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ABSTRACT 

 

Antimicrobial Activity of Cationic Antiseptics in Layer-by-Layer Thin Film Assemblies. 

(May 2009) 

Charlene Myriah Dvoracek, B.S., Rose-Hulman Institute of Technology 

Chair of Advisory Committee: Dr. Jaime Grunlan 

 

 Layer-by-layer (LbL) assembly has proven to be a powerful technique for 

assembling thin films with a variety of properties including electrochromic, molecular 

sensing, oxygen barrier, and antimicrobial.  LbL involves the deposition of alternating 

cationic and anionic ingredients from solution, utilizing the electrostatic charges to 

develop multilayer films.  The present work incorporates cationic antimicrobial agents 

into the positively-charged layers of LbL assemblies.  When these thin films are exposed 

to a humid environment, the antimicrobial molecules readily diffuse out and prevent 

bacterial growth.  The influence of exposure time, testing temperature, secondary 

ingredients and number of bilayers on antimicrobial efficacy is evaluated here.  

Additionally, film growth and microstructure are analyzed to better understand the 

behavior of these films. 

 The antimicrobial used here is a positively-charged quaternary ammonium 

molecule (e.g. cetyltrimethylammonium bromide [CTAB]) that allow assemblies to be 

made with or without an additional polycation like polydiallyldimethylamine.  While 

films without this additional polymer are effective, they do not have the longevity or 
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uniformity of films prepared with its addition.  All of the recipes studied show linear 

growth as a function of the number of bilayers deposited and this growth is relatively 

thick (i.e. > 100 nm per bilayer).  In general, 10-bilayer films prepared with CTAB and 

poly(acrylic acid) are able to achieve a 2.3 mm zone of inhibition against S. aureus 

bacteria and 1.3 mm against E. coli when test are conducted at body temperature (i.e. 

37oC).  Fewer bilayers reduces efficacy, but lower test temperatures improve zones of 

inhibition.  As long as they are stored in a dry atmosphere, antimicrobial efficacy was 

found to persist even when films were used four weeks after being prepared.  The best 

films remain effective (i.e. antimicrobially active) for 4-6 days of constant exposure to 

bacteria-swabbed plates.  This technology holds promise for use in transparent wound 

bandages and temporary surface sterilization. 
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NOMENCLATURE 

 

LbL Layer-by-layer 

L-B Langmuir-Blodgett 

BL Bilayer 

CTAB Cetyltrimethylammonium bromide 

PDDA Polydiallyldimethylammonium chloride 

PAA Polyacrylic acid 

PSS Polystyrene sulfonate 

PEI Polyethyleneimine 

PET Polyethylene terephthalate 

PS Polystyrene 

QCM Quartz Crystal Microbalance 

AFM Atomic Force Microscope 

DDSA Dodecenylsuccinic anhydride  

BDMA Benzyldimethylamine 

TEM Transmission Electron Microscope 

KB Kirby Bauer 

ZOI Zone of inhibition 

FDA U.S. Food and Drug Administration 
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CHAPTER I 

INTRODUCTION 

 

Langmuir's discovery that surfaces could be made to adsorb monolayers of 

molecules initiated the field of thin film technology [1].  With the more recent advent of 

technologies geared toward thin film characterization and manipulation, Langmuir-

Blodgett (L-B) and related technologies have grown in popularity [2].  Despite their 

promise, L-B films have several problems for practical applications.  In addition to the 

high costs associated with this method, substrates used must be regular in shape and 

have smooth, homogeneous surfaces [3].  Moreover, these films have limited stability 

when subjected to solvents or thermal treatments, and defects in lower layers continue 

throughout the film (i.e. they cannot be easily covered/healed) [4].  It was for these 

reasons that many researchers attempted to improve upon this concept. 

Iler built upon the L-B concept by creating multilayer films with positively and 

negatively charged particles [5].  In the early nineties, Decher further developed this idea 

by creating the formal layer-by-layer (LbL) assembly process [6-8].  In this process, a 

substrate is alternately dipped into aqueous solutions containing charged ingredients as 

shown in Figure 1, building a film through electrostatic attractions.  LbL assembly is a 

self-healing process, as defects are erased with sequential buildup of layers [4], and films 

with a seemingly unlimited number of layers can be created [9]. Hydrogen-bonding and 

other types of van der Waals attractions can also act as the driving force to build LbL 

____________ 
This thesis follows the style of Biomaterials. 
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assemblies [10-12], but electrostatic-based deposition remains the predominant 

mechanism [5, 13-16].  Each positive and negative pair deposited is known as a bilayer 

(BL), which is typically 1-100 nm thick [13, 17].  Significant interpenetration between 

layers is often realized in this method, yielding a “fuzzy” microstructure [4, 18].  

Analysis of this interpenetration has shown that the thickness of the layer impacts the 

magnitude of interpenetration [19].   These films are highly tailorable by altering pH [15, 

20], ionic strength [14, 20], chemistry [21], and molecular weight [16, 22].  

Additionally, film properties can be tailored by adding small amounts of additives to the 

deposition solution.  These additives include clay [23-25], viruses [26], colloidal 

particles [27, 28], or antimicrobial agents [29, 30]. 

