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ABSTRACT 

 

A Global Optimization Approach  

to Pooling Problems in Refineries. (August 2007) 

Viet Pham, B.S., Ho Chi Minh City University of Technology 

Chair of Advisory Committee: Dr. Mahmoud M. El-Halwagi 

 

The pooling problem is an important optimization problem that is encountered in 

operation and scheduling of important industrial processes within petroleum refineries.  

The key objective of pooling is to mix various intermediate products to achieve desired 

properties and quantities of products. First, intermediate streams from various processing 

units are mixed and stored in intermediate tanks referred to as pools. The stored streams 

in pools are subsequently allowed to mix to meet varying market demands. While these 

pools enhance the operational flexibility of the process, they complicate the decision-

making process needed for optimization. The problem to find the least costly mixing 

recipe from intermediate streams to pools and then from pools to sale products is 

referred to as the pooling problem. The research objective is to contribute an approach to 

solve this problem. 

The pooling problem can be formulated as an optimization program whose objective is 

to minimize cost or maximize profit while determining the optimal allocation of 

intermediate streams to pools and the blending of pools to final products. Because of the 

presence of bilinear terms, the resulting formulation is nonconvex which makes it very 

difficult to attain the global solution. Consequently, there is a need to develop 

computationally-efficient and easy-to-implement global-optimization techniques to solve 

the pooling problem. In this work, a new approach is introduced for the global 

optimization of pooling problems. The approach is based on three concepts: linearization 

by discretizing nonlinear variables, pre-processing using implicit enumeration of the 

discretization to form a convex-hull which limits the size of the search space, and 

application of integer cuts to ensure compatibility between the original problem and the 
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discretized formulation.  The continuous quality variables contributing to bilinear terms 

are first discretized. The discretized problem is a mixed integer linear program (MILP) 

and can be globally solved in a computationally effective manner using branch and 

bound method.  The merits of the proposed approach are illustrated by solving test case 

studies from literature and comparison with published results. 
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NOMENCLATURE 

 

Symbols  Definition 

 

Subscripts 

 i  sources 

 j  pools 

 k  products 

 q  quality 

 r  integer index 

 u  integer index 

 v  integer index 

 

Parameters 

 ai  source i quality 

 ck  product k quality 

 Ci  cost of source i 

 Dk  product k demand 

 l  number of sources 

 Lj  lower bound of pool j capacity 

 m  maximum number of used pools 

 n   number of products 

 Nq  number of investigated qualities 

 Np  number of discretized pools 

 Pk  product k price 

 Si  available capacity of source i 

 t   number of intervals for a discretized range 

 Uj  upper bound of pool j capacity 

 Zj  total flow through pool j 
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Variables 

 bjq  quality q of pool j 

 fj  binary variable associate to pool j 

 xij  fractional flow rate (or fractional amount) from source i to pool j 

 Xij  flow rate (or amount) from source i to pool j 

 Yjk  flow rate (or amount) from pool j to product k 

 

Abbreviations 

 BARON Branch-And-Reduce Optimization Navigator (software) 

 GBD  Generalized Bender’s Decomposition 

 GOP  Global Optimization (algorithm) 

 GRG  Generalized Reduced Gradient 

 LP  Linear Program 

 MILP  Mixed Integer Linear Program 

 NLP  Non-Linear Program 

 RLT  Reformulation-Linearization Technique  

 SLP  Successive Linear Program 

 

LINGO code 

 @FOR  A command is executed for a range of indicated index 

 @SUM Summation over a set 

 #LT#  Less than 

 #LE#  Less than or equal 

 #GT#  Greater than 

 #GE#  Greater than or equal 

 MAX  Maximized objective function 
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CHAPTER I 

INTRODUCTION 

 

Market demands for qualities and quantities of products may require the blending of 

several process streams to meet the desired requirements. For instance, intermediate 

streams from various processing units of a petroleum refinery are typically blended to 

produce value-added products satisfying quality specifications and demands. As an 

example, intermediate streams from reforming, cracking, and naphtha treatment units are 

typically mixed to yield gasoline. Quality specifications such as octane number, vapor 

pressure, and sulfur and aromatic concentrations are among the decisive stipulated 

quality constraints for gasoline. Prior to being blended and sent to final storages, 

intermediate streams are mixed and stored in intermediate tanks, called pools. Such 

pools enhance the operational flexibility of the process but complicate the decision-

making process needed for optimization. The problem to find the least costly mixing 

recipe from intermediate streams to pools and then from pools to sale products is a 

pooling problem. The research objective is to contribute an approach to solve this 

problem. 

The following general pooling problem (Figure 1) is investigated. Given is a set 

SOURCES = {i|i = 1,…,l} of intermediate streams. Each source has a given available 

capacity, Si, a unit cost, Ci, and known values of Nq characterizing qualities, aiq, where q 

is an index for qualities (e.g. octane number, Reid vapor pressure, and sulfur 

concentration). The amount (or flow rate) from source i to pool j is denoted by a variable 

Xij. The sources have to be blended because there is not enough pools (m < n) and/or 

there are insufficient pool capacities to store sources and/or products separately. Sources 

can be sent to some or all of pools. 

 

This thesis follows the style of AIChE Journal. 
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As a result of blending the sources, each pool j has unknown values of qualities bjq. The 

amount from pool j to sale product is Yjk and is to be determined. The n products each 

with a price Pk have constraints on known demand Dk and bounds on the values of 

desired quality specifications ckq.  

 

Figure 1  General pooling problem 

With these notations, the problem is formulated as follows: 

Objective function: margin return is maximized = ∑∑∑∑
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Non-negativity constraints: 0≥ijX , 0≥jkY  for  i = 1,…,l 

             j = 1,…,m 

            k = 1,…,n. 

The foregoing formulation is nonconvex because of the bilinear terms appearing in the 

mixing rule constraints ∑
=

⋅
l

i

ijjq Xb
1

and jq

m

j

jk bY ⋅∑
=1

. Therefore, it is desired to develop a 

global solution procedure for this formulation. 

Other than the foregoing formulation, there have been some formulations with different 

variable definitions. But they all are also nonconvex optimization problems. 

In addition to this structure of pooling problems, there are some implementations that 

make pooling problems more complicated to be solved. Allowing pools to interconnect 

with other pools is one of the implementations. A simple example is the problem 

proposed by Audet. 
1
 The structure is shown in Figure 2 where there may be a flow from 

the first pool to the second pool. A more generalized pooling problem is the 

superstructure introduced in Meyer and Floudas 
2
 in which each of pools is free to 

connect to others as well as all products, and each of sources may feed all pools and 

directly all products. This superstructure also represents a network of waste water 

treatment minimizing the total cost. 

 

Figure 2  A variation of the pooling problem (Audet 
1
) 
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This work will focus on the pooling problem represented by Figure 1. The layout of this 

thesis is as follows. Chapter II is a survey on the previous literature attempts to solve the 

pooling problems. Chapter III describes the proposed approach to discretize and 

reformulate pooling problems, compares the advantages and disadvantages, and 

distinguishes this work from a recent discretization idea. Chapter IV presents the 

proposed methodology and discusses its conceptual and mathematical aspects. Chapter 

V discusses pooling problems previously published in literature. The results and 

discussion of how the proposed approach performs in solving these problems are 

presented in Chapter VI. Finally, the last chapter provides conclusions and 

recommendations for future work. 
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CHAPTER II 

LITERATURE REVIEW 

 

Much interest has been given to the solution of pooling problems because of its 

attractive pay-off in operating refineries and other process industries. The following is a 

survey of key publications on the statement, formulation, and solution of the pooling 

problem. 

2.1 The initial approaches 

One of the earliest solution procedures is the recursion approach to the simple pooling 

problems introduced by Haverly.
3
 This approach reformulates the problem by 

introducing two additional sets of variables, say over and under, for pool quality ranges 

in each recursion iteration and another set of variables, say yjk, representing flow rate 

fraction from pools to sale products. These combination variables, yjk.(over – under), are 

added to the mixing rule constraints. Then, the recursion begins with assigned or guessed 

values of quality variables bjq and yjk in the bilinear term to have a linear formulation. 

Solving this linear program, the author obtained the flow rate optimum Xij, Yjk and the 

calculated actual bjq. The values of calculated over and under give a direction for the 

next iteration. The recursion is repeated until the assigned and calculated values of bjq 

converge within acceptable tolerance. Because of depending on these starting points, the 

recursion procedure may not converge or may converge to a local optimum. When the 

problem is large, this method is likely unstable and takes much computational time. 

Lasdon et al. 
4
 utilized generalized reduced gradient (GRG) and successive linear 

programming (SLP) algorithms to solve pooling problems. The SLP algorithm 

eliminates the bilinear relations by first order Taylor series expansion. The iteration 

starts with assigned flow rate values and then followed by a sequence of linear programs. 

The steps are summarized in Figure 3. 
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Figure 3   Successive linear programming algorithm (Lasdon et al. 
4
) 

First of all, a feasible flow rate set of Xij’s and Yjk’s is chosen no matter what values of 

bj.q’s are.  From these initial flow rates, bj.q’s are calculated. By using first order Taylor’s 

series for bilinear terms, the formulation is transformed into a linear program with sets of 

variables ∆Xij, ∆Yjk, ∆bjq. The solved optimum ∆Xij, ∆Yjk will decide a termination of the 

iterations. If none of the optima is found, the iteration starts over with a new chosen set 

of base points. If an optimum ∆Xij, ∆Yjk is found, the iteration repeats with an updated set 

of base points where X’ij = Xij + ∆Xij and Y’jk = Yjk + ∆Yjk. The calculation is terminated 

when the solved optimum ∆Xij, ∆Yjk is within an acceptable tolerance ε. 

Lasdon et al. 
4
 performed the application of these two nonlinear programming algorithms 

to Haverly’s pooling problems. The problems were solved with various initial points. 

The results showed some advantages from these algorithms over recursion. The 

convergence speeded up and leaded to an optimum when the starting points made the 

Calculate associated bjq 

Expand using Taylor’s series 

Xij, Yjk, bjq       ∆Xij, ∆Yjk, ∆bjq  

 

Solve LP for ∆Xij, ∆Yjk 

X’ij = Xij +∆Xij  

Y’jk = Yjk +∆Yjk 

infeasible 

Result 

∆Xij, ∆Yjk < ε 

Choose base points of Xij, Yjk 
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algorithms move out of trivial solutions. The formulation needs not much effort to suit 

the algorithm as recursion approach does. 

More information on these algorithms can be found in Griffith and Stewart, 
5
 Palacios 

Gomez et al., 
6
 Baker and Lasdon, 

7
 and Greenberg. 

8
 

Griffith and Stewart 
5
 are the first to introduce SLP under the name Mathematical 

Approximation Program and apply in Shell Oil.  

Palacios Gomez et al. 
6
 proposed an efficient SLP algorithm for linearly constrained 

formulation and showed more successful computational results than the generalized 

reduced gradient algorithm did, especially in large problems with low degrees of 

freedom.  

Baker and Lasdon 
7
 suggested a multiplicative formulation for the linearized 

subproblems to be solved by SLP, with nonnegative deviation variables to prevent the 

occurrence of infeasibility, and applied this idea for nonlinear optimization problems in 

Exxon. The multiplicative form of formulation usually leads to a fewer number of 

nonlinear variables than the additive form does. It also derives a linearized problem 

compatible with existing LP formulations.  

Greenberg 
8
 used quality diagram to analyze sensitivity and diagnose infeasibility of 

pooling problems. This geometry approach visualizes the range of percentage flow rates, 

pool qualities and the range of source qualities for the problem to be feasible. The cost 

parameter was analyzed as another attribute of streams. From this viewpoint, the author 

discovered that the calculated costs of pools and products were the Lagrangian 

multipliers which were associated with the constraints on product demands and mass 

balances for pools.  
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2.2 Decomposition approaches 

Decomposition is another approach to solve pooling problems. The idea is to decompose 

the problem into two linear subproblems by fixing a variable in the bilinear terms. At 

each iteration, these subproblems are solved for their respective global optimums and the 

iterations continue until stopping conditions are satisfied. The idea is clarified in the 

following mathematical formulations (see Floudas and Aggarwal 
9
 for more details.) 

Consider the optimization problem with two sets of decision variables x and y: 

y,x
Min f(x,y) 

subject to  g(x,y) ≤ 0 

h(x,y) = 0  

Between these sets of variables, the one causing nonlinearity (let say y) is referred as 

complicating variables and the other (x) is called the set of non-complicating variables. 

This discrimination must be performed before the optimization problem is decomposed 

into two linear subproblems. The first subproblem or the primal problem is derived from 

fixing values of complicating variables and mathematically stated as follows.  

x
Min f(x,y) 

subject to  g(x,y) ≤ 0 

h(x,y) = 0  

where y is considered as parameters. 

By fixing some variables, more constraints have been added to the original optimization 

problem. Thus, the primal problem gives an upper bound for the minimization problem. 

Besides, it also gives the associated optimum values of x (say x*) and the Lagrangian 

multipliers u* and λ* for the constraints g(x,y) ≤ 0 and h(x,y) = 0 respectively. 

The second subproblem is the dual problem, referred as a relaxed master problem: 
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y

Min µ  

subject to: f(x*,y) + u*.g(x*,y) + λ*.h(x*,y) ≤ µ  

where the left hand side of the constraint is the Lagrangian function of the primal 

problem, denoted as L(x*,y,u*,λ*). The objective solution of the relaxed master problem 

is the lower bound on the global optimum of the original problem. The optimum set of 

values y is used as the fixed values for the primal problem in the next iteration. 

Generalized Bender’s Decomposition (GBD) is one of the methods to interact these 

subproblems. 

Floudas et al. 
10

 proposed a decomposition-based global optimization approach for 

nonlinear programs (NLPs) and mix integer nonlinear programs (MINLPs); and then 

(Floudas and Agrawal 
9
) applied it and GBD method to the pooling problems with 3 

pools, 5 products and 2 qualities. In their proposed decomposition algorithm, a constraint 

consisting of an updated Lagrangian function was added at each iteration. If the solution 

of a relaxed master problem resulted in infeasibility in the next primal problem, a 

positive slack variable was added to each of the constraints in that primal problem. The 

primal problem was then relaxed and transformed to a minimization problem of the slack 

variable which represents the infeasibility as follows: 

x
Min α 

subject to    g(x,y) - α ≤ 0 

  h(x,y) - α ≤ 0  

- h(x,y) - α ≤ 0 

  α ≥ 0 

The objective of the proposed algorithm is to structure the subproblems in such a manner 

that they are solved for respective global optima at every iteration. However, there is no 

guarantee that a found solution at the end of the algorithm is the global optimum of the 

original optimization problem. 
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Androulakis et al. 
11

 proposed a distributed implementation of global optimization 

algorithm (GOP). The GOP approach bases on decomposition and duality theory. The 

algorithm is almost the same to above, except for some implementations in relaxed dual 

problem solving steps. At each iteration, a series of relaxed dual problems are to be 

solved. These problems are in forms of: 

 
B,y

Min
µ

 µB 

subject to:  *)*,,,( λuyxL jB
 ≤ µB 

   
U

i

B

i

B

x xxuyxL jj

i
=≤∇ ,0*)*,,,( λ  

L

i

B

i

B

x xxuyxL jj

i
=≥∇ ,0*)*,,,( λ  

where the two additional families of constraints (the last two ones) are the gradients of 

Lagrangian function and referred as qualifying constraints. Each of relaxed dual 

problems associates with a combination Bj of the bounds of variable x, instead of x*, 

from previous primal problem’s solution. Minimum µB is chosen from all solutions of 

these serial dual problems and compared to the lower bound in previous iteration for an 

updated lower bound. The GOP algorithm converges to an ε-global solution but requires 

a large number of calculations for solving dual problem series.  

Androulakis et al. 
11

 discussed some implementations to tackle this computational 

bottleneck. Following the primal problem, variable bound problems were formulated and 

simultaneously solved for tighter bounds on variables. As a result, the number of relaxed 

dual problems was decreased; then, the overall convergence was more rapidly. Solving 

relax dual problems were also performed in parallel manner. The procedure to find the 

minimum among dual problems’ solutions compared as many pairs as possible at the 

same time to reduce computational time. In the broader viewpoint, the idea of these 

distributed implementations is to do many tasks simultaneously by taking advantage of 

the multiprocessor computer Intel-Paragon. Several randomly generated large scale 

pooling problems were solved without published input data to demonstrate the 

improvements. 
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2.3 Branch and bound framework 

Branch-and-bound method has also been a base method for many proposed approaches 

to solve pooling problem. For more details on branch and bound approach, see section 4 

in Chapter IV. 

Foulds et al. 
12

 partitioned the feasible regions into two equal parts to produce two 

branching sub-problems. These sub-problems were then bounded by convex and 

concave envelops, using the linear relaxation technique of McCormick 
13

 and Al-

Khayyal and Falk. 
14

 From the found optimum solution in previous step, the algorithm 

partitioned the rectangle of feasible region into four sub-rectangles, linearized these 

subproblems by convex underestimation and solved for global optima. The sub-rectangle 

associated with the best solution among them (the highest in maximum problem) was 

chosen to be the base point for next partition step. The algorithm continued with smaller 

and smaller sub-rectangles and was proven to converge to optimal solution by Al-

Khayyal and Falk. 
14

 The solution may be arbitrarily close to the global optimum. The 

proposed algorithm was demonstrated on some generated pooling problems with one 

quality (see page 44 for problems’ descriptions). 

Sherali and Alameddine 
15

 proposed a reformulation – linearization technique to solve 

bilinear programming problems in which the bilinear terms only appeared in objective 

functions. This technique consists of two stages as it’s named. In the first stage, the 

problem is reformulated by generating additional valid nonlinear constraints from pair-

wise multiplications between the original problem constraints and nonnegative variable 

factors derived by rearranging variables’ bounds. In the second stage, the resulting 

formulation is linearized by substituting the nonlinear terms with new defined variables. 

