
A GLOBAL OPTIMIZATION APPROACH

TO POOLING PROBLEMS IN REFINERIES

A Thesis

by

VIET PHAM

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2007

Major Subject: Chemical Engineering

A GLOBAL OPTIMIZATION APPROACH

TO POOLING PROBLEMS IN REFINERIES

A Thesis

by

VIET PHAM

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Mahmoud M. El-Halwagi

Committee Members, Juergen Hahn

 Guy L. Curry

Head of Department, N. K. Anand

August 2007

Major Subject: Chemical Engineering

iii

ABSTRACT

A Global Optimization Approach

to Pooling Problems in Refineries. (August 2007)

Viet Pham, B.S., Ho Chi Minh City University of Technology

Chair of Advisory Committee: Dr. Mahmoud M. El-Halwagi

The pooling problem is an important optimization problem that is encountered in

operation and scheduling of important industrial processes within petroleum refineries.

The key objective of pooling is to mix various intermediate products to achieve desired

properties and quantities of products. First, intermediate streams from various processing

units are mixed and stored in intermediate tanks referred to as pools. The stored streams

in pools are subsequently allowed to mix to meet varying market demands. While these

pools enhance the operational flexibility of the process, they complicate the decision-

making process needed for optimization. The problem to find the least costly mixing

recipe from intermediate streams to pools and then from pools to sale products is

referred to as the pooling problem. The research objective is to contribute an approach to

solve this problem.

The pooling problem can be formulated as an optimization program whose objective is

to minimize cost or maximize profit while determining the optimal allocation of

intermediate streams to pools and the blending of pools to final products. Because of the

presence of bilinear terms, the resulting formulation is nonconvex which makes it very

difficult to attain the global solution. Consequently, there is a need to develop

computationally-efficient and easy-to-implement global-optimization techniques to solve

the pooling problem. In this work, a new approach is introduced for the global

optimization of pooling problems. The approach is based on three concepts: linearization

by discretizing nonlinear variables, pre-processing using implicit enumeration of the

discretization to form a convex-hull which limits the size of the search space, and

application of integer cuts to ensure compatibility between the original problem and the

iv

discretized formulation. The continuous quality variables contributing to bilinear terms

are first discretized. The discretized problem is a mixed integer linear program (MILP)

and can be globally solved in a computationally effective manner using branch and

bound method. The merits of the proposed approach are illustrated by solving test case

studies from literature and comparison with published results.

v

ACKNOWLEDGMENTS

I am grateful to my remarkable academic advisor, Dr. Mahmoud El-Halwagi, for his

great support, encouragement and introduction to the fantastic world of process

integration and optimization. I have received his warm help not only in this thesis work

but also in the whole program of my master’s degree.

I am thankful to Dr. Juergen Hahn and Dr. Guy L. Curry, the research committee

members. The knowledge that I have learned from them is so valuable. Also, Dr. Carl

Laird’s help is priceless. I am indebted to him for a lot of time and insightful discussions

in optimization.

I would like to thank the students in the Process Integration and Systems Optimization

group as well as some other fellow students in the Department of Chemical Engineering

for a friendly academic environment.

The financial support from the sponsor – the Ministry of Education and Training,

Vietnam – is greatly appreciated.

Finally, this thesis could not have been accomplished without the unconditional love and

care from my parents, sister and friend.

vi

NOMENCLATURE

Symbols Definition

Subscripts

 i sources

 j pools

 k products

 q quality

 r integer index

 u integer index

 v integer index

Parameters

 ai source i quality

 ck product k quality

 Ci cost of source i

 Dk product k demand

 l number of sources

 Lj lower bound of pool j capacity

 m maximum number of used pools

 n number of products

 Nq number of investigated qualities

 Np number of discretized pools

 Pk product k price

 Si available capacity of source i

 t number of intervals for a discretized range

 Uj upper bound of pool j capacity

 Zj total flow through pool j

vii

Variables

 bjq quality q of pool j

 fj binary variable associate to pool j

 xij fractional flow rate (or fractional amount) from source i to pool j

 Xij flow rate (or amount) from source i to pool j

 Yjk flow rate (or amount) from pool j to product k

Abbreviations

 BARON Branch-And-Reduce Optimization Navigator (software)

 GBD Generalized Bender’s Decomposition

 GOP Global Optimization (algorithm)

 GRG Generalized Reduced Gradient

 LP Linear Program

 MILP Mixed Integer Linear Program

 NLP Non-Linear Program

 RLT Reformulation-Linearization Technique

 SLP Successive Linear Program

LINGO code

 @FOR A command is executed for a range of indicated index

 @SUM Summation over a set

 #LT# Less than

 #LE# Less than or equal

 #GT# Greater than

 #GE# Greater than or equal

 MAX Maximized objective function

viii

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS..v

NOMENCLATURE..vi

LIST OF FIGURES..x

LIST OF TABLES .. xii

CHAPTER

I INTRODUCTION...1

II LITERATURE REVIEW..5

2.1 The initial approaches ...5

2.2 Decomposition approaches ...8

2.3 Branch and bound framework ...11

III NEW CONCEPTS OF PROPOSED DISCRETIZATION APPROACH.......16

3.1 Motivating example...17

3.2 Discretization by exhaustively enumerating bj’s.....................................18

3.3 Implicit enumeration of discretized qualities bj’s using flow rate

proportion..25

3.4 Implemented formulation for implicit enumeration of quality

discretization for the pools..31

3.5 Comparison of two discretization approaches34

3.6 Distinction from discretization in piecewise linear RLT35

IV METHODOLOGY ..38

4.1 Discretization approach in optimization ...38

4.2 Mixed integer linear programs ..39

4.3 Convex hull algorithm...40

4.4 Branch and bound approach ..41

V A SELECTION OF PUBLISHED POOLING PROBLEMS..........................43

ix

Page

CHAPTER

VI RESULTS AND DISCUSSION..50

6.1 All global optimum found in one-quality problems................................50

6.2 Enhancing the performance with implicit enumeration for discretization 54

6.3 Results of implicit enumeration for discretization of pooling problems

with multiple qualities ..56

6.4 Comparison to the results using the Global Solver in LINGO58

VII CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK64

7.1 Conclusions ...64

7.2 Recommendations for future work..64

LITERATURE CITED ..66

APPENDIX A ..68

APPENDIX B ..83

VITA ..124

x

LIST OF FIGURES

FIGURE Page

1 General pooling problem ...2

2 A variation of the pooling problem (Audet
1
)..3

3 Successive linear programming algorithm (Lasdon et al.
4
)6

4 An example of pooling problem adapted from Greenberg
8
............................17

5 Pools are enumerated on their assigned quality values....................................19

6 Exhaustive enumeration of a discretized search space for pool qualities........22

7 Attainable region (convex hull) of the pool qualities for two qualities24

8 Convex hull discretizing space in quality diagram...29

9 Attainable region for four sources. ..33

10 Piecewise linearization vs. regular linearization of RLT.................................35

11 Comparison of optima for the two discretization approaches36

12 Haverly’s
3
 pooling problems ..43

13 Foulds 2 pooling problem (Foulds
12

)..44

14 Ben-Tal 4 pooling problem (Ben-Tal et al.
16

)...47

15 Ben-Tal 5 pooling problem (Ben-Tal et al.
16

)...47

16 Adhya 1 pooling problem (Adhya et al.
18

) ...48

17 Adhya 2 pooling problem (Adhya et al.
18

) ...48

18 Adhya 3 pooling problem (Adhya et al.
18

) ...48

19 Adhya 4 pooling problem (Adhya et al.
18

) ...49

20 Results on Haverly’s problems with exhaustive enumeration of discretization 51

21 Results on Foulds’ problems with implicit enumeration of discretization52

22 Result on problem Ben-Tal 4 with exhaustive discretization54

23 Results on problem Ben-Tal 5 with various approaches55

24 Results on the example problem with various approaches55

25 Results on problem Adhya 1 with two formulations57

26 Results on problem Adhya 2 with two formulations57

xi

FIGURE Page

27 Results on problem Adhya 3 with two formulations58

28 Results on problem Adhya 4 with two formulations58

29 Calculations using Global Solver for Foulds’ pooling problems60

30 Calculation using Global Solver for problem Ben-Tal 5 and the example......62

xii

LIST OF TABLES

TABLE Page

1 Summary of approaches on pooling problems ..15

2 Source information for the example..17

3 Product constraints for the example ..17

4 Exhaustive enumeration approach to discretizing the motivating example22

5 An example of implicit enumeration for 2 sources ...27

6 An example of implicit discretization for three sources...................................29

7 Convex hull algorithms (Sunday
22

)..40

8 Haverly’s
3
 pooling problems..43

9 Foulds 3 pooling problem (Foulds
12

) ...44

10 Foulds 4 pooling problem (Foulds
12

) ...45

11 Foulds 5 pooling problem (Foulds
12

) ...46

12 Runs using Global Solver tool ..59

1

CHAPTER I

INTRODUCTION

Market demands for qualities and quantities of products may require the blending of

several process streams to meet the desired requirements. For instance, intermediate

streams from various processing units of a petroleum refinery are typically blended to

produce value-added products satisfying quality specifications and demands. As an

example, intermediate streams from reforming, cracking, and naphtha treatment units are

typically mixed to yield gasoline. Quality specifications such as octane number, vapor

pressure, and sulfur and aromatic concentrations are among the decisive stipulated

quality constraints for gasoline. Prior to being blended and sent to final storages,

intermediate streams are mixed and stored in intermediate tanks, called pools. Such

pools enhance the operational flexibility of the process but complicate the decision-

making process needed for optimization. The problem to find the least costly mixing

recipe from intermediate streams to pools and then from pools to sale products is a

pooling problem. The research objective is to contribute an approach to solve this

problem.

The following general pooling problem (Figure 1) is investigated. Given is a set

SOURCES = {i|i = 1,…,l} of intermediate streams. Each source has a given available

capacity, Si, a unit cost, Ci, and known values of Nq characterizing qualities, aiq, where q

is an index for qualities (e.g. octane number, Reid vapor pressure, and sulfur

concentration). The amount (or flow rate) from source i to pool j is denoted by a variable

Xij. The sources have to be blended because there is not enough pools (m < n) and/or

there are insufficient pool capacities to store sources and/or products separately. Sources

can be sent to some or all of pools.

This thesis follows the style of AIChE Journal.

2

As a result of blending the sources, each pool j has unknown values of qualities bjq. The

amount from pool j to sale product is Yjk and is to be determined. The n products each

with a price Pk have constraints on known demand Dk and bounds on the values of

desired quality specifications ckq.

Figure 1 General pooling problem

With these notations, the problem is formulated as follows:

Objective function: margin return is maximized = ∑∑∑∑
====

−⋅
m

j

ij

l

i

i

m

j

jk

n

k

k XCYP
1111

Subject to the following constraints:

Available supply: ∑
=

m

j

ijX
1

≤ Si for i = 1,…,l

Mass balance on pools: ∑∑
==

=
n

k

jk

l

i

ij YX
11

 for j = 1,…,m (P)

Product demand: k

m

j

jk DY ≤∑
=1

 for k = 1,…,n

Mixing rule for pools: iq

l

i

ij

l

i

ijjq aXXb ⋅=⋅ ∑∑
== 11

 for j = 1,…,m and q=1,…,Nq

Mixing rule for products (assuming that the desired quality is an upper bound. Similar

constraints may be written for lower bounds):

jq

m

j

jk

m

j

jkkq bYYc ⋅≥⋅ ∑∑
== 11

 for k = 1,…,n and q=1,…,Nq

3

Non-negativity constraints: 0≥ijX , 0≥jkY for i = 1,…,l

 j = 1,…,m

 k = 1,…,n.

The foregoing formulation is nonconvex because of the bilinear terms appearing in the

mixing rule constraints ∑
=

⋅
l

i

ijjq Xb
1

and jq

m

j

jk bY ⋅∑
=1

. Therefore, it is desired to develop a

global solution procedure for this formulation.

Other than the foregoing formulation, there have been some formulations with different

variable definitions. But they all are also nonconvex optimization problems.

In addition to this structure of pooling problems, there are some implementations that

make pooling problems more complicated to be solved. Allowing pools to interconnect

with other pools is one of the implementations. A simple example is the problem

proposed by Audet.
1
 The structure is shown in Figure 2 where there may be a flow from

the first pool to the second pool. A more generalized pooling problem is the

superstructure introduced in Meyer and Floudas
2
 in which each of pools is free to

connect to others as well as all products, and each of sources may feed all pools and

directly all products. This superstructure also represents a network of waste water

treatment minimizing the total cost.

Figure 2 A variation of the pooling problem (Audet
1
)

4

This work will focus on the pooling problem represented by Figure 1. The layout of this

thesis is as follows. Chapter II is a survey on the previous literature attempts to solve the

pooling problems. Chapter III describes the proposed approach to discretize and

reformulate pooling problems, compares the advantages and disadvantages, and

distinguishes this work from a recent discretization idea. Chapter IV presents the

proposed methodology and discusses its conceptual and mathematical aspects. Chapter

V discusses pooling problems previously published in literature. The results and

discussion of how the proposed approach performs in solving these problems are

presented in Chapter VI. Finally, the last chapter provides conclusions and

recommendations for future work.

5

CHAPTER II

LITERATURE REVIEW

Much interest has been given to the solution of pooling problems because of its

attractive pay-off in operating refineries and other process industries. The following is a

survey of key publications on the statement, formulation, and solution of the pooling

problem.

2.1 The initial approaches

One of the earliest solution procedures is the recursion approach to the simple pooling

problems introduced by Haverly.
3
 This approach reformulates the problem by

introducing two additional sets of variables, say over and under, for pool quality ranges

in each recursion iteration and another set of variables, say yjk, representing flow rate

fraction from pools to sale products. These combination variables, yjk.(over – under), are

added to the mixing rule constraints. Then, the recursion begins with assigned or guessed

values of quality variables bjq and yjk in the bilinear term to have a linear formulation.

Solving this linear program, the author obtained the flow rate optimum Xij, Yjk and the

calculated actual bjq. The values of calculated over and under give a direction for the

next iteration. The recursion is repeated until the assigned and calculated values of bjq

converge within acceptable tolerance. Because of depending on these starting points, the

recursion procedure may not converge or may converge to a local optimum. When the

problem is large, this method is likely unstable and takes much computational time.

Lasdon et al.
4
 utilized generalized reduced gradient (GRG) and successive linear

programming (SLP) algorithms to solve pooling problems. The SLP algorithm

eliminates the bilinear relations by first order Taylor series expansion. The iteration

starts with assigned flow rate values and then followed by a sequence of linear programs.

The steps are summarized in Figure 3.

6

Figure 3 Successive linear programming algorithm (Lasdon et al.
4
)

First of all, a feasible flow rate set of Xij’s and Yjk’s is chosen no matter what values of

bj.q’s are. From these initial flow rates, bj.q’s are calculated. By using first order Taylor’s

series for bilinear terms, the formulation is transformed into a linear program with sets of

variables ∆Xij, ∆Yjk, ∆bjq. The solved optimum ∆Xij, ∆Yjk will decide a termination of the

iterations. If none of the optima is found, the iteration starts over with a new chosen set

of base points. If an optimum ∆Xij, ∆Yjk is found, the iteration repeats with an updated set

of base points where X’ij = Xij + ∆Xij and Y’jk = Yjk + ∆Yjk. The calculation is terminated

when the solved optimum ∆Xij, ∆Yjk is within an acceptable tolerance ε.

Lasdon et al.
4
 performed the application of these two nonlinear programming algorithms

to Haverly’s pooling problems. The problems were solved with various initial points.

The results showed some advantages from these algorithms over recursion. The

convergence speeded up and leaded to an optimum when the starting points made the

Calculate associated bjq

Expand using Taylor’s series

Xij, Yjk, bjq ∆Xij, ∆Yjk, ∆bjq

Solve LP for ∆Xij, ∆Yjk

X’ij = Xij +∆Xij

Y’jk = Yjk +∆Yjk

infeasible

Result

∆Xij, ∆Yjk < ε

Choose base points of Xij, Yjk

7

algorithms move out of trivial solutions. The formulation needs not much effort to suit

the algorithm as recursion approach does.

More information on these algorithms can be found in Griffith and Stewart,
5
 Palacios

Gomez et al.,
6
 Baker and Lasdon,

7
 and Greenberg.

8

Griffith and Stewart
5
 are the first to introduce SLP under the name Mathematical

Approximation Program and apply in Shell Oil.

Palacios Gomez et al.
6
 proposed an efficient SLP algorithm for linearly constrained

formulation and showed more successful computational results than the generalized

reduced gradient algorithm did, especially in large problems with low degrees of

freedom.

Baker and Lasdon
7
 suggested a multiplicative formulation for the linearized

subproblems to be solved by SLP, with nonnegative deviation variables to prevent the

occurrence of infeasibility, and applied this idea for nonlinear optimization problems in

Exxon. The multiplicative form of formulation usually leads to a fewer number of

nonlinear variables than the additive form does. It also derives a linearized problem

compatible with existing LP formulations.

Greenberg
8
 used quality diagram to analyze sensitivity and diagnose infeasibility of

pooling problems. This geometry approach visualizes the range of percentage flow rates,

pool qualities and the range of source qualities for the problem to be feasible. The cost

parameter was analyzed as another attribute of streams. From this viewpoint, the author

discovered that the calculated costs of pools and products were the Lagrangian

multipliers which were associated with the constraints on product demands and mass

balances for pools.

8

2.2 Decomposition approaches

Decomposition is another approach to solve pooling problems. The idea is to decompose

the problem into two linear subproblems by fixing a variable in the bilinear terms. At

each iteration, these subproblems are solved for their respective global optimums and the

iterations continue until stopping conditions are satisfied. The idea is clarified in the

following mathematical formulations (see Floudas and Aggarwal
9
 for more details.)

Consider the optimization problem with two sets of decision variables x and y:

y,x
Min f(x,y)

subject to g(x,y) ≤ 0

h(x,y) = 0

Between these sets of variables, the one causing nonlinearity (let say y) is referred as

complicating variables and the other (x) is called the set of non-complicating variables.

This discrimination must be performed before the optimization problem is decomposed

into two linear subproblems. The first subproblem or the primal problem is derived from

fixing values of complicating variables and mathematically stated as follows.

x
Min f(x,y)

subject to g(x,y) ≤ 0

h(x,y) = 0

where y is considered as parameters.

By fixing some variables, more constraints have been added to the original optimization

problem. Thus, the primal problem gives an upper bound for the minimization problem.

Besides, it also gives the associated optimum values of x (say x*) and the Lagrangian

multipliers u* and λ* for the constraints g(x,y) ≤ 0 and h(x,y) = 0 respectively.

The second subproblem is the dual problem, referred as a relaxed master problem:

9

y

Min µ

subject to: f(x*,y) + u*.g(x*,y) + λ*.h(x*,y) ≤ µ

where the left hand side of the constraint is the Lagrangian function of the primal

problem, denoted as L(x*,y,u*,λ*). The objective solution of the relaxed master problem

is the lower bound on the global optimum of the original problem. The optimum set of

values y is used as the fixed values for the primal problem in the next iteration.