 

Figure 1.  Schematic of the LbL process that involves alternately dipping a substrate in aqueous 
solutions containing cationic and anionic ingredients, with rinsing and drying between each 
deposition.  The schematic of the resulting thin film, shown at the bottom, represents build up using 
a cationic surfactant and anionic polymer. 
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     The layer-by-layer technique has been used to make thin films for antireflection 

[31], battery electrolytes [32], and drug delivery [33, 34].  The inherent anionic charge 

of DNA makes it ideal for incorporation into these assemblies, which can yield selective 

immobilization suitable for biosensors [35].  The addition of small molecules or 

nanoparticles, added to either the cationic or anionic mixtures, can impart different 

characteristics or properties to the film [29].  Some examples of these uses can be seen in 

Figure 2.  Clay particles, for example, have been used to create artificial nacre [36] and 

films with gas barrier properties [24].  The addition of bioactive molecules into these 

films can make them reservoirs for drug delivery or bioreactors [37].  Adding 

antimicrobial agents to one of the charged solutions results in films capable of killing 

bacteria on their surface [29].  Incorporating these antimicrobial molecules into thin 

coatings is advantageous because greater transparency may allow for monitoring 

bacterial growth beneath the coating.  Additionally, the antimicrobial agents can be 

incorporated in their ionic form in these films.  Evidence suggests that antimicrobial 

action occurs primarily in this charged state [38, 39], eliminating the need for an 

activation step.  This could provide greater effectiveness at lower concentration than in 

other systems where antiseptics are incorporated as uncharged solids or salts [29].   

The addition of antiseptic agents could be useful in applications such as food 

packaging [40-43], wound dressing [44], household sanitation [45, 46], and medical 

devices [47, 48].  In fact, the most common reason for modern implants to fail is 

infection [49].  It is for this reason that significant research effort has focused on 

developing effective antimicrobial compounds.  Silver particles are known to kill a broad 
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Figure 2.  Layer-by-layer assembly with clay can be used to create artificial nacre [36], as seen in 
this image (a), or it can be used to encapsulate drugs (b) [34]. 
 
 
array of infectious bacteria, making them the most widely used antimicrobial agent [48, 

50-53].  Antimicrobial polymers have also gained attention in recent years, but they tend 

to have weaker antimicrobial efficacy than their monomer counterparts [49, 54, 55].  

Other widely used antiseptics include iodine [56], quaternary ammonium compounds 

[57, 58], and antibiotics [59, 60].  The body’s innate immune response system has 

evolved into one of the most powerful antimicrobial systems, leading to natural 

compounds that can also fight microbes.  Antimicrobial peptides, for example exhibit 

clustering of hydrophobic and cationic amino acid regions [61], as shown in Figure 3(a).  

This is very similar to the cationic surfactants used in this study.  

Cetyltrimethylammonium bromide (CTAB) has emerged as one of the most popular 

antimicrobial surfactants [29, 62, 63] and is the focus of this work.  

Antimicrobials have four primary mechanisms of action: hindrance of cell 

membrane, hindrance incerance of protein, hindrance of nucleic acid synthesis, and 

inhibition of cell membrane function [64].  While there is some evidence that all of these 

mechanisms contribute to the antimicrobial activity of the quaternary ammonium 

 
2 μm 

A B 
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compounds studied here, the overwhelming mode of action is inhibition of cell 

membrane function [65, 66].  Denyer and Hugo did studies using CTAB to target S. 

aureus, which confirmed the increase in membrane permeability that allowed seepage 

from the bacterial cell and cell death [67]. 

Studies of quaternary ammonium compounds as antimicrobial agents began in 

1915 with the work of Jacobs and coworkers on hexamethylenetetramine [68-75].  After 

that time, advances in this field yielded less toxic yet more potent antimicrobials.  In 

1935, another major advance took place when Domagk showed that long-chain 

quaternary ammonium salts had antimicrobial activity, further improving antimicrobial 

efficacy [76].  Some common quaternary ammonium compounds can be seen in Figure 

3.  When the structure of Figure 3(c) is paired  with an anion such as bromide or chloride 

anions, the result is cetyltrimethylammonium bromide (CTAB) or 

cetyltrimethylammonium chloride (CTAC), respectively, which were studied here. 

Recently, CTAB has been used in a variety of studies.  The behavior in aqueous 

solutions was analyzed, specifically looking at the CTAB-water interface [77].  

Antimicrobial properties of CTAB were used in wool fabrics [78] and cleaning products 

[79].  The unique properties of CTAB also enable it to be a directing molecule and thus 

assist in fabrication of nanoparticles including gold nanorods [80], silver nanorods and 

nanowires [81], and copper nanoparticles [82].  DNA-CTAB complexes, formed on the 

basis of charge opposition, have also been studied [83].   
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Figure 3.  Chemistry of quaternary ammonium compounds: hexamethylenetetramine (a), 
cetylpyridinium (b), and hexadecyltrimethylammonium (c).  Molecule (a) is an example of an 
antimicrobial peptide, and molecule (c) is the focus of the present work. 