This relaxed formulation’s optimum is an upper bound (in maximized optimization 

problems) of the original bilinear programming problems. This bound is proven to be 

tighter than that of convex hyper-rectangle envelop overestimation. The authors showed 

that the RLT procedure generates convex envelop representation of a bilinear function 

over special triangular and quadrilateral poly-topes in R
2
.  
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Ben-Tal et al. 
16

 partitioned the fractional flow rate variables in the proportion 

formulation in order to reduce the duality gap between the primal and its Lagrangian 

dual problem until less than a predetermined small ε. The algorithm took advantages of 

branch and bound approach and duality properties. The algorithm starts with a feasible 

solution of primal problem (an upper bound); then, the dual problem is solved for a 

lower bound. If the difference between these two bound is still more than ε, the 

fractional flow rate region is partitioned into many sub-polytopes. Each dual problem 

associating with each sub-polytope is solved and compared to find the sub-polytope 

providing a minimum dual bound. The primal problem is resolved using a local search 

from that optimum sub-polytope. At the end of the iteration, these two updated bounds 

are checked with the stopping condition. Numerical examples on pooling problems with 

almost two qualities were presented 

Quesada and Grossmann 
17

 also used branch and bound search to solve their 

reformulated models of general process networks which consists of splitters, mixers and 

linear process units. This problem structure may be simplified to represent simple 

pooling problems. When linearized using the reformulation and linearization technique 

(RLT) of Sherali and Alameddine, 
15

 some mass balance constraints in individual 

component flow formulation were transformed into those in composition model, and 

versa. The linearized model, which combines the variables from both formulations, was 

embedded in a branch and bound frame work to be solved for a global optimum which is 

a tighter lower bound than previous relaxation approaches. The approach’s limitations 

are solving linear process unit, ignoring enthalpy effect and not allowing binary 

variables. 

Branch and bound procedure using selective Lagrangian relaxation proposed by Adhya 

et al. 
18

 produces a tighter lower bound than McCormick estimator-based linearization 

relaxation. The term “selective” refers to a manner that the choice of relaxed constraints 

results in a Lagrangian subproblem which may not be easier to solve. Instead of 

dualizing only bilinear constraints (the “hard” constraints,) the authors dualized all of the 
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constraints to obtain a Lagrangian subproblem with a bilinear objective function defined 

over a hypercube. Then, a reformulation procedure was proposed to solve this not-easy 

subproblem. This reformulated model is a mixed integer program and is embedded in a 

branch and bound algorithm to obtain a local optimum that is the lower bound of the 

original pooling problem. 

Audet et al. 
1
 formulated pooling problems on three models which are based on flow 

variables, flow proportion variables and their hybrid ones. This proposed formulation 

was shown to be suitable for branch and cut quadratic algorithm introduced by Audet et 

al. 
19

 The branch and cut algorithm takes some advantages of both branch-and-bound 

algorithm and reformulation-linearization technique to have some improvements. Firstly, 

branching by partitioning hyper-rectangle is not necessarily at the middle lines to reduce 

potential errors. Secondly, instead of adding all bound factors and constraint factors, 

only those bilinear terms which are violated are linearized and contribute to relaxed 

problem’s constraints. As a result, the problem size does not increase quickly. Thirdly, 

the linear variables are closer to their respective bilinear terms by introducing cuts on the 

convex paraboloid. Every cut is valid for the whole nodes of the branch tree. 

Meyer and Floudas 
2
 proposed a piecewise linear reformulation based on the RLT 

technique to solve the superstructure model of generalized pooling problems. Before the 

RLT is applied, the continuous space of each quality is partitioned into many 

subintervals. Some binary variables are introduced to indicate which interval includes 

the optimum quality. Then RLT is used with a note that the bilinear terms stay in the 

mixing rule constraints for pooling problems instead of objective function in the problem 

investigated by Sherali and Alameddine. 
15

 These constraints are excluded from the 

reformulation step but included in the linearization step according to the approach of 

Meyer and Floudas. 
2
 The introduction of binary variables to the formulation augments 

the lower bound. Therefore, the calculation time is less despite the addition of variables. 

However, it does not produce an upper bound. The authors verified the ε-global 

optimum by doing a run series in which the quality partition scheme is restructured after 
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each run. In a large scale industrial problem, the approach can reduce the gap between 

the lower and upper bound to 1.2%. The upper bound was found by using DICOPT. 

More discussion on this paper is presented in section 3.6. 

Sahinidis 
20

 reviewed the theory and algorithms of the branch and reduce approach for 

the global optimization of NLPs and MINLPs, which has evolved from the traditional 

branch and bound approach. Two steps were implemented. The preprocessing step 

before relaxation is to reduce the range of all problem variables. After relaxed problem is 

solved, the post-processing step utilizes the solution to further reduce the problem 

variable ranges prior to next branching iteration. As the ranges are reduced, the variable 

bounds are tighter; therefore, this implemented branch and bound converges faster. The 

approach has been developed, integrated in the computational system BARON, and 

applied in various engineering problems 

For an overview of published approaches, some of their characteristics are summarized 

in Table 1. Basically, the approaches are categorized into three groups: local optimum, 

lower bound and ε-global optimum. 

This research proposes discretization approach which produces global optimums or near 

global optimum results (in practically acceptable manner) and in computationally 

realistic time aided by existing computer capacity. The procedure is to finitely discretize 

the quality variables in the bilinear terms (flow variables multiplied by quality variables) 

exhaustively or implicitly to obtain a mix integer linear programming (MILP) 

formulation. This formulation is easy to be programmed in commercial programming 

software, e.g. LINGO, for its global optimum. The remaining of this thesis describes 

discretization approach and its applications, which are the main research contributions. 
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Table 1  Summary of approaches on pooling problems 

Publication Base approach Optimality 
Alignment to the 

global minimum 
Quality Implementation 

Haverly 
3
 Recursion Local Local optimum Single  

Griffith and Stewart 
5
 SLP Local Local optimum N/A  

Palacios Gomez et al. 
6
 SLP Local Local optimum N/A  

Baker and Lasdon 
7
 SLP Local Local optimum Single Multiplicative formulation 

Lasdon et al. 
4
 GRG and SLP Local Local optimum Single  

Greenberg 
8
 Geometry N/A N/A Multiple 

Sensitivity analysis and 

infeasibility diagnosis 

Floudas et al. 
10

 Decomposition Global Local optimum Single 
Generalized Bender’s 

Decomposition 

Androulakis et al. 
11

 Decomposition Global Lower bound Multiple 
Distributed implementations of 

GOP algorithm 

Foulds et al. 
12

 Branch and bound Global Lower bound Single Convex envelop relaxation 

Sherali and Alameddine 
15

 Branch and bound Global Lower bound N/A RLT 

Ben-Tal et al. 
16

 Branch and bound Global ε-global minimum Multiple Partition fractional flow variable 

Quesada and Grossmann 
17

 Branch and bound Global ε-global minimum Single RLT 

Adhya et al. 18 Branch and bound Local Lower bound Multiple Selective Lagrangian relaxation 

Sahinidis 
20

 Branch and bound Global Lower bound Multiple Reduce variable range 

Audet et al. 
1
 Branch and cut Global Lower bound Multiple Formulation, branching and cut 

Meyer and Floudas 
2
 Branch and bound Global Lower bound Multiple Piecewise RLT 
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CHAPTER III 

NEW CONCEPTS OF PROPOSED DISCRETIZATION APPROACH 

 

This Chapter introduces the key concepts to be used in the new solution procedure of the 

pooling problems. The proposed global optimization approach is based on three 

concepts: 

1.) Discretization of qualities for each pool: The characterizing qualities for each pool, 

bjq, are unknown. Let us discretize the search space of the qualities of the pools into a set 

of Np vectors of known values: {(bj,1 bj,2, …, bj,Nq)|j=1,…,Np). The rationale for the 

selection of these values will be discussed later. It is also worth noting that if Np is large 

enough, the discretized space can approximate the original continuous search space. The 

discretization of the unknown pool qualities into known values transforms the 

formulation into a linear program. However, there is a potential violation of  the given 

number of pools. Since the actual number of pools must be limited to m, Np – m should 

not be selected in the final solution. To overcome this challenge, the following step is 

introduced. 

2.) Application of Integer Cuts for the Pools: In order to limit the number of pools to m, 

an integer cut is used to select m pools from among the Np discretized pools. The details 

will be given later. Consequently, the formulation becomes a mixed-integer linear 

program “MILP” that can be globally solved using branch and bound method. 

3.) Convex Hull Search: A potential problem with the large number of discretizations for 

several qualities is the large size of the resulting MILP.  In order to reduce the problem 

dimensionality, a convex hull is constructed by invoking physical limits on the possible 

combinations of pool qualities. 

The following sections provide more details on the concepts, rationale, and 

implementation of the above-mentioned steps. 
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3.1 Motivating example 

Consider an example of the pooling problem adapted from Greenberg 
8
 and summarized 

in Figure 4, Table 2 and Table 3. 

 

Figure 4  An example of pooling problem adapted from Greenberg 
8
 

Table 2  Source information for the example  

Source 1 2 3 

Supply limit (Si) 100 200 100 

RON (ai1) 82 92 82 

Sulfur content (ai2) 1 2 1.5 

Cost (Ci) 7 9 6 

 

Table 3  Product constraints for the example  

Product 1 2 3 

Demand (Dk) 100 100 200 

RON (min) (ck1) 84 87 90 

Sulfur content (max) (ck2) 1.9 2 2 

Price (Pk) 10 15 17 

This example will be used to demonstrate the proposed approach and implementation 

throughout the following sections. 



 

 

18 

3.2 Discretization by exhaustively enumerating bj’s 

The pooling problem (P) is linearized by listing the values of one of the two variables in 

the bilinear terms bjq.Yjk and bjq.Xjk. This work proposes the use of quality as the 

discretized variable.  

The quality of any pool is bounded by qualities of the blended sources. Using the 

following notation: aq,min = arg
i

min {aiq} and aq,max = arg
i

max {aiq}, then the domain of 

bjq is aq,min ≤ bjq ≤ aq,max.  

This discretization approach limits the search space to pools whose values are bounded 

between aq,min and aq,max. When the quality range is discretized into known values, the 

bilinear terms become linear which is conducive to the global solution of the problem. 

The quality range may be discretized in various ways (e.g., random, structured). One 

way of discretizing the range of quality q is to divide it into tq equal intervals. In such 

cases, the values of discretized quality q are calculated through the following expression: 

q

qq

qqqr
t

aa
rab

min,max,

min, )1(
−

⋅−+=   for rq = 1,…,(tq+1)          (1) 

When ∞→qt , the solution of the discretized and the original formulations become 

equivalent. However, for all practical purposes, there is a large enough number of 

discretizations that strikes the right balance between computational time and proximity 

of the discretized solution to the original solution.  

For Nq qualities, let us denote the number of interval discretizations for qualities 

1,2,…,Nq by t1, t2,…,tNq , respectively. Therefore, the total number of discretized pools is 

(t1 + 1).(t2 + 1)…(tNq + 1). If t1 = t2 = … = tNq = t, there are (t +1)
Nq

 pools.  
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Figure 5  Pools are enumerated on their assigned quality values 

Figure 5 shows (t +1)
Nq

 pools, where bj = {bq,r | q = 1,…,Nq and r = 1,…,(t+1)}. This 

number of pools (t+1)
Nq

 is independent of the number of pools in the original problem m. 

Instead, t only depends on how small the quality increment is selected. 

At this point, the problem is to blend l sources into (t+1)
Nq

 pools with known qualities. It 

is a linear optimization formulation and a global result can be obtained. Pools which 

have zero flow rate calculated are not used.  It is possible that the resulting number of 

used pools may exceed the allowable number of pools (m).  To resolve this issue, a 0/1 

binary integer variable fj is introduced. If the pool j is used in the solution of (P’), then fj 

is assigned  a value of 1, otherwise fj is 0. This constraint may be formulated using the 

following linear constraint: 

Lj.fj ≤∑
=

l

i

ijX
1

 ≤ Uj.fj     for j = 1,…,(t+1)
 Nq

 . 

where Lj and Uj are  given positive real numbers that correspond to the minimum and 

maximum capacities of the pools.  If the original problem (P) has no constraint on pool 

capacity, Uj should be at least the largest available supply of total sources. From these 

two inequalities, fj is forced to be 0 when ∑
=

l

i

ijX
1

= 0, i.e. no flow rate to discretized pool 

j, or 1 when ∑
=

l

i

ijX
1

> 0. As a characteristic of pooling problems, ∑
=

l

i

ijX
1

tends to be 
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positive to contribute to the objective function. Hence, the inequality fj ≤∑
=

l

i

ijX
1

 can be 

removed without affecting the solutions. 

Next, the restriction on the number of pools is taken into formulation simply 

as mf

Nq
t

j

j ≤∑
+

=

)1(

1

. For simplicity in notation, let us denote (t+1)
Nq

 by M. Therefore, 

reformulation is given by:  

Objective function:  ∑∑∑∑
====

−⋅
M

j

ij

l

i

i

M

j

jk

n

k

k XCYP
1111

is maximized 

Available supply:   ∑
=

M

j

ijX
1

≤ Si  for i = 1,…,l 

Mass balance on pools:  ∑∑
==

=
n

k

jk

l

i

ij YX
11

 for j = 1,…,M 

Product demand:   k

M

j

jk DY ≤∑
=1

  for k = 1,…,n       (P’)  

Mixing rule for pools: iq

l

i

ij

l

i

ijjq aXXb ⋅=⋅ ∑∑
== 11

 for j = 1,…,M 

Number of pools:  fj = {0, 1}  for j = 1,…,M 

∑
=

l

i

ijX
1

 ≤ Uj.fj   for j = 1,…,M 

mf
M

j

j ≤∑
=1

 

Mixing rule for products: jq

l

i

jk

l

i

jkkq bYYc ⋅≥⋅ ∑∑
== 11

 for k = 1,…,n 

Positive variables:  0≥ijX , 0≥jkY  for i = 1,…,l 

             j = 1,…,m 

            k = 1,…,n 

where bjq’s are known parameters defined by (1). 
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This formulation is a mixed integer linear program (MILP). The main drawback of this 

approach is the potential large size integer of the MILP. The number of pools has 

increased from m to M, resulting in (M -m) more variables for bj, M variables of fj and 

l.(M -m) more variables for each set of Xij and Yjk. It also increases rapidly when the 

increment decreases. Consequently, the selection of the increment size is critically 

important for the problem dimensionality and computational efficiency of the devised 

discretization approach. The following section is a discussion on the selection of the 

discretization scheme. 

Exhaustive enumeration approach to the discretized space 

Let us start by a pooling problem involving two qualities. A graphical technique is 

proposed to reduce these variable amounts. This technique is discussed using the 

following example. Consider a pooling problem with research octane number (RON) 

and sulfur content as the two primary qualities. If the search space for qualities is 

discretized in an exhaustive enumeration manner, then the number of discretized pools 

will correspond to the number of all possible quality combinations. The range of RON is 

[82, 92] and for the sulfur content (expressed as %sulfur) is [1, 2]. The number of RON 

intervals is taken to be 40 and the number of the sulfur content is also taken to be 40. 

Therefore, the increments of 0.25 for RON and 0.025 for sulfur content percentage are 

used. hence, the discretized set of RON {82.00; 82.25; …; 92.00} has 41 components 

and that of sulfur concentration, {1; 1.025; 1.05; …; 1.975; 2} has 41 components. 

Using the exhaustive enumeration, we need 41x41 = 1,681 pools qualities of which are 

described in Table 4. Figure 6 is a schematic representation of the exhaustive 

enumeration of the discretized search space described by Table 4. 
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Table 4  Exhaustive enumeration approach to discretizing the motivating example 

 

 

RON 92

82

1.0 1.5 2.0

%S
 

Figure 6  Exhaustive enumeration of a discretized search space for pool qualities 

 

The problem formulation is given by: 

Maximize (10∑
=

1681

1j

1jY  + 15 ∑
=

1681

1j

2jY + 17∑
=

1681

1j

3jY ) – (7∑
=

1681

1j

j1X + 9∑
=

1681

1j

j2X + 6∑
=

1681

1j

j3X ) 

Available supply: ∑
=

1681

1j

j1X ≤ 100; ∑
=

1681

1j

j2X ≤ 200; ∑
=

1681

1j

j3X ≤ 100 



 

 

23 

Mass balance on pools: ∑∑
==

=
3

1k

jk

3

1i

ij YX  for j = 1,…,1,681 

Product demand: 100Y
1681

1j

1j ≤∑
=

; 100Y
1681

1j

2j ≤∑
=

; 200Y
1681

1j

3j ≤∑
=

 

Mixing rule for pools: RON  1

3

1

3

1

1, i

i

ij

i

ijj aXXb ⋅=⋅ ∑∑
==

 for j = 1,…,1,681 

Sulfur 2

3

1

3

1

2 i

i

ij

i

ijj aXXb ⋅=⋅ ∑∑
==

 for j = 1,…,1,681 

The values of ai1 and ai2 are given in Table 2. 

Number of used pools:  j

i

ij fX ⋅≤∑
=

400
3

1

 for j = 1,…, 1,681 

    2f
1681

1j

j ≤∑
=

 

Mixing rule for products:  RON  1j

1681

1j

jk

1681

1j

jk1k bYYc ⋅≤⋅ ∑∑
==

 for k = 1,…,3 

Sulfur 2j

1681

1j

jk

1681

1j

jk2k bYYc ⋅≥⋅ ∑∑
==

 for k = 1,…,3 

where 1jb  and 2jb  are defined as in Table 4 

The model is formulated in LINGO software (see Appendix B6). Calculation on 

Optiplex GX 620 personal computer gives the results that pool 116 and 689 are used 

with the qualities (83.25; 1.5) and (90; 1.8) respectively. A global optimum of 2,425 is 

found in a runtime of 1,235 seconds. 

