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ABSTRACT 

 

Laboratory Studies of Eddy Structures and Exchange Processes through Tidal 

Inlets. (August 2007) 

Francisco Nicolau del Roure, B.S., Universidad de Chile, Chile 

Co-Chairs of Advisory Committee:   Dr. Scott Socolofsky 
              Dr. Kuang-An Chang 
 
 
 
The exchange flow through tidal inlets generates two-dimensional large coherent 

vortical structures (2DLCS), that are much broader than the water depth and 

exist because of the inherent instability of shallow shear flows. These vortical 

starting jets are critical to the mixing that occurs in the inlet area. Depending on 

the tidal period T, the width of the inlet W, and the maximum velocity in the inlet 

UMAX, the mixing will vary from poor exchange to efficient exchange. Here, we 

present laboratory and numerical experiments that study the formation of the 

2DLCS at the mouth of the inlets.  

 

Experiments were conducted at large scale, in the shallow flat-bottomed water 

basin at the Institute of Hydromechanics of the University of Karlsruhe, 

Germany, which has the capability to generate a sinusoidal flow that simulates a 

series of tidal cycles. A set of idealized inlets were arranged in the tank, and by 

varying the tidal period and the maximum velocity, three different types of life-

history were obtained (stationary dipole, dipole entrains, and dipole escapes). 

These types of life-history are defined by the mixing number /W MAXK W U T , 

depending if KW is equal, less or greater than a critical value. The experiments 

were visualized using color dye tracers. To quantify the shallow water velocity 

field, the Particle Image Velocimetry (PIV) technique was used. From the PIV 

data the vorticity field was obtained, and the regions where the vortex formed 

were identified. Then, a vortex time-evolution analysis was developed using 
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physical parameters such as the position on the basin of the vortex, the 

equivalent diameter, and the maximum vorticity among others.  

 

The mixing number accurately predicts the behavior of the vortex for the first 

cycle on idealized inlets for the subsequent cycles; the structures behave 

differently than predicted by KW, because the blocking effect of the vortex 

formed in the previous cycle. For characteristic times * /t tU W  less than about 

2, the dipole is attached to the inlet and forms rapidly. For later times, the dipole 

advects downstream, and slowly dissipates. 

 

Numerical experiments are also presented. Comparing the numerical data with 

the laboratory data, good agreement is reached, but important limitations are 

identified for the grid resolution and domain size. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background 

Mixing through tidal inlets is affected mainly by exchange processes due to 

currents driven by tides. The transport of constituents along the coastal waters 

has an effect on the environment by carrying mass and momentum in and out 

from estuaries and bays to the open coast. Understanding these processes is 

critical, because in the Gulf of Mexico, estuarine niches provide significant 

habitat for more than 98% of the commercial fisheries catch (Brown et al. 2000). 

Among the important processes influencing fisheries recruitment are transport of 

nutrients, sediments, pollutants, temperature, salinity, fish larvae, and many 

other important parameters that comes from rivers and the exchange of flows 

driven by tidal currents from the estuaries to the open coast, or vice versa, 

through tidal inlets. Transport in coastal waters is driven mostly by advection, 

and also dominated by the pretense of two-dimensional coherent vortical 

structures (Socolofsky and Jirka 2004). These 2DCS are much broader than the 

water depth and the flows where these structures are formed are considered to 

be shallow, like most of the fluids in nature. Velocity shear, which drives the 

generation of 2DCS, is set up in the environment by riverine inflow, flow around 

islands, tidal wetlands, bridge piers, jetties, breakwaters, among other factors 

(Socolofsky 2006). Unfortunately, the formation of 2DCS is not predicted 

accurately by typical numerical models, such as the U.S Army Corps of 

Engineers depth-average model ADCIRC, and their effects on mixing cannot be 

extracted from existing correlations to the mean flow field or turbulence 

statistics. Furthermore, there is little known about the transport of mass by these  
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structures or the effect of a randomized field of such coherent structures on the 

transport of mass and momentum (Rummel et al. 2005).  

 

This thesis is part of a broader project founded by the Texas Sea Grant, which is 

an environmental stewardship in charge of economic development and 

responsible use of the USA’s coastal, ocean and Great Lakes resources. The 

title of this principal project is “Laboratory Studies of Exchange Processes 

through Tidal Inlets on the Texas Coast”.  

 

Figure 1 shows an example of transport by 2DCS in a coastal environment. The 

light regions in the figure are areas of high chlorophyll concentration, resulting 

from phytoplankton blooms. The boxed region shows the chlorophyll 

concentration contained in a dipole vortex formed by the transport of mass and 

momentum generated by a tidal jet in the inlet. Observing this figures is clear 

that to predict mixing and transport of nutrients in this region and to understand 

the phytoplankton dynamics would require an accurate prediction of the 2DCS 

dominating the advection in this coastal zone. In this case, the colors are 

representing phytoplankton, but it could be any other passive tracer such as 

nutrients or fish larvae.  
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Figure 1 Chlorophyll concentration off the Queen Charlotte Islands, CANADA 
(Courtesy NASA SeaWiFS, 2004) 

 

 

The dipole vortex appears in nature when a continuous or impulsive force is 

applied locally to some volume of fluid (Afanasyev 2006). In the case of a tidal 

inlet, the 2DCS is formed as a result of flow separation at the abrupt widening of 

a channel entrance followed by rolling up of the discontinuity surface around its 

free end (Afanasyev 2006). The parameters that define how these vortex dipoles 

behave are numerous, but there are specific factors that are more important 

than the others, and in the specific case of a tidal inlet vortex these parameters 

are: the width of the inlet W, the tidal period of the inlet T, and the maximum 

cross sectional mean velocity in the middle of the inlet over a tidal cycle UMAX 
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(Figure 2), assuming that the depth h of the inlet and the region where the vortex 

dipoles are forming is shallow. Depending on the combination of these 3 

parameters (W, T, UMAX), Kashiwai (1984) identified 3 life-history cases for this 

tidal vortex: 

 

 Type I: The tidal vortex flows out to the open coast and there 

amalgamates with successive vortex cores into a core of tidal residual 

circulation. 

 Type II: The tidal vortex core flows out to the open coast not very far from 

the entrance of the channel (inlet) on the ebb, but returns back into the 

bay (estuary) on the subsequent flood. 

 Type III: The tidal vortex core flows out to the open sea and never comes 

back.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Parameters that define a tidal vortex dipole 
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In 1984, Kashiwai also identified in his studies conducted at the laboratory scale, 

that the 3 types of propagation of the tidal dipoles were defined by the 

dimensionless ratio W / UMAXT. If this ratio was bigger or less than a critical 

value, the 2DCS would be Type II or III. If it was similar to that critical value, the 

dipole would have a life-history Type I. 

 

Using a sinusoidal wave to simulate the tidal regime and perform the laboratory 

experiments, the critical value was found to be 0.13 (Wells and van Heijst 2003). 

This signifies that if the non-dimensional parameter W / UMAXT, which is referred 

to as KW, is less than 0.13 the vortex dipole will escape from the inlet, and if KW 

is larger 0.13 the structure will get drawn back into the estuary. Although the 

critical value was set to be KW ≈ 0.13, there is a transition stage between the 

Type II and Type III life-history, therefore the dimensionless parameter has a 

critical value between KW = 0.085 and 0.182 (Kashiwai 1984). Table 1 presents 

a summary of the cases that were found in the experiments conducted by 

Kashiwai (1984) and Wells (2003). Also, in Table 1, the mixing efficiency is 

presented as a new category. 

 

Table 1 Summary of vortex life-history types described by Kashiwai (1984) 

KW 
LIFE-HISTORY 

TYPE 
CASE MIXING 

≈ 0.13 Type I Stationary Intermediate 

>> 0.13 Type II Entrain Poor 

<< 0.13 Type III Escape Efficient 
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It is possible that all of these types of life history cases appear in nature. In the 

case of the Texas coast also happens the same. In the Table 2 we can observe 

that for different times of the year in the Texas coast are appearing the 3 kinds 

of mixing.  

 

Table 2 Typical ranges of KW for inlets on the Texas coast 

INLET W UMAX T KW 

 [m] [m/s] [hrs] [] 

Packary 

Channel 
100 0.5 to 1.0 12.42 0.02 to 0.01 

Galveston 

Ship Channel 
3900 0.5 to 2.0 12.42 0.18 to 0.05 

Aransas Path 1100 0.5 to 2.0 12.42 0.06 to 0.02 

 

 

1.2 Problem Definition 

In the past years, researchers have investigated the phenomenon of mixing 

through tidal inlets with a variety of different perspectives, focusing on different 

topics of this particular flow. However, all of the past work converges to the 

same point, which is to try to understand the behavioral character of the 

formation of the 2DCS, and the mechanisms that are behind it.  

 

In the present investigation, laboratory experiments were done with different 

configuration of inlets, to study the geometric effects on tidal vortex; in some 

cases, the simulations were executed with 3 or 5 tidal cycles. The experimental 
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model was set up with different values of the mixing number KW, in a range that 

goes from the entrain case to the case that the 2DCS escapes away from the 

inlet to the open coast, analyzing as well a KW near the critical value of 0.13.  

 

The experiments were conducted at the Institute of Hydromechanics of the 

University of Karlsruhe, in Karlsruhe, Germany, during the summer of 2006. The 

laboratory has a shallow water basin of 13 meters by 5.5 meters, with the 

capability to force flow in two directions along the longest side (Figure 3 a)). The 

tidal forcing in this case is simulated with a sinusoidal tidal current.  

 

Simulations with colored dye were performed to visualize how the tidal vortex 

behaves with the different set up configurations (Figure 3 b)). Particle Image 

Velocimetry (PIV) experiments were carried out to develop movies of the velocity 

and vorticity field (Figure 3 c)). A qualitative analysis was performed to analyze 

the dye and PIV movies, and a quantitative study was done to calculate the 

circulation around the vortex to estimate the vortex evolution, using the PIV data.  
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Figure 3 a) Laboratory where the experiments were taken. b) Dye studies 
visualization. c) PIV simulation.   

 

 

Figure 3 provides the following: a) Peripheral view of the laboratory where the 

experiments were developed; b) Formation of the 2DCS on an idealized inlet by 

means of the visualization (dye) studies; c) Image of the seeding particles used 

for the PIV technique, where the core of an eddy can be observed.  

a)

b) c) 
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1.3 Objectives 

The main goal of the Sea Grant Project: “Laboratory Studies of Exchange 

Processes through Tidal Inlets on the Texas Coast” is to identify and understand 

the mechanism in tidal inlet flows responsible for the generation of the 2DCS 

and to incorporate their dynamics into two-dimensional coastal numerical 

models, such as ADCIRC. 

 

The objectives of this Thesis, which will help to accomplish the general goal of 

the Sea Grant Project, are the following: 

 

 Model typical flows through tidal inlets in the laboratory and measure their 

mixing and transport properties using advanced experimental techniques.  

 Visualize the formation of large-scale eddies in laboratory tidal inlets 

using colored dye. 

 Measure velocity fields by using the PIV surface method in laboratory 

tidal inlets. 

 Analyze the PIV by means of calculating the velocity and vorticity field, 

identifying the coherent structures, and measuring the vortex evolution. 

 Compare limited experimental results with numerical data (ADCIRC), to 

give suggestions and interpretation for modeling. 

 

 

1.4 Outline 

The thesis is divided into four Chapters and three Appendixes. Chapter I 

describes the background and purpose of the thesis, by doing a brief literature 

review and stating the problem that will be analyzed. In Chapter II, a Journal 

Article is presented that will be submitted to the Journal of Geophysical 

Research  in the near future, presenting laboratory experiments of mixing 

processes on tidal inlets, velocity and vorticity fields from a PIV analysis, 
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evolution plots of the vortex strength, and a discussion of the topic. Chapter III 

contains a brief explanation of the numerical modeling done, and some 

applications to take into account when shallow water flows are modeled. 

