially those having lethal or near-lethal effects if they are

disrupted, e.g. by insertional mutagenesis. This results from the relatively high frequency of

occurrence of homozygous recessive transformants. Although we do not anticipate identifying

completely lethal mutations (no regeneration), we do expect to be able to culture transformants

with severely debilitating mutations long enough to obtain sufficient DNA to identify the

location of the mutation.

Since haploid cells can survive and be induced to, or even spontaneously diploidize to

yield doubled haploid (DH) cells that can be regenerated to yield fertile plants, a relatively high

frequency of homozygous recessive plants could be recovered. The highly efficient production

of  transgenic haploid and DH plants offers a substantially improved method to discover novel

rice phenotypic mutants of special interest in functional genomics. Indeed, success in this study
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with rice would endorse its use for virtually any flowering plant species since a haploid has only

one set of chromosomes (1n) instead of the 2 sets (2n) of the diploid. Consequently, recessive

mutations will show up directly..
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CHAPTER IV

A SMALL MODIFIED MUBI1 PROMOTER CONFERS HIGH

LEVEL EXPRESSION IN RICE 

INTRODUCTION

The development over the past decade of highly effective and reliable systems for

Agrobacterium-mediated transformation of rice portends successful use of many

biotechnological modifications that will alter and enhance this crop that is central to the nutrition

of millions. While the transformation technologies are available, a wider range of promoters and

regulatory elements to drive transgene expression in a reliable manner is vital as molecular

approaches of plant improvement become more complex.

            The Zea mays (maize) polyubiquitin-1 (mUbi1) promoter has been shown drive high

levels of reporter activity in several monocot species (Christensen et al., 1992; Takimoto et al.,

1994; Christensen and Quail, 1996). It is also widely used to drive marker genes for transgenic

plant selection (Cornejo et al., 1993) and for expressing foreign genes to produce recombinant

proteins (Zhong et al 1999)(Hood et al., 1997; Witcher et al., 1998). Indeed, it remains one of

the most active constitutive genes characterized in plants.

               The mUbi1 promoter is 1,992 bp long and includes 899 bp of promoter region, 83 bp

of untranslated exon (leader) sequence and a 1,010 bp-long first intron (Christensen et al., 1992;

Christensen and Quail, 1996). The 5' flanking sequence of mUbi1 includes regions with

similarity to defined cis-acting elements. A TATA box is located in the consensus position, and
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two overlapping sequences with similarity to the Drosophila hsp70 heat shock element are

located approximately 0.2 kb upstream of the transcription start site. Modification of these

elements resulted in an altered reporter gene expression pattern but high levels of heterologous

gene expression in maize were retained (Streatfield et al., 2004). 

The long promoter sequence can be inconvenient for cloning and is susceptible to gene

silencing (Kumpatla, 1997; Kumpatla et al., 1997; Kumpatla and Hall, 1998b). Reducing the

size of the promoter appeared to be an attractive approach to address both of these deficiencies.

However, concern existed that deletion of promoter regions could affect the topology or

chromatin structure (Hall et al., 1998; Li et al., 2001), thereby decreasing its high expression

levels and ubiquitous spatial pattern of expression that are valuable features of this promoter.

A strong enhancing effect on gene expression was shown when intron 1 was included along with

the upstream region of the mUbi1 promoter by Salguerio et al. (Salgueiro et al., 2000), and

similar results have been obtained for introns associated with other promoters (Sinibaldi and

Mettler, 1992; Takumi et al., 1994; Vain et al., 1996). Therefore, in designing truncations of

mUbi1 promoter we were careful to assess the possible effect on intron-mediated enhancement.

Although inspection of the sequence motifs present in a promoter is helpful in designing mutated

forms, it is still necessary to test the effects experimentally. 
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MATERIALS AND METHODS

Plasmid construction

The constructs used for transient expression are shown in Figureure 4 .1 . The

mUbi-900-In (Figure 4.1A) construct (1992 bp) includes 899 bp of the 5' promoter region, 83

bp of untranslated exon (leader) sequence and 1,010 bp of the  first intron (Christensen et al.,