Generalized Bender’s Decomposition (GBD) is one of the methods to interact these

subproblems.

Floudas et al.
10

 proposed a decomposition-based global optimization approach for

nonlinear programs (NLPs) and mix integer nonlinear programs (MINLPs); and then

(Floudas and Agrawal
9
) applied it and GBD method to the pooling problems with 3

pools, 5 products and 2 qualities. In their proposed decomposition algorithm, a constraint

consisting of an updated Lagrangian function was added at each iteration. If the solution

of a relaxed master problem resulted in infeasibility in the next primal problem, a

positive slack variable was added to each of the constraints in that primal problem. The

primal problem was then relaxed and transformed to a minimization problem of the slack

variable which represents the infeasibility as follows:

x
Min α

subject to g(x,y) - α ≤ 0

 h(x,y) - α ≤ 0

- h(x,y) - α ≤ 0

 α ≥ 0

The objective of the proposed algorithm is to structure the subproblems in such a manner

that they are solved for respective global optima at every iteration. However, there is no

guarantee that a found solution at the end of the algorithm is the global optimum of the

original optimization problem.

10

Androulakis et al.
11

 proposed a distributed implementation of global optimization

algorithm (GOP). The GOP approach bases on decomposition and duality theory. The

algorithm is almost the same to above, except for some implementations in relaxed dual

problem solving steps. At each iteration, a series of relaxed dual problems are to be

solved. These problems are in forms of:

B,y

Min
µ

 µB

subject to: *)*,,,(λuyxL jB
 ≤ µB

U

i

B

i

B

x xxuyxL jj

i
=≤∇ ,0*)*,,,(λ

L

i

B

i

B

x xxuyxL jj

i
=≥∇ ,0*)*,,,(λ

where the two additional families of constraints (the last two ones) are the gradients of

Lagrangian function and referred as qualifying constraints. Each of relaxed dual

problems associates with a combination Bj of the bounds of variable x, instead of x*,

from previous primal problem’s solution. Minimum µB is chosen from all solutions of

these serial dual problems and compared to the lower bound in previous iteration for an

updated lower bound. The GOP algorithm converges to an ε-global solution but requires

a large number of calculations for solving dual problem series.

Androulakis et al.
11

 discussed some implementations to tackle this computational

bottleneck. Following the primal problem, variable bound problems were formulated and

simultaneously solved for tighter bounds on variables. As a result, the number of relaxed

dual problems was decreased; then, the overall convergence was more rapidly. Solving

relax dual problems were also performed in parallel manner. The procedure to find the

minimum among dual problems’ solutions compared as many pairs as possible at the

same time to reduce computational time. In the broader viewpoint, the idea of these

distributed implementations is to do many tasks simultaneously by taking advantage of

the multiprocessor computer Intel-Paragon. Several randomly generated large scale

pooling problems were solved without published input data to demonstrate the

improvements.

11

2.3 Branch and bound framework

Branch-and-bound method has also been a base method for many proposed approaches

to solve pooling problem. For more details on branch and bound approach, see section 4

in Chapter IV.

Foulds et al.
12

 partitioned the feasible regions into two equal parts to produce two

branching sub-problems. These sub-problems were then bounded by convex and

concave envelops, using the linear relaxation technique of McCormick
13

 and Al-

Khayyal and Falk.
14

 From the found optimum solution in previous step, the algorithm

partitioned the rectangle of feasible region into four sub-rectangles, linearized these

subproblems by convex underestimation and solved for global optima. The sub-rectangle

associated with the best solution among them (the highest in maximum problem) was

chosen to be the base point for next partition step. The algorithm continued with smaller

and smaller sub-rectangles and was proven to converge to optimal solution by Al-

Khayyal and Falk.
14

 The solution may be arbitrarily close to the global optimum. The

proposed algorithm was demonstrated on some generated pooling problems with one

quality (see page 44 for problems’ descriptions).

Sherali and Alameddine
15

 proposed a reformulation – linearization technique to solve

bilinear programming problems in which the bilinear terms only appeared in objective

functions. This technique consists of two stages as it’s named. In the first stage, the

problem is reformulated by generating additional valid nonlinear constraints from pair-

wise multiplications between the original problem constraints and nonnegative variable

factors derived by rearranging variables’ bounds. In the second stage, the resulting

formulation is linearized by substituting the nonlinear terms with new defined variables.

This relaxed formulation’s optimum is an upper bound (in maximized optimization

problems) of the original bilinear programming problems. This bound is proven to be

tighter than that of convex hyper-rectangle envelop overestimation. The authors showed

that the RLT procedure generates convex envelop representation of a bilinear function

over special triangular and quadrilateral poly-topes in R
2
.

12

Ben-Tal et al.
16

 partitioned the fractional flow rate variables in the proportion

formulation in order to reduce the duality gap between the primal and its Lagrangian

dual problem until less than a predetermined small ε. The algorithm took advantages of

branch and bound approach and duality properties. The algorithm starts with a feasible

solution of primal problem (an upper bound); then, the dual problem is solved for a

lower bound. If the difference between these two bound is still more than ε, the

fractional flow rate region is partitioned into many sub-polytopes. Each dual problem

associating with each sub-polytope is solved and compared to find the sub-polytope

providing a minimum dual bound. The primal problem is resolved using a local search

from that optimum sub-polytope. At the end of the iteration, these two updated bounds

are checked with the stopping condition. Numerical examples on pooling problems with

almost two qualities were presented

Quesada and Grossmann
17

 also used branch and bound search to solve their

reformulated models of general process networks which consists of splitters, mixers and

linear process units. This problem structure may be simplified to represent simple

pooling problems. When linearized using the reformulation and linearization technique

(RLT) of Sherali and Alameddine,
15

 some mass balance constraints in individual

component flow formulation were transformed into those in composition model, and

versa. The linearized model, which combines the variables from both formulations, was

embedded in a branch and bound frame work to be solved for a global optimum which is

a tighter lower bound than previous relaxation approaches. The approach’s limitations

are solving linear process unit, ignoring enthalpy effect and not allowing binary

variables.

Branch and bound procedure using selective Lagrangian relaxation proposed by Adhya

et al.
18

 produces a tighter lower bound than McCormick estimator-based linearization

relaxation. The term “selective” refers to a manner that the choice of relaxed constraints

results in a Lagrangian subproblem which may not be easier to solve. Instead of

dualizing only bilinear constraints (the “hard” constraints,) the authors dualized all of the

13

constraints to obtain a Lagrangian subproblem with a bilinear objective function defined

over a hypercube. Then, a reformulation procedure was proposed to solve this not-easy

subproblem. This reformulated model is a mixed integer program and is embedded in a

branch and bound algorithm to obtain a local optimum that is the lower bound of the

original pooling problem.

Audet et al.
1
 formulated pooling problems on three models which are based on flow

variables, flow proportion variables and their hybrid ones. This proposed formulation

was shown to be suitable for branch and cut quadratic algorithm introduced by Audet et

al.
19

 The branch and cut algorithm takes some advantages of both branch-and-bound

algorithm and reformulation-linearization technique to have some improvements. Firstly,

branching by partitioning hyper-rectangle is not necessarily at the middle lines to reduce

potential errors. Secondly, instead of adding all bound factors and constraint factors,

only those bilinear terms which are violated are linearized and contribute to relaxed

problem’s constraints. As a result, the problem size does not increase quickly. Thirdly,

the linear variables are closer to their respective bilinear terms by introducing cuts on the

convex paraboloid. Every cut is valid for the whole nodes of the branch tree.

Meyer and Floudas
2
 proposed a piecewise linear reformulation based on the RLT

technique to solve the superstructure model of generalized pooling problems. Before the

RLT is applied, the continuous space of each quality is partitioned into many

subintervals. Some binary variables are introduced to indicate which interval includes

the optimum quality. Then RLT is used with a note that the bilinear terms stay in the

mixing rule constraints for pooling problems instead of objective function in the problem

investigated by Sherali and Alameddine.
15

 These constraints are excluded from the

reformulation step but included in the linearization step according to the approach of

Meyer and Floudas.
2
 The introduction of binary variables to the formulation augments

the lower bound. Therefore, the calculation time is less despite the addition of variables.

However, it does not produce an upper bound. The authors verified the ε-global

optimum by doing a run series in which the quality partition scheme is restructured after

14

each run. In a large scale industrial problem, the approach can reduce the gap between

the lower and upper bound to 1.2%. The upper bound was found by using DICOPT.

More discussion on this paper is presented in section 3.6.

Sahinidis
20

 reviewed the theory and algorithms of the branch and reduce approach for

the global optimization of NLPs and MINLPs, which has evolved from the traditional

branch and bound approach. Two steps were implemented. The preprocessing step

before relaxation is to reduce the range of all problem variables. After relaxed problem is

solved, the post-processing step utilizes the solution to further reduce the problem

variable ranges prior to next branching iteration. As the ranges are reduced, the variable

bounds are tighter; therefore, this implemented branch and bound converges faster. The

approach has been developed, integrated in the computational system BARON, and

applied in various engineering problems

For an overview of published approaches, some of their characteristics are summarized

in Table 1. Basically, the approaches are categorized into three groups: local optimum,

lower bound and ε-global optimum.

This research proposes discretization approach which produces global optimums or near

global optimum results (in practically acceptable manner) and in computationally

realistic time aided by existing computer capacity. The procedure is to finitely discretize

the quality variables in the bilinear terms (flow variables multiplied by quality variables)

exhaustively or implicitly to obtain a mix integer linear programming (MILP)

formulation. This formulation is easy to be programmed in commercial programming

software, e.g. LINGO, for its global optimum. The remaining of this thesis describes

discretization approach and its applications, which are the main research contributions.

1
5

Table 1 Summary of approaches on pooling problems

Publication Base approach Optimality
Alignment to the

global minimum
Quality Implementation

Haverly
3
 Recursion Local Local optimum Single

Griffith and Stewart
5
 SLP Local Local optimum N/A

Palacios Gomez et al.
6
 SLP Local Local optimum N/A

Baker and Lasdon
7
 SLP Local Local optimum Single Multiplicative formulation

Lasdon et al.
4
 GRG and SLP Local Local optimum Single

Greenberg
8
 Geometry N/A N/A Multiple

Sensitivity analysis and

infeasibility diagnosis

Floudas et al.
10

 Decomposition Global Local optimum Single
Generalized Bender’s

Decomposition

Androulakis et al.
11

 Decomposition Global Lower bound Multiple
Distributed implementations of

GOP algorithm

Foulds et al.
12

 Branch and bound Global Lower bound Single Convex envelop relaxation

Sherali and Alameddine
15

 Branch and bound Global Lower bound N/A RLT

Ben-Tal et al.
16

 Branch and bound Global ε-global minimum Multiple Partition fractional flow variable

Quesada and Grossmann
17

 Branch and bound Global ε-global minimum Single RLT

Adhya et al. 18 Branch and bound Local Lower bound Multiple Selective Lagrangian relaxation

Sahinidis
20

 Branch and bound Global Lower bound Multiple Reduce variable range

Audet et al.
1
 Branch and cut Global Lower bound Multiple Formulation, branching and cut

Meyer and Floudas
2
 Branch and bound Global Lower bound Multiple Piecewise RLT

16

CHAPTER III

NEW CONCEPTS OF PROPOSED DISCRETIZATION APPROACH

This Chapter introduces the key concepts to be used in the new solution procedure of the

pooling problems. The proposed global optimization approach is based on three

concepts:

1.) Discretization of qualities for each pool: The characterizing qualities for each pool,

bjq, are unknown. Let us discretize the search space of the qualities of the pools into a set

of Np vectors of known values: {(bj,1 bj,2, …, bj,Nq)|j=1,…,Np). The rationale for the

selection of these values will be discussed later. It is also worth noting that if Np is large

enough, the discretized space can approximate the original continuous search space. The

discretization of the unknown pool qualities into known values transforms the

formulation into a linear program. However, there is a potential violation of the given

number of pools. Since the actual number of pools must be limited to m, Np – m should

not be selected in the final solution. To overcome this challenge, the following step is

introduced.

2.) Application of Integer Cuts for the Pools: In order to limit the number of pools to m,

an integer cut is used to select m pools from among the Np discretized pools. The details

will be given later. Consequently, the formulation becomes a mixed-integer linear

program “MILP” that can be globally solved using branch and bound method.

3.) Convex Hull Search: A potential problem with the large number of discretizations for

several qualities is the large size of the resulting MILP. In order to reduce the problem

dimensionality, a convex hull is constructed by invoking physical limits on the possible

combinations of pool qualities.

The following sections provide more details on the concepts, rationale, and

implementation of the above-mentioned steps.

17

3.1 Motivating example

Consider an example of the pooling problem adapted from Greenberg
8
 and summarized

in Figure 4, Table 2 and Table 3.

Figure 4 An example of pooling problem adapted from Greenberg
8

Table 2 Source information for the example

Source 1 2 3

Supply limit (Si) 100 200 100

RON (ai1) 82 92 82

Sulfur content (ai2) 1 2 1.5

Cost (Ci) 7 9 6

Table 3 Product constraints for the example

Product 1 2 3

Demand (Dk) 100 100 200

RON (min) (ck1) 84 87 90

Sulfur content (max) (ck2) 1.9 2 2

Price (Pk) 10 15 17

This example will be used to demonstrate the proposed approach and implementation

throughout the following sections.

18

3.2 Discretization by exhaustively enumerating bj’s

The pooling problem (P) is linearized by listing the values of one of the two variables in

the bilinear terms bjq.Yjk and bjq.Xjk. This work proposes the use of quality as the

discretized variable.

The quality of any pool is bounded by qualities of the blended sources. Using the

following notation: aq,min = arg
i

min {aiq} and aq,max = arg
i

max {aiq}, then the domain of

bjq is aq,min ≤ bjq ≤ aq,max.

This discretization approach limits the search space to pools whose values are bounded

between aq,min and aq,max. When the quality range is discretized into known values, the

bilinear terms become linear which is conducive to the global solution of the problem.

The quality range may be discretized in various ways (e.g., random, structured). One

way of discretizing the range of quality q is to divide it into tq equal intervals. In such

cases, the values of discretized quality q are calculated through the following expression:

q

qq

qqqr
t

aa
rab

min,max,

min,)1(
−

⋅−+= for rq = 1,…,(tq+1) (1)

When ∞→qt , the solution of the discretized and the original formulations become

equivalent. However, for all practical purposes, there is a large enough number of

discretizations that strikes the right balance between computational time and proximity

of the discretized solution to the original solution.

For Nq qualities, let us denote the number of interval discretizations for qualities

1,2,…,Nq by t1, t2,…,tNq , respectively. Therefore, the total number of discretized pools is

(t1 + 1).(t2 + 1)…(tNq + 1). If t1 = t2 = … = tNq = t, there are (t +1)
Nq

 pools.

19

Figure 5 Pools are enumerated on their assigned quality values

Figure 5 shows (t +1)
Nq

 pools, where bj = {bq,r | q = 1,…,Nq and r = 1,…,(t+1)}. This

number of pools (t+1)
Nq

 is independent of the number of pools in the original problem m.

Instead, t only depends on how small the quality increment is selected.

At this point, the problem is to blend l sources into (t+1)
Nq

 pools with known qualities. It

is a linear optimization formulation and a global result can be obtained. Pools which

have zero flow rate calculated are not used. It is possible that the resulting number of

used pools may exceed the allowable number of pools (m). To resolve this issue, a 0/1

binary integer variable fj is introduced. If the pool j is used in the solution of (P’), then fj

is assigned a value of 1, otherwise fj is 0. This constraint may be formulated using the

following linear constraint:

Lj.fj ≤∑
=

l

i

ijX
1

 ≤ Uj.fj for j = 1,…,(t+1)
 Nq

 .

where Lj and Uj are given positive real numbers that correspond to the minimum and

maximum capacities of the pools. If the original problem (P) has no constraint on pool

capacity, Uj should be at least the largest available supply of total sources. From these

two inequalities, fj is forced to be 0 when ∑
=

l

i

ijX
1

= 0, i.e. no flow rate to discretized pool

j, or 1 when ∑
=

l

i

ijX
1

> 0. As a characteristic of pooling problems, ∑
=

l

i

ijX
1

tends to be

20

positive to contribute to the objective function. Hence, the inequality fj ≤∑
=

l

i

ijX
1

 can be

removed without affecting the solutions.

Next, the restriction on the number of pools is taken into formulation simply

as mf

Nq
t

j

j ≤∑
+

=

)1(

1

. For simplicity in notation, let us denote (t+1)
Nq

 by M. Therefore,

reformulation is given by:

Objective function: ∑∑∑∑
====

−⋅
M

j

ij

l

i

i

M

j

jk

n

k

k XCYP
1111

is maximized

Available supply: ∑
=

M

j

ijX
1

≤ Si for i = 1,…,l

Mass balance on pools: ∑∑
==

=
n

k

jk

l

i

ij YX
11

 for j = 1,…,M

Product demand: k

M

j

jk DY ≤∑
=1

 for k = 1,…,n (P’)

Mixing rule for pools: iq

l

i

ij

l

i

ijjq aXXb ⋅=⋅ ∑∑
== 11

 for j = 1,…,M

Number of pools: fj = {0, 1} for j = 1,…,M

∑
=

l

i

ijX
1

 ≤ Uj.fj for j = 1,…,M

mf
M

j

j ≤∑
=1

Mixing rule for products: jq

l

i

jk

l

i

jkkq bYYc ⋅≥⋅ ∑∑
== 11

 for k = 1,…,n

Positive variables: 0≥ijX , 0≥jkY for i = 1,…,l

 j = 1,…,m

 k = 1,…,n

where bjq’s are known parameters defined by (1).

21

This formulation is a mixed integer linear program (MILP). The main drawback of this

approach is the potential large size integer of the MILP. The number of pools has

increased from m to M, resulting in (M -m) more variables for bj, M variables of fj and

l.(M -m) more variables for each set of Xij and Yjk. It also increases rapidly when the

increment decreases. Consequently, the selection of the increment size is critically

important for the problem dimensionality and computational efficiency of the devised

discretization approach. The following section is a discussion on the selection of the

discretization scheme.

Exhaustive enumeration approach to the discretized space

Let us start by a pooling problem involving two qualities. A graphical technique is

proposed to reduce these variable amounts. This technique is discussed using the

following example. Consider a pooling problem with research octane number (RON)

and sulfur content as the two primary qualities. If the search space for qualities is

discretized in an exhaustive enumeration manner, then the number of discretized pools

will correspond to the number of all possible quality combinations. The range of RON is

[82, 92] and for the sulfur content (expressed as %sulfur) is [1, 2]. The number of RON

intervals is taken to be 40 and the number of the sulfur content is also taken to be 40.

