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Abstract 
Thermal storage systems were originally designed to shift the 

on-peak cooling production to off-peak cooling production to reduce 
the on-peak demand.  Based on the current electricity charging 
structure, the reduction of both on-peak and off-peak demands is 
becoming an exceedingly important issue.  Reduction of both on-peak 
and off-peak demands can also extend the life span and defer or 
eliminate the replacement of power transformers due to potential 
shortage of building power capacity with anticipated equipment load 
increases.   The next day daily average electricity demand is a critical 
set point to operate chillers and associated pumps at the appropriate 
time.  For this paper, a mathematic analysis was conducted for annual 
daily average cooling of a building and three real-time building load 
forecasting models were developed.  They are first-order autogressive 
model, random walk model and linear regression model.  Finally, the 
comparison of results show the random walk model provides the best 
forecast.    

Introduction 
During past decades, many researchers have investigated the 

optimal control of the thermal storage systems to achieve the minimum 
operational cost and made significant progress (e.g., Tamblyn 1985, 
Braun 1990, Wei 2002, Massie and etc. 2004 and Liu and Henze 2007).   

Among all the researchers, real-time forecasting of building load is 
critical for the thermal storage system optimization.  Underestimation 
of the building load can cause unexpected chiller operation during on-
peak hours and overestimation of the building load can overcharge the 
tank and generate extra heat loss through the storage tank.  Henze 
[1997, 2004, 2005 and 2007] developed and tested a model-based 
predictive controller for optimal thermal storage systems control by 
adopting neural network theory into HVAC system control.  In his 
research, he developed next 24 hours weather forecast models and used 
calibrated TYNSYS to simulate building performance.  Inevitably, the 
internal heat gain, which has significant impacts on the building 
cooling load for commercial buildings, was considered as constant.  In 
addition, it is not possible to adopt this method in the existing building 
automation system (BAS) due the computational requirements.  Wei 

[2002] and Zhou [2005] developed practical optimization measures for 
thermal storage system control.  In their analysis, the building load was 
projected simply by regression with the outside air temperature 
separated by weekdays and weekends.  For the same outside air 
temperature, the highest building load was almost double of the lowest 
building load.  The regression model versus outside air temperature 
cannot precisely describe the building load.  In both studies, the 
occupancy schedule and building use changes were not taken into 
account.   

Seem and Braun [1991] compared different algorithms for forecasting 
the building electrical loads in commercial buildings.  An adaptive 
algorithm was proposed in their research.  By defining the building 
electrical demand as a non-stationary time series, because of the fact 
that the electricity demand is dependent upon the day of the week and 
the time of the day, a combined model of CMAC (calculated using 
exponentially weighted moving average model) and autoregressive 
model (AR) is recommended, in which CMAC simulates the 
deterministic part and AR simulates the stochastic part.  Linear 
interpolation based on minimum and maximum ambient temperature 
was used to incorporate the ambient temperature influence on the 
electrical demand.   The accuracy of the combined CMAC and AR (3) 
model is verified to be acceptable.  Because of the fact that the 
combined CMAC and AR (3) model doesn’t need to store all the 
previous data, the computational and memory requirements for this 
method is relatively low.  

The objective of the study in this paper is not to minimize the 
electricity demand during on-peak hours, but rather to reduce the 
electricity demand during both on-peak and off-peak hours and extend 
the lifetime or avoid the replacement of the existing transformer.  The 
study should aim 1) to provide accurate forecasting of next 24 hours 
average daily electricity demand or next 24 hours total electricity 
consumption instead of daily profile and 2) to have the algorithm 
simple enough to be embedded in the existing BAS.  By mathematic 
analysis, it was found that three models can be applicable for the 
forecasting.  They are first-order autogressive model, random walk 
model and linear regression model.  Finally, the comparison of results 
show the random walk model provides the best forecast.  In a  
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conclusion, through two steps of the model validation, even through all 
three models provide best fit for the historical data, the random walk 
model provides the best forecast by using new set of daily average data. 

