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ABSTRACT

A New Approach to the Modeling and Analysis of Fracture Through an Extension

of Continuum Mechanics to the Nanoscale. (December 2008)

Tsvetanka Bozhidarova Sendova, B.S., Sofia University St. Kliment Ohridski

Chair of Advisory Committee: Dr. Jay R. Walton

The dissertation focuses on the analysis, through combined analytical and numerical

techniques, of the partial differential equations arising from a new approach to mod-

eling brittle fracture, based on extension of continuum mechanics to the nanoscale.

The main part of this work deals with the analysis of several fracture models. Inte-

gral transform methods are used to reduce the problem to a Cauchy singular, linear

integro-differential equation. It is shown that ascribing constant surface tension to

the fracture surfaces and using the appropriate crack surface boundary condition,

given by the jump momentum balance, leads to a sharp crack opening profile at the

crack tip, in contrast to the classical theory of brittle fracture. However, such a model

still predicts singular crack tip stress. For this reason a modified model is studied,

where the surface excess property is responsive to the curvature of the fracture sur-

faces. It is shown that curvature-dependent surface tension, together with boundary

conditions in the form of the jump momentum balance, leads to bounded stresses and

a cusp-like opening profile at the crack tip. Further, an alternative approach, based

on asymptotic analysis, which is suitable to apply in cases when the model includes

a mutual body force correction term, is considered. The nonlinear nonlocal problem,

resulting from the proposed model, is simplified which allows us to approximate the

crack opening profile and derive asymptotic forms for the cleavage stress in a neigh-

borhood of the crack tip. Finally, two possible fracture criteria, in the context of
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the new theory, are discussed. The first one is an energy based fracture criterion.

Classically the energy release rate arises due to singular fields, whereas in the case of

the modeling approach adopted here, a notion analogous to the energy release rate

arises through a different mechanism, associated to the rate of working of the surface

excess properties at the crack tip. Due to the fact that the proposed modeling ap-

proach allows us to fully resolve the stress in a neighborhood of the crack tip, without

the customary singularity, a second fracture criterion, based on crack tip stress, is

possible.
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CHAPTER I

INTRODUCTION

1.1. Fracture Mechanics: Continuum to Atomistic Approaches

Fracture of brittle materials has been modeled over a broad range of approaches -

from classical continuum theories like linear elastic fracture mechanics (LEFM) to

particulate theories such as molecular dynamics.

Various attempts have been made to supplement the classical continuum ap-

proaches in an attempt to circumvent the internal inconsistencies in the LEFM theory.

Cohesive and process zone models are among the most widely studied generalizations

of the classical crack tip model. These types of models require the specification of

constitutive properties of the cohesive or crack tip process zone, which are very dif-

ficult to determine experimentally. Thus, the models used are either based on ad

hoc choices for the constitutive behavior of the cohesive/process zone or on simplified

views of the fracture process.

The primary motivation for studying fracture through atomistic scales, in addi-

tion to the fact that they take into account the nanoscale interfacial physics, which

plays a crucial role in a neighborhood of the fracture edge, is that the classical con-

tinuum models do not contain the necessary physics to predict fracture. In this sense,

molecular dynamics offers an appealing approach to studying the initiation and prop-

agation of fracture, which explains the growing literature devoted to this technique

([2, 3, 4, 13, 29, 31, 48, 49]). On the other hand, it requires an accurate description

of the long-range and short-range intermolecular forces in the bulk material, which is

a difficult task in the case of liquids and solids ([29]).

This dissertation follows the style of the SIAM Journal on Numerical Analysis.
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Various multiscale models (so called atom-to-continuum modeling) have also re-

cently gained considerable attention. One of the most extensively studied methods of

this type, in the context of finite element method (FEM) approximations to continuum

models, is the quasi-continuum method introduced by Tadmor et al in 1996 ([50]).

Based on an atomistic view of material behavior, its continuum aspect comes from

the fact that the FEM is based on energy minimization. A different type of atom-to-

continuum modeling is a recently proposed approach by Xiao and Belytschko in [55]

which involves the introduction of bridging domains between regions modeled using

bulk (continuum) descriptions of material behavior and regions modeled using atom-

istic descriptions of material behavior. Both of these approaches involve adjustable

parameters that one needs to fit for every particular application.

Other attempts to incorporate microscale processes into fracture modeling in-

clude models based on configurational forces, as considered by Gurtin and Podio-

Guidugli ([25, 26]), Gurtin and Shvartsman ([27]), Sivaloganathan and Spector ([45]),

Maugin and Trimarco ([33]), Fomethe and Maugin ([15]) and others. Also gaining

attention is the peridynamic paradigm for modeling fracture ([44]).

In contrast to the latter theories, which introduce either an entirely new addi-

tional force system (configurational forces) or an entirely new continuum modeling

paradigm (peridynamics), the theory proposed herein uses conventional ideas of con-

tinuum mechanics through the introduction of a dividing surface endowed with excess

properties together with a mutual force. Our approach builds upon a hybrid theory

introduced by Oh et al ([39]). Unlike a start-from-scratch atom-to-continuum ap-

proach, this theory is based on a continuum theory of material behavior that takes

into account effects due to long-range intermolecular forces from adjoining phases

in the vicinity of the fracture surfaces. This correction of bulk continuum behavior

makes use of a scalar point-to-point potential constructed using molecular dynamics



3

simulations. No adjustable parameters are needed and, as demonstrated in Chapter

III, the theory using curvature-dependent surface tension predicts a finite crack tip

stress amplification of the applied loading, in contrast to the crack tip stress singu-

larity exhibited by models in classical elastic fracture mechanics. This allows us to

formulate a fracture criterion based upon the notion of a Critical Crack Tip Stress

(CCTS) defined to be the minimum crack tip stress level required to propagate the

crack in addition to an energy based criterion similar to the classical notion of a crit-

ical Energy Release Rate (ERR) defined in the setting of singular crack tip stresses

and strains.

1.2. Current vs. Reference Configuration

Classical fracture theories are customarily formulated in a reference configuration.

However, aspects of the theory discussed here are more easily described in the current

or deformed configuration. Consequently, we present the theory in both the spatial

(Eulerian) and material (Lagrangian) frames. We assume that there exists a surface

(Cauchy) stress tensor T(σ) which gives contact forces on a curve in the fracture

surface Σ. For example, one of the advantages of working in the spatial frame is

that for purposes of approximating the crack opening profile, it is exceedingly useful

to take an approach which uses perturbation theory in the deformed configuration.

Furthermore, the correction potential which determines the mutual body force term

and, depending on the model, the crack surface excess properties is set up only when

chemical bonds have been broken and depends on the crack opening profile.

On the other hand, formulating a fracture theory in the current configuration

presents certain complications. First, it is not entirely clear how one should mathe-

matically define a fracture in the deformed configuration, where the crack is opened,
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as traditionally a crack is defined as a surface in the reference configuration across

which the displacement, velocity, stress fields, etc. could sustain a discontinuity. Also,

the notions of crack length and crack velocity in the current configuration are ambigu-

ous, since one needs to separate crack tip motion due to crack growth from motion

due to deformation. Furthermore, to prove that the proposed modeling approach

leads to bounded stresses and strains, we employ the method of integral transforms

which is most easily applied when using the undeformed configuration as reference.

Thus, it is useful to formulate the fracture problem in both the reference and current

configurations.
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CHAPTER II

PRELIMINARIES

2.1. Extension of Continuum Mechanics to the Nanoscale

The physics of interfaces is a very large subject in material science, but in essence

there are two basic models. The modeling of a material interface can be approached

from a fully discrete perspective, using a particulate (molecular) model, or from a

continuum perspective.

In what follows, we apply a theory of fracture, based upon an extension of contin-

uum mechanics to the nanoscale similar to the one proposed by Oh et al ([39]). The

theory assumes that the standard constitutive equation describing both the short- and

long-range intermolecular forces predicts well the bulk material behavior outside the

interfacial region. However, for material points within a nanoscale neighborhood of

an interface, one needs to take into account that they are subjected to intermolecular

forces from distinct phases.

In a classical approach to modeling an interface between two different material

phases that dates back to Gibbs ([18]), the entire interfacial region is collapsed to a

two dimensional dividing surface. This view, in the context of the present discussion,

assumes that all the effects of long-range intermolecular forces are taken into account

through the introduction of excess properties (such as surface energy γ) to the dividing

surface.

As described in [39], we model herein the phase interface as a two dimensional

dividing surface. The effect of long-range intermolecular forces is only partially ac-

counted for by assigning excess properties γ̃ to the dividing surface. The rest of

this effect is captured through the introduction of a body force correction term
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b(corr) = −gradΦ. Both γ̃ and Φ are based on a scalar potential describing the

point-to-point interaction forces between material points in the interfacial region.

Note that unlike in the classical view which assumes that all the effects of long-

range intermolecular forces from the adjacent phase are incorporated into the surface

energy γ, in the approach taken herein this effect is accounted for partly through the

excess property γ̃ and partly through a body force correction term.

Modeling the interfacial region through the introduction of both excess proper-

ties on a two dimensional dividing surface and mutual body force term allows us to

construct a more realistic approximation to the true stress field in a neighborhood of

a fracture.

2.2. Use of Hooke’s Law in the Current Configuration

Consider a map f : Bκ → B which takes a point X in the reference configuration Bκ

into a point

x = f(X) ∈ B

in the current configuration. We assume that J = det∇f > 0 and denote by F the

deformation gradient

F(X) = ∇f(X).

Also, let the vector

u(X) = f(X)−X

denote the displacement of X. Let I denote the identity tensor, H be the displacement

gradient, i.e., H = ∇u = F− I , and let

E =
1

2
(H + HT ) (2.1)
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be the linearized strain tensor. Let T denote the Cauchy stress tensor and Tκ be the

first Piola-Kirchhoff stress. Assume that the elastic constitutive equation is given by

T = T̂(F),

or alternatively, in terms of the Piola-Kirchhoff stress, by

Tκ = T̂κ(F).

Recall that

Tκ = JTmF−T , (2.2)

where Tm is the material description of T. For F near I we have

T̂κ(F) = T̂κ(I) + C[E] + o(H),

where C = DT̂κ(I) is the elasticity tensor. One easily shows ([22]) that if the material

is isotropic at X, there exist scalars µ(X) and λ(X) such that

C[E] = 2µE + λ(trE)I.

λ and µ are called Lamé moduli. If the residual stress vanishes (T̂κ(I) = T̂(I) = 0),

(2.2) yields

T =
1

J
TκF

T = (1− tr(H) + o(H)) C[E]
(
I + HT

)
= C[E] + o(H).

Now, let ũ(x) be the Eulerian description of the displacement vector, where

u(X) = ũ(f(X))
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and let1 e = 1
2

(
gradũ + (gradũ)T

)
. Then

H = ∇u = (gradũ)F.

Consequently, gradũ = HF−1 = H + o(H), hence

e = E + o(H).

Thus, provided strains remain small and if there is no residual stress, one can use

Hooke’s law with the current configuration taken as reference to model the Cauchy

stress, i.e., we can assume a constitutive equation of the form

T = 2µe + λ(tre)I. (2.3)

As we are going to see in Chapter III, in contrast to LEFM which predicts infinite

stresses and strains in neighborhood of the crack tip, the results of the theory proposed

herein are consistent with the above assumptions.

2.3. Problem Description

We consider a classical Griffith crack, meaning a static, mode I crack of finite length

2a in an infinite linear elastic body, subjected to far field tensile loading σ. Later

on, in Chapter V, dynamic crack propagation will be studied. The analysis presented

herein for a classical Griffith crack can be easily extended to the case of an edge crack.

It is assumed that the stress away from the crack surfaces can be modeled using

Hooke’s law (2.3).

Another essential feature in our model, apart from the constitutive equation

modeling the bulk material behavior, is the way we account for the long-range in-

1The gradient and divergence operators are denoted by grad and div in the spatial
frame, and by ∇ and Div in the material frame.
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Fig. 2.1. A two-phase body.

termolecular (dispersion) forces between material points in the interfacial region. To

correct for the use of bulk material behavior in the interfacial region, we introduce a

point-to-point intermolecular force potential φ(A,C) between a point in the region R(A)

and a point in R(C) (Fig. 2.1). Since the intermediate phase is vacuum (or possibly

a gas), we only need φ(A,A).

The point-to-point potential φ(A,A) = φ
(A,A)
n + φ

(A,A)
f is split into two parts - the

first one, φ
(A,A)
n , going into an excess property γ̃ ascribed to the dividing surface Σ.

One could perceive that this is done by collapsing a small neighborhood around the

interfacial region to Σ and ascribing the part of the potential active in this neighbor-

hood as an excess property of the dividing surface. We assume that the upper/lower

crack surface Σ± is parameterized by Σ± = {x |x = 〈x1,±h(x1)〉}. The excess prop-

erty γ̃ is modeled as a functional of the crack opening profile h(x1), defined by

γ̃(x1) =

∫

Γ{h(x1)}
Φ(n)ds, (2.4)

where

Φ(n)(x1, x2) =

∫

R(C)

n(A)2φ(A,A)
n dr (2.5)

and Γ{h(x1)} is the ray emanating from the point (x1, h(x1)), extending into the
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body along the vector normal to the crack surface. Here n(A) is the number density

in phase A (the number of molecules or atoms per unit volume in R(A)).

The rest of φ(A,A), denoted by φ
(A,A)
f , goes into a body force correction term

which, by analogy with [39], is defined by

b(corr) = grad

∫

R(C)

n(A)2φ
(A,A)
f dr = −gradΦ. (2.6)

In practice the potential is obtained through fitting a given empirical form to ab

initio calculations. Depending on the chosen empirical form, the potential could either

be an analytic function of the intermolecular distance (e.g. Morse-type potentials) or

could have a singularity (e.g. Lennard-Jones-type potentials). In the case of singular

potentials we apply hard-sphere approximation through the use of a cut-off function.

The following nondimensionalization of the parameters is used in the subsequent

analysis of the governing equations

x?
i =

xi

a
u? =

u

a
h?(x?

1) =
h(x1)

a

γ̃? =
γ̃

Ea
µ? =

µ

E
σ? =

σ

E

Φ? =
Φ

E
T? =

T

E

(2.7)

where E = µ
3λ + 2µ

λ + µ
is Young’s modulus.

2.4. Balance of Linear Momentum

Let P be a part of the body intersecting the dividing surface Σ. Let P+ denote the

domain occupied by the first phase and P− be the one occupied by the second. Then

P = P+∪ (Σ∩P)∪P−. By ∂P+ and ∂P− we denote the outer boundaries of P+ and

P− respectively, i.e., not including the dividing surface Σ (Fig. 2.2). Let the limit of
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Fig. 2.2. Part P of a body, intersecting the dividing surface Σ.

a generic bulk field φ(x) in P \ Σ be defined by

φ±(x) = lim
s→0+

φ(x− sn±) ∀x ∈ Σ

where n± is the outward (for P±) unit normal vector to the dividing surface Σ. Given

a field φ(x) we define the jump of φ across Σ by

[[φ]] = φ+ − φ−.

Then by the Divergence Theorem

∫

P
gradΦ dv =

∫

P+

gradΦ dv +

∫

P−
gradΦ dv

=

∫

∂P+

Φn da +

∫

Σ∩P
Φ+n+da +

∫

∂P−
Φn da +

∫

Σ∩P
Φ−n−da

=

∫

∂P
Φn da +

∫

Σ∩P
[[Φ]]n+da.

(2.8)

In a similar way,

∫

∂P
(T(bulk) − ΦI)n da =

∫

P
div(T(bulk) − ΦI) dv −

∫

Σ∩P
[[T(bulk) − ΦI]]n+da, (2.9)
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where T(bulk) is the stress in the bulk material, given by (2.3). We also have

∫

∂P
T(bulk)n da =

∫

P
div(T(bulk)) dv −

∫

Σ∩P
[[T(bulk)]]n+da. (2.10)

Let f(P) be the body forces acting on P . Since the force system is not additive

unless the stress tensor is continuous across the dividing surface, we have to define

the forces acting on P as a whole, in contrast to defining the forces which act on P+,

P− and Σ. Theoretically we have two choices for what we declare to be the tensor

used to compute the surface tractions. We can either choose this to be the bulk stress

T(bulk) or the corrected stress T(bulk) − ΦI.

• Case 1: surface tractions are computed using T(bulk). Ignoring gravitational

effects, the force acting on P in this case is

f(P) =

∫

∂P
T(bulk)n da−

∫

P
gradΦ dv +

∫

∂(Σ∩P)

T(σ)νds, (2.11)

where T(σ) is the surface stress in the dividing surface Σ, ∂(Σ ∩ P) is the

boundary of Σ∩P (a curve in three dimensional space) and ν is a unit conormal

vector to ∂(Σ ∩ P), i.e., tangent to Σ and normal to ∂(Σ ∩ P). By the surface

divergence theorem ([47], p. 670)

∫

∂(Σ∩P)

T(σ)ν ds =

∫

Σ∩P
div(σ)T

(σ)da. (2.12)

Substituting (2.10) in (2.11) and then applying (2.12), one obtains

f(P) =

∫

P
div(T(bulk))dv −

∫

Σ∩P
[[T(bulk)]]n+da

−
∫

P
gradΦ dv +

∫

∂(Σ∩P)

T(σ)ν ds

=

∫

P
(div(T(bulk))− gradΦ)dv +

∫

Σ∩P
(div(σ)T

(σ) − [[T(bulk)]]n+)da.

(2.13)
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By the Localization Theorem, the differential momentum balance is

div(T(bulk)) = gradΦ (2.14)

and the jump momentum balance is

div(σ)T
(σ) − [[T(bulk)]]n+ = 0. (2.15)

• Case 2: Surface tractions are computed using the corrected stress T(bulk) − ΦI.

In this case there is no body force term. Then

f(P) =

∫

∂P
(T(bulk) − ΦI)n da +

∫

∂(Σ∩P)

T(σ)νds. (2.16)

In a similar way, we substitute (2.9) into (2.16) and use (2.12):

f(P) =

∫

P
div(T(bulk) − ΦI)dv −

∫

Σ∩P
[[T(bulk) − ΦI]]n+da +

∫

∂(Σ∩P)

T(σ)νds

=

∫

P
(div(T(bulk))− gradΦ) dv

+

∫

Σ∩P
(div(σ)T

(σ) − [[T(bulk) − ΦI]]n+) da.

(2.17)

We obtain the same differential momentum balance equation as in the first case,

but the jump momentum balance is

div(σ)T
(σ) − [[T(bulk) − ΦI]]n+ = 0, (2.18)

which is exactly the view taken in [39] and view (iv) in [47].

Remark 1. From here on, we adopt the view taken in Case 1, i.e., we use the bulk

stress to compute surface tractions at the crack surfaces. The reason for this choice

being that the approach in Case 2 gives no stress amplification in a neighborhood of the

crack tip. To simplify the notation, we leave out the superscript (bulk) from T(bulk),
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which should not be confused with the notation T used for the corrected stress in [39].

2.5. Surface Gradient and Surface Divergence

Let φ(x) be a scalar field defined in a neighborhood of the dividing surface Σ, n be

a unit vector normal to Σ and let P denote the projection tensor onto the tangent

space to Σ - a second-order tensor field that transforms every tangential vector field

into itself, i.e.,

P = I− n⊗ n. (2.19)

Then the surface gradient of φ(x) is given by ([47], p. 632)

grad(σ)φ = Pgradφ. (2.20)

In a similar way, the surface gradient of a vector field v(x) may be expressed in the

following form ([47], p. 648)

grad(σ)v = (gradv)P (2.21)

and consequently for the surface divergence of v one obtains

div(σ)v = tr((gradv)P). (2.22)

As for the surface divergence of a second order tensor field A(x), it can be easily

shown ([47], p. 661) that it satisfies

c · div(σ)A = div(σ)(A
Tc) (2.23)

for any constant vector c. Equation (2.23) can be used as a definition of div(σ)A.

