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ABSTRACT

Rock-Around Orbits. (December 2009)

Scott Kenneth Bourgeois, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Daniele Mortari

The ability to observe resident space objects (RSOs) is a necessary requirement

for space situational awareness. While objects in a Low-Earth Orbit are easily ob-

servable by ground-based sensors, difficulties arise when trying to monitor objects

with larger orbits far above the Earth’s surface, e.g. a Geostationary Orbit. Camera

systems mounted on satellites can provide an effective way to observe these objects.

Using a satellite with a specific orbit relative to the RSO’s orbit, one can passively

observe all the objects that share the RSO’s orbit over a given time without active

maneuvering.

An orbit can be defined by five parameters: semi-major axis, eccentricity, right

ascension of ascending node, inclination, and argument of perigee (a, e,Ω, i, ω). Using

these parameters, one can create an orbit that will surround the target orbit allowing

the satellite in the Rock-Around Orbit (RAO) orbit to have a 360 degree view of

RSOs in the target orbit. The RAO orbit can be applied to any circular or elliptical

target orbit; and for any target orbit, there are many possible RAO orbits. Therefore,

different methods are required to narrow down the selection of RAO orbits. These

methods use distance limitations, time requirements, orbit perturbations, and other

factors to limit the orbit selections.

The first step is to determine the range of RAO semi-major axes for any given

target orbit by ensuring the RAO orbit does not exceed a prescribed maximum al-

lowable distance, dmax from the target orbit. It is then necessary to determine the

eccentricity range for each possible RAO semi-major axis. This is done by ensuring
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the RAO still does not exceed dmax but also ensuring that the RAO orbit travels

inside and outside of the target orbit. This comprises one half of the rock-around

motion. The final step is to determine the inclination of the RAO orbit. Only a

small inclination difference from that of the target orbit is required to complete the

rock-around motion while the maximum inclination is found by making sure the RAO

orbit does not exceed dmax.

It is then important to consider orbit perturbations, since they can destroy the

synchronization between the RAO and target orbit. By examining the effects of the

linear J2 perturbations on the right ascension of ascending node and argument of

perigee, the correct semi-major axis, eccentricity, and inclination can be chosen to

minimize the amount of fuel required for station keeping. The optimal values can be

found by finding the ∆v needed for different combinations of the variables and then

choosing the values that provide the minimum ∆v.

For any target orbit, there are multiple RAO orbit possibilities that can provide

360 degree coverage of a target orbit. Even after eliminating some of them based

on the methods already described, there are still many possibilities. The rest of the

elimination process would then be based on the mission requirements which could be

the range of an on-board sensor, the thruster or reaction wheel controls, or any other

number of possibilities.
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CHAPTER I

INTRODUCTION

A. Flower Constellations

The theory of Flower Constellations [1, 2, 3, 4], developed at Texas A&M University,

has generated many by-products [5, 6, 7] and potential solutions for Earth and space

observing systems. In particular, the ability to obtain or design symmetric periodic

solutions makes the theory of Flower Constellations an attractive tool to design either

Earth reconnaissance systems or space surveillance systems. While Earth reconnais-

sance missions require the synchronization be relative to the Earth’s angular velocity,

space surveillance missions of certain orbits (e.g. GEO belt, LEO, multi-stationary

orbits, etc.) require the synchronization be relative to the orbital period of the target

orbit.

Fig. 1. Example of a Flower Constellation [1]

This thesis follows the style of The Journal of the Astronautical Sciences.
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The theory of Flower Constellations (of which an example can be seen in Figure

1) is a unique theory of satellite constellations generally characterized by repeatable

ground tracks and a suitable phasing mechanism. They are governed by two sets of

values. The first are three independent integers: Np, Nd, and Ns which are the number

of petals, number of days to repeat the ground track, and the number of satellites

in the constellation, respectively. The other values are the orbital parameters of the

satellites - a, e, Ω, i, ω,M - which are the orbit’s semi-major axis, eccentricity, right

ascension of ascending node, inclination, argument of perigee, and mean anomaly,

respectively. These parameters can be seen in Figures 2 and 3. To choose values for

some of these parameters, the FC theory uses compatible orbits [1]. A compatible

orbit can be defined as an orbit which has a period whose ratio with respect to a

rotating reference frame is a rational number. Using the Earth rotating frame, this

creates repeating ground tracks. The number of petals defines how many orbits are

performed during the number of days needed to repeat the ground track. From this,

there are an infinite number of possible Flower Constellations; however, these can be

narrowed down based on the type of mission for which they are to be used.

Fig. 2. Orbit Shape
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Fig. 3. Orbit Orientation [8]

B. Rock-Around Orbits

Using this theory and applying it to space observation rather than Earth observation

leads to the theory of Rock-Around Orbits (RAO). The basic theory is the same

except now one wants to observe a group of RSOs rather than the Earth. Therefore,

the new rotating frame is based on the period of the RSOs in the same orbit or

belt. Redefining the integers, we can get Nt, Nr, and Nd max which are the number

of target orbit periods, the number of RAO periods, and the maximum number of

days to complete one observation of the target orbit, respectively. This will then

produce a finite number of possibilities for the period of the RAO orbit from which

the semi-major axis can be easily computed. Generally, the RAO orbit will have the

same right ascension of ascending node and argument of perigee as the target orbit

to ensure the main alignment of the orbits is the same. This is more important for