Therefore, the increments of 0.25 for RON and 0.025 for sulfur content percentage are

used. hence, the discretized set of RON {82.00; 82.25; …; 92.00} has 41 components

and that of sulfur concentration, {1; 1.025; 1.05; …; 1.975; 2} has 41 components.

Using the exhaustive enumeration, we need 41x41 = 1,681 pools qualities of which are

described in Table 4. Figure 6 is a schematic representation of the exhaustive

enumeration of the discretized search space described by Table 4.

22

Table 4 Exhaustive enumeration approach to discretizing the motivating example

RON 92

82

1.0 1.5 2.0

%S

Figure 6 Exhaustive enumeration of a discretized search space for pool qualities

The problem formulation is given by:

Maximize (10∑
=

1681

1j

1jY + 15 ∑
=

1681

1j

2jY + 17∑
=

1681

1j

3jY) – (7∑
=

1681

1j

j1X + 9∑
=

1681

1j

j2X + 6∑
=

1681

1j

j3X)

Available supply: ∑
=

1681

1j

j1X ≤ 100; ∑
=

1681

1j

j2X ≤ 200; ∑
=

1681

1j

j3X ≤ 100

23

Mass balance on pools: ∑∑
==

=
3

1k

jk

3

1i

ij YX for j = 1,…,1,681

Product demand: 100Y
1681

1j

1j ≤∑
=

; 100Y
1681

1j

2j ≤∑
=

; 200Y
1681

1j

3j ≤∑
=

Mixing rule for pools: RON 1

3

1

3

1

1, i

i

ij

i

ijj aXXb ⋅=⋅ ∑∑
==

 for j = 1,…,1,681

Sulfur 2

3

1

3

1

2 i

i

ij

i

ijj aXXb ⋅=⋅ ∑∑
==

 for j = 1,…,1,681

The values of ai1 and ai2 are given in Table 2.

Number of used pools: j

i

ij fX ⋅≤∑
=

400
3

1

 for j = 1,…, 1,681

 2f
1681

1j

j ≤∑
=

Mixing rule for products: RON 1j

1681

1j

jk

1681

1j

jk1k bYYc ⋅≤⋅ ∑∑
==

 for k = 1,…,3

Sulfur 2j

1681

1j

jk

1681

1j

jk2k bYYc ⋅≥⋅ ∑∑
==

 for k = 1,…,3

where 1jb and 2jb are defined as in Table 4

The model is formulated in LINGO software (see Appendix B6). Calculation on

Optiplex GX 620 personal computer gives the results that pool 116 and 689 are used

with the qualities (83.25; 1.5) and (90; 1.8) respectively. A global optimum of 2,425 is

found in a runtime of 1,235 seconds.

According to the foregoing exhaustive enumeration of the discretized qualities, 11,767

variables and 6,738 constraints are included in the formulation. The question is whether

physical insights be used to reduce the number of variables and constraints. The answer

is yes and will be detailed in the following section.

24

New discretization approach using the quality diagram (attainable regions)

Consider the q
th

 quality, for which the set of qualities for the sources is given by:

Set_Quality_Sourcesq = {a1q, a2q, …,aiq,…,alq}. In order to reduce the size of the search

space of the discretized qualities for the pool, it is proposed to use physical insights from

mixing rules. The key idea is that the quality of any pool composed by mixing several

sources will be enclosed in the convex hull constructed by the convex combination of

the qualities of the individual sources. i.e.

},__|{

1

1 ∑
∑

=

=

=∈⋅=∈
l

i

ij

ij

ijqiqiq

l

i

ijConvexjq

X

X
xSourcesQualitySetaaxHb

To illustrate this concept graphically, consider the case of the three sources and two

qualities (RON and sulfur content) whose data are given in Table 2. The three sources

are represented by S1, S2, S3 and the discretized pools are shown as dots. Figure 7

illustrates the convex hull (triangle) constructed from the three sources. This convex hull

is referred to as the attainable region for the pool.

RON 92

82

1.0 1.5 2.0
%S

S1
S3

S2 Attainable
Region of

the Pool
(triangle S1S2S3)

Figure 7 Attainable region (convex hull) of the pool qualities for two qualities

25

Therefore, for given qualities of sources S1, S2 and S3 any possible blend will lie within

the attainable region characterized by the triangle S1S2S3. Indeed, it is unnecessary to

search for the pool qualities outside this convex hull. The construction of the convex hull

as the search space for the pool qualities leads to significant reduction in the size of the

search space. In this example, the ratio of triangle S1S2S3 area and the rectangular area

for exhaustive enumeration is 0.25. In other words, equivalently, the convex hull

includes 420 discretized pools compared to 1681 discretized pools in the case of

exhaustive enumeration. This leads to a 75% reduction in the search space for the

qualities of the pools.

While the construction of the convex hull with its enclosed points is relatively simple for

the case of two qualities and three sources, it is more challenging for higher orders.

There are several algorithms for determination of convex hulls and enclosed points (see

section 4.3 for a discussion). The next section provides useful mathematical approaches

to constructing the convex hull with its enclosed points based on implicit enumeration of

qualities using flow rates.

3.3 Implicit enumeration of discretized qualities bj’s using flow rate proportion

This section introduces a preprocessing step to enumerate the discretized pool qualities

bj’s within the convex hull of the attainable region of the pools. For those pools inside

the convex hulls, the pool qualities relate to the source qualities by the mixing rule

constraints: iq

l

i

ij

l

i

ijjq aXXb ⋅=⋅ ∑∑
== 11

.

Divide both sides of this equation by ∑
=

l

i

ijX
1

and say

∑
=

=
l

i

ij

ij

ij

X

X
x

1

, we have:

iq

l

i

ijjq axb ⋅=∑
=1

 where xij’s are the flow rate proportion from source i to pool j

and 1
1

=∑
=

l

i

ijx . This is a convex hull condition.

26

One way of enumerating the bjq points within the convex hull is to discretize the values

of xij within the interval [0, 1] While satisfying the condition of and 1
1

=∑
=

l

i

ijx . Therefore,

the values of the discretized xij’s cannot be randomly selected. In each set of

discretization, they must add up to 1.

The following section describes a systematic way for enumerating the xij’s while

maintaining the unit summation condition. It is worth noting that the more number of the

sources, the more complicated the discretization scheme of xij’s. We start with the

simplest case in which only 2 sources are investigated.

For two sources:

Consider the following:

 Pool index: j

 x1j = (j – 1)/t

 x2j = 1 – x1j = 1 - (j – 1)/t

 bjq = a2q + a1q.(j – 1)/t for q = 1,.., Nq.

Let j run from 1 to (t+1). The total number of discretized pools is simply (t+1).

For example, when t = 5 then the interval width ∆xij = 1/t = 0.2. Table 5 shows the

calculation.

27

Table 5 An example of implicit enumeration for 2 sources

For three sources:

For two or more sources, the condition 1
1

=∑
=

l

i

ijx must be satisfied while discretizing.

This constraint reduces the discretized space from the large hyper rectangle to the much

smaller convex hull of the sources, but makes difficult to calculate the total number of

discretized pools as well as to program the pool index in some programming languages.

In the exhaustive enumeration over a hyper rectangle gives a total of (t+1)
Nq

 discretized

pools, i.e. proportional to a power of Nq. We will calculate the number of discretized

pools in the convex hull and see the improvement.

For three sources, enumeration of xij’s is

 x1j = (u – 1)/t for u = 1,…, (t+1)

 x2j = (v – 1)/t for v = 1,…, (t+2-u)

 x3j = 1 – x1j – x2j = 1 - (u + v – 2)/t

28

The index v runs from 1 to (t+2-u), depending on the value of the index u in the outer loop.

When u = 1, the value of v runs from 1 to (t+1). That means the number of discretized

pools in this loop is (t+1), the same to that of the 2 source discretization. The pool index

j equals to v.

When u = 2, the index v runs from 1 to t in order to satisfy the constraints 1
1

=∑
=

l

i

ijx . In

other words, the point representing the pool with u = 1 and v = t+1 (i.e. x1j = 1/t, x2j = 1,

x3j arbitrary) is outside the convex hull of the 3 sources in the quality space. The pool

index is j = v + t + 1 due to addition of (t+1) pools as u = 1.

Similarly for the next step of u, the pool index is equal to

 (u -1)(t + 1) – [1 + 2 + … + (u – 2)] + v for u = 2,…, (t+1)

where the first two groups account for cumulative number of pools in the previous loop

of u. It can be rewritten as

 (u -1)(t + 1) – (u – 2)(u – 1)/2 + v for u = 1,…, (t+1)

and now also true for the case u = 1.

The total number of discretized pools is (t + 1) + t + … + 2 + 1 = (t + 1).(t + 2)/2. Each

term in the left hand side of this equation is the number of pools in each loop of u,

starting from 1 to (t+1). Equivalently, it is the last pool index.

Revisit the example of pooling problem in the previous section, the mixing rule

constraints for the RON and sulfur properties are respectively:

829282 3211

3

1

1 ⋅+⋅+⋅=⋅=∑
=

jjji

i

ijj xxxaxb

5.121 3212

3

1

2 ⋅+⋅+⋅=⋅=∑
=

jjji

i

ijj xxxaxb .

29

Note that the xij’s are identical for both sets of constraints.

In the quality diagram, the discretized pools represented by dots in Figure 8 are inside

the convex hull of the 3 sources. The convex hull – triangle S1S2S3 – is smaller than the

hyper rectangle in Figure 7.

Figure 8 Convex hull discretizing space in quality diagram

An increment of 0.025 for xij is chosen, there are (1-0)/0.025 = 40 intervals, the values of

bjq’s are then discretized and assigned for (40+1).(40+2)/2 = 861 pools as in Table 6.

Table 6 An example of implicit discretization for three sources

30

In LINGO, this formulation has 6,027 variables and 3,458 constraints (see Appendix

B7). With a runtime of 542 seconds, a global optimum of 2,425 is found as pool 41 (92;

2.0) and pool 512 (82.25; 1.325) are used.

In the exhaustive discretization approach, only around 420 pools out of the listed 1,681

pools are inside the triangle S1S2S3 and they are promising candidates for the solution.

Meanwhile, this implicit enumeration gives 861 discretized pools, all inside the convex

hull triangle. The number of promising candidates increases but the total number of

variables and constraints deceases.

For four sources

The discretization procedure needs one more loop:

 x1j = (u – 1)/t for u = 1,…, (t+1)

 x2j = (v – 1)/t for v = 1,…, (t+2-u)

 x3j = (r -1)/t for r = 1,…, (t+3-v)

 x4j = 1 – x1j – x2j – x3j = 1 - (u + v + r – 3)/t

In each loop of u (each value of x1j), the amount of pools results from the discretization

of flow rate portions of three sources. Therefore, it is (t+1)(t+2)/2 for the first loop and

t(t+1)/2 for the second loop (because the number of intervals decreases by 1 to satisfy

1
1

=∑
=

l

i

ijx) and so on.

The total number of discretized pools is

 (t + 2).(t + 1)/2 + (t + 1).t/2 + … + (3).(2)/2 + (2).(1)/2

or (t + 1).(t + 2).(t + 3)/6

31

The pool index is

(t+1).(t+2).(t+3)/6-(t-u+1).(t-u+2).(t-u+3)/6-(t+1).(t+2)/2+(v-1).(t-u+1)-(v-1).(v-2)/2+r

This complicated pool index needs sufficient effort to be derived for programming with

FOR loop in LINGO 10 or older. In other programming software, there is a simple trick

to deal with the pool indices in which j is added by 1 in each step of r in the appropriate

loop command, e.g. WHILE, DO, REPEAT etc.

For l sources

In general, if there are l sources and t intervals are chosen to discretize, the total number

of discretized pools is given by

!)!.1(

)!1(

)1...(3.2.1

)1)...(2).(1(

tl

lt

l

lttt

−

−+
=

−

−+++
 which is not dependent on the number of qualities.

The discretization of bj’s which is considered as a preprocessing step has been

performed. These discretized values are the input data and play a role of parameters in

the formulation (P’).

3.4 Implemented formulation for implicit enumeration of quality discretization for

the pools

This part provides an implementation on the formulation using the same implicit

discretization approach described earlier. The implementation reduces the number of

variables and constraints in the formulation without compromising the optimization results.

In the proposed implicit enumeration approach, the values of bj’s are calculated from

iq

l

i

ijjq axb ⋅=∑
=1

where aiq’s are known parameters and xij’s are discretized on the range

[0, 1]. As shown, this set of equalities is actually another form of the mixing rule

constraints for the pools. Hence, when the values of xij’s associating with bj’s are stored

32

in the preprocessing step and supplied as input data for the formulation, all the terms in

the mixing rule equations are known and can be moved from the formulation to the

preprocessing discretization step. xij’s can substitute Xij’s to refer the flow rates from

each source to pools. Those flow rates are the multiplication products between the

fractional flow rates xij’s and the total flow rate through pool j, say Zj. Therefore, Xij’s

are removed from the formulation, leaving Yjk’s and Zj as the decision variables.

This implementation takes l.(t+1)
Nq

 variables Xij’s and (t+1)
Nq

 constraints on mixing rule

for pools off, and introduces (t+1)
Nq

 variable Zj’s and l.(t+1)
Nq

 parameter xij’s to the

formulation. The constraints and unknown terms are sufficiently reduced.

The formulation is given by:

Objective function:)]([
1111

j

M

j

ij

l

i

i

M

j

jk

n

k

k ZxCYP ⋅−⋅ ∑∑∑∑
====

 is maximized

Available supply: ∑
=

⋅
M

j

jij Zx
1

≤ Si for i = 1,…,l

Mass balance on pools: ∑
=

=
n

k

jkj YZ
1

 for j = 1,…,M

Product demand: k

M

j

jk DY ≤∑
=1

 for k = 1,…,n (P’)

Number of pools: fj = {0, 1} for j = 1,…,M

jZ ≤ Uj.fj for j = 1,…,M

mf
M

j

j ≤∑
=1

Mixing rule for products: jq

l

i

jk

l

i

jkkq bYYc ⋅≥⋅ ∑∑
== 11

 for k = 1,…,n

Positive variables: 0≥jZ , 0≥jkY for i = 1,…,l

 j = 1,…,m

 k = 1,…,n

where bjq’s and xij’s are known parameters defined in the section 4.3.

33

By discarding the mixing rule constraints in the formulation (but discretization is based

on those constraints), is there anything missing? To answer this question, consider the

following case shown by Figure 9.

Figure 9 Attainable region for four sources

From Figure 8, it can be seen that a discretized quality may result from more than one

flow fraction discretization. For instance, the pool represented by the point at S4 can be

obtained from source S4 only or from a certain combination of S1, S2 and S3.

This non-uniqueness in discretization leads to redundancy which may be avoided if we

realize that S4 is inside the convex hull of the sources; therefore is not a component of

the convex hull boundary. So we discretize on the set of three sources S1, S2 and S3 only,

i.e. considering flow rate fraction of S4 as zero when discretizing.

If the constraints on the mixing rules are removed, something is missing. Since the

fractional flow rate from S4 is zero as discretizing, it is always stored as zero in

formulation input data. The solver is then not allowed to use S4. This may mislead the

solution when the cost of S4 is cheaper.

If the constraints on the mixing rules are still kept in the formulation and discretized

values of xij’s are not stored, nothing is missed. The qualities are discretized without

34

records of associated flow rate fractions. Then the solver is free to calculate the optimum

flow rate (or flow rate fraction), i.e. the feasible region covers both duplicated

discretizations.

For the above-stated reasons, we should keep all the sources to discretize flow rate

fractions xij’s if the constraints on the mixing rules are moved to the preprocessing step.

The implemented formulation of the example is reported in Appendix B8. Calculation

runtime is improved (i.e. deceased) and shown in Figure 24.

3.5 Comparison of two discretization approaches

For discretizing bjq’s, the number of discretized pools as well as reformulation size

mostly depends on the number of investigated qualities. This approach favors pooling

problems with only one quality. For problems with many qualities, the reformulated

problem may be large enough to overwhelm the capacity memory of linear programming

software.

For discretizing bjq’s by implicitly enumerating xij’s, the discretizing space is the convex

hull of sources, which is smaller than the hyper rectangle in the quality space. Although

the approach is applicable for pooling problems with one quality, it does not reduce the

discretizing space, even may lead to the case that some pools have a same quality. The

amount of discretized pools drastically increases when the number of sources increases

and does not depend on the number of qualities.

Given a pooling problem, the latter approach produces a reformulation with a much

smaller number of pools as well as the formulation size. However, it takes sufficient

efforts in programming to relate to pool index j to assigned values of xij’s when dealing

with many qualities in LINGO language.

35

3.6 Distinction from discretization in piecewise linear RLT

Meyer and Floudas
2
 proposed the use of discretizing the quality space in solving

pooling problems using reformulation linear transformation (RLT). It is important to

distinguish the RLT approach from the new discretization approach proposed in this

work. As discussed in the Literature Review section, Meyer and Floudas
2
 proposed a

piecewise linear reformulation based on the RLT technique to solve the superstructure

model of generalized pooling problems. Before the RLT is applied, the continuous space

of each quality is partitioned into many subintervals that are placed between discretized

points. Some binary variables are introduced along with integer-cut constraints to

indicate which interval includes the optimum quality. Then, RLT is used with a note that

the mixing rule constraints are excluded from the reformulation step but included in the

linearization step.

Meyer and Floudas’ discretization of quality space augments the upper bound on the

global maximum of the original problem. Therefore, the calculation time is reduced

despite the addition of variables. This contribution is depicted in Figure 10.

Figure 10 Piecewise linearization vs. regular linearization of RLT

Assume that the curve of bilinear term q.c is represented as the bottom curve. The

linearization step of Sherali’s
21

 RLT replaces q.c by new variable w. This means that the

curve q.c is substituted by a straight line for the whole investigated range. Meyer and

36

Floudas
2
 proposed a new way of linearization. The curve q.c is replaced by many

connected line segments wk’s which are closer to q.c curve than the line w in the former

approach. This is called piecewise linear relaxation. To obtain this piecewise function,

Meyer and Floudas
2
 discretized the q domain and investigated the subintervals between

those discretized points.

The global optimum of the relaxed problem provides an upper bound on the original

problem. But the found solution could or could not be a feasible solution for the original

problem, i.e. it does not guarantee one can find a set of quality and flow rate values

associating to the optimum of the objective function. Meanwhile, the discretization

approach in this research gives a lower bound along with the blending strategy in perfect

mass balance. Figure 11 shows the difference between the outcomes of the two

approaches. This is the first difference between the two approaches.

Figure 11 Comparison of optima for the two discretization approaches

The RLT approach of Meyer and Floudas
2
 does not produce a lower bound. The authors

suggested a way to verify the ε-global optimum by performing a series of runs in which

the quality partition scheme is restructured after each run. But the authors did not

demonstrate this algorithm in the example of a large scale industrial problem. Instead,

37

the lower bound was found by using DICOPT. The approach can reduce the gap between

the lower and upper bound of the example to 1.2%.