The surface divergence and surface gradient satisfy product rules analogous to the

standard ones (for div and grad).
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Lemma 1. Let φ, v, w, and A be smooth fields with φ - scalar valued, v and w -

vector valued, and A - tensor valued. Then

div(σ)(φA) = Agrad(σ)φ + φdiv(σ)A, (2.24)

div(σ)(v ⊗w) = vdiv(σ)w + (grad(σ)v)w. (2.25)

Proof. Let c be an arbitrary constant vector. Then, using (2.22),

c · div(σ)(φA) = div(σ)(φATc) = tr(grad(φATc)P)

= φtr(grad(ATc)P) + c ·APgradφ

= φdiv(σ)(A
Tc) + c ·Agrad(σ)φ = c · (φdiv(σ)(A) + Agrad(σ)φ)

which proves (2.24). For (2.25) we proceed in a similar way:

c · div(σ)(v ⊗w) = tr(grad((c · v)w)P) = tr([(c · v)gradw + w ⊗ grad(c · v)]P)

= (c · v)div(σ)(w) + w · (gradvP)Tc

= c · (vdiv(σ)w + (grad(σ)v)w).

For a detailed discussion of the theory of elastic material surfaces see [23, 24,

37, 47]. We can now find an explicit expression for div(σ)T
(σ). If we assume that the

surface stress T(σ) is given by T(σ) = γ̃P, where P is the projection tensor defined

by (2.19), then (2.24) yields

div(σ)T
(σ) = grad(σ)γ̃ + γ̃div(σ)P. (2.26)

Now, combining (2.19) and (2.25) one has

div(σ)P = −div(σ)n⊗ n = −ndiv(σ)n. (2.27)
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Here we have used the fact that

(grad(σ)n)n = (gradn)Pn = 0.

Let us now define the curvature of Σ by

H = −1

2
div(σ)n, (2.28)

where, in order to avoid ambiguity of the definition, we are going to choose the

direction of n so that n points into P+ (Fig. 2.2). Note that div(σ)P is independent

of how we choose the direction of n. Then we can express div(σ)P in the following

way

div(σ)P = 2Hn. (2.29)

Combining (2.15), (2.26) and (2.29) one concludes that the jump momentum balance

for Case 1 takes the form

grad(σ)γ̃ + 2γ̃Hn− + [[T]]n− = 0. (2.30)

Consider first the upper crack surface. It can be described by the scalar equation

f(x) = x2 − h(x1) = 0 for − 1 < x1 < 1.

Then the unit normal vector pointing into the bulk material (P+) is given by

n− =
1√

1 + h′2
〈−h′, 1, 0〉T . (2.31)

This and (2.19) yield the following expression for the projection tensor P

P =
1

1 + h′2




1 h′ 0

h′ h′2 0

0 0 1 + h′2




.
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Then, by (2.20), the surface gradient of γ̃(x1) can be expressed as follows:

grad(σ)γ̃ = Pgradγ̃ =
γ̃′

1 + h′2
〈1, h′, 0〉T . (2.32)

Next, consider div(σ)n
−. Using (2.22) one arrives at

div(σ)n
− = − 1

(1 + h′2)5/2
tr







h′′ h′h′′ 0

h′h′′ (h′)2h′′ 0

0 0 0







=
−h′′

(1 + h′2)3/2
. (2.33)

In the case of plane stress, one obtains the following component form for the jump

momentum balance equations using (2.28), (2.30), (2.31), (2.32), and (2.33):

γ̃′

(1 + h′2)1/2
− γ̃h′h′′

(1 + h′2)3/2
+ (−h′τ11 + τ12) = 0

γ̃′h′

(1 + h′2)1/2
+

γ̃h′′

(1 + h′2)3/2
+ (−h′τ12 + τ22) = 0,

(2.34)

where τij are the components of the Cauchy stress T in Cartesian coordinates.

2.6. Localization of Φ and γ̃ Using Perturbation Theory

In this section we derive an approximation to the correction potential Φ and the

excess property γ̃. Since they depend on the crack opening profile, we work in the

current configuration as reference. Let x = 〈x1, x2〉 ∈ B be a point in the current

configuration B of the body. As derived above (cf. (2.14) and (2.30)), the quasistatic

differential balance of linear momentum becomes

div(T) = gradΦ (2.35)

and the jump momentum balance across the crack faces can be written in the following

form:

grad(σ)γ̃ + 2γ̃Hn− + [[T]]n− = 0, (2.36)
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where n− is the unit normal vector to the crack surface Σ pointing into the bulk

material.

For the bulk material, elastic constitutive behavior modeled by Hooke’s law (2.3)

is assumed. In addition, we assume homogeneous tensile far-field loading, i.e.,

lim
x2→∞

τ11(x1, x2) = 0

lim
x2→∞

τ12(x1, x2) = 0

lim
x2→∞

τ22(x1, x2) = σ.

(2.37)

Two different approaches are employed to solve the given problem. The first one

is presented in Chapter III and is based on the Method of Integral Transforms. This

approach allows us to prove that a model incorporating nonzero curvature-dependent

surface tension, together with the appropriate boundary condition in the form of the

jump momentum balance, leads to bounded stresses in a neighborhood of the crack tip

in contrast to the results of the classical theory of Linear Elastic Fracture Mechanics.

The second approach uses singular perturbation methods (similar to boundary

layer theory in fluid mechanics) to approximate the solution. Since the mutual body

force term in (2.35) and the boundary condition (2.36) lead to a highly non-linear

problem, the potential Φ and the excess property γ̃, which can be viewed as non-local

operators on the crack profile h, are approximated by local operators.

In order to simplify the notation, let φ(r?/δ?) :=
a3

E
φ

(A,A)
f (r/δ) where r? denotes

the nondimensional intermolecular distance:

r? =
√

(x?
1 − x?)2 + (x?

2 − y?)2 + z?2, (2.38)

δ is a parameter, associated with the interatomic length scale and δ? = δ/a. (Re-

call that the crack profile in the current configuration can be parameterized by
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{(x1, x2) |x1 ∈ (−a, a), x2 = ±h(x1)}.)
Assume that a suitable relation between the parameters can be found which turns

φ(r?/δ?) into a delta sequence as δ? → 0, i.e.,

φ̃(r?) := (δ?)−3φ(
r?

δ?
). (2.39)

Assume also that the potential φ̃(r?) ∈ L1(R3).

Let r? be as in (2.38). After a change of variables Φ?(x?
1, x

?
2) can be written in

the following way:

Φ?(x?
1, x

?
2, {h?(·, δ?)}, δ?) =

∫ 1

−1

∫ h?(x?)

−h?(x?)

∫ ∞

−∞
φ (r?) dz?dy?dx?

=

∫ x?
1

−1

∫ h?(x?)

−h?(x?)

∫ ∞

−∞
φ (r?) dz?dy?dx? +

∫ 1

x?
1

∫ h?(x?)

−h?(x?)

∫ ∞

−∞
φ (r?) dz?dy?dx?.

(2.40)

Here the notation {h?(·, δ?)} is used to signify that Φ? is a non-local functional of

h?(·, δ?) rather than one depending only on its point values for a given x?
1. Consider

first

∫ 1

x?
1

∫ h?(x?)

−h?(x?)

∫ ∞

−∞
φ

(√
(x?

1 − x?)2 + (x?
2 − y?)2 + z?2

)
dz?dy?dx?

=

∫ 1−x?
1

0

∫ x?
2+h?(x?

1+x?)

x?
2−h?(x?

1+x?)

∫ ∞

−∞
φ

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

=

∫ (1−x?
1)/δ?

0

∫ (x?
2+h?(x?

1+δ?x?))/δ?

(x?
2−h?(x?

1+δ?x?))/δ?

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

=:I1(x
?
1, x

?
2, {h?(·, δ?)}, δ?).

(2.41)

For the last equality property (2.39) is used. Thus

Φ?(x?
1, x

?
2, {h?(·, δ?)}, δ?) = I1(x

?
1, x

?
2, {h?(·, δ?)}, δ?) + I2(x

?
1, x

?
2, {h?(·, δ?)}, δ?) (2.42)
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where

I2(x
?
1, x

?
2, {h?(·, δ?)}, δ?) :=

∫ (1+x?
1)/δ?

0

∫ (x?
2+h?(x?

1−δ?x?))/δ?

(x?
2−h?(x?

1−δ?x?))/δ?

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?.

(2.43)

Since we are interested in the behavior of Φ?(x?
1, x

?
2) in a small neighborhood around

the crack surface, we make the following change of variables

y??
2 =

x?
2 − h?(x?

1)

δ?
.

Assuming that the expansion of the crack profile h?(·, δ?) in terms of the small pa-

rameter δ? is given by

h?(·, δ?) = h?
0(·) + δ?h?

1(·) + O(δ?2), (2.44)

we look for expansions

Ii(x
?
1, x

?
2, {h?(·, δ?)}, δ?) = I

(0)
i (x?

1, y
??
2 ) + δ?I

(1)
i (x?

1, y
??
2 ) + O(δ?2), i = 1, 2 (2.45)

where

I
(0)
i (x?

1, y
??
2 ) = lim

δ?→0
Ii(x

?
1, x

?
2, {h?(·, δ?)}, δ?) (2.46)

and

I
(1)
i (x?

1, y
??
2 ) = lim

δ?→0

∂

∂δ?
Ii(x

?
1, x

?
2, {h?(·, δ?)}, δ?). (2.47)

We consider −1 < x?
1 < 1, in which case h?(x?

1) > 0 whenever the applied loading

is nonzero. Then

x?
2 + h?(x?

1 ± δ?x?)

δ?
=

δ?y??
2 + h?(x?

1) + h?(x?
1 ± δ?x?)

δ?
→∞ as δ? → 0 (2.48)
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and

x?
2 − h?(x?

1 ± δ?x?)

δ?
=

δ?y??
2 + h?(x?

1)− h?(x?
1 ± δ?x?)

δ?

→ y??
2 ∓ x?h?

0
′(x?

1) as δ? → 0.

(2.49)

Using equations (2.46), (2.48) and (2.49) and the fact that φ̃(r?) ∈ L1(R3), one

concludes

I
(0)
1 (x?

1, y
??
2 ) =

∫ ∞

0

∫ ∞

y??
2 −x?h?

0
′(x?

1)

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

= Ĩ1
(0)

(h?
0
′(x?

1), y
??
2 )

I
(0)
2 (x?

1, y
??
2 ) =

∫ ∞

0

∫ ∞

y??
2 +x?h?

0
′(x?

1)

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

= Ĩ2
(0)

(h?
0
′(x?

1), y
??
2 ).

(2.50)

Remark 2. The zero order approximation of the correction potential Φ?(x?
1, x

?
2) on

the crack surface is given by

Φ?
0(x

?
1, h

?(x?
1)) = I

(0)
1 (x?

1, 0) + I
(0)
2 (x?

1, 0)

= 2

∫ ∞

0

∫ ∞

−x?h?
0
′(x?

1)

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

+

∫ ∞

0

∫ −x?h?
0
′(x?

1)

x?h?
0
′(x?

1)

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

= 2

∫ ∞

0

∫ ∞

0

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx? = const.

(2.51)

One should note here that even though the zero order approximation of the potential

is constant on the crack surface, it does depend on y??
2 and the point values of the

slope of the crack profile h?′(x?
1) away from the crack surface.
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Let

a(x?
1, y

??
2 , x?, δ?) :=

δ?y??
2 + h?(x?

1)− h?(x?
1 + δ?x?)

δ?

= y??
2 +

h?
0(x

?
1) + δ?h?

1(x
?
1)− h?

0(x
?
1 + δ?x?)− δ?h?

1(x
?
1 + δ?x?)

δ?
+ O(δ?) ⇒

a(x?
1, y

??
2 , x?, δ?) = y??

2 − x?h?
0
′(x?

1)− δ?

(
x?2

2
h?

0
′′(x?

1) + x?h?
1
′(x?

1)

)
+ O(δ?2)

∂

∂δ?
a(x?

1, y
??
2 , x?, δ?) = −

(
x?2

2
h?

0
′′(x?

1) + x?h?
1
′(x?

1)

)
+ O(δ?)

(2.52)

and

b(x?
1, y

??
2 , x?, δ?) :=

δ?y??
2 + h?(x?

1) + h?(x?
1 + δ?x?)

δ?

= y??
2 +

h?
0(x

?
1) + δ?h?

1(x
?
1) + h?

0(x
?
1 + δ?x?) + δ?h?

1(x
?
1 + δ?x?)

δ?
+ O(δ?) ⇒

b(x?
1, y

??
2 , x?, δ?) =

2h?
0(x

?
1)

δ?
+ y??

2 + 2h?
1(x

?
1) + x?h?

0
′(x?

1) + O(δ?)

∂

∂δ?
b(x?

1, y
??
2 , x?, δ?) = −2h?

0(x
?
1)

δ?2 + 2h?
2(x

?
1) + x?h?

1
′(x?

1) +
x?2

2
h?

0
′′(x?

1)

+ O(δ?).

(2.53)

We proceed with the calculation of I
(1)
1 (x?

1, y
??
2 ):

∂

∂δ?
I1(x

?
1, x

?
2, {h?(·, δ?)}, δ?)

=
∂

∂δ?

∫ (1−x?
1)/δ?

0

∫ b(x?
1,y??

2 ,x?,δ?)

a(x?
1,y??

2 ,x?,δ?)

∫ ∞

−∞
φ̃

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

=
−1 + x?

1

δ?2

∫ b(x?
1,y??

2 ,
1−x?

1
δ? ,δ?)

a(x?
1,y??

2 ,
1−x?

1
δ? ,δ?)

∫ ∞

−∞
φ̃




√(
1− x?

1

δ?

)2

+ y?2 + z?2


 dz?dy?

+

∫ 1−x?
1

δ?

0

∫ ∞

−∞

(
φ̃

(√
x?2 + (b(x?

1, y
??
2 , x?, δ?))2 + z?2

)
∂

∂δ?
b(x?

1, y
??
2 , x?, δ?)

− φ̃

(√
x?2 + (a(x?

1, y
??
2 , x?, δ?))2 + z?2

)
∂

∂δ?
a(x?

1, y
??
2 , x?, δ?)

)
dz?dx?.

(2.54)

The first and the second terms in the right hand side of (2.54) vanish as δ? tends to
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zero provided

r2φ̃(r) → 0 as r →∞. (2.55)

Combining (2.52), (2.54) and (2.55) one concludes

I
(1)
1 (x?

1, y
??
2 ) = lim

δ?→0

∂

∂δ?
I1(x

?
1, x

?
2, {h?(·, δ?)}, δ?)

=

∫ ∞

0

∫ ∞

−∞
φ̃

(√
x?2 + (y??

2 − x?h?
0
′(x?

1))
2
+ z?2

)

×
(

x?2

2
h?

0
′′(x?

1) + x?h?
1
′(x?

1)

)
dz?dx?.

(2.56)

In a similar way one can show that

I
(1)
2 (x?

1, y
??
2 ) = lim

δ?→0

∂

∂δ?
I2(x

?
1, x

?
2, {h?(·, δ?)}, δ?)

=

∫ ∞

0

∫ ∞

−∞
φ̃

(√
x?2 + (y??

2 + x?h?
0
′(x?

1))
2
+ z?2

)

×
(

x?2

2
h?

0
′′(x?

1)− x?h?
1
′(x?

1)

)
dz?dx?.

(2.57)

Let ψ(r?/δ?) :=
a3

E
φ

(A,A)
n (r/δ) and assume that it satisfies a property analogous

to (2.39), i.e.,

ψ̃(r?) := (δ?)−3ψ(
r?

δ?
). (2.58)

Combining equations (2.4) and the equivalent of (2.50)2 for ψ̃, one obtains the fol-

2Use of the inner variables and the approximation of Φ(n) given by the analogue
of (2.50) is valid, since γ̃ is constructed by collapsing a small neighborhood of the
interfacial region to the dividing surface Σ and ascribing the part of the point-to-point
potential active in this neighborhood as an excess property γ̃ of Σ. Thus, integration
in (2.4) along the entire ray Γ{h(x1)} is used only due to the fast decay of the potential
Φ(n).
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lowing expression for the zero order approximation of the excess property γ̃

γ̃?
0(x

?
1) =

∫ ∞

0

{ ∫ ∞

0

∫ ∞

y??
2 −x?h?

0
′(x?

1)

∫ ∞

−∞
ψ

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

+

∫ ∞

0

∫ ∞

y??
2 +x?h?

0
′(x?

1)

∫ ∞

−∞
ψ

(√
x?2 + y?2 + z?2

)
dz?dy?dx?

}
dy??

2

=

∫ ∞

0

∫ ∞

0

∫ ∞

y??
2

∫ ∞

−∞

(
ψ

(√
x?2 + (y? − x?h?

0
′(x?

1))
2
+ z?2

)

+ ψ

(√
x?2 + (y? + x?h?

0
′(x?

1))
2
+ z?2

) )
dz?dy?dx?dy??

2 .

(2.59)

Switching the order of integration with respect to y? and y??
2 , one obtains

∫∞
0

∫∞
y??
2

(...)dy?dy??
2 =

∫∞
0

∫ y?

0
(...)dy??

2 dy?. As the integrand has no y??
2 dependence,

(2.59) reduces to

γ̃?
0(x

?
1) = 2

∫ ∞

0

∫ ∞

0

∫ ∞

0

y?

(
ψ̃


x?

√
1 +

(
y?

x?
− h?

0
′(x?

1)

)2

+

(
z?

x?

)2



+ ψ̃


x?

√
1 +

(
y?

x?
+ h?

0
′(x?

1)

)2

+

(
z?

x?

)2



)
dz?dy?dx?

= 2

∫ ∞

0

∫ ∞

0

∫ ∞

0

(x?)3y?

(
ψ̃

(
x?

√
1 + (y? − h?

0
′(x?

1))
2
+ z?2

)

+ ψ̃

(
x?

√
1 + (y? + h?

0
′(x?

1))
2
+ z?2

) )
dz?dy?dx?.

(2.60)

We now split the integral into two parts. In the first we make a change of variables

s = x?

√
1 + (y? − h?

0
′(x?

1))
2
+ z?2,

in the second -

s = x?

√
1 + (y? + h?

0
′(x?

1))
2
+ z?2.
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Finally, for the zero order approximation of the excess property γ̃ we obtain

γ̃?
0(x

?
1) = 2

∫ ∞

0

s3ψ̃(s)ds

∫ ∞

0

∫ ∞

0

{
y?

(
1 + (y? − h?

0
′(x?

1))
2
+ z?2

)2

+
y?

(
1 + (y? + h?

0
′(x?

1))
2
+ z?2

)2

}
dz?dy?

= π

√
1 + (h?

0
′(x?

1))
2
∫ ∞

0

s3ψ̃(s)ds,

(2.61)

provided s3ψ̃(s) ∈ L1(0,∞).

We proceed with computing the first order approximation of γ̃. Combining equa-

tion (2.4) with the analogs of (2.56) and (2.57) for ψ̃ we obtain

γ̃?
1(x

?
1) =

∫ ∞

0

(
I

(1)
1 (x?

1, y
??
2 ) + I

(1)
2 (x?

1, y
??
2 )

)
dy??

2

= h?
0
′′(x?

1)

∫ ∞

0

dz?

∫ ∞

0

dx?

(∫ ∞

−x?h?
0
′
dy??

2 +

∫ ∞

x?h?
0
′
dy??

2

)

×
{

x?2ψ̃

(√
x?2 + y??

2
2 + z?2

)}

+ 2h?
1
′(x?

1)

∫ ∞

0

dz?

∫ ∞

0

dx?

(∫ ∞

−x?h?
0
′
dy??

2 −
∫ ∞

x?h?
0
′
dy??

2

)

×
{

x?ψ̃

(√
x?2 + y??

2
2 + z?2

)}
.

(2.62)

Notice that since the integrand is an even function of y??
2 ,

∫ ∞

−x?h?
0
′
dy??

2 +

∫ ∞

x?h?
0
′
dy??

2 = 2

∫ ∞

−x?h?
0
′
dy??

2 +

∫ −x?h?
0
′

x?h?
0
′

dy??
2

=2

∫ ∞

−x?h?
0
′
dy??

2 + 2

∫ −x?h?
0
′

0

dy??
2 = 2

∫ ∞

0

dy??
2 ,

and ∫ ∞

−x?h?
0
′
dy??

2 −
∫ ∞

x?h?
0
′
dy??

2 = −
∫ −x?h?

0
′

x?h?
0
′

dy??
2 = −2

∫ −x?h?
0
′

0

dy??
2 .
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Using the above equality we simplify the second term of (2.62) in the following way

∫ ∞

0

∫ ∞

0

∫ −x?h?
0
′

0

(
x?ψ̃

(√
x?2 + y??

2
2 + z?2

))
dy??

2 dx?dz?