1992; Christensen and Quail, 1996). A 5' primer which contained a HindIII site (

atgaagcttttcttgtttcgagtagataatg) and a 3' primer containing a BamHI site:

cgggatccaggcctgcagaagtaacaccaaacaac) were used to to amplify the 5' region of  the mUbi1

promoter up to base -343, thereby eliminating 556 bp of the original 5' promoter. The PCR

amplification reaction was performed using PCR supermix (Invitrogen). PCR products were

purified, digested with HindIII and BamHI, then cloned into BJ81 (a vector that contains the rice

ubiquitin 2  promoter driving the gfp gene (Yang et al., 2001), yielding mUbi1-343-in

(Figureure 4.1B), a truncated ubiquitin promoter driving the gfp coding region. To further

shorten the promoter, an XbaI fragment (from +123 to +706) was excised from intron-1 of

mUbi-343-In, yielding mUbi-343-tIn (Figureure 4.1C). Construct mUbi-0-In (Figureure 4.1D)

has full-length  intron1 but no upstream promoter sequence and was derived from  mUbi-343-In

by digestion with HindIII and BglII, followed by Mung Bean Nuclease treatment and subcloned

into BJ81; construct mUbi-0-tIn (Figureure 4.1E) was made similarly from mUbi-343-tIn.

For stable transformation of rice calli, binary vectors pUbi-900-In, pUbi343-In ,

pUbi-343-tIn,  were constructed by cloning the  promoter and gfp fragments from the

intermediate plasmid pBJ81 between the HindIII and MscI sites of pJD7 (Dong et al., 2001).
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Figure 4.1. Schematic diagram of constructs. (A) Ubi-900-In is the full-length intron

(In)-containing promoter originally described by Christensen et al. (Christensen et al, 1996);

the promoter extends 900 bp upstream of the transcription initiation site (+1). (B) Ubi-343-In

is similar to A, but the promoter is shortened to 343 bp. (C) Ubi-343-tIn is similar to B, but

the first intron was truncated (tIn) by the excision of an XbaI fragment between positions 123

and 706. (D) Ubi-0-In is similar to B but lacks the 5' proximal promoter (-343 to +1) and 5'

UTR (+1 to 93) regions. (E) Ubi-0-tIn is similar to D but lacks part (+123 to +706) of intron

1. All five constructs contain the entire mGFP coding sequence (Siemering et al, 1996) and

nos terminator.
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The resulting binary vectors were transferred into Agrobacterium strain LBA4404 by triparental

mating (Ditta et al., 1980).

Initiation of scutellar calli 

Mature T309 seeds were dehusked and rinsed with 70% ethanol for 1 min, then soaked

in 50% (v/v) bleach for 45 min on a shaker at 120 rpm. The sterilized seeds were washed  five

times with sterile distilled water. The seeds were then placed embryo side face up on N6 medium

(Chu et al., 1975) for two weeks in the dark at 28 C. Induced calli were separated from seed and

plant tissue and cultured on N 6 medium for 10 to 14 days. During this time, many embryogenic

calli developed that were subcultured, yielding many actively growing calli. 

Biolistic transformation

Robust, actively growing calli were chosen and placed on high osmolarity N6 medium

supplemented with mannitol and sorbitol (0.3M each) for 4 h before bombardment. Gold

particles (1.0  :m, 600  :g) were coated with 1  g plasmid DNA and used for bombardment with

a Biolistic Particle Delivery System model PDS-1000 using 1300 psi rupture discs (E. I. du Pont

de Nemours & Co., Wilmington, DE). Bombarded calli were incubated in the dark (28 °C) and

examined after 72 h.
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Agrobacterium-mediated transformation and regeneration

Actively growing embryogenic calli were co-cultivated (Hiei et al., 1994) with

Agrobacterium LBA4404 containing binary plasmids mUbi-900-In, mUbi-343-In and

mUbi-343-tIn in the dark at 21°C for 3 days. After co-cultivation, infected calli were rinsed with

sterile distilled water containing cefotaxime (250 mg/l) before being transferred to N6 selection

medium containing 2, 4-D (2 mg/l), hygromycin (50 mg/l), and cefotaxime (250 mg/l). Calli

were transferred onto fresh selection  medium every 2 weeks. After 4 weeks on selection

medium, somatic embryogenic calli were transferred to MSD4 regeneration medium (MS

supplemented with 0.5mg/l 6-BAP and 0.05mg/l NAA) (Dong et al., 1996). Once shoot

initiation was observed, the plates were transferred to an incubator with 16 h light and 8 h dark

photoperiods at 26 °C to allow chloroplast development. Two weeks later, actively growing

plantlets were transferred to Magenta boxes for rooting in MS0 (MS without plant regulators)

for 2 weeks, then transferred to soil and grown to maturity in the greenhouse (Buchholz et al.,

1998).