According to the foregoing exhaustive enumeration of the discretized qualities, 11,767 

variables and 6,738 constraints are included in the formulation. The question is whether 

physical insights be used to reduce the number of variables and constraints. The answer 

is yes and will be detailed in the following section. 
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New discretization approach using the quality diagram (attainable regions) 

Consider the q
th

 quality, for which the set of qualities for the sources is given by: 

Set_Quality_Sourcesq = {a1q, a2q, …,aiq,…,alq}. In order to reduce the size of the search 

space of the discretized qualities for the pool, it is proposed to use physical insights from 

mixing rules. The key idea is that the quality of any pool composed by mixing several 

sources will be enclosed in the convex hull constructed by the convex combination of 

the qualities of the individual sources.   i.e. 

},__|{

1

1 ∑
∑

=

=

=∈⋅=∈
l

i

ij

ij

ijqiqiq

l

i

ijConvexjq

X

X
xSourcesQualitySetaaxHb   

To illustrate this concept graphically, consider the case of the three sources and two 

qualities (RON and sulfur content) whose data are given in Table 2.  The three sources 

are represented by S1, S2, S3 and the discretized pools are shown as dots. Figure 7 

illustrates the convex hull (triangle) constructed from the three sources. This convex hull 

is referred to as the attainable region for the pool.  

 

RON 92

82

1.0 1.5 2.0
%S

S1
S3

S2 Attainable
Region of

the Pool
(triangle S1S2S3)

 

Figure 7  Attainable region (convex hull) of the pool qualities for two qualities 
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Therefore, for given qualities of sources S1, S2 and S3 any possible blend will lie within 

the attainable region characterized by the triangle S1S2S3. Indeed, it is unnecessary to 

search for the pool qualities outside this convex hull. The construction of the convex hull 

as the search space for the pool qualities leads to significant reduction in the size of the 

search space. In this example, the ratio of triangle S1S2S3 area and the rectangular area 

for exhaustive enumeration is 0.25. In other words, equivalently, the convex hull 

includes 420 discretized pools compared to 1681 discretized pools in the case of 

exhaustive enumeration. This leads to a 75% reduction in the search space for the 

qualities of the pools. 

While the construction of the convex hull with its enclosed points is relatively simple for 

the case of two qualities and three sources, it is more challenging for higher orders.  

There are several algorithms for determination of convex hulls and enclosed points (see 

section 4.3 for a discussion). The next section provides useful mathematical approaches 

to constructing the convex hull with its enclosed points based on implicit enumeration of 

qualities using flow rates. 

3.3 Implicit enumeration of discretized qualities  bj’s using flow rate proportion 

This section introduces a preprocessing step to enumerate the discretized pool qualities 

bj’s within the convex hull of the attainable region of the pools. For those pools inside 

the convex hulls, the pool qualities relate to the source qualities by the mixing rule 

constraints: iq

l

i

ij

l

i

ijjq aXXb ⋅=⋅ ∑∑
== 11

. 

Divide both sides of this equation by ∑
=

l

i

ijX
1

and say

∑
=

=
l

i

ij

ij

ij

X

X
x

1

, we have: 

iq

l

i

ijjq axb ⋅=∑
=1

 where xij’s are the flow rate proportion from source i to pool j 

and 1
1

=∑
=

l

i

ijx . This is a convex hull condition. 
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One way of enumerating the bjq points within the convex hull is to discretize the values 

of xij within the interval [0, 1] While satisfying the condition of and 1
1

=∑
=

l

i

ijx .  Therefore, 

the values of the discretized xij’s cannot be randomly selected. In each set of 

discretization, they must add up to 1. 

The following section describes a systematic way for enumerating the xij’s while 

maintaining the unit summation condition. It is worth noting that the more number of the 

sources, the more complicated the discretization scheme of xij’s. We start with the 

simplest case in which only 2 sources are investigated. 

For two sources: 

Consider the following: 

 Pool index: j 

 x1j = (j – 1)/t 

 x2j = 1 – x1j = 1 - (j – 1)/t 

 bjq = a2q + a1q.(j – 1)/t    for q = 1,.., Nq. 

Let j run from 1 to (t+1). The total number of discretized pools is simply (t+1). 

For example, when t = 5 then the interval width ∆xij = 1/t = 0.2. Table 5 shows the 

calculation. 
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Table 5  An example of implicit enumeration for 2 sources 

 

For three sources: 

For two or more sources, the condition 1
1

=∑
=

l

i

ijx  must be satisfied while discretizing. 

This constraint reduces the discretized space from the large hyper rectangle to the much 

smaller convex hull of the sources, but makes difficult to calculate the total number of 

discretized pools as well as to program the pool index in some programming languages. 

In the exhaustive enumeration over a hyper rectangle gives a total of (t+1)
Nq

 discretized 

pools, i.e. proportional to a power of Nq. We will calculate the number of discretized 

pools in the convex hull and see the improvement. 

For three sources, enumeration of xij’s is 

 x1j = (u – 1)/t  for u = 1,…, (t+1) 

 x2j = (v – 1)/t  for v = 1,…, (t+2-u) 

 x3j = 1 – x1j – x2j = 1 - (u + v – 2)/t 
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The index v runs from 1 to (t+2-u), depending on the value of the index u in the outer loop. 

When u = 1, the value of v runs from 1 to (t+1). That means the number of discretized 

pools in this loop is (t+1), the same to that of the 2 source discretization. The pool index 

j equals to v. 

When u = 2, the index v runs from 1 to t in order to satisfy the constraints 1
1

=∑
=

l

i

ijx . In 

other words, the point representing the pool with u = 1 and v = t+1 (i.e. x1j = 1/t, x2j = 1, 

x3j arbitrary) is outside the convex hull of the 3 sources in the quality space. The pool 

index is j = v + t + 1 due to addition of (t+1) pools as u = 1. 

Similarly for the next step of u, the pool index is equal to  

 (u -1)(t + 1) – [1 + 2 + … + (u – 2)] + v for u = 2,…, (t+1) 

where the first two groups account for cumulative number of pools in the previous loop 

of u. It can be rewritten as 

 (u -1)(t + 1) – (u – 2)(u – 1)/2 + v  for u = 1,…, (t+1) 

and now  also true for the case u = 1. 

The total number of discretized pools is (t + 1) + t + … + 2 + 1 = (t + 1).(t + 2)/2. Each 

term in the left hand side of this equation is the number of pools in each loop of u, 

starting from 1 to (t+1). Equivalently, it is the last pool index. 

Revisit the example of pooling problem in the previous section, the mixing rule 

constraints for the RON and sulfur properties are respectively: 

829282 3211

3

1

1 ⋅+⋅+⋅=⋅=∑
=

jjji

i

ijj xxxaxb   

5.121 3212

3

1

2 ⋅+⋅+⋅=⋅=∑
=

jjji

i

ijj xxxaxb  . 
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Note that the xij’s are identical for both sets of constraints. 

In the quality diagram, the discretized pools represented by dots in Figure 8  are inside 

the convex hull of the 3 sources. The convex hull – triangle S1S2S3 – is smaller than the 

hyper rectangle in Figure 7. 

 

Figure 8  Convex hull  discretizing space in quality diagram 

An increment of 0.025 for xij is chosen, there are (1-0)/0.025 = 40 intervals, the values of 

bjq’s are then discretized and assigned for (40+1).(40+2)/2 = 861 pools as in Table 6. 

Table 6  An example of implicit  discretization for three sources 
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In LINGO, this formulation has 6,027 variables and 3,458 constraints (see Appendix 

B7). With a runtime of 542 seconds, a global optimum of 2,425 is found as pool 41 (92; 

2.0) and pool 512 (82.25; 1.325) are used. 

In the exhaustive discretization approach, only around 420 pools out of the listed 1,681 

pools are inside the triangle S1S2S3 and they are promising candidates for the solution. 

Meanwhile, this implicit enumeration gives 861 discretized pools, all inside the convex 

hull triangle. The number of promising candidates increases but the total number of 

variables and constraints deceases.  

For four sources 

The discretization procedure needs one more loop: 

 x1j = (u – 1)/t  for u = 1,…, (t+1) 

 x2j = (v – 1)/t  for v = 1,…, (t+2-u) 

 x3j = (r -1)/t  for r = 1,…, (t+3-v) 

 x4j = 1 – x1j – x2j – x3j = 1 - (u + v + r – 3)/t 

In each loop of u (each value of x1j), the amount of pools results from the discretization 

of flow rate portions of three sources. Therefore, it is (t+1)(t+2)/2 for the first loop and 

t(t+1)/2 for the second loop (because the number of intervals decreases by 1 to satisfy 

1
1

=∑
=

l

i

ijx ) and so on. 

The total number of discretized pools is 

 (t + 2).(t + 1)/2 + (t + 1).t/2 + … + (3).(2)/2 + (2).(1)/2 

or  (t + 1).(t + 2).(t + 3)/6 
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The pool index is  

(t+1).(t+2).(t+3)/6-(t-u+1).(t-u+2).(t-u+3)/6-(t+1).(t+2)/2+(v-1).(t-u+1)-(v-1).(v-2)/2+r 

This complicated pool index needs sufficient effort to be derived for programming with 

FOR loop in LINGO 10 or older. In other programming software, there is a simple trick 

to deal with the pool indices in which j is added by 1 in each step of r in the appropriate 

loop command, e.g. WHILE, DO, REPEAT etc. 

For l sources 

In general, if there are l sources and t intervals are chosen to discretize, the total number 

of discretized pools is given by 

!)!.1(

)!1(

)1...(3.2.1

)1)...(2).(1(

tl

lt

l

lttt

−

−+
=

−

−+++
  which is not dependent on the number of qualities. 

The discretization of bj’s which is considered as a preprocessing step has been 

performed. These discretized values are the input data and play a role of parameters in 

the formulation (P’). 

3.4 Implemented formulation for implicit enumeration of quality discretization for 

the pools 

This part provides an implementation on the formulation using the same implicit 

discretization approach described earlier. The implementation reduces the number of 

variables and constraints in the formulation without compromising the optimization results. 

In the proposed implicit enumeration approach, the values of bj’s are calculated from 

iq

l

i

ijjq axb ⋅=∑
=1

where aiq’s are known parameters and xij’s are discretized on the range 

[0, 1]. As shown, this set of equalities is actually another form of the mixing rule 

constraints for the pools.  Hence, when the values of xij’s associating with bj’s are stored 
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in the preprocessing step and supplied as input data for the formulation, all the terms in 

the mixing rule equations are known and can be moved from the formulation to the 

preprocessing discretization step. xij’s can substitute Xij’s to refer the flow rates from 

each source to pools. Those flow rates are the multiplication products between the 

fractional flow rates xij’s and the total flow rate through pool j, say Zj. Therefore, Xij’s 

are removed from the formulation, leaving Yjk’s and Zj as the decision variables. 

This implementation takes l.(t+1)
Nq

 variables Xij’s and (t+1)
Nq

 constraints on mixing rule 

for pools off, and introduces (t+1)
Nq

 variable Zj’s and l.(t+1)
Nq

 parameter xij’s to the 

formulation. The constraints and unknown terms are sufficiently reduced. 

The formulation is given by: 

Objective function:  )]([
1111

j

M

j

ij

l

i

i

M

j

jk

n

k

k ZxCYP ⋅−⋅ ∑∑∑∑
====

 is maximized 

Available supply:   ∑
=

⋅
M

j

jij Zx
1

≤ Si  for i = 1,…,l 

Mass balance on pools:  ∑
=

=
n

k

jkj YZ
1

 for j = 1,…,M 

Product demand:   k

M

j

jk DY ≤∑
=1

  for k = 1,…,n       (P’)  

Number of pools:  fj = {0, 1}  for j = 1,…,M 

jZ  ≤ Uj.fj   for j = 1,…,M 

mf
M

j

j ≤∑
=1

 

Mixing rule for products: jq

l

i

jk

l

i

jkkq bYYc ⋅≥⋅ ∑∑
== 11

 for k = 1,…,n 

Positive variables:  0≥jZ , 0≥jkY  for i = 1,…,l 

             j = 1,…,m 

            k = 1,…,n 

where bjq’s and xij’s are known parameters defined in the section 4.3. 
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By discarding the mixing rule constraints in the formulation (but discretization is based 

on those constraints), is there anything missing? To answer this question, consider the 

following case shown by Figure 9. 

 

Figure 9  Attainable region for four sources 

From Figure 8, it can be seen that a discretized quality may result from more than one 

flow fraction discretization. For instance, the pool represented by the point at S4 can be 

obtained from source S4 only or from a certain combination of S1, S2 and S3. 

This non-uniqueness in discretization leads to redundancy which may be avoided if we 

realize that S4 is inside the convex hull of the sources; therefore is not a component of 

the convex hull boundary. So we discretize on the set of three sources S1, S2 and S3 only, 

i.e. considering flow rate fraction of S4 as zero when discretizing.  

If the constraints on the mixing rules are removed, something is missing. Since the 

fractional flow rate from S4 is zero as discretizing, it is always stored as zero in 

formulation input data. The solver is then not allowed to use S4. This may mislead the 

solution when the cost of S4 is cheaper. 

If the constraints on the mixing rules are still kept in the formulation and discretized 

values of xij’s are not stored, nothing is missed. The qualities are discretized without 
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records of associated flow rate fractions. Then the solver is free to calculate the optimum 

flow rate (or flow rate fraction), i.e. the feasible region covers both duplicated 

discretizations. 

For the above-stated reasons, we should keep all the sources to discretize flow rate 

fractions xij’s if the constraints on the mixing rules are moved to the preprocessing step. 

The implemented formulation of the example is reported in Appendix B8. Calculation 

runtime is improved (i.e. deceased) and shown in Figure 24. 

3.5 Comparison of  two discretization approaches 

For discretizing bjq’s, the number of discretized pools as well as reformulation size 

mostly depends on the number of investigated qualities. This approach favors pooling 

problems with only one quality. For problems with many qualities, the reformulated 

problem may be large enough to overwhelm the capacity memory of linear programming 

software. 

For discretizing bjq’s by implicitly enumerating xij’s, the discretizing space is the convex 

hull of sources, which is smaller than the hyper rectangle in the quality space. Although 

the approach is applicable for pooling problems with one quality, it does not reduce the 

discretizing space, even may lead to the case that some pools have a same quality. The 

amount of discretized pools drastically increases when the number of sources increases 

and does not depend on the number of qualities. 

Given a pooling problem, the latter approach produces a reformulation with a much 

smaller number of pools as well as the formulation size. However, it takes sufficient 

efforts in programming to relate to pool index j to assigned values of xij’s when dealing 

with many qualities in LINGO language. 
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3.6 Distinction from discretization in piecewise linear RLT 

Meyer and Floudas 
2
 proposed the use of discretizing the quality space in solving 

pooling problems using reformulation linear transformation (RLT). It is important to 

distinguish the RLT approach from the new discretization approach proposed in this 

work. As discussed in the Literature Review section, Meyer and Floudas 
2
 proposed a 

piecewise linear reformulation based on the RLT technique to solve the superstructure 

model of generalized pooling problems. Before the RLT is applied, the continuous space 

of each quality is partitioned into many subintervals that are placed between discretized 

points. Some binary variables are introduced along with integer-cut constraints to 

indicate which interval includes the optimum quality. Then, RLT is used with a note that 

the mixing rule constraints are excluded from the reformulation step but included in the 

linearization step. 

Meyer and Floudas’ discretization of quality space augments the upper bound on the 

global maximum of the original problem. Therefore, the calculation time is reduced 

despite the addition of variables. This contribution is depicted in Figure 10. 

 

Figure 10  Piecewise linearization vs. regular linearization of RLT 

Assume that the curve of bilinear term q.c is represented as the bottom curve. The 

linearization step of Sherali’s 
21

 RLT replaces q.c by new variable w. This means that the 

curve q.c is substituted by a straight line for the whole investigated range. Meyer and 
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Floudas 
2
 proposed a new way of linearization. The curve q.c is replaced by many 

connected line segments wk’s which are closer to q.c curve than the line w in the former 

approach. This is called piecewise linear relaxation. To obtain this piecewise function, 

Meyer and Floudas 
2
 discretized the q domain and investigated the subintervals between 

those discretized points. 

The global optimum of the relaxed problem provides an upper bound on the original 

problem. But the found solution could or could not be a feasible solution for the original 

problem, i.e. it does not guarantee one can find a set of quality and flow rate values 

associating to the optimum of the objective function. Meanwhile, the discretization 

approach in this research gives a lower bound along with the blending strategy in perfect 

mass balance. Figure 11 shows the difference between the outcomes of the two 

approaches. This is the first difference between the two approaches. 

 

Figure 11  Comparison of optima for the two discretization approaches 

 

The RLT approach of Meyer and Floudas 
2
 does not produce a lower bound. The authors 

suggested a way to verify the ε-global optimum by performing a series of runs in which 

the quality partition scheme is restructured after each run. But the authors did not 

demonstrate this algorithm in the example of a large scale industrial problem. Instead, 



 

 

37 

the lower bound was found by using DICOPT. The approach can reduce the gap between 

the lower and upper bound of the example to 1.2%.  

Another distinction between the two approaches is that Meyer and Floudas 
2
 discretized 

the hyper-rectangle space of qualities. This approach is in the same manner to the 

exhaustive enumeration discretization described earlier in this research. As has been 

discussed previously, this work has introduced the concept of implicit enumeration of 

the discretized qualities within the convex hull (attainable region). This approach 

typically results in much smaller linearized problems.  
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CHAPTER IV 

METHODOLOGY 

 

4.1 Discretization approach in optimization 

Discretization is a useful way of transforming optimization problems with infinite search 

points (over a continuous space) to a search space with finite points (over a discrete 

space). Discretization may be conducted to fix values of complicating variables in a way 

that transforms a nonlinear program to a linear program which is amenable to global 

solution. With sufficient discretization, the global optimum of the discretized problem 

can approximate (or coincide with) the true global optimum of the original problem. 

Hence, a discretization approach is intended to give an ε- global optimum.  

In order to reduce the mismatch between the two optima, discretization schemes should 

be fine-enough to approximate the true solution. However, increased discretization 

yields problem sizes that increase dramatically, resulting in increased computational cost 

(time). This trade-off needs to be carefully balanced so that the practically acceptable 

tolerance is found in a reasonable computational time. 