Another distinction between the two approaches is that Meyer and Floudas
2
 discretized

the hyper-rectangle space of qualities. This approach is in the same manner to the

exhaustive enumeration discretization described earlier in this research. As has been

discussed previously, this work has introduced the concept of implicit enumeration of

the discretized qualities within the convex hull (attainable region). This approach

typically results in much smaller linearized problems.

38

CHAPTER IV

METHODOLOGY

4.1 Discretization approach in optimization

Discretization is a useful way of transforming optimization problems with infinite search

points (over a continuous space) to a search space with finite points (over a discrete

space). Discretization may be conducted to fix values of complicating variables in a way

that transforms a nonlinear program to a linear program which is amenable to global

solution. With sufficient discretization, the global optimum of the discretized problem

can approximate (or coincide with) the true global optimum of the original problem.

Hence, a discretization approach is intended to give an ε- global optimum.

In order to reduce the mismatch between the two optima, discretization schemes should

be fine-enough to approximate the true solution. However, increased discretization

yields problem sizes that increase dramatically, resulting in increased computational cost

(time). This trade-off needs to be carefully balanced so that the practically acceptable

tolerance is found in a reasonable computational time.

Another way to reduce the tolerance is to solve the problems in series of runs. The first

run is for raw discretization. The next run uses updated input data which are finer

discretization around the optimum point from the previous step and so on.

Due to highly computational time (or solution error), discretization approach has not

been widely applied. However, it is hoped that the results of this research show that the

application to the pooling problems gives optima with acceptable tolerance and runtime.

39

4.2 Mixed integer linear programs

A mixed integer linear program (MILP) is a mathematical program of optimization

problems in which the objective function and constraints are linear and with some of the

variables taking on integer values while other variables are continuous. As stated by

Kallrath,
22

 there are often many ways to formulate an MILP and which way to choose

should be carefully considered because the computational costs may vary, which is a

well-known characteristic of MILPs. To transform a nonlinear program into MILP

problems, the following techniques are usually applied:

- Binary variables are used to formulate logical conditions and disjunctive

constraints.

- Binary variables can be also introduced to formulations to represent bounds and

signify the values of semi-continuous variables defined as {x | x = 0 or lower < x

< upper}. The reformulated model is lower*f < x < upper*f and f = {0, 1} that is

appropriate to branch and bound framework.

- When piecewise linear functions are present, special ordered set is a good choice

to model them. There are two types of special ordered sets. In type 1, only one

variable is non-zero. For instance, a problem is to choose one of mutually

exhaustive alternatives. In type 2, there are not more than 2 variables in the set

may be non-zero. Approximate linearization of nonlinear function is often done

using special ordered set type 2.

There have been many algorithms developed to solve MILPs. These include cutting

planes, branch and cut, dynamic programming, decomposition, logic-based methods and

the widely used branch and bound approach which is discussed in details below.

40

4.3 Convex hull algorithm

Given is a set of discrete points. The convex hull of a set is the smallest polytope

containing all points in the set.

Algorithms to determine the convex hull is a field of geometrical mathematics. There

have been many algorithms, shown in Table 7 (Sunday
23

). In this table, n is the number

of points and h is the number of vertices on the convex hull. Among these algorithms,

Graham Scan and Divide-and-Conquer are the most popular ones.

Table 7 Convex hull algorithms (Sunday
23

)

Algorithm Speed

Brute Force O(n
4
)

Gift Wrapping O(nh)

Graham Scan O(n log n)

Jarvis March O(nh)

QuickHull O(nh)

Divide-and-Conquer O(n log n)

Monotone Chain O(n log n)

Incremental O(n log n)

Marriage-before-Conquest O(n log h)

These convex hull determining procedures can be integrated with the proposed

exhaustive discretization approach in order to eliminated useless discretized pools,

which reduces the problem size.

However, the implicit discretization approach needs not use those algorithms. The

equalities iq

l

i

ijjq axb ⋅=∑
=1

 are a form of convex hull condition. These constraints

guarantee that the discretized pools are only inside the convex hull of sources in the

quality diagram.

41

4.4 Branch and bound approach

The branch and bound approach is a common (but not the only) procedure to solve

discrete and combinatorial optimization problems.

According to Murty,
24

 the main difficulty for solving discrete optimization and

combinatorial optimization problems is that there has not been a global optimality

condition to check whether a feasible solution is optimal or not. Instead, a systematic

way is to enumerate all of the feasible solutions and then choose the best. However, this

approach is only applicable to small problems. For large enough problems, even the

fastest computer can not handle the huge amount of calculation for this total

enumeration. Unfortunately, practical optimization problems are usually in this large

size. Another better approach is to partially enumerate the feasible solutions so that

computational cost is affordable and optimality is guaranteed. Branch and bound is such

an approach.

The branch and bound approach was first published in the beginning of the 1960s, as a

result of two independent contributions of Land and Doig,
25

 which is focused on general

discrete optimization problem, and Murty
24

 on a specific type of discrete optimization

problems.

The approach name itself implies the solution procedure. From a feasible heuristic

solution (a root node), branching on the feasible regions results in a set of subproblems

looked like a tree, nodes of which are subproblems. But, branching a set of nodes until

the ending node is not necessary if we check and see the best optimal in the descent

nodes can not be better than a known optimal which is called bound. When we have

many branches pruned like this, the enumerating load is sufficiently reduced.

Because we safely stop branching at the nodes, the branch and bound approach is still an

exactly global optimization procedure despite of partial enumeration.

42

Certainly, we prefer to prune off as many branches as possible. Nevertheless, it highly

depends on the data as well as how to branch and bound. A specific way of branch and

bound is referred as an algorithm. A branch and bound algorithm, therefore, may be

suitable for a set of data but poorly behaves to other data or problems. There is no

unique branch and bound algorithm that is good for every discrete or combinatorial

optimization problem.

A good branch and bound algorithm is the one that gives an optimum tight bound. The

bound should not be too tight or too loose. If the bound is loose, many nodes need to be

calculated, leading to expensive calculation cost. On the other hand, a highly tight bound

is a result of more calculation effort at each node and it may exceed the benefit from

reducing node amount.

Many branch and bound algorithms become more effective when integrated with other

techniques, such as Lagrangian, Reformulation-Linearization Technique as discussed in

Chapter III - Literature Review.

43

CHAPTER V

A SELECTION OF PUBLISHED POOLING PROBLEMS

The application of the discretization approach will be demonstrated using some

published pooling problems. These include Haverly’s (3 problems), Ben-Tal’s (2

problems), Foulds’ (4 problems) and Adhya’s (4 problems).

Figure 12 and Table 8 show the input data for Haverly’s
3
 pooling problems, the first

published and simplest series with only a one actual pool and one quality. to the

problems referred to as Haverly 1 and Haverly 2 have the updated first product demand

and Haverly 3 has the adjusted cost of the second source. Other parameters are identical

in the three problems.

Figure 12 Haverly’s
3
 pooling problems

Table 8 Haverly’s
3
 pooling problems

Pooling problem Haverly 1 Haverly 2 Haverly 3

Source 1 (cost; quality) (6;3) (6;3) (6;3)

Source 2 (cost; quality) (16;1) (16;1) (13;1)

Source 3 (cost; quality) (10;2) (10;2) (10;2)

Product 1 (price; demand; max quality) (9;100;2.5) (9;600;2.5) (9;100;2.5)

Product 2 (price; demand; max quality) (15;200;1.5) (15;200;1.5) (15;200;1.5)

44

Figure 13 Foulds 2 pooling problem (Foulds
12

)

Table 9 Foulds 3 pooling problem (Foulds
12

)

Pool Source Cost (Ci) Quality (ai) Product Price (Pk) Min quality (ck)

1 1 20 1.0 1 20.0 1.05
 2 19 1.1 2 19.5 1.10
 3 18 1.2 3 19.0 1.15
 4 17 1.3 4 18.5 1.20

2 2 19 1.1 5 18.0 1.25
 3 18 1.2 6 17.5 1.30
 4 17 1.3 7 17.0 1.35
 5 16 1.4 8 16.5 1.40

3 3 18 1.2 9 16.0 1.45
 4 17 1.3 10 15.5 1.50
 5 16 1.4 11 15.0 1.55
 6 15 1.5 12 14.5 1.60

4 4 17 1.3 13 14.0 1.65
 5 16 1.4 14 13.5 1.70
 6 15 1.5 15 13.0 1.75
 7 14 1.6 16 12.5 1.80

5 5 16 1.4
 6 15 1.5
 7 14 1.6
 8 13 1.7

6 6 15 1.5
 7 14 1.6
 8 13 1.7
 9 12 1.8

7 7 14 1.6
 8 13 1.7
 9 12 1.8
 10 11 1.9

8 8 13 1.7
 9 12 1.8
 10 11 1.9
 11 10 2.0

45

Foulds et al.
12

 developed a pooling problem (referred to as Foulds 2 in Figure 13) from

Haverly’s problem and generated three larger problems. Due to the complexity of the

jumble diagrams, Foulds 3, Foulds 4 and Foulds 5 examples are only presented in table

forms (Table 9, Table 10 and Table 11.) For these problems, each of the pools is blended

from some selective sources and may be mixed in any product.

Table 10 Foulds 4 pooling problem (Foulds
12

)

Pool Source Cost (Ci) Quality (ai) Product Price (Pk) Min quality (ck) Demand (Dk)

1 1 20 1.0 1 20.0 1.05 1
 4 17 1.3 2 19.5 1.10 1
 7 14 1.6 3 19.0 1.15 1
 10 11 1.9 4 18.5 1.20 1

2 2 19 1.1 5 18.0 1.25 1
 5 16 1.4 6 17.5 1.30 1
 8 13 1.7 7 17.0 1.35 1
 11 10 2.0 8 16.5 1.40 1

3 3 18 1.2 9 16.0 1.45 1
 2 19 1.1 10 15.5 1.50 1
 5 16 1.4 11 15.0 1.55 1
 6 15 1.5 12 14.5 1.60 1

4 4 17 1.3 13 14.0 1.65 1
 3 18 1.2 14 13.5 1.70 1
 6 15 1.5 15 13.0 1.75 1
 7 14 1.6 16 12.5 1.80 1

5 5 16 1.4
 6 15 1.5
 3 18 1.2
 8 13 1.7

6 6 15 1.5
 7 14 1.6
 4 17 1.3
 9 12 1.8

7 7 14 1.6
 8 13 1.7
 9 12 1.8
 4 17 1.3

8 8 13 1.7
 9 12 1.8
 10 11 1.9
 5 16 1.4

46

Table 11 Foulds 5 pooling problem (Foulds

12
)

Pool Source Cost (Ci) Quality (ai) Product Price (Pk) Min quality (ck)

1 1 20 1.0 1 20.0 1.05
 2 19 1.1 2 19.5 1.10
 3 18 1.2 3 19.0 1.15
 4 17 1.3 4 18.5 1.20
 8 13 1.7 5 18.0 1.25
 9 12 1.8 6 17.5 1.30
 10 11 1.9 7 17.0 1.35
 11 10 2.0 8 16.5 1.40

2 2 19 1.1 9 16.0 1.45
 3 18 1.2 10 15.5 1.50
 4 17 1.3 11 15.0 1.55
 5 16 1.4 12 14.5 1.60
 7 14 1.6 13 14.0 1.65
 8 13 1.7 14 13.5 1.70
 9 12 1.8 15 13.0 1.75
 10 11 1.9 16 12.5 1.80

3 4 17 1.3
 5 16 1.4
 6 15 1.5
 7 14 1.6
 8 13 1.7
 9 12 1.8
 10 11 1.9
 11 10 2.0

4 1 20 1.0
 2 19 1.1
 3 18 1.2
 4 17 1.3
 5 16 1.4
 6 15 1.5
 7 14 1.6
 8 13 1.7

Ben-Tal et al.
16

 proposed two pooling problems by introducing one more source with a

constraint on its capacity (problem Ben-Tal 4 in Figure 14) to Haverly’s example or

developed a larger problems with additional 3 sources, 2 pools and 3 products (Ben-Tal

5 in Figure 15).

47

Figure 14 Ben-Tal 4 pooling problem (Ben-Tal et al.
16

)

Figure 15 Ben-Tal 5 pooling problem (Ben-Tal et al.

16
)

Haverly, Foulds and Ben-Tal’s pooling problems may be referred as small problems for

dealing with only one or two qualities. Meanwhile, the Adhya’s examples with many

investigated qualities are larger in size. These problems’ data are presented in Figure 16,

Figure 17, Figure 18 and Figure 19.

48

Figure 16 Adhya 1 pooling problem (Adhya et al.
18

)

Figure 17 Adhya 2 pooling problem (Adhya et al.

18
)

1

2

3

1

Sources Pools Products

(Ci; ai,1; ai,2; ai,3; ai,4; ai,5; ai,6) (Pk; Dk; ck,1; ck,2; ck,3; ck,4; ck,5; ck,6)

24

5

(7; 1; 6; 4; 0.5; 5; 9)

(3; 4; 1; 3; 2; 4; 4)

(2; 4; 5.5; 3; 0.9; 7; 10)

(10; 3; 3; 3; 1; 3; 4)

(5; 1; 2.7; 4; 1.6; 3; 7)

(16; 10; 3; 3; 3.25; 0.75; 6; 5)

(25; 25; 4; 2.5; 3.5; 1.5; 7; 6)

(15; 30; 1.5; 5.5; 3.9; 0.8; 7; 6)

(10; 10; 3; 4; 4; 1.8; 6; 6)

1

2

3

4

6

37

8

(2; 4; 5.5; 3; 0.9; 7; 10)

(10; 3; 3; 3; 1; 3; 4)

(5; 1; 2.7; 4; 1.6; 3; 7)

Figure 18 Adhya 3 pooling problem (Adhya et al.
18

)

49

Figure 19 Adhya 4 pooling problem (Adhya et al.
18

)

50

CHAPTER VI

RESULTS AND DISCUSSION

In this chapter, the test problems described in Chapter V are solved using the proposed

new approach. As mentioned earlier, the new approach transforms the nonlinear pooling

formulation to an MILP. The resulting MILP is solved using the commercial

optimization software LINGO
26

 developed by of LINDO Systems. The programs are

solved using a personal computer Dell Optiplex GX 620 with the processor Pentium 4

3.6Ghz and a RAM of 1 Gb. The new version of LINGO (version 10) has a global solver

tool for NLP problems. This option will also be used to solve the same test problems to

compare with the solution results and characteristics of the proposed approach.

For each test problem, several runs are made to account for the effect of increasing the

number of intervals on the quality and computation time of the solution. A series of runs

are made such that the number of intervals in each run is taken as double the number of

intervals in the previous run. Consequently, all discretized points one run are kept in the

subsequent run.

The results are grouped according to four categories: results for problems with one

quality, two qualities, more than two qualities, and results using the global solver tool of

LINGO.

6.1 All global optimum found in one-quality problems

Among the investigated pooling problems, there are those with one quality such as

Haverly’s (3 problems), Foulds’ (4 problems) and Ben-Tal 4. As discussed in Section

4.5, for problems with one quality, it is preferable to use the exhaustive enumeration

approach. The codes are presented in Appendix A. The calculation results (run time and

deviation from global solution) are shown by Figure 20 - 21.

51

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of pools

E
rr

o
r

(%
)

0

500

1000

1500

2000

2500

3000

R
u

n
ti
m

e
 (

s
)

Error of optimum

Runtime

(a)

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of pools

E
rr

o
r

(%
)

0

2000

4000

6000

8000

R
u

n
tim

e
 (

s
)Error of optimum

Runtime

(b)

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of pools

E
rr

o
r

(%
)

0

2000

4000

6000

8000
R

u
n

ti
m

e
 (

s
)

Error of optimum

Runtime

(c)

Figure 20 Results on Haverly’s problems with exhaustive enumeration of discretization

(a) Haverly 1, (b) Haverly 2, (c) Haverly 3

52

As can be seen from the results, all three problems were solved globally using the new

discretization approach. It is worth noting that as the number of intervals is doubled, the

computational time increases and the results constitute a series of non-inferior solutions

(improving or staying the same).

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 500 1000 1500 2000

Number of intervals

E
rr

o
r

(%
)

0

10

20

30

40

50

60

R
u
n

ti
m

e
 (

s
)

Error of optimum

Runtime

(a)

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 500 1000 1500 2000

Number of intervals

E
rr

o
r

(%
)

0

50

100

150

200

250

300

350

400

450

R
u
n

ti
m

e
 (

s
)

Error of optimum

Runtime

(b)

Figure 21 Results on Foulds’ problems with implicit enumeration of discretization

 (a) Foulds 2, (b) Foulds 3, (c) Foulds 4, (d) Foulds 5

53

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 100 200 300 400 500 600

Number of intervals

E
rr

o
r

(%
)

0

100

200

300

400

500

600

R
u
n

ti
m

e
 (

s
)

Error of optimum

Runtime

(c)

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 200 400 600 800 1000 1200

Number of intervals

E
rr

o
r

(%
)

0

100

200

300

400

500

600

700

800

900

R
u
n

ti
m

e
 (

s
)

Error of optimum

Runtime

(d)

Figure 21 Continued

The runtime curve in Figure 22 for problem Ben-Tal 4 is a typical runtime curve of

discretization approach. The curve is not linear and its slope increases quickly as the

discretized points are fine enough.

54

-0.5%

-0.4%

-0.3%

-0.2%

-0.1%

0.0%

0 500 1000 1500 2000

Number of pools

E
rr

o
r

(%
)

0

100

200

300

400

500

R
u
n
ti
m

e
 (

s
)

Error

Runtime

Figure 22 Result on problem Ben-Tal 4 with exhaustive discretization

6.2 Enhancing the performance with implicit enumeration for discretization

The two-quality pooling problems, Ben-Tal 5 and the motivating example (described in

section 3.1), are investigated to see the calculation results using different discretization

and formulation approaches:

- Scenario 1: Exhaustive enumeration for discretization.

- Scenario 2: Implicit enumeration for discretization with mixing rule constraints.

- Scenario 3: Implicit enumeration for discretization without mixing rule constraints.

The codes are reported in Appendix B. The calculation results are presented in Figure 23

and Figure 24. For problem Ben-Tal 5, since the number of discretized pools increases

quickly as the number of intervals doubles, an axis of logarithmic scale is used. As for

the example, because the global optimum has not been proven, the axis of found

optimum instead of error is used. The found optima from scenarios 2 and 3 are the same

because the preprocessing discretization steps are identical.

From the results, it is shown that discretization via the implicit enumeration approach is

more advantageous than the exhaustive enumeration approach for discretization. With

the same number of discretized pools, the former gives better solutions and requires less

runtime for calculations.

