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“If we could f i r s t  know where we are ,  
and whither we are tending, we could 
b e t t e r  judge what t o  do, and how t o  do i t . > ’  
--A. Lincoln;  June 16, 1858. 

,ABSTRACT 

Knowledgebased Control is here defined as the 
management of dynamic systems whose states ad- 
mit qualitative modeling. That is, dynamic sys- 
tems are modeled by assigning qualitative (linguis- 
tic) descriptors, such as operating modes, to par- 
titions of a direct-product space of system states. 
The statevariables may include non-numerical as 
well as numerical variables. By “management” is 
meant the identification (decision) of current sys- 
tem qualitative state, followed by formulation of 
system inputs (control) to move the state t o  a de- 
sired next state. These decision and control pro- 
cesses are implemented in the presence of uncer- 
tainty in the qualitative state (mode) definitions. 

This paper examines contributions from sev- 
eral disparate disciplines, such as artificial intelli- 
gence, the decision sciences, and the emerging area 
of fuzzy control. An aeronautical application is 
used as a means to obtain visibility of the concepts 
examined. Two levels of architecture are presented 
for implementing qualitative decision and control 
for an aircraft. A geometric approach, rather than 
algebraic, is taken to the knowledgebased control 
problem. 

INFERENCE EMBEDDED IN CONTROL. 

In 1858, Abraham Lincoln pretty well made the 
case for Knowledgebased Control with his state- 
ment about knowing first and doing second. Down 
through the centuries, it hae been appreciated that 

Thin work w y  q w o r k d ,  in put,  by the National Aeromutka m d  
Space Administration, under NASA G r m b  NAG1-1W (Luyky  Rc 

Center) md NGT-50401 (NASA H s l d q u u k n ) .  

“The hear t  of the  prudent  g e t t e t h  knowledge 
and the  ear of the  w i s e  seeke th  knowledge .Ja  
[Proverbs 1 8 : l S l .  
--King Solomon; c i r c a  1.000 B . C . .  

knowledge is the precursor t o  prudent action. So 
it is, with the merging area which is the subject of 
the present paper. 
knowledge is the precursor to prudent action. So it 
is, with the emerging area which is the subject of 
the present paper. 

Knowledge-based Control, also known as Intel- 
ligent Control, comes from the Systems and Con- 
t r o l  discipline, as a branch which is traceable back 
to a seminal paper by K. S. F W .  Twenty years 
ago, he recognized that automatic control should 
benefit from developments in Art i f i c i a ‘ l  Int  e t -  
l i gence  (AI), if not vice versa. That these benefits 
have been so long in coming, is a comment upon 
the difficulties inherent in AI development and in 
transfer between two very different technologies. I t  
is one purpose of the present paper to point out 
dualities between AI and Control which make the 
transfer easier. 

Since the 1950’s, it has been recognized that in- 
ference is an embedded element of modern control. 
Bellman’s[*] development of dynamic programming 
employed explicit inference, in the form of decision, 
aa an integral step of control. Kalman’s[sl famous 
contribution also showed inference, epecifically pre- 
diction, t o  be inherent in (state) control. Both ex- 
amples of inference embedded in control illustrate 
what is formally codified in the now famoue Sepa- 
r a t i o n  Theored‘l of stochastic control. The theo- 
rem states that, under fairly general conditions, a 
reasonab l e  closed-loop control system may be for- 
mally partitioned into three parts; comprising the 
eyetern (plant) under control, an inferential estima- 
tor, and a memoryless controller. 
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The difference between traditional Hodern Con- 
t r o l  and Knowledge-based Control is that the em- 
bedded inference and memoryless control algorithms 
now contain qualitative, as well as numerical, pro- 
cessing elements. That is, the inferences and result- 
ing controls are focused on qualitative performance 
measures, as well as numerical. As a dual to the 
usual required statespace modeling of the plant, 
now there is the required modeling of quala t a t  i v c  
st a t  es .  

THE PARADIGM. 

The general pattern in knowledge-based control 
of a dynamic system is as follows: First, the usual 
numerical state-variable modeling of the plant takes 
place, with a preference given to states which are 
available as sensor readings, or are, at least, easily 
derivable (observable) therefrom. Next, a state- 
space is constructed, which is the Cart e s i a n  prod-  
uct  of the states. (Actually, it is a direct-product 
space, since the door is left open to measurable 
states which are inherently qualitative, and not nu- 
merical.) Then, and most importantly, qualita- 
tive states are defined as partitions of the space. 
These qualitative states are most generally “oper-  
ating modes,” as defined by a human operator. 
Such modes are not directly measurable, but are 
observed by (human) inference processing of the 
available sensor measurements. Control ia then ex- 
erted to maintain or modify these inferred states 
(modes). 