Another way to reduce the tolerance is to solve the problems in series of runs. The first 

run is for raw discretization. The next run uses updated input data which are finer 

discretization around the optimum point from the previous step and so on. 

Due to highly computational time (or solution error), discretization approach has not 

been widely applied. However, it is hoped that the results of this research show that the 

application to the pooling problems gives optima with acceptable tolerance and runtime. 
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4.2 Mixed integer linear programs 

A mixed integer linear program (MILP) is a mathematical program of optimization 

problems in which the objective function and constraints are linear and with some of the 

variables taking on integer values while other variables are continuous. As stated by 

Kallrath, 
22

 there are often many ways to formulate an MILP and which way to choose 

should be carefully considered because the computational costs may vary, which is a 

well-known characteristic of MILPs. To transform a nonlinear program into MILP 

problems, the following techniques are usually applied: 

- Binary variables are used to formulate logical conditions and disjunctive 

constraints. 

- Binary variables can be also introduced to formulations to represent bounds and 

signify the values of semi-continuous variables defined as {x | x = 0 or lower < x 

< upper}. The reformulated model is lower*f < x < upper*f and f = {0, 1} that is 

appropriate to branch and bound framework. 

- When piecewise linear functions are present, special ordered set is a good choice 

to model them. There are two types of special ordered sets. In type 1, only one 

variable is non-zero. For instance, a problem is to choose one of mutually 

exhaustive alternatives. In type 2, there are not more than 2 variables in the set 

may be non-zero. Approximate linearization of nonlinear function is often done 

using special ordered set type 2. 

There have been many algorithms developed to solve MILPs. These include cutting 

planes, branch and cut, dynamic programming, decomposition, logic-based methods and 

the widely used branch and bound approach which is discussed in details below. 
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4.3 Convex hull algorithm 

Given is a set of discrete points. The convex hull of a set is the smallest polytope 

containing all points in the set. 

Algorithms to determine the convex hull is a field of geometrical mathematics. There 

have been many algorithms, shown in Table 7 (Sunday 
23

). In this table, n is the number 

of points and h is the number of vertices on the convex hull. Among these algorithms, 

Graham Scan and Divide-and-Conquer are the most popular ones. 

Table 7 Convex hull algorithms (Sunday 
23

) 

Algorithm Speed 

Brute Force O(n
4
) 

Gift Wrapping O(nh) 

Graham Scan O(n log n) 

Jarvis March O(nh) 

QuickHull O(nh) 

Divide-and-Conquer O(n log n) 

Monotone Chain O(n log n) 

Incremental O(n log n) 

Marriage-before-Conquest O(n log h) 

These convex hull determining procedures can be integrated with the proposed 

exhaustive discretization approach in order to eliminated useless discretized pools, 

which reduces the problem size. 

However, the implicit discretization approach needs not use those algorithms. The 

equalities iq

l

i

ijjq axb ⋅=∑
=1

 are a form of convex hull condition. These constraints 

guarantee that the discretized pools are only inside the convex hull of sources in the 

quality diagram. 
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4.4 Branch and bound approach 

The branch and bound approach is a common (but not the only) procedure to solve 

discrete and combinatorial optimization problems. 

According to Murty, 
24

 the main difficulty for solving discrete optimization and 

combinatorial optimization problems is that there has not been a global optimality 

condition to check whether a feasible solution is optimal or not. Instead, a systematic 

way is to enumerate all of the feasible solutions and then choose the best. However, this 

approach is only applicable to small problems. For large enough problems, even the 

fastest computer can not handle the huge amount of calculation for this total 

enumeration. Unfortunately, practical optimization problems are usually in this large 

size. Another better approach is to partially enumerate the feasible solutions so that 

computational cost is affordable and optimality is guaranteed. Branch and bound is such 

an approach. 

The branch and bound approach was first published in the beginning of the 1960s, as a 

result of two independent contributions of Land and Doig, 
25

 which is focused on general 

discrete optimization problem, and Murty 
24

 on a specific type of discrete optimization 

problems. 

The approach name itself implies the solution procedure. From a feasible heuristic 

solution (a root node), branching on the feasible regions results in a set of subproblems 

looked like a tree, nodes of which are subproblems. But, branching a set of nodes until 

the ending node is not necessary if we check and see the best optimal in the descent 

nodes can not be better than a known optimal which is called bound. When we have 

many branches pruned like this, the enumerating load is sufficiently reduced. 

Because we safely stop branching at the nodes, the branch and bound approach is still an 

exactly global optimization procedure despite of partial enumeration. 



 

 

42 

Certainly, we prefer to prune off as many branches as possible. Nevertheless, it highly 

depends on the data as well as how to branch and bound. A specific way of branch and 

bound is referred as an algorithm. A branch and bound algorithm, therefore, may be 

suitable for a set of data but poorly behaves to other data or problems. There is no 

unique branch and bound algorithm that is good for every discrete or combinatorial 

optimization problem. 

A good branch and bound algorithm is the one that gives an optimum tight bound. The 

bound should not be too tight or too loose. If the bound is loose, many nodes need to be 

calculated, leading to expensive calculation cost. On the other hand, a highly tight bound 

is a result of more calculation effort at each node and it may exceed the benefit from 

reducing node amount.  

Many branch and bound algorithms become more effective when integrated with other 

techniques, such as Lagrangian, Reformulation-Linearization Technique as discussed in 

Chapter III - Literature Review. 
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CHAPTER V 

A SELECTION OF PUBLISHED POOLING PROBLEMS 

 

The application of the discretization approach will be demonstrated using some 

published pooling problems. These include Haverly’s (3 problems), Ben-Tal’s (2 

problems), Foulds’ (4 problems) and Adhya’s (4 problems).  

Figure 12 and Table 8 show the input data for Haverly’s 
3
 pooling problems, the first 

published and simplest series with only a one actual pool and one quality. to the 

problems referred to as Haverly 1 and Haverly 2 have the updated first product demand 

and Haverly 3 has the adjusted cost of the second source. Other parameters are identical 

in the three problems. 

 

Figure 12  Haverly’s 
3
 pooling problems 

Table 8  Haverly’s 
3
 pooling problems 

Pooling problem Haverly 1 Haverly 2 Haverly 3 

Source 1 (cost; quality) (6;3) (6;3) (6;3) 

Source 2 (cost; quality) (16;1) (16;1) (13;1) 

Source 3 (cost; quality) (10;2) (10;2) (10;2) 

Product 1 (price; demand; max quality) (9;100;2.5) (9;600;2.5) (9;100;2.5) 

Product 2 (price; demand; max quality) (15;200;1.5) (15;200;1.5) (15;200;1.5) 
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Figure 13  Foulds 2 pooling problem (Foulds 
12

) 

Table 9  Foulds 3 pooling problem (Foulds 
12

) 

 

Pool Source Cost (Ci) Quality (ai) Product Price (Pk) Min quality (ck) 

1 1 20 1.0 1 20.0 1.05 
 2 19 1.1 2 19.5 1.10 
 3 18 1.2 3 19.0 1.15 
 4 17 1.3 4 18.5 1.20 

2 2 19 1.1 5 18.0 1.25 
 3 18 1.2 6 17.5 1.30 
 4 17 1.3 7 17.0 1.35 
 5 16 1.4 8 16.5 1.40 

3 3 18 1.2 9 16.0 1.45 
 4 17 1.3 10 15.5 1.50 
 5 16 1.4 11 15.0 1.55 
 6 15 1.5 12 14.5 1.60 

4 4 17 1.3 13 14.0 1.65 
 5 16 1.4 14 13.5 1.70 
 6 15 1.5 15 13.0 1.75 
 7 14 1.6 16 12.5 1.80 

5 5 16 1.4    
 6 15 1.5    
 7 14 1.6    
 8 13 1.7    

6 6 15 1.5    
 7 14 1.6    
 8 13 1.7    
 9 12 1.8    

7 7 14 1.6    
 8 13 1.7    
 9 12 1.8    
 10 11 1.9    

8 8 13 1.7    
 9 12 1.8    
 10 11 1.9    
 11 10 2.0    
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Foulds et al. 
12

 developed a pooling problem (referred to as Foulds 2 in Figure 13) from 

Haverly’s problem and generated three larger problems. Due to the complexity of the 

jumble diagrams, Foulds 3, Foulds 4 and Foulds 5 examples are only presented in table 

forms (Table 9, Table 10 and Table 11.) For these problems, each of the pools is blended 

from some selective sources and may be mixed in any product. 

Table 10  Foulds 4 pooling problem (Foulds 
12

) 

Pool Source Cost (Ci) Quality (ai) Product Price (Pk) Min quality (ck) Demand (Dk) 

1 1 20 1.0 1 20.0 1.05 1 
 4 17 1.3 2 19.5 1.10 1 
 7 14 1.6 3 19.0 1.15 1 
 10 11 1.9 4 18.5 1.20 1 

2 2 19 1.1 5 18.0 1.25 1 
 5 16 1.4 6 17.5 1.30 1 
 8 13 1.7 7 17.0 1.35 1 
 11 10 2.0 8 16.5 1.40 1 

3 3 18 1.2 9 16.0 1.45 1 
 2 19 1.1 10 15.5 1.50 1 
 5 16 1.4 11 15.0 1.55 1 
 6 15 1.5 12 14.5 1.60 1 

4 4 17 1.3 13 14.0 1.65 1 
 3 18 1.2 14 13.5 1.70 1 
 6 15 1.5 15 13.0 1.75 1 
 7 14 1.6 16 12.5 1.80 1 

5 5 16 1.4     
 6 15 1.5     
 3 18 1.2     
 8 13 1.7     

6 6 15 1.5     
 7 14 1.6     
 4 17 1.3     
 9 12 1.8     

7 7 14 1.6     
 8 13 1.7     
 9 12 1.8     
 4 17 1.3     

8 8 13 1.7     
 9 12 1.8     
 10 11 1.9     
 5 16 1.4     
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Table 11  Foulds 5 pooling problem (Foulds 

12
) 

Pool Source Cost (Ci) Quality (ai) Product Price (Pk) Min quality (ck) 

1 1 20 1.0 1 20.0 1.05 
 2 19 1.1 2 19.5 1.10 
 3 18 1.2 3 19.0 1.15 
 4 17 1.3 4 18.5 1.20 
 8 13 1.7 5 18.0 1.25 
 9 12 1.8 6 17.5 1.30 
 10 11 1.9 7 17.0 1.35 
 11 10 2.0 8 16.5 1.40 

2 2 19 1.1 9 16.0 1.45 
 3 18 1.2 10 15.5 1.50 
 4 17 1.3 11 15.0 1.55 
 5 16 1.4 12 14.5 1.60 
 7 14 1.6 13 14.0 1.65 
 8 13 1.7 14 13.5 1.70 
 9 12 1.8 15 13.0 1.75 
 10 11 1.9 16 12.5 1.80 

3 4 17 1.3    
 5 16 1.4    
 6 15 1.5    
 7 14 1.6    
 8 13 1.7    
 9 12 1.8    
 10 11 1.9    
 11 10 2.0    

4 1 20 1.0    
 2 19 1.1    
 3 18 1.2    
 4 17 1.3    
 5 16 1.4    
 6 15 1.5    
 7 14 1.6    
 8 13 1.7    

Ben-Tal et al. 
16

 proposed two pooling problems by introducing one more source with a 

constraint on its capacity (problem Ben-Tal 4 in Figure 14) to Haverly’s example or 

developed a larger problems with additional 3 sources, 2 pools and 3 products (Ben-Tal 

5 in Figure 15). 
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Figure 14  Ben-Tal 4 pooling problem (Ben-Tal et al. 
16

) 

 
Figure 15  Ben-Tal 5 pooling problem (Ben-Tal et al. 

16
) 

Haverly, Foulds and Ben-Tal’s pooling problems may be referred as small problems for 

dealing with only one or two qualities. Meanwhile, the Adhya’s examples with many 

investigated qualities are larger in size. These problems’ data are presented in Figure 16, 

Figure 17, Figure 18 and Figure 19. 
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Figure 16  Adhya 1 pooling problem (Adhya et al. 
18

) 

 
Figure 17  Adhya 2 pooling problem (Adhya et al. 

18
) 

1

2

3

1

Sources Pools Products

(Ci; ai,1; ai,2; ai,3; ai,4; ai,5; ai,6) (Pk; Dk; ck,1; ck,2; ck,3; ck,4; ck,5; ck,6)

24

5

(7; 1; 6; 4; 0.5; 5; 9)

(3; 4; 1; 3; 2; 4; 4)

(2; 4; 5.5; 3; 0.9; 7; 10)

(10; 3; 3; 3; 1; 3; 4)

(5; 1; 2.7; 4; 1.6; 3; 7)

(16; 10; 3; 3; 3.25; 0.75; 6; 5)

(25; 25; 4; 2.5; 3.5; 1.5; 7; 6)

(15; 30; 1.5; 5.5; 3.9; 0.8; 7; 6)

(10; 10; 3; 4; 4; 1.8; 6; 6)

1

2

3

4

6

37

8

(2; 4; 5.5; 3; 0.9; 7; 10)

(10; 3; 3; 3; 1; 3; 4)

(5; 1; 2.7; 4; 1.6; 3; 7)

 

Figure 18  Adhya 3 pooling problem (Adhya et al. 
18

) 
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Figure 19  Adhya 4 pooling problem (Adhya et al. 
18

) 
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CHAPTER VI 

RESULTS AND DISCUSSION 

 

In this chapter, the test problems described in Chapter V are solved using the proposed 

new approach. As mentioned earlier, the new approach transforms the nonlinear pooling 

formulation to an MILP. The resulting MILP is solved using the commercial 

optimization software LINGO 
26

 developed by of LINDO Systems. The programs are 

solved using a personal computer Dell Optiplex GX 620 with the processor Pentium 4 

3.6Ghz and a RAM of 1 Gb. The new version of LINGO (version 10) has a global solver 

tool for NLP problems. This option will also be used to solve the same test problems to 

compare with the solution results and characteristics of the proposed approach.  

For each test problem, several runs are made to account for the effect of increasing the 

number of intervals on the quality and computation time of the solution. A series of runs 

are made such that the number of intervals in each run is taken as double the number of 

intervals in the previous run. Consequently, all discretized points one run are kept in the 

subsequent run. 

The results are grouped according to four categories: results for problems with one 

quality, two qualities, more than two qualities, and results using the global solver tool of 

LINGO. 

6.1 All global optimum found in one-quality problems 

Among the investigated pooling problems, there are those with one quality such as 

Haverly’s (3 problems), Foulds’ (4 problems) and Ben-Tal 4. As discussed in Section 

4.5, for problems with one quality, it is preferable to use the exhaustive enumeration 

approach. The codes are presented in Appendix A.  The calculation results (run time and 

deviation from global solution) are shown by Figure 20 - 21. 
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(c) 

Figure 20  Results on Haverly’s problems with exhaustive enumeration of discretization 

(a) Haverly 1, (b) Haverly 2, (c) Haverly 3 



 

 

52 

 

As can be seen from the results, all three problems were solved globally using the new 

discretization approach. It is worth noting that as the number of intervals is doubled, the 

computational time increases and the results constitute a series of non-inferior solutions 

(improving or staying the same).  
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(b) 

Figure 21  Results on Foulds’ problems with implicit enumeration of discretization 

  (a) Foulds 2, (b) Foulds 3, (c) Foulds 4, (d) Foulds 5 
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(d) 

Figure 21 Continued 

The runtime curve in Figure 22 for problem Ben-Tal 4 is a typical runtime curve of 

discretization approach. The curve is not linear and its slope increases quickly as the 

discretized points are fine enough. 
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Figure 22  Result on problem Ben-Tal 4 with exhaustive discretization 

6.2 Enhancing the performance with implicit enumeration for discretization 

The two-quality pooling problems, Ben-Tal 5 and the motivating example (described in 

section 3.1), are investigated to see the calculation results using different discretization 

and formulation approaches: 

- Scenario 1: Exhaustive enumeration for discretization. 

- Scenario 2: Implicit enumeration for discretization with mixing rule constraints. 

- Scenario 3: Implicit enumeration for discretization without mixing rule constraints. 

The codes are reported in Appendix B. The calculation results are presented in Figure 23 

and Figure 24. For problem Ben-Tal 5, since the number of discretized pools increases 

quickly as the number of intervals doubles, an axis of logarithmic scale is used. As for 

the example, because the global optimum has not been proven, the axis of found 

optimum instead of error is used. The found optima from scenarios 2 and 3 are the same 

because the preprocessing discretization steps are identical. 

From the results, it is shown that discretization via the implicit enumeration approach is 

more advantageous than the exhaustive enumeration approach for discretization. With 

the same number of discretized pools, the former gives better solutions and requires less 

runtime for calculations. 
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Figure 23  Results on problem Ben-Tal 5 with various approaches 
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Figure 24  Results on the example problem with various approaches 

(a) Exhaustive and implicit enumeration 

(b) Implicit enumeration and its implemented formulation 
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Figure 24 Continued 

Between the two implicit enumeration discretization approaches, there is no clear 

improvement of the formulation without the mixing constraints over the one with those 

constraints. However, the improvement will become more observable for pooling 

problems with more-than-two qualities, as in the results of solving Adhya’s pooling 

problems in the following section. 

6.3 Results of implicit enumeration for discretization of pooling problems with 

multiple qualities 

In this section, two sets of scenarios are carried out: 

- Scenario 1: Implicit enumeration for discretization with mixing rule constraints. 

- Scenario 2: Implicit enumeration for discretization without mixing rule constraints. 
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Figure 25  Results on problem Adhya 1 with two formulations 
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Figure 26  Results on problem Adhya 2 with two formulations 

The results are shown in Figure 25, Figure 26, Figure 27 and Figure 28. Again, the found 

optima and the numbers of discretized pools are the same because of identical 

discretized points. The difference is with or without the mixing rule constraints, resulting 

in the different number of variables and constraints that the solver has to deal with. 