Fluorescence imaging, quantification and data processing

In transient assays, for each plasmid used, 100 green fluorescent spots were imaged using

an AxioCam HR (Carl Zeiss) camera attached to a Zeiss SV11 stereomicroscope (Carl Zeiss,

Oberkochen, Germany), using 470-nm excitation and 500- nm emission filters. The exposure

time was adjusted so that none of the spot images was saturated in pixels and the mean value of
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green fluorescence for each spot was measured using the interactive measurement module of

AxioVision 3.0. Each reading was normalized by subtracting the nearby background

fluorescence reading. The normalized readings from 100 spots for each plasmid were used to

calculate average values. Green fluorescence in seed, roots, leaves, stamen and pollen was

recorded using the same method. Measurement of fluorescence for 100 pollen grains from each

of at least 50 independently transformed rice plants was performed similarly except that readings

for nearby non-transgenic pollen grains were used for normalization.  For the wild type (wt,

non-transgenic) control, the fluorescence values for 100 pollen grains from 5 plants were

normalized by subtracting the value for the nearby background fluorescence. Average values and

standard errors were calculated using Microsoft Excel.

Protein extraction

 

Approximately 500 mg of  7 day-old etiolated seedling tissue was ground to a fine

powder in liquid nitrogen using a mortar and pestle, and transferred into an Eppendorf tube.

Total leaf protein was then extracted with TE buffer (pH 8.0) for 10 min and centrifuged at 1.2

x 104 g for 20 min. The supernatant was collected and total protein concentration determined

(Bradford, 1976).

Determination of GFP fluorescence in total protein

The fluorescence of plant samples (50  µg protein) was determined (Bio-Rad VersaFluor
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 fluorometer; Bio-Rad, Hercules, CA, USA) relative to a standard curve for a GFP (Clontech,

Mountain View, CA, USA) concentration range of 100 ng/ml to 1 g/ml using 480/20 nm

excitation and 510/10 nm emission filters.

RESULTS

Generation of a small functional mUbi1 promoter

Whereas a typical Pol II promoter lies entirely upstream of the transcription start site,

the region commonly thought of as the mUbi1 promoter includes a sequence element that

encodes a lengthy (1,010 bp) intron (black bar in Figureure 4.1A) that encompasses most of the

5' UTR and a more traditional element (-900 to+1, red bar in Figureure 4.1A). Our strategy for

shortening the promoter was, therefore, two-fold with one objective being to shorten the

traditional element and the second to shorten the intronic element. The 3' region of the mUbi1

promoter was amplified up to position -343 by PCR,  thereby eliminating 556 bp of the 899 bp

promoter 5' region. The full length (mUbi-900-In) and truncated (mUbi-343-tIn) promoter

constructs were inserted into the pBJ81vector to drive GFP expression (Figureure 4.1).

Bombardment of wt rice calli showed that the truncated mUbi1 promoter was functional, with

a similar level of activity as the wt full length mUbi1 promoter.

            In designing truncation of the intronic element, we took advantage of convenient XbaI

restriction sites at positions +123 and +706 bp to excise 583 bp from the intronic region without

changing its 5' or 3' ends. This yielded the mUbi-343-tIn derivative (Figureure 4.1C), in which
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both the promoter and intronic elements are truncated. The size of the modified promoter was

reduced to 853bp. The removal of 1,139bp from the full length mUbi1 has deleted 154

restriction endonucleases sites. This will be very helpful to further cloning of the modified

promoter into different constructs.  Following insertion into the pBJ81vector, it was used for

bombardment of wt rice calli; green fluorescence confirmed functionality.