=

∫ ∞

0

∫ ∞

0

∫ −h?
0
′

0

(
x?2ψ̃

(√
(1 + y?2)x?2 + z?2

))
dy?dx?dz?

=

∫ ∞

0

∫ −h?
0
′

0

∫ ∞

0

(
s2

(1 + y?2)3/2
ψ̃

(√
s2 + z?2

))
dsdy?dz?

=
−h?

0
′

√
1 + (h?

0
′)2

∫ ∞

0

∫ ∞

0

(
s2ψ̃

(√
s2 + z?2

))
dsdz?

=
−πh?

0
′

4
√

1 + (h?
0
′)2

∫ ∞

0

r3ψ̃(r)dr.

(2.63)

For the first term, notice that after several changes of variables it simplifies to

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
x?2ψ̃

(√
x?2 + y?2 + z?2

))
dy?dx?dz?

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
x?3

(1 + y?2)2
ψ̃

(√
x?2 + z?2

))
dy?dx?dz?

=
π

4

∫ ∞

0

∫ ∞

0

(
x?3ψ̃

(√
x?2 + z?2

))
dx?dz?

=
π

4

∫ ∞

0

∫ ∞

0

(
r4

(1 + z?2)5/2
ψ̃(r)

)
drdz? =

π

6

∫ ∞

0

r4ψ(r)dr.

(2.64)

Finally, we conclude that provided r4ψ̃(r) ∈ L1(0,∞),

γ̃?
1(x

?
1) = h?

0
′′π
3

∫ ∞

0

r4ψ̃(r)dr +
h?

0
′h?

1
′

√
1 + (h?

0
′)2

π

∫ ∞

0

r3ψ̃(r)dr. (2.65)
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CHAPTER III

METHOD OF INTEGRAL TRANSFORMS

3.1. Formulation of the Problem in the Reference Configuration

Since the body force correction potential Φ(x1, x2) becomes active in the current

configuration, as does the excess property γ̃(x1) of the dividing surface, the differential

and jump momentum balance equations were formulated previously in the deformed

configuration. As derived in Chapter II (cf. (2.14) and (2.30)), they take the following

form:

div(T) = gradΦ (3.1)

grad(σ)γ̃ + 2γ̃Hn− + [[T]]n− = 0, (3.2)

where n− is the unit normal to the fracture surface Σ pointing into the bulk material.

In view of the fact that the Method of Integral Transforms is most easily applied

when the problem is formulated in a reference configuration where the crack is just a

slit, in this chapter we work in the unloaded reference configuration of the body.

Consider a map f : Bκ → B which takes a point X in the reference configuration

Bκ into a point

x = f(X) ∈ B

in the current configuration (Fig. 3.1). As introduced in Section 2.2, we denote by F

the deformation gradient, and by u(X) - the displacement of X. In order to simplify

the presentation, assume that X is nondimensionalized by crack length, so that the

crack in the reference configuration is parameterized by

Σ±
κ = {X : −1 ≤ X1 ≤ 1, X2 = 0±}.
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Fig. 3.1. f : Bκ → B.

Consequently, in the current configuration, the upper/lower crack surface can be

parameterized by

Σ± = {x : x1 = X1 + u1(X1, 0
±), x2 = u2(X1, 0

±),−1 ≤ X1 ≤ 1}. (3.3)

Let Pκ ⊂ Bκ be a part in the reference configuration of the body, P = f(Pκ), Σκ

be the crack surface in the reference configuration, Σ = f(Σκ) be the crack surface

in the current configuration, ∂Σ = ∂B⋂
Σ, and let b denote the mutual body force

term in the current configuration (in the previous analysis we took b = −gradΦ).
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Then the force acting on P is1 ((2.13) and [22], p. 178)

f(P) =

∫

∂P
Tn da +

∫

P
b dv +

∫

∂(Σ
⋂P)

T(σ)νds

=

∫

∂P
Tn da +

∫

P
b dv +

∫

Σ
⋂P

div(σ)T
(σ) da

=

∫

∂Pκ

JTmF−TN dA +

∫

Pκ

Jb dV

+

∫

Σκ
⋂Pκ

J(div(σ)T
(σ) ⊗ n−)mF−TN−dA,

(3.4)

where n is the outward unit normal vector to ∂P and n−, as above, is the unit normal

to the crack profile Σ pointing into the bulk material, N is the outward unit normal

vector to ∂Pκ and N− is the unit normal to the reference crack profile Σκ pointing

into the bulk material, ν is the conormal to ∂Σ, while Tm is the material description

of T, i.e., Tm(X) = T(f(X)).

Recall that the first Piola-Kirchhoff stress tensor is given by (2.2). Letting bκ =

Jb and using (2.10), we transform (3.4) in

f(P) =

∫

Pκ

(DivTκ + bκ)dV +

∫

Σκ
⋂Pκ

J(div(σ)T
(σ) ⊗ n− + [[T]])mF−TN−dA. (3.5)

Since f(P) = 0, application of the Localization Theorem to the first term in (3.5)

implies that the differential momentum balance in the reference configuration can be

expressed as

DivTκ + bκ = 0, (3.6)

1The force acting on a part P is given by (3.4) provided either P does not con-
tain the fracture tip or there are no excess properties ascribed to the fracture tip.
Otherwise there is an additional contribution to f(P) due to the excess properties
at the crack tip. In this case the differential and jump momentum balances remain
unchanged, however there is an additional momentum balance equation at the crack
tip (Chapter V, Section 5.4). Since this additional momentum balance equation does
not affect the solution of the boundary value problem, its consideration is postponed
until Chapter V.
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where the form of the mutual body force term bκ will be specified later.

Consider now the second term in (3.5):

0 =

∫

Σκ
⋂Pκ

J(div(σ)T
(σ) ⊗ n− + [[T]])mF−TN−dA

=

∫

Σκ
⋂Pκ

(
J(div(σ)T

(σ) ⊗ n−)mF−TN− + [[Tκ]]N
−
)
dA.

(3.7)

Equations (2.26) and (2.27) yield

div(σ)T
(σ) = grad(σ)γ̃ + γ̃div(σ)P = grad(σ)γ̃ − γ̃n−div(σ)n

−. (3.8)

Now, from equation (3.3) one concludes that the unit normal vector to Σ pointing

into the bulk material has the following component form

n− =
1√

(1 + u1,1)2 + u2
2,1

〈−u2,1, 1 + u1,1〉T , (3.9)

consequently

P = I− n− ⊗ n− =
1

(1 + u1,1)2 + u2
2,1




(1 + u1,1)
2 (1 + u1,1)u2,1

(1 + u1,1)u2,1 u2
2,1


 . (3.10)

Here ui,j are evaluated at points X on Σκ, i.e., −1 ≤ X1 ≤ 1, X2 = 0. Whenever

this is clear, for simplicity of notation, this dependence is suppressed. Combining

equations (2.20) and (3.10), one arrives at the following expression for grad(σ)γ̃:

grad(σ)γ̃ =
γ̃′(x1)

(1 + u1,1)2 + u2
2,1

〈(1 + u1,1)
2, (1 + u1,1)u2,1〉T . (3.11)

Further, equations (2.22) and (3.10) yield

div(σ)n
− =

u2
2,1u1,12 + u2,1(1 + u1,1)(u1,11 − u2,12)− (1 + u1,1)

2u2,11(
(1 + u1,1)2 + u2

2,1

)3/2
. (3.12)

It only remains to evaluate the term JF−TN− · n−. The matrix of the deformation
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gradient in Cartesian coordinates can be written in the following form

[F] =




1 + u1,1 u1,2

u2,1 1 + u2,2


 .

Using this, the fact that N− = 〈0, 1〉T and equation (3.9) for n−, one arrives at

JF−TN− · n− =
(1 + u1,1)

2 + u1,2u2,1√
(1 + u1,1)2 + u2

2,1

. (3.13)

Finally, equations (3.8), (3.9), (3.11) and (3.13) and application of the Localization

Theorem to (3.7) lead to the following expression for the jump momentum balance

equations formulated in the reference configuration:

σ12 = −(1 + u1,1)
2 + u1,2u2,1√

(1 + u1,1)2 + u2
2,1

(
γ̃′(x1)(1 + u1,1)

2

(1 + u1,1)2 + u2
2,1

+
γ̃u2,1

(
u2

2,1u1,12 + u2,1(1 + u1,1)(u1,11 − u2,12)− (1 + u1,1)
2u2,11

)

(
(1 + u1,1)2 + u2

2,1

)2

)
,

σ22 = −(1 + u1,1)
2 + u1,2u2,1√

(1 + u1,1)2 + u2
2,1

(
γ̃′(x1)(1 + u1,1)u2,1

(1 + u1,1)2 + u2
2,1

−
γ̃(1 + u1,1)

(
u2

2,1u1,12 + u2,1(1 + u1,1)(u1,11 − u2,12)− (1 + u1,1)
2u2,11

)

(
(1 + u1,1)2 + u2

2,1

)2

)

(3.14)

where σij are the components of the matrix of the first Piola-Kirchhoff stress tensor

Tκ in Cartesian coordinates,

[Tκ] =




σ11 σ12

σ12 σ22


 .

The jump momentum balance provides us with boundary conditions on the crack

surfaces. Because of symmetry, it suffices to consider the problem on the upper half

plane only. In this case, additional boundary conditions are needed on {X : |X1| >
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1, X2 = 0}. Symmetry implies

u2(X1, 0) = 0, |X1| > 1

σ12(X1, 0) = 0, |X1| > 1.

(3.15)

We assume that the constitutive behavior of the material can be modeled by

Hooke’s law in the reference configuration, that is, the Piola-Kirchhoff stress tensor

Tκ is given by

Tκ = 2µE + λtr(E)I, (3.16)

where

E =
1

2
(∇u +∇uT )

is the infinitesimal strain tensor.

Also, a homogeneous tensile far-field loading is assumed, i.e.,

lim
X2→∞

σ11(X1, X2) = 0

lim
X2→∞

σ12(X1, X2) = 0

lim
X2→∞

σ22(X1, X2) = σ.

(3.17)

Thus, the problem we are going to consider is formulated in the reference configuration

(the upper half plane) and consists of

1. a differential momentum balance given by (3.6),

2. boundary conditions on {X : |X1| ≤ 1, X2 = 0} given by the jump momentum

balance - equations (3.14),

3. boundary conditions on {X : |X1| > 1, X2 = 0} given by equations (3.15),

4. a constitutive equation given by (3.16),

5. a far filed loading condition given by (3.17).
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3.2. Method of Integral Transforms Applied to the Navier Equations

Following [53], we proceed as follows. The component form of the differential mo-

mentum balance (3.6) is given by

σ11,1 + σ12,2 + bκ1 = 0

σ21,1 + σ22,2 + bκ2 = 0,

(3.18)

where, from Hooke’s law (3.16),

σ11 = (λ + 2µ)u1,1 + λu2,2

σ12 = µ(u1,2 + u2,1)

σ22 = λu1,1 + (λ + 2µ)u2,2.

(3.19)

After substituting (3.19) into (3.18) and differentiating with respect to X1, one

obtains

(λ + 2µ)u1,111 + µu1,122 + (λ + µ)u2,112 + bκ1,1 = 0

(λ + µ)u1,112 + µu2,111 + (λ + 2µ)u2,122 + bκ2,1 = 0.

(3.20)

For simplicity, from here on X2 is denoted by y. Taking Fourier transform of (3.20)

with respect to X1 results in the following system of ordinary differential equations

µ
d2

dy2
û1,1 + ip(λ + µ)

d

dy
û2,1 − p2(λ + 2µ)û1,1 + ipb̂κ1 = 0

(λ + 2µ)
d2

dy2
û2,1 + ip(λ + µ)

d

dy
û1,1 − p2µû2,1 + ipb̂κ2 = 0,

(3.21)

where the Fourier transform of an integrable function f on R is defined by

F [f ](p) = f̂(p) =

∫ ∞

−∞
f(x)e−ipxdx (3.22)
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and use is made of the property

F [f ′] = ipF [f ] (3.23)

for f - a continuous and piecewise smooth function such that f ′ ∈ L1(R) ([14]).

System (3.21) is equivalent to a first order system of ordinary differential equations

Y′ = AY + B, (3.24)

where

Y = 〈û1,1, û2,1,
d

dy
û1,1,

d

dy
û2,1〉T ,

B = 〈0, 0,−ipb̂κ1,−ipb̂κ2〉T

and

A =




0 0 1 0

0 0 0 1

p2(λ+2µ)
µ

0 0 − ip(λ+µ)
µ

0 p2µ
λ+2µ

− ip(λ+µ)
λ+2µ

0




.

The general solution of the homogeneous system is

Yh1 = i

(
−A1 +

λ + 3µ

p(λ + µ)
A2

)
e−py − iA2ye−py

+ i

(
A3 +

λ + 3µ

p(λ + µ)
A4

)
epy + iA4yepy

Yh2 = A1e
−py + A2ye−py + A3e

py + A4yepy

Yh3 = i

(
pA1 − 2(λ + 2µ)

λ + µ
A2

)
e−py + ipA2ye−py

+ i

(
pA3 +

2(λ + 2µ)

λ + µ
A4

)
epy + ipA4yepy

Yh4 = (−pA1 + A2) e−py − pA2ye−py + (pA3 + A4) epy + pA4yepy

with Ai = Ai(p), i = 1, .., 4. Then, the general solution of (3.24) is given by Y =
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Yh +P, where P(p, y) = 〈α1(p, y), α2(p, y), α3(p, y), α4(p, y)〉T is a particular solution

such that lim
y→∞

P(p, y) = 0. Thus, the general solution of (3.21), defined on the upper

half plane, which vanishes as y →∞ is

û1,1(p, y) = i

(
−sgn(p)A1 +

λ + 3µ

p(λ + µ)
A2

)
e−|p|y − isgn(p)A2ye−|p|y + α1(p, y)

û2,1(p, y) = A1e
−|p|y + A2ye−|p|y + α2(p, y).

(3.25)

From (3.23) we have

û1,1(p, y) = ipû1(p, y) ⇒ û1,2(p, y) = − i

p

d

dy
û1,1(p, y)

û2,1(p, y) = ipû2(p, y) ⇒ û2,2(p, y) = − i

p

d

dy
û2,1(p, y).

The above equations together with (3.19) and (3.25) lead to

σ̂12(p, y) = µ

(
− i

p

d

dy
û1,1 + û2,1

)

= 2µ

(
A1 − λ + 2µ

|p|(λ + µ)
A2 + A2y

)
e−|p|y − i

p
µ

d

dy
α1(p, y) + µα2(p, y)

σ̂22(p, y) = λû1,1 − i

p
(λ + 2µ)

d

dy
û2,1

= 2µi

(
sgn(p)A1 − µ

p(λ + µ)
A2 + sgn(p)A2y

)
e−|p|y

+ λα1(p, y)− i

p
(λ + 2µ)

d

dy
α2(p, y).

(3.26)

We can solve (3.25) for A1(p) and A2(p)

A1(p) = û2,1(p, 0)− α2(p, 0)

A2(p) = −ip(λ + µ)

λ + 3µ
(û1,1(p, 0) + isgn(p)û2,1(p, 0)− isgn(p)α2(p, 0)− α1(p, 0))
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and substitute these into (3.26) to arrive at

σ̂12(p, 0) =
2µ2

λ + 3µ
û2,1(p, 0) + isgn(p)

2µ(λ + 2µ)

λ + 3µ
(û1,1(p, 0)− α1(p, 0))

+
µ(λ + µ)

λ + 3µ
α2(p, 0)− i

p
µ

d

dy
α1(p, 0)

σ̂22(p, 0) = − 2µ2

λ + 3µ
û1,1(p, 0) + isgn(p)

2µ(λ + 2µ)

λ + 3µ
(û2,1(p, 0)− α2(p, 0))

+
(λ + 2µ)(λ + µ)

λ + 3µ
α1(p, 0)− i

p
(λ + 2µ)

d

dy
α2(p, 0).

(3.27)

Next, we apply the inverse Fourier transform to equations (3.27), using

F−1[isgn(p)f̂(p)](x) =
1

π
−
∫ ∞

−∞

f(r)

r − x
dr = H[f ](x), (3.28)

where −
∫

denotes a Cauchy principal value integral. The operator H[f ] defined in

(3.28) is known as the Hilbert transform. This leads us to the so called Dirichlet to

Neumann map:

σ12(x, 0) =
2µ2

λ + 3µ
u2,1(x, 0) +

2µ(λ + 2µ)

π(λ + 3µ)
−
∫ ∞

−∞

u1,1(r, 0)− ᾰ1(r, 0)

r − x
dr

+
µ(λ + µ)

λ + 3µ
ᾰ2(x, 0) + µ

d

dy

∫ x

0

ᾰ1(s, 0)ds

σ22(x, 0) = − 2µ2

λ + 3µ
u1,1(x, 0) +

2µ(λ + 2µ)

π(λ + 3µ)
−
∫ ∞

−∞

u2,1(r, 0)− ᾰ2(r, 0)

r − x
dr

+
(λ + 2µ)(λ + µ)

λ + 3µ
ᾰ1(x, 0) + (λ + 2µ)

d

dy

∫ x

0

ᾰ2(s, 0)ds,

(3.29)

where f̆ = F−1[f ] denotes the inverse Fourier transform of f . In order to construct
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the inverse map of (3.29), one solves equations (3.27) for û1,1 and û1,2

û1,1(p, 0) = −isgn(p)
λ + 2µ

2µ(λ + µ)
(σ̂12(p, 0)− µα2(p, 0)) +

1

2(λ + µ)
σ̂22(p, 0)

+
λ + 2µ

2(λ + µ)

(
α1(p, 0) +

sgn(p)

p

d

dy
α1(p, 0) +

i

p

d

dy
α2(p, 0)

)

û2,1(p, 0) = −isgn(p)
λ + 2µ

2µ(λ + µ)
(σ̂22(p, 0)− λα1(p, 0))− 1

2(λ + µ)
σ̂12(p, 0)

+
2λ + 3µ

2(λ + µ)
α2(p, 0) +

sgn(p)

p

(λ + 2µ)2

2µ(λ + µ)

d

dy
α2(p, 0)

− i

p

µ

2(λ + µ)

d

dy
α1(p, 0).

(3.30)

After applying the inverse Fourier transform to (3.30) one obtains the Neumann to

Dirichlet map:

u1,1(x, 0) = − λ + 2µ

2µ(λ + µ)π
−
∫ ∞

−∞

σ12(r, 0)− µᾰ2(r, 0)

r − x
dr +

1

2(λ + µ)
σ22(x, 0)

+
λ + 2µ

2(λ + µ)

(
ᾰ1(x, 0) +

1

π

d

dy
−
∫ ∞

−∞

∫ r

0

ᾰ1(s, 0)ds
dr

r − x

− d

dy

∫ x

0

ᾰ2(s, 0)ds

)

u2,1(x, 0) = − λ + 2µ

2µ(λ + µ)π
−
∫ ∞

−∞

σ22(r, 0)− λᾰ1(r, 0)

r − x
dr − 1

2(λ + µ)
σ12(x, 0)

+
2λ + 3µ

2(λ + µ)
ᾰ2(x, 0) +

(λ + 2µ)2

2µ(λ + µ)π

d

dy
−
∫ ∞

−∞

∫ r

0

ᾰ2(s, 0)

r − x
dsdr

+
µ

2(λ + µ)

d

dy

∫ x

0

ᾰ1(s, 0)ds.

(3.31)

3.3. Model with Constant Surface Tension and Zero Mutual Body Force Term

As a first step in our analysis we consider a model with constant surface tension

(γ̃ ≡ const) and zero mutual body force, i.e., bκ = 0 in (3.6). In particular, αj(p, y) ≡
0, j = 1, 2 and the Dirichlet to Neumann and Neumann to Dirichlet maps reduce
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respectively to

σ12(x, 0) =
2µ2

λ + 3µ
u2,1(x, 0) +

2µ(λ + 2µ)

(λ + 3µ)π
−
∫ ∞

−∞

u1,1(r, 0)

r − x
dr

σ22(x, 0) = − 2µ2

λ + 3µ
u1,1(x, 0) +

2µ(λ + 2µ)

(λ + 3µ)π
−
∫ ∞

−∞

u2,1(r, 0)

r − x
dr

(3.32)

and

u1,1(x, 0) = − λ + 2µ

2µ(λ + µ)π
−
∫ ∞

−∞

σ12(r, 0)

r − x
dr +

1

2(λ + µ)
σ22(x, 0)

u2,1(x, 0) = − λ + 2µ

2µ(λ + µ)π
−
∫ ∞

−∞

σ22(r, 0)

r − x
dr − 1

2(λ + µ)
σ12(x, 0).