Chapter IV encloses the conclusions of the research and a summary of the 

remaining issues for further research. The appendixes provide a complete 

description of the methodology used for the experimental and analytical 

processes, movies of the dye studies, and the simulations of the velocity and 

vorticity fields, which are contained in the Texas A&M University Library.  
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CHAPTER II 

 

LABORATORY STUDIES OF EDDY STRUCTURES AND EXCHANGE 

PROCESSES THROUGH TIDAL INLETS 

 

2.1        Introduction 

Transport in coastal waters is driven mostly by advection, and also dominated by 

the presence of two-dimensional coherent vortical structures (dipole vortex) 

(Socolofsky and Jirka 2004). The flows where these structures are formed are 

considered to be shallow, like most of the fluids in nature. In these kinds of flows 

the cross sectional extent of the flow is bigger than the flow depth (Jirka 2001). 

In shallow flows, the eddies are vulnerable to stretching, and this leads to the 

growth of the eddy by means of transport of turbulent kinetic energy (Negretti et 

al. 2005). Another characteristic of shallow flows is that they are intrinsically 

unstable to lateral viscosity shear, which results in the formation of a two-

dimensional coherent structure (Socolofsky and Von Carmer 2003; Socolofsky 

and Adams 2005). 

 

The dipole vortex appears in nature when a continuous or impulsive force is 

applied locally to some volume of fluid (Afanasyev 2006). The velocity shear 

stress generated by this force is what drives the generation of the dipole vortex. 

In the case of tidal inlet flows or a flow past a sharp headland, the generated 

separation leads to the formation of eddies (Hench et al 2002; Wells and Van 

Heijst 2003). In the case of a tidal jet passing through an inlet, the relevant 

parameters that define how the tidal vortex dipole will behave are the width of 

the inlet W, the tidal period in the geographic zone where the inlet is located T, 

and the maximum cross sectional mean velocity at the mouth of the inlet over a 

tidal cycle UMAX. The condition of shallowness of the flow h W  must be added 

to the mentioned parameters.  
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A universal definition of vortex has not been accepted yet, but it can be 

described as a tube shaped structure with persistent and coherent rotation along 

the axis of its center of mass, and is formed due to the velocity shear stress 

(Zhou et al. 1999). The formation and asymmetric nature of the tidal vortex are 

due to topographic effects, and the Coriolis force has no influence on the 

behavior of them (Brown et al. 2000; Hench and Luettich 2003). Furthermore, 

the inclusion of the Coriolis Effect has a dynamical role in the interaction of the 

topography with the flow when the characteristic velocity scale of the tidal flow is 

sufficiently small (Davies et al. 1995) . This is given when the Ekman number 

Ek, and the Rossby number Ro are both significantly less than one (Davies et al. 

1990; Davies et al. 1995). 

22 sin
Ek

L






         (1) 

2 sin
U

Ro
L 




         (2) 

 

Where   is the viscosity of the fluid, L and U are respectively, characteristic 

length and velocity scales of the phenomenon, Ω is the angular velocity of the 

rotation of the earth, and φ is the latitude. In the particular case of tidal jets the 

Coriolis Effect is not relevant on the behavior along the lifetime of a tidal vortex.  

 

In the laboratory experiments conducted by Kashiwai (1984), he identified three 

types of propagation of the tidal vortex jets that were defined by the non-

dimensional parameter / MAXW U T . Depending on the value of the given 

parameter compared with a critical value, the tidal vortex would have a life-

history Type I, II or III (Kashiwai 1984; Kashiwai 1985; Kashiwai 1985). Type I) 

the tidal vortex flows out to the open coast and there merges with successive 

vortexes cores into a core of tidal residual circulation, Type II) the tidal vortex 
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flows out to the open coast not very far from the mouth of the inlet on the ebb, 

and then returns back into the estuary on the following flood tide, and Type III) 

the tidal vortex flows out to the open sea to escape away from the inlet and 

never come back (Kashiwai 1984).  

 

Using a sinusoidal wave to simulate a tidal regime and perform laboratory 

studies, Well and Van Heijst (2003) establish that the critical value for the non-

dimensional parameter /W MAXK W U T  is 0.13. This means that if 0.13WK   

(Type III), the vortex dipole will escape away from the inlet, and if 0.13WK   

(Type II), the structures will get drawn back into the estuary. Although the critical 

value was set to be 0.13WK  , there is a transition stage between the Type II 

and III life-history of the vortex. Then the critical value range from 0.085WK   to 

0.182. Table 3 presents a summary of the experiments conducted by Kashiwai 

(1984) and Wells (2003). Also in the Table 3 the mixing efficiency is presented 

as another way of classification for the regime of the tidal vortex dipoles.  
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Table 3 Summary of vortex life-history types of vortex described by Kashiwai 
(1984) and Wells (2003). 

KW 
LIFE-HISTORY 

TYPE 
CASE MIXING 

≈ 0.13 Type I Stationary Intermediate 

>> 0.13 Type II Entrain Poor 

<< 0.13 Type III Escape Efficient 

 

 

Over the past years, researchers have worked to understand the eddy structures 

using the dual plane Particle Image Velocimetry (PIV) technique (Lin et al. 2003; 

Shinneeb et al. 2004; Feng et al. 2005; Ganapathisubramani et al. 2005; 

Ganapathisubramani et al. 2006). Because of these previous studies the PIV 

method in two-dimensional plane is well known for the analysis of dipole vortex 

using tracer floating plastic particles to obtain the surface water velocity, which is 

an indicative of the depth average velocity in shallow water flows.  

 

The PIV method is based on the position of the tracer particles contained in the 

images to determine the velocity of the flow. Subdividing the image into 

interrogation areas, a vector is found for each of these sub areas using cross-

correlation techniques (Shinneeb et al. 2004). The PIV method is subject to 

errors that occur from the resolution of the images, the density of the seeding, 

large velocity gradients, or poor image quality, among others (Foucaut and 

Stanislas 2002). Then, is necessary to apply post processing techniques to find 

and fix these errors. Most of them can be easily found.  
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In the present research the PIV method was applied to investigate the flow field 

and vorticity field of the formation and life-history of the tidal vortex. The PIV 

data provide detailed time-evolution information of the tidal vortex that was 

formed in the experiments, so a quantitative analysis was developed. Also, 

animations were created with the PIV data. Using the animations and performing 

experiments with color dye tracers, a qualitative visualization study was carried 

out.  

 

 

2.2 Experimental Design 

The experiments were conducted in the laboratory of the Institute of 

Hydromechanics of the University of Karlsruhe, in Karlsruhe, Germany. The 

laboratory has a shallow water basin with dimensions of 13 x 5.5 meters, with 

the capability to force flow in two directions along the longest side. A sinusoidal 

tidal current forcing was imputed to simulate a flow going back and forth through 

an inlet.  

 

A proper scaling analysis was developed to take the formation of the dipole 

vortex from the actual field scale to the laboratory scale, matching the behavior 

of both flows with physical relations. There are 4 main parameters that define 

the formation of the vortices at the mouth of an inlet: a) Tidal period T; b) Width 

of the inlet W; c) Depth of the flow h; and d) Maximum cross sectional mean 

velocity over one tidal cycle at the mouth of the inlet UMAX. Using the mentioned 

parameters, three dimensionless relations were used to match the nature flow 

with flow on the inlet, Geometric relation (3), Froude number (4), and Mixing 

number (5).  
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Four different types of layouts were set up for the simulations: A) Idealized Inlet; 

B) Inlet with jetties with equal length of the width of the inlet; C) Inlet with jetties 

with length longer than the inlet; and D) Inlet with a thicker barrier island with 

length longer than the width of the inlet. In Figure 4 are shown the layouts of the 

simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Layouts with different geometries: A) Idealized Inlet; B) Inlet with jetties with 
equal length of the width of the inlet; C) Inlet with jetties with length longer than the 
inlet; and D) Inlet with a thicker barrier island with length longer than the width of 

the inlet. 
 

 

For Layout A three types of flows were developed, reproducing the Stationary 

Case (KW ≈ 0.13), Entrain Case (KW >> 0.13), and the Case that the structure 

Escape (KW << 0.13), with 4 tidal cycles each. The characteristics of the regimes 

were selected and calculated in order to achieve the restrictions that the physical 

relations needed to meet, and also taking in account the limitations of the 

shallow water basin. For layouts B through D only the stationary case was 

reproduced, with 1 tidal cycle. The flows simulated a sinusoidal tide. This 

sinusoidal tide was forced with a current, not with a head. This was possible 

because the shallow water basin had the capability to reverse the flow by 

operating 4 valves in order to overturn the direction of the flow. In the Table 4 

the characteristics of the imputed flows are shown. 
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Table 4 Flow parameters used in the different types of life-history 

WIDTH DEPTH PERIOD FLOW VELOCITY FROUDE 

W H T QMAX UMAX Fr 

LIFE-
HISTORY 

TYPE 
[m] [m] [s] [l/s] [m/s] [] 

Type I 1.17 0.1 55 23 0.20 0.20 

Type II 1.17 0.1 37 14 0.12 0.12 

Type III 1.17 0.1 100 23 0.20 0.20 

 

After reviewing the movies from the dye visualizations, two cameras were 

mounted in a crane 3 meters above of the inlet mouth in the shallow water basin, 

in a position to maximize the vortex time in focus. Each camera has a resolution 

of 1024x768 pixels. Using the PIV technique the cameras took 10 images per 

second of the surface of the velocity flow that was seeded with floating particles. 

It was assumed that the surface of the water was representative of the depth 

average flow velocity since the flow was shallow. The whole basin domain was 

seeded with the floating particles, and a seeding dispensator was positioned in 

the “estuary” side of the basin that was continuously spreading more particles 

once the tide started. 

 

 

2.3 Data Analysis 

The PIV system measure the fluid velocity of the surface water seeded with 

particles, by taking two digital images in quick succession. Then, the MPIV 

toolbox written in Matlab developed by Mori and Chang (2003), was applied to 

analyze the images taken in the shallow water basin, using the minimum 

quadratic difference method (MQD), with a process windows size of 32x32 

pixels, and a overlap of 50%. To analyze the obtained sets of data a complete 
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Matlab code was developed to calculate the velocity field for the two cameras, 

the vorticity field, and to identify the region were the vortex were forming. The 

two cameras joined together have a resolution of 1884x768 pixels. Then, using 

the velocity field data, physical parameters of the vortexes were calculated along 

the time series of each experiment, to understand the vortex evolution. 

 

Two main processes were applied to the velocity field data, filtering and 

interpolation. It was necessary to filter the data to remove the vectors that did 

not represent accurately the velocity field in the region that they were 

characterizing (Foucaut and Stanislas 2002). The removal of this noise was 

completed using the median filter in several sub-regions. The threshold to 

eliminate these bad neighboring vectors was 0.8. The velocity field data 

obtained after removing the bad vectors had missing information in some 

regions of the images. For good visualization and further limitations in the 

calculation, the data was interpolated using the Kriging method by applying a 

modified version of the DACE Kriging toolbox (Lophaven et al. 2002). This 

means that the Kriging interpolation was not applied to the whole domain of the 

velocity field all at once, it was divided into sub-windows. Each image was 

initially divided into 20 windows in the current direction, and 10 windows in the 

wall normal direction, if the method did not found more than 3 vectors to 

interpolate any sub-window the program automatically drop the resolution until it 

was able to perform the interpolation. There was a 50% of overlap between sub-

windows. Using this methodology the data turn out to be smoother than the 

whole region interpolated straight away. 

 

The vorticity field was obtained by calculating the circulation (6) at each data 

point of the velocity field, using for this the 8 surrounding vectors of a specific 

location. It was necessary to calculate the velocity gradients using the least 
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squared method (7) for every data point of the velocity field. The vorticity of a 

specific data point is given by Equation (8). 

A

dA             (6) 

2 1 1 2
2 2

10
i i i i

i

f f f fdf
dx x

   
       

       (7) 

A



            (8) 

 

Where ω is the vorticity of a specific data point; Γ is the circulation; and A is the 

area in which the circulation is calculated. 