Comparison of transient expression driven by the truncated promoters

          The activities of four modified promoters (Figureure 4.1B–E) relative to the full-length

(mUbi-900-In) construct (Figureure 4.1A) were initially assessed in transient expression assays

using particle bombardment of wt T309 rice calli. Four days after bombardment, discrete green

fluorescent spots representing promoter activity were imaged as described previously (Yang et

al., 2005). As shown in Figureure 4.2, panel A, the calli bombarded with mUbi-343-In and

mUbi-343-tIn showed strong GFP expression, similar to that of mUbi-900-In; compare images

(B) and (C) with image (A). Quantitative measurement, (Panel B and legend) supported the

visual assessment, with mUbi-343-In having 93.2% and mubi-343-tIn having 89.3% of the

activity of the full-length mUbi-900-In. A combination of the mUbi-343 truncation and the

intron truncation (mUbi-343-tIn; Figureure 4.1C) resulted in a 10.7% reduction in expression

compared with mUbi-900-In (Figure 4.2). However, a dramatic decrease in activity (to only 
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Figure 4.2. Transient expression of GFP in  rice callus. Representative images of rice
calli bombarded with constructs: A) mUbi-900-In; B) mUbi-343-In; C) mUbi-343-tIn; D)
mUbi-0-In; E) mUbi-0-tIn or F) No construct (control).

Figure 4.3 Relative green fluorescence.  A) mUbi-900-In; B)
mUbi-343-In; C) mUbi-343-tIn; D) mUbi-0-In; E) mUbi-0-tIn or F)
No construct (control).
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Figure 4.4 T-DNA regions of constructs for Agrobacterium-
mediated transformation of rice.  (A’) mUbi-900-In; (B’) mUbi-343-

In; (C’) mUbi-343-tIn; The  arrows indicate direction of transcription
35S, the 35S promoter from cauliflower mosaic virus; mUbi1, full-
length ubiquitin1 promoter from maize; TmUbi1, truncated ubiquitin
promoter from maize (Figureure 1 B); Intron, full-length first intron; tIn,
truncated first intron (Figureure 1 C); hpt, the coding sequence for
hygromycin phosphotransferase conferring resistance to hygromycin B;
GFP, the coding sequence for green fluorescent protein;   nos, 3' nos

terminator.  RB, T-DNA right border; LB, T-DNA left border. 
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12% of the full-length promoter) was evident upon further deletion of the upstream promoter,

even though the first intron remained intact (mUbi-0-In, Figureure 4.1D). Virtually all activity

was lost when the 5' promoter was deleted and the intron was truncated (mUbi-0-tIn: Figureure

4.1E).

Figure 4.5. GFP expression in various rice tissues stably transformed with mUbi-343-tIn.
(A) callus at 4 days after co-cultivation with Agrobacterium; (B) callus at 3 weeks after
co-cultivation; (C) seed; (D) root; (E) leaf blade, ligule (arrow) and sheath; (F) stamen; (G)
pollen; (H) pollen from a wt plant.
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GFP expression driven by truncated mUbi1 promoters in transgenic rice plants

A binary vector containing the full length mUbi1 promoter (mUbi-900-In) and two

containing promoter truncations (mUbi-343-In and mUbi-343-tIn) were constructed (Figure 4.4)

and used for Agrobacterium-mediated transformation of wt T309 calli (Hiei et al., 1994). GFP

expression was detected as early as 3 days after co-cultivation (Figure 4.5A); as the callus cells

grew and divided, more highly fluorescent cells were evident (Figure 4.5B). Regeneration of

plants from these stably transformed calli was as described in Materials and Methods. Bright

green fluorescence was evident in all tissues (Figure 4.5 C-G). 

Although visual inspection suggested that each of the promoters yielded similar levels

of GFP expression, quantitative measurement of relative fluorescence intensity for seedlings

revealed small but reproducible differences, with seedlings of plants transformed with the 
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Figure 4.6 Pollen from stably transformed rice plants. Pollen

is shown from representative plant transformed with (A) mUbi-

900-In; (B) mUbi-343-In; (C) mUbi-343-tIn; (D) wt.

Figure 4.7. Relative green fluorescence intensity of
pollen (blue bars) and etiolated seedlings (green bars)
of transgenic rice plants.  (A) mUbi-900-In; (B) mUbi-

343-In; (C) mUbi-343-tIn;  and ( D) WT control: No
construct. Standard errors of the mean are shown for 50
plants.
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mUbi-343-In construct having a relative fluorescence of 120% (Figure 4.7). As was found for

the bombardment experiments, the relative intensity of GFP expression in cells of stably

transformed calli can be used to determine relative promoter activity. However, we noted that

expression of GFP in pollen grains was very uniform (see for example, Figure 4.5G and Figure

4.6), making them highly suitable for quantitative experiments. These results reveal that the

shortened mUbi1 promoter has similar spatial and quantitative characteristics as does the full

length mUbi1 promoter. Similar results were obtained from the GFP quantitation of total

proteins extracted from seedlings that had been etiolated for 7 days (Figure 4.7).