 

In the present study, cationic antiseptics (primarily CTAB) were incorporated 

into the cationic layers of a thin film using LbL assembly, as shown in Figure 4.  CTAB 

has been shown to demonstrate greater antimicrobial efficacy in LbL films than silver 

[29], making it suitable for further investigation.  The following chapters investigate 

LbL thin films prepared with polydiallyldimethylammonium chloride (PDDA) as the 

polycation and polyacrylic acid (PAA) as the polyanion.  Antimicrobial agents are 

incorporated into the cationic layer, with or without PDDA.  In Chapter II, growth trends 

A 

B 
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of the various recipes for films were studied and optimized, and the microstructures of 

the films were investigated.  Both the surface structure and final film cross sections were 

examined.  In Chapter III, the effects of number of bilayers, antimicrobial concentration, 

incubation temperature, chemistry, and time delay after deposition were explored with 

respect to antimicrobial effectiveness.  The antimicrobial efficacy is especially sensitive 

to temperature and time.  Diffusion of CTAB through the thin films is also analyzed.  

Chapter IV discusses future work with antimicrobials in LbL and suggests other bio-

based applications that would benefit from the LbL technique. 

 

 

Figure 4.  Schematic of LbL thin film with an antimicrobial agent included in the cationic layer. 

 Antimicrobial agent 

Substrate 

1-100nm 

PDDA 
PAA 
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CHAPTER II 

FILM GROWTH AND MICROSTRUCTURE 

 

Introduction 

 Layer-by-layer deposition allows for strategic placement of additives such as 

antimicrobial agents into thin films and coatings.  When placed into a wet environment, 

these molecules can readily diffuse out of the assembly to produce antimicrobial 

behavior.  The first step to understanding how these systems behave is to understand 

how they are grown.  Film growth and microstructure of these antimicrobial assemblies 

is examined here.   

 

Experimental 

   Materials.  The anionic deposition solutions contained 0.2 wt% polyacrylic acid 

(PAA) or 0.2 wt% polystyrenesulfonate (PSS) (Aldrich, St. Louis, MO) with a molecular 

weight (Mw) of 100,000-200,000 g/mol in deionized water (18.2MΩ).   Cationic 

solutions contained 0.2 wt% poly(diallyldimethylammonium chloride) (PDDA) or 0.2 

wt% branched polyethyleneimine (PEI)  (Aldrich, St. Louis, MO) unless otherwise 

noted.  The antimicrobial agent, cetyltrimethylammonium bromide (CTAB) (Aldrich, St. 

Louis, MO), was added to the cationic solution at specified molarities.  Solutions with 

more than 5 mM CTAB were heated to 70°C to achieve complete solvation.  Substrates 

used in this study include 175μm poly(ethylene terephthalate) (PET) (trade name ST505 

by DuPont Teijin, Tekra Corp., New Berlin, WI), 125μm polystyrene (PD) (Goodfellow, 
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Oakdale, PA), and cleaved mica (potassium alumina silicates) disks (Structure Probe, 

Inc., West Chester, PA).   

Film Deposition.  In all cases, the substrate was negatively charged, either by 

using a substrate with an inherent negative charge or corona treatment of an uncharged 

polymer substrate, such as PET.  Prior to corona treatment, the PET and PS films were 

rinsed with methanol and deionized water and then dried with filtered air, while glass 

and mica substrates were rinsed with acetone instead of methanol.  The cleaned 

substrates were then dipped alternately in positive and negative solutions to build the 

film.  The initial dip in each solution was five minutes, with subsequent dip times of one 

minute each.  Between each layer, the films were rinsed with deionized water and blown 

dry with air.  Specimens were stored in a desiccator prior to testing. 

 Film Growth.  A Maxtek Research Quartz Crystal Microbalance (RQCM) from 

Infinicon (East Syracuse, NY), with a frequency range of 3.8-6 MHz, was used in 

conjunction with 5MHz quartz crystals. The crystal, in its holder, was dipped alternately 

in the positive (PDDA + antimicrobial) and negative (0.2 wt% PAA) solutions, with 

frequency shift measured every layer.  A Dektak 3 Stylus Profilometer (Neutronix-

Quintel, Morgan Hill, CA) was also used to directly measure thickness. Films evaluated 

using profilometry were deposited onto glass slides. This method gives an absolute 

measurement of thickness, but it is only accurate beyond a film thickness of 

approximately 1 μm. Additionally, the profilometry readings were taken upon the 

completion of each film, while the QCM measurements were taken throughout a film’s 

growth.   
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Film Characterization.  Film surfaces were imaged with a Nanosurf EasyScan 2 

Atomic Force Microscope (AFM) (Nanoscience Instruments, Inc., Phoenix, AZ) in 

dynamic mode with an ACL-A cantilever tip.  Sample preparation for the AFM involved 

deposition onto cleaved mica.  The AFM was used to characterize film roughness and 

uniformity.  Cross sections of the assemblies were imaged with a JEOL 1200 EX TEM 

(JEOL USA Inc., Peabody, MA) at an accelerating voltage of 100kV.  PS substrates 

were used instead of PET to facilitate sectioning. After deposition, the film and substrate 

were embedded in epoxy resin with a 1:1 anhydride:epoxide (A:E) ratio.  This epoxy 

was comprised of Areldite 502 and Quetal 651 as the epoxy resin, along with 

dodecenylsuccinic anhydride (DDSA) hardener and benzyldimethylamine (BDMA) 

accelerator.  Using ultramicrotomy, specimens were sectioned down to 70-110 nm 

thicknesses.  These sections were vapor stained on nickel grids using a RuO4 staining 

solution prepared by adding 1ml of 10w/v% sodium hypochlorite solution to 0.02 g of 

RuCl3 [84]. 