(3.33)

Substituting the first equation of (3.33) into the second of (3.32) and using the bound-

ary conditions on |x| > 1 - (3.15), one arrives at

σ22(x, 0) =
2µ(λ + µ)

(λ + 2µ)π
−
∫ 1

−1

u2,1(r, 0)

r − x
dr +

µ

(λ + 2µ)π
−
∫ 1

−1

σ12(r, 0)

r − x
dr

=
E

2(1− ν2)π
−
∫ 1

−1

u2,1(r, 0)

r − x
dr +

1− 2ν

2(1− ν)π
−
∫ 1

−1

σ12(r, 0)

r − x
dr.

(3.34)

Here E and ν denote Young’s modulus and Poisson’s ratio respectively:

E =
µ(3λ + 2µ)

λ + µ
, ν =

λ

2(λ + µ)
.

We now linearize the jump momentum balance boundary conditions (3.14) under

the assumption that ui,j(x, 0) and ui,jk(x, 0) are small. The solution of the linearized

problem will then be checked for consistency with the assumptions made.

From (3.14) it is evident that the asymptotic form of the jump momentum bal-

ance equations is

σ12(x, 0) = 0 + h.o.t., |x| ≤ 1

σ22(x, 0) = −γ̃u2,11(x, 0) + h.o.t., |x| ≤ 1.

(3.35)

Note that the Dirichlet to Neumann and the Neumann to Dirichlet maps (and

consequently equation (3.34)) were derived under the assumption that û1,1(p, y) and
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û2,1(p, y) vanish in the limit as y → ∞, whereas the far field loading condition for

our problem is given by (3.17). In order to reduce the considered problem to a

problem which satisfies the above assumptions, we use the linearity of the differential

momentum balance and the (linearized) boundary conditions and introduce uf and

u0 such that u = uf + u0 with uf being the displacement field corresponding to the

homogeneous stress field

Tf
κ =




0 0

0 σ


 . (3.36)

Since the stress and strain tensors corresponding to uf are related constitutively by

Hooke’s law, i.e., Tf
κ = 2µEf + λtr(Ef ), where Ef = 1

2
(∇uf + (∇uf )T ), one easily

finds

uf
1(x, y) = − λσ

4µ(λ + µ)
x

uf
2(x, y) =

(λ + 2µ)σ

4µ(λ + µ)
y.

(3.37)

The stress corresponding to u0 vanishes in the limit as y →∞, and consequently

lim
y→∞

û0
1,1(p, y) = 0, and lim

y→∞
û0

2,1(p, y) = 0,

that is, u0 satisfies the assumptions under which equation (3.34) was derived. From

the definition of u0 and equations (3.35) and (3.36) one concludes that

σ0
12(x, 0) = 0 + h.o.t., |x| ≤ 1

σ0
22(x, 0) = −σ − γ̃u2,11(x, 0) + h.o.t., |x| ≤ 1.

(3.38)

Substituting the above equations into (3.34) one arrives at

−σ − γ̃u0
2,11(x, 0) =

E

2(1− ν2)π
−
∫ 1

−1

u0
2,1(r, 0)

r − x
dr. (3.39)
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Let us define

φ(x) = u0
2,1(x, 0), ζ =

E

2(1− ν2)
. (3.40)

Then equation (3.39) takes the form

γ̃φ′(x) +
ζ

π
−
∫ 1

−1

φ(r)

r − x
dr = −σ, x ∈ [−1, 1]. (3.41)

This is a Cauchy singular, linear integro-differential equation. It arises, for example,

when modeling combined infrared gaseous radiations and molecular conduction. Ab-

dou ([1]) and Badr ([6]) derive the solution as a series of Legendre polynomials, while

Frankel in his 1995 paper [16] derives the solution of an equation of the type (3.41)

as a series of Chebyshev polynomials. It should be noted that while Frankel consid-

ers some numerical experiments, he does not study the convergence of the obtained

infinite system of linear algebraic equations. Various numerical approaches to solving

equations of a similar type were considered in [5, 41].

3.3.1. Chebyshev Polynomials

In this section we summarize some well-known properties of the Chebyshev polyno-

mials ([32]).

The Chebyshev polynomials of the first and second kind Tn(x) and Un(x) are

polynomials in x of degree n, defined respectively by

Tn(x) = cos nθ when x = cos θ

and

Un(x) =
sin(n + 1)θ

sin θ
when x = cos θ.

Both {Tn} and {Un} form sequences of orthogonal polynomials on the interval [−1, 1].

The first kind Chebyshev polynomials are orthogonal with respect to the weight
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function w1(x) = (1− x2)−1/2, i.e.,

〈Tm, Tn〉w1 =

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =





0, m 6= n

π, m = n = 0

π
2
, m = n 6= 0.

(3.42)

Similarly, the second kind Chebyshev polynomials are orthogonal with respect to the

weight function w2(x) = (1− x2)1/2:

〈Um, Un〉w2 =

∫ 1

−1

Um(x)Un(x)
√

1− x2dx =
π

2
δmn,

where δmn is the Kronecker symbol.

Using the definition of Tn(x) one readily obtains

Tm(x)Tn(x) =
1

2
(Tm+n(x) + T|m−n|(x)). (3.43)

By means of the usual substitution x = cos θ,

∫
Tn(x)dx =

1

2

(
cos(n + 1)θ

n + 1
− cos |n− 1|θ

n− 1

)

where, in the case n = 1, the second term is omitted. Hence

∫ 1

−1

Tn(x)dx =





2
1−n2 , n = 0, 2, ...

0, n = 1, 3, ... .
(3.44)

The formula for the derivative of Tn(x) in terms of the second kind polynomials is

given by

d

dx
Tn = nUn−1(x). (3.45)

Another class of formulas we need concerns integration of the Chebyshev polynomials
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against certain Hilbert-type kernels, namely

−
∫ 1

−1

Tn(r)√
1− r2(r − x)

dr = πUn−1(x) (3.46)

and

−
∫ 1

−1

Un−1(r)

√
1− r2

(r − x)
dr = −πTn(x). (3.47)

3.3.2. Solution Method

One can show ([53]) that the general solution of the singular integral equation

ψ(x) =
1

π
−
∫ 1

−1

φ(r)

r − x
dr (3.48)

is given by

φ(x) = − 1√
1− x2

(
1

π
−
∫ 1

−1

ψ(r)

√
1− r2

r − x
dr + C

)
. (3.49)

In essence, formula (3.49) gives an inverse of the finite Hilbert transform operator

(3.48). Applying (3.49) to equation (3.41) yields

φ(x) =
1

ζπ
√

1− x2
−
∫ 1

−1

(φ′(r)− f)

√
1− r2

r − x
dr +

C

ζ
√

1− x2
. (3.50)

Recall that φ(x) is defined by (3.40) and that u2(±1, 0) = 0 due to (3.15). Conse-

quently, using (3.37) one obtains

∫ 1

−1

φ(x)dx =

∫ 1

−1

(u2,1(x, 0)− uf
2,1(x, 0))dx = 0.

Hence, integration over (3.49) on [−1, 1] implies that

0 =

∫ 1

−1

1√
1− x2

(
1

π
−
∫ 1

−1

ψ(r)

√
1− r2

r − x
dr + C

)
dx

=
1

π

∫ 1

−1

ψ(r)
√

1− r2

(
−
∫ 1

−1

1√
1− x2(r − x)

dx

)
dr + C

∫ 1

−1

1√
1− x2

dx

= πC
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from where one concludes that C = 0. Here we have used

∫ 1

−1

1√
1− x2

dx = π

and

−
∫ 1

−1

1√
1− x2(r − x)

dx = 0 for |r| < 1.

For a proof of the latter see [53].

Further, because of the symmetry of the problem, φ(x) is an odd function of x.

Using the fact that T2k is an even polynomial, while T2k+1 is odd, we assume that

φ(x) has an expansion of the form

φ(x) =
∞∑

k=0

a2k+1T2k+1(x). (3.51)

Formally taking the derivative of (3.51) and using (3.45) one obtains

φ′(x) =
∞∑

k=0

(2k + 1)a2k+1U2k(x).

Substitution of these into (3.50) yields

√
1− x2

∞∑

k=0

a2k+1T2k+1(x) =
1

ζπ
−
∫ 1

−1

( ∞∑

k=0

(2k + 1)a2k+1U2k(r)− fU0

) √
1− r2

r − x
dr

where we have used that f ≡ const and U0(x) ≡ 1. Now, application of (3.47) to the

above equation leads to

√
1− x2

∞∑

k=0

a2k+1T2k+1(x) = −1

ζ

( ∞∑

k=0

(2k + 1)a2k+1T2k+1(x)− fT1(x)

)
.

Use of the orthogonality property of the first kind Chebyshev polynomials (3.42)

implies

∞∑

k=0

a2k+1

∫ 1

−1

T2k+1(x)Tn(x)dx = − π

2ζ

( ∞∑

k=0

(2k + 1)a2k+1δ2k+1,n − fδ1n

)
.
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Further, this together with (3.43) and (3.44) leads to the following infinite system of

equations for the expansion coefficients am

∑

m=2k+1

am

(
1

1− (m + n)2
+

1

1− (m− n)2
+

πm

2ζ
δmn

)
= − πσ

2ζγ̃
δ1n, (3.52)

where n = 2l + 1, l ∈ N.

Our goal now is to show convergence of the above system of equations, i.e., that

the solutions of the truncated systems converge to the solution of (3.52). In addition,

we need to find under what conditions the solution φ(x) of (3.41) is bounded on

[−1, 1], that is, unlike the solution of the classical crack problem, the two crack

surfaces come together at an edge, rather than a blunt tip. Taking into account the

series representation (3.51) of φ(x) and that Tn(1) = 1 and Tn(−1) = (−1)n, one

concludes that a necessary and sufficient condition for this is

∑
|ak| < ∞,

i.e., {ak} ∈ l1. These issues will be investigated in detail in the following section.

3.3.3. Convergence Results

Let L(X) denote the algebra of bounded linear operators A on a Banach space X

with domains D(A) = X. For a matrix A = (aij), let A = D + F , where D =

diag(a11, a22, ...) and F = A − D. The identity operator on X is denoted by I.

The following theorem is due to Farid (Theorem 2.1, [11]) and Farid and Lancaster

(Theorem 2.2, [12]).

Theorem 1. Let A = (aij) be a matrix operator on lp, 1 ≤ p ≤ ∞, and assume that:

1. aii 6= 0 for all i ∈ N and |aii| → ∞ as i →∞.
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2. There is a s ∈ [0, 1) such that for all i ∈ N,

Pi =
∑

j 6=i

|aij| = si|aii|, where si ∈ [0, s].

3. Either FD−1 ∈ L(lp) and (I + θFD−1)−1 exists and is in L(lp) for every θ ∈
[0, 1], or D−1F ∈ L(lp) and (I + θD−1F )−1 exists and is in L(lp) for every

θ ∈ [0, 1].

Then:

1. The spectrum σ(A) of the closed operator A is nonempty and consists of a

discrete, countable set of nonzero eigenvalues {λi : i ∈ N} lying in the set
⋃∞

i=1 Ri, where Ri = {z ∈ C : |z − aii| ≤ Pi}.

2. Furthermore, any set of r Gershgorin discs whose union is disjoint from all

other Gershgorin discs intersects σ(A) in a finite set of eigenvalues of A with

total algebraic multiplicity r.

3. There exists a sequence of compact operators converging in norm to A−1.

Let B = (blk), where bkl are the nonzero coefficients of the infinite linear system

(3.52), i.e.,

bkl =

(
1

1− (2k + 2l + 2)2
+

1

1− (2k − 2l)2
+

π(2k + 1)

2ζ
δkl

)
. (3.53)

Let In = (e
(n)
ij ) with

e
(n)
ij =





δij, if i, j ≤ n

0, otherwise.

We next show that, provided n is chosen large enough, A = B + In satisfies the

conditions of Theorem 1 with p = 1. Let, as above, F denote the off-diagonal part of
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A, i.e., F = ((1− δkl)bkl). Condition (1) is clearly satisfied. Next, note that

∞∑

k=0,k 6=l

(
1

|1− (2k + 2l + 2)2| +
1

|1− (2k − 2l)2|
)

= 1− 1

4(2l + 1)2 − 1
.

Thus

Pl =
∑

k 6=l

|bkl| =
∑

k

|Fkl| ≤ 1− 1

4(2l + 1)2 − 1
< 1. (3.54)

The diagonal elements of A are given by

akk =





bkk + 1 = 2− 1

4(2k + 1)2 − 1
+

π(2k + 1)

2ζ
>

5

3
+

π

ζ
k, if k ≤ n

bkk = 1− 1

4(2k + 1)2 − 1
+

π(2k + 1)

2ζ
>

2

3
+

π

ζ
k, if k > n.

(3.55)

Thus A is strictly diagonally dominant and satisfies condition (2), provided we choose

n >
ζ

3π
.

Further, note that F ∈ L(l1). Indeed, let || · ||1 denote the norm in l1, i.e., for

x = (x1, x2, ...) ∈ l1, ||x||1 =
∑

i |xi|. Then

||F ||1 = sup
||x||1=1

||Fx||1 = sup
||x||1=1

∑

k

∣∣∣∣∣
∑

l

Fklxl

∣∣∣∣∣ ≤ sup
||x||1=1

∑

l

(
|xl|

∑

k

|Fkl|
)

≤ 1,

(3.56)

where we used equation (3.54) and the symmetry of F . The change of the order of

summation is justified by the absolute convergence of the last sum in (3.56).

Also, (3.55) implies that ||D−1||1 < 1 and consequently, ||FD−1||1 < 1 which

ensures that (I +θFD−1)−1 exists and is in L(l1) for all θ ∈ [0, 1]. Thus, the operator

A = B + In with n >
ζ

3π
satisfies all the hypotheses of Theorem 1.

Finally, from hypothesis (3) and since D−1 is a compact operator on l1 (see

condition (1)), it follows that A−1 exists and is compact on l1. In addition, the proof

provided in [12] constructs an explicit sequence of compact operators converging in

norm to A−1.
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Fig. 3.2. Approximation of u2,1(x, 0) by a finite sum of Chebyshev polynomials (400

terms) for γ = 0.05 and far-field loading σ = 0.01, 0.02, 0.04.

Returning to our system of interest (3.52), it can be written in the form

Bx = y ⇐⇒

(I − A−1In)x = A−1y

(3.57)

where the components of B are given by (3.53). Note that I −A−1In is a finite rank

perturbation of the identity operator, so that (3.57) is in essence reduced to solving

a finite dimensional system of linear equations.

3.3.4. Numerical Experiments

In Table 3.1 the values at the crack tip of u2,1(x, 0), obtained using the method

described in Section 3.3.2, are compared for various values of the (nondimensionalized)

far field loading parameter σ and surface excess property γ̃. One can observe that
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Fig. 3.3. Approximation of u2,1(x, 0) by a finite sum of Chebyshev polynomials (400

terms) for far-field loading σ0 = 0.02 and γ̃ = 0.005, 0.01, 0.02.

the larger the value of the surface excess property, the smaller the slope of the crack

profile at the crack tip.

From the numerical experiments (Fig. 3.2 and Fig. 3.3) it is clear that the de-

scribed method yields a solution u2(x, 0) for the crack profile such that u2(x, 0) is a

monotonically increasing function on (−1, 0) and monotonically decreasing on (0, 1).

Furthermore, the slope of the crack profile at the crack tip increases with an increase in

the far field loading. In addition, the surface excess property γ̃, with the appropriate

boundary condition, given by the jump momentum balance leads to a finite opening

angle at the crack tip. However, (3.41) implies that if the crack surfaces do not come

together at a cusp, i.e., φ(±1) = u2,1(±1, 0) is nonzero, then φ′(x) = u2,11(x, 0) has a

logarithmic singularity at the crack tips. Using (3.35) one concludes that this leads

to a logarithmically singular stress at the crack tip. This is an improvement from the
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Table 3.1. Values of u2,1(1, 0) for various values of the (non-dimensional) far-field load-

ing σ and (non-dimensional) excess property γ̃.

γ̃ σ u2,1(1, 0)

0.05 0.01 -0.0694

0.02 -0.1388

0.04 -0.2776

0.1 0.01 -0.0463

0.02 -0.0927

0.04 -0.1853

0.2 0.01 -0.0297

0.02 -0.0595

0.04 -0.1190

classical LEFM model which leads to a square-root singularity of the crack tip stress,

however, as in LEFM, any singular stress is inconsistent with the assumptions made

to linearize the equations and derive (3.41).

Remark 3. Note that if the surface excess property is modeled using (2.4), apply-

ing perturbation theory techniques (Section 2.6), we can approximate γ̃(x) by (2.61).

Therefore, in the linearized model γ̃(x) is reduced to

γ̃(x) ≈ π

∫ ∞

0

s3ψ̃(s) ds ≡ const,

which, as shown above, leads to a finite, nonzero crack tip angle and a cleavage stress

which has a logarithmic singularity at the crack tip.



50

3.4. Model with Curvature Dependence in the Surface Tension and Zero Mutual

Body Force Term

In this section, as a next step, we study a model in which the mutual body force is

assumed to be zero but we allow for curvature dependence in the excess property γ̃

of the fracture surface, i.e.,

γ̃ = γ̃(H). (3.58)

Even though curvature-dependent surface tension models are not common in the

fracture literature, the effect of curvature-dependent surface tension has been widely

studied in the context of nucleation theory ([35, 36, 42]).

Recall that the curvature H is given by (2.28). Assuming that stresses and

strains remain small and combining (3.12) and (3.58) one concludes that one has the

following asymptotic expansion for γ̃:

γ̃(x) = γ0 + γ1u2,11(x, 0) + h.o.t. (3.59)

where γ0 ≡ const and γ1 ≡ const. After substituting (3.59) into (3.14) and linearizing

the jump momentum balance equations under the assumption that ui,j(x, 0) and

ui,jk(x, 0), i, j, k = 1, 2 are small, we obtain

σ12(x, 0) = γ1u2,111(x, 0) + h.o.t.

σ22(x, 0) = −γ0u2,11(x, 0) + h.o.t. .

(3.60)

We proceed in a similar way to the approach taken in the case of constant γ̃

(Section 3.3). Using (3.34) and splitting the displacement vector into u = u0 + uf ,

where the components of uf are given by (3.37), we arrive at the following linear
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integro-differential equation for φ(x) = u0
2,1(x, 0) = u2,1(x, 0):

γ0φ
′(x) +

1

π
−
∫ 1

−1

ζ1φ(r) + ζ2γ1φ
′′(r)

r − x
dr = −σ, x ∈ (−1, 1), (3.61)

where

ζ1 =
E

2(1− ν2)
and ζ2 =

1− 2ν

2(1− ν)
.

First notice that unlike in the case with γ̃ ≡ const (cf. (3.41)), (3.61) cannot

have a solution φ(x), such that φ′(x) is singular at the endpoints. The reason being

that this would imply φ′′(x) /∈ L1([−1, 1]) and consequently the Cauchy principal

value integral in (3.61) would not exist. In its turn, this implies that every solution

φ(x) of (3.61) satisfies

ζ1φ(±1) + ζ2γ1φ
′′(±1) = 0. (3.62)

Thus, the solution φ(x) “adjusts itself” so that (3.62) is satisfied. Note that (3.62)

cannot be viewed as a boundary condition.

Further, taking into account (3.15)1 we look for a solution of (3.61) subject to

φ(−1) = φ(1) = 0 (3.63)

so that u2,1(x, 0) is continuous at the crack tips. Furthermore, the symmetry of the

problem requires that the crack profile u2(x, 0) be an even function of x and therefore

we look for a solution φ of (3.61) such that

φ(x) = −φ(−x), x ∈ (−1, 1). (3.64)

Theorem 2. Problem (3.61), subject to (3.63) and (3.64), has a unique solution for

all, apart from countably many, values of the parameters γ0 and γ1.