DISCUSSION

The mUbi1 promoter has been shown to be highly active in many cell types of a wide

range of monocotyledonous plants (Christensen et al, 1992; Toki et al., 1992; Cornejo et al.,

1993; Christensen and Quail, 1996). In carefully-conducted experiments, Salgueiro et

al.(Salgueiro et al., 2000)compared GUS activity driven by an mUbi1 promoter bearing intron1

with that driven by an intronless promoter.  GUS expression from the intronless promoter was

essentially the same as background, revealing a strong enhancing effect on gene expression for

the intron. These authors also showed that a DNA fragment that included 40 bp of  the  5' UTR

(part of exon 1) and the mUbi1 intron could drive transient GUS expression in tritordeum

inflorescences and wheat scutellae, suggesting that cis-elements important for binding

transcription factors are present in mUbi1 intron1.
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The present study extends the analysis of  intron function as part of a promoter

(Salgueiro et al., 2000) through dissections of both upstream promoter sequences and intron1

of mUbi1. Deletion of 556 bp of upstream sequence (Figure 4.1B) reduced transient expression

by 6.8% [Figure 4.2 A, B and Figure 4.3 A, B] and increased stable expression by 4% in pollen

[Figure 4.6 B and Figure 4.7B] and by 20.3% in  seedling tissues [Figure 4.6B and Figure

4.7B].  Interestingly, deletion of 583 bp (of a total 1010 bp) of intron1 (Figure 4. 1C) only

reduced transient expression from the -343 mUbi1 promoter by 3.9% [Figure 4.2C  and Figure

4.3C]; stable GFP expression in pollen decreased by 10.8% [Figure 4.6C  and Figure 4.7C] and

that in seedling tissues by 28.3% [Figure 4.7C].

            However,  the promoter activities are expected to differ in different cereal crops and

different plant tissues or cell types. The results presented in this chapter suggested that the mUbi1

promoter activities were highly active in transformed callus cells both in transient expression and

stable transformations. This promoter has been shown to be highly active in all cell types in the

rice plant. 

Transgene silencing remains an important consideration in the application of

biotechnology to crop improvement. A variety of silencing effects has been described in the

literature, involving single transgene loci, interactions between unlinked loci, or even

interactions with or through an endogenous homologous gene (Meyer et al., 1992; Iglesias et al.,

1997; Iyer et al., 2000). Epigenetic silencing of transgenes and endogenous genes can occur at

the transcriptional level (TGS) or at the posttranscriptional level (PTGS) (Fagard and Vaucheret,

2000). Silencing is now known to be involved in plant defense systems against invasive DNA

or RNA sequences (viruses, transposons) and surveillance processes that check the genome
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integrity to suppress the expression of abnormal or alien transcription units (Jorgensen et al.,

1998; Kumpatla et al., 1998; Iyer et al., 2000).  Aspects such as insert location, rearrangements,

multiple-copy loci, homology to an endogenous sequence, excessive level of transcription and

others have been shown to trigger silencing. Whatever mechanism of silencing is involved, the

presence of inserted foreign DNA frequently initiates events leading to the failure of a gene to

express. For several years, the concept of homology dependent gene silencing (HDGS) was in

favor (Matzke and Matzke, 1995), supported by studies showing that 300 bp(Matzke et al.,

1989)and even 90 bp (Vaucheret, 1993) of sequence homology was sufficient for

trans-inactivation. In consequence, the use of short transgene sequences appeared to be beneficial

in avoiding induction of gene silencing. With the recognition that dsRNA, often generated from

rearranged or fragmented DNA, was powerful in inciting RNAi (Mette et al., 2000), the value

of reducing transgene size appeared to be diminished. Indeed, our own studies with the 35S

promoter revealed that a second round of rice transformation using a transgene sequence

identical to a resident, silenced, transgene, did not result in silencing of the incoming gene (Yang

et al., 2005). Nevertheless, it remains possible that certain sequences or topologies favor HDGS,

making the use of relatively small transgenes attractive. Another beneficial aspect of reducing

the size of transgenes, especially promoter elements, is the elimination of restriction enzyme sites

that complicate transgene construction.