 

Results and Discussion 

Initially, film growth of three different systems of varying polyelectrolyte 

strength combinations were analyzed (Figure 5).  The polyelectrolytes used were 

polystyrene sulfonate (PSS) (strong, anionic), polyacrylic acid (PAA) (weak, anionic), 

polyethyleneimine (PEI) (weak, cationic), and polydiallyldimethlyammonium chloride 

(PDDA) (strong, cationic).  Both ellipsometry (Figure 5(a)) and QCM (Figure 5(b)) data 

revealed PDDA-PAA to have the most stable and greatest growth.   
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Figure 5.  A comparison of strong and weak polyelectrolyte systems here demonstrates PDDA-PAA 
is best for this research. This held true in both ellipsometry (a) and QCM (b).  
 

 With the PDDA-PAA system selected for analysis, the QCM was studied to 

determine which measurement method gave the most reasonable results.  The three 

techniques investigated were: removal of the crystal from the QCM during the LbL 

process, using an open faced QCM that allows dipping of the entire crystal and holder 

for the assembly process, and a closed cell with an inlet and outlet to enable flow of 

A 

B 
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cationic and anionic fluids through the crystal chamber (see Figure 6).  Additionally, 

QCM was performed by removing the crystal from the holder for dipping.  From these 

studies, the method in which the entire system was dipped was found to be best.  Figure 

7 summarizes the results using each technique.  The flow method data was more erratic 

than the other two methods and yielded a much heavier deposition.  Errors with this 

method were expected to be significant, as not all of the ingredients could be flushed out 

between steps.  Minor buildups of precipitates (e.g., complexation of PDDA and PAA) 

may have contributed to the heavy deposition observed.  It should be noted that the 

crystal removal method is the only one where the film is deposited on both sides of the 

crystal.  Therefore, masses recorded for this method are roughly double what is seen in 

the dip method.  Both the dip and the crystal removal methods yield accurate data, but  

problems can occur upon continuous extraction and replacement of the crystal.  For 

higher numbers of dips and overall consistency, the dip method was chosen for this 

work. 

 

Figure 6.  In addition to crystal removal, the flow (a) and dip (b) methods were analyzed to achieve 
the most accurate QCM data. 

A B 
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Figure 7.  Comparison of three techniques used to measure LbL deposition using a QCM.  The ‘dip 
method’ where the entire system undergoes the LbL process, gives the most reliable results. 

 

Figure 8(a) shows film growth monitored using QCM.  A control system 

(without the antimicrobial agent) is included to show the influence of CTAB on growth.  

With the addition of CTAB, growth proceeds at a much higher rate.  Additionally, 

weight variation between PDDA+CTAB/PAA and the CTAB/PAA systems in minimal, 

suggesting that CTAB deposits to a much greater extent than PDDA.  This is not 

surprising considering the CTAB is a much smaller molecule and likely has greater 

mobility in solution.  Film thickness was measured using profilometry at 7, 10, 15, and 

20 bilayers, as shown in Figure 8(b).  The growth trend here confirms the trend obtained 

using QCM.  Since the PDDA/PAA films exhibit much slower (thinner) growth, they 
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were too thin for measurement using profilometry at less than 20-BL and were not 

analyzed.  Again, film growth in the CTAB/PAA system was greater than 

PDDA+CTAB/PAA.  It has been shown that the addition of salts to LbL solutions yields 

much thicker films [85].  In this system the CTAB is a salt, increasing ionic strength and 

screening charges on the polymers.  Similarly, when the PDDA is removed from the 

cationic solution, the charge density decreases, and the resulting film is slightly thicker.  

In the absence of PDDA, rougher films with larger domain structure are generated.  It is 

also possible that CTAB molecules, consisting of a 16-carbon tail and cationic 

ammonium head group, deposit as something resembling a lipid bilayer found in cell 

walls (shown schematically in Figure1).  This would account for the ability of singly-

charged CTAB to generate the charge-inversion necessary to grow in the absence of a 

highly-charged cation like PDDA.  In films with only single ingredients in each layer, 

film composition in weight or mole percent can be determined.  For this analysis, CTAB 

molecular weight was calculated without bromide because this is removed in aqueous 

solution.  In the case of PAA, repeat unit molecular weight was used.  Calculations 

revealed CTAB/PAA films are 79.9 mol % ± 0.86 mol % PAA and 20.1 mol % ± 0.86 

mol % CTAB.   
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Figure 8. Film mass as a function of the number of layers deposited, as measured with QCM (a).  
Comparison of QCM to profilometry measurements to confirm the QCM growth trend (b). 
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The surfaces of the films were analyzed using an AFM, as shown in Figure 9.  