Average Building Load Forecast Model  
Identifying the valid forecasting model is the most crucial in the 
application of predicting the next day’s daily average cooling load for 
flattening the electrical demand in thermal storage operation. In this 
section, an annual average daily cooling load in a real facility is used to 
identify, develop and validate a forecast model for daily average 
cooling load.  First of all, three different types of days must be defined 
for the analysis: unoccupied, occupied days when the previous day was 
occupied and occupied days when the previous day was unoccupied.  
This paper only presents the results of occupied days when the previous 
day was occupied. 

Data Analysis 
Actual measured annual cooling consumption data of a building located 
at Austin, Texas were collected for this model analysis.  Figure 1 
presents the daily average cooling consumption for the occupied days 
when the previous day was occupied.  The data profile shows statistical 
behavior changes in time, and thus indicates that the daily average 
cooling is a non-stationary time series.   

To prove the characteristics of the data, two concepts need to be 
introduced, autocorrelation function (ACF) and partial autocorrelation 
function (PACF) [Montgomery 2007].  To define ACF, autocovariance 
function at lag k needs to be defined first. 

𝛾𝛾𝑘𝑘 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑡𝑡 , 𝑦𝑦𝑡𝑡+𝑘𝑘) = 𝐸𝐸[(𝑦𝑦𝑡𝑡 − 𝜇𝜇)(𝑦𝑦𝑡𝑡+𝑘𝑘 − 𝜇𝜇)]     (1) 

The collection of γk  where k=0, 1, 2, … is called the autocovariance 
function 

The autocorrelation coefficient at lag k is 

𝜌𝜌𝑘𝑘 = 𝐸𝐸[(𝑦𝑦𝑡𝑡−𝜇𝜇 )(𝑦𝑦𝑡𝑡+𝑘𝑘−𝜇𝜇 )]
�𝐸𝐸[(𝑦𝑦𝑡𝑡−𝜇𝜇 )2𝐸𝐸(𝑦𝑦𝑡𝑡+𝑘𝑘−𝜇𝜇 )2]

= 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑦𝑦𝑡𝑡 ,𝑦𝑦𝑡𝑡+𝑘𝑘)
𝑉𝑉𝑉𝑉𝑉𝑉 (𝑦𝑦𝑡𝑡)

= γkγ0  (2) 

The collection of ρk  where k=0, 1, 2, … is called the ACF. 

The PACF is defined as the autocorrelation between yt  and yt−k  after 
adjusting for yt−1 ,  yt−2 , … , yt−k+1.   

 

 
Figure 1: Time series plot of daily 

average cooling for weekdays 
 

 
Figure 4: Time Series Plot of First 

Difference 
 

 
Figure 2: Sample ACF of daily average 

cooling for weekdays 
 

 
Figure 5: Sample ACF of the First 

Difference for weekdays 
 

 
Figure 3: PACF of daily average cooling 

for weekdays 

 
Figure 6: PACF of the First Difference for 

weekdays 
 

Figure 2 and figure 3 are the sample ACF and PACF values for the 
daily average data.  It can be seen in Figure 2 that sample ACF doesn’t 
die out quickly, which leads to the conclusion that the daily average 
cooling is a non-stationary time series.  In figure 3, the PACF chart, 
there is one significant sample PACF value, which suggests a first 
order autoregressive model (AR(1)) can fit the data [Montgomery 
2007].   
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As a non-stationary time series, the daily cooling average data need to 
be tested if its first difference, that is , 𝑤𝑤𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑡𝑡−1 = (1 − 𝐵𝐵)𝑦𝑦𝑡𝑡  , or 
higher order differences, 𝑤𝑤𝑡𝑡 = (1 − 𝐵𝐵)𝑑𝑑𝑦𝑦𝑡𝑡 , produces a stationary time 
series.  Figure 4 presents the time series plot of the first difference, 
which shows a very typical stationary behavior.  The sample ACF and 
PACF of the first difference are plotted in Figure 5 and Figure 6 
respectively.  The ACF values are randomly positive and negative with 
values near zero, which represents a stationary behavior.  By observing 
the ACF and PACF of the first difference, it is clear that the 
differencing the original data once eliminates the autocorrelation.  Thus, 
the result suggests that the daily average data is less dependent on 
previous days’ data.  A random walk model ARIMA(0,1,0) can 
properly fit the data [Montgomery 2007] as well.  ARIMA (p,d,q) is an 
autoregressive integrated moving average model with orders p, d and q. 
P represents Pth order of autoregressive, d represents dth difference, 
and q represents qth order of moving average.   