Therefore, the runtimes become a key factor in analyzing the results. 

The Adhya’s pooling problems have 4 or 6 qualities. If the exhaustive enumeration  

approach is applied, a linear formulation of a huge size is derived. The number of 

variables may be up to millions, which may exceed the capabilities of the solver.  
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Figure 27  Results on problem Adhya 3 with two formulations 
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Figure 28  Results on problem Adhya 4 with two formulations 

The runtimes of scenario 2 are always less than the corresponding one of scenario 1. The 

larger the number of discretized pools, the better the improvement is. This outcome is 

observed in all Adhya’s problems. 

6.4 Comparison to the results using the Global Solver in LINGO 

The Global Solver is an add-on toolkit in LINGO. When the solver converges it provides 

a guaranteed global optimum through the technique of range bound and reduce 

embedded in the branch and bound method. The range bounding techniques, for 
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example, are interval analysis and convex analysis. One of the reduce techniques is 

linearization. 

All the investigated pooling problems are nonlinearly formulated without discretization 

and solved for the global optima. The formulations are in the appendices. Table 12 

shows the results from these runs. 

Table 12  Runs using Global Solver tool 

Pooling Problems Global optimum Runtime (s) 

Haverly 1 400 38 

Haverly 2 600 < 1 

Haverly 3 750 1 

Ben-Tal 4 450 1 

Adhya 1 549.803 196 

Adhya 2 549.803 193 

Adhya 3 561.045 6,446 

Adhya 4 877.646 143 

The exact global optima are found on these pooling problems within relatively short 

runtime.  

However, the Global Solver does not always perform well. In some tested pooling 

problems that are not reported in Table 12, Global Solver converges very slowly, 

resulting in much more expensive calculations than discretization does. 

Figure 28 depicts the calculation status with respect to the runtime when the LINGO 

Global Solver is used to solve Foulds’ pooling problems. One run is done for each 

problem. At certain runtimes of a run, the found objective bound (upper bound) and best 

objective (lower bound) are recorded. The true global optimum is somewhere between 

the two bounds. Therefore, the gap between bounds should be as small as possible. 
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(b) 

Figure 29  Calculations using Global Solver for Foulds’ pooling problems 

(a) problem Foulds 2; (b) Foulds 3, (c) Foulds 4 and (d) Foulds 5 
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Figure 29 Continued 
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In  

Figure 29, the top lines are the upper bounds; the bottom lines are lower bounds which 

are also the global optima in these cases. The best runs from the discretization approach 

are also plotted for comparison purposes. The results show that discretization approach 

finds the global optima of these problems in a very short runtime while the LINGO 

Global Solver needs much more runtime to locate the global optima. The same slow 

performance of Global Solver is also observed in solving problem Ben-Tal 5 and the 

example (Figure 30.). This discussion illustrates the merits of the new discretization 

approach. 
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Figure 30  Calculation using Global Solver for problem Ben-Tal 5 and the example 

  (a) problem Ben-Tal 5; (b) the example 
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Figure 30 Continued 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORK 

 

7.1 Conclusions 

This work has introduced a new approach for the global solution of pooling problems. 

The approach is based on discretization of the pooling qualities to eliminate the 

nonconvex bilinear terms. An integer cut is added to provide equivalence between the 

original problem with a given number of pools and the discretized problem with an 

exceeding number of pools. The result is an MILP which can be solved globally. In 

order to reduce the size of the search space, an implicit enumeration scheme is proposed 

using fractions of flow rates from sources to pools. A convex hull representation is 

adopted and an algorithm is proposed for enumerating the pool qualities enclosed in the 

attainable region of pool qualities. Both exhaustive and implicit enumeration techniques 

are compared. It is shown that for problems with more than one pooling quality, the 

implicit enumeration typically results in a significant reduction in the problem 

dimensionality. Several test problems have been examined. The results indicate that the 

new discretization approach is capable of attaining global or near-global solutions while 

maintaining efficient computing times. 

7.2 Recommendations for future work 

The devised approach can be extended to address the following cases: 

- Pooling problems with very large number of sources and qualities. It will be 

beneficial to identify the limits of the discretization approach and to add new 

elements to the procedure to overcome these limits.  

- Pooling problems which allow flows among the pools. In such cases, a 

superstructure will have to be developed to embed all configurations of interest. 
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Then, the mathematical formulation will be developed. The discretization 

approach developed in this work may be generalized to address the resulting 

mathematical formulation. 

- Pooling problems which are integrated with the rest of process optimization. In 

such cases, the exact values of the qualities of the process sources (intermediate 

streams) are not known. A decomposition approach may be used whereby 

process optimization is handled using process integration techniques while the 

pooling problem is handled through the approach developed in this work.  

- Synthesis of water networks where the bilinear terms (similar to the quality*flow 

rate) are encountered. 
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APPENDIX A 

LINGO CODES FOR ONE-QUALITY POOLING PROBLEMS 
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A 1 Haverly: Not linearized 

The following two models are written for the pooling problem Haverly 1. For codes of problem Haverly 2 and Haverly 3, 

update D(1) to 600 and Cost(2) to 13 respectively. 

SETS: 

 SOURCE /1..3/: a, Cost; 

 POOL /1..2/: b;  

 PROD /1..2/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

 

DATA: 

 Cost =  6, 16, 10; 

 a =  3,  1,  2; 

 P =  9, 15; 

 D = 100, 200; 

 c = 2.5, 1.5; 

ENDDATA 

 

! Profit is maximized; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance for pools; 

 X(1,1)=0; X(2,1)=0; 

 @FOR(POOL(j): @SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mixing rule for pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Constraints on product demands; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Mixing rule for products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

END 
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A 2 Haverly: Exhaustively discretized 
 

SETS: 

 SOURCE /1..3/: a, Cost; 

 POOL /1..22/: b, f; ! The number of pools is equal to t+2 (see below for t value); 

 PROD /1..2/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: 

 Cost =  6, 16, 10; 

 a =  3,  1,  2; 

 P =  9, 15; 

 D = 100, 200; 

 c = 2.5, 1.5; 

 t = 20; ! Number of discretized intervals; 

ENDDATA 

! Profit is maximized; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

! Mass balance for pools; 

 X(1,1)=0; X(2,1)=0; 

 @FOR(POOL(j): @SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k))); 

! Mixing rule for pools; 

 @FOR(POOL(j)|j#GE#2: @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

! Constraints on product demands; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

! Mixing rule for products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

! Discretize the qualities of the pools; 

 b(1) = a(3); ! Pool 1 is reserved for source 3; 

 @FOR(POOL(j)|j#GE#2: b(j) = 1 + (j-2)*(3-1)/t); 

! Use only 1 pool; 

 @FOR(POOL(j)|j#GE#2: 

   @BIN(f(j)); 

    @SUM(SOURCE(i):X(i,j)) <= @SUM(PROD(k):D(k))*f(j));    

 @SUM(POOL(j)|j#GE#2:f(j))<=1; 

END 
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A 3 Foulds 2: Not linearized 
 

SETS: 

 SOURCE /1..6/: a, Cost; 

 POOL /1..4/: b; 

 PROD /1..4/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: 

 a =  3, 1,  2, 3.5, 1.5, 2.5; 

 Cost = 6, 16, 10, 3, 13, 7; 

 P = 9, 15, 6, 12; 

 D = 100, 200, 100, 200; 

 c = 2.5, 1.5, 3, 2; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 X(3,1) = @SUM(PROD(k):Y(1,k)); !Pool 1 here represents pool 2 in Foulds' statement; 

 X(6,2) = @SUM(PROD(k):Y(2,k)); !Pool 2 here represents pool 4 in Foulds' statement; 

 @FOR(POOL(j)|j#GE#3: X(1,j)+X(2,j)+X(4,j)+X(5,j) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the sale products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

END 
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A 4 Foulds 2: Exhaustive discretization 
SETS: SOURCE /1..6/: a, Cost; 

 POOL /1..2051/: b, f1, f2; ! The number of pools is equal to t+3 (see below for t value); 

 PROD /1..4/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: a =  3, 1,  2, 3.5, 1.5, 2.5; 

 Cost = 6, 16, 10, 3, 13, 7; 

 P = 9, 15, 6, 12; 

 D = 100, 200, 100, 200; 

 c = 2.5, 1.5, 3, 2; 

 t = 2048; ! Number of discretized intervals; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

! Mass balance on the pools; 

 X(3,1) = @SUM(PROD(k):Y(1,k)); !Pool 1 here represents pool 2 in Foulds' statement; 

 X(6,2) = @SUM(PROD(k):Y(2,k)); !Pool 2 here represents pool 4 in Foulds' statement; 

 @FOR(POOL(j)|j#GE#3: X(1,j)+X(2,j)+X(4,j)+X(5,j) = @SUM(PROD(k):Y(j,k))); 

! Mass balance on the sale products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

! Linearize the problem by discretizing qualities of pools; 

 b(1)= a(3); !Pool 1 is reserved for source 3; b(2)= a(6); !Pool 2 is reserved for source 6; 

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i)); 

 @FOR(POOL(j)|j#GE#3: b(j)=aL+(aU-aL)*(j-3)/t);  

! Source 1&2 are forced to feed to one same pool; 

 @FOR(POOL(j): @BIN(f1(j)); X(1,j) + X(2,j) <= @SUM(PROD(k):D(k))*f1(j)); 

@SUM(POOL(j):f1(j))<=1; 

! Source 4&5 are forced to feed to one same pool; 

 @FOR(POOL(j):  @BIN(f2(j));   X(4,j) + X(5,j) <= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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A 5 Foulds 3: Not linearized 
 

SETS: 

 SOURCE /1..11/: a, Cost; 

 POOL /1..8/: b;  

 PROD /1..16/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

!DATA; 

 @FOR(SOURCE(i):a(i) = 0.9+i*0.1); 

 @FOR(SOURCE(i):Cost(i) = 21-i); 

 @FOR(PROD(k):P(k) =  (41-k)/2); 

 @FOR(PROD(k):D(k) = 1); 

 @FOR(PROD(k): c(k) = 1+0.05*k); 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i)|(i#GE#j) #AND# (i#LE#j+3):X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the sale products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

END 
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A 6 Foulds 3: Exhaustive discretization 
 

SETS: 

 SOURCE /1..11/: a, Cost; 

 REALPOOL/1..8/; 

 POOL /1..2049/: b; ! The number of pools is equal to t+1 (see below for t value); 

 SWITCH (REALPOOL,POOL):f; 

 PROD /1..16/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

!DATA;@FOR(SOURCE(i):a(i) = 0.9+i*0.1); 

 @FOR(SOURCE(i):Cost(i) = 21-i); 

 @FOR(PROD(k):P(k) =  (41-k)/2); 

 @FOR(PROD(k):D(k) = 1); 

 @FOR(PROD(k): c(k) = 1+0.05*k); 

 t = 2048; ! Number of discretized intervals; 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

! Mass balance on the pools; 

 @FOR(REALPOOL(i): @FOR(POOL(j)|(b(j)#GE#a(i)) #AND# (b(j)#LE#a(i+3)):  

    @SUM(SOURCE(l)|(l#GE#i) #AND# (l#LE#i+3):X(l,j)) = @SUM(PROD(k):Y(j,k)))); 

! Mass balance on the sale products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

! Linearize the problem by discretizing qualities of pools; 

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i)); 

 @FOR(POOL(j): b(j)=aL+(aU-aL)*(j-1)/t); 

! Only 8 or less pools needed; 

 @FOR(REALPOOL(i): @FOR(POOL(j)|(b(j)#LE#a(i+3)) #AND# (b(j)#GE#a(i)):  

     @BIN(f(i,j)); 

       @SUM(SOURCE(k)|k#LE#4:X(i+k-1,j)) <= @SUM(PROD(l):D(l))*f(i,j)); 

    @SUM(POOL(j):f(i,j))<=1); 

END
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A 7 Foulds 4: Not linearized 
SETS: 

 SOURCE /1..11/: a, Cost; 

 POOL /1..8/: b;  

 PROD /1..16/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

!DATA; 

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1; 

    Cost(i) = 21-i); 

 @FOR(PROD(k):P(k) =  (41-k)/2; 

    D(k) = 1; 

    c(k) = 1+0.05*k); 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 ! Pool 1;  X(1,1)+X(4,1)+X(7,1)+X(10,1)= @SUM(PROD(k):Y(1,k)); 

 ! Pool 2; X(2,2)+X(5,2)+X(8,2)+X(11,2)= @SUM(PROD(k):Y(2,k)); 

 ! Pool 3; X(2,3)+X(3,3)+X(5,3)+X(6,3) = @SUM(PROD(k):Y(3,k)); 

 ! Pool 4; X(3,4)+X(4,4)+X(6,4)+X(7,4) = @SUM(PROD(k):Y(4,k)); 

 ! Pool 5;  X(3,5)+X(5,5)+X(6,5)+X(8,5) = @SUM(PROD(k):Y(5,k)); 

 ! Pool 6; X(4,6)+X(6,6)+X(7,6)+X(9,6) = @SUM(PROD(k):Y(6,k)); 

 ! Pool 7; X(4,7)+X(7,7)+X(8,7)+X(9,7) = @SUM(PROD(k):Y(7,k)); 

 ! Pool 8; X(6,8)+X(8,8)+X(9,8)+X(10,8)= @SUM(PROD(k):Y(8,k)); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

END 
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A 8 Foulds 4: Exhaustive discretization 
SETS: 

 SOURCE /1..11/: a, Cost; 

 REALPOOL/1..8/; 

 POOL /1..4104/: b; ! Number of pools is equal to 8*(t+1) (see below for t value); 

 SWITCH (REALPOOL,POOL):f; 

 PROD /1..16/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

!DATA; 

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1; 

    Cost(i) = 21-i); 

 @FOR(PROD(k):P(k) =  (41-k)/2; 

    D(k) = 1; 

    c(k) = 1+0.05*k); 

 t = 512; ! Number of discretized intervals; 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 ! Pool 1;  @FOR(POOL(j)|j#LE#t+1: X(1,j)+X(4,j)+X(7,j)+X(10,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 2; @FOR(POOL(j)|(j#GT#t+1) #AND# (j#LE#2*(t+1)):  

X(2,j)+X(5,j)+X(8,j)+X(11,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):  

X(2,j)+X(3,j)+X(5,j)+X(6,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)) #AND# (j#LE#4*(t+1)):  

X(3,j)+X(4,j)+X(6,j)+X(7,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 5;  @FOR(POOL(j)|(j#GT#4*(t+1)) #AND# (j#LE#5*(t+1)):  

X(3,j)+X(5,j)+X(6,j)+X(8,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 6; @FOR(POOL(j)|(j#GT#5*(t+1)) #AND# (j#LE#6*(t+1)):  

X(4,j)+X(6,j)+X(7,j)+X(9,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 7; @FOR(POOL(j)|(j#GT#6*(t+1)) #AND# (j#LE#7*(t+1)):  

X(4,j)+X(7,j)+X(8,j)+X(9,j)= @SUM(PROD(k):Y(j,k))); 

 ! Pool 8; @FOR(POOL(j)|(j#GT#7*(t+1)): X(6,j)+X(8,j)+X(9,j)+X(10,j)= @SUM(PROD(k):Y(j,k))); 
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! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

 

! Linearize the problem by discretizing qualities of pools; 

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i)); 

 @FOR(REALPOOL(l): @FOR(POOL(j)|j#LE#t+1: b(j+(l-1)*(t+1))=aL+(aU-aL)*(j-1)/t));  

 

! Constraint on numbers of real pools and flows; 

 MAXD = @SUM(PROD(k):D(k)); 

! Pool 1; @FOR(POOL(j)|j#LE#t+1:  

@BIN(f(1,j)); X(1,j)+X(4,j)+X(7,j)+X(10,j) <= MAXD*f(1,j)); 

! Pool 2; @FOR(POOL(j)|(j#GT#t+1) #AND# (j#LE#2*(t+1)): 

@BIN(f(2,j)); X(2,j)+X(5,j)+X(8,j)+X(11,j) <= MAXD*f(2,j)); 

! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):  

@BIN(f(3,j)); X(2,j)+X(3,j)+X(5,j)+X(6,j) <= MAXD*f(3,j)); 

! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)) #AND# (j#LE#4*(t+1)):  

   @BIN(f(4,j)); X(3,j)+X(4,j)+X(6,j)+X(7,j) <= MAXD*f(4,j)); 

! Pool 5; @FOR(POOL(j)|(j#GT#4*(t+1)) #AND# (j#LE#5*(t+1)):  

   @BIN(f(5,j)); X(3,j)+X(5,j)+X(6,j)+X(8,j) <= MAXD*f(5,j)); 

! Pool 6; @FOR(POOL(j)|(j#GT#5*(t+1)) #AND# (j#LE#6*(t+1)):  

   @BIN(f(6,j)); X(4,j)+X(6,j)+X(7,j)+X(9,j) <= MAXD*f(6,j)); 

! Pool 7; @FOR(POOL(j)|(j#GT#6*(t+1)) #AND# (j#LE#7*(t+1)):  

   @BIN(f(7,j)); X(4,j)+X(7,j)+X(8,j)+X(9,j) <= MAXD*f(7,j)); 

! Pool 8; @FOR(POOL(j)|(j#GT#7*(t+1)):  

   @BIN(f(8,j)); X(6,j)+X(8,j)+X(9,j)+X(10,j) <= MAXD*f(8,j)); 

 @FOR(REALPOOL(l):@SUM(POOL(j):f(l,j))<=1); 

END
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A 9 Foulds 5: Not linearized 
 

SETS: 

 SOURCE /1..11/: a, Cost; 

 POOL /1..4/: b; 

 PROD /1..16/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

!DATA; 

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1; 

    Cost(i) = 21-i); 

 @FOR(PROD(k):P(k) =  (41-k)/2; 

    D(k) = 1; 

    c(k) = 1+0.05*k); 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

! Pool 1;  @SUM(SOURCE(i)|i#LE#4:X(i,1))+@SUM(SOURCE(i)|i#GE#8:X(i,1))= @SUM(PROD(k):Y(1,k)); 