Comparison of CTAB+PDDA / PAA and CTAB / PAA films reveals a definite 

structural difference.  The system without the polymer in the cationic layer has a much 

rougher surface. The range of surface height is nearly halved with the inclusion of 

PDDA.  Also worth noting is that this variation in surface height seen in the CTAB/PAA 

system is on the order of the overall surface height seen previously using profilometry.  

This data suggests a higher amount of CTAB aggregation without PDDA, revealing 

better dispersion with the addition of the polymer to the cationic layer.  Attempts to use 

infrared microscopy were inconclusive, but this is to be expected because the IR spot 

size of 10-15 μm does not provide high enough resolution to distinguish the regions in 

these films. 

 

 

Figure 9. AFM height images of CTAB/PAA (a) and PDDA+CTAB/PAA (b) 10BL film surfaces. 
 

In order to better understand this deposition process, studies of dip time and 

antimicrobial concentration on the film structure were undertaken.  Figure 10 shows 
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these results by comparing 5mM CTAB cationic solutions with 10 mM CTAB solutions 

and 1 minute dip times with 30 minute dip times.  As dip time was increased, the surface 

height variation was decreased by almost an order of magnitude for both CTAB 

concentrations.  When concentration was increased, little difference was seen with 30 

minute dip times, but smoother films were produced with one minute dips.  The 

increased smoothness in the CTAB/PAA films over longer deposition times may reflect 

reorganization of CTAB.  

 
Figure 10. AFM height images of CTAB/PAA films prepared with 5mM CTAB 
solutions and 1 minute (a) and 30 minute deposition times (c), and 10mM CTAB 
solutions with 1 minute (b) and 30 minute (d) deposition times. 
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In Figure 11, 10-BL films deposited on polystyrene, with and without PDDA in 

the cationic layer, are compared using TEM.  A CTAB/PAA film is shown in Figure 

11(a) while a PDDS+CTAB/PAA film is shown in Figure 11(b).  The films in these 

micrographs have a mottled appearance, indicating that the layers of the film intertwine 

and diffuse among each other rather than laying down discretely.  These high levels of 

diffusion during film deposition suggest that CTAB will easily diffuse through the film 

during use, increasing antimicrobial efficacy.  Additionally, the film created with PDDA 

in the cationic layer shows better uniformity because the PDDA spatially separates 

CTAB during deposition.  While this does not seem to affect initial antimicrobial 

activity, this may increase film longevity because diffusion out of the film is less 

clustered. This affects film longevity, consequently affecting reliability, because 

diffusion out of the film is less sporadic.  It is these nano/microstructural characteristics 

that influence the antimicrobial behavior of these films, as described in the next section. 

In addition to understanding microstructure, TEM can confirm film thickness.  

Generally, films separate during sectioning because they are weakened during water 

floatation, but occasionally both sides of the section remain close, allowing measurement 

of film thickness.  Figure 12 shows an example of this.  An average of 10 measurements 

across the film indicated film thickness of 818.1 ± 49.9 nm.  While this number is 

smaller than film thicknesses shown during profilometry testing (see Figure 8(b)), high 

film roughnesses seen in AFM (Fig. 8) indicate that film thicknesses at some locations 

will be on this scale. 
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Figure 11.  TEM cross-sections of CTAB/PAA (a) and PDDA+CTAB/PAA (b) 10-BL films on 
polystyrene. 
 

 

Figure 12.  A CTAB/PAA 10-BL TEM micrograph reveals a full cross-section of the film.  This film 
again shows a splotchy appearance indicating interdiffusion at deposition and allows measurment of 
thickness. 
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Conclusion 

Films made with PDDA/PAA as the base polymeric system for antimicrobial 

assemblies exhibited the most reliable growth.  Films created without the polymeric 

cation (i.e. CTAB/PAA) demonstrate similar growth, but CTAB seems to cluster in these 

films, decreasing film uniformity.  Imaging of these films with TEM requires a staining 

procedure to visualize the antimicrobial component.  Future work will include 

microstructural and growth analyses of films with alternative antimicrobials. 
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CHAPTER III 

ANTIMICROBIAL EFFICACY 

Introduction 

 Once film growth and microstructure has been established, as in Chapter II, it is 

important to investigate the antimicrobial properties of the films.  Studying the 

antimicrobial efficacy reveals diffusion properties of the films because antimicrobial 

action takes place when the antimicrobial agents diffuse out of the films.  This chapter 

investigates the effects of various factors, including temperature, time, and chemistry on 

antimicrobial action.  Finally, the antimicrobial results are analyzed and compared with 

the microstructure results from Chapter II. 