 

To identify the vortex formation in the different experiments, the method 

proposed by Adrian and Christiansen (2000) that uses an equivalent 2-

dimensional velocity gradient tensor (9) computed in the plane where the PIV 

data was acquired.  

2 D

du du
dx dy

D
dv dv
dx dy
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Where (x,y) and (u,v) the direction and velocities stream-wise and normal to the 

direction of the initial flow. The matrix D2-D will have two real eigenvalues λr, or a 

pair of complex conjugate eigenvalues λci. If the matrix has two real eigenvalues 

the region is dominated by strain, and if it has a pair of complex conjugate 

eigenvalues, the region is dominated by vorticity. Taking the positive value of the 

complex values, λci > 0, and plotting the iso-regions of these values, the location 

where the vortices are forming can be identified. 

 

Figure 5 shows an example of the results of the data analysis. Figure 5 a) shows 

the velocity field. A strong tidal ebb current flowing from the inlet and the 

formation of a coherent structure can be appreciated. Figure 5 b) shows the 

vorticity field. A high vorticity area can be observed in the same area where the 

vortex was forming in a). Figure 5 c) shows the vortex formation identification. 

Besides the main vortex, three other smaller structures can be identified. These 

structures are secondary vortices formed due to the separation of the flow in the 

edge of the inlet. These structures cause a high vorticity region where they are 

formed, but they cannot be identified in the velocity field data.  
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Figure 5 Example of a result for the data analysis of and image for the Life-history 
Type I of the idealized case: a) Velocity field; b) Vorticity field; c) Vortex formation 

identification. 
 

c) 

b) 

a) 
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To understand the behavior of the vortex evolution of each experiment, physical 

parameters were computed along the time series of the simulations. The 

calculated parameters were: a) mean cross sectional velocity at the mouth of the 

inlet, u; b) longitudinal position of the center of the main vortex, X; c) lateral 

position of the center of the main vortex, Y; d) circulation around the main 

vortex, Γ; e) maximum vorticity inside the main vortex, ωMAX; f) equivalent 

diameter of the main vortex, D; and g) total upwelling generated by the main 

vortex Qup. The parameters X, Y, D, and ωMAX were used previously by Davies 

(1995) 

 

The original (nominal) values of the mixing number KW, were calculated using 

the maximum mean cross sectional velocity UMAX, obtained from the formula 

(10). 

MAX
U

Q
A

           (10) 

Where Q is the flow from the pump, and A is the cross sectional area filed with 

water in the inlet. For more accurate vortex evolution and physical parameters 

calculations the real value of KW  in each cycle and layout were calculated using 

the analyzed PIV data. The results are shown in the Table 5. 

 

The KW values were equal to the nominal value in the first cycle of the Layout A, 

and slightly different for the rest of the layouts. In the following cycles of the 

idealize inlet simulation, the values of KW are similar to the nominal value, but 

the life-history Type II case the difference is significant. The Mixing number may 

be different in the following cycles because the mass of water has a momentum 

in the moment of inputting the next cycle.  
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Table 5 Nominal and real values of KW, and maximum mean cross sectional 
velocity over a tidal cycle obtain from the PIV data. 

MAXIMUM VELOCITY KW REAL VALUE 

1st Cycle 
Following 

Cycles 

KW 

NOMINAL 

VALUE 1st Cycle 
Following 

Cycles 
LAYOUT 

LIFE-

HISTORY 

TYPE 
[m/s] [m/s] [] [] [] 

A I 0.19 0.22 0.11 0.11 0.10 

A II 0.19 0.18 0.06 0.06 0.06 

A III 0.11 0.16 0.26 0.29 0.19 

B I 0.18 - 0.11 0.12 - 

C I 0.16 - 0.11 0.13 - 

D I 0.20 - 0.11 0.11 - 

 

Using the real values of the mixing number and the maximum average velocity, 

the physical parameters were non-dimensionalized. The parameters are shown 

in the Table 6. 

 

Table 6 Non-dimensional factors used for the calculation of the physical 
parameters of the vortex evolution  

PHYSICAL PARAMETER 
NON-DIMENSIONAL 

PARAMETER 

u  * /u u U  

X  * /X X UT  

Y  * /Y Y UT  

  * /UW    

MAX
  * /

MAX MAX
W U   

D  * /D D UT  

upQ   * / /up upQ Q UWh   
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Where T is the tidal period of the cycle, W is the width of the inlet, h is the depth 

of the shallow water basin, and U is the maximum average velocity of the tidal 

cycle in the mouth of the inlet. The value of U varies depending on which cycle 

the calculation is made. As the physical parameters were calculated in time 

series evolution, it was necessary to non-dimensionalize the time scale too.  

* /t tU W           (11) 

 

In this case the value of U was taken as the average of the maximum average 

velocities of the tidal cycles in each experiment. 

 

 

2.4 Results 

In order to simulate different cases of the formation of tidal vortex, three 

experiments with an idealized tidal inlet (Layout A) were developed. Main control 

parameters as the maximum mean cross sectional velocity over a tidal cycle 

UMAX, the tidal period T, and the width of the inlet W, were varied to obtain 

different Mixing number KW, and consequently three kinds of vortex formation 

and evolution. These three kinds of vortex formation can be observed in Figure 

6. The sample images were taken when the tidal current was flowing back to the 

estuary (flood stage), at the same non-dimensional tidal period time T = 0.6T*.  
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Figure 6 Dye experimental studies for the idealized inlet. a) Life-history Type I (KW = 
0.11), the vortex dipole remains stationary in the vicinity of the mouth of the inlet. b) 
Life-history Type II (KW = 0.26), the vortex dipole gets drawn back to the estuary. c) 

Life-history Type III (KW = 0.06), the vortex dipole escapes away from the inlet to 
never come back. 

 

 

We can observe in the Figure 6 that the vortex dipole behaves different in each 

three cases: a) the vortex remains stationary near the inlet as flood tide is going 

back towards the inlet; b) the vortex dipole gets drawn back to the estuary side 

of the inlet in the flood tide; c) the vortex dipole escapes away from the inlet to 

never come back.  

 

 

 

a) 

b) c) 
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The information of Figures 5, 7 and 8 were taken at the same time in the tidal 

cycle, T = 0.35T*. Observing the three figures, it is clear that the vortex is 

forming in different spots. In the life-history Type I case, the main vortex is 

forming in the middle of the field of view of the cameras, in the Type II at the 

mouth of the inlet, and in the Type III far away from the inlet. The formation of 

the secondary vortices only appears in the life-history case I and III.  

 

Figure 5 show the result for the data analysis of the Layout A for the life-history 

Type I (KW = 0.11). The velocity field, vorticity field, and the identification of the 

vortical structure are shown in the figure. This data corresponds to the images 

taken at t* = 3.1, that matches the time of the tidal period T = 0.35T*. The tidal 

period of this case is T = 55 seconds. Observing the velocity field data the 

presence of a vortex can be clearly identify in the vicinity of the inlet. Also, at the 

mouth of the inlet, a strong inflow current is going towards the “open coast”, 

generated by the ebb tide. In c) the method proposed by Adrian and 

Christiansen (2000) identifies precisely where the main vortex is forming, 

matching what is observed in the velocity field data. Also, the method identifies 

three secondary vortices that appear due to the separation of the flow at the 

edge of the inlet. The vorticity field shows the locations where the main vortex 

and the secondary vortex are positioned. In addition, strong vorticity appear at 

the mouth of the inlet, generated by the effect of the shear stress of the velocity 

gradients as the flow is increasing in intensity towards the center of the inlet. 

 

Figure 7 show the result for the data analysis of the Layout A for the life-history 

Type II (KW = 0.26). The velocity field, vorticity field, and the identification of the 

vortical structure are shown in the figure. This data corresponds to the images 

taken at t* = 1.8, that matches the time of the tidal period T = 0.35T*. The tidal 

period of this case is T = 37 seconds. Observing the velocity field data, the 

presence of a vortex can be clearly identified almost at the mouth of the inlet. 
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The current generated by the ebb tide is not as strong as the current of the life-

history Type I. In c) the method proposed by Adrian and Christiansen (2000) 

identifies precisely where the main vortex is forming. A strong consistency of the 

three images can be observed, since the vorticity filed, the vortex identification, 

and the vertical structure in the velocity filed data correlates precisely in the 

same spot at the mouth of the inlet. 

 

Figure 8 show the result for the data analysis of the Layout A for the life-history 

Type III (KW = 0.06). The velocity field, vorticity field, and the identification of the 

vortical structure are shown in the figure. This data corresponds to the images 

taken at t* = 5.7, that matches the time of the tidal period T = 0.35T*. The tidal 

period of this case is T = 100 seconds. Observing the velocity field data the 

presence of a vortex can be clearly identify far away from the inlet in the edge of 

the field of view of the cameras (right side). The jet generated by the inflow 

current going towards the “open coast” is larger in this case. In c) the method 

proposed by Adrian and Christiansen (2000) identifies precisely where the main 

vortex is forming, matching what is observed in the velocity field data. Also, the 

method identifies the secondary vortices that appear due to the separation of the 

flow at the edge of the inlet. The vorticity field shows the locations where the 

main vortex and the secondary vortex are positioned. 
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Figure 7 Example of a result for the data analysis of and image for the Life-history 
Type II of the idealized case: a) Velocity field; b) Vorticity field; c) Vortex formation 

identification. 
 

a) 

b) 

c) 
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Figure 8 Example of a result for the data analysis of and image for the Life-history 
Type III of the idealized case: a) Velocity field; b) Vorticity field; c) Vortex formation 

identification. 
 

a) 

b) 

c) 
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Figure 9 shows the result of the vortex evolution analysis for the life-history Type 

I of the idealize inlet. The parameters were calculated only for the vortex formed 

by the ebb tide. All the physical parameters described previously are shown. The 

cross sectional average velocity U*, is not symmetric over the tidal cycles, and is 

not symmetric either on the ebb and flood tides. It reaches a maximum value of 

1.0 and a minimum of -0.6. The center of the main vortex flows away from the 

inlet. Towards the end of each cycle, the slope of the curve tends to go 

horizontal. The maximum value that gets to is 0.24 in the first cycle, and 0.20 in 

the following cycles. In the Y* axis, the vortex flows to the right hand side of the 

inlet (in the direction of the ebb of the tide) in the first cycle, and then returns to 

the initial position. This repeats for the second cycle, but in the third and fourth 

cycles the center of the main vortex never flows to the right side of the inlet and 

never reaches back the original starting Y* value. In the first cycle the circulation 

Γ* increases to a maximum (-0.55) and then gradually decreases until it reaches 

a point that decreases faster and goes to zero. All the tidal cycles behave 

similarly for the circulation around the main vortex. For all cycles the maximum 

vorticity ωMAX* rapidly reaches a maximum value and then decreases for a short 

period to later standstill at -4x10-4. The equivalent diameter of the main vortex 

the first cycle increases to reach 0.025 and then remains stationary at 0.02. In 

the stationary stage a sinusoidal behavior can be detected, as well in the 

following cycles 
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Figure 9 Life-history Type I for Layout A: a) Cross sectional average velocity at the 
mouth of the inlet. b) Longitudinal position of the center of the main vortex starting 

from the edge of the barrier island. c) Lateral position of the center of the main 
vortex starting from the edge of the barrier island. d) Circulation around the main 

vortex. e) Maximum vorticity in the main vortex. f) Equivalent diameter of the main 
vortex. g) Upwelling flowing from the main vortex. 
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Figure 10 shows the result of the vortex evolution analysis for the life-history 