Proof. We use a standard technique introduced by Mikhlin and Prössdorf in [34],

Chapter VII, to reduce (3.61) to canonical form.
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Let ψ(x) := φ′′(x). Then

φ′(x) =

∫ 1

−1

ω0(x, r)ψ(r) dr + c1 (3.65)

and

φ(x) =

∫ 1

−1

ω1(x, r)ψ(r) dr + c1(x + 1) + c2, (3.66)

where

ω0(x, r) =





1, r ∈ (−1, x)

0, r ∈ (x, 1),
ω1(x, r) =

∫ 1

−1

ω0(x, t)ω0(t, r) dt

and c1 = φ′(−1), c2 = φ(−1). After substituting (3.65) and (3.66) into (3.61) we

arrive at a singular integral equation for ψ(x) of the form

γ1ζ2

π
−
∫ 1

−1

ψ(r)

r − x
dr +

∫ 1

−1

k(x, r)ψ(r) dr = −σ − γ0c1 − ζ1

π
−
∫ 1

−1

c1(r + 1) + c2

r − x
dr, (3.67)

where

k(x, r) = γ0ω0(x, r) +
ζ1

π
−
∫ 1

−1

ω1(t, r)

t− x
dr.

Using the boundary conditions (3.63), we have c2 = 0. Also, combining (3.63), (3.64)

and (3.65) we find

0 =

∫ 1

0

φ′(x) dx =

∫ 1

0

∫ 1

−1

ω0(x, r)ψ(r) dr dx + c1. (3.68)

Thus, using (3.63) and (3.64), (3.67) can be written in the (canonical) form

R[ψ](x) :=
γ1ζ2

π
−
∫ 1

−1

ψ(r)

r − x
dr +

∫ 1

−1

k̃(x, r)ψ(r) dr = −σ, (3.69)

where

k̃(x, r) = γ0ω0(x, r)+
ζ1

π
−
∫ 1

−1

ω1(t, r)

t− x
dt−γ0

∫ 1

0

ω0(t, r) dt−ζ1

π
−
∫ 1

−1

∫ 1

0

ω0(s, r)
t + 1

t− x
ds dt.
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Let L2
%([−1, 1]) denote the weighted space of functions having a finite norm

||v||% =

(∫ 1

−1

(1− x2)1/2|v(x)|2 dx

)1/2

.

It is well known ([34, 38, 41]) that the singular integral operator R[ψ] is a Fredholm

operator from L2
%([−1, 1]) to L2

%([−1, 1]) of index 1. The index depends only on the

dominant part of the operator - the singular integral operator

R1[ψ](x) :=
1

π
−
∫ 1

−1

ψ(r)

r − x
dr,

and is independent of any compact perturbation, in particular, it is independent of

R2[ψ](x) :=

∫ 1

−1

k̃(x, r)ψ(r) dr.

Now, recall formula (3.49) which provides an inverse of the finite Hilbert trans-

form. Using an argument similar to the one given in Section 3.3.2, we conclude

that R1[ψ](x), restricted to the space of functions ψ with
∫ 1

−1
ψ(x) dx = 0, has a

trivial null space. Therefore, (3.69) is equivalent to

γ1ζ2ψ(x) + R−1
2 R1[ψ](x) = R−1

2 [σ](x).

Note that R−1
2 R1 is a compact operator, being the composition of a compact with

a continuous operator, and consequently, it has a countable spectrum σ(R−1
2 R1).

Furthermore, γ1ζ2I + R−1
2 R1, where I is the identity operator, is invertible, unless

−γ1ζ2 ∈ σ(R−1
2 R1). This concludes the proof.

3.4.1. Numerical Experiments

To find a numerical solution to problem (3.61), subject to (3.63) and (3.64), we

employ a spline collocation method, similar to the one introduced by Samŏılova in

[40], where a first order singular integro-differential equation (SIDE) is solved. Spline
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collocation methods for SIDEs were considered by many others, including Schmidt

([43]). Using (3.64), it suffices to solve the problem on (0, 1). Further, the boundary

conditions (3.63) combined with (3.62) imply that φ(1) = φ′′(1) = 0 and (3.64)

yields φ(0) = φ′′(0) = 0. Consequently we can use a natural cubic spline S(x) to

approximate the solution φ(x). Let 0 = x1 < x2 < ... < xN+1 = 1 be the evenly-

spaced spline nodes, i.e.,

S(x) =





S1(x), x ∈ [x1, x2]

S2(x), x ∈ [x2, x3]

...

SN(x), x ∈ [xN , xN+1]

with ([7])

Si(x) =
zi+1(x− xi)

3 + zi(xi+1 − x)3

6h
+

(
yi+1

h
− h

6
zi+1

)
(x− xi)

+

(
yi

h
− h

6
zi

)
(xi+1 − x).

(3.70)

Here h = 1/N , yi approximates φ(xi) and the coefficients zi can be found by solving

the tridiagonal system of equations

z1 = 0

zi−1 + 4zi + zi+1 =
6

h2
(yi+1 − 2yi + yi−1)

zN+1 = 0.

Using (3.64), we transform (3.61) into

γ0φ
′(x) +

2

π
−
∫ 1

0

(ζ1φ(r) + ζ2γ1φ
′′(r))r

r2 − x2
dr = −σ, x ∈ (0, 1). (3.71)

The Cauchy principal value integral is calculated with the help of a product integration
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method ([9, 54]), i.e.,

−
∫ 1

0

(ζ1S(r) + ζ2γ1S
′′(r))r

r2 − x2
dr =

N∑
i=1

−
∫ xi+1

xi

(ζ1Si(r) + ζ2γ1S
′′
i (r))r

r2 − x2
dr,

and, using (3.70), each of the integrals on [xi, xi+1] is evaluated exactly.

In the end, the following (N − 1) × (N − 1) linear system of equations for the

unknowns y2, y3, ..., yN is solved

γ0S
′
i(ti) +

N∑
j=1

−
∫ xj+1

xj

(ζ1Sj(r) + ζ2γ1S
′′
j (r))r

r2 − t2i
dr = −σ, i = 2...N, (3.72)

where ti is the midpoint of the interval [xi, xi+1].

Provided below are graphs of the slope of the crack profile u2,1(x, 0) and of

γ1u2,11(x, 0) for ν = 0.33 and various values of the parameters γ0, γ1 and the far-

field loading σ. Note that the parameters are nondimensionalized as in (2.7) and

ζ?
1 = ζ1/E, but for simplicity of notation the superscript ? is dropped.

Fig. 3.4. Graph of u2,1(x, 0) and of γ1u2,11(x, 0) for γ0 = 0.1, γ1 = 1 and far-field

loading σ = 0.01, 0.02, 0.04.

From the numerical experiments (Fig. 3.4) it is clear that |σ22(1, 0)| - the stress
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Fig. 3.5. Graph of u2,1(x, 0) and of γ1u2,11(x, 0) for γ0 = 0.1, far-field loading σ = 0.02

and γ1 = 0.9, 1, 1.1.

Fig. 3.6. Graph of u2,1(x, 0) and of γ1u2,11(x, 0) for γ1 = 1, far-field loading σ = 0.02

and γ0 = 0.05, 0.1, 0.2.
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Table 3.2. Value of φ′(1) = u2,11(1, 0) for various values of the (non-dimensional) far–

field loading σ and (nondimensionalized) γ0 and γ1.

γ0 γ1 σ φ′(1) γ0 γ1 σ φ′(1) γ0 γ1 σ φ′(1)

0.05 0.9 0.01 0.0600 0.1 0.9 0.01 0.0789 0.2 0.9 0.01 0.2021

0.02 0.1199 0.02 0.1577 0.02 0.4042

0.04 0.2398 0.04 0.3154 0.04 0.8084

1 0.01 0.0503 1 0.01 0.0631 1 0.01 0.1251

0.02 0.1006 0.02 0.1262 0.02 0.2501

0.04 0.2012 0.04 0.2525 0.04 0.5003

1.1 0.01 0.0433 1.1 0.01 0.0526 1.1 0.01 0.0902

0.02 0.0866 0.02 0.1051 0.02 0.1803

0.04 0.1732 0.04 0.2102 0.04 0.3607

at the crack tip (in absolute value) is an increasing function of the far field loading

(cf. (3.60)). Furthermore, the larger the value of γ1, the smaller the crack tip stress

(Fig. 3.5). Interestingly, unlike in the constant surface tension model (Section 3.3),

the crack tip stress is an increasing function of γ0 (Fig. 3.6). In Table 3.2 the

values at the crack tip of φ′(x) = u2,11(x, 0), in the case of curvature-dependent

surface tension, are compared for various values of the (nondimensionalized) far field

loading parameter σ and the parameters γ0 and γ1 which determine the surface excess

property γ̃(x).

It should be noted here that for certain values of the parameters, namely when

γ0 is not much smaller than γ1, the model yields unphysical solutions and predicts

interpenetration of the upper and lower crack surfaces (Fig. 3.7). Further, models

for which γ0 is much larger than γ1 predict highly oscillatory solutions.
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Fig. 3.7. Graph of u2,1(x, 0) and of γ1u2,11(x, 0) for γ0 = 0.1, γ1 = 1 and far-field

loading σ = 0.01, 0.02, 0.04.

Most importantly, introducing curvature dependence into the surface tension

removes the crack tip stress singularity and leads to a crack profile such that the two

crack surfaces meet at a cusp at the crack tip. Moreover, models with curvature-

dependent surface tension yield solutions such that u2,1(x, 0) and u2,11(x, 0) remain

small (when σ is small enough), which is consistent with the assumptions made to

derive (3.61).

3.5. Model Including Mutual Body Force Correction

In order to construct the Dirichlet to Neumann (3.29) and the Neumann to Dirichlet

(3.31) maps for the model with nonzero mutual body force correction, one first needs

to find a particular solution of (3.21). The system (3.21) can be written in the form

µ
d2

dy2
Y1 + ip(λ + µ)

d

dy
Y2 − p2(λ + 2µ)û1,1 = B3(y)

(λ + 2µ)
d2

dy2
Y2 + ip(λ + µ)

d

dy
Y1 − p2µY1 = B4(y),

(3.73)
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with

Y1(p, y) = û1,1(p, y), Y2(p, y) = û2,1(p, y),

B3(p, y) = −ipb̂κ1(p, y), B4(p, y) = −ipb̂κ2(p, y).

We often suppress the dependence on p whenever this dependence is clear from the

context. We look for a particular solution P(p, y) = 〈α1(p, y), α2(p, y)〉T of the form

α1(p, y) =

∫ ∞

y

(g1(p, s) + (y − s)g2(p, s)) e|p|(y−s)ds

α2(p, y) =

∫ ∞

y

(g3(p, s) + (y − s)g4(p, s)) e|p|(y−s)ds.

(3.74)

Let g′j(p, y) denote
∂gj

∂y
(p, y), j = 1, ..., 4. Substituting (3.74) into (3.73) we obtain

that gi(y), i = 1, ..., 4 have to satisfy

− µ(g′1 + |p|g1 + g2)− ip(λ + µ)g3

+ |p|µ
∫ ∞

y

(
|p|g1(s) + 2g2(s) + |p|(y − s)g2(s)

)
e|p|(y−s)ds

+ ip(λ + µ)

∫ ∞

y

(
|p|g3(s) + g4(s) + |p|(y − s)g4(s)

)
e|p|(y−s)ds

− p2(λ + 2µ)

∫ ∞

y

(
g1(s) + (y − s)g2(s)

)
e|p|(y−s)ds = B3(p, y),

(3.75)

and

− (λ + 2µ)(g′3 + |p|g3 + g4)− ip(λ + µ)g1

+ |p|(λ + 2µ)

∫ ∞

y

(
|p|g3(s) + 2g4(s) + |p|(y − s)g4(s)

)
e|p|(y−s)ds

+ ip(λ + µ)

∫ ∞

y

(
|p|g1(s) + g2(s) + |p|(y − s)g2(s)

)
e|p|(y−s)ds

− p2µ

∫ ∞

y

(
g3(s) + (y − s)g4(s)

)
e|p|(y−s)ds = B4(p, y).

(3.76)

One can easily check that (3.75) and (3.76) reduce respectively to

−µ(g′1 + |p|g1 + g2)− ip(λ + µ)g3 = B3(p, y) (3.77)
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and

−(λ + 2µ)(g′3 + |p|g3 + g4)− ip(λ + µ)g1 = B4(p, y) (3.78)

provided

g4(p, y) = − λ + µ

λ + 3µ
(ipg1(p, y) + |p|g3(p, y))

g2(p, y) = isgn(p)g4(p, y) =
λ + µ

λ + 3µ
(|p|g1(p, y)− ipg3(p, y)).

(3.79)

Using (3.79), (3.77) and (3.78) one concludes that g1(y) and g3(y) have to satisfy the

following system of equations

g′1 +
2|p|(λ + 2µ)

λ + 3µ
g1 +

ip(λ + µ)(λ + 2µ)

µ(λ + 3µ)
g3 = −B3

µ

g′3 +
ip(λ + µ)µ

(λ + 2µ)(λ + 3µ)
g1 +

2|p|µ
λ + 3µ

g3 = − B4

λ + 2µ
.

(3.80)

One readily shows that

g1(p, s) =

∫ s

0

e−|p|(s−t)

(
B3(t)

µ

(
− 1 +

|p|(λ + µ)

λ + 3µ
(s− t)

)

+
ip(λ + µ)

µ(λ + 3µ)
B4(t)(s− t)

)
dt

and

g3(p, s) =

∫ s

0

e−|p|(s−t)

(
ip(λ + µ)

(λ + 2µ)(λ + 3µ)
B3(t)(s− t)

− B4(t)

λ + 2µ

(
1 +

|p|(λ + µ)

λ + 3µ
(s− t)

))
dt

satisfy (3.80). Using (3.79), for g2(s) and g4(s) we obtain

g2(p, s) =
λ + µ

λ + 3µ

∫ s

0

e−|p|(s−t)

(
|p|B3(t)

µ

(
− 1 +

|p|(λ + µ)

λ + 2µ
(s− t)

)

+
ip

λ + 2µ
B4(t)

(
1 +

|p|(λ + µ)

µ
(s− t)

))
dt
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and

g4(p, s) =
λ + µ

λ + 3µ

∫ s

0

e−|p|(s−t)

(
ip

µ
B3(t)

(
1− |p|(λ + µ)

λ + 2µ
(s− t)

)

+
|p|B4(t)

λ + 2µ

(
1 +

|p|(λ + µ)

µ
(s− t)

))
dt.

Let us introduce

f1(x) =− 2µ(λ + 2µ)

λ + 3µ
H[ᾰ1](x, 0) +

µ(λ + µ)

λ + 3µ
ᾰ2(x, 0) + µ

d

dy

∫ x

0

ᾰ1(s, 0)ds

f2(x) =− 2µ(λ + 2µ)

λ + 3µ
H[ᾰ2](x, 0) +

(λ + 2µ)(λ + µ)

λ + 3µ
ᾰ1(x, 0)

+ (λ + 2µ)
d

dy

∫ x

0

ᾰ2(s, 0)ds.

(3.81)

With these notations the Dirichlet to Neumann map (3.29) takes the form

σ12(x, 0) =
2µ2

λ + 3µ
u2,1(x, 0) +

2µ(λ + 2µ)

λ + 3µ
H[u1,1](x, 0) + f1(x)

σ22(x, 0) = − 2µ2

λ + 3µ
u1,1(x, 0) +

2µ(λ + 2µ)

λ + 3µ
H[u2,1](x, 0) + f2(x),

(3.82)

while the Neumann to Dirichlet map (3.31) becomes

u1,1(x, 0) =− λ + 2µ

2µ(λ + µ)
(H[σ12](x, 0)−H[f1](x))

+
1

2(λ + µ)
(σ22(x, 0)− f2(x))

u2,1(x, 0) =− λ + 2µ

2µ(λ + µ)
(H[σ22](x, 0)−H[f2](x))

− 1

2(λ + µ)
(σ12(x, 0)− f1(x)).

(3.83)

Here H[·] is the Hilbert transform operator defined in (3.28).

Taking a similar approach to the one presented in Section 3.3, we substitute

equation (3.83)1 into (3.82)2 to obtain

σ22(x, 0) =
2µ(λ + µ)

λ + 2µ
H[u2,1](x, 0) +

µ

λ + 2µ
(H[σ12](x, 0)−H[f1](x)) + f2(x). (3.84)
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Next, we need to evaluate the term arising because of the nonzero mutual body force:

z(x) := − µ

λ + 2µ
H[f1](x) + f2(x). (3.85)

For this purpose, let us list some properties of the Hilbert and Fourier transforms to

be subsequently used. The inverse Fourier transform of e−a|p| is given by

F−1[e−a|p|](x) =
a

π(x2 + a2)
, a > 0. (3.86)

Using (3.28) one shows that H2 = −I, where I is the identity operator, i.e.,

H[H[f ]] = −f. (3.87)

Also, the Hilbert transform commutes with differentiation

H[
dn

dxn
f(x)] =

dn

dxn
H[f ](x). (3.88)

Let ∗ denote the convolution operation, i.e.,

f ∗ g(x) =

∫ ∞

−∞
f(x− y)g(y) dy

then

F−1[f̂(p)ĝ(p)](x) = f ∗ g(x). (3.89)

For the Hilbert transform of a convolution of two functions one can easily show that

H[f ∗ g] = H[f ] ∗ g = f ∗ H[g]. (3.90)
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In addition, for f =
a

π(x2 + a2)
with a > 0,

f =
a

π(x2 + a2)
H [f ] = − x

π(x2 + a2)
df

dx
= − 2ax

π(x2 + a2)2

d

dx
H [f ] =

(x2 − a2)

π(x2 + a2)2

d2f

dx2
=

2a(3x2 − a2)

π(x2 + a2)3

d2

dx2
H [f ] = −2x(x2 − 3a2)

π(x2 + a2)3

d3f

dx3
=

24ax(a2 − x2)

π(x2 + a2)4

d3

dx3
H [f ] =

6(a2 + 2ax− x2)(a2 − 2ax− x2)

π(x2 + a2)4
.

(3.91)

Substituting (3.81) into (3.85) and using (3.87), one obtains

z(x) =λᾰ1(x, 0)− µ(λ + µ)(2λ + 5µ)

(λ + 2µ)(λ + 3µ)
H[ᾰ2](x, 0)

− µ2

λ + 2µ

d

dy

∣∣∣
y=0
H

[∫ x

0

ᾰ1(a, y)da

]
+ (λ + 2µ)

d

dy

∣∣∣
y=0

∫ x

0

ᾰ2(a, y)da.

(3.92)

For the last two terms in (3.92), differentiation of (3.74) with respect to y yields

d

dy

∣∣∣
y=0

α1(p, y) = |p|α1(p, 0) +

∫ ∞

0

g2(p, s)e
−|p|sds

d

dy

∣∣∣
y=0

α2(p, y) = |p|α2(p, 0) +

∫ ∞

0

g4(p, s)e
−|p|sds

from where, after taking the inverse Fourier transform with respect to p and using

(3.23) and (3.28), one obtains

d

dy
ᾰ1(x, 0) = − ∂

∂x
H[ᾰ1](x, 0) +

∫ ∞

0

F−1[g2(p, s)e
−|p|s](x, s)ds

d

dy
ᾰ2(x, 0) = − ∂

∂x
H[ᾰ2](x, 0) +

∫ ∞

0

F−1[g4(p, s)e
−|p|s](x, s)ds.

Using (3.87) and (3.88) one concludes

d

dy

∣∣∣
y=0
H

[∫ x

0

ᾰ1(a, y)da

]
= ᾰ1(x, 0)

+

∫ ∞

0

∫ x

0

H[F−1[g2(p, s)e
−|p|s]](a, s)da ds

(3.93)
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and

d

dy

∣∣∣
y=0

∫ x

0

ᾰ2(a, y)da = −H[ᾰ2](x, 0) +

∫ ∞

0

∫ x

0

F−1[g4(p, s)e
−|p|s](a, s)da ds. (3.94)

It is easy to see that (3.79)2, (3.28) and (3.87) imply

H[F−1[g2]] = −F−1[g4].

Thus, substitution of (3.93) and (3.94) into (3.92) gives

z(x) =
λ2 + 2λµ− µ2

λ + 2µ
ᾰ1(x, 0)−

(
µ(λ + µ)(2λ + 5µ)

(λ + 2µ)(λ + 3µ)
+ λ + 2µ

)
H[ᾰ2](x, 0)

+
µ2 + (λ + 2µ)2

λ + 2µ

∫ ∞

0

∫ x

0

F−1[g4(p, s)e
−|p|s](a, s)da ds.