 

Experimental 

   Materials.  All deposition materials and substrates are identical to those 

described in Chapter II.  For the antimicrobial testing, 175μm poly(ethylene 

terephthalate) (PET) (trade name ST505 by DuPont Teijin, Tekra Corp., New Berlin, 

WI) was used exclusively.  Bacterial growth media was from Difco LB Broth solidified 

with 1.5% bacteriological agar (United States Biologicals, Swampscott, MA).  An 

Escherichia coli (E. coli) K-12 lab strain MB458 (F-galK16 galE15 relA1 rpsL150 

spoT1 mcrB1) and Staphylococcus aureus (S. aureus), wild type strain, lab strain 

MB1594, were the bacteria used in testing. 

Film Preparation.  Films were deposited on PET sheets using the procedure 

described in Chapter II.  After film deposition, disks were cut out of the PET sheets 
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using punches from O’Brien Consolidated Industries, Inc (Lewiston, Maine).  Between 

film preparation and testing, specimens were stored in a desiccator in order to prevent 

CTAB leaching out of the film. 

Antimicrobial Effectiveness.  The effectiveness of the antimicrobial films were 

tested using a method analogous to the Kirby-Bauer test [86].  The zone of inhibition 

(ZOI) was evaluated around disks cut from PET (3/8” diameter  unless otherwise noted) 

coated on both sides with the antimicrobial film.  An LB petri plate was swabbed with 

solutions of E. coli or S. aureus immediately prior to disk placement and incubated for 

24 h at 37°C.  Figure 13 shows how ZOI was determined.  ZOI was recorded for each 

condition as the average of 8 radial measurements, from the rim of the disk to beginning 

of bacterial growth, with 2 disks per condition.  Reported error is the maximum and 

minimum ZOI observed.  Films were deposited on PET substrates, and accordingly bare 

PET samples were evaluated as controls.  In both the E. coli and S. aureus tests, the ZOI 

of the PET alone was zero, indicating that it is not inhibitory.  Antimicrobial properties 

of various films were tested under a variety of conditions that include film composition, 

number of bilayers, testing temperature, and age of a given film. 

 

Results and Discussion 

In the beginning stages of this work, it was important to determine the optimal 

concentration of CTAB in solution for the layer-by-layer process.  Six different solutions 

were made with CTAB concentrations ranging from 0.1 mM to a supersaturated solution 

of 100 mM.  Figure 14 shows ZOI of films made with these solutions, on both S. aureus  
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Figure 13.  The Kirby-Bauer test evaluates the antimicrobial efficacy of the LbL films.  Disks with 
LbL films are placed on a bacteria coated agar plate and incubated.  The resulting ring of no 
antibacterial growth (shown above) is the zone of inhibition, which is the measure of antimicrobial 
efficacy. 
 

and E. coli, and reveals a leveling in antimicrobial efficacy around 5 mM CTAB.  The 

amount of antimicrobial deposition in layer-by-layer films may become independent of 

initial concentration once some critical solution concentration is reached, which would 

explain this leveling.  If only a certain maximum amount of antimicrobial can be 

deposited into a monolayer of the film, eventually increased solution concentration will 

not lead to increased film concentration or increased film efficacy.  These results led to 

the use of 5 mM antimicrobial solution for all additional studies.  This concentration is 

large enough to reach maximum efficacy.  

Additional tests were performed with 5 mM CTAB using various sized 

antimicrobial disks.  Figure 15 shows that each disk size (within error) has the same 

antimicrobial efficacy regardless of size.  Antimicrobial agents are released from the 

edge of the disks, so the size of disk interior is largely irrelevant in this type of testing.  

Since ZOI is independent of disk size, 0.375” diameter was chosen for the remainder of 

testing. 

disk 

ZOI 

Bacterial 
growth 
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Figure 14.  Zone of inhibition as a function of CTAB concentration for 10-BL CTAB/PAA films.  
The observed leveling of ZOI prompted the use of 5mM antimicrobial films for all additional 
studies.   
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Figure 15.  Zone of inhibition as a function of PET disk size for 10-BL CTAB/PAA films.  From this 
point forward, all disks used are 0.375 inches. 
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Three different cationic quaternary ammonium compounds were examined here: 

cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC), 

and cetyltrimethylammonium hydrogen sulfate (CTAHS).  The structures of these 

molecules are shown in Figure 16.   These three different chemistries were evaluated 

using 10-BL films in the standard KB-like test.  Figure 17 summarizes the results of this 

testing.  CTAHS did not show any antimicrobial efficacy (i.e. it had a ZOI of zero), 

while both CTAC and CTAB had virtually identical ZOI’s within error.  These results 

can be explained by examining the pKa values of the acids associated with counterions.  

H2SO4 has a higher pKa value (-10) than HBr or HCl (-9 and -7, respectively).  More 

negative pKa values lower the likelihood that these counterions will separate because the 

bond is too strong to dissociate.  When the antimicrobial agent is unable to dissociate, 

the cationic component will not deposit into the film.     

 

A          B  

C  

Figure 16.  Chemical structures of the three different antimicrobial agents tested in this work: 
cetyltrimethylammonium bromide (CTAB) (a), cetyltrimethylammonium chloride (CTAC) (b), and 
cetyltrimethylammonium hydrogen sulfide (CTAHS) (c). 
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Figure 17.  Zone of inhibition for 10-BL films with varying antimicrobial agents tested against S. 
aureus.  No ZOI is observed for CTAHS because it does not build into the assembly. 
 
