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ABSTRACT 

 

Dietary Supplementation of Omega-3 Fatty Acids and Subsequent Effects on Fresh, 

Cooled, and Frozen Seminal Characteristics of Stallions. (August 2008) 

Sicilia Tatiana Grady, B.S., University of California-Davis 

Chair of Advisory Committee: Dr. Clay A. Cavinder 

 
 

 The use of cooled and frozen/thawed semen offers many advantages to breeders. 

However, many stallions produce spermatozoa that are unable to endure the stresses of 

cooling/storage and freezing/thawing. Improving the quality and viability of equine 

spermatozoa via appropriate dietary manipulation could make these stallions 

commercially viable for cooling or cryopreservation. To evaluate whether spermatozoa 

quality and viability can be improved by supplementation of omega-3 fatty acids, and if 

improvements can be made by altering the sources of these fats, nine miniature stallions 

were placed into 1 of 2 treatment groups and fed either a fish- or algae/flaxseed-based 

supplement which was added to the basal concentrate. Motion characteristics, membrane 

integrity and morphology of spermatozoa in fresh, cooled/stored (24 and 48 h), and 

frozen/thawed semen samples were analyzed. When comparing spermatozoa obtained 

from stallions in each treatment, no differences were found (P > 0.05) in motility, 

percentage of membrane intact spermatozoa, and percentage of morphologically normal 

spermatozoa of stallions. Overall, omega-3 supplementation did not appear to have a 

beneficial effect on offsetting the harmful effects of the cooling and freezing processes. 



 iv 

However, when analyzing the data of one stallion that had < 40% progressive motility 

(PMOT) after 24 h of cooling and storage, a significant increase was observed in total 

motility, and progressive motility of fresh and 24 h cooled/stored spermatozoa was 

observed when supplemented with the fish-based supplement. Thus, omega-3 fatty acid 

supplementation may be most beneficial for stallions that produce lower quality 

ejaculates. However, further studies should be conducted, with a larger sample size, in 

order to substantiate these findings.   
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CHAPTER I 

INTRODUCTION 

 
 In the United States, most breed registries have allowed the use of cooled and/or 

frozen/thawed semen for artificial insemination for many years. The use of these 

technologies has increased among horse breeders because of the various advantages that 

artificial insemination with cooled or frozen semen provides over natural mating. 

However, the widespread exchange of genetic material among breeding populations with 

preserved spermatozoa is limited by a relatively short-lived fertilizing capacity. Cooled 

semen from most stallions can be used with good results for approximately 2 d after 

collection and dilution [1]. Furthermore, about one-third of breeding stallions produce 

semen that has poor quality and reduced motility after cooling/storage and/or 

freezing/thawing [2] because spermatozoa are sensitive to many environmental factors, 

including light, temperature, physical damage, and a variety of chemicals [3].  

 The plasma membrane is a selectively permeable layer that covers the entire 

surface of spermatozoa and comprises their outermost component. The plasma 

membrane consists of three zones: a lipid bilayer, a phospholipids-water interface, and a 

glycocalyx [4]. The majority of the lipids of stallion spermatozoa are phospholipids 

which are largely composed of highly polyunsaturated fatty acids (PUFAs). 

Polyunsaturated fatty acids are essential for structure and function of the plasma 

membrane. The ratio of phospholipids with polyunsaturated acyl chains, and the nature 

_______________ 
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of the phospholipids determine the fluidity of the plasma membrane [5]. Integrity of the 

plasma membrane is of crucial importance for the functioning of spermatozoa. The 

plasma membrane forms a semipermeable barrier for molecules and maintains and 

modulates the intracellular composition. It protects the cells from extracellular 

influences, both in the male and the female reproductive tracts, and from non-

physiological influences such as the addition of extenders during spermatozoa 

preservation. Adequate functioning of the plasma membrane is essential for survival of 

spermatozoa until fertilization [6]. This structure is also essential for normal 

capacitation, binding to the oocyte’s zona pellucida, acrosome reaction, and actual 

fusion of the gametes [7,8].  