(3.95)

Using (3.86)-(3.91), after straightforward computations one finds

ᾰ1(x, 0) =

∫ ∞

0

[
bκ1(x, t) ∗

(
−x

2πµ(x2 + t2)
+

(λ + µ)x(x2 + 3t2)

4πµ(λ + 2µ)(x2 + t2)2

)

+bκ2(x, t) ∗
(

−(λ + µ)2t3

2πµ(λ + 2µ)(λ + 3µ)(x2 + t2)2

+
(λ + µ)t

4πµ(λ + 3µ)(x2 + t2)
+

(λ + µ)t(x2 − 3t2)

4π(λ + 2µ)(λ + 3µ)(x2 + t2)2

)]
dt

(3.96)

where the convolution is with respect to x. In a similar way one concludes that

H[ᾰ2](x, 0) =

∫ ∞

0

[
bκ1(x, t) ∗

(
−(λ + µ)x

4π(λ + 2µ)(λ + 3µ)(x2 + t2)

+
(λ + µ)x3

4π(λ + 2µ)(λ + 3µ)(x2 + t2)2
+

(λ + µ)(2λ + 7µ)xt2

4πµ(λ + 2µ)(λ + 3µ)(x2 + t2)2

)

+ bκ2(x, t) ∗
(

−t

2π(λ + 2µ)(x2 + t2)
− (λ + µ)t3

2πµ(λ + 2µ)(x2 + t2)2

)]
dt.

(3.97)
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It is straightforward to show that the last term of (3.95) can be expressed as follows:

∫ ∞

0

∫ x

0

F−1[g4(p, s)e
−|p|s](a, s)da ds =

λ + µ

4πµ(λ + 2µ)

∫ ∞

0

[
bκ1(x, t) ∗ x

x2 + t2
− bκ2(x, t) ∗ t

x2 + t2

]
dt.

(3.98)

One concludes from (3.95) together with (3.96), (3.97) and (3.98) that z(t) is of the

form

z(x) =

∫ ∞

0

[
bκ1(x, t) ∗

(
c1

x

x2 + t2
+ c2

x3

(x2 + t2)2
+ c3

xt2

(x2 + t2)2

)

+bκ2(x, t) ∗
(

d1
t

x2 + t2
+ d2

t3

(x2 + t2)2
+ d3

tx2

(x2 + t2)2

)]
dt

(3.99)

where the constants ci and di, i = 1, 2, 3 depend only on the Lamé parameters λ and

µ.

Next, we linearize the components of the body force term bκ(x, t) under the

assumption that ui,j(x, 0) and ui,jk(x, 0) are small. Recall that the body force in the

current configuration is b = −gradΦ with Φ(x1, x2) - a correction potential of the

form (cf. (2.6) and (2.40))

Φ(x1, x2) =

∫ 1

−1

∫ h(a)

−h(a)

∫ ∞

−∞
ϕ(

√
(x1 − a)2 + (x2 − b)2 + c2)dc db da (3.100)

and that the body force in the reference configuration is bκ = Jb where J is the

determinant of the deformation gradient. Note that the approximation given by

(2.51) cannot be used here as (3.99) requires information about Φ(·, t) for all t ≥ 0,

not only in a neighborhood of the crack surface.

Then, using

(x1, h(x1)) = (X1 + u1(X1, 0), u2(X1, 0)),
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it is easy to see that the components of bκ are

bκ1(X1, X2) = J

∫ 1

−1

∫ u2(a,0)

−u2(a,0)

∫ ∞

−∞

ϕ′(r)√
r

(X1 + u1(X1, X2)− a)dc db da (3.101)

and

bκ2(X1, X2) = J

∫ 1

−1

∫ u2(a,0)

−u2(a,0)

∫ ∞

−∞

ϕ′(r)√
r

(X2 + u2(X1, X2)− b)dc db da (3.102)

where r stands for
√

(X1 + u1(X1, X2)− a)2 + (X2 + u2(X1, X2)− b)2 + c2 and J =

(1 + u1,1)(1 + u2,2) − u1,2u2,1. Linearization of bκ under the assumption of small

displacement gradient leads to

bκ1(X1, X2) ∼
∫ 1

−1

ϑ

(√
(X1 − a)2 + X2

2

)
(X1 − a)u2(a, 0) da (3.103)

and

bκ2(X1, X2) ∼
∫ 1

−1

ϑ

(√
(X1 − a)2 + X2

2

)
X2u2(a, 0) da (3.104)

with

ϑ(s) = 4

∫ ∞

0

ϕ′(
√

s2 + c2)√
s2 + c2

dc.

Thus, in the case of small strains,

z(x) ∼ T [u2](x) =

∫ ∞

0

∫ 1

−1

u2(a, 0)

[

(x− a)ϑ(
√

(x− a)2 + t2) ∗
(

c1x

x2 + t2
+

c2x
3

(x2 + t2)2
+

c3xt2

(x2 + t2)2

)

+ tϑ(
√

(x− a)2 + t2) ∗
(

d1t

x2 + t2
+

d2t
3

(x2 + t2)2
+

d3tx
2

(x2 + t2)2

)]
da dt

=

∫ 1

−1

u2(a, 0)K(x, a) da.

(3.105)

Let φ ∈ C[−1, 1] and ||φ(x)|| = sup−1<x<1 |φ(x)|, where C[−1, 1] is the space of

continuous functions on [−1, 1]. Note that K : [−1, 1] × [−1, 1] → R is a continuous
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function. Consequently, T is a Fredholm integral operator of the first kind.

3.5.1. Model with Constant Surface Tension and a Mutual Body Force Term

First consider the case where the surface excess property γ̃ is a constant. As in

Section 3.3, we split u = u0 + uf where uf is the displacement field corresponding

to the homogeneous stress field determined by the far field loading σ. Proceeding in

the same way as for the derivation of (3.39), one concludes that u0
2,1(x, 0) satisfies

−σ − γ̃u0
2,11(x, 0) =

E

2(1− ν2)π
−
∫ 1

−1

u0
2,1(r, 0)

r − x
dr +K[u0

2,1](x) (3.106)

where

K[u0
2,1](x) = T

[∫ x

−1

u0
2,1(r, 0) dr

]
(3.107)

is a compact operator on C[−1, 1], being the composition of the compact operator T

([56], p. 55) and a bounded operator on C[−1, 1]. Let

φ(x) := u0
2,1(x, 0)

and let the singular integro-differential operator S be defined by

S[φ](x) := γ̃φ′(x) +
E

2(1− ν2)π
−
∫ 1

−1

φ(r)

r − x
dr.

Then (3.106) is equivalent to

S[φ](x) +K[φ](x) = −σ. (3.108)

Conjecture 1. If γ̃ = 0, then for any physically reasonable correction potential the

solution φ of the singular integral equation (3.108) exhibits a square root singularity

at the crack tip.
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3.5.2. Model with Curvature-dependent Surface Tension and a Mutual Body Force

Term

In the case when the surface excess property is curvature-dependent and the model

includes a body force correction term, after linearizing the differential and jump mo-

mentum balances, using arguments similar to the ones given in the previous section,

it is straightforward to show that u0
2,1(x, 0) satisfies

γ0u
0
2,11(x, 0) +

1

π
−
∫ 1

−1

ζ1u
0
2,1(r, 0) + ζ2γ1u

0
2,111(r, 0)

r − x
dr +K[u0

2,1](x) = −σ. (3.109)

Let

S̃[φ](x) := γ0u
0
2,11(x, 0) +

1

π
−
∫ 1

−1

ζ1u
0
2,1(r, 0) + ζ2γ1u

0
2,111(r, 0)

r − x
dr.

Here the notation introduced in Section 3.4 is used. Then (3.109) can be written in

the form

S̃[φ](x) +K[φ](x) = −σ. (3.110)

Conjecture 2. If γ̃(x) ≈ γ0 + γ1u2,11(x, 0) with γ1 6= 0, i.e., there is nonzero

curvature-dependent surface tension introduced as an excess property of the fracture

surfaces, then (3.109) has a unique solution φ(x) = u0
2,1(x, 0) for all, apart from

countably many values of the parameters γ0 and γ1. Moreover, φ(x) and φ′(x) are

bounded on [−1, 1], i.e., the operator S̃[·] + K[·], where K is the compact operator

given by (3.107), behaves in a similar way to the singular integro-differential operator

S̃[·].

In other words, it is the surface tension γ̃ of the fracture surfaces, together with

the appropriate fracture surface boundary conditions in the form of the jump mo-

mentum balance that is responsible for removing the square root singularities at the

fracture tips, characteristic of the classical LEFM model. Furthermore, including a

mutual body force term in the model, after linearization of the jump momentum bal-
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ance conditions, results in a compact perturbation of the singular integro-differential

equation. We conjecture that this compact perturbation does not affect the funda-

mental result, namely a model with curvature-dependent surface tension ascribed to

the crack surfaces yields bounded stresses and strains for any physically reasonable

body force correction.
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CHAPTER IV

SINGULAR PERTURBATION ANALYSIS

In this chapter an alternative approach for finding the crack profile in the deformed

configuration is offered. This strategy leads to a simple way of approximating the

stresses and strains in a neighborhood of the fracture surfaces.

The fracture boundary value problem, formulated with the deformed configura-

tion as reference, can be studied through a perturbation analysis with a parameter δ,

corresponding to atomic length scale, as a small parameter.

The point-to-point potential, which determines the body force correction term

and the excess properties is set up only when chemical bonds have been broken.

On the other hand, δ determines the length scale over which the potential is active,

thus the problem corresponding to δ = 0 is what one would have in the absence of

the potential, i.e., it describes the case when no covalent bonds have been broken.

Consequently, one can choose the outer solution in the perturbation analysis to be

the loaded but uncracked body.

As before, by x = 〈x1, x2〉 ∈ B we denote a point in the deformed configuration

B of the body and u = u(x) denotes the spatial description of the displacement. A

constitutive equation of the form (2.3) is assumed and a nondimensionalization of the

parameters given by (2.7) is used.
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4.1. Outer Solution

The outer solution corresponds to uniaxial extension of the uncracked body whose

stress field is easily seen to be

0 = τ ?
11 = (λ? + 2µ?)

∂u?
1

∂x?
1

+ λ? ∂u?
2

∂x?
2

=
2µ?

1− 2ν

(
(1− ν)

∂u?
1

∂x?
1

+ ν
∂u?

2

∂x?
2

)

0 = τ ?
12 = µ?

(
∂u?

1

∂x?
2

+
∂u?

2

∂x?
1

)

σ? = τ ?
22 = (λ? + 2µ?)

∂u?
2

∂x?
2

+ λ? ∂u?
1

∂x?
1

=
2µ?

1− 2ν

(
ν
∂u?

1

∂x?
1

+ (1− ν)
∂u?

2

∂x?
2

)
.

(4.1)

It follows that the components of the displacement for the outer solution have the

form

u?
1 = −νσ?

2µ?
x?

1 + k(x?
2) u?

2 =
(1− ν)σ?

2µ?
x?

2 + m(x?
1), (4.2)

where k′(x?
2) + m′(x?

1) = 0. Symmetry implies that u?
1(0, x

?
2) = 0, consequently

u?
1 = −νσ?

2µ?
x?

1 u?
2 =

(1− ν)σ?

2µ?
x?

2 + const. (4.3)

4.2. Inner Solution

Let

x? = 〈x?
1, x

?
2〉.

In order to find the solution within the immediate neighborhood of the crack, we

“stretch” the coordinates through the following change of variables

y = 〈y?
1, y

??
2 〉 =

〈
x?

1,
x?

2 − h?(x?
1)

δ?

〉

v?
1(y

?
1, y

??
2 ) = u?

1(x
?
1, x

?
2), v?

2(y
?
1, y

??
2 ) =

u?
2(x

?
1, x

?
2)− h?(x?

1)

δ?
.

(4.4)

One then readily shows that
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gradx?f(x?) = grady f̄(y) ◦ gradx?y (4.5)

gradx?y =




1 0

−h?′(x?
1)/δ

? 1/δ?


 (4.6)

divx?f(x?) = tr (gradx?f(x?)) = tr(grady f̄(y) ◦ gradx?y)

= (gradx?y)T · grady f̄(y)

(4.7)

T? =




τ ?
1
T

τ ?
2
T


 , where τ ?

1 =




τ ?
11

τ ?
12


 , τ ?

2 =




τ ?
12

τ ?
22


 . (4.8)

Equations (4.7) and (4.8) imply

divx?T? =




divx?τ ?
1

divx?τ ?
2


 =




(gradx?y)T · gradyτ̄ 1(y)

(gradx?y)T · gradyτ̄ 2(y)


 , (4.9)




1 −h?′(x?
1)/δ

?

0 1/δ?


 ·




τ̄11,1 τ̄11,2

τ̄12,1 τ̄12,2


 = τ̄11,1 − δ?−1h?′τ̄11,2 + δ?−1τ̄12,2, (4.10)

and



1 −h?′(x?
1)/δ

?

0 1/δ?


 ·




τ̄12,1 τ̄12,2

τ̄22,1 τ̄22,2


 = τ̄12,1 − δ?−1h?′τ̄12,2 + δ?−1τ̄22,2. (4.11)

Combining equations (4.6), (4.8), (4.10) and (4.11) one obtains the components of

divx?T? in the scaled coordinates

divx?T? =




τ̄11,1 − δ?−1h?′τ̄11,2 + δ?−1τ̄12,2

τ̄12,1 − δ?−1h?′τ̄12,2 + δ?−1τ̄22,2


 . (4.12)
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Similarly, for the scalar valued function Φ?(x?
1, x

?
2) = Φ̄(y?

1, y
??
2 ),

gradx?Φ?(x?) = (gradx?y)T gradyΦ̄(y) =




1 −h?′(x?
1)/δ

?

0 1/δ?







Φ̄,1

Φ̄,2




=




Φ̄,1 − δ?−1h?′(x?
1)Φ̄,2

δ?−1Φ̄,2


 .

(4.13)

Thus, equations (4.10), (4.11) and (4.13) imply that, in the scaled coordinates, the

differential momentum balance divx?T? = gradx?Φ? takes the form

τ̄11,1 − δ?−1h?′τ̄11,2 + δ?−1τ̄12,2 = Φ̄,1 − δ?−1h?′(x?
1)Φ̄,2

τ̄12,1 − δ?−1h?′τ̄12,2 + δ?−1τ̄22,2 = δ?−1Φ̄,2.

(4.14)

We have the following asymptotic expansions in terms of δ?,

h?(y?
1) = h?

0(y
?
1) + δ?h?

1(y
?
1) + ...

Φ̄(y?
1, y

??
2 ) = Φ̄0(y

?
1, y

??
2 ) + δ?Φ̄1(y

?
1, y

??
2 ) + ...

v?
1(y

?
1, y

??
2 ) = v

(0)
1 (y?

1, y
??
2 ) + δ?v

(1)
1 (y?

1, y
??
2 ) + ...

v?
2(y

?
1, y

??
2 ) = v

(0)
2 (y?

1, y
??
2 ) + δ?v

(1)
2 (y?

1, y
??
2 ) + ... .

(4.15)

These together with the differential momentum balance imply

τ̄ij(y
?
1, y

??
2 ) = τ̄

(0)
ij (y?

1, y
??
2 ) + δ?τ̄

(1)
ij (y?

1, y
??
2 ) + ... .
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4.2.1. Zeroth Order Approximation of the Differential Momentum Balance

Substituting (4.15) into (4.14) and equating the lowest order terms, one obtains the

zeroth order approximation to the differential momentum balance:

−h?
0
′τ̄ (0)

11,2 + τ̄
(0)
12,2 = −h?

0
′Φ̄0,2

−h?
0
′τ̄ (0)

12,2 + τ̄
(0)
22,2 = Φ̄0,2.

(4.16)

By integrating the above equations with respect to y??
2 , one obtains

−h?
0
′τ̄ (0)

11 + τ̄
(0)
12 = −h?

0
′Φ̄0 + m(y?

1)

−h?
0
′τ̄ (0)

12 + τ̄
(0)
22 = Φ̄0 + n(y?

1).

(4.17)

We determine the functions m(y?
1) and n(y?

1) by matching the inner and outer solu-

tions. The stress for the outer solution is given by1

T?outer =




0 0

0 σ?


 , (4.18)

where σ? is the far filed loading. Substituting (4.18) into (4.17) and using

lim
y??
2 →∞

Φ̄(y?
1, y

??
2 ) = 0

one obtains

m(y?
1) = 0 and n(y?

1) = σ?.

1If one needs to consider a more general form of the outer solution, e.g.,

T?outer =

[
τ∞11 (x?

1, x
?
2) τ∞12 (x?

1, x
?
2)

τ∞12 (x?
1, x

?
2) τ∞22 (x?

1, x
?
2)

]
,

the values of the functions m(y?
1) and n(y?

1) change (m(y?
1) = −h?

0
′(y?

1)τ
∞
11 (y?

1, 0) +
τ∞11 (y?

1, 0) and n(y?
1) = −h?

0
′(y?

1)τ
∞
12 (y?

1, 0) + τ∞22 (y?
1, 0)) but the rest of the analysis

remains unchanged.
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Consequently, the zeroth order approximation to the differential momentum balance

yields

−h?
0
′τ̄ (0)

11 + τ̄
(0)
12 = −h?

0
′Φ̄0

−h?
0
′τ̄ (0)

12 + τ̄
(0)
22 = Φ̄0 + σ?.

(4.19)

4.2.2. First Order Approximation of the Differential Momentum Balance

In a similar way, one readily obtains that the first order approximation to the differ-

ential momentum balance is given by

τ̄
(0)
11,1 − h?

0
′τ̄ (1)

11,2 − h?
1
′τ̄ (0)

11,2 + τ̄
(1)
12,2 = Φ̄0,1 − h?

0
′Φ̄1,2 − h?

1
′Φ̄0,2

τ̄
(0)
12,1 − h?

0
′τ̄ (1)

12,2 − h?
1
′τ̄ (0)

12,2 + τ̄
(1)
22,2 = Φ̄1,2.

(4.20)

Integration of (4.20)2 with respect to y??
2 leads to

−h?
0
′τ̄ (1)

12 − h?
1
′τ̄ (0)

12 + τ̄
(1)
22 = Φ̄1 −

∫
τ̄

(0)
12,1dy??

2 + c. (4.21)

Matching to the outer solution and using limy??
2 →∞ Φ̄ = 0 one determines the constant

of integration

c = lim
y??
2 →∞

∫
τ̄

(0)
12,1dy??

2 . (4.22)

4.2.3. Crack Profile

We now turn to the jump momentum balance equation (2.36). In its non-dimensional

form it is

grad(σ)γ̃
? + 2H?γ̃?n + [[T?]]n = 0, (4.23)
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where

grad(σ)γ̃
? =

dγ̃?

dx?
1

1

1 + h?′2 〈1, h
?′〉T

n =
1√

1 + h?′2
〈−h?′, 1〉T

H? =
1

2
h?′′(1 + h?′2)−3/2.

(4.24)

Using (4.24) one obtains the component form of (4.23)

dγ̃?

dx?
1

(1 + h?′2)−1/2 − γ̃?h?′h?′′(1 + h?′2)−3/2 + (−h?′τ ?
11 + τ ?

12) = 0

dγ̃?

dx?
1

(1 + h?′2)−1/2h?′ + γ̃?h?′′(1 + h?′2)−3/2 + (−h?′τ ?
12 + τ ?

22) = 0.

(4.25)

Substitution of (4.19) into the zeroth order approximation of (4.25) yields

dγ̃?
0

dx?
1

(1 + h?
0
′2)−1/2 − γ̃?

0h
?
0
′h?

0
′′(1 + h?

0
′2)−3/2 − h?

0
′Φ̄0 = 0

dγ̃?
0

dx?
1

(1 + h?
0
′2)−1/2h?

0
′ + γ̃?

0h
?
0
′′(1 + h?

0
′2)−3/2 + Φ̄0 + σ? = 0,

(4.26)

where γ̃?
0 is the zero order approximation of γ̃?. Note that this expansion assumes

that

(h?)′′(y?
1) = (h?

0)
′′(y?

1) + δ?(h?
1)
′′(y?

1) + ... (4.27)

and in particular that (h?)′′(y?
1) is bounded on [−1, 1].