As an example, consider the management of the 
flight of a transport-type aircraft. By management 
is meant an automation of the control activities 
traditionally performed by the pilot and/or flight 
engineer. It is assumed that the usual numerical 
automatic flight control system (AFCS) ie present. 
Thus, the pilot concerns himself with evaluation of 
flight performance and formulation of inputs t o  the 
autopilot, to accomplish the goals of the flight. 

The usual sensor readings are assumed to be 
available, as in Figure-1, below. 

SPEED 

IAS 
Mach. 

defined, as in Figure-2. Given the sensor readings 
and the qualitative definitions, mode is inferred and 
control exerted, based on knowledge of the aircraft 
and of the rules of flight. 

ALT. FORW-L LAT-L HEADING POWER RESOURC. AUX-DEV. 

Alt. Pitch Bank Mag. EPR Fuel-Qty. Flaps 
Comp. EGT Slats 
(TH) N(rpm) Gear 

h-# Spd-Brk 

The list of operating modes is assumed finite, 
with mode-unknown covering the rest of the possi- 
bilities. Thus, the required inference is decision, 
rather than estimation. That is, given the sen- 
sor measurements, it is t o  be decided into which 
partition of the direct-product space the observed 
“point” fits. Given that decision, an input to the 
AFCS is then formulated, based on known goals 
and characteristics of the aircraft. 

ANTECE DENTS. 

Although the above paradigm sounds simple 
(and it is accomplished routinely by human pilots) 
the automation thereof is not trivial for several rea- 
sons. First, in the definition of operating modes, 

’ t he  partitioning of the state space, is not clean. 
That is, the operating modes are not unique, in 
terms of the sensor measurements. Second, the 
decision inference method is not obvious. This is 
because reasonable limiting of the number of op- 
erating modes may cause some sensor data to a p  
parently contradict a mode that is “essent ioZ2y  
true”. The decision method must accommodate 

these anomalies. Finally, the method for synthesiz- 
ing qualitative commands, accompanied by numeri- 
cal prescriptions, based on qualitative performance 
interpretations, it ,  also not obvious. Thus, is ex- 
amined the informat i o n  and cortroZ discipline, 
as well as the u r t i f i c i u t  infcZZigcrce  discipline 
to  determine what priori results might apply to the 
present problem. 

DISCRETE-E VENT DYNAMIC SYSTE MS. 

A particular branch of control theory which has 
been active for twenty years or more is that of 
discrete-event dynamic systems (DEDS). This dis- 
cipline has attempted to create, for dynamic sys- 

Based on these available readings, and others deriv- 
able from them, qualitative operating modes are 

tems exhibiting a finite (or at least countable) num- 
ber of states, a theoretical basis parallel to that ex- 
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MODE 

Ta kcoff 
Clean-up 
Climb-out 
Climb-on-course 
Cruise 
Descendpn-course 
Initial-approach 
Fin. I-a pproach 
Go-around 
Land 
Unknown 

STATUS 
Normal 
Emergency 
Alarms: 

Systems, 
Fuel. 

CONTROL 

Pilot in 
Command. 

Air Traffic 
Control 

Other 

Pilot Manuver 
Computer/ 

Figure 2. Flight Operations List. 

isting for continuous-state dynamic systems. Upon 
these discrete state spaces, "events" are defined as 
the causes of the abrupt transitions of the state- 
vector between its discrete values. A recent paper 
by Ramage and Wonham151 provides a clear sum- 
mary of the application and methods of DEDS. Ef- 
fort has focused on admissible event trajecto- 
r i e s  through the state space (sequences of events). 
In the inference context, effort is to determine if, 
given a certain sequence property, an observed se- 
quence exhibits that property. In the control con- 
text, a trajectory is controlled to have the desired 
property. Methods of analysis have been l o g i c a l ,  
if time is not a consideration, or t imcd. Among the 
timed approaches are non-stochastic (Petri nets) or 
stochastic (Markov processes). Generally, the an- 
alytical approaches have been arithmetic. That is, 
they have not been geometric. 