Type II of the idealize inlet. The parameters were calculated only for the vortex 

formed by the ebb tide. All the physical parameters described previously are 

shown. The cross sectional average velocity U*, is not symmetric over the tidal 

cycles, and is not symmetric either on the ebb and flood tides. It reaches a 

maximum value of 0.7 and a minimum of -0.6. The center of the main vortex 

flows away from the inlet reaching a value of 0.1 and then get drawn back to the 

estuary in the first cycle. In the following cycles the vortex moves away from the 

inlet getting a value of 0.25 for the second and third cycle, and 0.15 for the fourth 

cycle. In the Y* axis, the vortex flows to the right hand side of the inlet (in the 

direction of the ebb of the tide) in the first cycle, then returns and pass the initial 

position and goes towards the center of the basin. This repeats for the following 

cycles, but with the values from the boundaries smaller than the first cycle. In the 

first cycle the circulation Γ* increases to a maximum (-0.30) and then gradually 

decreases until it reaches a point that decreases faster and goes to zero. All the 

tidal cycles behave similarly for the circulation around the main vortex, but the 

maximum value for the following cycles is greater (0.50). For all the tidal cycles 

the maximum vorticity ωMAX* increase to a maximum of -8x10-4 and then 

gradually decrease. The equivalent diameter of the main vortex remains 

stationary but varying between 0.02 and 0.04, for all the cycles. A sinusoidal 

variation can be detected.   
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Figure 10 Life-history Type II for Layout A: a) Cross sectional average velocity at the 
mouth of the inlet. b) Longitudinal position of the center of the main vortex starting 

from the edge of the barrier island. c) Lateral position of the center of the main 
vortex starting from the edge of the barrier island. d) Circulation around the main 

vortex. e) Maximum vorticity in the main vortex. f) Equivalent diameter of the main 
vortex. g) Upwelling flowing from the main vortex. 
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Figure 11 shows the result of the vortex evolution analysis for the life-history 

Type III of the idealize inlet. The parameters were calculated only for the vortex 

formed by the ebb tide. All the physical parameters described previously are 

shown. The cross sectional average velocity U*, is not symmetric over the tidal 

cycles, and is not symmetric either on the ebb and flood tides. It reaches a 

maximum value of 1.0 and a minimum of -0.6. The center of the main vortex 

flows away from the inlet. The maximum value is 0.13 in the first cycle, similarly 

in the following cycles. In the Y* axis, the vortex flows to the right hand side of 

the inlet (in the direction of the ebb of the tide) in the first cycle, then returns and 

pass the initial position and goes towards the center of the basin. In the first 

cycle the circulation Γ* increases to a maximum (-0.45) and then gradually 

decreases until it reaches a point that reduces faster and goes to zero. The 

same phenomenon repeats in the third tidal cycle. The circulation of the second 

cycle once it reaches a maximum (-0.20) remains almost stationary.  
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Figure 11 Life-history Type I for Layout A: a) Cross sectional average velocity at the 
mouth of the inlet. b) Longitudinal position of the center of the main vortex starting 

from the edge of the barrier island. c) Lateral position of the center of the main 
vortex starting from the edge of the barrier island. d) Circulation around the main 

vortex. e) Maximum vorticity in the main vortex. f) Equivalent diameter of the main 
vortex. g) Upwelling flowing from the main vortex. 
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Figure 12 has a comparison of the physical parameters of the first tidal cycle 

between the layouts A, B, C and D, that corresponds respectively to numbers 1, 

2, 3 and 4 in the figure. The cross sectional average velocity U*, has a more 

define sinusoidal behavior in Layout A than for the rest of the layouts. The center 

of the main vortex flows away from the inlet up to a value of 0.2 in the idealize 

case. The vortex flows away from the inlet reaching a value of 0.08 for Layout B, 

0.07 for Layout C, and 0.05 for Layout D, to then travel back to the inlet about 

half way. In the Y* axis, the vortex flows to the right hand side of the inlet (in the 

direction of the ebb of the tide) in the first cycle, then returns and pass the initial 

position and goes towards the center of the basin. We can observe that Layouts 

B, C and D have similar values among them, and larger values compared with 

Layout A. The circulation Γ* increases to a maximum (-0.55) and then gradually 

decreases until it reaches a point that decreases faster and goes to zero for 

Layout A. For the other Layouts it behaves similarly, but with smaller maximum 

values: -0.20 for Layout B, -0.30 for Layout C, and -0.35 for Layout D. For all the 

layouts the maximum vorticity ωMAX* increase to a maximum of and then 

gradually decrease with different intensities. The maximum value is: -8x10-4 for 

A, -6x10-4 for B, -5x10-4 for C, and -4x10-4 for D. The equivalent diameter of the 

main vortex increases to reach 0.025 and then remains stationary at 0.02 in 

Layout A. In the stationary stage a sinusoidal behavior can be detected. The rest 

of the layouts perform likewise Layout A, but achieving different values for the 

maximum and the stationary stage.  
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Figure 12 1) Layout A. 2) Layout B. 3) Layout C. 4) Layout D. a) Cross sectional 
average velocity at the mouth of the inlet. b) Longitudinal position of the center of 

the main vortex starting from the edge of the barrier island. c) Lateral position of the 
center of the main vortex starting from the edge of the barrier island. d) Circulation 

around the main vortex. e) Maximum vorticity in the main vortex. f) Equivalent 
diameter of the main vortex. g) Upwelling flowing from the main vortex. 
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2.5 Discussion 

Observing the Figures 5 through 8 (PIV results and dye studies snapshots), it is 

clear that the Mixing number KW predicts accurately how is going to be the 

behavior of the vortexes for the first cycle of idealized inlets. For the same tidal 

period T = 0.35T*, the position of the vortex varies as the input Mixing number 

changes. For the life-history Type I, the eddy remains stationary near to the 

mouth of the inlet; for Type II case, the vortex stays at the mouth of the inlet, and 

in the flood this gets drawn back to the estuary; finally for the life-history Type III, 

the vortex goes away from the inlet to never come back.  

 

This is corroborated by the information of the longitudinal position of the main 

vortex in Figures 9 through 11 that shows the exact phenomenon described 

above. For the life-history Type I, at the end of each tidal cycle the curve of the 

X* position tends to go horizontal, which can be viewed that the vortex reaches a 

stationary position. Similarly, for life-history Type II the curve goes to a maximum 

and the returns to zero, which means that the structure gets drawn back to the 

estuary; and for the Type III case the curve just goes straight until the vortex 

gets out of the field of view.  

 

For the life-history Type II, in which the structure is suppose to get drawn back 

the estuary, we can observe that this happens for the first cycle, but does not for 

the following ones. Table 5 shows that for the first cycle KW = 0.29, and for the 

following ones KW = 0.19. The value of the mixing number for the subsequent 

cycles is closer to the critical value KW = 0.13, so the vortex of the following 

cycles does not get entrains to the estuary. For the life-history Types I and III, 

the values for the Mixing number shown in the Table 5, are similar for the first 

and following cycles. The behavior of the vortex on the second cycle is different 

than the conduct of the structure for the first tidal cycle. This is because, despite 

that the KW values are similar, the presence of the vortex of the preceding cycle 
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acts as a blocking structure and affects the behavior of the new structure coming 

out from the mouth of the inlet.  

 

The asymmetry on the cross sectional average velocity of the tidal cycles 

explains the different values for KW in the same experiment. This asymmetry 

may be caused because the inlets were not in the middle of the basin. Other 

reason may be that in the first tidal cycle the water is standing still, and for the 

following cycles the mass of water has a momentum in the moment of inputting 

the next cycle.  

 

Layout A behaves different than the other layouts. For the longitudinal position 

X* the vortex in Layout A flows away and remain stationary at the end of the 

curve. In the other layouts, the vortex flows away and then goes back towards 

the inlet around half of the travel distance. For the lateral position Y* in the 

layouts B, C and D the vortex flows towards the wall of the basin in the 

beginning of the cycle, and towards the middle of the basin at the end of the 

cycle in a more dramatic way than for the Layout A. This two phenomenon may 

be explained because of the stronger tidal jet generated by the channel 

constructed by the jetties or barrier island. When the flow is driven by the flood 

tide, this stronger jet drives the vortex towards the inlet in the X* position, and 

towards the middle in the Y* position.  

 

Figure 13 shows a comparison between the circulation of the first tidal cycle of 

the life-history Type I, II and III, for Layout A, and life-history Type I, for Layout 

B, C and D. The plots have fitted curves to the growth of the value of circulation, 

and a curve fitted to the decay of the strength of the circulation. A third curve 

could be adjust at the end of the cycle, when the circulation goes down to zero, 

but it has no physical meaning because at that point the main vortex start 

leaving the image, and that is the reason why the decaying rate is faster.  
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Figure 13 a) Circulation around the main vortex for life-history Type I, Layout A. b) 
Circulation around the main vortex for life-history Type II, Layout A. c) Circulation 
around the main vortex for life-history Type III, Layout A. d) Circulation around the 
main vortex for life-history Type I, Layout B. e) Circulation around the main vortex 

for life-history Type I, Layout C. a) Circulation around the main vortex for life-history 
Type I, Layout D.  
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Observing the lines fitted to the data, we can appreciate that the slopes of these 

are similar comparing the six experiments. The slopes were calculated with a 

linear regression between the data contemplated in the growing or decaying 

sections. The numerical values of these slopes are shown in the Table 7. A 

propagation of error analysis was done for this calculation of the slope, to take in 

account the errors of measurement that can be made. The time between to 

images has an associated error of ± 0.001 [s]; and the associated error for the 

root mean square error (rmse) the circulation is ± 0.0001. Then, the estimated 

error for the slope calculation is ± 0.02.  

 

Table 7 Slopes of the fitted curves for the growth and decay of the circulation of 
the main vortex for the first cycle, with an associated error of ± 0.020. 

CIRCULATION SLOPE KW REAL 
VALUE Growth Decay LAYOUT 

LIFE- 
HISTORY 

TYPE 
[] [] [] 

I 0.11 -0.038 0.007 
II 0.06 -0.039 0.005 A 
III 0.29 -0.040 0.007 

B I 0.12 -0.015 0.012 
C I 0.13 -0.026 0.003 
D I 0.11 -0.023 0.003 

 

 

For the simulations done for Layout A the slopes have almost the same value. 

For the rest of the layouts the growth and decay rates are similar, but not equal. 

The values suggest that the circulation is slightly decreasing its intensity once 

the vortex reaches the maximum value, so the vortex will decay also in area and 

strength.  

 

The secondary vortices formed in the stationary and escape case, are due to the 

separation of the flow at the edge of the inlet or barrier island. A secondary 

vortices analysis was done by observing the movies of the dye studies. The 
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Strouhal number associate the frequency that the vortices are forming at the 

peak of the tidal cycle, the radius of curvature of the edge of the barrier island, 

and the maximum cross sectional average velocity.  

c

t

MAX

R f
S

U
           (12) 

 

Where Rc is the radius of curvature of the barrier island, f is the frequency of the 

formation of the vortices, and UMAX is the maximum velocity.  

 

A propagation of error analysis was done for this calculation, to take in account 

the errors of measurement that can be made. The frequency of the vortices has 

an associated error of ± 0.1 [Hz]; the radius of curvature of the barrier island has 

an associated error of ± 0.05 [cm]; and the associated error for the maximum 

velocity is ± 0.01 [m/s]. Then, the estimated error for the Strouhal Number is      

± 0.1.  

 

Table 8 shows the frequency of the formation of the vortices for layouts A 

through D, and Table 9 shows the Strouhal Number for layouts A through D, 

only for Life-History types I and II. The type III was not calculated because it was 

difficult to observe the formation of the secondary vortices. 
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Table 8 Frequency of the formation of the secondary vortices in the peak of the 
first and second tidal cycles, with an associated error of ± 0.1 [Hz]. 
 

 

 

 

 

 

Table 9 Strouhal Number of the secondary vortices present in the first and 
second cycles of the tidal flow, with an associated error of ± 0.1. 