 Spermatozoa are unique in that they have limited biosynthetic capabilities; 

therefore, spermatozoa rely primarily on extracellular substrates to meet their energy 

requirements. Energy is used by spermatozoa to initiate catabolic processes such as  

glycolysis, and to maintain motility, ion balance, and vital cell functions. The energy 

used by spermatozoa is principally derived from carbohydrates; however, other 

exogenous substrates include lactic acid, glycerol, amino acids, and fatty acids [4]. The 

incorporation of PUFAs from the diet to the plasma membrane of mammalian 

[9,10,11,12] and fowl [13] spermatozoa has been shown to be effective. Thus, it is 

possible to alter the structure and function of the plasma membrane by making changes 

in dietary fat intake.  

 Spermatozoa from all mammals contain high levels of PUFAs, especially 

docosahexanoic acid (DHA; 22:3 n-3, an omega-3 fatty acid) and docosapentanoeic acid 
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(DPA; 22:5 n-6, an omega-6 fatty acid), but the phospholipid bilayer of spermatozoa 

from different species has a distinctive PUFA composition. In most mammals DHA is 

the major PUFA component of the membrane, but spermatozoa from stallions and boars 

have a higher proportion of DPA [14]. Studies with boars [15] and humans [16,17] have 

shown that a high DHA to DPA ratio in semen results in enhanced fertility, while higher 

DPA levels result in reduced fertility.  

 The objective of the present study is to compare the effects of two omega-3 fat 

supplements on the quality of fresh, cooled/stored and frozen/thawed stallion semen by 

evaluating motion and morphological characteristics, and membrane integrity of 

spermatozoa. We hypothesize that the addition of omega-3 fatty acids to stallion diets 

may enhance the quality of their spermatozoa.  

 

Rationale for Present Research  

 Considerable interest exists in the equine breeding industry to breed mares using 

cooled or frozen semen. However, for many stallions the current techniques for 

processing, cooling, packaging and freezing semen result in a loss of viability and 

fertility. Furthermore, commercial diets fed to stallions commonly contain fat added in 

the form of corn grain or corn oil both of which are high in omega-6 fatty acids. If DHA 

is essential for optimal fertility in stallion spermatozoa, as it is in other species, then it is 

possible that standard stallion diets provide a suboptimal supply of DHA and its 

precursors for the maximal production of viable spermatozoa. The addition of PUFAs, in 

particular omega-3 fatty acids, through the dietary supplementation of fats may be an 
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alternative to increase semen quality in stallions. Moreover, comparisons of different fat 

sources and their effect on motility, morphology, and membrane integrity could lead to 

more efficient dietary fat supplementation of stallions. Eventually, research in this area 

could provide a better understanding of the mechanisms by which addition of PUFAs to 

the diet may enhance stallion seminal characteristics. Thus, the objective of the research 

presented herein is to determine and compare the effects of 2 dietary fat supplements on 

the seminal characteristics and quality of ejaculates collected from stallions by analyzing 

the quality of fresh, cooled/stored (24 and 48 h), and frozen/thawed semen samples.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

CHAPTER II 
 

LITERARY REVIEW 
 
 

Spermatozoa Structure and Viability  

 For spermatozoa, which are end-differentiated cells with restricted biosynthetic 

capacity, limited ability to withstand the cryosurvival severely affects future fertility 

[18]. Exposure of spermatozoa to cooling and freezing causes disruption to the plasma 

membrane due to thermal, mechanical, chemical and osmotic stresses as well as 

intracellular changes brought about by dehydration associated with ice formation. In 

addition, components of the extender required for dilution not only alter the environment 

of the spermatozoa and the cell itself, but also the biological responses of spermatozoa to 

cooling and freezing [2].  

 In order for a spermatozoon to fertilize an ovum, it must retain at least six 

general attributes after cooling or freezing and thawing: normal metabolism for 

production of energy, progressive motility, intact cellular membranes, presence of 

acrosomal enzymes that are essential for penetration of the structures surrounding the 

egg, intact surface-associated proteins of the plasma membrane that are important for 

survival of the spermatozoon in the female reproductive tract and for attachment of the 

spermatozoon to the egg plasma membrane at fertilization, and uninjured nucleoprotein 

[2,3]. Destruction of spermatozoal components associated with one or more of these 

functions will reduce or abolish fertility, viability and motility of spermatozoa [19]. 