In the paradigm previously described (aircraft 
example), a finite set of events is defined on a con- 
tinuous state-space. In the decision context, the 
events are not the causes of transitions from one 
region of the space to another, but are the parti- 
tions of the space, itself. Interest, here, is not in 
a sequence of operational modes, but in identifying 
the individual modes. In the control context, in- 
terest is not in some average control of a sequence 
of modes, but in just moving very deterministically 
to a succeeding mode. Finally, modeling and pro- 
cessing methods are desired, which give maximum 
insight (visibility) into the nature of the problem, 
itself. Thus, the search through antecedents is con- 
tinued. 

ployed to  perform the embedded inference required 
in Knowledgebased Control. 

The success of early Expert System work de- 
volved from the development of the "General Prob- 
lem Solver (GPS)" by Newall and Simon[6], in the 
1960'8, which provided the foundation of much of 
the subsequent development in Expert Systems. Ac- 
cording to  Giarratano and Ftiley['], GPS produced 
the now commonly accepted architecture for an ex- 
pert system, comprising i)-long-term memory (rules, 
ii)-short-term memory (working memory), and iii)- 
cognitive processor (inference engine). GPS was 
founded upon the assumption that much machine 
reasoning could be done, based on IF-THEN types 
of rules. This assumption was shown by subsequent 
events to be true. 

related that GPS focused on a state 
description of the problem to  be solved. In partic- 
ular, it was goal driven, t o  move the current state 
of the problem to  some goal state. A distance mea- 
sure was employed upon current and goal states to 
measure progress toward a solution. This proce- 
dure is dual, of course, t o  feedback control the- 
ory, wherein an error between input and output 
drives the system. Since the state of the GPS prob- 
lem was not numerical, the problem control was by 
search through a tree, to move current state to goal 
state. In modem expert system parlance, this was 
jorward :chaining, d epth- f i rs  t search. 

The original Newel1 and Simon approach domi- 
nated expert system work for twenty or more years. 
And, this approach was marked by a preference - -  
for algebraic, logical processing over what might be 
termed the geometric approach, the latter based on 

Next is that branch of AI, known as Expert appreciation of natural organisations of knowledge- 
Systems. Therein are programs particularly con- rich domin*Pwific Problems- Thus, =Pert SYS- 

structed to perform qualitative inference. I t  is nat- terns tools and shells were created, to which the 
ural to inquire whether such software might be em- knowledge representation and inference procedures 

EXPERT SYSTEMS: 
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for diverse domain-specific problems must needs 
be conformed. This paradigm came to be known 
as the "First Generation" of expert systems. I t  
reached a limit to growth, a barrier characterized 
by britt Zeness, the inability to respond to increas- 
ing problem sophistication with a complementary 
sophistication of inference. Thus, the characteri- 
zation by Giarratano and Rileyl'l as "the eternal 
beginner." 

THE DECIS ION SCIE NCES. 

There is another discipline, known as Decision 
Science (DS), interested in problems very similar 
to that of Intelligent Control. It owes its existence 
to ancestors in industrial engineering, operations 
research, econometrics, cybernetics, etc. A close 
examination of the contributions of Expert Sys- 
tems to problems of interest in the Decision Sci- 
ences community has been made by 
Because Sutherland's formulation of the decision 
problem is so congruent to the problem of knowledge- 
based control, his precepts are briefly reviewed here. 

Sutherland first defined the decision problem as 
being conjunctive. That is, it had two sequential 
parts, being, first, the recognition of an event (e), 
and, second, the formulation of a response (r). Both 
event and response are characterizable in terms of 
an abstract state. Moreover, for an action-oriented 
problem class, there existed a Junction (i.e., a map- 
ping), f(e,r), relating response to recognized event. 
He identified sixteen possible cases, being all (e,r) 
combinations resulting from four degrees of uncer- 
tuinty in either event or response. The four de- 
grees of uncertainty (from the stochastic control 
viewpoint, not Sutherland's) ranged from both event 
and response being purely deterministic to both 
wholly stochastic. 

Sutherland showed that Decision Science and 
Computer Science (AI) had not (circa 1985) been 
working on the same problems. Specifically, AI 
had been focused on either event-recognition or 
response-formulation, while DS has focused on the 
conjunction of the two. His bottom-line assessment 
was that (first-generation) expert systems had not 
evolved to the point of being able to  handle prob- 
lems which are characterized by a large measure of 
uncertainty in the data. His reasoning was that the 
purely logical (arithmetic) algorithms of the first- 
generation inference engines would have to yield 
to facilities capable of dealing mathematically with 
"graded qualitative valuations." He prophe- 

FUZZY MET HODS. 