55

-15%

-10%

-5%

0%

1 10 100 1000 10000

Number of pools

E
rr

o
r

(%
)

0

1000

2000

3000

4000

5000

6000

7000

R
u

n
ti

m
e
 (

s
)

Error 1

Error 2-3

Runtime 1

Runtime 2

Runtime 3

Figure 23 Results on problem Ben-Tal 5 with various approaches

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

0 200 400 600 800

Number of pools

O
p
ti
m

u
m

0

200

400

600

800

1000

1200

1400

1600

1800

R
u
n
ti
m

e
 (

s
)

Exclusive
enumeration

Implicit
enumeration

Runtime
(exclusive
enumeration)
Runtime
(inplicit
enumeration)

(a)

Figure 24 Results on the example problem with various approaches

(a) Exhaustive and implicit enumeration

(b) Implicit enumeration and its implemented formulation

56

2422.0

2422.5

2423.0

2423.5

2424.0

2424.5

2425.0

0 200 400 600 800 1000

Number of pools

O
p
ti
m

u
m

0

100

200

300

400

500

600

R
u
n
ti
m

e
 (

s
)

Implicit
enumeration

Implemented
formulation

Runtime
(implicit
enumeration)
Runtime
(implemented)

(b)

Figure 24 Continued

Between the two implicit enumeration discretization approaches, there is no clear

improvement of the formulation without the mixing constraints over the one with those

constraints. However, the improvement will become more observable for pooling

problems with more-than-two qualities, as in the results of solving Adhya’s pooling

problems in the following section.

6.3 Results of implicit enumeration for discretization of pooling problems with

multiple qualities

In this section, two sets of scenarios are carried out:

- Scenario 1: Implicit enumeration for discretization with mixing rule constraints.

- Scenario 2: Implicit enumeration for discretization without mixing rule constraints.

57

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

0 500 1000 1500 2000 2500

Number of pools

E
rr

o
r

o
f

o
p

tim
u

m
 (

%
)

0

10000

20000

30000

40000

50000

R
u

n
tim

e
 (

s
)

Error of run 1

Error of run 2

Runtime 1

Runtime 2

Figure 25 Results on problem Adhya 1 with two formulations

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

0 500 1000 1500 2000 2500

Number of pools

E
rr

o
r

o
f

o
p

ti
m

u
m

 (
%

)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

R
u

n
ti
m

e
 (

s
)

Error of run 1

Error of run 2

Runtime 1

Runtime 2

Figure 26 Results on problem Adhya 2 with two formulations

The results are shown in Figure 25, Figure 26, Figure 27 and Figure 28. Again, the found

optima and the numbers of discretized pools are the same because of identical

discretized points. The difference is with or without the mixing rule constraints, resulting

in the different number of variables and constraints that the solver has to deal with.

Therefore, the runtimes become a key factor in analyzing the results.

The Adhya’s pooling problems have 4 or 6 qualities. If the exhaustive enumeration

approach is applied, a linear formulation of a huge size is derived. The number of

variables may be up to millions, which may exceed the capabilities of the solver.

58

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

0 200 400 600 800 1000 1200

Number of pools

E
rr

o
r

o
f

o
p

tim
u

m
 (

%
)

0

1000

2000

3000

4000

5000

6000

R
u

n
tim

e
 (

s
)

Error of run 1

Error of run 2

Runtime 1

Runtime 2

Figure 27 Results on problem Adhya 3 with two formulations

-50%

-40%

-30%

-20%

-10%

0%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of pools

E
rr

o
r

o
f

o
p

ti
m

u
m

 (
%

)

0

500

1000

1500

2000

2500

3000

R
u

n
ti
m

e
 (

s
)

Error of run 1

Error of run 2

Runtime 1

Runtime 2

Figure 28 Results on problem Adhya 4 with two formulations

The runtimes of scenario 2 are always less than the corresponding one of scenario 1. The

larger the number of discretized pools, the better the improvement is. This outcome is

observed in all Adhya’s problems.

6.4 Comparison to the results using the Global Solver in LINGO

The Global Solver is an add-on toolkit in LINGO. When the solver converges it provides

a guaranteed global optimum through the technique of range bound and reduce

embedded in the branch and bound method. The range bounding techniques, for

59

example, are interval analysis and convex analysis. One of the reduce techniques is

linearization.

All the investigated pooling problems are nonlinearly formulated without discretization

and solved for the global optima. The formulations are in the appendices. Table 12

shows the results from these runs.

Table 12 Runs using Global Solver tool

Pooling Problems Global optimum Runtime (s)

Haverly 1 400 38

Haverly 2 600 < 1

Haverly 3 750 1

Ben-Tal 4 450 1

Adhya 1 549.803 196

Adhya 2 549.803 193

Adhya 3 561.045 6,446

Adhya 4 877.646 143

The exact global optima are found on these pooling problems within relatively short

runtime.

However, the Global Solver does not always perform well. In some tested pooling

problems that are not reported in Table 12, Global Solver converges very slowly,

resulting in much more expensive calculations than discretization does.

Figure 28 depicts the calculation status with respect to the runtime when the LINGO

Global Solver is used to solve Foulds’ pooling problems. One run is done for each

problem. At certain runtimes of a run, the found objective bound (upper bound) and best

objective (lower bound) are recorded. The true global optimum is somewhere between

the two bounds. Therefore, the gap between bounds should be as small as possible.

60

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 5000 10000 15000 20000 25000 30000

Runtime (s)

O
b

je
c

ti
v

e
Global Solver - Upper bounds

Global Solver - Lower bounds

Discretization

(a)

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

Runtime (s)

O
b

je
c

ti
v

e Global Solver - Upper bounds

Global Solver - Lower bounds

Discretization

(b)

Figure 29 Calculations using Global Solver for Foulds’ pooling problems

(a) problem Foulds 2; (b) Foulds 3, (c) Foulds 4 and (d) Foulds 5

61

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000

Runtime (s)

O
b

je
c

ti
v

e

Global Solver - Upper bounds

Global Solver - Lower bounds

Discretization

(c)

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500 3000 3500 4000

Runtime (s)

O
b

je
c

ti
v

e

Global Solver - Upper bounds

Global Solver - Lower bounds

Discretization

(d)

Figure 29 Continued

62

In

Figure 29, the top lines are the upper bounds; the bottom lines are lower bounds which

are also the global optima in these cases. The best runs from the discretization approach

are also plotted for comparison purposes. The results show that discretization approach

finds the global optima of these problems in a very short runtime while the LINGO

Global Solver needs much more runtime to locate the global optima. The same slow

performance of Global Solver is also observed in solving problem Ben-Tal 5 and the

example (Figure 30.). This discussion illustrates the merits of the new discretization

approach.

3000

3500

4000

4500

5000

5500

6000

6500

0 2000 4000 6000 8000 10000 12000

Runtime (s)

O
b

je
c

ti
v

e

Upper bounds

Lower bounds

Discretization

(a)

Figure 30 Calculation using Global Solver for problem Ben-Tal 5 and the example

 (a) problem Ben-Tal 5; (b) the example

63

2400

2425

2450

2475

2500

2525

2550

0 1000 2000 3000 4000 5000

Runtime (s)

O
b

je
c

ti
v

e

Upper bounds

Lower bounds

Discretization

(b)

Figure 30 Continued

64

CHAPTER VII

CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK

7.1 Conclusions

This work has introduced a new approach for the global solution of pooling problems.

The approach is based on discretization of the pooling qualities to eliminate the

nonconvex bilinear terms. An integer cut is added to provide equivalence between the

original problem with a given number of pools and the discretized problem with an

exceeding number of pools. The result is an MILP which can be solved globally. In

order to reduce the size of the search space, an implicit enumeration scheme is proposed

using fractions of flow rates from sources to pools. A convex hull representation is

adopted and an algorithm is proposed for enumerating the pool qualities enclosed in the

attainable region of pool qualities. Both exhaustive and implicit enumeration techniques

are compared. It is shown that for problems with more than one pooling quality, the

implicit enumeration typically results in a significant reduction in the problem

dimensionality. Several test problems have been examined. The results indicate that the

new discretization approach is capable of attaining global or near-global solutions while

maintaining efficient computing times.

7.2 Recommendations for future work

The devised approach can be extended to address the following cases:

- Pooling problems with very large number of sources and qualities. It will be

beneficial to identify the limits of the discretization approach and to add new

elements to the procedure to overcome these limits.

- Pooling problems which allow flows among the pools. In such cases, a

superstructure will have to be developed to embed all configurations of interest.

65

Then, the mathematical formulation will be developed. The discretization

approach developed in this work may be generalized to address the resulting

mathematical formulation.

- Pooling problems which are integrated with the rest of process optimization. In

such cases, the exact values of the qualities of the process sources (intermediate

streams) are not known. A decomposition approach may be used whereby

process optimization is handled using process integration techniques while the

pooling problem is handled through the approach developed in this work.

- Synthesis of water networks where the bilinear terms (similar to the quality*flow

rate) are encountered.

66

LITERATURE CITED

1. Audet C, Hansen P, Jaumard B, Savard G. A Branch and Cut Algorithm for

Nonconvex Quadratically Constrained Quadratic Programming. Math. Program.

2000; 878(1): 131 – 152.

2. Meyer C, Floudas CA. Global Optimization of a Combinatorially Complex

Generalized Pooling Problem. AIChE J. 2006; 52: 1027-1037

3. Haverly CA. Studies of the Behaviour of Recursion for the Pooling Problem.

ACM SIGMAP Bull. 1978; 25: 29-32.

4. Lasdon LS, Waren AD, Sarkar S, Palacios-Gomez F. Solving the Pooling

Problem Using Generalized Reduced Gradient and Successive Linear

Programming Algorithms. ACM SIGMAP Bull. 1979; 27: 9-15.

5. Griffith RE, Stewart RA. A Nonlinear Programming Technique for the

Optimization of Continuous Processing Systems. Management Science. 1961; 7:

379-392.

6. Palacios-Gomez F, Lasdon LS, Engquist M. Nonlinear Optimization by

Successive Linear Programming. Management Science. 1982; 28: 1106-1120.

7. Baker TE, Lasdon LS. Successive Linear Programming at Exxon. Management

Science. 1985; 31: 264-274.

8. Greenberg HJ. Analysing the Pooling Problem. ORSA J. Comput. 1995; 7(2):

205-217.

9. Floudas CA, Aggarwal A. A Decomposition Strategy for Global Optimum

Search in the Pooling Problem. ORSA J.Comput. 1990; 2(3): 225–235.

10. Floudas CA, Aggarwal A, Ciric AR. Global Optimum Search for Nonconvex

NLP and MINLP Problems. Computers and Chemical Engineering. 1989; 13:

1117-1132.

11. Androulakis IP, Visweswaran V, Floudas C. Distributed Decomposition-Based

Approaches in Global Optimization. State of Art in Global Optimization:

Computational Methods and Applications; In Fouldas C, Parados PM; Kluwer

Academic Publishers: Dordrecht. 1996: 1-17.

12. Foulds LR, Haugland D, Jornsten K. A Bilinear Approach to the Pooling

Problem. Optimization. 1992; 24: 165-180.

13. McCormick GP, Computability of Global Solutions to Factorable Nonconvex

Programs, Part I. Convex underestimating problems. Math Prog. 1976; 10: 147–

175.

67

14. Al-Khayyal FA, Falk JE. Jointly Constrained Biconvex Programming, Math

Oper Res. 1983; 8: 273–286.

15. Sherali HD, Alameddine A. A New Reformulation-Linearization Technique for

Bilinear Programming Problems. J. Global Optimiz. 1992; 2: 379-410.

16. Ben-Tal A, Eiger G, Gershovitz V. Global Minimization by Reducing the

Duality Gap. Math. Program. 1994; 63: 193-212.

17. Quesada I, Grossmann IE. Global Optimization of Bilinear Process Networks

with Multicomponent Streams. Comp. Chem. Eng. 1995; 19: 1219-1242.

18. Adhya N, Sahinidis NV, Tawarmalani M. A Lagrangian Approach to the Pooling

Problem. Industrial Engineering, Chemistry Resources. 1999; 38: 1956–1972.

19. Audet C, Brimberg J, Hansen P, Le Digabel S, Mladenovic N. Pooling Problem:

Alternative Formulations And Solution Methods. Management Science. 2004;

50: 761 – 776.

20. Sahinidis N.V. Global optimization and constraint satisfaction: The Branch-and

Reduce Approach. In Ch. Bliek et al., editor, Global Optimization and Constraint

Satisfaction. Springer, Berlin. 2003: 1-16.

21. Sherali H. Tight Relaxations for Nonconvex Optimization Problems Using the

Reformulation-Linearization/Convexification Technique (RLT). In Pardalos P,

Romeijn H, editor, Handbook of Global Optimization. Dordrecht, Kluwer

Academic Publishers. 2002; 2: 1–63.

22. Kallrath J. Mixed Integer Optimization in the Chemical Process Industry:

Experience, Potential and Future Perspectives. Chemical Engineering Research

and Design. 2000; 78(6): 809–822.

23. Sunday D. http://softsurfer.com/Archive/algorithm_0109/algorithm_0109.htm

(accessed June 4, 2007).

24. Murty KG. Operations Research: Deterministic Optimization Models.

Englewood Cliffs: Prentice-Hall. 1995: chapter 10.

25. Land AH, Doig, AG. An Automatic Method of Solving Discrete Programming

Problems. Econometrica. 1960; 28: 497-520.

26. LINDO Systems Inc. LINGO User's Guide. LINDO Systems Inc. Chicago, IL.

2006.

68

APPENDIX A

LINGO CODES FOR ONE-QUALITY POOLING PROBLEMS

APPENDIX Page

A 1 Haverly: Not linearized ...69

A 2 Haverly: Exhaustively discretized...70

A 3 Foulds 2: Not linearized ..71

A 4 Foulds 2: Exhaustive discretization...72

A 5 Foulds 3: Not linearized ..73

A 6 Foulds 3: Exhaustive discretization...74

A 7 Foulds 4: Not linearized ..75

A 8 Foulds 4: Exhaustive discretization...76

A 9 Foulds 5: Not linearized ..78

A 10 Foulds 5: Exhaustive discretization...79

A 11 Ben-Tal 4: Not linearized..81

A 12 Ben-Tal 4: Exhaustive discretization ..82

6
9

A 1 Haverly: Not linearized

The following two models are written for the pooling problem Haverly 1. For codes of problem Haverly 2 and Haverly 3,

update D(1) to 600 and Cost(2) to 13 respectively.

SETS:

 SOURCE /1..3/: a, Cost;

 POOL /1..2/: b;

 PROD /1..2/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 Cost = 6, 16, 10;

 a = 3, 1, 2;

 P = 9, 15;

 D = 100, 200;

 c = 2.5, 1.5;

ENDDATA

! Profit is maximized;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance for pools;

 X(1,1)=0; X(2,1)=0;

 @FOR(POOL(j): @SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mixing rule for pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Constraints on product demands;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Mixing rule for products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

END

7
0

A 2 Haverly: Exhaustively discretized

SETS:

 SOURCE /1..3/: a, Cost;

 POOL /1..22/: b, f; ! The number of pools is equal to t+2 (see below for t value);

 PROD /1..2/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 Cost = 6, 16, 10;

 a = 3, 1, 2;

 P = 9, 15;

 D = 100, 200;

 c = 2.5, 1.5;

 t = 20; ! Number of discretized intervals;

ENDDATA

! Profit is maximized;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance for pools;

 X(1,1)=0; X(2,1)=0;

 @FOR(POOL(j): @SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mixing rule for pools;

 @FOR(POOL(j)|j#GE#2: @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Constraints on product demands;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Mixing rule for products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

! Discretize the qualities of the pools;

 b(1) = a(3); ! Pool 1 is reserved for source 3;

 @FOR(POOL(j)|j#GE#2: b(j) = 1 + (j-2)*(3-1)/t);

! Use only 1 pool;

 @FOR(POOL(j)|j#GE#2:

 @BIN(f(j));

 @SUM(SOURCE(i):X(i,j)) <= @SUM(PROD(k):D(k))*f(j));

 @SUM(POOL(j)|j#GE#2:f(j))<=1;

END

7
1

A 3 Foulds 2: Not linearized

SETS:

 SOURCE /1..6/: a, Cost;

 POOL /1..4/: b;

 PROD /1..4/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a = 3, 1, 2, 3.5, 1.5, 2.5;

 Cost = 6, 16, 10, 3, 13, 7;

 P = 9, 15, 6, 12;

 D = 100, 200, 100, 200;

 c = 2.5, 1.5, 3, 2;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 X(3,1) = @SUM(PROD(k):Y(1,k)); !Pool 1 here represents pool 2 in Foulds' statement;

 X(6,2) = @SUM(PROD(k):Y(2,k)); !Pool 2 here represents pool 4 in Foulds' statement;

 @FOR(POOL(j)|j#GE#3: X(1,j)+X(2,j)+X(4,j)+X(5,j) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the sale products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

END

7
2

A 4 Foulds 2: Exhaustive discretization
SETS: SOURCE /1..6/: a, Cost;

 POOL /1..2051/: b, f1, f2; ! The number of pools is equal to t+3 (see below for t value);

 PROD /1..4/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA: a = 3, 1, 2, 3.5, 1.5, 2.5;

 Cost = 6, 16, 10, 3, 13, 7;

 P = 9, 15, 6, 12;

 D = 100, 200, 100, 200;

 c = 2.5, 1.5, 3, 2;

 t = 2048; ! Number of discretized intervals;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 X(3,1) = @SUM(PROD(k):Y(1,k)); !Pool 1 here represents pool 2 in Foulds' statement;

 X(6,2) = @SUM(PROD(k):Y(2,k)); !Pool 2 here represents pool 4 in Foulds' statement;

 @FOR(POOL(j)|j#GE#3: X(1,j)+X(2,j)+X(4,j)+X(5,j) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the sale products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by discretizing qualities of pools;

 b(1)= a(3); !Pool 1 is reserved for source 3; b(2)= a(6); !Pool 2 is reserved for source 6;

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i));

 @FOR(POOL(j)|j#GE#3: b(j)=aL+(aU-aL)*(j-3)/t);

! Source 1&2 are forced to feed to one same pool;

 @FOR(POOL(j): @BIN(f1(j)); X(1,j) + X(2,j) <= @SUM(PROD(k):D(k))*f1(j));

@SUM(POOL(j):f1(j))<=1;

! Source 4&5 are forced to feed to one same pool;

 @FOR(POOL(j): @BIN(f2(j)); X(4,j) + X(5,j) <= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

7
3

A 5 Foulds 3: Not linearized

SETS:

 SOURCE /1..11/: a, Cost;

 POOL /1..8/: b;

 PROD /1..16/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

!DATA;

 @FOR(SOURCE(i):a(i) = 0.9+i*0.1);

 @FOR(SOURCE(i):Cost(i) = 21-i);

 @FOR(PROD(k):P(k) = (41-k)/2);

 @FOR(PROD(k):D(k) = 1);

 @FOR(PROD(k): c(k) = 1+0.05*k);

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 @FOR(POOL(j): @SUM(SOURCE(i)|(i#GE#j) #AND# (i#LE#j+3):X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the sale products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