Most spermatozoal damage results from altered membrane structure due to thermal, 

mechanical and chemical stresses, osmotic shock, dehydration, salt toxicity, intracellular 
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ice formation, fluctuations in cellular volume/surface area, or metabolic imbalance 

[3,20]. 

 

Cooling  

 Spermatozoa from individual stallions differ in their ability to survive the 

cooling/storage and freezing/thawing processes by any given procedure [2]. These 

differences appear to be related to the individual composition of the plasma membrane 

[16,21]. The reasons for individual variation in resistance to cooling and 

freezing/thawing are still unclear, but the reduced fertilizing capacity of cooled and 

frozen semen can mainly be attributed to changes in membrane structure which result 

from the processes involved with cooling and freezing [20,22].  

 Although cooling stallion semen provides longevity of spermatozoal motility by 

reducing the metabolic activity of cells, the cooling process itself is not harmless [23]. 

When semen is cooled from 20˚ C to 1˚ C, a series of irreversible changes, collectively 

known as “cold shock”, occur in spermatozoa [20,24], thus causing damage to the cells. 

Cold shock damage to spermatozoa is attributed to a temperature-induced, fluid-ordered 

phase transition that causes lipid structural changes in the plasma membrane [2,3,12,25]. 

Lipid phase separation events also cause integral membrane proteins to cluster which is 

expected to alter function especially of proteins which undergo a structural modulation 

to carry out their function, such as ion channel proteins, which is why membrane 

permeability is increased after cooling [26,27]. Cold shock, which can be lethal, is 

evidenced by the presence of many spermatozoa swimming in circular paths, premature 
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loss of motility, decreased energy production, increased plasma membrane permeability, 

and loss of intracellular molecules and ions [24,28,29].  

 Cellular membranes must withstand several stresses during freezing and thawing. 

These stresses include the addition of cryoprotectants prior to freezing, volumetric 

changes and associated membrane stretching and shrinkage in response to hyperosmotic 

cryoprotectant solutions, as well as freeze-induced dehydration, thermotropic phase 

transitions in membrane phospholipids, and intracellular ice formation [20]. When 

semen is cooled below 0˚ C, extracellular crystals begin to form. This results in an 

increased concentration of salts in the extracellular fluid causing osmotic pressure 

differentials across all cell membranes. Water moves from the inside of spermatozoa to 

the extracellular environment and, thus, spermatozoa become dehydrated [2]. As a result 

of osmotic dehydration, the plasma membrane can undergo ultrastructural changes 

which result in deformation and increased permeability, and therefore, cellular damage 

[2,18]. In addition, if water cannot leave spermatozoa rapidly, intracellular ice formation 

occurs causing death or irreversible damage to the cells. To allow survival of 

spermatozoa through the freeze/thaw process, permeating cryoprotective agents, such as 

glycerol, must be added [2]. The water volume of a cryopreserved cell changes by 

contraction and then recovery when the molar concentrations of glycerol are added to the 

spermatozoa suspension, a second contraction when extracellular ice formation increases 

external salt concentration, return to the original volume as extracellular ice melts to 

return external salts to normal concentration, and expansion and recovery as glycerol is 

removed during processing/insemination [18]. Cell plasma membrane accommodation to 
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volume changes is not a simple matter because the elasticity of the bilayer is minimal. It 

can expand or contract by less than 5% before it bursts and loses its structural integrity 

[30].  