RAO orbits with elliptical target orbits. Of the five main orbtial parameters, there

now exist three from which the best RAO orbit can be chosen. The semi-major axis
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is dependent on Nt and Nr, and the eccentricity and inclination are dependent on the

semi-major axis. By varying the RAO eccentricity from the target orbit’s eccentricity,

the observer will travel in and out of the belt creating the same petals described by

the Flower Constellations. Then, varying the RAO inclination from the target orbit’s

inclination allows the observer to travel over and under the target orbit. These two

differences allow the observer to get a 360 degree view of the target orbit. Necessary

constraints are then introduced to reduce the number of choices of RAO orbits.
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CHAPTER II

CIRCULAR TARGET ORBITS

A. Acceptable Orbits

The first step in determining a RAO orbit is to define the associated circular target

orbit. With the target orbit’s semi-major axis defined, the RAO orbit’s semi-major

axis must be defined such that a spacecraft in the RAO orbit must never be more

than a predefined distance from the target orbit to ensure observation accuracy. This

distance is called dmax which can then be used to bound the semi-major axis of the

RAO orbit.

at − dmax ≤ ar ≤ at + dmax (2.1)

This allows a spacecraft to observe the entire target orbit in the amount of time given

by Equation (2.2)

Nt =
Tr

|Tt − Tr|
or Nr =

Tt

|Tt − Tr|
(2.2)

where Tr, Tt are the RAO orbital period and the period of the target orbit, respec-

tively. Nr and Nt represent the number of RAO and target orbital periods completed

during the repetition time, respectively.

It is also beneficial to impose a time constraint, Trep max, that limits the amount

of time it takes a spacecraft in the RAO orbit to complete a full observation of the

target orbit.

Nr Tr ≤ Trep max (2.3)

Then substituting Equation (2.2) into Equation (2.3) and solving for Tr provides the
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limits for Tr

for Tr < Tt : Tr ≤
Tt Trep max

Tt + Trep max

for Tr > Tt : Tr ≥
Tt Trep max

−Tt + Trep max

(2.4)

Lastly, we can solve for ar in Equation (2.4) using Kepler’s Third Law

T = 2π

√
a3

µ
→ a =

3

√
µ

(
T

2π

)2

(2.5)

and combine the results with Equation (2.1) to provide the final bounds on ar.

for ar < at : at − dmax ≤ ar ≤ 3

√
µ

(
1

2π

Tt Trep max

Tt + Trep max

)2

for ar > at : at + dmax ≥ ar ≥ 3

√
µ

(
1

2π

Tt Trep max

−Tt + Trep max

)2

(2.6)

B. Compatible Orbits

While the method previously described will observe a target orbit effectively, there

may exist a situation in which one still wants to observe the entirety of an orbit but

also knows of one or more objects in that orbit and wants to make sure the RAO

spacecraft will always be in the same position relative to those objects. For example,

one may want the RAO spacecraft to always be looking down on these objects or

looking away from Earth when viewing them. There exists a subset of acceptable

orbits called compatible (or resonant) orbits which can do this.

An orbit is called compatible with respect to a rotating reference frame if there

exist two integers, Nr ∈ Z(1) and Nt ∈ Z(1), satisfying

Nr Tr = Nt Tt = Trep (2.7)
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which implies a synchronization between RAO and target orbits.

Once Tr is known, the RAO semi-major axis can be computed using Equation

(2.5)

ar =
3

√
µ

(
Tr

2π

)2

=
3

√
µ

(
Nt Tt

2π Nr

)2

(2.8)

Again Trep max is needed to place an upper bound on the number of the Nr,

Nt combinations. From Trep max, we can derive an upper value for the maximum

allowable target orbital periods to observe the target orbit once, Nt max = Trep max/Tt.

Additionally, dmax is still needed to maintain the observation resolution within the

requirements of the observation accuracy.

As an example, Figure 4 shows all the possible Nr, Nt combinations of a scenario

for which the target orbit is the geostationary orbit whose parameters are defined in

Table I.

Table I. Geostationary Orbit Parameters (Example 1)

Tt (hr) at (km) et Ωt (deg) it (deg) ωt (deg) dmax (km) Trep max (day)

24 42,164 0 0 0 0 5,000 30
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Fig. 4. Compatible Orbits for a Circular Target Orbit (Example 1)

The bounds defined by dmax and Nt max can be seen in Figure 4. It can then be

seen that increasing Nt max will increase the number of possible Nr, Nt combinations

and decreasing Nt max will lower the number of possible Nr, Nt combinations. The

same behavior can be seen for dmax.

C. Eccentricity and Inclination Bounds

These orbits in and of themselves are not considered RAO orbits. They are simply

circular orbits with an acceptable or compatible period. By making the orbit eccentric

and inclined, the orbits can then be considered RAO orbits. For a given target orbit,

the minimum and maximum possible apogees and perigees for all RAO orbits will be

the same. Using Equation (2.8) to find the semi-major axis, ar, for all compatible

orbits in Figure 4, the eccentricities associated with these minimum and maximum

apogees and perigees can then be found. For RAO orbits where ar < at, the RAO

apogee must be greater than the radius of the target orbit to ensure the “rock-around”

motion, and the RAO perigee must be greater than at − dmax to ensure it is within
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the dmax boundary from the target orbit. Similarly RAO orbits where ar > at must

ensure that the perigee is less than the radius of the target orbit and that the apogee

is less than at + dmax.