KW = 0.11 KW = 0.06 
Strouhal Number Strouhal Number EXPERIMENT RADUIS OF 

CURVATURE 
1st Cycle 2nd Cycle 1st Cycle 2nd Cycle 

 [cm] [] [] [] [] 

Layout A 0.075 0.4 0.2 0.2 0.2 

Layout B 0.075 0.4 0.2 - - 

Layout C 0.075 0.3 0.2 - - 

Layout D 0.15 0.8 0.6 - - 

 

 

 

KW = 0.11 KW = 0.06 
Frequency Frequency EXPERIMENT 

1st Cycle 2nd Cycle 1st Cycle 2nd Cycle 
 [1/s] [1/s] [1/s] [1/s] 

Layout A 0.9 0.7 0.6 0.5 

Layout B 1.0 0.6 - - 

Layout C 0.7 0.7 - - 

Layout D 1.1 1.1 - - 
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A sinusoidal behavior can be identified once the circulation reaches the 

maximum value and during the slightly decay of this in the Figure 13. Also, it can 

be observed that the detached secondary structures from the edge of the barrier 

island, flows away from the inlet to finally join the main vortex. The frequency in 

which they join the main vortex is similar to the frequency of formation of the 

structures. In the circulation plots in Figure 13 shows that once the maximum 

value is reached, then the intensity of the circulation starts decaying with a 

sinusoidal behavior. This sinusoidal performance is due to the presence of these 

secondary vortices that are joining the main vortex, and inputting extra vorticity 

increasing the circulation once they amalgamate the main structure.  

 

Table 9 shows that the Strouhal number for the Layout D is greater than the 

values for the others layouts. This is corroborated in the Figure 13 f) were the 

circulation of this layout is shown for the first cycle, and we can appreciate that 

the sinusoidal tendency with an evidently larger period. 

 

Finally, we can say that the maximum vorticity behavior is similar to the 

circulation but with narrower limits. The maximum vorticity grow and then slightly 

decays. For the equivalent diameter we can observe that once the vortex 

reaches the maximum this remains with a constant width.  

 

Regarding the upwelling flowing from the main vortex we can say that takes part 

on the process of dissipation of the vortex that is probably dominated by the 

bottom friction. The upwelling is derivated from the continuity equation (13). 

0
u v w
x y z
  

  
  

         (13) 

Then assuming that  u x v y      is constant over the vertical, the divergence 

is calculated as following: 
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x y

  
       

        (14) 

 

Where Qup is the upwelling flow, h is the depth of the flow, ∆x and ∆y defines the 

area where the upwelling is calculated, and (x,y) and (u,v) the direction and 

velocities stream-wise and normal to the direction of the initial flow.  

 

 

2.6 Summary and Conclusions 

Experiments developed in the shallow water basin of the Institute of 

Hydromechanics of the University of Karlsruhe, Germany have been presented 

and analyzed. Typical flows through tidal inlets were modeled varing the tidal 

period T, and the average cross sectional maximum velocity UMAX. The mixing 

and transport properties, and physical parameters were calculated using 

visualization and Particle Image Velocimetry (PIV) techniques.  

 

For idealized inlets, the behavior of the three types of life-history of the vortex 

dipoles simulated (stationary, entrains and escape dipoles) were predicted 

accurately by the mixing number KW, for the first tidal cycle. For the subsequent 

tidal cycles the structures behave differently than predicted by KW. This different 

behavior may be caused because in the first tidal cycle the water is standing still, 

and for the following cycles the mass of water has a momentum in the moment 

of inputting the next cycle. The most critical case is when the mixing number is 

inputted as KW  = 0.26, because in the second and following cycles the vortex 

dipole does not get entrained. 

Regarding the formation of the vortex dipole, for characteristics non-dimensional 

times * /t tU W  less than 2.2 the structure is attached to the inlet and forms 

rapidly for all the cases simulated. For later times the dipole advects 
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downstream and start slowly decaying in intensity. If the tide reverses before this 

characteristic time is reached, then the eddy will get drawn back to the “estuary” 

side of the inlet.  

 

The circulation plots shows that once the vortex reaches the maximum value, 

the magnitude of the circulation starts decaying (dissipating) with a sinusoidal 

behavior. This sinusoidal conduct is due to the presence of the secondary 

vortices that join the main vortex with a certain frequency that matches the 

sinusoidal peaks. The formation of the secondary vortices can be observed in 

the Figure 6 a) and c).  

 

The decaying of the circulation after the vortex is detached from the inlet may be 

caused by the bottom friction and the upwelling of low-momentum bottom water. 

The decaying rate is similar for most the idealized inlet simulations and the life-

history Type I for the complex inlets (jetties and barrier island).  

 

Is interesting to observe that longitudinal position X* the vortex in Layout A flows 

away and remain stationary at the end of the curve. In the other layouts, the 

vortex flows away and then goes back towards the inlet around half of the travel 

distance. This tells us that the vortex, eventhough remains stationary, it is 

influenced by the flood tide that is pulling it slightly towards the inlet.  
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CHAPTER III 

 

NUMERICAL MODELING 

 

A series of numerical simulations using the shallow water wave equation and 

depth average model ADCIRC, were develop to predict the formation of the 

vortex dipole. 

 

 

3.1 Model Description 

The Advanced Circulation model (ADCIRC), is a two-dimensional, depth-

integrated, barotropic time-dependent long wave, hydrodynamic circulation 

model (Luettich and Westerink 2000). ADCIRC can be run either as a two-

dimensional depth integrated model or as a three-dimensional model.  

 

In the present investigation, the two dimensional momentum equations are 

solved by the model. Then, ADCIRC solves the vertically-integrated momentum 

equations to determine the depth-averaged velocity (Luettich and Westerink 

2000). Specifically ADCIRC uses the shallow water form of the momentum 

equations (applying the Boussinesq and hydrostatic pressure approximations). 

 

 

3.2 Methodology 

The objective of the numerical modeling is to simulate the experiments of the 

idealized inlet conducted in the shallow water basin of the Institute of 

Hydromechanics of the University of Karlsruhe, in Karlsruhe, Germany. To take 

the formation of the vortex dipole to simulation domain, the same methodology 

used in Appendix A.1 was used. This means that the behavior of the flow regime 
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was matched using the Froude number, a geometrical parameter and the Mixing 

number. Table 10 presents the geometric parameters of the layout and the 

characteristics of the flow for different life-history types of vortex dipole 

formation. 

 

 

Table 10 Geometric parameters and the characteristic of the flow for different 
life-history types of vortex dipole formation 

MIXING 
NUMBER WIDTH DEPTH PERIOD VELOCITY FROUDE 

KW W h T UMAX Fr 

LIFE-
HISTORY 

TYPE 
[] [m] [m] [min] [m/s] [] 

Type I 0.11 1170 10 90 2.0 0.20 

Type II 0.26 1170 10 63 1.2 0.12 

Type III 0.06 1170 10 164 2.0 0.20 

 

 

 

3.3 Results 

In Figures 14 and 15 sample images are shown of the numerical simulations 

done with ADCIRC. 
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Figure 14 Numerical simulation of Layout A. Life-history Type II (KW = 0.26) 
 

 

Figure 14 provides sample images of the time evolution of the simulation with 

the idealized inlet and life-history Type II (entrained case): a) Formation of the 

vortex dipole at the ebb of the first tidal cycle. b) The structure get drawn back to 

the estuary as predicted by the Mixing number KW = 0.26.  

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 
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Figure 15 Numerical simulation of Layout A. Life-history Type III (KW = 0.06) 
 

 

Figure 15 has sample images of the time evolution of the simulation with the 

idealized inlet and life-history Type III (escape case): a) Formation of the vortex 

dipole at the ebb of the first tidal cycle. b) The structure escapes away from the 

inlet as predicted by the Mixing number KW = 0.06.  

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 
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3.4 Application Discussion 

After analyzing the numerical modeling simulations, the following comments can 

be made: 

 

 The results of the numerical simulations shows that the model can predict 

with precision the formation of the vortex dipole as expected by the 

calculation of the Mixing number KW.  

 To have accurate results, is better to run the ADCIRC model with shallow 

cells. This means that not only the entire domain has to have a shallow 

flow, but also each cell by itself has to accomplish this. This assumption is 

made because the model solves the shallow water wave equation, hence 

solving the equation that takes care of that condition, improves the 

results. 

 The grid and parameters had to be up scaled in order to get better 

numerical stability and grid resolution. This also helps to accomplish the 

shallowness of each cell. 

 If the secondary vortices wanted to be simulated, better resolution is 

needed, this is because the sizes of the vortices are small and fit in one 

cell. This may be incompatible if the shallowness of each cell wanted to 

be maintained.  
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CHAPTER IV 

 

CONCLUSIONS 

 

Experiments developed in the shallow water basin of the Institute of 

Hydromechanics of the University of Karlsruhe, Germany have been presented 

and analyzed. Typical flows through tidal inlets were modeled varing the tidal 

period T, and the average cross sectional maximum velocity UMAX. The mixing 

and transport properties, and physical parameters were calculated using 

visualization and Particle Image Velocimetry (PIV) techniques.  

 

For idealized inlets, the behavior of the three types of life-history of the vortex 

dipoles simulated (stationary, entrains and escape dipoles) were predicted 

accurately by the mixing number KW, for the first tidal cycle. For the subsequent 

tidal cycles the structures behave differently than predicted by KW. This different 

behavior may be caused because in the first tidal cycle the water is standing still, 

and for the following cycles the mass of water has a momentum in the moment 

of inputting the next cycle. The most critical case is when the mixing number is 

inputted as KW  = 0.26, since in the second and following cycles the vortex dipole 

does not get entrained. 

 

The non-idealized geometries can behave differently as predicted by the mixing 

number. And the jetties and barrier islands give most complex flow structures 

with multiple eddies flowing from each side of the inlet, because the formation of 

vortex on the flood tide inside the channel flows out towards the “open coast” 

during the subsequent ebb tide.  

 

Regarding the formation of the vortex dipole, for characteristics non-dimensional 

times * /t tU W  less than about 2.2 the structure is attached to the inlet and 
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forms rapidly for all the cases simulated. For later times the dipole advects 

downstream and start slowly decaying in intensity. If the tide reverses before this 

characteristic time is reached, then the eddy will get drawn back to the “estuary” 

side of the inlet.  

 

In the circulation plots can be observed that once the vortex reaches the 

maximum value, the magnitude of the circulation starts decaying (dissipating) 

with a sinusoidal behavior. This sinusoidal conduct is due to the presence of the 

secondary vortices that join the main vortex with a certain frequency that 

matches the sinusoidal peaks. The secondary vortices can be observed in the 

movies of dye studies simulations in Appendix C. 

 

The decaying of the circulation after the vortex is detached from the inlet may be 

caused by the bottom friction and the upwelling of low-momentum bottom water. 

The decaying rate is similar for most of the idealized inlet simulations and the 

life-history Type I for the complex inlets (jetties and barrier island).  

 

Is interesting to observe that longitudinal position X* the vortex in Layout A flows 

away and remain stationary at the end of the curve. In the other layouts, the 

vortex flows away and then goes back towards the inlet around half of the travel 

distance. This tells us that the vortex, eventhough remains stationary, it is 

influenced by the flood tide that is pulling it slightly towards the inlet.  

 

Building inlets with oblique angles simulates the behavior of an inlet with cross-

shore current. This can be appreciated since the vortex dipole does not go in a 

straight line after leaving the inlet area.  

 

The numerical modeling simulation results shows that the model predict 

accurately the formation and behavior of the tidal dipole vortex expected by the 
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mixing number KW. However, to have correct physical results is better to run 

ADCIRC with shallow cells not only in the entire domain, but also each cell by 

itself.  
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APPENDIX A 

 

METHODOLOGY OF THE EXPERIMENTS 

 

A series of experiments were conducted the summer of 2006 in the University of 

Karlsruhe, in Karlsruhe, Germany. The present Appendix explains the 

methodology of how these experiments were developed. 

 

 

1 Scaling 

The objective of the experiments is to simulate a flow that occurs in nature on a 

laboratory facility were measures can be taken, and the parameters that control 

the flow are easily adjustable. To take the formation of 2DCS from the actual 

field scale to the laboratory scale, a methodology to match the behavior of both 

flows was developed. A set of 4 parameters that define the characteristics of the 

formation of the vortex was used. These 4 parameters are: tidal period T, width 

of the inlet W, depth of the channel h, and the maximum average velocity over 

one tidal cycle in the middle of the inlet UMAX. Using the previously mentioned 

factors, 3 dimensionless parameters were constructed which are the Froude 

Number, geometric width / depth inlet ratio, and the mixing number.  