 Although cryoprotectants are essential for successful freezing of semen, they 

may also adversely affect cellular membranes [19,31] and render spermatozoa infertile 

even though the spermatozoa may be motile after thawing [19]. The major beneficial 

effects of cryoprotective agents such as glycerol are extracellular [2]. However, glycerol 

also enters and resides in the cell membrane and cytoplasmic interior and has a direct 

effect on the plasma membrane in addition to its osmotic effect on the cell [20]. Glycerol 

binds directly to phospholipid headgroups reducing membrane fluidity [32] and interacts 

with membrane-bound proteins and glycoproteins [33] causing clustering of 

intramembranous particles [34]. Any change in stallion spermatozoa induced by cold 

shock will exacerbate damages induced by freezing/thawing [35]. In addition to crystal 

formation, damage due to cryopreservation also includes loss of progressive motility 

[36,37,38,39], chromatin [40] and morphological alterations [41], and acrosome changes 

[37,42]. These alterations lead to a decrease in spermatozoa lifespan, thus decreasing the 

longevity and fertilizing capacity of spermatozoa when inseminated [37]. Furthermore, 

centrifugation, removal of seminal plasma, and resuspension of spermatozoa in freezing 

extender are processes often used to concentrate spermatozoa for freezing but may also 

reduce the percentage of motile spermatozoa or increase the percentage of cells with 

damaged plasma and/or acrosomal membranes [2]. During these steps, irreversible 

damage may occur to the plasma membrane of spermatozoa that is not detectable by 
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evaluation of motility [43].  

 Temperature is another factor that affects the structure and function of the plasma 

membrane causing changes in its flexibility or fluidity [2]. Membranes are “fluid” at 

body temperature, meaning that phospholipids are free to move laterally in the lipid 

bilayer [44,45,46]. It is suspected that the nature, position, and distribution of 

phospholipids, as well as the nature of their fatty acyl side chains, determines the fluidity 

of the membrane [5]. Phospholipids with highly unsaturated fatty acyl side chains 

normally have the general shape of an inverted cone. In the presence of cold 

temperatures their shape becomes more sharply conical resulting in structural changes 

that are considered to decrease the fluidity of the membrane [12] thus causing loss of 

membrane barrier function and increasing the permeability of the plasma membrane [2]. 

These changes in structure persist during further cooling and may not be reversed upon 

reheating [45].  

 Omega-3 fatty acids contain a double bond in the third position from the methyl 

group and because of their unique structural properties are crucial for cell membranes 

[47]. Omega-3 and omega-6 fatty acids cannot be interconverted [48] but when large 

amounts of long- chain omega-3 fatty acids are ingested, there is a high incorporation of 

eicosapentanoeic acid (EPA 20:5 n-3 an omega-3 fatty acid) and DHA in membrane 

phospholipids. By the increased amount of PUFAs, the physical characteristics as well 

as the function of the membranes may be altered [49]. Unsaturated fatty acids are 

essential because of PUFA incorporation in membrane phospholipids and their 

contribution to lipid structure [12]. Greater resistance to cold-shock and freeze-induced 
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damage has been noted for species with spermatozoa membranes characterized by a high 

degree of saturation in the phospholipid-bound acyl moieties [50]. 

 The phospholipid membrane of mammalian spermatozoa has a characteristic 

fatty acid composition, the most distinctive feature of which is a very high proportion of 

long chain PUFAs. This characteristic varies by species as well as by individual [24]. Of 

particular interest are the fatty acids with 22 carbon atoms, synthesized by omega-3 and 

omega-6 acids, which are essential constituents of reproductive organs [51,52] and 

particularly spermatozoa [52,53]. However, the lipid composition, and especially the 

fatty acid composition of the membrane may vary by effects of different factors. 

Membrane lipids and their fatty acid composition change with the fatty acid 

concentration of the diet [12,53,54]. Dietary linoleic acid (LA; 18:2 n-6, an omega-6 

fatty acid), the parent compound of DPA and other omega-6 fatty acids, and linolenic 

acid (ALA; 18:3 n-3, an omega-3 fatty acid), the precursor of DHA and other omega-3 

fatty acids modify the fatty acid composition of phospholipids of different cells and 

tissues in diverse ways [54]. Linoleic and linolenic acids are not synthesized in 

mammals but when they are included in the diet they are metabolized to longer chain 

omega-6 and omega-3 fatty acids [55,56]. These acids are then made available for 

phospholipid biosynthesis [55]. High concentrations of linoleic acid are found in 

vegetable oils such as corn and soybean oils [57]. Linolenic acid, on the other hand, is 

found in fish oils and linseed oils [47]. As previous reasons state, modifications of the 