The equations for the apogee and perigee of a RAO orbit are

Ra = ar (1 + er) and Rp = ar (1− er) (2.9)

whose values can then be used to compute the two values for the minimum and

maximum eccentricities for ar < at

at = Ra = ar (1 + emin) → emin =
at

ar

− 1

at − dmax = Rp = ar (1− emax) → emax = 1− at − dmax

ar

(2.10)

while the minimum and maximum eccentricities for ar > at are

at = Rp = ar (1− emin) → emin = 1− at

ar

at + dmax = Ra = ar (1 + emax) → emax =
at + dmax

ar

− 1

(2.11)

Therefore, the RAO eccentricity bounds are

for ar < at :
at

ar

− 1 ≤ er ≤ 1− at − dmax

ar

for ar > at : 1− at

ar

≤ er ≤
at + dmax

ar

− 1

(2.12)

If emin < 0, set emin = 0; since e cannot be less than zero.
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Fig. 5. Inclination Bounds Geometry for a Circular Target Orbit

Inclination bounds are derived from dmax and er. Looking at Figure 5, it can

be seen that ∆i is the inclination difference between the target and RAO orbit.

Therefore, the maximum difference is found when Ra or Rp is coincident with the

dmax circle. Using the equation of the dmax circle

(x− at)
2 + y2 = d2

max (2.13)

and the two separate possibilities

x = Ra cos i and y = Ra sin i (2.14)

and

x = Rp cos i and y = Rp sin i (2.15)

where Ra and Rp are defined in Equation (2.9), ∆i can be found as a function of er.

Solving the two problems then yields the two possibilities

∆i(Ra) = cos−1

(
d 2

max − a2
r (1 + er)

2 − a2
t

−2ar (1 + er) at

)
(2.16)

∆i(Rp) = cos−1

(
d 2

max − a2
r (1− er)

2 − a2
t

−2ar (1− er) at

)
(2.17)

Upon closer examination, it can be found that i(Ra) is valid for ar > at and i(Rp) is

valid for ar < at.
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Hence

imin = it −∆i ≤ ir ≤ it + ∆i = imax (2.18)

where

for ar < at : ∆i = cos−1

(
d 2

max − a2
r (1− er)

2 − a2
t

−2ar (1− er) at

)

for ar > at : ∆i = cos−1

(
d 2

max − a2
r (1 + er)

2 − a2
t

−2ar (1 + er) at

) (2.19)

Two things are important to note. The first is there are no negative inclinations.

If imin < 0, it means the ascending node and descending node have swapped positions

which is a 180◦ change in Ω. So the bounds would be 0 ≤ ir ≤ imax for Ωr and

0 ≤ ir ≤ |imin| for Ωr± 180◦. The second is that Equations (2.18) and (2.19) are only

half right. Using the maximum eccentricity for a RAO orbit would produce ∆i = 0◦.

If ωr = 0◦ or 180◦, the furthest point of the RAO orbit from the target orbit will

be the ascending node or descending node. As a spacecraft in the RAO orbit moves

away from the node, it will be coming closer to the target orbit and could in fact have

some inclination and still be within the dmax boundary.

D. Example

To see how a RAO orbit works, the trajectory of the RAO spacecraft has to be

evaluated in the rotating target orbit frame. For this purpose, the coordinate trans-

formation matrices between inertial, rotating target, and RAO orbit frames must be

introduced. Using the “3-1-3” Euler’s sequence to represent the orientation in space

of the orbits, the inertial-to-orbital direction cosine matrix is expressed as

Ci2o = R3(ω + ϕ)R1(i)R3(Ω) (2.20)
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where the expressions for the R1 and R3 rotation matrices are

R1(ϑ) =


1 0 0

0 cosϑ sinϑ

0 − sinϑ cosϑ

 and R3(ϑ) =


cosϑ sinϑ 0

− sinϑ cosϑ 0

0 0 1

 (2.21)

The inertial-to-RAO (fixed) orbit transformation matrix is

Ci2r = R3(ωr)R1(ir)R3(Ωr) (2.22)

and the inertial-to-target (rotating) orbit transformation matrix is

Ci2t = R3(ωt + ϕt)R1(it)R3(Ωt) (2.23)

where ϕ represents the true anomaly of a fictitious spacecraft in the target orbit

frame.

Equations (2.22) and (2.23) allow us to evaluate the target-to-RAO orbit trans-

formation matrix

Cr2t = Ci2tCr2i = Ci2tC
T

i2r (2.24)

Therefore, the relative motion of the RAO orbit in the target orbit frame is ruled by

R(t)
r =


x

(t)
r

y
(t)
r

z
(t)
r

 = Cr2tR
(r)
r = Ci2tR

(i)
r (2.25)

where R
(i)
r , R

(t)
r , and R

(r)
r , indicate the RAO position vector as expressed in the

inertial, target, and RAO reference frames, respectively.
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Using the geostationary orbit (whose parameters are defined in Table I) as a

target orbit, let us now consider two RAO orbits, whose derived orbital parameters

are provided in Table II and whose example orbital parameters are provided in Table

III.

Table II. Derived RAO Orbital Parameters (Example 1)

Scenario Nr Nt Tr (hr) ar (km) er min er max

1 25 24 22.98 41, 032 0.0276 0.0943

2 24 25 24.93 43, 327 0.0268 0.0886

Table III. Selected RAO Orbital Parameters (Example 1)

Scenario er Ωr (deg) ir (deg) ωr (deg)

1 0.0943 0 5.75 0

2 0.0886 0 5.75 0

Figure 6 shows the GEO and RAO orbits as projected on the GEO reference

plane for the two RAO scenarios selected. Figure 7 shows the GEO and the RAO

orbits as appearing in the rotating GEO reference frame (top view) while Figure 8

shows the same orbits as given in Figure 7 in a fixed 3D view.