Fuzzy Set Theory was created by Zadeh[lo1 
twenty-five yeara ago. Within five years, its use 
in decision theory waa being examined[']]. Within 
nine years, its use in control as being 
Later (after 1986), i t  was implemented in practical 
control ~ystemsI'~1. 

Fuzzy Set Theory is a dual of Bayesian Condi- 
tional Probability Theory, in the =me that events 
may be modeled by set functione whose range is 
the positive reds. Moreover, these functions may 
be manipulated to  create similar positive real func- 
tions defined on subsets of the original domain. 
Therefore, in both cases, the set functions may be 
used to calculate the solutions of decision problems. 

As a case upon which to  focus, consider the 
airplane example. There the real-number domain 
might be the  enso or reading, "Indicated Air Speed," 
IAS. On this set of positive numbers are defined two 
events, being "Takeoff" and "Landing." Now, the 
decision problem is to  take an airspeed reading and 
to make the (hard) decision on whether the aircraft 
is taking off or landing. 

In the Fuzzy context, a prior knowledge about 
the aircraft is used to create two functions. One 
is representative of certainty about what airspeeds 
should be observable during takeoff. The other 
models landing. These functions are called "Hem- 
bership Functions," according to the idea that 
the observed airspeed has membership in the sub- 
sets supporting the two disparate event definitions. 
These two functions are unimodal (by design) and 
are arbitrarily scaled to have unity maximum value. 
The decision is obtained by choosing the event whose 
membership function is greatest at the value of the 
sensed airspeed. See Figure-3, below, for an illus- 
tration. 

I 
I I  I I 

0 90120 180 250 
Alr_Speed, Knob (IAS) 

Figure S. 
sied t h a t A I  would have to  embrace certain-ele- 
ments of "fuzzy technology." 

Membership Functions for Takeoff/Landing. 

141 
-~ 

Authorized licensed use limited to: Texas A M University. Downloaded on February 18,2010 at 14:24:05 EST from IEEE Xplore.  Restrictions apply. 



In the Bayesian context, the functions formed 
are so-called “a priori conditional probabil- 
ity density functions.” They are formed in ex- 
actly the same manner and have the same shape, 
as for the fuzzy membership functions. However, 
they are not arbitrarily scaled, but have unit area. 
The reason for the unit area requirement, is that, 
to obtain functions for other events defined on the 
domain, the combining algorithms do not admit ar- 
bitrarily scaled functions. The same decision rule 
is employed, which is called “Maximum-Likelihood 
Decision Rule.” 

Now, it is seen that it doesn’t matter what the 
functions are called, so long as the same decision 
rule is used. Scaling, however, does matter. It can 
be seen from Figure3 that while the Bayes decision 
threshold is 175 knots, the Fuzzy decision thresh- 
old is 180. Thus, there is a relative decision bias 
of 5 knots between the two. For an indicated air 
speed of 177 knots, the two methods yield different 
decision. Figure-3 plots the membership functions 
with the required Bayes scaling. 

Fuzzy Controll“] is decision4irected[ls1 control. 
By that is meant that controls implemented from 
a fuzzy theory basis result as the conjunctive so- 
lution of two decision problems. First, based on 
measured sensor data, it is decided what event has 
taken place. Second, given that event, i t  is decided 
what control to  exert. 

F’uzzy Control requires two sets of membership 
functions. The first relates sensor data to  event. 
The second relates event to control action. -A  joint, 
two-dimensional membership function may then be 
synthesized, relating measured sensor data directly 
to control. The result is then a “ j u t t y  set of 
cont r o  1”[141, which must be “defuttiji e&’, in or- 
der to obtain a unique control effort. 

In manipulating the various fuzzy membership 
functions, there are two different sets of combining 
algorithms which may be used. The first, and cur- 
rently most popular, employs the “con junction” 
and “ d t s  junc t ion”, characterized by taking point- 
wise minima and maxima, respectively, of two mem- 
bership functions. These are described as the “hard 
logical AND’ and “hard logical OR”, respectively. 
The other set is just the usual “soft” logical con- 
nectives[”]. I t  is worthwhile to  note that if the soft 
connectives are used with unit area membership 
functions, there results just the usual Bayes con- 
ditional probability density functions for subsets of 
the domain set. Subset membership functions de- 
rived using the two differing sets of connectives may 
or may not have the same shape (ignoring scaling). 