! Pool 2; @SUM(SOURCE(i)|(i#GE#2)#AND#(i#LE#10):X(i,2))-X(6,2)= @SUM(PROD(k):Y(2,k)); 

! Pool 3; @SUM(SOURCE(i)|i#GE#4:X(i,3))= @SUM(PROD(k):Y(3,k)); 

! Pool 4; @SUM(SOURCE(i)|i#LE#8:X(i,4))= @SUM(PROD(k):Y(4,k)); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) = D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

END 
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A 10 Foulds 5: Exhaustive discretization 
 

SETS: 

 SOURCE /1..11/: a, Cost; 

 REALPOOL/1..4/; 

 POOL /1..44/: b; ! Number of pools is equal to 4*(t+1) (see below for (t+1) value); 

 SWITCH (REALPOOL,POOL):f; 

 PROD /1..16/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

!DATA; 

 @FOR(SOURCE(i): a(i) = 0.9+i*0.1; 

    Cost(i) = 21-i); 

 @FOR(PROD(k):P(k) =  (41-k)/2; 

    D(k) = 1; 

    c(k) = 1+0.05*k); 

 t = 10; ! Number of discretized intervals; 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 

! Pool 1;  @FOR(POOL(j)|j#LE#t+1:  

@SUM(SOURCE(i)|i#LE#4:X(i,j))+@SUM(SOURCE(i)|i#GE#8:X(i,j))= @SUM(PROD(k):Y(j,k))); 

 

! Pool 2; @FOR(POOL(j)|(j#GT#(t+1)) #AND# (j#LE#2*(t+1)): 

SUM(SOURCE(i)|(i#GE#2)#AND#(i#LE#10):X(i,j))-X(6,j)= @SUM(PROD(k):Y(j,k))); 

 

! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)):  

@SUM(SOURCE(i)|i#GE#4:X(i,j))= @SUM(PROD(k):Y(j,k))); 

 

! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)): 

@SUM(SOURCE(i)|i#LE#8:X(i,j))= @SUM(PROD(k):Y(j,k))); 
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! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) = D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

 

! Linearize the problem by discretizing qualities of pools; 

 aU = @MAX(SOURCE(i):a(i)); 

 aL = @MIN(SOURCE(i):a(i)); 

 @FOR(REALPOOL(l): @FOR(POOL(j)|j#LE#t+1: b(j+(l-1)*(t+1))=aL+(aU-aL)*(j-1)/t)); 

 

! Constraints on numbers of real pools and flows; 

 MAXD = @SUM(PROD(k):D(k)); 

 

! Pool 1; @FOR(POOL(j)|j#LE#t+1: 

   @BIN(f(1,j)); 

   @SUM(SOURCE(i)|i#LE#4:X(i,j))+@SUM(SOURCE(i)|i#GE#8:X(i,j)) <= MAXD*f(1,j)); 

 

! Pool 2; @FOR(POOL(j)|(j#GT#(t+1)) #AND# (j#LE#2*(t+1)): 

   @BIN(f(2,j)); 

   @SUM(SOURCE(i)|(i#GE#2)#AND#(i#LE#10):X(i,j))-X(6,j)<= MAXD*f(2,j)); 

 

! Pool 3; @FOR(POOL(j)|(j#GT#2*(t+1)) #AND# (j#LE#3*(t+1)): 

   @BIN(f(3,j)); 

   @SUM(SOURCE(i)|i#GE#4:X(i,j))<= MAXD*f(3,j)); 

 

! Pool 4; @FOR(POOL(j)|(j#GT#3*(t+1)) #AND# (j#LE#4*(t+1)): 

   @BIN(f(4,j)); 

   @SUM(SOURCE(i)|i#LE#8:X(i,j)) <= MAXD*f(4,j)); 

 

 @FOR(REALPOOL(l):@SUM(POOL(j):f(l,j))<=1); 

END 
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A 11  Ben-Tal 4: Not linearized 

 
SETS: 

 SOURCE /1..4/: a, Cost; 

 POOL /1..2/: b; 

 PROD /1..2/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: 

 a =  3, 1, 1, 2; 

 Cost = 6, 15, 16, 10; 

 P = 9, 15; 

 D = 100, 200; 

 c = 2.5, 1.5; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Constraint on source 2's flow rate; 

 X(2,1) <= 50; 

 

! Mass balance on the pools; 

 X(4,2) = @SUM(PROD(k):Y(2,k)); 

 @FOR(SOURCE(i)|i#LE#3: X(i,2)=0); 

 @SUM(SOURCE(i)|i#LE#3: X(i,1)) = @SUM(PROD(k):Y(1,k)); 

 X(4,1)=0; 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

END 
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A 12  Ben-Tal 4: Exhaustive discretization 
SETS: SOURCE /1..4/: a, Cost; 

 POOL /1..82/: b, f; ! The number of pools is equal to t+2 (see below for t value); 

 PROD /1..2/: P, D, c; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: a =  3, 1, 1, 2; 

 Cost = 6, 15, 16, 10; 

 P = 9, 15; 

 D = 100, 200; 

 c = 2.5, 1.5; 

 t = 80; ! Number of discretized intervals; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

! Constraint on source 2's flow rate; 

 @SUM(POOL(j)|j#LE#t+1:X(2,j)) <= 50; 

! Mass balance on the pools; 

 X(4,t+2) = @SUM(PROD(k):Y(t+2,k));  

 @FOR(SOURCE(i)|i#LE#3: X(i,t+2)=0); 

 @FOR(POOL(j)|j#LE#t+1: X(4,j)=0; 

     @SUM(SOURCE(i)|i#LE#3: X(i,j)) = @SUM(PROD(k):Y(j,k))); 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

! Quality blending for the pools; 

 @FOR(POOL(j)|j#LE#t+1: @SUM(SOURCE(i): a(i)*X(i,j)) = b(j)*@SUM(SOURCE(i):X(i,j))); 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b(j)*Y(j,k)) <= c(k)*@SUM(POOL(j):Y(j,k))); 

! Linearize the problem by discretizing qualities of pools; 

 b(t+2)= a(4);   

 aU = @MAX(SOURCE(i):a(i)); aL = @MIN(SOURCE(i):a(i)); 

 @FOR(POOL(j)|j#LE#t+1: b(j)=aL+(aU-aL)*(j-1)/t);  

! Use only 1 pool for first three sources; 

 @FOR(POOL(j)|j#LE#t+1:  @BIN(f(j)); @SUM(SOURCE(i)|i#LE#3: X(i,j)) <= @SUM(PROD(k):D(k))*f(j)); 

 @SUM(POOL(j):f(j))<=1; 

END
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B 1  Ben-Tal 5: Not linearized 

 
SETS: SOURCE /1..5/: a1, a2, Cost; 

 POOL /1..4/: b1, b2; 

 PROD /1..5/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: a1 =  3, 1, 1, 1.5, 2; 

 a2 =  1, 3, 2.5, 2.5, 2.5; 

 Cost = 6, 16, 15, 12, 10; 

 D = 100, 200, 100, 100, 100; 

 c1 = 2.5, 1.5, 2, 2, 2; 

 c2 = 2, 2.5, 2.6, 2, 2; 

 P = 18, 15, 19, 16, 14; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Constraint on the 3th source's flow rate; 

 @SUM(POOL(j):X(3,j)) <= 50; 

 

! Mass balance on the pools; 

 X(5,4) = @SUM(PROD(k):Y(4,k));  

 @FOR(POOL(j): @SUM(SOURCE(i)|i#LE#4: X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j))); 

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

END 
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B 2 Ben-Tal 5: Exhaustive discretization 

 
SETS: 

 SOURCE /1..5/: a1, a2, Cost; 

 POOL /1..442/: b1, b2, f; ! The number of pools is (t1+1)*(t2+1)+1 (see below for t1, t2); 

 PROD /1..5/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: 

 a1 =  3, 1, 1, 1.5, 2; 

 a2 =  1, 3, 2.5, 2.5, 2.5; 

 Cost = 6, 16, 15, 12, 10; 

 D = 100, 200, 100, 100, 100; 

 c1 = 2.5, 1.5, 2, 2, 2; 

 c2 = 2, 2.5, 2.6, 2, 2; 

 P = 18, 15, 19, 16, 14; 

 t1 = 20;! Number of discretized intervals for quality 1;  

 t2 = 20;! Number of discretized intervals for quality 2;  

ENDDATA 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Linearize the problem by discretizing qualities of pools; 

! Discretize quality 1 for pools; 

 b1((t1+1)*(t2+1)+1)= a1(5);  

 a1U = @MAX(SOURCE(i):a1(i)); 

 a1L = @MIN(SOURCE(i):a1(i)); 

 @FOR(POOL(j)|j#LE#t2+1: b1(j)=a1L+(a1U-a1L)*(j-1)/t2;  

     @FOR(POOL(l)|l#LE#t1:b1(j+l*(t2+1))=b1(j))); 

! Discretize quality 2 for pools; 

 b2((t1+1)*(t2+1)+1)= a2(5); 

 a2U = @MAX(SOURCE(i):a2(i)); 

 a2L = @MIN(SOURCE(i):a2(i)); 

 @FOR(POOL(j)|j#LE#t2+1: b2(j)=a2L;  

     @FOR(POOL(l)|l#LE#t1:b2(j+l*(t2+1))=a2L+(a2U-a2L)*l/t1)); 
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! Constraint on the 3th source's flow rate; 

 @SUM(POOL(j)|j#LE#(t1+1)*(t2+1):X(3,j)) <= 50; 

 

! Mass balance on the pools; 

 X(5,(t1+1)*(t2+1)+1) = @SUM(PROD(k):Y((t1+1)*(t2+1)+1,k));  

 @FOR(POOL(j)|j#LE#(t1+1)*(t2+1): @SUM(SOURCE(i)|i#LE#4: X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j))); 

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

 

! Use only 3 pools; 

 @FOR(POOL(j)|j#LE#(t1+1)*(t2+1):  @BIN(f(j)); 

         @SUM(SOURCE(i):X(i,j)) <= @SUM(PROD(k):D(k))*f(j));    

 @SUM(POOL(j)|j#LE#(t1+1)*(t2+1):f(j))<=3; 

 

END 
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B 3 Ben-Tal 5: Implicit discretization 

 
SETS: 

 SOURCE /1..5/: a1, a2, Cost; 

 POOL /1..47906/: b1, b2, f; ! The number of pools is (t+1)*(t+2)*(t+3)/6+1 (see below for t); 

 PROD /1..5/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: 

 a1 =  3, 1, 1, 1.5, 2; 

 a2 =  1, 3, 2.5, 2.5, 2.5; 

 Cost = 6, 16, 15, 12, 10; 

 D = 100, 200, 100, 100, 100; 

 c1 = 2.5, 1.5, 2, 2, 2; 

 c2 = 2, 2.5, 2.6, 2, 2; 

 P = 18, 15, 19, 16, 14; 

 t = 64; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Linearize the problem by discretizing qualities of pools; 

b1(1)=a1(5);!Pool 1 in this formulation represents pool 4 in Ben-Tal's statement; 

b2(1)=a2(5); 

 

@FOR(POOL(u)|u#LE#t+1: 

 @FOR(POOL(v)|v#LE#t-u+2: 

  @FOR(POOL(r)|r#LE#t-v-u+3: 

 b1(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(r-1)/t + a1(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t); 

 

 b2(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= a2(1)*(u-1)/t +a2(2)*(v-1)/t +a2(3)*(r-1)/t +a2(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t)))); 

 

! Constraint on the 3th source's flow rate; 

 @SUM(POOL(j)|j#GE#2: X(3,j)) <= 50; 
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! Mass balance on the pools; 

 X(5,1) = @SUM(PROD(k):Y(1,k));  

 @FOR(POOL(j)|j#GE#2: @SUM(SOURCE(i)|i#LE#4: X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Constraints on product demands; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j))); 

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

 

! Use only 3 pools for sources 1,2,3&4; 

 @FOR(POOL(j)|j#GE#2: 

   @BIN(f(j)); 

    @SUM(SOURCE(i):X(i,j)) <= @SUM(PROD(k):D(k))*f(j)); 

 @SUM(POOL(j): f(j))<=3; 

END
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B 4 Ben-Tal 5: Implicit discretization – Formulation in flow rate fraction 

 
SETS: 

 SOURCE /1..5/: a1, a2, Cost; 

 POOL /1..287/: b1, b2, f, Z; ! The number of pools is (t+1)*(t+2)*(t+3)/6+1 (see below for t); 

 PROD /1..5/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): x; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

 

DATA: 

 a1 =  3, 1, 1, 1.5, 2; 

 a2 =  1, 3, 2.5, 2.5, 2.5; 

 Cost = 6, 16, 15, 12, 10; 

 D = 100, 200, 100, 100, 100; 

 c1 = 2.5, 1.5, 2, 2, 2; 

 c2 = 2, 2.5, 2.6, 2, 2; 

 P = 18, 15, 19, 16, 14; 

 t = 10; 

ENDDATA 

 

! Maximize the revenue; 

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j))); 

 

! Linearize the problem by discretizing qualities of pools; 

b1(1)=a1(5);!Pool 1 in this formulation represents pool 4 in Ben-Tal's statement; 

b2(1)=a2(5); 

@FOR(SOURCE(i)|i#LE#4: x(i,1) = 0); 

x(5,1)=1; 

  

@FOR(POOL(u)|u#LE#t+1: 

 @FOR(POOL(v)|v#LE#t-u+2: 

  @FOR(POOL(r)|r#LE#t-v-u+3: 

 x(1,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= (u-1)/t; 
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 x(2,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= (v-1)/t; 

 

 x(3,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= (r-1)/t; 

 

 x(4,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= 1-(u-1)/t-(v-1)/t-(r-1)/t; 

 

 x(5,1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= 0; 

 

 b1(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(r-1)/t + a1(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t); 

 

 b2(1+(t+2)*(t+3)*(t+4)/6-((t-u+2))*((t-u+3))*((t-u+4))/6-(t+2)*(t+3)/2+(v-1)*((t-u+2))-(v-1)*(v-2)/2+r) 

= a2(1)*(u-1)/t + a2(2)*(v-1)/t + a2(3)*(r-1)/t + a2(4)*(1-(u-1)/t-(v-1)/t-(r-1)/t)))); 

 

! Constraint on the 3th source's flow rate; 

 @SUM(POOL(j)|j#GE#2: x(3,j)*Z(j)) <= 50; 

 

! Mass balance on the pools; 

 @FOR(POOL(j): Z(j) = @SUM(PROD(k):Y(j,k))); 

 

! Constraints on product demands; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) <= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

 

! Use only 3 pools for sources 1,2,3&4; 

 @FOR(POOL(j)|j#GE#2: 

   @BIN(f(j)); 

    Z(j) <= @SUM(PROD(k):D(k))*f(j)); 

 @SUM(POOL(j): f(j))<=3; 

END
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B 5 The example: Not linearized 
SETS: 

 SOURCE /1..3/: a1, a2, S, Cost; 

 POOL /1..2/: b1, b2; 

 PROD /1..3/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

DATA: a1 = 82, 92, 82 ; 

 a2 =  1,  2, 1.5; 

 S = 100,200,100; 

 D = 100, 100, 200; 

 c1 = 84, 87, 90; 

 c2 = 1.9, 2, 2; 

 Cost = 7, 9, 6; 

 P = 10, 15, 17; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Constraints on source's capacities; 

 @FOR(SOURCE(i): @SUM(POOL(j):X(i,j)) <= S(i)); 

 

! Mass balance on the pools; 

 @FOR(POOL(j):@SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the products' demands; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j))); 

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

END
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B 6 The example: Exhaustive discretization 
 

SETS: 

 SOURCE /1..3/: a1, a2, S, Cost; 

 POOL /1..1681/: b1, b2, f; ! The number of pools is (t1+1)*(t2+1) (see below for t1, t2); 

 PROD /1..3/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

 

DATA: 

 a1 = 82, 92, 82 ; 

 a2 =  1,  2, 1.5; 

 a1U = 92; a1L = 82; ! Maximum and Minimum of a1; 

 a2U =  2; a2L =  1; ! Maximum and Minimum of a2; 

 S = 100,200,100; 

 D = 100, 100, 200; 

 c1 = 84, 87, 90; 

 c2 = 1.9, 2, 2; 

 Cost = 7, 9, 6; 

 P = 10, 15, 17; 

 t1=40;! Number of discretized intervals for quality 1;  

 t2=40;! Number of discretized intervals for quality 2;  

ENDDATA 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Constraints on source's capacities; 

 @FOR(SOURCE(i): @SUM(POOL(j):X(i,j)) <= S(i)); 

 

! Mass balance on the pools; 

 @FOR(POOL(j):@SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the products' demands; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 
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! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j))); 

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

 

! Linearize the problem by specifying qualities of pools; 

 

! Assign quality 1 for pools; 

 @FOR(POOL(u)|u#LE#t2+1: b1(u)=a1L;  

     @FOR(POOL(v)|v#LE#t1:b1(u+v*(t2+1))=a1L+(a1U-a1L)*v/t1)); 

! Assign quality 2 for pools; 

 @FOR(POOL(u)|u#LE#t2+1: b2(u)=a2L+(a2U-a2L)*(u-1)/t2;  

     @FOR(POOL(v)|v#LE#t1:b2(u+v*(t2+1))=b2(u))); 

 

! Use only 2 pools; 

 @FOR(POOL(j):  @BIN(f(j)); 

      @SUM(SOURCE(i):X(i,j)) <= @SUM(SOURCE(i):S(i))*f(j)); 

 @SUM(POOL(j):f(j))<=2; 

 

END 
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B 7 The example: Implicit discretization 
 

SETS: 

 SOURCE /1..3/: a1, a2, S, Cost; 

 POOL /1..231/: b1, b2, f; ! The number of pools is equal to (t+1)*(t+2)/2 (see below for t); 

 PROD /1..3/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

 

DATA: 

 a1 = 82, 92, 82 ; 

 a2 =  1,  2, 1.5; 