14

Fig. 6. GEO and RAO Orbits in the Inertial Frame (Example 1)

Fig. 7. GEO and RAO Orbits in the Rotating GEO Frame: Top View (Example 1)
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Fig. 8. GEO and RAO Orbits in the Rotating GEO Frame: Fixed 3D View (Example

1)

Both of the RAO orbits have “petals” in which the observer covers a portion of

the GEO belt twice. The number of these is controlled by the [Nr, Nt] combination

chosen from Figure 4. The size of the petals can be increased or decreased by changing

the eccentricity and the inclination of the RAO orbit. It is also of interest to note

that the RAO orbit with a semi-major axis greater than that of the GEO belt spends

more time outside the belt than inside, and the opposite occurs for the RAO orbit

with a semi-major axis smaller than that of the GEO belt.

E. Minimum Distance

Knowing the minimum distance, Dmin, from the RAO spacecraft to the target orbit

is a useful tool. To find Dmin, the RAO trajectory must be evaluated in the fixed,

not rotating, target frame. Therefore we have to rewrite Equation (2.23) as

Ci2t = R3(ωt)R1(it)R3(Ωt) (2.26)
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Then using Equations (2.22), (2.26), (2.24), and (2.25), we can get the RAO trajectory

in the fixed target orbit reference frame. From this, the projection of the RAO values

onto the target orbit plane gives the vector {x(t)
r , y

(t)
r , 0 }T. The distance between the

projection and the target orbit is simply the radial distance to the projection minus

the radius of the target orbit. This new segment combined with Rr and Dmin form a

right triangle with Dmin as the hypotenuse. Therefore, Dmin can be found using the

Pythagorean theorem. The diagram can be seen in Figure 9.

Dmin =

√√√√(√(x(t)
r

)2

+
(
y

(t)
r

)2

− at

)2

+
(
z

(t)
r

)2

(2.27)

Fig. 9. Diagram of Minimum Distance from Spacecraft to Circular Target Orbit
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Figure 10 provides the minimum distance between the RAO and GEO orbits in

one RAO orbital period. As can be seen, the RAO orbit is always within the dmax

boundary while using the maximum eccentricity and an inclination greater than zero.

Fig. 10. Minimum Distance between RAO and GEO Orbits for One RAO Orbital

Period (Example 1)
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CHAPTER III

ELLIPTICAL TARGET ORBITS

Finding RAO orbits for elliptical target orbits is slightly different than circular target

orbits since the eccentricity of the target orbit is no longer a constant.

A. Acceptable and Compatible Orbits

The process for finding acceptable and compatible orbits is the same as described in

Chapter II. The target orbit parameters in this example are shown in Table IV and

a graph of its compatible orbits in Figure 11.

Table IV. Elliptical Target Orbit Parameters (Example 2)

Tt (hr) at (km) et Ωt (deg) it (deg) ωt (deg) dmax (km) Ndmax (day)

22.12 40,000 0.5 0.0 0.0 0.0 5,000 30

Fig. 11. Compatible Orbits for Elliptical Target Orbit (Example 2)
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B. Eccentricity and Inclination Bounds

It is here that the process differs from Chapter II. Since the apogee and perigee are

the extrema of the target orbit, the RAO orbit should be no farther than dmax from

these points. Using Equation (2.9) and solving it for the minimum and maximum

eccentricities yields

for ar < at : e2 =
Ra − dmax

ar

− 1 ≤ er ≤ 1− Rp − dmax

ar

= e4

for ar > at : e3 = 1− Rp + dmax

ar

≤ er ≤
Ra + dmax

ar

− 1 = e1

(3.1)

The eccentricity bounding values, e1 through e4, as provided by Equation (3.1)

are plotted in Figure 12 for a large range of semi-major axes.

Fig. 12. RAO Eccentricity Bounds for dmax as a Function of the Semi-major Axis

(Example 2)
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The results of zooming in on Figure 12 and plotting the semi-major axes from

Figure 11, which are the vertical black lines, can be seen in Figure 13. The effects of

dmax and Nt max are also apparent in Figure 13. Increasing dmax causes the different

e lines to move away from the center and thus increases the area between them.

Decreasing dmax causes the e lines to constrict, decreasing the area between them.

Increasing Nt max will produce two effects. The first will obviously increase the number

of possible semi-major axes. The second is that some of these new semi-major axes

will have periods closer to that of the target orbit therefore allowing more semi-major

axes closer to that of the target orbit which are seen as more lines closer to the target

semi-major axis. Decreasing Nt max will have the opposite result for both influences.

Fig. 13. RAO Eccentricity Bounds for dmax with the Compatible Semi-major Axes

(Example 2)
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The next step is to determine the best eccentricity for each of the RAO semi-

major axes. Figure 14 is a contour plot in which the x and y axes are the same as

in Figure 13, but the z axis is the percentage of time that a spacecraft in the asso-

ciated RAO orbit is within the dmax boundary of the target orbit for which it = ir.

Nearly all of the area defined by the four intersections of the eccentricities has a 100%

rating. The eccentricities e1, e3, and their intersection along with e2, e4, and their

intersection bound the two regions where the RAO spacecraft is never within range

of the target orbit. The 100% region will become more tightly bounded as the target

orbit’s eccentricity decreases until it is zero at which point it is completely bounded

by e1 and e2. The opposite happens when the eccentricity of the target orbit increases

allowing more results with a percentage rating of less than 100% into the area defined

by the four intersections of the eccentricities. These effects can be seen in Appendix A.