In the experiments described here, 556 bp of -899bp in the promoter upstream region

were removed. The remaining 343bp of upstream promoter contains the TATA box and a

heat-shock element (Christensen, 1992; Streatfield, 2004). The activities of the resulting

modified promoters (pUbi-343-In and pUbi-343-tIn) remained high compared to the full-length
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mUbi1 promoter both in transient expression and stable transformed plants. The removal of

556bp of upstream region with an intact, unmodified first intron (pUbi-343-In) resulted in higher

expression levels compared to the full-length mUbi1 promoter only in stably transformed plants.

These results suggest that the genomic sequence at the insertion site in the transgenic plants may

serve as an enhancer for mUbi1 after the removal of 556 bp promoter sequence. The lower

activities of pUbi-343-In in transient expression experiments compared to the full-length mUbi1

promoter may mean that the 556 bp promoter upstream region has an enhancer function for the

full-length mUbi1 promoter. With no genomic sequences flanking the pUbi-343-In , it results

in a lower promoter activities in the transient expression cells. Although stable transformations

are usually considered to be more reliable than transient expression for assessing promoter

activity, in this case it appears preferable to use transient expression to assess the innate promoter

activity of each construct since in stable transformations it is possible that genomic sequences

flanking the insertion site could influence the promoter activity.

            The regulatory role of introns in transcription as measured by gene expression has been

reported in many cases (McElroy et al, 1990; Last et al, 1991; Luehrsen and Walbot, 1991;

Sinibaldi and Mettler, 1992; Vain et al, 1996). The first intron of mUbi1 promoter may also

directly drive gene expression because it is similar to typical promoter sequences  (Salgueiro et

al, 2000). Therefore,  in this case,  the first intron is recognized as a part of the mUbi1 promoter.

It includes a TATA-box-like sequence (TATAA) at position +924, and a CAT-box at

position+390 (CAAT), and an E-box at position  +404 (CANNTG) (Salgueiro et al., 2000).

After removal of all of the promoter upstream region and part of the 5'UTR, the modified mUbi1

still showed a small amount of promoter activities in the transient expression experiments. The
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removal of +123 to +706 of mUbi1 first intron in pUbi-0-tIn resulted in removal of the CAT-box

and E-box, and resulted in the complete loss of promoter activity. Interestingly, the truncated

promoter upstream and the 5'UTR presented with the truncated first intron showed a strong

promoter activity. The results seen here suggest that 343bp of the upstream promoter region

plays a major role for mUbi1 function. Expression appeared to be lower  in green plant tissues

or mature plant leaves, most likely a consequence of severe interference of chlorophyll with GFP

fluorescence (Zhou et al., 2005). In present studies, GFP fluorescence intensity in pollen with

the same genetical background was shown to be uniform. As they contains no chlorophyll, pollen

represents an ideal cell type for GFP quantitation. 

For practical purposes, the use of a reliable promoter to drive transgene expression is

highly desirable. However, many reports exist in which silencing of a transgene was attributed

to the presence of more than one copy. As previous work in other labs suggested that identical

sequences of ~100 base pairs rendered the transgenes susceptible to silencing, we decided to

examine the effect of promoter diversification so that no two sequences were identical for

>90 bp. The promoter chosen for the diversification study, mUbi1, is generally regarded as a

strong constitutive promoter for monocots. As is the case for many monocot promoters, an intron

is considered as part of the mUbi1 promoter. However, deletion of much of mUbi1 intron-1 did

not affect promoter strength in transgenic rice, permitting the use of a substantially shorter

promoter (343 bp in place of over 1 kb). Sequence substitutions were introduced at positions

-100, -200 and -310 (and permutations thereof) and the diversified promoters used to drive GFP

expression in transgenic rice. Strong GFP expression was detected in all tissues of rice

transformed with the various diversified mUbi1 promoter - GFP reporter fusions tested, except
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for the triple mutant construct -100/-200/-310-GFP (data not shown). Expression of GFP from

this triple mutant construct was remarkable in that it was very strong in all tissues except pollen.