 

 

Froude number  

The Froude number is a dimensionless number that can be interpreted as the 

ratio of the inertial forces to the gravity forces in the flow.  
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MAXU
r

gh
F           (15) 

 

Where U is the characteristic velocity of the flow, g is the acceleration of gravity, 

and L is the characteristic length of the flow. When the Froude number is equal 

to one, the speed of the surface wave and that of the flow is the same. The flow 

is in the critical state. When the Froude number is less than one, the flow 

velocity is smaller than the speed of a disturbance wave traveling on the surface. 

Flow is considered to be subcritical. Gravitational forces are dominant and the 

surface waves will propagate upstream. When the Froude number is greater 

than one, the flow is supercritical and inertial forces are dominant and the 

surface waves will not propagate upstream. 

 

In the experiments that were carried out, the characteristic velocity used was set 

to be UMAX, and the length scale was the water depth h. The value of the Froude 

number cannot be larger than 0.20, to match the behavior of the flow in the 

nature.  

0.20MAXU
r

gh
 F          (16) 

 

The value for the Froude number of 0.20 was calculated from inlets along the 

Texas coast. This was obtained with a characteristic maximum tidal velocity of        

2 [m/s], and a depth of 10 [m].  

Geometric ratio 

One of the basic assumptions of these experiments is that the flow is shallow; 

therefore in order to maintain the shallowness of the flow in the simulations the 
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parameters has to match a geometric ratio. This parameter for this particular 

experiment was found to be: 

10
W

h
           (17) 

 

 

Mixing number 

The Mixing number is similar to the Strouhal number, which is a dimensionless 

factor used in studying the vibrations of a body past which a fluid is flowing; it is 

equal to a characteristic dimension of the body times the frequency of vibrations 

divided by the fluid velocity relative to the body.  

t

MAX

Wf
S

U
           (18) 

 

Where St is the dimensionless Strouhal number, f is the frequency of vortex 

shedding, L is the characteristic length (for example hydraulic diameter) and V is 

the velocity of the fluid.  

 

The Mixing number that is used in this research takes the tidal period, instead of 

the frequency to compute this dimensionless factor: 

W

MAX

W
K

U T
           (19) 

 

Where KW is the dimensionless Mixing number, W is the width of the inlet, T is 

the tidal period in the zone which is located the inlet, and UMAX is the maximum 

mean velocity in the middle of the inlet over a tidal cycle. 
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In the Table 11 is shown the interpretation of the Mixing number. The 

information provided by the Table 11 is a summary of the researches done by 

Kashiwai (1984) and Wells and van Heijst (2003). 

 

Table 11 Summary of the researches done by Kashiwai (1984) and Van Heijst 
(2003) of the interpretation of the mixing number  

KW 
LIFE-HISTORY 

TYPE 
CASE MIXING 

 ≈ 0.13 
Type I 

Stationary Intermediate 

>> 0.13 
Type II 

Entrain Poor 

<< 0.13 
Type III 

Escape Efficient 

 

 

This means that if the Mixing number is less than 0.13 the vortex dipole will 

escape from the inlet, and if KW is larger 0.13 the structure will get drawn back 

into the estuary. Also, there is a critical case were the structure is supposed to 

remain stationary near the mouth of the inlet.  

 

The dimensionless number is named as mixing number in this research, to 

adopt an environmental meaning for the parameter. The factor measure how 

efficient is the mixing done by the characteristics of the flow. 
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2 Experimental Set Up 

A set of experiments were developed in the shallow water basin of the University 

of Karlsruhe, Germany. There were used 8 different geometries for the 

simulations: 

 

 Layout A: Idealized inlet (Figure 16). 

 Layout B: Inlet with jetties with equal length than the inlet (Figure 17). 

 Layout C: Inlet with jetties length longer than the inlet (Figure 18. 

 Layout D: Inlet with a wider width, simulating a barrier island (Figure 19). 

 Layout E: Inlet with one big obstacle at the mouth of the inlet (Figure 20). 

 Layout F: Inlet with small obstacles at the mouth of the inlet (Figure 21). 

 Layout G: Inlet with small obstacles at the mouth of the inlet (Figure 22). 

 Layout H: Inlet in an oblique angle (Figure 23). 

 

For layouts A to D there were developed 3 types of flows, reproducing the 

Stationary case (KW ≈ 0.13), Entrain case (KW >> 0.13), and the case that the 

structure is suppose to Escape (KW << 0.13).  

 

For layouts E to H, only the Stationary Case was analyzed, because only the 

effect of the structures and the angle wanted to be investigated.  

 

 

A.1.1 Layouts 

In the Figures A.1 to A.8 the layouts of the experiments are shown.  
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Figure 16  Layout A: Idealized inlet 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17  Layout B: Inlet with jetties with equal length than the inlet 
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Figure 18  Layout C: Inlet with jetties length longer than the inlet 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19  Layout D: Inlet with a wider width, simulating a barrier island 
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Figure 20  Layout E: Inlet with obstacles in the mouth of the inlet. Case A 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21  Layout F: Inlet with obstacles in the mouth of the inlet. Case B 
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Figure 22  Layout G: Inlet with obstacles in the mouth of the inlet. Case C 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23  Layout H: Inlet in an oblique angle 
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Characteristics of the flows 

As was mentioned before, for experiments A through D there were developed 3 

kinds of flows, reproducing the Stationary Case (KW ≈ 0.13), Entrain Case (KW 

>> 0.13), and the Case that the structure is suppose to Escape (KW << 0.13). 

For experiments E through H, only the Stationary Case was analyzed, because 

only the effect of the structures and the angle wanted to be investigated. 

 

The flows simulated a sinusoidal tide, with 5 cycles for experiment A and 3 

cycles for the rest of the experiments. This sinusoidal tide was forced with a 

current, not with a head. This is possible because the shallow water basin has 

the capability to reverse the flow, by operating 4 valves in order to overturn the 

direction of the flow.  

 

The pump that generates the currents had to be operated at least in a 10% of its 

maximum capacity, in order to have accuracy of the flow that was inputting. The 

maximum flow that the pump can force is 120 [l/s]. Consequently, the minimum 

value that the pump could be operated was 12 [l/s].  

 

The characteristics of the flows were selected and calculated carefully to 

achieve the restrictions that the physical parameters needed to meet, and also 

taking into account the limitations of the facilities of the University of Karlsruhe. 

 

A hydrodynamic stability analysis of the flow was developed as well (Socolofsky 

and Jirka 2004), to study the stability of the tailing jet. The calculations show that 

for the given size of the shallow water basin only the unstable case was able to 

be simulated. To be unstable in this case means that the centerline of the jet will 

meander and multiple secondary vortices will develop at the sides of the jet  
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Table 12 presents the geometric parameters of the layouts, and the Table 13 

presents the characteristics of the different flow inputted to the layouts. 

 

Table 12 Geometric parameters used in the different layouts 

EXPERIMENT JETTIES BARRIER 
ISLAND ANGLE WIDTH 

 L D α W 

 [m] [m] [degrees] [m] 

Layout A - 0.15 0 1.17 

Layout B 1.17 0.15 0 1.17 

Layout C 2.3 0.15 0 1.17 

Layout D - 1.17 0 1.17 

Layout E - 1.17 0 1.17 

Layout F - 1.17 0 1.17 

Layout G - 0.15 0 1.17 

Layout H - 0.15 10 and 20 1.17 

 

Table 13 Flow parameters used in the different types of life-history 

DEPTH PERIOD FLOW VELOCITY STABILITY FROUDE 

H T QMAX UMAX Sf Fr 

LIFE-
HISTORY 

TYPE 
[m] [s] [l/s] [m/s] [] [] 

Type I 0.1 55 23 0.20 0.08 0.20 

Type II 0.1 37 14 0.12 0.09 0.12 

Type III 0.1 100 23 0.20 0.08 0.20 
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3 Dye Visualizations Studies 

Dye studies were conducted in the shallow water basin to help in the 

visualization of the formation of the vortex. This technique was applied for 

layouts A through D, and layout H. 

 

 

Measurement equipment  

The equipment used for the simulation of the experiments for the visualization 

with dye is the following: 

 

 Flow meter  

 Red dye 

 Dye injector with different frequency of injection 

 Cannon A 75 Photo Camera used as a video camera 

 

 

Dye visualization studies measuring methodology  

The procedure for filming the movies of the visualization studies was the 

following: 

 

1) Turn on the camera. 

2) Activate the dye disposal jets. 

3) Set in motion the pump to start the flow. 

4) Every time that the pump reaches half a cycle of the sinusoidal flow, 

operate the valves to change the direction of the flow (2 people needed 

for this). 
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4 PIV Studies 

The PIV method (Particle Image Velocimetry) was developed to obtain 

qualitative and quantitative data. This means that movies of the velocity and 

vorticity fields are obtained, but also each frame is analyzed to acquire 

information about the vortex evolution, and the secondary eddies as well. This 

technique was applied for all the layouts.  

 

 

Measurement equipment 

The equipment used for the simulation of the experiments for the PIV studies are 

the following: 

 

 Flow meter. 

 Depth sensors (2). 

 Cameras Photonfocus MV-D1024, 10 frames per second, 1024x768 

pixels. 

  300 GB of storage capacity. 

 Polyurethane seeding particles, 2 [mm]. 

 Seeding dispensator.  

 

 

PIV studies measuring methodology  

After reviewing the movies of the dye visualizations the two cameras were set in 

a position to maximize the vortex time in focus. The cameras were mounted in a 

crane 3 meters above the basin. 
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It was assumed that the surface of the water was representative of the depth 

average flow velocity since the flow was shallow. This is important because the 

seeding particles were floating in the surface of the water.  

 

The seeding dispensator was located at the entrance of the inlet were the flow is 

forced initially.  

 

The stopwatch was used to measure the time between the moment the cameras 

start capturing images and when the flow starts. 

 

The procedure for acquiring the images for the PIV analysis was the following: 

 

1) Seed the particles in the whole domain of the basin. 

2) Turn on the seeding dispensator.  

3) Trigger the cameras. Activate the stopwatch. 

4) Set in motion the pump to start the flow. Stop the stopwatch.  

5) Activate the depth measuring device. 

6) Every time that the pump reaches half a cycle of the sinusoidal flow, 

operate the valves to change the direction of the flow (2 people needed 

for this). 

 

The camera took 10 images per second, for a total of 5 tidal cycles for the 

idealized inlet and 3 cycles for the rest of the experiments.  
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APPENDIX B 

 

DATA ANALYSIS 

 

The present Appendix shows the results and analysis of the experiments and 

the methodology that was used to study them. 

 

 

1 Visualization 

The visualization of the characteristics of the flow was made with colored dye 

(red) injected on the sides of the inlet. Below are exposed some sample shots of 

specific cases that were filmed, with their correspondent explanation of the 

phenomenon observed.  

 

All the complete movies filmed are provided in the Appendix C. 
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Figure 24  Layout A: Idealized inlet (KW = 0.11) 
  

Figure 24 has sample images of the time evolution of the experiment with the 

idealized inlet and life-history Type I (stationary case): a) Formation of the 2DCS 

at the end of the ebb of the first cycle. b) The structure remains stationary as 

predicted in the first cycle at the end of the flood tide. c) Formation of the vortex 

on the second cycle; it can be observed that are several secondary structures 

forming and getting together with the main structure. d) Ending of the flood of the 

second cycle, and the structure remains stationary but slightly further away than 

the first cycle. 

 

 

 

 

a) b) 

c) d) 
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Figure 25  Layout A: Idealized inlet (KW = 0.26) 
 

Figure 25 has sample images of the time evolution of the experiment with the 

idealized inlet and life-history Type II (entrained case): a) Formation of the 2DCS 

at the end of the ebb of the first cycle. b) The structure gets drawn back to the 

inlet as predicted in the flood tide of the first cycle. c) Formation of the vortex on 

the second cycle; it can be observed (not as clear as the previous figure) that 

are several secondary structures forming and getting together with the main 

structure. d) At the end of the flood of the second cycle the structure remains 

stationary, in a different way as predicted.  