Fig. 14. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit (Example 2)
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Regardless, this still leaves a large range of eccentricity values for some of the

RAO semi-major axes. Even though the target and RAO orbits are both eccentric,

the RAO eccentricity must vary enough from the target orbit’s eccentricity to have the

“rock-around” motion just like in the Circular Target Orbits section. Using Equation

(2.9) and solving it for the eccentricities needed for “rock-around” motion provides

e5 =
Ra

ar

− 1 and e6 = 1− Rp

ar

(3.2)

Fig. 15. All RAO Eccentricity Bounds and Valid Solutions (Example 2)

Using the data in Figure 13 and including Equation (3.2), Figure 15 shows several

interesting and important features. For a RAO orbit with an elliptical target orbit

one of two conditions must apply to ensure “rock-around” motion: the RAO apogee

must be greater than the target apogee and the RAO perigee smaller than the target

perigee, or the RAO apogee must be smaller than the target apogee and the RAO
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perigee greater than the target perigee. For ar < at, this can be seen above e5 and

below e6; and for ar > at, this applies above e6 and below e5. Of the 100% region from

Figure 14, only the shaded areas in Figure 15 exhibit “rock-around” motion. This

removes many of the possible semi-major axes and reduces the eccentricity range of

those that remain.

Using Figures 14 and 15 and combining Equations (3.1) and (3.2), the final

piecewise eccentricity bounds for an elliptical target orbit can be constructed.

for ar < at :
Ra − dmax

ar

− 1 ≤ er ≤ 1− Rp

ar

and
Ra

ar

− 1 ≤ er ≤ 1− Rp − dmax

ar

for ar > at : 1− Rp + dmax

ar

≤ er ≤
Ra

ar

− 1

and 1− Rp

ar

≤ er ≤
Ra + dmax

ar

− 1

(3.3)

The inclination bounds differ from RAO orbits with circular target orbits because

the target orbit does not have a fixed radius. Looking at Figure 16, it can be seen that

there are two possible ∆i values, one associated with the apogee and one associated

with the perigee of the target orbit.

Fig. 16. Inclination Bounds Geometry for an Elliptical Reference Orbit
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Since Ra > Rp, it follows that ∆ia < ∆ip. Now we have to choose whether

∆ia or ∆ip will become ∆i. Using ∆ia ensures that the spacecraft in the RAO orbit

will be within the dmax boundary over the whole target orbit including the perigee

whereas using ∆ip would allow the spacecraft to travel out of the dmax boundary over

the target orbit’s apogee; hence ∆i = ∆ia. Substituting Ra of the target orbit into

at of Equation (2.19) provides the inclination bounds.

imin = it −∆i ≤ ir ≤ it + ∆i = imax (3.4)

where

for ar < at : ∆i = cos−1

(
d 2

max − a2
r (1− er)

2 − a2
t

−2ar (1− er) at (1 + et)

)

for ar > at : ∆i = cos−1

(
d 2

max − a2
r (1 + er)

2 − a2
t

−2ar (1 + er) at (1 + et)

) (3.5)

C. Example

In this example, we will look at an elliptical target orbit and a RAO orbit whose

parameters can be found in Tables V, VI, and VII. Looking at Figure 17, the target

and RAO orbit can be seen in the inertial and rotating frame. The target orbit belt

does not remain fixed like a circular target orbit in the rotating frame since ϕ 6= M

all the time for an elliptical orbit. This can make it difficult to understand the RAO

spacecraft motion in the target orbit reference frame. One alternative way to think

about it is when the RAO satellite is at its apogee, it is surveying all the spacecraft

in the target orbit that are at or near apogee and similarly so for perigee. Another

way to think about it is to realize that since Nr = 14, the RAO spacecraft will cover

1/14 of the target orbit in one RAO period.
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Table V. Elliptical Target Orbit Parameters (Example 3)

Tt (hr) at (km) et Ωt (deg) it (deg) ωt (deg) dmax (km) Ndmax (day)

22.12 40,000 0.1 0.0 0.0 0.0 5,000 30

Table VI. Derived RAO Orbital Parameters (Example 3)

Tr (hr) ar (km) er min er max er min er max

20.54 38,072 0.0244 0.0544 0.1557 0.1857

Table VII. Selected RAO Orbital Parameters (Example 3)

er Ωr (deg) ir (deg) ωr (deg)

0.1857 0 4.75 0

Fig. 17. TGT and RAO Orbits in the Inertial Frame and Rotating Ṁt Frame (Example

3)
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D. Minimum Distance

Like the calculation of minimum distance in Chapter II, the RAO orbit’s position

needs to be found in the target orbit’s reference frame. However, the RAO orbit’s

inertial shape should still be maintained. Therefore, Equation (2.20) becomes

Ci2o = R3(ω)R1(i)R3(Ω) (3.6)

leaving out the true anomaly and preserving the orbit’s true elliptical form. The other

transformation matrices can be derived from this new base equation.

The process also differs here, since the target orbit is now elliptical requiring a

new approach to solve Dmin. From here on, no orbital mechanics are used; so the

orbits will be defined as ellipses in their geometric and parametric forms. The rest of

this problem will assume the target orbit reference frame has the target orbit centered

at the origin, not the focus. This translation can be seen in Figure 18. Therefore, the

trajectory of the RAO orbit in the translated target orbit reference frame is now

R(t)
r = Ci2tR

(i)
r + { at et, 0, 0 }T (3.7)

Fig. 18. TGT and RAO Ellipses before and after ea Translation
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At this point, we will now find the distance from a point to the ellipse in 2D [9].