Since h?
0(x

?
1) cannot satisfy both of these equations simultaneously, we need

to“disregard” one of them. Recall that to zero order, the perturbation analysis re-

duces the differential momentum balance to a system of ordinary differential equations

in y??
2 , rather than partial differential equations. This makes the boundary conditions

(4.26) overdetermined with the first of (4.26) extraneous. Notice also that it is the

second of (4.26) that contains information about the far field loading. Thus, we

determine the crack profile from (4.26)2.

In a similar way, the ordinary differential equation from which one determines the
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first order approximation of the crack profile h?
1(x

?
1) is the first order approximation

of (4.25)2, where one needs to use (4.21), namely

dγ̃?
0

dx?
1

(1 + h?
0
′2)−1/2h?

1
′ +

dγ̃?
1

dx?
1

(1 + h?
0
′2)−1/2h?

0
′ − dγ̃?

0

dx?
1

(1 + h?
0
′2)−3/2h?

0
′h?

1
′

− 3γ̃?
0(1 + h?

0
′2)−5/2h?

0
′′h?

0
′h?

1
′ + (γ̃?

0h
?
1
′′ + γ̃?

1h
?
0
′′)(1 + h?

0
′2)−3/2

+ Φ̄1 −
∫

τ̄
(0)
12,1dy??

2 + c = 0.

(4.28)

From conducted numerical experiments it is evident that the contribution of the

first order term h?
1 is insignificant, which guarantees that the zero order term h?

0

approximates the crack profile well enough.

4.3. Navier Equations in Terms of Displacements

The differential momentum balance in terms of the displacement vector u is given by

the Navier equations:

4u +
1

1− 2ν
grad divu− 1

µ
gradΦ = 0. (4.29)

Thus (4.13) yields

b = gradx?Φ?(x?) =




Φ̄,1 − δ?−1h?′(x?
1)Φ̄,2

δ?−1Φ̄,2


 . (4.30)

From here it is clear that b
(−2)
1 = b

(−2)
2 = 0 and b

(−1)
1 = −h?

0
′(x?

1)Φ̄,2, b
(−1)
2 = Φ̄,2.

One can easily show that the Navier equations in terms of the (x?
1, x

?
2) variables take

the from

2(1− ν)

1− 2ν

∂2u?
1

∂x?
1
2 +

1

1− 2ν

∂2u?
2

∂x?
1∂x?

2

+
∂2u?

1

∂x?
2
2 −

1

µ?
b1 = 0

∂2u?
2

∂x?
1
2 +

1

1− 2ν

∂2u?
1

∂x?
1∂x?

2

+
2(1− ν)

1− 2ν

∂2u?
2

∂x?
2
2 −

1

µ?
b2 = 0.

(4.31)
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In terms of the scaled variables (4.4), using the expansions (4.15), equation (4.31)

can be written in the from

2(1− ν)

1− 2ν
h?

0
′2∂2u?

1
(0)

∂y??
2

2 − 1

1− 2ν
h?

0
′∂

2u?
2
(0)

∂y??
2

2 +
∂2u?

1
(0)

∂y??
2

2 − 1

µ?
b
(−2)
1 = 0

h?
0
′′2∂2u?

2
(0)

∂y??
2

2 − 1

1− 2ν
h?

0
′∂

2u?
1
(0)

∂y??
2

2 +
2(1− ν)

1− 2ν

∂2u?
2
(0)

∂y??
2

2 − 1

µ?
b
(−2)
2 = 0.

(4.32)

Equation (4.15)4 implies that u?
2
(0) = h?

0(y
?
1), and consequently,

∂u?
2
(0)

∂y??
2

= 0. Since

b
(−2)
1 = b

(−2)
2 = 0, we can conclude

∂2u?
1
(0)

∂y??
2

2 = 0 ⇒ u?
1
(0) = a(y?

1)y
??
2 + b(y?

1). (4.33)

We require that the inner solution approaches the outer as y??
2 → ∞. In view of

equation (4.3), this yields

lim
y??
2 →∞

u?
1
(0) = lim

y??
2 →∞

(
a(y?

1)y
??
2 + b(y?

1)
)

= −νσ?

2µ?
y?

1

⇒ a(y?
1) = 0, b(y?

1) = −νσ?

2µ?
y?

1.

(4.34)

We proceed by equating the terms in front of δ?−1 in (4.31), when written in terms

of the inner variables (y?
1, y

??
2 ):

2(1− ν)

1− 2ν

(
−2h?

0
′ ∂2u?

1
(0)

∂y?
1∂y??

2

+ h?
0
′2∂2u?

1
(1)

∂y??
2

2 + 2h?
0
′h?

1
′∂

2u?
1
(0)

∂y??
2

2 − h?
0
′′∂u?

1
(0)

∂y??
2

)

+
1

1− 2ν

(
∂2u?

2
(0)

∂y?
1∂y??

2

− h?
0
′∂

2u?
2
(1)

∂y??
2

2 − h?
1
′∂

2u?
2
(0)

∂y??
2

2

)
+

∂2u?
1
(1)

∂y??
2

2 − 1

µ?
b
(−1)
1 = 0,

− 2h?
0
′ ∂2u?

2
(0)

∂y?
1∂y??

2

+ h?
0
′2∂2u?

2
(1)

∂y??
2

2 + 2h?
0
′h?

1
′∂

2u?
2
(0)

∂y??
2

2 − h?
0
′′∂u?

2
(0)

∂y??
2

+
1

1− 2ν

(
∂2u?

1
(0)

∂y?
1∂y??

2

− h?
0
′∂

2u?
1
(1)

∂y??
2

2 − h?
1
′∂

2u?
1
(0)

∂y??
2

2

)

+
2(1− ν)

1− 2ν

∂2u?
2
(1)

∂y??
2

2 − 1

µ?
b
(−1)
2 = 0.

(4.35)
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Taking into account the fact that

u?
1
(0) = −νσ?

2µ?
y?

1, u?
2
(0) = h?

0(y
?
1), u?

2
(1) = v?

2
(0)(y?

1, y
??
2 ) + h?

0(y
?
1), (4.36)

the above system simplifies to

(2(1− ν)

1− 2ν
h?

0
′2 + 1

)∂2u?
1
(1)

∂y??
2

2 − 1

1− 2ν
h?

0
′∂

2v?
2
(0)

∂y??
2

2 − 1

µ?
b
(−1)
1 = 0

(
h?

0
′2 +

2(1− ν)

1− 2ν

)∂2v?
2
(0)

∂y??
2

2 − 1

1− 2ν
h?

0
′∂

2u?
1
(1)

∂y??
2

2 − 1

µ?
b
(−1)
2 = 0.

(4.37)

After solving (4.37) for
∂2u?

1
(1)

∂y??
2

2 and
∂2v?

2
(0)

∂y??
2

2 and integrating with respect to y??
2 , one

obtains

∂u?
1
(1)

∂y??
2

= − (1− 2ν)Φ?
0h

?
0
′

2µ?(1− ν)(1 + h?
0
′2)

+ c(y?
1) (4.38)

and

∂v?
2
(0)

∂y??
2

=
(1− 2ν)Φ?

0

2µ?(1− ν)(1 + h?
0
′2)

+ d(y?
1). (4.39)

From here it is easy to derive the zero order approximation of the stress compo-

nents. For example, to find the shear stress τ ?
12 in a neighborhood of the crack surface

we proceed as follows. Expanding (4.1) in terms of the inner variables one concludes

that the zero order approximation of the shear stress is given by

τ̄
(0)
12 = µ?

(
∂u?

1
(1)

∂y??
2

+
∂u?

2
(0)

∂y?
1

− h?
0
′∂u?

2
(1)

∂y??
2

− h?
1
′∂u?

2
(0)

∂y??
2

)

= µ?

(
∂u?

1
(1)

∂y??
2

+ h?
0
′ − h?

0
′∂v?

2
(0)

∂y??
2

)
.

(4.40)

Combining (4.38), (4.39) and (4.40) and matching the inner to the outer solution one

readily shows

τ̄
(0)
12 = − (1− 2ν)Φ?

0h
?
0
′

(1− ν)(1 + h?
0
′2)

. (4.41)
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CHAPTER V

ENERGY BASED FRACTURE CRITERION

5.1. Introduction

Various approaches to the thermodynamic analysis of fracture have been studied in

the literature, with or without consideration of temperature effects. These approaches

have incorporated classical singular theories with singular stresses and singular power

flux into the crack tip (Gurtin [19, 21], Gurtin and Yatomi [28]) or with cohesive zones

designed to remove the singularities (Gurtin [20]). Others have included the notion of

a configurational force system, with or without cohesive zone, (Gurtin and Shvartsman

[27], Costanzo [8], Gurtin and Podio-Guidugli [25, 26]) or excess surface properties,

with or without cohesive zone.

Separately, Gurtin and Murdoch ([24, 23]), Murdoch ([37]) and Fried and Gurtin

([17]) have developed a theory of elastic material surfaces, incorporating models with

excess surface properties, not necessarily directed towards fracture.

The idea of ascribing excess properties to a dividing surface between two phases

dates back to Gibbs. In the development of fracture theory, Griffith was the first

one to introduce surface excess properties in the context of solids, but he did not

build it into a model of fracture in any concrete way. To our knowledge, the first

comprehensive attempt to develop a fracture theory including excess properties was

offered by Eftis and Liebowitz in [10] (see also Zhang and Karihaloo [57], Van der Varst

and De With [52]). Unfortunately, their development contains serious conceptual and

technical flaws.

Our approach bears resemblance to several of the above modeling approaches in

that it includes detailed description of the surface excess properties. What is new in
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this approach is that, as shown in Chapter III, curvature-dependent excess properties

together with the appropriate jump momentum balance, which defines the boundary

condition on the fracture surface, lead to a theory with bounded stresses and strains.

Further, even though the model in which the surface tension is taken to be constant

exhibits a logarithmic crack tip stress singularity, this singularity does not lead to

an influx of energy into the crack tip, and therefore the theory outlined below is

applicable in this case as well.

An energy based fracture criterion is formulated, including terms similar to the

classical notion of a critical energy release rate, defined in the setting of singular crack

tip stresses and strains. Classically the energy release rate arises due to singular fields,

whereas in the case of the modeling approach adopted here, a notion analogous to

the energy release rate arises through a different mechanism, associated to the rate

of working of the surface excess properties at the crack tip.

5.2. Fracture Kinematics

In our analysis of this problem, we will make the following assumptions.

1. Temperature is independent of position and time.

2. The rates of external and mutual energy transmission, and the rate of contact

energy transmission are negligible.

3. Mass transfer is negligible at all phase interfaces.

4. Pressure in the gas phase between crack surfaces is the atmospheric pressure,

considered negligible when compared to the stresses generated in the system by

deformation.
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Unlike in the previous chapters where the static problem is considered, in the current

chapter we study dynamic crack propagation. Due to crack growth, in the modeling

approach taken herein, we consider a continuous sequence of reference configurations

(where the slit has different lengths). This approach avoids the need to consider mass

transfer from the bulk material to the fracture surface and from the fracture surface

to the crack tip.1

From here on, subscript κ denotes quantities defined relative to a natural refer-

ence (unloaded) configuration. The material body in the reference configuration is

denoted by Bκ(t), where the time dependence is due to (possible) crack extension.

Bκ(t) is viewed as an evolving reference configuration. The boundary of Bκ(t), denoted

by ∂Bκ(t), has the decomposition

∂Bκ(t) = Sκ ∪ Σκ(t), (5.1)

where Sκ denotes the boundary the body would have in the absence of the crack

(which does not evolve with time) and Σκ(t) denotes the crack. The location of the

crack tip in the reference configuration is denoted by c(t) (Fig. 5.1). To that end,

ċ(t) is the crack extension velocity.

Let X denote the position of points in Bκ(t), and χ(X, t), X ∈ Bκ(t) - a motion

of the cracked body which might be accompanied by crack extension. The body, its

boundary sets and the crack tip in the current (deformed) configuration are denoted

Bt, St, Σt and ct, respectively. Spatial points are denoted x ∈ Bt. The material and

spatial descriptions of the displacement are denoted uκ(X, t)(:= χ(X, t) − X) and

1An alternative approach to modeling crack propagation takes the body to be the
bulk material together with the gas phase. In this case no points are “added” to the
boundary and thus one does not need to consider an evolving reference configuration.
However in this approach one must account for the mass transfer between the bulk
material, the dividing surface and the fracture tip. In essence, fracture propagation
is viewed as a “chemical reaction” occurring at the crack edge.
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Fig. 5.1. Edge crack in the reference and current configurations.

u(x, t), respectively, and v(x, t) is the spatial description of the velocity. Let F(X, t)

denote the deformation gradient. The gradient and divergence operators are denoted

by grad and div in the spatial frame, and by ∇ and Div in the material frame.

5.3. Surface First Piola-Kirchhoff Stress Tensor

To simplify the discussion, the derivation of the fracture criterion given in Section

5.4 is in the context of a straight edge crack (in the reference configuration) in a

bounded two dimensional body. However, for purposes of deriving an expression for

the surface first Piola-Kirchhoff stress tensor, it is most natural to work in a three

dimensional setting. Thus, within this section, we assume that Bt ⊂ R3 and that Σt is

a two dimensional surface. The results derived herein are valid in the two dimensional

context as well, since the problem we consider can be viewed as a three dimensional

problem, reduced to a two dimensional one.

We assume that there exists a surface (Cauchy) stress tensor T(σ) which gives
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contact forces in the fracture surface. In this section we derive an expression for the

corresponding surface first Piola-Kirchhoff stress tensor T
(σ)
κ .2

Let sκ be an oriented curve in the fracture surface Σκ(t), parameterized by arc

length S ∈ (0, L). Also, let νκ denote the unit conormal vector to sκ, i.e., νκ = τ κ×N,

where N is the unit normal to Σκ(t) and τ κ =
dsκ

dS
is the unit tangent to sκ. Let ds and

dS be small length elements in the current and reference configuration respectively.

Then

ds =

∣∣∣∣
∣∣∣∣

d

dS
χ ◦ sκ(S)

∣∣∣∣
∣∣∣∣ dS = ||F(sκ(S))τ κ(sκ(S))|| dS = j dS. (5.2)

j = ||Fτ κ|| is sometimes called the Radon-Nikodym derivative of the arc length

measure on s = χ ◦ sκ with respect to that on sκ ([24]).

One can show that the unit conormal to the image s of the curve sκ in the current

configuration is given by the expression

ν =
PtF

−T νκ

||PtF−T νκ|| , (5.3)

where Pt is the perpendicular projection onto the tangent space Tx to Σt at x. Indeed,

let n denote the unit normal to the surface Σt and τ t be the unit tangent to the curve

s. To show that ν, as given by (5.3), is conormal to s it suffices to prove that ν ·n = 0

and ν · τ t = 0. The first one is clearly satisfied since ν ∈ Tx, while n ∈ T ⊥
x . For the

latter note that Pt = PT
t and PtFτ κ = Fτ κ, consequently

ν · τ t =
PtF

−T νκ

||PtF−T νκ|| ·
Fτ κ

||Fτ κ|| =
νκ

||PtF−T νκ|| ·
τ κ

||Fτ κ|| = 0.

The total force exerted by the material in s+ (the part of Σt into which ν points)

2The derivation for T
(σ)
κ presented herein corrects a small mistake in [24] in the

formula, corresponding to (5.3), relating the conormal in the current to the conormal

in the reference configuration. For this reason, the expression for T
(σ)
κ derived here

differs slightly from the formula given in [24].
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on the material in s− is

∫

s

T(σ)ν =

∫ L

0

T(σ)(χ ◦ sκ(S))
PtF

−T νκ

||PtF−T νκ||j dS =

∫

sκ

T(σ)
κ νκ

where

T(σ)
κ =

||Fτ κ||
||PtF−T νκ||T

(σ)PtF
−T (5.4)

is the surface first Piola-Kirchhoff stress tensor.

Proposition 1. Let J = det(F), then

||Fτ κ||
||PtF−T νκ|| = J ||F−TN||, (5.5)

in particular, (5.4) is independent of the conormal νκ. Furthermore, if

n = F−TN/||F−TN|| (i.e., n is the unit normal to Σt) and dan and dAN are area

elements for surfaces in the current (respectively reference) configuration, normal to

n and N respectively, then

dan = J ||F−TN||dAN = j2 dAN ,

i.e., j2 = J ||F−TN|| is the Radon-Nikodym derivative of the area measure on Σt with

respect to that on Σκ(t).

Proof. By the Spectral Theorem ([22]), there exists a representation of U in the form

U =
∑

αiei ⊗ ei,

where B = {ei, i = 1, 2, 3} is an orthonormal basis for the vector space V , consisting

of eigenvectors of U, and αi are the corresponding eigenvalues. Let [νκ] = 〈aν , bν , cν〉T

and [N] = 〈aN , bN , cN〉T be the representations of νκ and N, respectively, relative to
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the basis B. Recall that τ κ = N× νκ, therefore

j = ||Fτ κ|| =
√

α2
1(bNcν − bνcN)2 + α2

2(cNaν − cνaN)2 + α2
3(cNaν − cνaN)2. (5.6)

Furthermore,

||PtF
−T νκ|| =

∣∣∣∣
∣∣∣∣
(
I− F−TN⊗ F−TN

||F−TN||2
)

F−T νκ

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣U−1νκ − U−2N · νκ

||U−1N||2 U−1N

∣∣∣∣
∣∣∣∣ .

After some straightforward manipulations one concludes

||Fτ κ||
||PtF−T νκ|| =

√
α2

2α
2
3a

2
N + α2

1α
2
3b

2
N + α2

1α
2
2c

2
N = α1α2α3

√
a2

N

α2
1

+
b2
N

α2
2

+
c2
N

α2
3

= J ||F−TN||.

Now, by Nanson’s formula,

ndan = JF−TNdAN .

Taking the inner product of the above equation with n = F−TN/||F−TN|| yields

dan = J ||F−TN||dAN

which concludes the proof.

5.4. Theoretical Derivation

From here on, Bt is assumed to be a bounded two dimensional body. Let K{Bt}
denote the kinetic energy of the body, expressed in terms of the current and the

reference configuration:

K{Bt} =
1

2

∫

Bt

ρ||v||2dv +
1

2

∫

∂Bt

ρ(σ)||v||2da +
1

2
ρ(c)||v(ct, t)||2

=
1

2

∫

Bκ(t)

ρκ||ẋ||2dV +
1

2

∫

∂Bκ(t)

ρ(σ)
κ ||ẋ||2dA +

1

2
ρ(c)

κ ||ċt||2,
(5.7)
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where ρ is the mass density of Bt, ρ(σ) is the surface mass density and ρ(c) is the mass

density associated with the fracture tip ct. In a similar way, ρκ, ρ
(σ)
κ and ρ

(c)
κ are the

mass density, surface mass density and mass density associated with the fracture tip

in the reference configuration.3

Let U{Bt} be the internal energy of Bt with U{Bt} = A{Bt} + TS{Bt} where

A{Bt} denotes the stored energy, S{Bt} - the entropy, and T - the constant absolute

temperature. Let Â and Â(σ) be respectively the free energy density and the surface

free energy density per unit mass, then

A{Bt} =

∫

Bt

ρÂdv +

∫

∂Bt

ρ(σ)Â(σ)da

=

∫

Bκ(t)

ρκÂdV +

∫

∂Bκ(t)

ρ(σ)
κ Â(σ)dA.

(5.8)

In the current model there is no free energy density associated with the crack tip,

although it can easily be added, if needed. Further, let P{Bt} be the power input to

the body

P{Bt} =

∫

Bκ(t)

bκ·ẋ dV +b(c)
κ ·ċt+

∫

Sκ

se
κ·ẋ dA+2T(σ)

κ (c(t))νκ(c(t))·F(c(t))ċ(t). (5.9)

Here se
κ are the external tractions per unit area in the reference configuration acting

on the body and b
(c)
κ is a mutual force acting at the crack tip, arising due to resistance

of chemical bonds to opening of the fracture surfaces at the fracture tip. Note that

P{Bt} includes the power input not only through the external force system, but also

from (possible) mutual body forces and surface tractions arising from the material

response of the body (through the jump momentum balance). The last term in (5.9)

represents the rate of working of the crack surface stresses at the crack tip and it is

3Due to the fact that the upper and lower fracture surfaces meet at an angle
(strictly less than π), the fracture tip (in the case of 3D - fracture edge) is viewed as
a “common point” (in the case of 3D - common line), endowed with mass density.
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nonzero only when there is crack extension (only the part of the crack tip velocity

which is due to crack extension (bond breaking) is taken into account - cf. (5.26)).