fatty acid composition of the lipid membrane, and thus its physiological function can 

occur through dietary fat intake [12,53,54]. For example, rats normally have high levels 
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of omega-6 and low levels of omega-3 fatty acids in their testes but this can be reversed 

by fish oil feeding. Fish oil-fed rats exhibited greater testes maturation as evidenced by 

greater spermatogenesis. This was associated with an increase in DHA from 0.6 to 

10.8% and a decrease in 22:5 n-6 from 19.9 to 8.6% suggesting that DHA can 

functionally replace 22:5 n-6 in the rat testes [58]. Recent research also suggests that 

DHA is important for normal spermatozoa function. 

  Several studies with fats containing high DHA concentrations have shown to 

increase certain spermatozoa characteristics, including percentage of motile cells, of 

normal cells, and of cells with normal acrosome scores when fed in the diets of stallions 

[57,59], boars [15], roosters [60,61], and humans [16,17]. Feeding a DHA-enriched 

nutriceutical to stallions resulted in improvements in motion characteristics in 

cooled/stored and frozen/thawed semen of stallions with marginal fertility [57]. Mean 

spermatozoa concentration in ejaculates of stallions being fed the nutriceutical was 1.8 

times higher than when stallions were fed the control diet. After 48 h of cooling/storage, 

total and progressive motion characteristics were improved by feeding the nutriceutical 

(43 versus 54%, P = 0.07 and 33 versus 43%, P = 0.06, respectively). Both total and 

progressive motility of frozen/thawed semen were also improved by treatment (21 versus 

25%, P = 0.03 and 17 versus 20%, P = 0.03, respectively) [57]. Stallions with poor 

quality ejaculates have also benefited from supplementation of fatty acids from marine 

sources [59]. Supplementation resulted in increased daily spermatozoa output (46%, P < 

0.05) and higher (P < 0.05) percentage of morphologically normal spermatozoa. 

Supplementing boar diets with tuna oil significantly increased the proportion of 
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progressively motile spermatozoa (69.2 versus 74.5%, P < 0.01) and the proportion of 

spermatozoa with a normal acrosome score (44.3 versus 49.9%, P < 0.001), and reduced 

the proportion of spermatozoa with abnormal morphologies (12.1 versus 5.4%, P < 0.01) 

[15]. Evaluation of the ratio of dietary omega-6 to omega-3 fatty acids on the 

reproductive performance of roosters using fish oil supplementation resulted in linear 

increases (P < 0.05) of semen volume (R2 = 0.88), spermatozoa motility (R2 = 0.91) and 

vigor (R2 = 0.93) in the roosters consuming diets containing higher levels of omega-3 

fatty acids [60]. Dietary supplementation with linolenic acid has also resulted in a 

significant increase in fertility of roosters (83 to 97%) which corresponded with an 

increased amount of 22:5 n-3 and a decreased n-6:n-3 ratio. Reductions in the amount of 

DHA in spermatozoa were associated with reduced spermatozoa numbers and impaired 

motility and fertilizing ability [61]. In human spermatozoa, omega-3 fatty acids have 

been found to enhance optimal fertility [16]. Reductions in the amount of omega-3 fatty 

acids in the plasma membrane of human spermatozoa are used as a marker of impaired 

fertility in men because these reductions are correlated with decreased spermatozoal 

concentration and reduced number of spermatozoa with progressive motility and normal 

morphology. A linear correlation between the amount of DHA in semen and the density 

of spermatozoa along with a linear correlation between DHA content, and the number of 

motile spermatozoa have also been shown to exist in humans [17]. 
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Motility 

 Spermatozoal motility has been considered a major criterion of semen analysis 

for predicting potential male fertility and is, therefore, emphasized heavily in stallion 

fertility examinations. In evaluating motility with most species, spermatozoa are 

classified as non-motile, progressively motile, or non-progressively motile. A 

progressively motile spermatozoon swims forward in essentially a straight line, whereas 

a non-progressively motile spermatozoon swims in an abnormal path such as in tight 

circles [4]. After passage through the epididymis, spermatozoa are motile cells. Motility 

becomes critical at the time of fertilization because it allows and facilitates passage of 

the spermatozoon through the zona pellucida. Motility indirectly evaluates the ability of 

midpiece mitochondria to propel the cell [62]. Hence, assessing the motile fraction of 

spermatozoa in a population is perhaps the most widely-used measure of semen quality. 