Let any point on the RAO orbit’s projection (x
(t)
r , y

(t)
r ) as defined in Equation (3.7)

now be called (u, v), and then the target orbit be defined as

(x
a

)2

+
(y
b

)2

= 1 (3.8)

where a = at and b = bt are the semi-major and semi-minor axes of the target orbit,

respectively. The minimum distance from (u, v) to the ellipse must be such that

(u− x, v − y) lie on the normal of the ellipse at the closest point. The normal of the

ellipse is

∇
((x

a

)2

+
(y
b

)2

− 1

)
=

(
2x

a2 ,

2y

b2

)
(3.9)

Therefore

(u− x, v − y) = t

(
x

a2 ,

y

b2

)
(3.10)

for some t. Solving for x and y in Equation (3.10) yields

x =
a2u

t+ a2
and y =

b2v

t+ b2
(3.11)

For any (u, v), the closest point (x, y) will lie in the same quadrant since both points

lie on the same line normal to the ellipse meaning u and x must have the same sign

as well as v and y. Therefore the constraints on t are t > −a2 and t > −b2. Since

a > b, the only constraint is t > −b2. Substituting Equation (3.11) into Equation

(3.8) yields.

F (t) =

(
au

t+ a2

)2

+

(
bv

t+ b2

)2

− 1 = 0 (3.12)

Since F (t) is a quartic polynomial, there are four values for t. To determine

which value is the correct one, we will look at the graphs of F (t) to help. There are

three possibilities for the graph of F (t) which depend on where (u, v) is located with
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respect to the evolute of the ellipse which can be defined parametrically as

x =
a2 − b2

a
cos3 t and y =

b2 − a2

b
sin3 t (3.13)

The three possibilities can be seen in Figure 19 and their corresponding graphs of

F (t) in Figure 20 where (u, v) lies inside, on, and oustide the evolute, respectively.

Fig. 19. Ellipse and Evolute with (u, v) inside, on, and outside the Evolute

Fig. 20. F (t) for (u, v) inside, on, and outside the Evolute

Of the four roots, the largest real root is always the only one greater than −b2 as

can be seen in Figure 20. Substituting this value of t back into Equation (3.11), we

can find the closest point on the ellipse to (u, v). Using the known values and Figure

21, a triangle can be constructed and Dmin found using the Pythagorean theorem

Dmin =

√
(u− x)2 + (v − y)2 + z

(t)
r

2
(3.14)
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where (u, v) = (x
(t)
r , y

(t)
r ) and (x, y) are defined in Equation (3.11) where t is the

largest real root of Equation (3.12).

Fig. 21. Diagram of Minimum Distance from Spacecraft to Elliptical Target Orbit

Figure 22 provides the minimum distance between the RAO and target orbits in

one RAO orbital period. The orbital parameters can be found in Tables V, VI, and

VII. As it can be seen, the distance between the two orbits reaches but never exceeds

dmax even with the maximum eccentricity and an inclination.

Fig. 22. Minimum Distance between RAO and TGT Orbits for One RAO Orbital

Period (Example 3)
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CHAPTER IV

J2 PERTURBATIONS

The Rock-Around Orbit theory so far presented is based on the Keplerian two-body

problem. Unfortunately, perturbations do exist and can destroy the RAO relative

trajectory if the effects of the perturbations are different on the RAO orbit than on

the target orbit. As a first simplified model (linear J2), let us consider two distinct

effects: the nodal precession rate (Ω̇) and the argument of perigee rate (ω̇) differences.

When these variations cannot be set to zero, control is needed for orbit maintenance.

This section summarizes the linear effect of J2 on Ω and ω that will be used for the

next section on orbit maintenance.

The main effects of the linear J2 perturbations are the variation of the right

ascension of ascending node

dΩ

dt
= −3

2
J2

(
Re

p

)2

n cos i (4.1)

and the variation of the argument of perigee

dω

dt
=

3

4
J2

(
Re

p

)2

n
(
5 cos2 i− 1

)
(4.2)

where

n =
dM

dt
= n0

[
1 +

3

4
J2

(
Re

p

)2 (
2− 3 sin2 i

)√
1− e2

]
(4.3)

is the perturbed mean motion, n0 the unperturbed mean motion, Re the Earth’s

radius, and p the semi-latus rectum.

Using these equations, we can find the correct semi-major axis, eccentricity, and

inclination combination that will allow Ω̇r and ω̇r to equal or be near those values of

the target orbit thus preserving the shape of the relative orbit and reducing station-
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keeping fuel requirements.

A. Right Ascension of Ascending Node (Ω) Maintenance

We want to have a RAO orbit with a Ω precession as close to that of the target orbit

to minimize the ∆v needed to keep the orbits aligned. The first step is determining

the rate difference, Ω̇d, between the two precession rates.

Ω̇d = Ω̇t − Ω̇r (4.4)

Using the constant time variation, a time length ∆t needs to be determined for which

the angular precession can be determined.

∆Ωd = Ω̇d ∆t (4.5)

The first part of the Ω orbit correction is performed at one of the antinodes of

the perturbed orbit where ω+ϕ = 90◦ or 270◦. The antinode with a smaller velocity

should be used to minimize the ∆v. Therefore, we need to find the velocity at the

antinode. This can be done using the radius at that point

r =
p

1 + e cosϕ
(4.6)

and the vis viva (or energy) equation

v =

√
µ

(
2

r
− 1

a

)
(4.7)

Looking at Equation (4.1), it can be seen that Ω̇d will be negative for −90◦ < ir < 90◦

and positive for 90◦ < ir < 270◦. In Figure 23, we show a spherical triangle for the

two different cases. Using the spherical law of sines and cosines, we can find ∆ϑ which
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happens to be the same for both cases.