The fundamental power balance can be written in the form

d

dt
K{Bt}+

d

dt
U{Bt} = P{Bt} − D{Bt}, (5.10)

where D{Bt} is the fracture energy dissipation rate.

The entropy inequality in the form of the Clausius-Duhem inequality ([46], p.

728, [30], p. 130) in the context of assumptions 1 and 2 reduces to

d

dt
TS{Bt} ≥ 0. (5.11)

Next, following the analysis of Gurtin and Podio-Guidugli in [25], we derive the

transport theorems appropriate for the current setting. It is important to keep in

mind that in the setting of [25], the mechanical power flux into the crack tip is not

zero due to the singular crack tip stress and strain fields, whereas here stresses and

strains are bounded at the crack tip. For this reason, the transport relations needed

here differ from the ones derived in [25, 26].

Lemma 2. Transport Relation for a “Bulk” Function in the Reference Con-

figuration. Let Φ(X, t) be a field defined on Bκ(t)×R+ which is bounded and suffi-

ciently smooth up to the crack from either side. Then

d

dt

∫

Bκ(t)

Φ =

∫

Bκ(t)

Φ̇, (5.12)

where Φ̇ is the material time derivative of Φ.

Proof. Let Dδ
κ(t) denote a disk of radius δ centered at the crack tip c(t) and moving
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with it. Let Bδ
κ(t) = Bκ(t) \ Dδ

κ(t). Then

d

dt

∫

Bδ
κ(t)

Φ =

∫

Bδ
κ(t)

Φ̇−
∫

∂Dδ
κ(t)

Φ ċ(t) ·N.

Here N is the unit normal vector to ∂Dδ
κ(t) pointing into the bulk material. Using

the regularity and boundedness of Φ one concludes that

d

dt

∫

Bκ(t)

Φ = lim
δ→0

d

dt

∫

Bδ
κ(t)

Φ =

∫

Bκ(t)

Φ̇.

Lemma 3. Transport Relation for a Function Defined on a Growing Surface

in the Reference Configuration. Consider Bκ(t) ⊂ R2. Let Φ(σ)(X, t) be a field

defined on the (possibly growing) crack surface Σκ(t) × R+ which is bounded, and

sufficiently smooth on (Σκ(t)× R+) \ ({c(t)} × R+). Then

d

dt

∫

∂Bκ(t)

Φ(σ) =

∫

∂Bκ(t)

Φ̇(σ) + 2Φ(σ)(c(t)) ||ċ(t)||. (5.13)

Proof. Let l(t) be a curve in R2 parameterized by l(s, t), 0 ≤ s ≤ 1 with a(t) = l(0, t)

and b(t) = l(1, t). Then the standard transport theorem yields

d

dt

∫

l(t)

Φ =

∫

l(t)

Φ̇ + Φ(a(t)) ȧ ·Na + Φ(b(t)) ḃ ·Nb

where Na and Nb are the unit tangent vectors to l(t) at a(t) and b(t) respectively.

Now let l(t) = Sκ

⋃
Σκ(t). Then a(t) = b(t) = c(t) and ȧ ·Na = ḃ ·Nb = ||ċ(t)||,

which concludes the proof.

5.4.1. Momentum Balance Relations

Invoking the Transport Theorem (which has the usual form for a bulk control volume

due to the fact that stresses and strains remain bounded) and standard localization
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arguments, one derives the local form of the balance of linear momentum in the

reference configuration

ρκẍ = DivTκ + bκ, X ∈ Bκ(t) (5.14)

and jump momentum balance

ρ(σ)
κ ẍ = Div(σ)T

(σ)
κ − [[TκN]], X ∈ Σκ(t),

ρ(σ)
κ ẍ = Div(σ)T

(σ)
κ −TκN + se

κ, X ∈ Sκ.

(5.15)

Here [[·]] denotes the jump of the quantity across Σκ(t) and N is the outward unit

normal. For the problem considered herein, Σκ(t) = Σκ(t)
+ ∪ Σκ(t)

− is not just a

dividing surface in the body, but rather a part of its boundary and (5.15)1 could also

be written in the form

ρ(σ)
κ ẍ = Div(σ)T

(σ)
κ −T±

κ N±, X ∈ Σ±
κ (t). (5.16)

In addition to these, there is a momentum balance at the crack tip given by

ρ(c)
κ c̈t = b(c)

κ + (((ρ(c)
κ (ċ(t) · νκ(c(t)))ċ(t)−T(σ)

κ (c(t))νκ(c(t))))), (5.17)

where (((·))) is the jump at the crack tip and νκ(c(t)) is the conormal at c(t) (in two

dimensional space this is the unit tangent to the fracture curve) pointing away from

the fracture surface. Equation (5.17) is based on (2.1.9-15)/p. 129 in [47], stated with

respect to the reference configuration and modified for the case of a propagating crack

in a two dimensional body.

5.4.2. Necessary Condition for Crack Propagation

We now proceed with a derivation of a necessary condition for crack propagation,

working in the reference configuration. Substitution of (5.7), (5.8) and (5.9) into



91

(5.10) yields

d

dt

(
1

2

∫

Bκ(t)

ρκ||ẋ||2dV +
1

2

∫

∂Bκ(t)

ρ(σ)
κ ||ẋ||2dA +

1

2
ρ(c)

κ ||ċt||2

+

∫

Bκ(t)

ρκÂdV +

∫

∂Bκ(t)

ρ(σ)
κ Â(σ)dA

)

=

∫

Bκ(t)

bκ · ẋ dV + b(c)
κ · ċt +

∫

Sκ

se
κ · ẋ dA + 2T(σ)

κ (c(t))νκ(c(t)) · F(c(t))ċ(t)

− d

dt
TS{Bt} − D{Bt}.

(5.18)

Lemma 2 and Lemma 3 together with (5.14), (5.15) and (5.18) lead to

2

(
1

2
ρ(σ)

κ (c(t))||ċt||2 + ρ(σ)
κ (c(t))Â(σ)(c(t))

)
ċ(t) · νκ(c(t))

+
1

2

dρ
(c)
κ

dt
||ċt||2 + ρ(c)

κ c̈t · ċt +

∫

Bκ(t)

(
DivTκ · ẋ + ρκ

˙̂
A

)
dV

+

∫

∂Bκ(t)

(
Div(σ)T

(σ)
κ · ẋ−TκN · ẋ + ρ(σ)

κ
˙̂

A(σ)
)

dA

= b(c)
κ · ċt + 2T(σ)

κ (c(t))νκ(c(t)) · F(c(t))ċ(t)− d

dt
TS{Bt} − D{Bt}.

(5.19)

Use of the Divergence Theorem yields

∫

Bκ(t)

DivTκ · ẋ dV = −
∫

Bκ(t)

Tκ · Ḟ dV +

∫

∂Bκ(t)

TκN · ẋ dS (5.20)

and similarly from the surface divergence theorem (cf. (A.6.3-7)/p. 670 and (2.1.9-

3)/p. 126 in [47])

∫

∂Bκ(t)

Div(σ)T
(σ)
κ · ẋ dS = −

∫

∂Bκ(t)

T(σ)
κ · ∇(σ)ẋ dS + (((T(σ)

κ (c(t))νκ(c(t)) · ċt)))

= −
∫

∂Bκ(t)

T(σ)
κ · ḞPκ dS + 2T(σ)

κ (c(t))νκ(c(t)) · ċt

(5.21)

with Pκ - the perpendicular projection operator onto ∂Bκ(t), where equation ∇(σ)v =

∇vPκ is used.
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In virtue of (5.17), (5.20) and (5.21), equation (5.19) reduces to

∫

Bκ(t)

(
ρκ

˙̂
A−Tκ · Ḟ

)
dV +

∫

∂Bκ(t)

(
ρ(σ)

κ
˙̂

A(σ) −T(σ)
κ · ḞPκ

)
dA

+ 2

(
1

2
ρ(σ)

κ (c(t))||ċt||2 + ρ(σ)
κ (c(t))Â(σ)(c(t)) + ρ(c)

κ ċ · ċt

)
ċ(t) · νκ(c(t))

+
1

2

dρ
(c)
κ

dt
||ċt||2 = 2T(σ)

κ (c(t))νκ(c(t)) · F(c(t))ċ(t)− d

dt
TS{Bt} − D{Bt}.

(5.22)

Since in any isothermal process a thermoelastic material is hyperelastic (Tκ =

ρκ∂FÂ) with free energy function equal to the stored energy, ([30], p. 134), we have

ρκ
˙̂

A = Tκ · Ḟ.

For simplicity and consistency with the literature ([47], p. 148) assume that

the surface stress can be modeled as Eulerian, i.e., T(σ) = γ̂Pt. Let Â(σ)(X) =

Ā(σ)(F(X)) = Ã(σ)(j2) where j2 is as defined in Proposition 1. Then

ρ(σ)
κ

˙̂
A(σ) = ρ(σ)

κ

d

dj2

Ã(σ)(j2)∂Fj2 · Ḟ.

Now,

∂Fj2 = ||F−TN||∂FJ + J∂F||F−TN||

= J ||F−TN||F−T − J

||F−TN||(F
−TN⊗ F−TN)F−T

= J ||F−TN||PtF
−T = j2PtF

−T .

On the other hand, by Proposition 1,

T(σ)
κ · ḞPκ = j2γ̂PtF

−T · ḞPκ = j2γ̂PtF
−T · Ḟ.

Since

γ̂ = ρ(σ)
κ

d

dj2

Ã(σ)(j2)
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([47], p. 325), equation (5.22) reduces to

2

(
1

2
ρ(σ)

κ (c(t))||ċt||2 + ρ(σ)
κ (c(t))Â(σ)(c(t)) + ρ(c)

κ ċ · ċt

)
ċ(t) · νκ(c(t))

+
1

2

dρ
(c)
κ

dt
||ċt||2 = 2T(σ)

κ (c(t))νκ(c(t)) · F(c(t))ċ(t)− d

dt
TS{Bt} − D{Bt}.

(5.23)

Notice that the terms remaining in (5.23) are non-zero only when the crack starts to

propagate. Recall that T
(σ)
κ νκ = jγ̂ν. Assuming that the kinetic energy of the crack

tip is negligible, (5.23) reduces to

ρ(σ)
κ (c(t))Â(σ)(c(t)) ≤ jγ̂

ċ(t) · FT (c(t))ν(ct)

ċ(t) · νκ(c(t))
, (5.24)

where we have used ċ(t) · νκ(c(t)) > 0, which holds true since νκ(c(t)) is the unit

tangent to the fracture surface pointing away from it and provided the crack can only

change direction at a smaller than π
2

angle. Now, note that in the case of plane strain

j = ||F(c(t))τ κ(c(t))|| ≡ 1.

Equation (5.24) gives a necessary condition for crack propagation. The left hand

side of (5.24) depends only on the material properties at the crack tip, while the

ratio at the right hand side is related to the deformation gradient and depends on the

far-field loading.

Now, let Ĝ
(σ)
c be the critical value of the surface Gibbs free energy per unit mass,

which depends only upon atomic bond strength, and γ be the surface energy. Ĝ
(σ)
c

can be interpreted as the energy required to break the chemical bonds, while γ - as

the energy required to overcome the long-range intermolecular forces. Then

ρ(σ)
κ Â(σ) = ρ(σ)

κ Ĝ(σ)
c + γ.

Thus, if the crack does not change direction, i.e., if Pκ(c(t))ċ(t) = ċ(t), using νκ =

PκF
T ν/||PκF

T ν||, the necessary condition for crack propagation can be written in
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the form

ρ(σ)
κ (c(t))Ĝ(σ)

c (c(t)) + γ(c(t)) ≤ γ̂||Pκ(c(t))F
T (c(t))ν(ct)||. (5.25)

Note: The analysis in Section 5.4 can be performed in the current configuration,

if needed, in a similar way, using the analogues of Lemmas 2 and 3 for the current

configuration, as well as

νκ =
PκF

T ν

||PκFT ν||
and

T(σ) =
1

j2

T(σ)
κ PκF

T .

In this case one has to be careful to distinguish motion of the crack tip due to

crack extension (bond breaking) from motion of the crack tip due to deformation. A

straightforward calculation gives

ċt = v(ct, t) + F(c(t), t)ċ(t) (5.26)

= v(ct, t) + (I− gradu(ct, t))
−1ċ(t) (5.27)

in which I denotes the identity tensor. It follows that

ċ(t) = (I− gradu(ct, t))(ċt − v(ct, t)) (5.28)

which gives the spatial description of the crack extension velocity. In the absence of

crack extension (bond braking), ċ(t) = 0 while, in general, ċt 6= 0.
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CHAPTER VI

FRACTURE CRITERION BASED UPON CRACK TIP STRESS

6.1. Classical Theory

The asymptotic solution (using LEFM) for stresses for the classical Griffith problem,

valid both for plane stress and plane strain is ([51])

τ11 =
KI√
2πr

cos

(
θ

2

)(
1− sin

(
θ

2

)
sin

(
3θ

2

))

τ22 =
KI√
2πr

cos

(
θ

2

)(
1 + sin

(
θ

2

)
sin

(
3θ

2

))

τ12 =
KI√
2πr

cos

(
θ

2

)
sin

(
θ

2

)
sin

(
3θ

2

)
,

(6.1)

where (r, θ) are the coordinates of a polar coordinate system centered at the crack

tip x1 = a, x2 = 0. KI is the mode I stress intensity factor, which for an infinite plate

with an internal crack of length 2a, subject to a remotely applied uniform tensile

traction σ∞, is given by ([51])

KI = σ∞
√

πa. (6.2)

Combining (6.1) and (6.2) one concludes that the tensile stress ahead of the crack tip

is

τ22 =
σ∞√
2
√

r
a

. (6.3)

In the case of plane strain, the rate of release of stored elastic energy G is related to

the stress intensity factor by the following formula

KI =

√
GE

1− ν2
, (6.4)

where E is Young’s modulus and ν is Poisson’s ratio. In this sense, the concept

of critical energy release rate is equivalent to the concept of critical stress intensity



96

factor.

6.2. Crack Tip Stress Criterion

Since the theory proposed herein predicts a finite crack tip stress (Section 3.4), there

is an alternative fracture criterion, based on crack tip stress, apart from the energy

based one, derived in Chapter V. This criterion is based on the assumption that

the crack will start to propagate once the cleavage stress exceeds the stress required

to overcome the short-range (chemical bonds) and long-range intermolecular forces.

The required stress for a given material can be estimated through ab initio molecular

dynamics calculations.

For example, for the model with curvature-dependent surface tension and no

body force correction term, we estimate the tensile stress at the crack tip from (3.60):

σ22(1, 0) = −γ0u2,11(1, 0) + h.o.t. . (6.5)

Since the considered model leads to finite stresses and strains, we conclude that the

cleavage stress is well defined and can be calculated using the results from Section

3.4. Thus, the crack starts to propagate once the stress at the crack tip reaches the

value of the critical stress1, i.e.,

σ22(1, 0) ≥ σcrit

E
.

This new approach to formulating a fracture criterion is very appealing with its

straightforward physical interpretation and simple implementation.

1Here σ22 denotes the nondimensionalized tensile stress - cf. (2.7).
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CHAPTER VII

SUMMARY

7.1. Conclusions

This dissertation focuses on the study of brittle fracture, using extension of continuum

mechanics to the nanoscale, first proposed by Slattery ([46]) and later applied in the

context of fractures by Oh et al ([39]). The main idea of the theory is to correct

bulk material behavior in a neighborhood of the fracture surfaces for effects of long-

range intermolecular forces from adjoining phases. This, however, leads to a nonlinear,

nonlocal boundary value problem. Several techniques are used to resolve the behavior

of the solution in a neighborhood of the crack surfaces.

In Chapter III integral transform methods, similar to the ones used to solve

the classical Griffith problem, but modified to accommodate for different type of

boundary conditions and a body force correction term, are applied to a class of

models based on the modeling paradigm proposed in [39, 46]. First we consider a

model of fracture including constant surface tension and using the jump momentum

balance as a boundary condition at the crack surfaces and show that it leads to a sharp

crack profile at the crack tip (as opposed to the blunt one predicted by the classical

LEFM model) and stresses which exhibit a logarithmic singularity at the crack tip.

The obtained linear integro-differential equation is solved using series expansion in

terms of Chebyshev polynomials. Moreover, the sequence of solutions of the truncated

systems of linear equations is shown to converge to the solution of the infinite system.

Further, a modified model is studied in which the surface excess property in-

cludes curvature dependence. We show that this model yields bounded stresses and

strains. The resulting second order linear singular integro-differential equation is
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solved numerically using spline collocation methods combined with product integra-

tion techniques.

Chapter IV provides an alternative approach, using asymptotic analysis, for de-

riving an approximation of the crack opening profile and cleavage stress. This ap-

proach is especially suitable to apply when the model includes a body force correction

term, since the associated with it length scale is needed to rescale the variables and

study the problem in a small region surrounding the crack surfaces. The fact that this

model yields a well defined cleavage stress, allows for the construction of a fracture

criterion based on crack tip stress, considered in Chapter VI.

Further, in Chapter V, using the global energy balance and the second law of

Thermodynamics, in the spirit of [19, 21, 25, 26, 28], we derive an inequality, which

involves the material properties at the crack tip and the rate of working of the crack

surface stresses at the crack tip thereby giving rise to an energy based necessary

condition for crack initiation. It should be emphasized that in the theory used herein

there are no stress and strain crack tip singularities and hence there is no net flux of

energy into a singular crack tip as occurs in classical elastic fracture mechanics. For

this reason, a notion similar to that of the energy release rate arises in a very different

way from the classical notion of ERR used in the papers cited above.

7.2. Future Work

An important step in continuing the analysis initiated in this dissertation is to find

the domain in which the parameters of the curvature-dependent surface tension may

vary, so that the model yields a physically reasonable solution for the crack profile.

Furthermore, it is important to understand the physical meaning of the problem when

these parameters are such that the resulting singular integro-differential operator has
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a non-trivial kernel and hence is not invertible (Section 3.4).

We have shown that the incorporation of a mutual body force term leads to a

compact perturbation of the singular integro-differential operator after linearization

of the jump momentum balance boundary conditions under the assumption of small

strains. Our conjecture is that this compact operator does not change the funda-

mental result, i.e., the model with non-zero curvature-dependent excess property and

a mutual body force term, like the model with non-zero curvature-dependent excess

property and no mutual body force term, yields bounded stresses and strains. In

addition, we conjecture that if there are no surface excess properties at the crack

surfaces, then no physically reasonable correction potential will be able to remove the

crack tip stress singularities, that is, even with a mutual body force term the model

will essentially behave like the classical LEFM model. We conjecture that it is the

excess surface property, together with the correct boundary condition in the form of

the jump momentum balance that is responsible for removing the stress and strain

singularities at the crack tip.

There is a range of problems in interfacial mechanics that share the same essential

modeling ingredient, namely the need of correction of the bulk material constitutive

description near an interface due to the close proximity of one or more neighboring

phases of dissimilar material. Once the theory for fracture in a single phase material is

developed and tested against experimental data, the techniques used for this simpler

problem could easily be extended and applied to other interfacial mechanics problem

areas such as interfacial fracture, as well as the growth and stability of ultra-thin solid

films on a solid substrate (e.g. metal/metallic oxide composite or diamond coatings

on metallic substrates).

In the case of interfacial fracture, an important goal of the analysis will be to

study whether the incorporation of excess properties of the dividing surfaces removes
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the interpenetration of the two fracture surfaces in front of the crack tip, characteristic

of the LEFM approach.

Another direction in which the analysis developed in this dissertation could be

extended to is the case of three dimensional cracks. In particular, a first step in this

direction would be the important canonical case of a “penny shaped” crack.

Furthermore, following [26], while accounting for the important differences in the

two theories, the framework used herein could be extended to a fracture theory which

allows kinking and curving in the crack propagation. An important problem related

to this is to study how the crack front (in the case of a three dimensional crack)

evolves with crack propagation.

And finally, in this dissertation mode I fracture was considered as a first step.

Similar techniques to the ones applied here could be used to consider shear mode

(mode II), tear mode (mode III) and mixed mode fracture which are of interest in

many cases.
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