Traditionally, motility has been assessed by visual estimation using a microscope. 

However, the recent development of computerized systems for evaluation of motility 

have provided an objective approach for measuring selected motion characteristics in 

stallions, thus eliminating the element of subjectivity [63]. 

 Motile spermatozoa are not always fertile [19]. Although motile spermatozoa 

almost certainly have an adequate production of energy, other important aspects 

affecting cell functionality may be altered during the cooling and freezing processes [2]. 

As a result, cooled stallion spermatozoa tend to be both less motile and fertile than 

spermatozoa used fresh [64]. An important reason for the decrease in fertility of stallion 

semen during storage is the peroxidation of spermatozoa membrane lipids [65]. 
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Immobile or poorly motile spermatozoa produce more lipid peroxides and exhibit a 

higher rate of endogenous lipid peroxidation than spermatozoa classified as normal and 

fully motile. However, ejaculates with poorly motile spermatozoa tend to have a lower 

concentration of DHA than those with good motility [17]. Polyunsaturated fatty acids are 

highly susceptible to peroxidation and lipid peroxides are highly toxic to living cells 

[66,67]. Spermatozoa are very susceptible to lipid peroxidation due to their high content 

of polyunsaturated fatty acids [68]. Peroxidation of spermatozoa has been shown to 

cause extensive structural alterations especially in the acrosomal regions of spermatozoa 

and irreversible loss of motility and fertilizing ability [69]. Lipid peroxides inhibit or 

destroy certain enzymes [70,71]. The loss of activity of membrane-bound enzymes is 

due to the loss of membrane structure [72]. Although there is data that demonstrates the 

important role of PUFAs in the maintenance of membrane integrity and how a relatively 

small amount of peroxidation of PUFAs leads to extensive loss of enzyme activity (50% 

of enzyme inactivation results from destruction of only 8% of DHA content) [73], the 

mechanism of lipid peroxidation has not been completely understood yet [17]. It has 

been reported, however, that peroxidation of PUFAs is the major cause for the loss of 

spermatozoal motility and fertilizing ability [74,75] by altering membrane fluidity and 

fuctional integrity [76].  

 

Morphology 

 Morphological examination of spermatozoa is a valuable method for evaluating 

potential stallion fertility, but it requires objective classification and strict standards for 
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classifying abnormal spermatozoa [77]. Spermatozoal morphology can easily be 

evaluated in the liquid-preserved state using buffered formol-saline (BFS) under a phase 

[6] or a differential interference contrast (DIC) microscope [78,79]. These two 

techniques are most reliable because they reveal the structure of the heads, acrosomes, 

and mid-pieces in addition to abnormalities such as bent or coiled tails [6,78,79]. Typical 

features of normal stallion spermatozoa include an asymmetrical head, abaxial position 

of the tail, an acrosome of small volume, and presence of microtubules in the neck [80]. 

Abnormalities such as bent or coiled tails, which are the most obvious signs of structural 

damage [81], may be caused by stress such as osmotic shock [82] or may be due to 

structural malformation of organelles of the tail [83] and are generally considered to be 

incapable of fertilization. Most ejaculates of good fertility contain only a small 

proportion of abnormal spermatozoa resulting mainly from errors of spermatogenesis 

[81]. Abnormalities of spermatozoa can also be caused by structural changes occurring 

after spermatogenesis and usually after maturation of spermatozoa in the epididymis. 