∆ϑ = tan−1 (sin i tan ∆Ω) (4.8)

With ∆ϑ and v computed, the first impulse for the correction is

∆v1 = 2 vanti sin

(
∆ϑ

2

)
(4.9)

Fig. 23. Spherical Triangle Geometry

This impulse brings the ascending node back to its original position but has

changed the orbit’s inclination. Using ~r and ~vnew at the antinode, we can compute

the orbital elements of the new orbit including the new inclination, inew. Then, v can

be found at the ascending and descending node, ω + ϕ = 0◦ and 180◦, respectively,

using Equations (4.6) and (4.7). The correction should be performed at whichever

has node has the smaller v. With these values, ∆v2 can now be determined.

∆v2 = 2 vnode sin

(
|i− inew|

2

)
(4.10)

Lastly the total cost, ∆vΩ, is simply

∆vΩ = ∆v1 + ∆v2 (4.11)

This process for finding the ∆v of Ω̇d assumes that the spacecraft in the target

orbit are not performing corrections to maintain their original orbit. If spacecraft in
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the target orbit are correcting their orbit, then ∆v should be found for just Ω̇r. This

will give the ∆v needed to maintain the RAO orbit.

B. Argument of Perigee (ω) Maintenance

Just like the previous section, the difference between the rate of precession of ω for

the target orbit and RAO orbit must be found.

ω̇d = ω̇t − ω̇r (4.12)

And similarly, a time length ∆t needs to be determined for which the angular pre-

cession can be determined.

∆ωd = ω̇d ∆t (4.13)

From Lagrange’s planetary equations, the rate of change of the argument of perigee

is

dω

dt
= −
√

1− e2 cosϕ

nae
ar +

p sinϕ

eh

(
2 + e cosϕ

1 + e cosϕ

)
at −

r cot i sin (ω + ϕ)

na2
√

1− e2
an (4.14)

where (ar, at, an) are the perturbing accelerations acting on the satellite in the radial,

tangential, and normal to the orbit plane directions, respectively. The argument

of perigee can be corrected by either applying a tangential thrust at the semi-latus

rectum (ϕ = 90◦ or 270◦) or a radial thrust at the perigee or apogee (ϕ = 0◦ or 180◦).

The tangential thrust uses half as much fuel as the radial method but changes the

orbit semi-major axis and eccentricity, which must then be corrected. Thrust applied

in the normal direction does not significantly contribute to the ω correction.
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Using the acceleration in the tangential direction and evaluating it at the semi-

latus rectum, we can get the equation

dω

dt
=
p sinϕ

eh

(
2 + e cosϕ

1 + e cosϕ

)
at →

dω

dt

∣∣∣∣
90◦

=
2p

eh
at → dω =

2p

eh
atdt =

2p

eh
dv (4.15)

which can then be discretized and solved for ∆v.

∆ωd =

(
2p

eh

)
∆v =

(
2

e

√
p

µ

)
∆v → ∆v =

(
e

2

√
µ

p

)
∆ωd (4.16)

The same method can be used in the radial direction and evaluated at the apogee

which gives

dω

dt
= −
√

1− e2

nae
cosϕar →

dω

dt

∣∣∣∣
180◦

=

√
1− e2

nae
ar → dω =

√
1− e2

nae
dv (4.17)

which can then be discretized and solved for ∆v.

∆ωd =

√
1− e2

nae
∆v =

1

e

√
a(1− e2)

µ
∆v =

(
1

e

√
p

µ

)
∆v → ∆v =

(
e

√
µ

p

)
∆ωd

(4.18)

Therefore, the ∆v for ω maintenance is

for tangential : ∆vω =

(
e

2

√
µ

p

)
∆ωd

for radial : ∆vω =

(
e

√
µ

p

)
∆ωd

(4.19)

This process for finding the ∆v of ω̇d also assumes that the spacecraft in the target

orbit are not performing corrections to maintain their original orbit. If spacecraft in

the target orbit are correcting their orbit, then ∆v should be found for just ω̇r.

There also exist two inclinations for which ω̇ = 0. Using the latter part of

Equation (4.2) and setting it equal to zero yields the critical inclinations. Since the

cosine is squared, the negative sign from cos(π ± i) is nulled
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5 cos2 icr − 1 = 0 → icr = cos−1

(
1√
5

)
and icr = π − cos−1

(
1√
5

)
(4.20)

icr = 63.43◦ and 116.57◦ (4.21)

C. Maintenance-Free RAO Orbits

It is also possible to create a RAO orbit such that Ω̇r = Ω̇t and ω̇r = ω̇t. Using

Equations (4.1) and (4.2) and setting them equal to zero provides

F1(a, e, i) = 0 = −3

2
J2

(
Re

pr

)2

nr cos ir − Ω̇t

F2(a, e, i) = 0 =
3

4
J2

(
Re

pr

)2

nr (5 cos2 ir − 1)− ω̇t

(4.22)

Using these two equations together in a minimization routine will yield the (a, e, i)

combinations needed for this type of orbit. However the correct combination may lie

outside the bounds of one or more of the variables thus prohibiting the use of this

orbit.