 S = 100,200,100; 

 D = 100, 100, 200; 

 c1 = 84, 87, 90; 

 c2 = 1.9, 2, 2; 

 Cost = 7,9,6; 

 P = 10, 15, 17; 

ENDDATA 

 

! Minimize the costs of sources; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Constraints on source's capacities; 

 @FOR(SOURCE(i): @SUM(POOL(j):X(i,j)) <= S (i)); 

 

! Mass balance on the pools; 

 @FOR(POOL(j):@SUM(SOURCE(i):X(i,j)) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the products' tanks; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @SUM(SOURCE(i): a1(i)*X(i,j)) = b1(j)*@SUM(SOURCE(i):X(i,j))); 

 @FOR(POOL(j): @SUM(SOURCE(i): a2(i)*X(i,j)) = b2(j)*@SUM(SOURCE(i):X(i,j))); 
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! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 

 

! Linearize the problem by specifying qualities of pools; 

 

! Number of discretized intervals; t=20; 

@FOR(POOL(u)|u#LE#t+1: 

 @FOR(POOL(v)|v#LE#t-u+2: 

 b1((u-1)*(t+1)-(u-1)*(u-2)/2+v)=a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(1-(u-1)/t-(v-1)/t); 

 b2((u-1)*(t+1)-(u-1)*(u-2)/2+v)=a2(1)*(u-1)/t + a2(2)*(v-1)/t + a2(3)*(1-(u-1)/t-(v-1)/t))); 

 

! Use only 2 pools; 

 @FOR(POOL(j):  @BIN(f(j)); 

      @SUM(SOURCE(i):X(i,j)) <= @SUM(SOURCE(i):S(i))*f(j));    

 @SUM(POOL(j):f(j))<=2; 

END 
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B 8 The example: Implicit discretization – Flow rate fraction 
 

SETS: 

 SOURCE /1..3/: a1, a2, S, Cost; 

 POOL /1..231/: b1, b2, f, Z; ! The number of pools is equal to (t+1)*(t+2)/2 (see below for t); 

 PROD /1..3/: c1, c2, D, P; 

 INPOOL (SOURCE,POOL): x; 

 OUTPOOL (POOL,PROD): Y; 

ENDSETS 

 

DATA: 

 a1 = 82, 92, 82 ; 

 a2 =  1,  2, 1.5; 

 S = 100,200,100; 

 D = 100, 100, 200; 

 c1 = 84, 87, 90; 

 c2 = 1.9, 2, 2; 

 Cost = 7,9,6; 

 P = 10, 15, 17; 

ENDDATA 

 

! Minimize the costs of sources; 

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k)))-@SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j))); 

 

! Constraints on source's capacities; 

 @FOR(SOURCE(i): @SUM(POOL(j):x(i,j)*Z(j)) <= S (i)); 

 

! Mass balance on the pools; 

 @FOR(POOL(j):Z(j) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the products' tanks; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @SUM(POOL(j): b1(j)*Y(j,k)) >= c1(k)*@SUM(POOL(j):Y(j,k))); 

 @FOR(PROD(k): @SUM(POOL(j): b2(j)*Y(j,k)) <= c2(k)*@SUM(POOL(j):Y(j,k))); 
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! Linearize the problem by specifying qualities of pools; 

! Number of discretized intervals; t=20; 

@FOR(POOL(u)|u#LE#t+1: 

 @FOR(POOL(v)|v#LE#t-u+2: 

 x(1,(u-1)*(t+1)-(u-1)*(u-2)/2+v) = (u-1)/t; 

 x(2,(u-1)*(t+1)-(u-1)*(u-2)/2+v) = (v-1)/t; 

 x(3,(u-1)*(t+1)-(u-1)*(u-2)/2+v) = 1-(u-1)/t-(v-1)/t; 

 b1((u-1)*(t+1)-(u-1)*(u-2)/2+v) = a1(1)*(u-1)/t + a1(2)*(v-1)/t + a1(3)*(1-(u-1)/t-(v-1)/t); 

 b2((u-1)*(t+1)-(u-1)*(u-2)/2+v) = a2(1)*(u-1)/t + a2(2)*(v-1)/t + a2(3)*(1-(u-1)/t-(v-1)/t))); 

 

! Use only 2 pools; 

 @FOR(POOL(j):  @BIN(f(j)); 

      Z(j) <= @SUM(SOURCE(i):S(i))*f(j));    

 @SUM(POOL(j):f(j))<=2; 

END
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B 9 Adhya 1: Not linearized 
SETS: SOURCE /1..5/: Cost; 

 POOL /1..2/; 

 PROD /1..4/: D, P; 

 QUAL /1..4/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL):c; 

ENDSETS 

DATA: a =  1,   6, 4, 0.5, 

  4,   1, 3,   2,  

  4, 5.5, 3, 0.9, 

  3,   3, 3,   1, 

  1, 2.7, 4, 1.6; 

 Cost = 7, 3, 2, 10, 5; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 c =    3,   3, 3.25, 0.75, 

    4, 2.5,  3.5,  1.5, 

  1.5, 5.5,  3.9,  0.8, 

    3,   4,    4,  1.8; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

! Mass balance on the pools; 

 X(1,1) + X(2,1) = @SUM(PROD(k):Y(1,k)); X(3,1)=0;   X(4,1) = 0;    X(5,1) = 0; 

 X(3,2) + X(4,2) + X(5,2)= @SUM(PROD(k):Y(2,k));  X(1,2)=0; X(2,2) = 0; 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

! Quality blending for the pools; 

 @FOR(POOL(j):@FOR(QUAL(q): @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j)))); 

! Quality blending for the products; 

 @FOR(PROD(k):@FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

END 
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B 10 Adhya 1: Implicit discretization 
 

SETS: 

 SOURCE /1..5/: Cost; 

 POOL /1..77/: f1, f2; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2); 

 PROD /1..4/: D, P; 

 QUAL /1..4/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL):c; 

ENDSETS 

 

DATA: 

 a =  1,   6, 4, 0.5, 

  4,   1, 3,   2,  

  4, 5.5, 3, 0.9, 

  3,   3, 3,   1, 

  1, 2.7, 4, 1.6; 

 Cost = 7, 3, 2, 10, 5; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 c =    3,   3, 3.25, 0.75, 

    4, 2.5,  3.5,  1.5, 

  1.5, 5.5,  3.9,  0.8, 

    3,   4,    4,  1.8; 

 t1 = 10; ! Number of discretized intervals for pool group 1; 

 t2 = 10; ! Number of discretized intervals for pool group 2; 

ENDDATA 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 
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! Linearize the problem by discretizing qualities of pools; 

@FOR(POOL(j)|j#LE#t1+1: @FOR(QUAL(q): b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1))); 

 

@FOR(POOL(u)|u#LE#t2+1: 

 @FOR(POOL(v)|v#LE#t2-u+2: 

  @FOR(QUAL(q): 

b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2)))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j)|j#LE#t1+1: X(1,j) + X(2,j) = @SUM(PROD(k):Y(j,k)); 

     @FOR(SOURCE(i)|i#GE#3:X(i,j)=0)); 

 @FOR(POOL(j)|j#GT#t1+1: X(1,j)=0; X(2,j) = 0; 

     X(3,j) + X(4,j) + X(5,j)= @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j):@FOR(QUAL(q): 

  @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k):@FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1&2 are forced to one same pool; 

 @FOR(POOL(j)|j#LE#t1+1: 

   @BIN(f1(j)); 

  X(1,j)+X(2,j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 3,4&5 are forced to one same pool; 

 @FOR(POOL(j)|j#GT#t1+1: 

   @BIN(f2(j)); 

  X(3,j)+X(4,j)+X(5,j)<= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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B 11 Adhya 1: Implicit discretization - Formulation in flow rate fraction 
 

SETS: 

 SOURCE /1..5/: Cost; 

 POOL /1..5/: f1, f2, Z; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2); 

 PROD /1..4/: D, P; 

 QUAL /1..4/; 

 INPOOL (SOURCE,POOL): x; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL):c; 

ENDSETS 

 

DATA: 

 a =  1,   6, 4, 0.5, 

  4,   1, 3,   2,  

  4, 5.5, 3, 0.9, 

  3,   3, 3,   1, 

  1, 2.7, 4, 1.6; 

 

 Cost = 7, 3, 2, 10, 5; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 c =    3,   3, 3.25, 0.75, 

    4, 2.5,  3.5,  1.5, 

  1.5, 5.5,  3.9,  0.8, 

    3,   4,    4,  1.8; 

 t1 = 1; ! Number of discretized intervals for pool group 1; 

 t2 = 1; ! Number of discretized intervals for pool group 2; 

ENDDATA 

 

! Maximize the revenue; 

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j))); 
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! Linearize the problem by discretizing qualities of pools; 

@FOR(POOL(j)|j#LE#t1+1:  

 x(1,j)=(j-1)/t1; 

 x(2,j)=1-(j-1)/t1; 

 x(3,j)=0; x(4,j)=0; x(5,j)=0; 

 @FOR(QUAL(q): b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1))); 

 

@FOR(POOL(u)|u#LE#t2+1: 

 @FOR(POOL(v)|v#LE#t2-u+2: 

 x(1,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0; 

 x(2,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0; 

 x(3,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(u-1)/t2; 

 x(4,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(v-1)/t2; 

 x(5,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2; 

 @FOR(QUAL(q): b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q) 

  =a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2)))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j): Z(j)= @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the products; 

 @FOR(PROD(k):@FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1&2 are forced to one same pool; 

 @FOR(POOL(j)|j#LE#t1+1: @BIN(f1(j)); 

     Z(j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 3,4&5 are forced to one same pool; 

 @FOR(POOL(j)|j#GT#t1+1: @BIN(f2(j)); 

     Z(j) <= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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B 12 Adhya 2: Not linearized 
 

SETS: 

 SOURCE /1..5/: Cost; 

 POOL /1..2/; 

 PROD /1..4/: D, P; 

 QUAL /1..6/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

 

DATA: 

 a =  1,   6, 4, 0.5, 5,  9, 

  4,   1, 3,   2, 4,  4, 

  4, 5.5, 3, 0.9, 7, 10, 

  3,   3, 3,   1, 3,  4, 

  1, 2.7, 4, 1.6, 3,  7; 

 

 Cost = 7, 3, 2, 10, 5; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 

 c =  3,   3, 3.25, 0.75, 6, 5, 

  4, 2.5,  3.5,  1.5, 7, 6, 

     1.5, 5.5,  3.9,  0.8, 7, 6, 

  3,   4,    4,  1.8, 6, 6; 

ENDDATA 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 X(1,1) + X(2,1) = @SUM(PROD(k):Y(1,k)); 

 X(3,2) + X(4,2) + X(5,2)= @SUM(PROD(k):Y(2,k)); 
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! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @FOR(QUAL(q): 

  @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

END 
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B 13 Adhya 2: Implicit discretization 
 

SETS: 

 SOURCE /1..5/: Cost; 

 POOL /1..77/: f1, f2; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2); 

 PROD /1..4/: D, P; 

 QUAL /1..6/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

 

DATA: 

 a =  1,   6, 4, 0.5, 5,  9, 

  4,   1, 3,   2, 4,  4, 

  4, 5.5, 3, 0.9, 7, 10, 

  3,   3, 3,   1, 3,  4, 

  1, 2.7, 4, 1.6, 3,  7; 

 

 Cost = 7,  3, 2,  10, 5; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 

 c =  3,   3, 3.25, 0.75, 6, 5, 

  4, 2.5,  3.5,  1.5, 7, 6, 

     1.5, 5.5,  3.9,  0.8, 7, 6, 

  3,   4,    4,  1.8, 6, 6; 

 

 t1 = 10; ! Number of discretized intervals for pool group 1; 

 t2 = 10; ! Number of discretized intervals for pool group 2; 

ENDDATA 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 
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! Linearize the problem by discretizing qualities of pools; 

 @FOR(POOL(j)|j#LE#t1+1: @FOR(QUAL(q): 

  b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1))); 

        

 @FOR(POOL(u)|u#LE#t2+1: @FOR(POOL(v)|v#LE#t2-u+2: @FOR(QUAL(q): 

b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2)))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j)|j#LE#t1+1: X(1,j) + X(2,j) = @SUM(PROD(k):Y(j,k)); 

     X(3,j) + X(4,j) + X(5,j)=0); 

 

 @FOR(POOL(j)|j#GT#t1+1: X(1,j) + X(2,j) = 0; 

     X(3,j) + X(4,j) + X(5,j)= @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @FOR(QUAL(q): 

  @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1&2 are forced to feed same pool; 

 @FOR(POOL(j)|j#LE#t1+1: 

   @BIN(f1(j)); 

  X(1,j)+X(2,j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 3,4&5 are force to feed same pool; 

 @FOR(POOL(j)|j#GT#t1+1: 

   @BIN(f2(j)); 

  X(3,j)+X(4,j)+X(5,j)<= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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B 14 Adhya 2: Implicit discretization - Formulation in flow rate fraction 
 

SETS: 

 SOURCE /1..5/: Cost; 

 POOL /1..77/: f1, f2, Z; ! The number of pools is t1+1+(t2+1)(t2+2)/2 (see below for t1, t2); 

 PROD /1..4/: D, P; 

 QUAL /1..6/; 

 INPOOL (SOURCE,POOL): x; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

 

DATA: 

 a =  1,   6, 4, 0.5, 5,  9, 

  4,   1, 3,   2, 4,  4, 

  4, 5.5, 3, 0.9, 7, 10, 

  3,   3, 3,   1, 3,  4, 

  1, 2.7, 4, 1.6, 3,  7; 

 Cost = 7, 3, 2, 10, 5; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 c =  3,   3, 3.25, 0.75, 6, 5, 

  4, 2.5,  3.5,  1.5, 7, 6, 

     1.5, 5.5,  3.9,  0.8, 7, 6, 

  3,   4,    4,  1.8, 6, 6; 

 t1 = 10; ! Number of discretized intervals for pool group 1; 

 t2 = 10; ! Number of discretized intervals for pool group 2; 

ENDDATA 

 

! Maximize the revenue; 

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j))); 
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! Linearize the problem by discretizing qualities of pools; 

 @FOR(POOL(j)|j#LE#t1+1: 

  x(1,j)=(j-1)/t1; 

  x(2,j)=1-(j-1)/t1; 

  x(3,j)=0; x(4,j)=0; x(5,j)=0; 

  @FOR(QUAL(q):b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1))); 

       

 @FOR(POOL(u)|u#LE#t2+1: 

  @FOR(POOL(v)|v#LE#t2-u+2: 

  x(1,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0; 

  x(2,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0; 

  x(3,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(u-1)/t2; 

  x(4,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(v-1)/t2; 

  x(5,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2; 

  @FOR(QUAL(q): 

   b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)= 

   a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2)))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j): Z(j)= @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1&2 are forced to one same pool; 

 @FOR(POOL(j)|j#LE#t1+1: @BIN(f1(j)); 

     Z(j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 3,4&5 are forced to one same pool; 

 @FOR(POOL(j)|j#GT#t1+1: @BIN(f2(j)); 

     Z(j) <= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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B 15 Adhya 3: Not linearized 
 

SETS: 

 SOURCE /1..8/: Cost; 

 POOL /1..3/; 

 PROD /1..4/:D, P; 

 QUAL /1..6/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

DATA: 

 a =  1,   6,   4, 0.5,   5,   9, 

  4,   1,   3,   2,   4,   4, 

  4, 5.5,   3, 0.9,   7,  10, 

  3,   3,   3,   1,   3,   4, 

  1, 2.7,   4, 1.6,   3,   7, 

     1.8, 2.7,   4, 3.5, 6.1,   3, 

  5,   1, 1.7, 2.9, 3.5, 2.9, 

  3,   3,   3,   1,   5,   2; 

 Cost = 7, 3, 2, 10, 5, 5, 9, 11; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 c =  3,   3, 3.25, 0.75, 6, 5, 

  4, 2.5,  3.5,  1.5, 7, 6, 

     1.5, 5.5,  3.9,  0.8, 7, 6, 

  3,   4,    4,  1.8, 6, 6; 

ENDDATA 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 X(1,1) + X(2,1) = @SUM(PROD(k):Y(1,k)); 

 X(3,2) + X(4,2) + X(5,2)= @SUM(PROD(k):Y(2,k)); 

 X(6,3) + X(7,3) + X(8,3)= @SUM(PROD(k):Y(3,k)); 
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! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @FOR(QUAL(q): @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

END 
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B 16 Adhya 3: Implicit discretization 
 

SETS: 

 SOURCE /1..8/: Cost; 

 POOL /1..143/: f1, f2, f3;  

 ! The number of pools is t1+1+(t2+1)(t2+2)/2+(t3+1)(t3+2)/2 (see below for t1, t2 and t3); 

 PROD /1..4/: D, P; 

 QUAL /1..6/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

 

DATA: 

 a =  1,   6,   4, 0.5,   5,   9, 

  4,   1,   3,   2,   4,   4, 

  4, 5.5,   3, 0.9,   7,  10, 

  3,   3,   3,   1,   3,   4, 

  1, 2.7,   4, 1.6,   3,   7, 

     1.8, 2.7,   4, 3.5, 6.1,   3, 

  5,   1, 1.7, 2.9, 3.5, 2.9, 

  3,   3,   3,   1,   5,   2; 

 

 Cost = 7, 3, 2, 10, 5, 5, 9, 11; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 c =  3,   3, 3.25, 0.75, 6, 5, 

  4, 2.5,  3.5,  1.5, 7, 6, 

     1.5, 5.5,  3.9,  0.8, 7, 6, 

  3,   4,    4,  1.8, 6, 6; 

 

 t1 = 10; ! Number of discretized intervals for pool group 1; 

 t2 = 10; ! Number of discretized intervals for pool group 2; 

 t3 = 10; ! Number of discretized intervals for pool group 3; 

ENDDATA 
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! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Linearize the problem by discretizing qualities of pools; 

@FOR(POOL(j)|j#LE#t1+1: @FOR(QUAL(q): 

 b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1))); 