END

7
4

A 6 Foulds 3: Exhaustive discretization

SETS:

 SOURCE /1..11/: a, Cost;

 REALPOOL/1..8/;

 POOL /1..2049/: b; ! The number of pools is equal to t+1 (see below for t value);

 SWITCH (REALPOOL,POOL):f;

 PROD /1..16/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

!DATA;@FOR(SOURCE(i):a(i) = 0.9+i*0.1);

 @FOR(SOURCE(i):Cost(i) = 21-i);

 @FOR(PROD(k):P(k) = (41-k)/2);

 @FOR(PROD(k):D(k) = 1);

 @FOR(PROD(k): c(k) = 1+0.05*k);

 t = 2048; ! Number of discretized intervals;

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 @FOR(REALPOOL(i): @FOR(POOL(j)|(b(j)#GE#a(i)) #AND# (b(j)#LE#a(i+3)):

 @SUM(SOURCE(l)|(l#GE#i) #AND# (l#LE#i+3):X(l,j)) = @SUM(PROD(k):Y(j,k))));

! Mass balance on the sale products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by discretizing qualities of pools;

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i));

 @FOR(POOL(j): b(j)=aL+(aU-aL)*(j-1)/t);

! Only 8 or less pools needed;

 @FOR(REALPOOL(i): @FOR(POOL(j)|(b(j)#LE#a(i+3)) #AND# (b(j)#GE#a(i)):

 @BIN(f(i,j));

 @SUM(SOURCE(k)|k#LE#4:X(i+k-1,j)) <= @SUM(PROD(l):D(l))*f(i,j));

 @SUM(POOL(j):f(i,j))<=1);

END

7
5

A 7 Foulds 4: Not linearized
SETS:

 SOURCE /1..11/: a, Cost;

 POOL /1..8/: b;

 PROD /1..16/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

!DATA;

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1;

 Cost(i) = 21-i);

 @FOR(PROD(k):P(k) = (41-k)/2;

 D(k) = 1;

 c(k) = 1+0.05*k);

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 ! Pool 1; X(1,1)+X(4,1)+X(7,1)+X(10,1)= @SUM(PROD(k):Y(1,k));

 ! Pool 2; X(2,2)+X(5,2)+X(8,2)+X(11,2)= @SUM(PROD(k):Y(2,k));

 ! Pool 3; X(2,3)+X(3,3)+X(5,3)+X(6,3) = @SUM(PROD(k):Y(3,k));

 ! Pool 4; X(3,4)+X(4,4)+X(6,4)+X(7,4) = @SUM(PROD(k):Y(4,k));

 ! Pool 5; X(3,5)+X(5,5)+X(6,5)+X(8,5) = @SUM(PROD(k):Y(5,k));

 ! Pool 6; X(4,6)+X(6,6)+X(7,6)+X(9,6) = @SUM(PROD(k):Y(6,k));

 ! Pool 7; X(4,7)+X(7,7)+X(8,7)+X(9,7) = @SUM(PROD(k):Y(7,k));

 ! Pool 8; X(6,8)+X(8,8)+X(9,8)+X(10,8)= @SUM(PROD(k):Y(8,k));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

END

7
6

A 8 Foulds 4: Exhaustive discretization
SETS:

 SOURCE /1..11/: a, Cost;

 REALPOOL/1..8/;

 POOL /1..4104/: b; ! Number of pools is equal to 8*(t+1) (see below for t value);

 SWITCH (REALPOOL,POOL):f;

 PROD /1..16/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

!DATA;

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1;

 Cost(i) = 21-i);

 @FOR(PROD(k):P(k) = (41-k)/2;

 D(k) = 1;

 c(k) = 1+0.05*k);

 t = 512; ! Number of discretized intervals;

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 ! Pool 1; @FOR(POOL(j)|j#LE#t+1: X(1,j)+X(4,j)+X(7,j)+X(10,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 2; @FOR(POOL(j)|(j#GT#t+1) #AND# (j#LE#2*(t+1)):

X(2,j)+X(5,j)+X(8,j)+X(11,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):

X(2,j)+X(3,j)+X(5,j)+X(6,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)) #AND# (j#LE#4*(t+1)):

X(3,j)+X(4,j)+X(6,j)+X(7,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 5; @FOR(POOL(j)|(j#GT#4*(t+1)) #AND# (j#LE#5*(t+1)):

X(3,j)+X(5,j)+X(6,j)+X(8,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 6; @FOR(POOL(j)|(j#GT#5*(t+1)) #AND# (j#LE#6*(t+1)):

X(4,j)+X(6,j)+X(7,j)+X(9,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 7; @FOR(POOL(j)|(j#GT#6*(t+1)) #AND# (j#LE#7*(t+1)):

X(4,j)+X(7,j)+X(8,j)+X(9,j)= @SUM(PROD(k):Y(j,k)));

 ! Pool 8; @FOR(POOL(j)|(j#GT#7*(t+1)): X(6,j)+X(8,j)+X(9,j)+X(10,j)= @SUM(PROD(k):Y(j,k)));

7
7

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by discretizing qualities of pools;

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i));

 @FOR(REALPOOL(l): @FOR(POOL(j)|j#LE#t+1: b(j+(l-1)*(t+1))=aL+(aU-aL)*(j-1)/t));

! Constraint on numbers of real pools and flows;

 MAXD = @SUM(PROD(k):D(k));

! Pool 1; @FOR(POOL(j)|j#LE#t+1:

@BIN(f(1,j)); X(1,j)+X(4,j)+X(7,j)+X(10,j) <= MAXD*f(1,j));

! Pool 2; @FOR(POOL(j)|(j#GT#t+1) #AND# (j#LE#2*(t+1)):

@BIN(f(2,j)); X(2,j)+X(5,j)+X(8,j)+X(11,j) <= MAXD*f(2,j));

! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):

@BIN(f(3,j)); X(2,j)+X(3,j)+X(5,j)+X(6,j) <= MAXD*f(3,j));

! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)) #AND# (j#LE#4*(t+1)):

 @BIN(f(4,j)); X(3,j)+X(4,j)+X(6,j)+X(7,j) <= MAXD*f(4,j));

! Pool 5; @FOR(POOL(j)|(j#GT#4*(t+1)) #AND# (j#LE#5*(t+1)):

 @BIN(f(5,j)); X(3,j)+X(5,j)+X(6,j)+X(8,j) <= MAXD*f(5,j));

! Pool 6; @FOR(POOL(j)|(j#GT#5*(t+1)) #AND# (j#LE#6*(t+1)):

 @BIN(f(6,j)); X(4,j)+X(6,j)+X(7,j)+X(9,j) <= MAXD*f(6,j));

! Pool 7; @FOR(POOL(j)|(j#GT#6*(t+1)) #AND# (j#LE#7*(t+1)):

 @BIN(f(7,j)); X(4,j)+X(7,j)+X(8,j)+X(9,j) <= MAXD*f(7,j));

! Pool 8; @FOR(POOL(j)|(j#GT#7*(t+1)):

 @BIN(f(8,j)); X(6,j)+X(8,j)+X(9,j)+X(10,j) <= MAXD*f(8,j));

 @FOR(REALPOOL(l):@SUM(POOL(j):f(l,j))<=1);

END

7
8

A 9 Foulds 5: Not linearized

SETS:

 SOURCE /1..11/: a, Cost;

 POOL /1..4/: b;

 PROD /1..16/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

!DATA;

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1;

 Cost(i) = 21-i);

 @FOR(PROD(k):P(k) = (41-k)/2;

 D(k) = 1;

 c(k) = 1+0.05*k);

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

! Pool 1; @SUM(SOURCE(i)|i#LE#4:X(i,1))+@SUM(SOURCE(i)|i#GE#8:X(i,1))= @SUM(PROD(k):Y(1,k));

! Pool 2; @SUM(SOURCE(i)|(i#GE#2)#AND#(i#LE#10):X(i,2))-X(6,2)= @SUM(PROD(k):Y(2,k));

! Pool 3; @SUM(SOURCE(i)|i#GE#4:X(i,3))= @SUM(PROD(k):Y(3,k));

! Pool 4; @SUM(SOURCE(i)|i#LE#8:X(i,4))= @SUM(PROD(k):Y(4,k));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) = D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

END

7
9

A 10 Foulds 5: Exhaustive discretization

SETS:

 SOURCE /1..11/: a, Cost;

 REALPOOL/1..4/;

 POOL /1..44/: b; ! Number of pools is equal to 4*(t+1) (see below for (t+1) value);

 SWITCH (REALPOOL,POOL):f;

 PROD /1..16/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

!DATA;

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1;

 Cost(i) = 21-i);

 @FOR(PROD(k):P(k) = (41-k)/2;

 D(k) = 1;

 c(k) = 1+0.05*k);

 t = 10; ! Number of discretized intervals;

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

! Pool 1; @FOR(POOL(j)|j#LE#t+1:

@SUM(SOURCE(i)|i#LE#4:X(i,j))+@SUM(SOURCE(i)|i#GE#8:X(i,j))= @SUM(PROD(k):Y(j,k)));

! Pool 2; @FOR(POOL(j)|(j#GT#(t+1)) #AND# (j#LE#2*(t+1)):

SUM(SOURCE(i)|(i#GE#2)#AND#(i#LE#10):X(i,j))-X(6,j)= @SUM(PROD(k):Y(j,k)));

! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):

@SUM(SOURCE(i)|i#GE#4:X(i,j))= @SUM(PROD(k):Y(j,k)));

! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)):

@SUM(SOURCE(i)|i#LE#8:X(i,j))= @SUM(PROD(k):Y(j,k)));

8
0

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) = D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by discretizing qualities of pools;

 aU = @MAX(SOURCE(i):a(i));

 aL = @MIN(SOURCE(i):a(i));

 @FOR(REALPOOL(l): @FOR(POOL(j)|j#LE#t+1: b(j+(l-1)*(t+1))=aL+(aU-aL)*(j-1)/t));

! Constraints on numbers of real pools and flows;

 MAXD = @SUM(PROD(k):D(k));

! Pool 1; @FOR(POOL(j)|j#LE#t+1:

 @BIN(f(1,j));

 @SUM(SOURCE(i)|i#LE#4:X(i,j))+@SUM(SOURCE(i)|i#GE#8:X(i,j)) <= MAXD*f(1,j));

! Pool 2; @FOR(POOL(j)|(j#GT#(t+1)) #AND# (j#LE#2*(t+1)):

 @BIN(f(2,j));

 @SUM(SOURCE(i)|(i#GE#2)#AND#(i#LE#10):X(i,j))-X(6,j)<= MAXD*f(2,j));

! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):

 @BIN(f(3,j));

 @SUM(SOURCE(i)|i#GE#4:X(i,j))<= MAXD*f(3,j));

! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)) #AND# (j#LE#4*(t+1)):

 @BIN(f(4,j));

 @SUM(SOURCE(i)|i#LE#8:X(i,j)) <= MAXD*f(4,j));

 @FOR(REALPOOL(l):@SUM(POOL(j):f(l,j))<=1);

END

8
1

A 11 Ben-Tal 4: Not linearized

SETS:

 SOURCE /1..4/: a, Cost;

 POOL /1..2/: b;

 PROD /1..2/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a = 3, 1, 1, 2;

 Cost = 6, 15, 16, 10;

 P = 9, 15;

 D = 100, 200;

 c = 2.5, 1.5;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Constraint on source 2's flow rate;

 X(2,1) <= 50;

! Mass balance on the pools;

 X(4,2) = @SUM(PROD(k):Y(2,k));

 @FOR(SOURCE(i)|i#LE#3: X(i,2)=0);

 @SUM(SOURCE(i)|i#LE#3: X(i,1)) = @SUM(PROD(k):Y(1,k));

 X(4,1)=0;

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

END

8
2

A 12 Ben-Tal 4: Exhaustive discretization
SETS: SOURCE /1..4/: a, Cost;

 POOL /1..82/: b, f; ! The number of pools is equal to t+2 (see below for t value);

 PROD /1..2/: P, D, c;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA: a = 3, 1, 1, 2;

 Cost = 6, 15, 16, 10;

 P = 9, 15;

 D = 100, 200;

 c = 2.5, 1.5;

 t = 80; ! Number of discretized intervals;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Constraint on source 2's flow rate;

 @SUM(POOL(j)|j#LE#t+1:X(2,j)) <= 50;

! Mass balance on the pools;

 X(4,t+2) = @SUM(PROD(k):Y(t+2,k));

 @FOR(SOURCE(i)|i#LE#3: X(i,t+2)=0);

 @FOR(POOL(j)|j#LE#t+1: X(4,j)=0;

 @SUM(SOURCE(i)|i#LE#3: X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j)|j#LE#t+1: @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by discretizing qualities of pools;

 b(t+2)= a(4);

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i));

 @FOR(POOL(j)|j#LE#t+1: b(j)=aL+(aU-aL)*(j-1)/t);

! Use only 1 pool for first three sources;

 @FOR(POOL(j)|j#LE#t+1: @BIN(f(j)); @SUM(SOURCE(i)|i#LE#3: X(i,j)) <= @SUM(PROD(k):D(k))*f(j));

 @SUM(POOL(j):f(j))<=1;

END

83

APPENDIX B

LINGO CODES FOR MULTIPLE-QUALITY POOLING PROBLEMS

APPENDIX Page

B 1 Ben-Tal 5: Not linearized ...84

B 2 Ben-Tal 5: Exhaustive discretization..85

B 3 Ben-Tal 5: Implicit discretization ...87

B 4 Ben-Tal 5: Implicit discretization – Formulation in flow rate fraction89

B 5 The example: Not linearized...91

B 6 The example: Exhaustive discretization ...92

B 7 The example: Implicit discretization ..94

B 8 The example: Implicit discretization – Flow rate fraction............................96

B 9 Adhya 1: Not linearized..98

B 10 Adhya 1: Implicit discretization ...99

B 11 Adhya 1: Implicit discretization - Formulation in flow rate fraction101

B 12 Adhya 2: Not linearized..103

B 13 Adhya 2: Implicit discretization ...105

B 14 Adhya 2: Implicit discretization - Formulation in flow rate fraction107

B 15 Adhya 3: Not linearized..109

B 16 Adhya 3: Implicit discretization ...111

B 17 Adhya 3: Implicit discretization - Formulation in flow rate fraction114

B 18 Adhya 4: Not linearized..117

B 19 Adhya 4: Implicit discretization ...119

B 20 Adhya 4: Implicit discretization - Formulation in flow rate fraction121

8
4

B 1 Ben-Tal 5: Not linearized

SETS: SOURCE /1..5/: a1, a2, Cost;

 POOL /1..4/: b1, b2;

 PROD /1..5/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA: a1 = 3, 1, 1, 1.5, 2;

 a2 = 1, 3, 2.5, 2.5, 2.5;

 Cost = 6, 16, 15, 12, 10;

 D = 100, 200, 100, 100, 100;

 c1 = 2.5, 1.5, 2, 2, 2;

 c2 = 2, 2.5, 2.6, 2, 2;

 P = 18, 15, 19, 16, 14;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Constraint on the 3th source's flow rate;

 @SUM(POOL(j):X(3,j)) <= 50;

! Mass balance on the pools;

 X(5,4) = @SUM(PROD(k):Y(4,k));

 @FOR(POOL(j): @SUM(SOURCE(i)|i#LE#4: X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j)));

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

END

8
5

B 2 Ben-Tal 5: Exhaustive discretization

SETS:

 SOURCE /1..5/: a1, a2, Cost;

 POOL /1..442/: b1, b2, f; ! The number of pools is (t1+1)*(t2+1)+1 (see below for t1, t2);

 PROD /1..5/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a1 = 3, 1, 1, 1.5, 2;

 a2 = 1, 3, 2.5, 2.5, 2.5;

 Cost = 6, 16, 15, 12, 10;

 D = 100, 200, 100, 100, 100;

 c1 = 2.5, 1.5, 2, 2, 2;

 c2 = 2, 2.5, 2.6, 2, 2;

 P = 18, 15, 19, 16, 14;

 t1 = 20;! Number of discretized intervals for quality 1;

 t2 = 20;! Number of discretized intervals for quality 2;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Linearize the problem by discretizing qualities of pools;

! Discretize quality 1 for pools;

 b1((t1+1)*(t2+1)+1)= a1(5);

 a1U = @MAX(SOURCE(i):a1(i));

 a1L = @MIN(SOURCE(i):a1(i));

 @FOR(POOL(j)|j#LE#t2+1: b1(j)=a1L+(a1U-a1L)*(j-1)/t2;

 @FOR(POOL(l)|l#LE#t1:b1(j+l*(t2+1))=b1(j)));

! Discretize quality 2 for pools;

 b2((t1+1)*(t2+1)+1)= a2(5);

 a2U = @MAX(SOURCE(i):a2(i));

 a2L = @MIN(SOURCE(i):a2(i));

 @FOR(POOL(j)|j#LE#t2+1: b2(j)=a2L;

 @FOR(POOL(l)|l#LE#t1:b2(j+l*(t2+1))=a2L+(a2U-a2L)*l/t1));

8
6

! Constraint on the 3th source's flow rate;

 @SUM(POOL(j)|j#LE#(t1+1)*(t2+1):X(3,j)) <= 50;

! Mass balance on the pools;

 X(5,(t1+1)*(t2+1)+1) = @SUM(PROD(k):Y((t1+1)*(t2+1)+1,k));

 @FOR(POOL(j)|j#LE#(t1+1)*(t2+1): @SUM(SOURCE(i)|i#LE#4: X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j)));

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

! Use only 3 pools;

 @FOR(POOL(j)|j#LE#(t1+1)*(t2+1): @BIN(f(j));

 @SUM(SOURCE(i):X(i,j)) <= @SUM(PROD(k):D(k))*f(j));

 @SUM(POOL(j)|j#LE#(t1+1)*(t2+1):f(j))<=3;

END

8
7

B 3 Ben-Tal 5: Implicit discretization

SETS:

 SOURCE /1..5/: a1, a2, Cost;

 POOL /1..47906/: b1, b2, f; ! The number of pools is (t+1)*(t+2)*(t+3)/6+1 (see below for t);

 PROD /1..5/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a1 = 3, 1, 1, 1.5, 2;

 a2 = 1, 3, 2.5, 2.5, 2.5;

 Cost = 6, 16, 15, 12, 10;

 D = 100, 200, 100, 100, 100;

 c1 = 2.5, 1.5, 2, 2, 2;

 c2 = 2, 2.5, 2.6, 2, 2;

 P = 18, 15, 19, 16, 14;

 t = 64;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Linearize the problem by discretizing qualities of pools;

b1(1)=a1(5);!Pool 1 in this formulation represents pool 4 in Ben-Tal's statement;

b2(1)=a2(5);

@FOR(POOL(u)|u#LE#t+1:

 @FOR(POOL(v)|v#LE#t-u+2:

 @FOR(POOL(r)|r#LE#t-v-u+3:

 b1(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(r-1)/t + a1(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t);

 b2(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= a2(1)*(u-1)/t +a2(2)*(v-1)/t +a2(3)*(r-1)/t +a2(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t))));

! Constraint on the 3th source's flow rate;

 @SUM(POOL(j)|j#GE#2: X(3,j)) <= 50;

8
8

! Mass balance on the pools;

 X(5,1) = @SUM(PROD(k):Y(1,k));

 @FOR(POOL(j)|j#GE#2: @SUM(SOURCE(i)|i#LE#4: X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Constraints on product demands;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j)));

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

! Use only 3 pools for sources 1,2,3&4;

 @FOR(POOL(j)|j#GE#2:

 @BIN(f(j));

 @SUM(SOURCE(i):X(i,j)) <= @SUM(PROD(k):D(k))*f(j));

 @SUM(POOL(j): f(j))<=3;

END

8
9

B 4 Ben-Tal 5: Implicit discretization – Formulation in flow rate fraction

SETS:

 SOURCE /1..5/: a1, a2, Cost;

 POOL /1..287/: b1, b2, f, Z; ! The number of pools is (t+1)*(t+2)*(t+3)/6+1 (see below for t);

 PROD /1..5/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): x;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a1 = 3, 1, 1, 1.5, 2;

 a2 = 1, 3, 2.5, 2.5, 2.5;

 Cost = 6, 16, 15, 12, 10;

 D = 100, 200, 100, 100, 100;

 c1 = 2.5, 1.5, 2, 2, 2;

 c2 = 2, 2.5, 2.6, 2, 2;

 P = 18, 15, 19, 16, 14;

 t = 10;

ENDDATA

! Maximize the revenue;

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j)));

! Linearize the problem by discretizing qualities of pools;

b1(1)=a1(5);!Pool 1 in this formulation represents pool 4 in Ben-Tal's statement;

b2(1)=a2(5);

@FOR(SOURCE(i)|i#LE#4: x(i,1) = 0);

x(5,1)=1;

@FOR(POOL(u)|u#LE#t+1:

 @FOR(POOL(v)|v#LE#t-u+2:

 @FOR(POOL(r)|r#LE#t-v-u+3:

 x(1,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= (u-1)/t;

9
0

 x(2,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= (v-1)/t;

 x(3,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= (r-1)/t;

 x(4,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= 1-(u-1)/t-(v-1)/t-(r-1)/t;

 x(5,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= 0;

 b1(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(r-1)/t + a1(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t);

 b2(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r)

= a2(1)*(u-1)/t + a2(2)*(v-1)/t + a2(3)*(r-1)/t + a2(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t))));

! Constraint on the 3th source's flow rate;

 @SUM(POOL(j)|j#GE#2: x(3,j)*Z(j)) <= 50;

! Mass balance on the pools;

 @FOR(POOL(j): Z(j) = @SUM(PROD(k):Y(j,k)));

! Constraints on product demands;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

! Use only 3 pools for sources 1,2,3&4;

 @FOR(POOL(j)|j#GE#2:

 @BIN(f(j));

 Z(j) <= @SUM(PROD(k):D(k))*f(j));

 @SUM(POOL(j): f(j))<=3;

END

9
1

B 5 The example: Not linearized
SETS:

 SOURCE /1..3/: a1, a2, S, Cost;

 POOL /1..2/: b1, b2;

 PROD /1..3/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA: a1 = 82, 92, 82 ;

 a2 = 1, 2, 1.5;

 S = 100,200,100;

 D = 100, 100, 200;

 c1 = 84, 87, 90;

 c2 = 1.9, 2, 2;

 Cost = 7, 9, 6;

 P = 10, 15, 17;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Constraints on source's capacities;

 @FOR(SOURCE(i): @SUM(POOL(j):X(i,j)) <= S(i));

! Mass balance on the pools;

 @FOR(POOL(j):@SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the products' demands;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j)));

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

END

9
2

B 6 The example: Exhaustive discretization

SETS:

 SOURCE /1..3/: a1, a2, S, Cost;

 POOL /1..1681/: b1, b2, f; ! The number of pools is (t1+1)*(t2+1) (see below for t1, t2);

 PROD /1..3/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a1 = 82, 92, 82 ;

 a2 = 1, 2, 1.5;

 a1U = 92; a1L = 82; ! Maximum and Minimum of a1;

 a2U = 2; a2L = 1; ! Maximum and Minimum of a2;

 S = 100,200,100;

 D = 100, 100, 200;

 c1 = 84, 87, 90;

 c2 = 1.9, 2, 2;

 Cost = 7, 9, 6;

 P = 10, 15, 17;

 t1=40;! Number of discretized intervals for quality 1;

 t2=40;! Number of discretized intervals for quality 2;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Constraints on source's capacities;

 @FOR(SOURCE(i): @SUM(POOL(j):X(i,j)) <= S(i));

! Mass balance on the pools;

 @FOR(POOL(j):@SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the products' demands;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

9
3

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j)));

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j)));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by specifying qualities of pools;

! Assign quality 1 for pools;

 @FOR(POOL(u)|u#LE#t2+1: b1(u)=a1L;

 @FOR(POOL(v)|v#LE#t1:b1(u+v*(t2+1))=a1L+(a1U-a1L)*v/t1));

! Assign quality 2 for pools;

 @FOR(POOL(u)|u#LE#t2+1: b2(u)=a2L+(a2U-a2L)*(u-1)/t2;

 @FOR(POOL(v)|v#LE#t1:b2(u+v*(t2+1))=b2(u)));

! Use only 2 pools;

 @FOR(POOL(j): @BIN(f(j));

 @SUM(SOURCE(i):X(i,j)) <= @SUM(SOURCE(i):S(i))*f(j));

 @SUM(POOL(j):f(j))<=2;

END

9
4

B 7 The example: Implicit discretization

SETS:

 SOURCE /1..3/: a1, a2, S, Cost;

 POOL /1..231/: b1, b2, f; ! The number of pools is equal to (t+1)*(t+2)/2 (see below for t);

 PROD /1..3/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a1 = 82, 92, 82 ;

 a2 = 1, 2, 1.5;

 S = 100,200,100;

 D = 100, 100, 200;

 c1 = 84, 87, 90;

 c2 = 1.9, 2, 2;

 Cost = 7,9,6;

 P = 10, 15, 17;

ENDDATA

! Minimize the costs of sources;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Constraints on source's capacities;

 @FOR(SOURCE(i): @SUM(POOL(j):X(i,j)) <= S (i));

! Mass balance on the pools;

 @FOR(POOL(j):@SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the products' tanks;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j)));

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j)));

9
5

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

! Linearize the problem by specifying qualities of pools;

! Number of discretized intervals; t=20;

@FOR(POOL(u)|u#LE#t+1:

 @FOR(POOL(v)|v#LE#t-u+2:

 b1((u-1)*(t+1)-(u-1)*(u-2)/2+v)=a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(1-(u-1)/t-(v-1)/t);

 b2((u-1)*(t+1)-(u-1)*(u-2)/2+v)=a2(1)*(u-1)/t + a2(2)*(v-1)/t + a2(3)*(1-(u-1)/t-(v-1)/t)));

! Use only 2 pools;

 @FOR(POOL(j): @BIN(f(j));

 @SUM(SOURCE(i):X(i,j)) <= @SUM(SOURCE(i):S(i))*f(j));

 @SUM(POOL(j):f(j))<=2;

END

9
6

B 8 The example: Implicit discretization – Flow rate fraction

SETS:

 SOURCE /1..3/: a1, a2, S, Cost;

 POOL /1..231/: b1, b2, f, Z; ! The number of pools is equal to (t+1)*(t+2)/2 (see below for t);

 PROD /1..3/: c1, c2, D, P;

 INPOOL (SOURCE,POOL): x;

 OUTPOOL (POOL,PROD): Y;

ENDSETS

DATA:

 a1 = 82, 92, 82 ;

 a2 = 1, 2, 1.5;

 S = 100,200,100;

 D = 100, 100, 200;

 c1 = 84, 87, 90;

 c2 = 1.9, 2, 2;

 Cost = 7,9,6;

 P = 10, 15, 17;

ENDDATA

! Minimize the costs of sources;

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j)));

! Constraints on source's capacities;

 @FOR(SOURCE(i): @SUM(POOL(j):x(i,j)*Z(j)) <= S (i));

! Mass balance on the pools;

 @FOR(POOL(j):Z(j) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the products' tanks;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the products;

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k)));

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k)));

9
7

! Linearize the problem by specifying qualities of pools;

! Number of discretized intervals; t=20;

@FOR(POOL(u)|u#LE#t+1:

 @FOR(POOL(v)|v#LE#t-u+2:

 x(1,(u-1)*(t+1)-(u-1)*(u-2)/2+v) = (u-1)/t;

 x(2,(u-1)*(t+1)-(u-1)*(u-2)/2+v) = (v-1)/t;

 x(3,(u-1)*(t+1)-(u-1)*(u-2)/2+v) = 1-(u-1)/t-(v-1)/t;

 b1((u-1)*(t+1)-(u-1)*(u-2)/2+v) = a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(1-(u-1)/t-(v-1)/t);

 b2((u-1)*(t+1)-(u-1)*(u-2)/2+v) = a2(1)*(u-1)/t + a2(2)*(v-1)/t + a2(3)*(1-(u-1)/t-(v-1)/t)));

! Use only 2 pools;

 @FOR(POOL(j): @BIN(f(j));

 Z(j) <= @SUM(SOURCE(i):S(i))*f(j));

 @SUM(POOL(j):f(j))<=2;

END

9
8

B 9 Adhya 1: Not linearized
SETS: SOURCE /1..5/: Cost;

 POOL /1..2/;

 PROD /1..4/: D, P;

 QUAL /1..4/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL):c;

ENDSETS

DATA: a = 1, 6, 4, 0.5,

 4, 1, 3, 2,

 4, 5.5, 3, 0.9,

 3, 3, 3, 1,

 1, 2.7, 4, 1.6;

 Cost = 7, 3, 2, 10, 5;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75,

 4, 2.5, 3.5, 1.5,

 1.5, 5.5, 3.9, 0.8,

 3, 4, 4, 1.8;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 X(1,1) + X(2,1) = @SUM(PROD(k):Y(1,k)); X(3,1)=0; X(4,1) = 0; X(5,1) = 0;

 X(3,2) + X(4,2) + X(5,2)= @SUM(PROD(k):Y(2,k)); X(1,2)=0; X(2,2) = 0;

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j):@FOR(QUAL(q): @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j))));

! Quality blending for the products;

 @FOR(PROD(k):@FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

END

9
9

B 10 Adhya 1: Implicit discretization

SETS:

 SOURCE /1..5/: Cost;

 POOL /1..77/: f1, f2; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2);

 PROD /1..4/: D, P;

 QUAL /1..4/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL):c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5,

 4, 1, 3, 2,

 4, 5.5, 3, 0.9,

 3, 3, 3, 1,

 1, 2.7, 4, 1.6;

 Cost = 7, 3, 2, 10, 5;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75,

 4, 2.5, 3.5, 1.5,

 1.5, 5.5, 3.9, 0.8,

 3, 4, 4, 1.8;

 t1 = 10; ! Number of discretized intervals for pool group 1;

 t2 = 10; ! Number of discretized intervals for pool group 2;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

1
0
0

! Linearize the problem by discretizing qualities of pools;

@FOR(POOL(j)|j#LE#t1+1: @FOR(QUAL(q): b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1)));

@FOR(POOL(u)|u#LE#t2+1:

 @FOR(POOL(v)|v#LE#t2-u+2:

 @FOR(QUAL(q):

b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2))));

! Mass balance on the pools;

 @FOR(POOL(j)|j#LE#t1+1: X(1,j) + X(2,j) = @SUM(PROD(k):Y(j,k));

 @FOR(SOURCE(i)|i#GE#3:X(i,j)=0));

 @FOR(POOL(j)|j#GT#t1+1: X(1,j)=0; X(2,j) = 0;

 X(3,j) + X(4,j) + X(5,j)= @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j):@FOR(QUAL(q):

 @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j))));

! Quality blending for the products;

 @FOR(PROD(k):@FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1&2 are forced to one same pool;

 @FOR(POOL(j)|j#LE#t1+1:

 @BIN(f1(j));

 X(1,j)+X(2,j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 3,4&5 are forced to one same pool;

 @FOR(POOL(j)|j#GT#t1+1:

 @BIN(f2(j));

 X(3,j)+X(4,j)+X(5,j)<= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

1
0
1

B 11 Adhya 1: Implicit discretization - Formulation in flow rate fraction

SETS:

 SOURCE /1..5/: Cost;

 POOL /1..5/: f1, f2, Z; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2);

 PROD /1..4/: D, P;

 QUAL /1..4/;

 INPOOL (SOURCE,POOL): x;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL):c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5,

 4, 1, 3, 2,

 4, 5.5, 3, 0.9,

 3, 3, 3, 1,

 1, 2.7, 4, 1.6;

 Cost = 7, 3, 2, 10, 5;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75,

 4, 2.5, 3.5, 1.5,

 1.5, 5.5, 3.9, 0.8,

 3, 4, 4, 1.8;

 t1 = 1; ! Number of discretized intervals for pool group 1;

 t2 = 1; ! Number of discretized intervals for pool group 2;

ENDDATA

! Maximize the revenue;

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j)));

1
0
2

! Linearize the problem by discretizing qualities of pools;

@FOR(POOL(j)|j#LE#t1+1:

 x(1,j)=(j-1)/t1;

 x(2,j)=1-(j-1)/t1;

 x(3,j)=0; x(4,j)=0; x(5,j)=0;

 @FOR(QUAL(q): b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1)));

@FOR(POOL(u)|u#LE#t2+1:

 @FOR(POOL(v)|v#LE#t2-u+2:

 x(1,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0;

 x(2,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0;

 x(3,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(u-1)/t2;

 x(4,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(v-1)/t2;

 x(5,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2;

 @FOR(QUAL(q): b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)

 =a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2))));

! Mass balance on the pools;

 @FOR(POOL(j): Z(j)= @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the products;

 @FOR(PROD(k):@FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1&2 are forced to one same pool;

 @FOR(POOL(j)|j#LE#t1+1: @BIN(f1(j));

 Z(j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 3,4&5 are forced to one same pool;

 @FOR(POOL(j)|j#GT#t1+1: @BIN(f2(j));

 Z(j) <= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

1
0
3

B 12 Adhya 2: Not linearized

SETS:

 SOURCE /1..5/: Cost;

 POOL /1..2/;

 PROD /1..4/: D, P;

 QUAL /1..6/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5, 5, 9,

 4, 1, 3, 2, 4, 4,

 4, 5.5, 3, 0.9, 7, 10,

 3, 3, 3, 1, 3, 4,

 1, 2.7, 4, 1.6, 3, 7;

 Cost = 7, 3, 2, 10, 5;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75, 6, 5,

 4, 2.5, 3.5, 1.5, 7, 6,

 1.5, 5.5, 3.9, 0.8, 7, 6,

 3, 4, 4, 1.8, 6, 6;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 X(1,1) + X(2,1) = @SUM(PROD(k):Y(1,k));

 X(3,2) + X(4,2) + X(5,2)= @SUM(PROD(k):Y(2,k));

1
0
4

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @FOR(QUAL(q):

 @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k))));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

END

1
0
5

B 13 Adhya 2: Implicit discretization

SETS:

 SOURCE /1..5/: Cost;

 POOL /1..77/: f1, f2; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2);

 PROD /1..4/: D, P;

 QUAL /1..6/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5, 5, 9,

 4, 1, 3, 2, 4, 4,

 4, 5.5, 3, 0.9, 7, 10,

 3, 3, 3, 1, 3, 4,

 1, 2.7, 4, 1.6, 3, 7;

 Cost = 7, 3, 2, 10, 5;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75, 6, 5,

 4, 2.5, 3.5, 1.5, 7, 6,

 1.5, 5.5, 3.9, 0.8, 7, 6,

 3, 4, 4, 1.8, 6, 6;

 t1 = 10; ! Number of discretized intervals for pool group 1;

 t2 = 10; ! Number of discretized intervals for pool group 2;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

1
0
6

! Linearize the problem by discretizing qualities of pools;

 @FOR(POOL(j)|j#LE#t1+1: @FOR(QUAL(q):

 b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1)));

 @FOR(POOL(u)|u#LE#t2+1: @FOR(POOL(v)|v#LE#t2-u+2: @FOR(QUAL(q):

b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2))));

! Mass balance on the pools;

 @FOR(POOL(j)|j#LE#t1+1: X(1,j) + X(2,j) = @SUM(PROD(k):Y(j,k));

 X(3,j) + X(4,j) + X(5,j)=0);

 @FOR(POOL(j)|j#GT#t1+1: X(1,j) + X(2,j) = 0;

 X(3,j) + X(4,j) + X(5,j)= @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @FOR(QUAL(q):

 @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k))));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1&2 are forced to feed same pool;

 @FOR(POOL(j)|j#LE#t1+1:

 @BIN(f1(j));

 X(1,j)+X(2,j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 3,4&5 are force to feed same pool;

 @FOR(POOL(j)|j#GT#t1+1:

 @BIN(f2(j));

 X(3,j)+X(4,j)+X(5,j)<= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

1
0
7

B 14 Adhya 2: Implicit discretization - Formulation in flow rate fraction

SETS:

 SOURCE /1..5/: Cost;

 POOL /1..77/: f1, f2, Z; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2);

 PROD /1..4/: D, P;

 QUAL /1..6/;

 INPOOL (SOURCE,POOL): x;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5, 5, 9,

 4, 1, 3, 2, 4, 4,

 4, 5.5, 3, 0.9, 7, 10,

 3, 3, 3, 1, 3, 4,

 1, 2.7, 4, 1.6, 3, 7;

 Cost = 7, 3, 2, 10, 5;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75, 6, 5,

 4, 2.5, 3.5, 1.5, 7, 6,

 1.5, 5.5, 3.9, 0.8, 7, 6,

 3, 4, 4, 1.8, 6, 6;

 t1 = 10; ! Number of discretized intervals for pool group 1;

 t2 = 10; ! Number of discretized intervals for pool group 2;

ENDDATA

! Maximize the revenue;

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j)));

1
0
8

! Linearize the problem by discretizing qualities of pools;

 @FOR(POOL(j)|j#LE#t1+1:

 x(1,j)=(j-1)/t1;

 x(2,j)=1-(j-1)/t1;

 x(3,j)=0; x(4,j)=0; x(5,j)=0;

 @FOR(QUAL(q):b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1)));

 @FOR(POOL(u)|u#LE#t2+1:

 @FOR(POOL(v)|v#LE#t2-u+2:

 x(1,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0;

 x(2,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0;

 x(3,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(u-1)/t2;

 x(4,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(v-1)/t2;

 x(5,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2;

 @FOR(QUAL(q):

 b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=

 a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2))));

! Mass balance on the pools;

 @FOR(POOL(j): Z(j)= @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1&2 are forced to one same pool;