 
 

The antimicrobial effectiveness of both PDDA+CTAB/PAA and CTAB/PAA 

were evaluated with both 10 and 20 bilayers of deposition.  At 10-BL, films with PDDA 

exhibited a greater ZOI (i.e. greater antimicrobial efficacy) than without, and at 20-BL 

the results were similar, as shown in Figure 18.  As was discussed in Chapter II, the 

PDDA in the cationic layer creates improved dispersion of CTAB in solution.  With 

improved dispersion of CTAB molecules, the antimicrobial range is also increased.  

With higher numbers of bilayers, the overall stability evens out in solutions prepared 

without PDDA in the cationic layer, and therefore, these films show similar zones of 

inhibition.  At this testing temperature (37°C), the maximum ZOI observed is 

approximately 2.3 mm.  Increases in antimicrobial efficacy above this point are not 
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observed due to insufficient time for antimicrobial diffusion prior to antimicrobial 

growth.  Comparison with other data would indicate the 20-BL PDDA/CTAB-PAA film 

in S. aureus would have a larger ZOI, but it reaches this limit. 

 

Figure 18.  Zone of inhibition for 10 and 20-bilayer films with or without PDDA in the cationic 
layers.  Additional bilayers do not enhance PDDA+CTAB/PAA efficacy, but they do increase 
efficacy of CTAB/PAA films. 
 

It is important to see whether or not the antimicrobial agent diffuses out of 

merely the top bilayer or if CTAB in lower layers of the film diffuse out as well.  By 

testing various films with different numbers of bilayers, the ability of the bottom layers 

to contribute to the overall antimicrobial action was tested, as shown in Figure 19.  Equal 

amounts of CTAB were deposited in each of the 9.5 (9 bilayers plus one extra cationic 

antimicrobial layer) and 10 bilayer films, and the antimicrobial effects are similar.  To 
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further investigate the abilities of CTAB to diffuse through the film, a 10-BL film was 

constructed with no antimicrobial in the top five bilayers (5BL CTAB+PDDA/PAA 

followed by 5BL PDDA/PAA).  These results, shown in Figure 20, demonstrate that 

CTAB diffuses through many layers.  In fact, a comparison of the 5-BL film and the 

10BL film with CTAB only in the lower five bilayers shows equivalent results within 

error.  These results show that the PAA layer does not hinder CTAB diffusion; rather it 

may act as a protective layer, shielding the antimicrobial beneath from the external 

environment prior to use. 
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Figure 19.  Zone of inhibition as a function of number of PDDA+CTAB/PAA bilayers deposited.  
Error bars reflect maximum and minimum measured zones of inhibition. 
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Figure 20.  The ability of CTAB to diffuse through the system was evaluated by building a film with 
CTAB only in the lower 5-BL using a PDDA+CTAB/PAA film.  Results were comparable within 
error to a 5-BL film constructed with the same amount of antimicrobial.  Error bars reflect 
maximum and minimum zones of inhibition. 
 

At lower temperatures, bacteria grows more slowly, allowing CTAB more time 

to diffuse out into the plates during the period of bacteria proliferation.  In addition to 

body temperature (37°C), antimicrobial testing was performed at temperatures of 23°C 

and 18.2°C.  With decreasing temperature, a larger ZOI was observed with both E. coli 

and S. aureus, as shown in Figure 21, due to the longer time allowed for CTAB to 

diffuse.  These data suggest that the reason these films do not experience ZOI’s greater 

than 2.5 mm at body temperature is because the antimicrobial cannot travel further than 

this distance during the bacterial growth period.  Once bacteria have established 

themselves, there will be no subsequent loss of density.    
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Figure 21.  Zone of inhibition as a function of temperature for 10-BL PDDA+CTAB/PAA films.  
Larger ZOI at lower temperature is attributed to slower bacterial growth and longer time for 
CTAB diffusion. 
 

The duration of the film efficacy was examined by storing the films in a 

desiccator for varying lengths of time before testing, as shown in Figure 22.  These 

stored films showed decreased effectiveness initially, but the films maintained 

significant antimicrobial capacity over the course of four weeks.  It is possible that these 

films rearrange to some equilibrium state after deposition.  While antimicrobial activity 

may not be lost, some CTAB molecules may complex, decreasing their ability to diffuse 

out.  This would explain the initial decrease and eventual leveling of efficacy.  It seems 

that these films can be stored in dry environments for long periods of time without 

significant loss of antimicrobial efficacy.   
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Figure 22.  Zone of inhibition as a function of storage time for 10-BL PDDA+CTAB/PAA films.  
Prior to testing, films were stored in a dry environment.  
 