I t  is concluded that the general ideas of fuzzy 
control may be applied to  the present problem, even 
though specific implementations may use the stan- 
dard (soft) Bayes manipulations. What is impor- 
tant is that  there exists support for qualitative in- 
ference and control which is essentially geometric, 
rather than algebraic. If, now, expert systems may 
admit these geometric approaches to  modeling, qual- 
itative inference, and control, a solution to know- 
ledge-based control will be synthesizable therefrom. 

EXPERT SYSTEMS: 

SECOND GENE RATION. 

The first generation of expert system was char- 
acterized by logic-based implementations. A high- 
level computer language (PROLOG) was even de- 
veloped to support such implementations. How- 
ever, use of that  language required that the problem 
be formulated in the first-order predicate calculus. 
Thus, the design of expert systems was driven by 
the programming necessary to embody the paradigm 
descended from the pioneering efforts of Newel1 and 
Simon[“]. The problem definition had necessarily 
to  be shaped into the form required by existing 
expert system tools. Thus, was born a need for 
Knowledge Engineers, whose task it was to trans- 
late the natural problem requirements into forms 
suitable to  programming with the extant tools. Ex- 
pert system development became characterized by 
programmers learning enough about the problem 
domain to  develop efficient expert systems. 

With the advent of the second generation, the 
so-called domain ezperts (engineers, in the present 
context), become the expert system developers, with 
programming methodology no longer dominating 
the effort. This is because of a shift in focus on 
the task of translating problem requirements into 
programmable form. The formulation is done at  a 
much higher level than previously. Whereas, the 
problem was abstracted at the programming level, 
now the Problem is abstracted at a level dealinu 
with a generic combination of problem, knowledge 
representation, and inference strategy[“]. Now, do- 
main experts (in the information and control sci- 
ences) may learn enough about symbolic comput- 
ing to specify the inference engine and knowledge 
representation down t o  the (object-oriented) pro- 
gramming level. 

Bylander and Chandrasekaran[’“J draw atten- 
tion t o  the fact that  knowledge representation, if 
unconstrained by a priori programming requirements, 
is strongly influenced by the combination of prob- 
lem nature and inference strategy. Thus, there is 
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a knowledge representation which is natural to that 
combination. “Nat ura l  know1 edge represent a- 
t i on”  is referred to in [lS] as the “ in te rac t ion  
p r o &  Zem.” There, M i n ~ k y l ~ ~ l  is cited as having pro- 
posed f rames as a knowledge representation suit- 
able to the interaction problem. They[161 note that 
the emphasis in frame representations is on describ- 
ing the conceptual structure of the domain. 

I t  is intuitive to an engineer in the informa- 
tion and control sciences to characterize a problem 
by its funct ional  flour. That is, the information 
processing functions being performed are specifi- 
cally isolated and defined, from the overall problem. 
Then, the flow of data through these functions is di- 
agramed, according to the (problem-baeed) natu- 
ral sequence of operations. Then, the functionality 
implied by the diagram is mapped (sometimes di- 
rectly) into hardware and/or software. In computer 
science, this is called the udata--fZoul’[18] architec- 
ture. As an example, the top-level data-flow dia- 
gram for the knowledge-based aircraft management 
problem is as shown bebw in Figure-4. 

... -- 

of inference functions, suitably generic to cover the 
domain of dynamic systems. Such a set of useful 
functions has been the subject of much work by 
Chandrasekaran[lgl and his aseociates[161 [201 during 
the last several years. The refinement of the generic 
function approach shall well Berne the present pur- 
poses. 

A SPECIFIC APPROACH. 

MODELBASED KNOWLEDGE 

REP RESENTATI ON. 

Traditional first-generation expert systems typ 
ically consisted of a knowledge base and an infer- 
ence engine, separately. Two standard approaches 
to knowledge representation were Production Rules 
and F’rames[zll. Such representations must, in gen- 
eral, provide both syntax and semantics, defining 
symbols to be used and specifying how meaning 
is to be attached to the arrangement of 
Such a representation may be described as a seman- 

1 
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Figure 4. Top-level Data-flow Diagram. 