 

 

 

 

a) 

c) 

b) 

d) 
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Figure 26  Layout B: Inlet with jetties with equal length than the inlet (KW = 0.06) 
 

Figure 26 has sample images of the time evolution of the experiment with the 

jetties equal to the length of the inlet and life-history Type III (escape case): a) 

Formation of the 2DCS at the middle of the ebb of the first cycle; the structures 

are closer to sides of the basin than the idealize inlet. b) The structure is in the 

limit of being escaping, and inside the jetties vortex are forming driven by the 

flood tide passing through the inlet. c) The second cycle is starting, and the 

structures formed during the flood are now flowing out with the ebb tide. d) Two 

vortex can be identified in each side, the ones formed by the ebb tide flowing to 

open coast (round shape), and the structures formed during the flood tide 

(further away from the inlet); the structures are spinning in opposite directions. 

Also secondary vortexes are forming.  

d) 

a) b) 

c) 
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Figure 27  Layout D: Inlet with a wider width, simulating a barrier island (KW = 0.13) 
 

Figure 27 has sample images of the time evolution of the experiment simulating 

a barrier island and life-history Type I (stationary case): a) Formation of the 

2DCS at the end of the ebb of the first cycle. b) The structures get drawn back to 

the inlet instead of remain stationary; eddy formation at the sides of the channel 

generated by the flood tide. c) Second cycle: Two vortex can be identified in 

each side, the ones formed by the ebb tide flowing to open coast (round shape), 

and the structures formed during the flood tide (to the sides of the basin); the 

structures are spinning in opposite directions. Also secondary vortexes are 

forming. d) The vortex remains stationary in the second cycle at the flood tide; 

the vortex formed in the flood tide of the first cycle got drawn into the inlet.  

 

a) 

c) 

b) 

d) 
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Figure 28  Layout H: Inlet in an oblique angle: 20° (KW = 0.13) 
 

Figure 28 has sample images of the time evolution of the experiment with the 

inlet in an oblique angle of 20° and life-history Type I (stationary case): a) 

Formation of the 2DCS; the right side vortex is slightly more detached from the 

inlet than the other. b) The vortex remains stationary as predicted, but taking a 

straight line perpendicular to the inlet the right-hand vortex is further away from 

it. c) The 2DCS formed in the second tidal cycle; the secondary vortex can be 

observed. d) Again the right-hand vortex is slightly further away from the inlet in 

the second cycle. 

 

 

 

a) b) 

c) d) 
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From the figures commented above, and the movies that are in electronic format 

in the Appendix C, the following can be identified:  

 

 The mixing number predicts well the behavior of the vortexes for the first 

cycle on idealized inlets. 

 For subsequent tidal cycles, the structures behave differently than 

predicted by KW on idealized inlets. The most critical case is when KW = 

0.26, since is clear that in the following cycles the 2DCS remains 

stationary.  

 Inlets with different geometries than the idealized inlet can behave 

differently than predicted by KW. 

 Jetties and thick barrier islands give most complex flow structure with 

multiple eddies off each side, because of the formation of eddies on the 

flood tide inside the channel flows out towards the “open coast” on the 

subsequent ebb tide.  

 The 2DCS formed in the first cycle on the jetties and barrier island set up 

in the beginning goes near the sides of the basin, and the end of the ebb 

tide and the beginning of the flood tide they move towards the middle of 

the basin. 

 Secondary vortices appear in all the simulated cases with different 

intensities.  

 For visualization purposes the structures were not set up on the middle of 

the basin, thus this may be a factor explaining why the following cycles of 

the life-history Type II did not behave as predicted.  

 Building inlets with oblique angles simulates the behavior of an inlet 

interacting with a cross-shore current. 
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2 Particle Image Velocimetry (PIV) Analysis 

The PIV method is a technique to measure fluid velocity. A PIV system does this 

by taking two digital images of a fluid (gas or liquid), seeded with particles in 

quick succession. Hence, the position of the particles in two successive images 

and the time-step used by the camera are known, the velocity can be computed 

with simple physics. The velocity is calculated in several windows within the 

image, and then each window analyzed will have a specific velocity for that 

exact region (Raffel, Willert et al. 1998). 

 

The MPIV toolbox written in MATLAB and developed by Nobuhito Mori and 

Kuang-An Chang (2003), was used to analyze the images taken in the shallow 

water basin. Specifically, the Minimum Quadratic Difference (MQD) method was 

used since the data studied gave the most accurate results.  

 

Since the computer time estimated for calculating the velocity field using this 

toolbox would have taken too long, the MQD method of the MPIV toolbox was 

reprogrammed in FORTRAN in order to gain time and compute the images 

faster. Only the MQD method was ran in FORTRAN, obtaining the data set of 

the raw velocity fields without interpolation for each camera separately.  

 

A complete code in MATLAB was developed for calculating the velocity field for 

the two cameras joined together, the vorticity field, and for identify the region 

where the vortex were forming. This code is shown in the Appendix C.  

 

Then using the interpolated data, physical parameters of the vortexes were 

analyzed along the time series of each experiment. The parameters studied 

were the circulation, vertical and horizontal position, width, maximum vorticity, 

and upwelling of the vortex at each frame took in the experiment. For the first 

cycle, the slope of the growth and decay of the vortex were calculated.  
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Velocity Field 

The first thing done was removing the data that was in the region where the 

structure (Jetties, Barrier Island or Obstacles) was standing. The PIV method 

analyzes the images and does not recognize if the data is water or structure, so 

the values structures (Inlets, jetties, barrier island) were set up to be zero before 

any calculation was developed.  

  

The calculation of the velocity field was done by applying the MPIV toolbox to all 

the images taken for each experiment. After the data was obtain from the 

reprogrammed FORTRAN code, it was necessary to filter the data to remove the 

vectors that didn’t represent accurately the velocity field in the region that they 

were standing (Foucaut and Stanislas 2002). The removing of the noise was 

done using the median filter in several sub-regions of the image.  

 

The velocity field obtained after removing the bad vectors had missing data in 

some regions. For a good visualization and calculation limitations the data was 

interpolated using the Kriging Method by applying a modified version of the 

DACE Kriging toolbox (Lophaven, Nielsen et al. 2002). This means that the 

Kriging interpolation was not applied to the whole domain of the velocity field all 

at once, it was divided into sub-windows. Each image was initially divided into 20 

windows in the current direction, and 10 windows in the wall normal direction, if 

the method did not found more than 3 vectors to interpolate any sub-window the 

program automatically drop the resolution until it was able to perform the 

interpolation. There was a 50% of overlap between sub-windows. Using this 

methodology the data turn out to be smoother than the whole region interpolated 

straight away. 
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Vorticity Field 

The vorticity field was obtained by calculating the circulation (20) at each data 

point of the velocity field, using for this the 8 surrounding vectors of a specific 

location. It was necessary to calculate the velocity gradients using the least 

squared method (21) for every data point of the velocity field. The vorticity of a 

specific data point is given by Equation (22). 

dl A

udl dA             (20) 

2 1 1 2
2 2

10
i i i i

i

f f f fdf
dx x

   
       

       (21) 

A



            (22) 

 

Where f is the velocity component in the i location, and ∆x is the distance 

between two nearby locations. Where ω is the vorticity of a specific data point; Γ 

is the circulation; and A is the area in which the circulation is calculated. 

 

The least squared approach was used because have a tendency to smooth the 

circulation because the outer values are more weighted than the inner data. 

 

 

Vortex identification 

A universal definition of vortex has not been accepted yet, but it can be describe 

as a tube shaped structure with persistent and coherent rotation along its center 

of mass (Zhou, Adrian et al. 1999). Using this definition two methodologies 

where studied to identify the vortex formation in the present research.  



83 

 

The first method, proposed by Adrian and Christiansen (2000), uses an 

equivalent 2-dimensional velocity gradient tensor computed in the plane where 

the PIV data was acquired.  

2 D

du du
dx dy

D
dv dv
dx dy



 
 
 
 
  

         (23) 

 

Where (x,y) and (u,v) the direction and velocities stream-wise and normal to the 

direction of the initial flow. In this case, the matrix D2-D will have two real 

eigenvalues λr, or a pair of complex conjugate eigenvalues λci. Taking the 

positive value of the complex values, λci > 0, and plotting the iso-regions of these 

values, the location where the vortices are forming can be identified. 

2 2 2

1
4ci

du dv dv du dv du du dv
dx dy dx dy dx dy dy dx

      
           

     
    (24) 

 

The second method proposed by Carmer (2005), uses the Weiss Function 

(Weiss 1991) that compares the magnitudes of the rates of strain and vorticity. 

2 2 2

du dv dv du dv du
Q

dx dy dx dy dx dy

     
          
     

      (25) 

 

Where (x,y) and (u,v) the direction and velocities stream-wise and normal to the 

direction of the initial flow. The named Q Values are calculated in the planar field 

where the PIV data was taken. The regions where these values are negative     

Q < 0, are dominated by vorticity. The regions where these values are positive   

Q > 0, are dominated by strain.  
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The results obtained using the two methods where similar. Both predicted the 

formation of eddies in the same locations, but the values of λci > 0 were found to 

be more consistent for the type of data that this research was analyzing, after 

squared this values before plotting the iso-regions. The values were squared to 

make easier the observation of the forming vortex.  

 

 

Results 

The Figures 29 through 31 shows examples of results of the velocity filed, 

vorticity field and vortex identification, for the three types of life-history cases for 

Layout A.  
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Figure 29 Example of a result for the data analysis of and image for the Life-history 
Type I of the idealized case: a) Velocity field; b) Vorticity field; c) Vortex formation 

identification. 
 

c) 

b) 

a) 
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Figure 30 Example of a result for the data analysis of and image for the Life-history 
Type II of the idealized case: a) Velocity field; b) Vorticity field; c) Vortex formation 

identification. 
 

a) 

b) 

c) 
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Figure 31 Example of a result for the data analysis of and image for the Life-history 
Type III of the idealized case: a) Velocity field; b) Vorticity field; c) Vortex formation 

identification. 
 

a) 

b) 

c) 
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3 Vortex Evolution 

A series of physical parameters of the 2DCS were calculated to understand the 

behavior of the vortexes depending of the different cases studied. The physical 

parameters of the vortex evolution are the following: 

 

 Average cross sectional velocity, u. 

 Longitudinal position of the center of the main vortex, X. 

 Lateral position of the center of the main vortex, Y. 

 Circulation around the main vortex, Γ. 

 Maximum vorticity inside the main vortex, ωMAX. 

 Equivalent diameter of the main vortex, D. 

 Total upwelling generated by the main vortex, Qup. 

 Slopes of the growth and decay of the circulation for the first cycle, and 

the time that these curves start.  

 

The Longitudinal position of the center of the vortex X, the maximum vorticity 

inside the main vortex ωMAX, and the equivalent diameter of the main vortex D, 

were previously used by Davies et al (1995).  

 

Before computing all the physical parameters it was necessary to evaluate the 

real value of the mixing number KW of each experiment, by calculating the 

maximum average velocity from the analyzed PIV data. The results are shown 

below in the Table 14.  

 

The Experiments are defined taking in account three classifications: 

 

 Layout 

 Life-History type 

 Repetition of the experiment (or angle of the inlet for Layout H) 
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Table 14 Nominal and real values of the mixing number KW, and maximum cross 
sectional average velocity over a tidal cycle for the first and the following cycles 
of each experiment. 