 @FOR(POOL(j)|j#LE#t1+1: @BIN(f1(j));

 Z(j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 3,4&5 are forced to one same pool;

 @FOR(POOL(j)|j#GT#t1+1: @BIN(f2(j));

 Z(j) <= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

1
0
9

B 15 Adhya 3: Not linearized

SETS:

 SOURCE /1..8/: Cost;

 POOL /1..3/;

 PROD /1..4/:D, P;

 QUAL /1..6/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5, 5, 9,

 4, 1, 3, 2, 4, 4,

 4, 5.5, 3, 0.9, 7, 10,

 3, 3, 3, 1, 3, 4,

 1, 2.7, 4, 1.6, 3, 7,

 1.8, 2.7, 4, 3.5, 6.1, 3,

 5, 1, 1.7, 2.9, 3.5, 2.9,

 3, 3, 3, 1, 5, 2;

 Cost = 7, 3, 2, 10, 5, 5, 9, 11;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75, 6, 5,

 4, 2.5, 3.5, 1.5, 7, 6,

 1.5, 5.5, 3.9, 0.8, 7, 6,

 3, 4, 4, 1.8, 6, 6;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 X(1,1) + X(2,1) = @SUM(PROD(k):Y(1,k));

 X(3,2) + X(4,2) + X(5,2)= @SUM(PROD(k):Y(2,k));

 X(6,3) + X(7,3) + X(8,3)= @SUM(PROD(k):Y(3,k));

1
1
0

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @FOR(QUAL(q): @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k))));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

END

1
1
1

B 16 Adhya 3: Implicit discretization

SETS:

 SOURCE /1..8/: Cost;

 POOL /1..143/: f1, f2, f3;

 ! The number of pools is t1+1+(t2+1)(t2+2)/2+(t3+1)(t3+2)/2 (see below for t1, t2 and t3);

 PROD /1..4/: D, P;

 QUAL /1..6/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5, 5, 9,

 4, 1, 3, 2, 4, 4,

 4, 5.5, 3, 0.9, 7, 10,

 3, 3, 3, 1, 3, 4,

 1, 2.7, 4, 1.6, 3, 7,

 1.8, 2.7, 4, 3.5, 6.1, 3,

 5, 1, 1.7, 2.9, 3.5, 2.9,

 3, 3, 3, 1, 5, 2;

 Cost = 7, 3, 2, 10, 5, 5, 9, 11;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75, 6, 5,

 4, 2.5, 3.5, 1.5, 7, 6,

 1.5, 5.5, 3.9, 0.8, 7, 6,

 3, 4, 4, 1.8, 6, 6;

 t1 = 10; ! Number of discretized intervals for pool group 1;

 t2 = 10; ! Number of discretized intervals for pool group 2;

 t3 = 10; ! Number of discretized intervals for pool group 3;

ENDDATA

1
1
2

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Linearize the problem by discretizing qualities of pools;

@FOR(POOL(j)|j#LE#t1+1: @FOR(QUAL(q):

 b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1)));

@FOR(POOL(u)|u#LE#t2+1: @FOR(POOL(v)|v#LE#t2-u+2: @FOR(QUAL(q):

b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2))));

@FOR(POOL(u)|u#LE#t3+1: @FOR(POOL(v)|v#LE#t3-u+2: @FOR(QUAL(q):

 b(t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v,q)

= a(6,q)*(u-1)/t3 + a(7,q)*(v-1)/t3 + a(8,q)*(1-(u-1)/t3-(v-1)/t3))));

! Mass balance on the pools;

 @FOR(POOL(j)|j#LE#t1+1: X(1,j) + X(2,j) = @SUM(PROD(k):Y(j,k));

 @FOR(SOURCE(i)|i#GE#3:X(i,j)=0));

 @FOR(POOL(j)|(j#GT#t1+1) #AND# (j#LE#t1+1+(t2+1)*(t2+2)/2):

 @FOR(SOURCE(i)|i#LE#2 #OR# i#GE#6:X(i,j)=0);

 X(3,j) + X(4,j) + X(5,j)= @SUM(PROD(k):Y(j,k)));

 @FOR(POOL(j)|j#GT#t1+1+(t2+1)*(t2+2)/2:

 @FOR(SOURCE(i)|i#LE#5:X(i,j)=0);

 X(6,j) + X(7,j) + X(8,j)= @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @FOR(QUAL(q):

 @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k))));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

1
1
3

! Source 1&2 are forced to same pool;

 @FOR(POOL(j)|j#LE#t1+1:

 @BIN(f1(j));

 X(1,j)+X(2,j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 3,4&5 are forced to same pool;

 @FOR(POOL(j)|(j#GT#t1+1) #AND# (j#LE#t1+1+(t2+1)*(t2+2)/2):

 @BIN(f2(j));

 X(3,j)+X(4,j)+X(5,j)<= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

! Source 6,7&8 are forced to same pool;

 @FOR(POOL(j)|j#GT#t1+1+(t2+1)*(t2+2)/2:

 @BIN(f3(j));

 X(6,j)+X(7,j)+X(8,j)<= @SUM(PROD(k):D(k))*f3(j));

 @SUM(POOL(j):f3(j))<=1;

END

1
1
4

B 17 Adhya 3: Implicit discretization - Formulation in flow rate fraction

SETS:

 SOURCE /1..8/: Cost;

 POOL /1..143/: f1, f2, f3, Z;

 ! The number of pools is t1+1+(t2+1)(t2+2)/2+(t3+1)(t3+2)/2 (see below for t1, t2 and t3);

 PROD /1..4/: D, P;

 QUAL /1..6/;

 INPOOL (SOURCE,POOL): x;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 1, 6, 4, 0.5, 5, 9,

 4, 1, 3, 2, 4, 4,

 4, 5.5, 3, 0.9, 7, 10,

 3, 3, 3, 1, 3, 4,

 1, 2.7, 4, 1.6, 3, 7,

 1.8, 2.7, 4, 3.5, 6.1, 3,

 5, 1, 1.7, 2.9, 3.5, 2.9,

 3, 3, 3, 1, 5, 2;

 Cost = 7, 3, 2, 10, 5, 5, 9, 11;

 D = 10, 25, 30, 10;

 P = 16, 25, 15, 10;

 c = 3, 3, 3.25, 0.75, 6, 5,

 4, 2.5, 3.5, 1.5, 7, 6,

 1.5, 5.5, 3.9, 0.8, 7, 6,

 3, 4, 4, 1.8, 6, 6;

 t1 = 10; ! Number of discretized intervals for pool group 1;

 t2 = 10; ! Number of discretized intervals for pool group 2;

 t3 = 10; ! Number of discretized intervals for pool group 3;

ENDDATA

1
1
5

! Maximize the revenue;

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j)));

! Linearize the problem by discretizing qualities of pools;

 @FOR(POOL(j)|j#LE#t1+1:

 x(1,j)=(j-1)/t1;

 x(2,j)=1-(j-1)/t1;

 @FOR(SOURCE(i)|i#GE#3: x(i,j)=0);

 @FOR(QUAL(q):b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1)));

 @FOR(POOL(u)|u#LE#t2+1:

 @FOR(POOL(v)|v#LE#t2-u+2:

 x(3,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(u-1)/t2;

 x(4,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(v-1)/t2;

 x(5,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2;

 @FOR(SOURCE(i)|i#LE#2 #OR# i#GE#6: x(i,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0);

 @FOR(QUAL(q): b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)

 = a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2))));

 @FOR(POOL(u)|u#LE#t3+1:

 @FOR(POOL(v)|v#LE#t3-u+2:

 x(6,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=(u-1)/t2;

 x(7,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=(v-1)/t2;

 x(8,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2;

 @FOR(SOURCE(i)|i#LE#5: x(i,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=0);

 @FOR(QUAL(q): b(t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v,q)

= a(6,q)*(u-1)/t3 + a(7,q)*(v-1)/t3 + a(8,q)*(1-(u-1)/t3-(v-1)/t3))));

! Mass balance on the pools;

 @FOR(POOL(j): Z(j)= @SUM(PROD(k):Y(j,k)));

! Mass demand on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

1
1
6

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1&2 are forced to same pool;

 @FOR(POOL(j)|j#LE#t1+1: @BIN(f1(j));

 Z(j)<= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 3,4&5 are forced to same pool;

 @FOR(POOL(j)|j#GT#t1+1 #AND# j#LE#t1+1+(t2+1)*(t2+2)/2:

 @BIN(f2(j));

 Z(j) <= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

! Source 6,7&8 are forced to same pool;

 @FOR(POOL(j)|j#GT#t1+1+(t2+1)*(t2+2)/2:

 @BIN(f3(j));

 Z(j)<= @SUM(PROD(k):D(k))*f3(j));

 @SUM(POOL(j):f3(j))<=1;

END

1
1
7

B 18 Adhya 4: Not linearized

SETS:

 SOURCE /1..8/: Cost;

 POOL /1..2/;

 PROD /1..5/: D, P;

 QUAL /1..4/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 0.5, 1.9, 1.3, 1.0,

 1.4, 1.8, 1.7, 1.6,

 1.2, 1.9, 1.4, 1.4,

 1.5, 1.2, 1.7, 1.3,

 1.6, 1.8, 1.6, 2.0,

 1.2, 1.1, 1.4, 2.0,

 1.5, 1.5, 1.5, 1.5,

 1.4, 1.6, 1.2, 1.6;

 Cost = 15, 7, 4, 5, 6, 3, 5, 5;

 D = 15, 25, 10, 20, 15;

 P = 10, 25, 30, 6, 10;

 c = 1.2, 1.7, 1.4, 1.7,

 1.4, 1.3, 1.8, 1.4,

 1.3, 1.3, 1.9, 1.9,

 1.2, 1.1, 1.7, 1.6,

 1.6, 1.9, 2.0, 2.5;

 t1 = 12; ! Number of discretized intervals for pool group 1;

 t2 = 12; ! Number of discretized intervals for pool group 2;

ENDDATA

1
1
8

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

! Mass balance on the pools;

 @SUM(SOURCE(i)|i#LE#4: X(i,1)) = @SUM(PROD(k):Y(1,k));

 @FOR(SOURCE(i)|i#LE#4: X(i,2) = 0);

 @FOR(SOURCE(i)|i#GT#4: X(i,1) = 0);

 @SUM(SOURCE(i)|i#GT#4: X(i,2)) = @SUM(PROD(k):Y(2,k));

! Mass balance on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @FOR(QUAL(q):

 @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j))));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

END

1
1
9

B 19 Adhya 4: Implicit discretization

SETS:

 SOURCE /1..8/: Cost;

 POOL /1..910/: f1, f2;

! The number of pools is (t1+1)(t1+2)(t1+3)/6 + (t2+1)(t2+2)(t2+3)/6 (see below for t1, t2);

 PROD /1..5/: D, P;

 QUAL /1..4/;

 INPOOL (SOURCE,POOL): X;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 0.5, 1.9, 1.3, 1.0,

 1.4, 1.8, 1.7, 1.6,

 1.2, 1.9, 1.4, 1.4,

 1.5, 1.2, 1.7, 1.3,

 1.6, 1.8, 1.6, 2.0,

 1.2, 1.1, 1.4, 2.0,

 1.5, 1.5, 1.5, 1.5,

 1.4, 1.6, 1.2, 1.6;

 Cost = 15, 7, 4, 5, 6, 3, 5, 5;

 D = 15, 25, 10, 20, 15;

 P = 10, 25, 30, 6, 10;

 c = 1.2, 1.7, 1.4, 1.7,

 1.4, 1.3, 1.8, 1.4,

 1.3, 1.3, 1.9, 1.9,

 1.2, 1.1, 1.7, 1.6,

 1.6, 1.9, 2.0, 2.5;

 t1 = 12; ! Number of discretized intervals for pool group 1;

 t2 = 12; ! Number of discretized intervals for pool group 2;

ENDDATA

! Maximize the revenue;

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j)));

1
2
0

! Linearize the problem by specifying qualities of pools;

@FOR(POOL(u)|u#LE#t1+1: @FOR(POOL(v)|v#LE#t1-u+2: @FOR(POOL(r)|r#LE#t1-v-u+3: @FOR(QUAL(q):

b((t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r,q)

= a(1,q)*(u-1)/t1 + a(2,q)*(v-1)/t1 + a(3,q)*(r-1)/t1 + a(4,q)*(1-(u-1)/t1-(v-1)/t1-(r-1)/t1)))));

@FOR(POOL(u)|u#LE#t2+1: @FOR(POOL(v)|v#LE#t2-u+2: @FOR(POOL(r)|r#LE#t2-v-u+3: @FOR(QUAL(q):

b((t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-1)*(t2-u+2)-(v-1)*(v-2)/2+r,q)

= a(5,q)*(u-1)/t2 + a(6,q)*(v-1)/t2 + a(7,q)*(r-1)/t2 + a(8,q)*(1-(u-1)/t2-(v-1)/t2-(r-1)/t2)))));

! Mass balance on the pools;

 @FOR(POOL(j)|j#LE#(t1+1)*(t1+2)*(t1+3)/6:

 X(1,j) + X(2,j) + X(3,j) + X(4,j) = @SUM(PROD(k):Y(j,k));

 @FOR(SOURCE(i)|i#GE#5:X(i,j)=0));

 @FOR(POOL(j)|j#GT#(t1+1)*(t1+2)*(t1+3)/6:

 @FOR(SOURCE(i)|i#LE#4:X(i,j)=0);

 X(5,j) + X(6,j) + X(7,j) + X(8,j)= @SUM(PROD(k):Y(j,k)));

! Mass balance on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the pools;

 @FOR(POOL(j): @FOR(QUAL(q): @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j))));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1,2,3&4 are forced to feed same pool;

 @FOR(POOL(j)|j#LE#(t1+1)*(t1+2)*(t1+3)/6:

 @BIN(f1(j));

 X(1,j) + X(2,j) + X(3,j) + X(4,j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 5,6,7&8 are forced to feed same pool;

 @FOR(POOL(j)|j#GT#(t1+1)*(t1+2)*(t1+3)/6:

 @BIN(f2(j));

 X(5,j) + X(6,j) + X(7,j) + X(8,j) <= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

1
2
1

B 20 Adhya 4: Implicit discretization - Formulation in flow rate fraction

SETS:

 SOURCE /1..8/: Cost;

 POOL /1..5850/: f1, f2, Z;

! The number of pools is (t1+1)(t1+2)(t1+3)/6 + (t2+1)(t2+2)(t2+3)/6 (see below for t1, t2);

 PROD /1..5/: D, P;

 QUAL /1..4/;

 INPOOL (SOURCE,POOL): x;

 OUTPOOL (POOL,PROD): Y;

 SOURQ (SOURCE,QUAL): a;

 POOLQ (POOL,QUAL): b;

 PRODQ (PROD,QUAL): c;

ENDSETS

DATA:

 a = 0.5, 1.9, 1.3, 1.0,

 1.4, 1.8, 1.7, 1.6,

 1.2, 1.9, 1.4, 1.4,

 1.5, 1.2, 1.7, 1.3,

 1.6, 1.8, 1.6, 2.0,

 1.2, 1.1, 1.4, 2.0,

 1.5, 1.5, 1.5, 1.5,

 1.4, 1.6, 1.2, 1.6;

 Cost = 15, 7, 4, 5, 6, 3, 5, 5;

 D = 15, 25, 10, 20, 15;

 P = 10, 25, 30, 6, 10;

 c = 1.2, 1.7, 1.4, 1.7,

 1.4, 1.3, 1.8, 1.4,

 1.3, 1.3, 1.9, 1.9,

 1.2, 1.1, 1.7, 1.6,

 1.6, 1.9, 2.0, 2.5;

 t1 = 24; ! Number of discretized intervals for pool group 1;

 t2 = 24; ! Number of discretized intervals for pool group 2;

ENDDATA

1
2
2

! Maximize the revenue;

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j)));

! Linearize the problem by specifying qualities of pools;

 @FOR(POOL(u)|u#LE#t1+1:

 @FOR(POOL(v)|v#LE#t1-u+2:

 @FOR(POOL(r)|r#LE#t1-v-u+3:

 x(1,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)

=(u-1)/t1;

 x(2,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)

= (v-1)/t1;

 x(3,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)

= (r-1)/t1;

 x(4,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)

= 1-(u-1)/t1-(v-1)/t1-(r-1)/t1;

@FOR(SOURCE(i)|i#GE#5:

x(i,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)

=0);

@FOR(QUAL(q):

 b((t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r,q)

= a(1,q)*(u-1)/t1 + a(2,q)*(v-1)/t1 + a(3,q)*(r-1)/t1 + a(4,q)*(1-(u-1)/t1-(v-1)/t1-(r-1)/t1)))));

@FOR(POOL(u)|u#LE#t2+1:

 @FOR(POOL(v)|v#LE#t2-u+2:

 @FOR(POOL(r)|r#LE#t2-v-u+3:

x(5,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = (u-1)/t2;

x(6,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = (v-1)/t2;

1
2
3

x(7,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = (r-1)/t2;

x(8,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = 1-(u-1)/t1-(v-1)/t1-(r-1)/t1;

@FOR(SOURCE(i)|i#LE#4: x(i,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-

u+4)/6-(t2+2)*(t2+3)/2+(v-1)*(t2-u+2)-(v-1)*(v-2)/2+r) = 0);

@FOR(QUAL(q):b((t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-

(t2+2)*(t2+3)/2+(v-1)*(t2-u+2)-(v-1)*(v-2)/2+r,q) = a(5,q)*(u-1)/t2 + a(6,q)*(v-1)/t2 + a(7,q)*(r-

1)/t2 + a(8,q)*(1-(u-1)/t2-(v-1)/t2-(r-1)/t2)))));

! Mass balance on the pools;

 @FOR(POOL(j): Z(j) = @SUM(PROD(k):Y(j,k)));

! Mass balance on the products;

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k));

! Quality blending for the products;

 @FOR(PROD(k): @FOR(QUAL(q):

 @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k))));

! Source 1,2,3&4 are forced to feed same pool;

 @FOR(POOL(j)|j#LE#(t1+1)*(t1+2)*(t1+3)/6:

 @BIN(f1(j));

 Z(j) <= @SUM(PROD(k):D(k))*f1(j));

 @SUM(POOL(j):f1(j))<=1;

! Source 5,6,7&8 are forced to feed same pool;

 @FOR(POOL(j)|j#GT#(t1+1)*(t1+2)*(t1+3)/6:

 @BIN(f2(j));

 Z(j) <= @SUM(PROD(k):D(k))*f2(j));

 @SUM(POOL(j):f2(j))<=1;

END

124

VITA

Name: Viet Pham

Address: Department of Chemical Engineering, Texas A&M University

 3122 TAMU, College Station, TX 77840

Email Address: viet@tamu.edu

Education: B.S., Chemical Engineering, Ho Chi Minh City University of Technology, 2002

 M.S., Chemical Engineering, Texas A&M University, 2007