This finding is very exciting since it implies that the use of this promoter to drive expression of

insecticidal protein will yield protection in all tissues other than pollen. The death of beneficial

insects, such as Monarch butterflies, as a result of consuming pollen that express insecticidal

protein has been of great public concern. It would appear that the use of the triple mutant mUbi1

promoter would eliminate this problem. 
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CHAPTER V

SUMMARY

Plant transformation is an indispensable tool for plant molecular biology. Improved

approaches and highly efficient transformation will facilitate  functional genomics and  studies

of  gene expression and silencing. In this study, an exceptionally effective transformation

procedure has been established by the use of carefully chosen class I type of callu from both rice

immature embryos and mature embryos. The procedure was effective for both japonica varieties

tested (Nipponbare and T-309). Following an improved tissue culture procedure,  nearly 100%

of treated class I type of calli bear transformed cells within each callus clump (approximately

5 mm diameter) yielding multiple independently transformed plants (average for 62 calli was

approximately 40 plantlets). The regenerated plants from each co-cultivated callus were

cataloged and numbered according to the original co-cultivated callus.  Genomic DNA analysis

of the T-DNA integration patterns and pollen segregation with green fluorescent protein (GFP)

were examined. The results in a population of more than 400 T0 transgenic plants revealed that

about 64% bore a single locus T-DNA insertion. Among those single locus insertions,

approximately 55% were found to bear a single T-DNA copy.  Additive transgene expression

was observed for T0 T-DNA plants with GFP driven by the mUbi1 promoter. This was found

to be valuable in that a reliable estimate of the number of T-DNA insertion loci on different

chromosomes could be readily obtained simply by examining the segregation of GFP in the

pollen of T0 plants. This allows identification of single locus insertion plants from a large

population of T0 transformants without the need for further generations or Southern analysis.
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This highly efficient production of transgenic plants could be used to create thousands of

independent transformants in one carefully prepared co-cultivation experiment. The rapid and

simplified method for the characterization of transgenic plants using pollen GFP segregation and

additive gene expression is a valuable breakthrough. 

The use of Agrobacterium tumefaciens-mediated transformation of microspore-derived

callus for generating large amount of T-DNA haploid and fertile doubled haploid plants has also

been investigated. Using T-DNA constructs bearing the hygromycin resistance (hpt) and green

fluorescent protein (gfp) genes, an exceptional transformation procedure has been established

that results in approximately 100% frequency for class I type of microspore-derived calli

co-cultivated with Agrobacterium. Each callus typically yields multiple independent transgenic

plants. The T-DNA integration pattern in a population of more than 200 transgenic plants has

been characterized by Southern blots. Approximately 98% of those transgenic plants are

independent events. About 45 % of the transgenic plants were identified as haploid plants,

whereas about half are DH hemizygous (doubling occurred prior to integration) or homozygous

transgenic plants.  The pollen GFP expression segregation pattern in fertile T0 transgenic doubled

haploid plants has been analyzed along with corresponding Southern blot data. Approximately

9% of the fertile doubled haploids were homozygous transgenic plants that were confirmed by

Southern blot as well. In the two cultivars studied, about 60% of T0 transgenic plants were found

to have a single locus T-DNA insertion. Among those single locus T-DNA plants, about 45%

of T0 plants were found to have a single T-DNA copy. Furthermore, in a population of over

2,000  haploid and doubled haploid T-DNA plants , approximately 25% had clear-phenotypical

differences from wt haploid plants, including 5% that were seriously phenotypically abnormal,
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lethal or semi-lethal mutants.  This highly efficient transformation procedure using

microspore-derived callus could be valuable not only in speeding up plant breeding but in new

gene discovery as well.

Gene expression has been investigated using GFP driven by altering mUbi1 promoters.

Diversification of the mUbi1 promoter led to discovery of a minimal mUbi1 promoter that has

a similar function as the original mUbi1. The minimal promoter of mUbi1 was created by PCR

amplifying the region of mUbi1 promoter up to base -343,  thereby eliminating the 5' 556 bp of

the 899 promoter region, and truncating the first intron at XbaI restriction sites at 123 and 706

bp. The resulting  minimal promoter was coupled with a GFP reporter gene. Gene expression

driven by this minimal promoter in transient and stable transformants showed the minimal

mUbi1 promoter has a similar function as the original wild type promoter. 
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