Model Identification 
Through previous data analysis, it is possible to use AR (1) and 
ARIMA (0,1,0) model to forecast the daily average cooling.  The AR (1) 
model is given in equation (3). 

𝑦𝑦�𝑡𝑡 = 𝛿𝛿 + 𝜑𝜑𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡       (3) 

Where ᵠ is a coefficient, 𝛿𝛿  is an constant and 𝜀𝜀𝑡𝑡  is noise at day t. 

The ARIMA (0,1,0) model is given in equation (3). 

𝑦𝑦�𝑡𝑡−𝑦𝑦�𝑡𝑡−1 = 𝛿𝛿 + 𝜀𝜀𝑡𝑡       (4) 

The difference between the two models is by comparing equation (3) 
and (4) is the weighting factor (coefficient) for previous day in equation 
(3) that represents the influence on forecasting the next day’s daily 
average cooling load.  

In many buildings, the building thermal load is heavily dependent on 
weather.  Integrated with physical knowledge about building cooling 
load, the combined value of constant ( 𝛿𝛿 ) and noise at day t (𝜀𝜀𝑡𝑡) is 
determined by future day outside air impacts on the cooling load. 
Therefore, equation (3) and (4) can be converted to following formats: 

  y�t = 𝐶𝐶1𝑦𝑦𝑡𝑡−1 + 𝐶𝐶2∆𝑦𝑦𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑖𝑖      (5) 

  𝑦𝑦�𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + ∆𝑦𝑦𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑖𝑖       (6) 

Where  𝐶𝐶1 and 𝐶𝐶2 are the weighting factors for previous day influence 
and temperature influence.  ∆𝑦𝑦𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑖𝑖  represents the daily average cooling 
changes caused by outside air temperature. 

By observing the time series chart of the first difference in figure 4, 
even though the mean of the first difference is around zero, it does 

show time changing variance.  An online coefficient identification 
process of equation (5) is developed to determine the coefficients 𝐶𝐶1 
and 𝐶𝐶2.  The recursive identification method can provide another slow 
tracking on time varying system [L Ljung 1987].  Using this method, 
the next day’s ton can be forecasted from previous days’ and 
previous weeks’ data.  Let n be number of data that we want to fit. For 
notational simplicity, let iy , be the i-th actual cooling load, and iŷ  be 

the predicted daily cooling load, i=1,…,n.  Also let iToy ,  be cooling 

load changes caused by the outside air temperature.  For optimal fit of 
the data, the sum of squares of the error must be minimal. 
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First-order derivatives for optimality dictate that the gradient at the 
stationary point is zero. Therefore: 
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Or in matrix notation: BAX = , where 
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The solution to this linear equation is BAX 1−= , where 
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Accuracy of the prediction depends on n, the number of data used to 
make the prediction. Larger n implies more global prediction, but local 
accuracy will diminish unless the global trend is the same as the local 
trend. However, too few data will result in a poor prediction too. From 
our analysis, n=5 is optimal for the weekday prediction, while n=2 is 
sufficiently accurate for the weekend prediction  

Model Validation 
To validate the accuracy of the forecast models, two steps of 
validations were conducted: 1) fitting segment that is using the same 
measured annual daily average cooling data (year 2008) to validate 
model fitting for the historical data; 2) forecasting segment that is using 
new data (first half year of 2007) to validate the forecasting errors.  The 
two steps were conducted for the two models introduced above and a 
linear regression model with outside air temperature. 