For antimicrobial films, it is important to know how long films will remain active 

once in use.  In this case, duration of efficacy was tested by performing KB-like tests 

over multiple days where antimicrobial efficacy was evaluated for one initial film by 

cutting out different disks from this film and evaluating these disks after a varying 

number of days prior to exposure to bacteria.  Films were exposed to the moist humid 

environment of an uninoculated agar plate in the incubator prior to testing.  To ensure 

continuity in the testing, each day, the antimicrobial disks were removed and placed onto 

newly swabbed plates.  New, clean disks were exposed to bacterial growth each day, but 

all disks were from the same initial large film, facilitating the study of effective use time.  
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These 10-BL films of PDDA+CTAB/PAA released CTAB strongly over two days.  

Results from this test (Figure 23) demonstrate a decreasing effectiveness, with loss of 

reliability after five days for samples with PDDA in the cationic layer and after four days 

for samples without.  Samples with only CTAB in the cationic layer (i.e. no PDDA) 

show some antimicrobial action at longer times.  Since PDDA acts as a dispersing agent, 

as seen in both TEM micrographs (Figure 11) and AFM imaging (Figure 9) in Chapter 

II, KB disks likely came from portions of the film with unequal concentrations of 

antimicrobial in the CTAB-PAA disks. 
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Figure 23.  Zone of inhibition as a function of days of exposure to KB plates for 10-BL films.  Both 
PDDA+CTAB/PAA and CTAB/PAA films were evaluated to determine how long antimicrobial 
release will be sustained when in use.   
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORK 

 
Conclusions 

The introduction of antimicrobial agents into LbL films produces antimicrobial 

properties.  Additionally, this work shows that the polycation is not necessary to build 

the antimicrobial films, but it does assist in film uniformity.  The lower uniformity of 

films without it yields slightly decreased film reliability and antimicrobial efficacy.  A 

discovery of this research was the realization that the CTAB antimicrobial molecules 

easily diffuse through the LbL films.  Using PDDA-PAA as a base for CTAB 

incorporation produced the highest thickness growth rate, suggesting looser polymer 

packing that facilitates molecular movement through the system.  Comparison of film 

activity at varying temperatures demonstrated higher bacteria killing abilities at lower 

temperatures where CTAB had longer time to diffuse out into the system before bacterial 

growth.  These results, in combination with longevity studies, show the best films are 

effective over a 4-6 day period of activity upon continuous exposure to healthy bacteria.  

This study lays the groundwork for future studies to improve antimicrobial efficacy and 

to use LbL assembly to produce films with other types of biological activity (e.g. drug 

delivery or enzyme stability).   

 

Future Work 

 Future antimicrobial work will include exploration of alternate biocidal agents 

for inclusion in the LbL films.  Bacteria develop resistance to drugs as they evolve, so it 
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is important to vary antimicrobials to compensate for this [87].  In order to expand this 

work for potential use in implantable devices, FDA approved antimicrobials must be 

explored.  The use of hydrophilic antimicrobials could additionally reduce protein 

adsorption in the body.  In the case of implants, these films must retain antimicrobial 

effectiveness for long periods of time, but the films in this research only stay active for 

4-6 days.  Future studies will examine methods for lengthening diffusion time, thereby 

lengthening time of film efficacy.  Figure 24 shows some possible methods to improve 

longevity.  Altering polymer chemistry in these LbL films could yield a denser film and 

thereby a slower diffusion.  For instance, the use of a fully charged polyelectrolyte (e.g. 

polystyrene sulfonate) could decrease the rate of antimicrobial diffusion by increasing 

the film density [88].  Another method for increasing longevity of film efficacy could 

involve depositing a higher number of layers.  Antimicrobial molecules in the lower 

layers should take longer to diffuse out, so an analysis of the number of bilayers on 

efficacy should be performed.  For example, a 60-BL film might last longer than the 

standard 10-BL film used in the work described here.   

Other future work focuses on diffusion behavior in LbL assemblies.  In the 

present work, antimicrobial activity was realized as antimicrobial agents diffused out of 

the film, but the ability of molecules to diffuse out of a film can be used in a variety of 

applications.  Advances in monitoring diffusion out of films could be further utilized in 

other applications, such as drug delivery.  Layer-by-layer films have been studied as a 

vehicle for drug delivery by encapsulation [89-91] including verification of enzyme 

stability post-encapsulation [90], but there is still work to be done regarding 
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Figure 24.  Methods to increase antimicrobial film longevity are presented.  Altering 
polymer chemistry can lead to denser films, which could slow diffusion out of films 
(a). Alternately, increasing the number of bilayers (b) increases the amount of 
antimicrobial in the films and could therefore improve efficacy over time. 
 

incorporation of enzymes and other drugs into the layers.  In order to fully utilize LbL as 

a vehicle for enzyme stabilization, enzyme stability must be proven.  This can be done 

by depositing an enzyme such as phosphatase into the films.  Upon exposure of the 

colorimetric substrate p-nitrophenol to these enzyme films, phosphatase acts as a catalyst 

that triggers a change in substrate color to yellow and confirms enzyme activity.  When 

coupled with an improved understanding of diffusion, confirmation of enzyme activity 

can lead to a wide variety of biological applications.  This could include conversion of 

water to hydrogen and oxygen as a potential bio-based fuel source [92]. 
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