These initially involve degeneration of organelles such as the acrosome or mitochondria, 

or bending or coiling of otherwise structurally normal tails [82]. Bent and coiled tails can 

also result from the plasma membrane around the tail swelling and exerting pressure on 

the motor apparatus thus altering its shape during the increase in volume of the cells 

[82,84]. The process is a response to adverse conditions such as osmotic stress [82], 

inhibition of metabolic activity [85], or dilution [86]. Bending and coiling do not appear 

to be reversible, so the process is most likely followed by death [81].   
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Membrane Integrity 

 The integrity of the plasma and acrosomal membranes is of crucial importance 

for the functioning of spermatozoa. The plasma membrane protects the cell from the 

extracellular environment, either in the male or female genital tract, and from non-

physiological influences such as addition of extenders during spermatozoa preservation. 

Its integrity and adequate functioning are essential for survival of spermatozoa until 

fertilization [6]. Assessment of membrane integrity is a crucial step in the evaluation of 

the viability of spermatozoa due to its role, not only as a cell boundary, but also for its 

function in cell-to-cell interactions (for example between spermatozoa and the female 

genital tract, and between spermatozoa and the ovum) [7]. Alteration of the membranes 

affects spermatozoal function in the genital tract (specifically attachment to oviductal 

epithelial cells, capacitation, acrosome reaction and binding to and penetration of the 

oocyte’s zona pellucida) [8].  

 Membrane integrity can be evaluated with fluorescent stains which demonstrate 

that the cell membrane is intact [21]. A combination of a live/dead fluorescent stain, 

such as propidium iodide (PI) and SYBR-14 can be used to assess cell viability. SYBR-

14 is a membrane permeant nuclear stain which causes the nuclei of living cells to 

fluoresce green throughout [62,87]. Propidium iodide is employed to detect the 

proportion of dead cells in a population. Propidium iodide only stains structures 

containing double helix nucleic acids. Since the intracellular amount of double helix 

RNA is negligible, the red fluorescent signal emitted is produced by the intercalation of 

PI with nuclear DNA when it is no longer bound to nuclear proteins due to cellular death 
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and degeneration. The intact plasma membrane of spermatozoa is impermeable to PI, 

and thus it can only enter and stain damaged (permeable) cells [88,89].  

 

Extending and Packaging 

 If spermatozoa are maintained at body temperature (37˚C) extensive cellular 

death will occur [90]. Cooling stallion semen reduces metabolic activity and prolongs 

longevity of spermatozoal motility [91]; however, the cooling process itself is not 

harmless. The deleterious effects of cooling can be diminished when a suitable extender 

is added to the semen, which is then slowly cooled and stored at 4 to 5˚C [92,93]. 

            Dilution ratios of at least three parts extender to one part semen for whole 

ejaculates have been shown to maximize spermatozoal survivability in vitro and 

optimize spermatozoal motility in cooled/stored stallion semen provided that the final 

concentration remains between 25 to 50 x 106 progressively motile spermatozoa/mL 

[3,94,95,96]. This dilution ratio ensures that the final seminal plasma concentration in 

extended semen is � 20% [3]. Several investigators have reported that removing some 

seminal plasma from stallion spermatozoa before cooling and storage is beneficial 

[94,96,97,98,99,100,101,102,103,104]. However, completely removing seminal plasma 

from spermatozoa before cooling can have detrimental effects. Leaving 5 to 20% 

seminal plasma in semen maintained the highest spermatozoal motility [94,98,105] and 

acrosomal integrity [96]. Seminal plasma is removed by either collecting only the 

spermatozoa-rich fraction of the ejaculate or by centrifugation [95,99,106,107]. The 

process of centrifugation to remove seminal plasma can be detrimental to spermatozoal 
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survivability [108,109,110,111], but can be minimized by using low centrifuge forces 

[102,111,112]. The concentrations recommended for cooling stallion spermatozoa, 

however, are too low for cryopreservation, since a great number of straws would be 

needed for each insemination [113]. Therefore, centrifugation is necessary to enable 

resuspension of spermatozoa into a freezing extender at a concentration high enough to 

enable packaging of all spermatozoa required for one insemination dose in an individual 

plastic straw [2]. It has been determined that spermatozoa frozen at a concentration of 

200 x 106 spermatozoa/mL have higher percentages of total motile and progressively 

motile spermatozoa compared to spermatozoa frozen at higher concentrations [114]. 