The linear regression model is to use the simple regression between 
daily average cooling and outside air temperature to forecast the future 
cooling consumption.  Figure 7 presents the daily average cooling 
versus the outside air temperature.  The simple regression model is 
defined as in equation (7).  The same equation was used in AR (1) 
model and ARIMA (0,1,0) models to calculate the cooling changes 
caused by outside air temperature ( ∆𝑦𝑦𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑖𝑖  ). 

 

Figure 7: Daily Average Cooling versus Outside Air Temperature 

  𝑦𝑦𝑡𝑡 = �
4.6944 ∗ 𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑡𝑡−75.17  𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑡𝑡 ≥ 45℉

150.7022   𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑇𝑇𝑜𝑜𝑜𝑜 ,𝑡𝑡 < 45℉
�  (7) 

Figure 8 presents the fitting results of three models and the measured 
data.  All three models show similarly good fitting results.  The mean 
absolute percent forecast effort (MAPE) was calculated to compare the 
accuracy of three models.   Equation (8) shows the calculation of 
MAPE.  The MAPE is listed in table 1. Comparing the MAPE values 
of three models, the accuracy of the three models are all very 
acceptable even though ARIMA (0,1,0) model provides the lowest 
MAPE.  Figure 9 provides the error percentage distribution for three 
models.  It also proves that three models fit the historical data with 
acceptable errors.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡

𝑦𝑦𝑡𝑡
)𝑛𝑛

𝑡𝑡=1   (8) 

 

 

 

Table 1: Fitting MAPE comparison of three models 

Models MAPE
Adaptive AR(1) 0.064792
ARIMA(0,1,0) 0.046503

Linear regression 0.056904  

 
Figure 8: comparison of fitting results of three models with the 

actual values 
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Figure 9: Comparison of fitting error percentages of three models 

To validate the forecasting error of the three models, a different set of 
data of the first half year of Year 2007 of the same building was used.  
Figure 10 shows the comparison of forecasting results with the actual 
measured data.  It shows that ARIMA (0,1,0) model provides the best 
forecast among three models.  The linear regression with outside air 
temperature provides poorest forecast.  Table 2 of the MAPE 
comparison also proves the ARIMA (0,1,0) models provides the 
smallest error.  Figure 10 provides the error percentage distribution for 
three models.  The ARIMA (0,1,0) shows the best normal distribution 
of percentage error.  The error distribution of the linear regression 
shifts to the right side of the figure and there are 20 forecast errors 
above 20%, which are not shown in the figure.  In a conclusion, 
ARIMA (0,1,0) model provides robust forecast among three models. 

 

Figure 10: Comparison of forecasting results of three models and 
actual values 

Table 2: Forecasting MAPE comparison of three models 

Models MAPE
Adaptive AR(1) 0.0900
ARIMA(0,1,0) 0.0593

Linear regression 0.1497  

 

Figure 11: Comparison of forecasting error percentages of three 
models 

 

Conclusions 
To reduce both on-peak and off-peak demands and expand the life-span 
of the existing transformers with increasing building load due to 
building function changes or building expansion, a real time forecasting 
model is needed for projecting the next day daily average cooling for a 
thermal storage system control.  Three models, first-order 
autoregressive model, random walk model and linear regression model, 
were developed through mathematic analysis using daily average 
cooling data for a building.  With similar fitting accuracy of the three 
models, random walk model (ARIMA (0,1,0)) provides the best 
forecast results.  The computation requirements for random walk model 
are relatively low and make it possible to be embedded in building 
automation system.  An application of this algorithm will be presented 
in the next paper.   
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