MAXIMUM VELOCITY KW REAL VALUE KW 

NOMINAL 
VALUE 1st Cycle Following 

Cycles 
1st Cycle Following 

Cycles 
LAYOUT 

LIFE- 
HISTORY 

TYPE 
 

[] [m/s] [m/s] [] [] 
I 1 0.11 0.19 0.23 0.11 0.09 
I 2 0.11 0.19 0.22 0.11 0.10 
II 1 0.06 0.22 0.19 0.05 0.06 
II 2 0.06 0.19 0.18 0.06 0.06 
III 1 0.26 0.12 0.16 0.27 0.19 

A 

III 2 0.26 0.11 0.16 0.29 0.19 
I 1 0.11 0.20 0.24 0.11 0.09 
I 2 0.11 0.18 0.24 0.12 0.09 
II 1 0.06 0.18 0.20 0.06 0.06 
II 2 0.06 0.17 0.18 0.07 0.06 
III 1 0.26 0.07 0.15 0.44 0.22 

B 

III 2 0.26 0.09 0.16 0.35 0.19 
I 1 0.11 0.16 0.22 0.13 0.10 
I 2 0.11 0.16 0.22 0.13 0.10 
II 1 0.06 0.20 0.18 0.06 0.06 
II 2 0.06 0.18 0.19 0.06 0.06 

C 

III 1 0.26 0.07 0.15 0.44 0.21 
I 1 0.11 0.20 0.27 0.11 0.08 
I 2 0.11 0.20 0.25 0.11 0.08 
II 1 0.06 0.20 0.21 0.06 0.06 
II 2 0.06 0.20 0.20 0.06 0.06 
III 1 0.26 0.06 0.15 0.50 0.22 

D 

III 2 0.26 0.07 0.14 0.44 0.23 
I 1 0.11 0.19 0.22 0.11 0.10 

E 
I 2 0.11 0.19 0.22 0.11 0.10 
I 1 0.11 0.19 0.22 0.11 0.10 

F 
I 2 0.11 0.19 0.22 0.11 0.10 
I 1 0.11 0.19 0.22 0.11 0.10 

G 
I 2 0.11 0.19 0.22 0.11 0.10 
I 10 0.11 0.20 0.23 0.11 0.10 H 
I 20 0.11 0.21 0.23 0.10 0.09 
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Using the real values of the mixing number and the maximum average velocity, 

the physical parameters were non-dimensionalized. The characteristic length 

scales used were, the tidal period T, the width of the inlet W, the average cross 

sectional maximum velocity over a tidal cycle U, and the depth of the basin h. 

The parameters are shown in the Table 15. 

 

 

Table 15 Non-dimensional factors used for the calculation of the physical 
parameters of the vortex evolution  

PHYSICAL PARAMETER 
NON-DIMENSIONAL 

PARAMETER 

u  * /u u U  

X  * /X X UT  

Y  * /Y Y UT  

  * /UW    

MAX
  * /

MAX MAX
W U   

D  * /D D UT  

upQ   * / /up upQ Q UWh   

 

 

The value of U varies depending on which cycle the calculation is made.  

 

As the physical parameters were calculated in time series evolution, it was 

necessary to non-dimensionalize the time scale too.  

* /t tU W           (26) 
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In this case the value of U was taken as the average of the maximum average 

velocities of the tidal cycles in each experiment. 

 

The first cycle was analyzed in more detail because the data obtained from the 

PIV analysis had a better quality and less noise than the rest of the cycles. This 

is because the seeding for the first cycle had a better quality than the rest of the 

experiments. But no for all experiments this is true, that is why the first cycle is 

not investigated for all experiments. 

 

 

Results 

The following Figures show the results of the calculation of the physical 

parameters of the vortex evolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 Life-history Type I for Layout A, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 33 Life-history Type I for Layout A, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 34 Life-history Type I for Layout A, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 35 Life-history Type I for Layout A, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 36 Life-history Type II for Layout A, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 37 Life-history Type II for Layout A, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 38 Life-history Type II for Layout A, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 39 Life-history Type II for Layout A, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 40 Life-history Type III for Layout A, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 41 Life-history Type III for Layout A, repetition 1: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 42 Life-history Type III for Layout A, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 43 Life-history Type III for Layout A, repetition 2: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 44 Life-history Type I for Layout B, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 45 Life-history Type I for Layout B, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 46 Life-history Type I for Layout B, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 47 Life-history Type I for Layout B, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 48 Life-history Type II for Layout B, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 49 Life-history Type II for Layout B, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 50 Life-history Type II for Layout B, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 51 Life-history Type II for Layout B, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 52 Life-history Type III for Layout B, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 53 Life-history Type III for Layout B, repetition 1: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 54 Life-history Type III for Layout B, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 55 Life-history Type III for Layout B, repetition 2: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 56 Life-history Type I for Layout C, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 57 Life-history Type I for Layout C, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 58 Life-history Type I for Layout C, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 59 Life-history Type I for Layout C, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 60 Life-history Type II for Layout C, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 61 Life-history Type II for Layout C, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 62 Life-history Type III for Layout C, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 63 Life-history Type III for Layout C, repetition 1: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 64 Life-history Type III for Layout C, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 65 Life-history Type III for Layout C, repetition 2: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 66 Life-history Type I for Layout D, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 67 Life-history Type I for Layout D, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 68 Life-history Type I for Layout D, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 69 Life-history Type I for Layout D, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 70 Life-history Type II for Layout D, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 71 Life-history Type II for Layout D, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 72 Life-history Type II for Layout D, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 73 Life-history Type II for Layout D, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 74 Life-history Type III for Layout D, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 75 Life-history Type III for Layout D, repetition 1: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 76 Life-history Type III for Layout D, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 77 Life-history Type III for Layout D, repetition 2: a) Circulation around the 
main vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the 

main vortex. d) Upwelling flowing from the main vortex. 
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Figure 78 Life-history Type I for Layout E, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 79 Life-history Type I for Layout E, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 80 Life-history Type I for Layout E, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 81 Life-history Type I for Layout E, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 82 Life-history Type I for Layout F, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 83 Life-history Type I for Layout F, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 84 Life-history Type I for Layout F, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 85 Life-history Type I for Layout F, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 86 Life-history Type I for Layout G, repetition 1: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 87 Life-history Type I for Layout G, repetition 1: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 88 Life-history Type I for Layout G, repetition 2: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 89 Life-history Type I for Layout G, repetition 2: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 90 Life-history Type I for Layout H, 10 Degrees: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 91 Life-history Type I for Layout H, 10 Degrees: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Figure 92 Life-history Type I for Layout H, 20 Degrees: a) Average cross sectional 
velocity at the mouth of the inlet. b) Longitudinal position of the center of the main 
vortex starting from the edge of the barrier island. c) Lateral position of the center 

of the main vortex starting from the edge of the barrier island.   
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Figure 93 Life-history Type I for Layout H, 20 Degrees: a) Circulation around the main 
vortex b) Maximum vorticity in the main vortex c) Equivalent diameter of the main 

vortex. d) Upwelling flowing from the main vortex. 
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Table 16 shows the slopes of the fitted curves for the growth and decay of the 

circulation of the main vortex for the first cycle. The slopes were calculated until 

the vortex starts leaving the field of view.  

 

A propagation of error analysis was done for this calculation of the slope, to take 

in account the errors of measurement that can be made. The time between to 

images has an associated error of ± 0.001 [s]; and the associated error for the 

root mean square error (rmse) the circulation is ± 0.0001. Then, the estimated 

error for the slope calculation is ± 0.02.  
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Table 16 Slopes of the fitted curves for the growth and decay of the circulation of 
the main vortex for the first cycle, with an associated error of ± 0.020. 

CIRCULATION SLOPE KW REAL 
VALUE Growth Decay LAYOUT 

LIFE- 
HISTORY 

TYPE 
 

[] [] [] 
I 1 0.11 -0.038 0.007 
I 2 0.11 -0.040 0.005 
II 1 0.05 -0.024 0.012 
II 2 0.06 -0.039 0.004 
III 1 0.27 -0.040 0.006 

A 

III 2 0.29 -0.044 0.007 
I 1 0.11 -0.006 0.012 
I 2 0.12 -0.015 0.056 
II 1 0.06 -0.016 0.001 
II 2 0.07 -0.027 0.006 
III 1 0.44 - - 

B 

III 2 0.35 - - 
I 1 0.13 -0.012 0.003 
I 2 0.13 -0.027 0.003 
II 1 0.06 -0.006 0.006 
II 2 0.06 -0.014 0.007 

C 

III 1 0.44 - - 
I 1 0.11 -0.023 0.003 
I 2 0.11 -0.010 0.013 
II 1 0.06 -0.011 0.007 
II 2 0.06 -0.016 0.011 
III 1 0.50 - - 

D 

III 2 0.44 - - 
I 1 0.11 - - 

E 
I 2 0.11 - - 
I 1 0.11 - - 

F 
I 2 0.11 - - 
I 1 0.11 - - 

G 
I 2 0.11 - - 
I 10 0.11 -0.045 0.020 H 
I 20 0.10 -0.021 0.015 
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4 Secondary vortices analysis 

Secondary vortices are formed because of the unstable characteristics of the 

tidal jets that are simulated in this research. For an unstable jet, the centerline 

has a meandering behavior and multiple secondary vertices form at each side of 

the inlet. 

 

The secondary vortices analysis was done by observing the movies of the dye 

studies (Appendix C). The Strouhal number associate with the frequency that 

the vortices were forming at the peak of the tidal cycles, the radius of curvature 

of the edge of the barrier island, and the maximum average cross sectional 

velocity was calculated.  

c
t

MAX

R f
S

U
           (27) 

 

Where Rc is the radius of curvature of the barrier island, f is the frequency of the 

formation of the vortices, and UMAX is the maximum velocity.  

 

A propagation of error analysis was done for this calculation, to take in account 

the errors of measurement that can be made. The frequency of the vortices has 

an associated error of ± 0.1 [Hz]; the radius of curvature of the barrier island has 

an associated error of ± 0.05 [cm]; and the associated error for the maximum 

velocity is ± 0.01 [m/s]. Then, the estimated error for the Strouhal Number is      

± 0.1.  

 

Table 17 shows the frequency of the formation of the vortices for layouts A 

through D, and Table 18 shows the Strouhal Number for layouts A through D, 

only for Life-History types I and II. The type III was not calculated because it was 

difficult to observe the formation of the secondary vortices. 
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Table 17 Frequency of the formation of the secondary vortices in the peak of the 
first and second tidal cycle, with an associated error of ± 0.1 [Hz]. 

KW = 0.11 KW = 0.06 
Frequency Frequency EXPERIMENT 

1st Cycle 2nd Cycle 1st Cycle 2nd Cycle 
 [1/s] [1/s] [1/s] [1/s] 

Layout A 0.9 0.7 0.6 0.5 

Layout B 1.0 0.6 0.6 0.5 

Layout C 0.7 0.7 0.5 0.4 

Layout D 1.1 1.1 1.1 0.8 

 

 

Table 18 Strouhal Number of the secondary vortices present in the first and 
second cycles of the tidal flow, with an associated error of ± 0.1. 

KW = 0.11 KW = 0.06 
Strouhal Number Strouhal Number EXPERIMENT RADUIS OF 

CURVATURE 
1st Cycle 2nd Cycle 1st Cycle 2nd Cycle 

 [cm] [] [] [] [] 

Layout A 0.075 0.4 0.2 0.2 0.2 

Layout B 0.075 0.4 0.2 0.2 0.2 

Layout C 0.075 0.3 0.2 0.2 0.2 

Layout D 0.15 0.8 0.6 0.8 0.6 
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APPENDIX C 

 

ELECTRONIC SUPPLEMENT 

 

The present appendix explains what does the electronic supplement has in it, 

and how is it organized. This supplement can be found in the Texas A&M 

Library. 

 

The supplement is divided into 3 Folders (compresed into zip files) that provide 

the following: 

 

 Matlab Programs: This folder has all the necessary programs to 

reproduce the analysis that was done for the thesis. The MPIV Code and 

the DACE program can be downloaded from the web page stated. Also 

the codes developed for the analysis of the PIV data and the vortex 

evolutions are included. 

 Dye Studies: This folder has the videos for the visualization studies. 

 PIV: This folder has the movies for the simulation of the velocity and 

vorticity field, and the vortex identification movies as well. 
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