The natural abstraction of the knowledge-based 
control problem requires the isolation and definition 
of the fundions (Or tasks) to  be Performed bY the 
inference engines. Note that a complete knowledge 
representation is not obtained without considera- 
tion of the inference process. 

t i c  net, comprised of nodes and links. The nodes 
are data objects and the links me relations, follow- 
ing the nomenclature common to  object-oriented 
modeling and programmkgP1. 

What may be generally viewed as a semantic 
net may, in the dynamic system domain, better be 
viewed as a hierarchical inference t?. Therein is 
defined a hierarchical set of decision hypotheses, 
with the most general at the tpp. The most genera] 

I t  h a  been noted that bowledg*bad control 
is decision-baed, requiring a formal dealing with 
uncertainty. What is needed is definition of a set 
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hypotheses are the most generally defined operat- 
ing modes. These are defined in terms of linguistic 
variables. The least general, at the bottom of the 
tree, are the sensor numerical data corresponding 
to the linguistic operating modes. 

The decision inference is inductive, proceeding 
up the tree. Control inference is deductive, pro- 
ceeding down the tree. For a strictly rule-based im- 
plementation, these two would correspond to for- 
ward-chaining and backward-chaining , respectively. 

An instance of such an inference tree, for air- 
craft, is set forth as Figur-5, below. 

Another refinement is added, which further jus- 
tifies the frames choice. And, that is that each 
frame (-level) is treated as an object in an object 
oriented programming environment. Then, proce- 
dures (methods) are attached to each slot in each 
frame, implementing the inference (decision) pro- 
cess from level to level. The inheritance mecha- 
nism may be used to  advantage, here, t o  produce 
efficient, readable code. 

For this knowledge representation, a comple- 
mentary inference procedure is now specified. 

I MISSION-OPS FRAME (HYPOTHESES) I 
I MODE I STATUS I CONTROL I MANUVER EON ST RANT^ 

I FUGHT-OPS FRAME (HYPOTHESES) 1 

I FLIGHT DYNAMICS FRAME (HYPOTHESES) I 

I AIRCRAFT STATE FRAME (HYPOTHESES) I 
t 
I 

I NUMERICALLY PROCESSED DATA FRAME 1 

t 
I 

I RAW FUGHT DATA FRAME 1 
Figure 6. Inference-Task, Data Representation. 

The figure shows four levels of hypotheses. These 
are compound hypotheses, made up of more ele- 
mentary hypotheses, having names like “MODE,” 
“STATUS,” “CONTROL,” “MANUEVER,” and 
“CONSTRAINTS.” The highest level concerns the 
mission of the dynamic system. The next level con- 
cerns its operation as a system. Then is a level con- 
cerning its dynamics. The next concerns its indi- 
vidual qualitative states. Then is a level of descrip 
tion (which is not a decision hypothesis), being its 
numerical states, not raw, but after numerical pro- 
cessing. Finally, is the level of raw numerical sensor 
(and other non-hypothetical ) data. 

in 
decision science, each level of description has the 
appearance of a direct-product space of linguistic 
variables. As an analyst thinks of a vector space for 
numerical variables, a programmer may then think 
of a data frame for linguistic variables. 

Viewing compound hypotheses as sets, 

ABDUCTIVE INFERE NCE. 
In fuzzy inference, (Bayes) Muximum L i k e Z i -  

hood decision is used. This algorithm computes 
the (soft) product of the various membership func- 
tion. The algorithm works properly, provided there 
is no conflicting evidence present. However, sup- 
pose that some part of the dynamic system or op- 
erating procedure fails, not badly enough to throw 
the system into some other mode, but badly enough 
to yield data in conflict with the actual operating 
mode. 

For example, consider an aircraft on final ap- 
proach to  landing, which is processing sensor mea- 
surement as indicated air speed (IAS), altitude 
(ALT), rate of climb (ROC), flight path angle (FPA), 
engine power (EPR), FLAPS, and GEAR, in order 
to make the interpreted decision “MODE-FLT-OPS 
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= APPR-FNL”. The variable, GEAR, will enter 
the computation as P(GEAR/LAND)=O, where 
p(+) denotes membership function. Thus, the en- 
tire ML-product will be reduced to aero, and the 
computation will fail to yield a decision. Now, it 
is clear that the airplane is still on final approach, 
but the gear just hasn’t come down (for whatever 
reason). What is needed is a decision computa- 
tion which will still yield “MODE-FLT-OPS = 
APPR-FNL,” but will ale0 yield 
“STATUS-FLT-OPS = ALARM-GEAR.” 