D. Example

Using the values provided in Table VII, the angular rate differences of the RAO orbit

and the ∆v needed to maintain them for two different time periods are found in

Table VIII. Figures 24, 25, and 26 show the different ∆vΩ, ∆vω, and ∆vtot values,

respectively, for all the possible RAO eccentricity and inclination possibilities from

Tables VI with respect to the target orbit defined in Table V.
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Table VIII. Angular Rate Differences and ∆v (Example 3)

Tr (20.54 hrs) Trep (11.98 days)

Ω̇d (deg/day) 0.00403 0.00403

∆Ωd (deg) 0.00345 0.0483

∆vΩ (m/s) 0.0176 0.246

ω̇d (deg/day) -0.00783 -0.00783

∆ωd (deg) -0.00670 -0.0983

∆vω (m/s) 0.0715 1.00

∆vtot (m/s) 0.0891 1.25

Fig. 24. ∆vΩ (m/s) for Different Eccentricities and Inclinations for Trep = 11.98 Days

(Example 3)
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Fig. 25. ∆vω (m/s) for Different Eccentricities and Inclinations for Trep = 11.98 Days

(Example 3)

Fig. 26. ∆vtot (m/s) for Different Eccentricities and Inclinations for Trep = 11.98 Days

(Example 3)
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

The theory of Rock-Around Orbits is a useful tool for space surveillance. Its generality

allows it to be applied to any target orbit regardless of its shape or orientation, and

its unique orbit parameters allow it to observe an entire orbit from many different

angles in a prescribed time frame. Since the RAO orbit is found with respect to

the target orbit, it covers the entire target orbit passively which minimizes the ∆v.

Another benefit comes from using multiple spacecraft in a Flower Constellation where

the spacecraft can be spaced out evenly over the RAO orbit to decrease revisit times

or placed behind each other to view parts of the target orbit for longer periods of

time.

There are still a few parts of the theory that need further investigation. Depend-

ing on the mission, it may be beneficial to examine the percentage of time the RAO

spacecraft spends inside and outside or above and below the target orbit. Another

topic of investigation is the effect of the right ascension of ascending node and the

argument of perigee. For all of the analyses, Ωr, ωr were equal to Ωt, ωt. If we were to

take some of the semi-major axes and eccentricity combinations that do not produce

rock-around motion and intoduce a small difference in Ωr, ωr, or both, rock-around

motion can be achieved. It is also necessary to further ivestigate the effect ωr has on ir

and come up with a valid equation: ir = f(er, ωr). Lastly, more perturbations can be

introduced such as the gravitational effects due to the Sun and Moon or atmospheric

drag for Low Earth Orbits to find more accurate ∆v values.
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APPENDIX A

CONTOUR MAPS FOR DIFFERENT TARGET ECCENTRICITIES

The following figures are of the same type of plot as Figure 14 except that the

eccentricity of the target orbit from Table IV varies from 0 to 0.9. Therefore, Figure

27 is for a circular target orbit with a semi-major axis of 40,000 km and Figure 32

is the same as Figure 14 because the target orbit’s eccentricity is 0.5. From these

figures, it can be seen how the the target orbit’s eccentricity affects the percentage of

time a spacecraft in a RAO Orbit is within dmax of the target orbit.

Fig. 27. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0 (Example 2)
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Fig. 28. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.1( Example 2)

Fig. 29. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.2 (Example 2)
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Fig. 30. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.3 (Example 2)

Fig. 31. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.4 (Example 2)
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Fig. 32. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.5 (Example 2)

Fig. 33. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.6 (Example 2)



45

Fig. 34. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.7 (Example 2)

Fig. 35. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.8 (Example 2)
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Fig. 36. Percentage of Time a Spacecraft in a RAO Orbit is within dmax of the Target

Orbit for et = 0.9 (Example 2)
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APPENDIX B

ORBIT TRAJECTORIES FOR DIFFERENT ECCENTRICITIES

The following figures are the trajectories of the TGT and RAO orbits in the

inertial and rotating target orbit frames. The target orbit’s parameters are defined

in Table V and the RAO orbit’s parameters in Table VI where the eccentricties for

the four figures are eccentricity bounds from Table VI. These figures help visualize

how much the eccentricity affects the shape of the RAO orbit in the rotating frame.

Fig. 37. TGT and RAO Orbits in the Inertial Frame and Rotating Ṁt Frame for

er = 0.0244 (Example 3)
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Fig. 38. TGT and RAO Orbits in the Inertial Frame and Rotating Ṁt Frame for

er = 0.0544 (Example 3)

Fig. 39. TGT and RAO Orbits in the Inertial Frame and Rotating Ṁt Frame for

er = 0.1577 (Example 3)
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Fig. 40. TGT and RAO Orbits in the Inertial Frame and Rotating Ṁt Frame for

er = 0.1857 (Example 3)
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APPENDIX C

∆v DUE TO J2 PERTURBATIONS

The following figures are similar to Figures 24, 25, and 26 except that Ω̇t, ω̇t = 0

meaning the target orbit is not drifting and therefore ∆vΩ, ∆vω, and ∆vtot are the

normal station-keeping requirements for the different orbits.

Fig. 41. ∆vΩ (km/s) for Different Eccentricities and Inclinations with Ω̇t = 0 for

Trep = 11.98 Days (Example 3)
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Fig. 42. ∆vω (km/s) for Different Eccentricities and Inclinations with ω̇t = 0 for

Trep = 11.98 Days (Example 3)

Fig. 43. ∆vtot (km/s) for Different Eccentricities and Inclinations with Ω̇t, ω̇t = 0 for

Trep = 11.98 Days (Example 3)
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