     

@FOR(POOL(u)|u#LE#t2+1: @FOR(POOL(v)|v#LE#t2-u+2: @FOR(QUAL(q): 

b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q)=a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2)))); 

   

@FOR(POOL(u)|u#LE#t3+1: @FOR(POOL(v)|v#LE#t3-u+2: @FOR(QUAL(q): 

 b(t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v,q) 

= a(6,q)*(u-1)/t3 + a(7,q)*(v-1)/t3 + a(8,q)*(1-(u-1)/t3-(v-1)/t3)))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j)|j#LE#t1+1: X(1,j) + X(2,j) = @SUM(PROD(k):Y(j,k)); 

     @FOR(SOURCE(i)|i#GE#3:X(i,j)=0)); 

 

 @FOR(POOL(j)|(j#GT#t1+1) #AND# (j#LE#t1+1+(t2+1)*(t2+2)/2): 

      @FOR(SOURCE(i)|i#LE#2 #OR# i#GE#6:X(i,j)=0); 

     X(3,j) + X(4,j) + X(5,j)= @SUM(PROD(k):Y(j,k))); 

 

 @FOR(POOL(j)|j#GT#t1+1+(t2+1)*(t2+2)/2: 

     @FOR(SOURCE(i)|i#LE#5:X(i,j)=0); 

     X(6,j) + X(7,j) + X(8,j)= @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @FOR(QUAL(q): 

  @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(PROD(k):Y(j,k)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 
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! Source 1&2 are forced to same pool; 

 @FOR(POOL(j)|j#LE#t1+1: 

   @BIN(f1(j)); 

  X(1,j)+X(2,j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 3,4&5 are forced to same pool; 

 @FOR(POOL(j)|(j#GT#t1+1) #AND# (j#LE#t1+1+(t2+1)*(t2+2)/2): 

  @BIN(f2(j)); 

  X(3,j)+X(4,j)+X(5,j)<= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

 

! Source 6,7&8 are forced to same pool; 

 @FOR(POOL(j)|j#GT#t1+1+(t2+1)*(t2+2)/2: 

   @BIN(f3(j)); 

  X(6,j)+X(7,j)+X(8,j)<= @SUM(PROD(k):D(k))*f3(j)); 

 @SUM(POOL(j):f3(j))<=1; 

END
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B 17 Adhya 3: Implicit discretization - Formulation in flow rate fraction 
 

SETS: 

 SOURCE /1..8/: Cost; 

 POOL /1..143/: f1, f2, f3, Z;  

 ! The number of pools is t1+1+(t2+1)(t2+2)/2+(t3+1)(t3+2)/2 (see below for t1, t2 and t3); 

 PROD /1..4/: D, P; 

 QUAL /1..6/; 

 INPOOL (SOURCE,POOL): x; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

DATA: 

 a =  1,   6,   4, 0.5,   5,   9, 

  4,   1,   3,   2,   4,   4, 

  4, 5.5,   3, 0.9,   7,  10, 

  3,   3,   3,   1,   3,   4, 

  1, 2.7,   4, 1.6,   3,   7, 

     1.8, 2.7,   4, 3.5, 6.1,   3, 

  5,   1, 1.7, 2.9, 3.5, 2.9, 

  3,   3,   3,   1,   5,   2; 

 

 Cost = 7, 3, 2, 10, 5, 5, 9, 11; 

 D = 10, 25, 30, 10; 

 P = 16, 25, 15, 10; 

 

 c =  3,   3, 3.25, 0.75, 6, 5, 

  4, 2.5,  3.5,  1.5, 7, 6, 

     1.5, 5.5,  3.9,  0.8, 7, 6, 

  3,   4,    4,  1.8, 6, 6; 

 

 t1 = 10; ! Number of discretized intervals for pool group 1; 

 t2 = 10; ! Number of discretized intervals for pool group 2; 

 t3 = 10; ! Number of discretized intervals for pool group 3; 

ENDDATA 
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! Maximize the revenue; 

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j))); 

 

! Linearize the problem by discretizing qualities of pools; 

 @FOR(POOL(j)|j#LE#t1+1:  

  x(1,j)=(j-1)/t1; 

  x(2,j)=1-(j-1)/t1; 

  @FOR(SOURCE(i)|i#GE#3: x(i,j)=0); 

  @FOR(QUAL(q):b(j,q)=a(1,q)*(j-1)/t1 + a(2,q)*(1-(j-1)/t1))); 

     

 @FOR(POOL(u)|u#LE#t2+1: 

  @FOR(POOL(v)|v#LE#t2-u+2: 

  x(3,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(u-1)/t2; 

  x(4,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=(v-1)/t2; 

  x(5,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2; 

  @FOR(SOURCE(i)|i#LE#2 #OR# i#GE#6: x(i,t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v)=0); 

  @FOR(QUAL(q): b(t1+1+(u-1)*(t2+1)-(u-1)*(u-2)/2+v,q) 

 = a(3,q)*(u-1)/t2 + a(4,q)*(v-1)/t2 + a(5,q)*(1-(u-1)/t2-(v-1)/t2)))); 

 

 @FOR(POOL(u)|u#LE#t3+1: 

  @FOR(POOL(v)|v#LE#t3-u+2: 

  x(6,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=(u-1)/t2; 

  x(7,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=(v-1)/t2; 

  x(8,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=1-(v-1)/t2-(u-1)/t2; 

  @FOR(SOURCE(i)|i#LE#5: x(i,t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v)=0); 

  @FOR(QUAL(q): b(t1+1+(t2+1)*(t2+2)/2+(u-1)*(t3+1)-(u-1)*(u-2)/2+v,q) 

= a(6,q)*(u-1)/t3 + a(7,q)*(v-1)/t3 + a(8,q)*(1-(u-1)/t3-(v-1)/t3)))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j): Z(j)= @SUM(PROD(k):Y(j,k))); 

 

! Mass demand on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 
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! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1&2 are forced to same pool; 

 @FOR(POOL(j)|j#LE#t1+1: @BIN(f1(j)); 

     Z(j)<= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 3,4&5 are forced to same pool; 

 @FOR(POOL(j)|j#GT#t1+1 #AND# j#LE#t1+1+(t2+1)*(t2+2)/2: 

   @BIN(f2(j)); 

  Z(j) <= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

 

! Source 6,7&8 are forced to same pool; 

 @FOR(POOL(j)|j#GT#t1+1+(t2+1)*(t2+2)/2: 

   @BIN(f3(j)); 

  Z(j)<= @SUM(PROD(k):D(k))*f3(j)); 

 @SUM(POOL(j):f3(j))<=1; 

END 
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B 18 Adhya 4: Not linearized 
 

SETS: 

 SOURCE /1..8/: Cost; 

 POOL /1..2/; 

 PROD /1..5/: D, P; 

 QUAL /1..4/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

DATA: 

 a =  0.5, 1.9, 1.3, 1.0, 

  1.4, 1.8, 1.7, 1.6, 

  1.2, 1.9, 1.4, 1.4, 

  1.5, 1.2, 1.7, 1.3, 

  1.6, 1.8, 1.6, 2.0, 

  1.2, 1.1, 1.4, 2.0, 

  1.5, 1.5, 1.5, 1.5, 

  1.4, 1.6, 1.2, 1.6; 

 

 Cost = 15,  7,  4,  5,  6, 3, 5, 5; 

 D =  15, 25, 10, 20, 15; 

 P =  10, 25, 30,  6, 10; 

 

 c =  1.2, 1.7, 1.4, 1.7, 

  1.4, 1.3, 1.8, 1.4, 

  1.3, 1.3, 1.9, 1.9, 

  1.2, 1.1, 1.7, 1.6, 

  1.6, 1.9, 2.0, 2.5; 

 

 t1 = 12; ! Number of discretized intervals for pool group 1; 

 t2 = 12; ! Number of discretized intervals for pool group 2; 

ENDDATA 
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! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 

 

! Mass balance on the pools; 

 @SUM(SOURCE(i)|i#LE#4: X(i,1)) = @SUM(PROD(k):Y(1,k)); 

 @FOR(SOURCE(i)|i#LE#4: X(i,2) = 0); 

 

 @FOR(SOURCE(i)|i#GT#4: X(i,1) = 0); 

 @SUM(SOURCE(i)|i#GT#4: X(i,2)) = @SUM(PROD(k):Y(2,k)); 

 

! Mass balance on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the pools; 

 @FOR(POOL(j): @FOR(QUAL(q): 

  @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

END 
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B 19 Adhya 4: Implicit discretization 
 

SETS: 

 SOURCE /1..8/: Cost; 

 POOL /1..910/: f1, f2;  

! The number of pools is (t1+1)(t1+2)(t1+3)/6 + (t2+1)(t2+2)(t2+3)/6 (see below for t1, t2); 

 PROD /1..5/: D, P; 

 QUAL /1..4/; 

 INPOOL (SOURCE,POOL): X; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

DATA: 

 a =  0.5, 1.9, 1.3, 1.0, 

  1.4, 1.8, 1.7, 1.6, 

  1.2, 1.9, 1.4, 1.4, 

  1.5, 1.2, 1.7, 1.3, 

  1.6, 1.8, 1.6, 2.0, 

  1.2, 1.1, 1.4, 2.0, 

  1.5, 1.5, 1.5, 1.5, 

  1.4, 1.6, 1.2, 1.6; 

 Cost = 15,  7,  4,  5,  6, 3, 5, 5; 

 D =  15, 25, 10, 20, 15; 

 P =  10, 25, 30,  6, 10; 

 c =  1.2, 1.7, 1.4, 1.7, 

  1.4, 1.3, 1.8, 1.4, 

  1.3, 1.3, 1.9, 1.9, 

  1.2, 1.1, 1.7, 1.6, 

  1.6, 1.9, 2.0, 2.5; 

 t1 = 12; ! Number of discretized intervals for pool group 1; 

 t2 = 12; ! Number of discretized intervals for pool group 2; 

ENDDATA 

 

! Maximize the revenue; 

 MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):X(i,j))); 



 

 

1
2
0

! Linearize the problem by specifying qualities of pools; 

@FOR(POOL(u)|u#LE#t1+1: @FOR(POOL(v)|v#LE#t1-u+2: @FOR(POOL(r)|r#LE#t1-v-u+3: @FOR(QUAL(q): 

b((t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r,q) 

= a(1,q)*(u-1)/t1 + a(2,q)*(v-1)/t1 + a(3,q)*(r-1)/t1 + a(4,q)*(1-(u-1)/t1-(v-1)/t1-(r-1)/t1))))); 

 

@FOR(POOL(u)|u#LE#t2+1: @FOR(POOL(v)|v#LE#t2-u+2: @FOR(POOL(r)|r#LE#t2-v-u+3: @FOR(QUAL(q): 

b((t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-1)*(t2-u+2)-(v-1)*(v-2)/2+r,q) 

= a(5,q)*(u-1)/t2 + a(6,q)*(v-1)/t2 + a(7,q)*(r-1)/t2 + a(8,q)*(1-(u-1)/t2-(v-1)/t2-(r-1)/t2))))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j)|j#LE#(t1+1)*(t1+2)*(t1+3)/6:   

     X(1,j) + X(2,j) + X(3,j) + X(4,j) = @SUM(PROD(k):Y(j,k)); 

     @FOR(SOURCE(i)|i#GE#5:X(i,j)=0)); 

 

 @FOR(POOL(j)|j#GT#(t1+1)*(t1+2)*(t1+3)/6: 

     @FOR(SOURCE(i)|i#LE#4:X(i,j)=0); 

     X(5,j) + X(6,j) + X(7,j) + X(8,j)= @SUM(PROD(k):Y(j,k))); 

! Mass balance on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

! Quality blending for the pools; 

 @FOR(POOL(j): @FOR(QUAL(q): @SUM(SOURCE(i): a(i,q)*X(i,j)) = b(j,q)*@SUM(SOURCE(i):X(i,j)))); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1,2,3&4 are forced to feed same pool; 

 @FOR(POOL(j)|j#LE#(t1+1)*(t1+2)*(t1+3)/6: 

   @BIN(f1(j)); 

  X(1,j) + X(2,j) + X(3,j) + X(4,j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 5,6,7&8 are forced to feed same pool; 

 @FOR(POOL(j)|j#GT#(t1+1)*(t1+2)*(t1+3)/6: 

   @BIN(f2(j)); 

  X(5,j) + X(6,j) + X(7,j) + X(8,j) <= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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B 20 Adhya 4: Implicit discretization - Formulation in flow rate fraction 
 

SETS: 

 SOURCE /1..8/: Cost; 

 POOL /1..5850/: f1, f2, Z;  

! The number of pools is (t1+1)(t1+2)(t1+3)/6 + (t2+1)(t2+2)(t2+3)/6 (see below for t1, t2); 

 PROD /1..5/: D, P; 

 QUAL /1..4/; 

 INPOOL (SOURCE,POOL): x; 

 OUTPOOL (POOL,PROD): Y; 

 SOURQ (SOURCE,QUAL): a; 

 POOLQ (POOL,QUAL): b; 

 PRODQ (PROD,QUAL): c; 

ENDSETS 

DATA: 

 a =  0.5, 1.9, 1.3, 1.0, 

  1.4, 1.8, 1.7, 1.6, 

  1.2, 1.9, 1.4, 1.4, 

  1.5, 1.2, 1.7, 1.3, 

  1.6, 1.8, 1.6, 2.0, 

  1.2, 1.1, 1.4, 2.0, 

  1.5, 1.5, 1.5, 1.5, 

  1.4, 1.6, 1.2, 1.6; 

 Cost = 15,  7,  4,  5,  6, 3, 5, 5; 

 D =  15, 25, 10, 20, 15; 

 P =  10, 25, 30,  6, 10; 

 

 c =  1.2, 1.7, 1.4, 1.7, 

  1.4, 1.3, 1.8, 1.4, 

  1.3, 1.3, 1.9, 1.9, 

  1.2, 1.1, 1.7, 1.6, 

  1.6, 1.9, 2.0, 2.5; 

 

 t1 = 24; ! Number of discretized intervals for pool group 1; 

 t2 = 24; ! Number of discretized intervals for pool group 2; 

ENDDATA 
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! Maximize the revenue; 

MAX = @SUM(PROD(k):P(k)*@SUM(POOL(j):Y(j,k))) - @SUM(SOURCE(i):Cost(i)*@SUM(POOL(j):x(i,j)*Z(j))); 

 

! Linearize the problem by specifying qualities of pools; 

 @FOR(POOL(u)|u#LE#t1+1: 

  @FOR(POOL(v)|v#LE#t1-u+2: 

   @FOR(POOL(r)|r#LE#t1-v-u+3: 

 x(1,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r) 

=(u-1)/t1; 

 

 x(2,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)   

= (v-1)/t1; 

 

 x(3,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r)    

= (r-1)/t1; 

 

 x(4,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r) 

= 1-(u-1)/t1-(v-1)/t1-(r-1)/t1; 

 

@FOR(SOURCE(i)|i#GE#5:  

x(i,(t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r) 

=0); 

 

@FOR(QUAL(q):  

 b((t1+2)*(t1+3)*(t1+4)/6-((t1-u+2))*((t1-u+3))*((t1-u+4))/6-(t1+2)*(t1+3)/2+(v-1)*((t1-u+2))-(v-1)*(v-2)/2+r,q) 

= a(1,q)*(u-1)/t1 + a(2,q)*(v-1)/t1 + a(3,q)*(r-1)/t1 + a(4,q)*(1-(u-1)/t1-(v-1)/t1-(r-1)/t1))))); 

 

@FOR(POOL(u)|u#LE#t2+1: 

 @FOR(POOL(v)|v#LE#t2-u+2: 

  @FOR(POOL(r)|r#LE#t2-v-u+3: 

x(5,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = (u-1)/t2; 

 

x(6,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = (v-1)/t2; 
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x(7,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = (r-1)/t2; 

 

x(8,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-(t2+2)*(t2+3)/2+(v-

1)*(t2-u+2)-(v-1)*(v-2)/2+r) = 1-(u-1)/t1-(v-1)/t1-(r-1)/t1; 

 

@FOR(SOURCE(i)|i#LE#4: x(i,(t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-

u+4)/6-(t2+2)*(t2+3)/2+(v-1)*(t2-u+2)-(v-1)*(v-2)/2+r) = 0); 

 

@FOR(QUAL(q):b((t1+1)*(t1+2)*(t1+3)/6+(t2+2)*(t2+3)*(t2+4)/6-(t2-u+2)*(t2-u+3)*(t2-u+4)/6-

(t2+2)*(t2+3)/2+(v-1)*(t2-u+2)-(v-1)*(v-2)/2+r,q) = a(5,q)*(u-1)/t2 + a(6,q)*(v-1)/t2 + a(7,q)*(r-

1)/t2 + a(8,q)*(1-(u-1)/t2-(v-1)/t2-(r-1)/t2))))); 

 

! Mass balance on the pools; 

 @FOR(POOL(j): Z(j) = @SUM(PROD(k):Y(j,k))); 

 

! Mass balance on the products; 

 @FOR(PROD(k): @SUM(POOL(j):Y(j,k)) <= D(k)); 

 

! Quality blending for the products; 

 @FOR(PROD(k): @FOR(QUAL(q): 

  @SUM(POOL(j): b(j,q)*Y(j,k)) <= c(k,q)*@SUM(POOL(j):Y(j,k)))); 

 

! Source 1,2,3&4 are forced to feed same pool; 

 @FOR(POOL(j)|j#LE#(t1+1)*(t1+2)*(t1+3)/6: 

   @BIN(f1(j)); 

  Z(j) <= @SUM(PROD(k):D(k))*f1(j));    

 @SUM(POOL(j):f1(j))<=1; 

 

! Source 5,6,7&8 are forced to feed same pool; 

 @FOR(POOL(j)|j#GT#(t1+1)*(t1+2)*(t1+3)/6: 

   @BIN(f2(j)); 

  Z(j) <= @SUM(PROD(k):D(k))*f2(j));    

 @SUM(POOL(j):f2(j))<=1; 

END 
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