This example shows that rudimentary (Bayes 
or fizzy) decision won’t suffice. What is needed is 
a modified decision rule, such that the fuzzy foun- 
dation is retained, but conflicting evidence is ac- 
commodated. A decision framework which admits 
this modification is that of ABDUCTIVE Infer- 
ence, as formulated in the Chandrasekaran group 
and clearly reported by Punch120J, et. al. Figure6 
shows a functional flow diagram for ABDUCTIVE 
Inference. 

The consistency requirement is that the ele- 
mentary hypotheses must be compatible with each 
other. That is, that, pairwise, they are not mu- 
tually exclusive. The complct encss, or coverage, 
requirement is that the compound hypothesis con- 
tains d l  the plausible elementary hypotheses. This 
definition of covers is compatible with the set theo- 
retic definition, considering the compound hypoth- 
esis as a direct-product. This means that no plau- 
sible elementary hypothesis may be ignored. The 
last requirement, on plausibility, is to  select the 
compound hypothesis which has the highest plausi- 
bility score. If a plausibility threshold is used to re- 
move imp 2 aus i b 2 e elementary hypotheses from the 
computation, then the Bayes-ML algorithm can be 
used. 

The key to designing the Abductive Inference 
Engine lies with its internal control. et. 
al., showed a tree-like goal structure (their Fig.- 
5) which formed the basis for internal control of 

Figure 6. ABDUCTIVE Inference F’unctional Diagram 

The first functional element is an Elementary 
Hypothesis Generator. This produces a list, with 
each elementary hypothesis tagged with its corre- 
sponding pluusibility. The plausibility is a nu- 
merical measure of the likelihood of the elemen- 
tary hypothesis. It may also be called a C o r t i -  
dence Fuct or .  For the airplane, an elementary hy- 
pothesis is {LANDIIAS}. A plausible hypothesis is 
then one whose numerical plausibility value exceeds 
some predefined threshold. 

The next functional element in abductive (deci- 
sion) inference is a Compound Hypothesis Assem- 
bler. Ita task is to  assemble, from the elemen- 
tary hypotheses, the most p l u u s i b l c  compound 
hypothesis. This is also what Bayes-ML does. How- 
ever, the Abductive Assembler does this in a con- 
strained way. It satisfied internal requirements of 
1). Consistency, 2). Completeness, and 3). Plausi- 
bility. 

the inference engine. Their control was dubbed 
“Selector-Sponsor,” in which a Selector would se- 
lect from among various Sponsors, each one of which 
sponsored a particular method, or task. That is, 
the Selector was a global controller, choosing from 
among the various subtasks for Abductive Infer- 
ence. The Sponsor then evaluated it method’s a p  
propriatenees to  be the next task. 

The control strategy for the dynamic systems 
problem is differentiated between the Interpreta- 
tion task (inductive inference) and the System Con- 
trol task (deductive inference). The concept of a 
community of distributed experts is employed, which 
is a parallel processing concept. Interpretation starts 
at the bottom of the frame structure (See Fig.-5), 
which the occurrence of new sensor measurements. 
Each measurement slot contains its own cspcrt. 
Each expert evaluates its owned membership func- 
tions. Each expert then selects ita plausible hy- 
potheses. Each expert then passes ita data, as mes- 

. 
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sages, to the higher levels of the framework, accord- 
ing to rules. Every slot in the framework functions 
in this same way. 

Chandra~ekaran'sl'~] list of generic functions is 
now augmented to deal with temporal (dynamic) 
systems. System Operational Modes, if ideally de- 
fined, are mutually exclusive and sequential. That 
is, they occur naturally in sequence. Therefore, 
if the last mode is known, a priori information is 
available about the present mode. Thus, is needed 
another generic task, that of History Formut t ing 
und Processing. This is the dual of exploiting 
correlation in stochastic decision/estimation (e.g. 
Kalman filtering). 

0 

3 

Rom all of the above, results the second-level 
data-flow architecture shown in Figure-7, below. 

I 
(Internat 

Controller) 
I . Fuzzy Advl8e/Command Abductive 

Inference 
A 

are favored which support visualization. Dualities 
are exploited, which exist between Artificial Intelli- 
gence and Systems Theory (Communication, Con- 
trol, and Signal Processing). Based on research in 
progreas, this approach appears t o  the author to  
hold great practical promise in applications like air- 
craft flight management. 
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