When cryopreserving stallion semen, spermatozoa can be packaged in 0.5, 2.5 or 5 mL 

straws. Smaller volume straws have a higher surface area to volume ratio, which permits 

spermatozoa to cool, freeze, thaw and warm at a more uniform and optimal rate [115].  

 

Stallion Size 

 Testicular size or volume is a direct measure of the amount of testicular 

parenchyma present, which in turn determines potential spermatozoa production [116]. 

Small testicular size therefore corresponds to reduced spermatozoa production [117]. 

However, provided the testicular parenchyma is normal, one would not expect 

parameters such as the percentage of motile cells and percentage of morphologically 

normal cells to differ greatly between stallions with different size testicles since these 

values are independent of testicular mass. The number of spermatozoa produced per 
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gram of testicular parenchyma is consistent regardless of testicular size or horse breed 

[118].  
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CHAPTER III 

MATERIALS AND METHODS 

 

Animals and Treatments 

 Miniature stallions (n = 9) ranging in age from 3 to 13 yr were used from June to 

October 2007. Stallions used in this study were maintained under the approval of the 

Texas A&M University Institutional Agricultural Animal Care and Use Committee 

using guidelines set forth by the Federation of Animal Science Societies [119]. Stallions 

were housed in individual stalls at the Texas A&M University Horse Center and had ad 

libitum access to fresh water throughout the study. Each stallion was turned out every 

other day in outside pens in order to exercise. Stallions were each fed 1.50% of their 

body weight (BW) per day of alfalfa hay and 0.5% BW per day of concentrate (Table A-

1). At the beginning of the experiment, the stallions’ body weights ranged from 69.9 to 

109.3 kg. Stallions were weighed every 2 weeks and their concentrate intake was 

adjusted accordingly.  

 Stallions were placed into treatment groups based on the ability of their extended 

spermatozoa to maintain progressive motility after cooling and storage. Four stallions 

produced spermatozoa that were � 60% progressively motile after 24 h of cooling and 

storage, two that ranged from 40 to 59%, and three that were � 39%. One stallion from 

each pair was then assigned to one of two treatments so that an equal distribution of 

motion characteristics was allotted to each treatment. One of the three stallions that had 

� 39% progressively motile spermatozoa was randomly assigned to one of the two 
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treatments.  

 Each treatment group received supplementation of omega-3 fatty acids to the 

basal diet. However, the omega-3 fatty acid source differed. Stallions in treatment 1 (n = 

5) received 60 g per day of a flake blend of flaxseed and algae-based omega-3 fatty acids 

(Goldfat®, JBS United, Inc., Sheridan, IN); while stallions in treatment 2 (n = 4) 

received 150 g per day of a pelleted blend of fish-based omega-3 fatty acids 

(Magnitude®, JBS United, Inc., Sheridan, IN). The fatty acid composition of both diets is 

shown in Table A-2. 

 Supplemented diets were fed for 84 d to insure inclusion of one full 

spermatogenic cycle. One month prior to the onset of the study, semen was collected 

once per week with an artificial vagina (AV, Missouri model) to familiarize the stallions 

with the collection process. Once the study began, semen was collected from the 

stallions for three consecutive days every other week for a total of nine collections. The 

first two consecutive collections of each sample period were discarded in order to aid in 

depletion of extragonadal spermatozoa reserves and to help ensure uniformity of 

ejaculates. The third consecutive collection was processed for analysis. Semen collection 

for analysis occurred on days -28, -14, 0, 14, 28, 42, 56, 70 and 84 with day 0 being the 

onset of dietary fat supplementation. The semen obtained from days -28, -14 and 0 

served as a control for each stallion and was used to compare seminal characteristics 

before and after dietary fat supplementation. Ejaculates were analyzed as fresh, 

cooled/stored (24 and 48 h), and frozen/thawed samples.  

 



 22 

Semen Processing  

 The gel-free volume of each ejaculate was determined using disposable 

serological pipettes (Fisher Scientific Inc., Pittsburgh, PA) to avoid contamination of 

samples while measuring volume. Spermatozoa concentration was assessed using a 

densimeter (Animal Reproduction Systems, Chino, CA). The number of total 

spermatozoa in each ejaculate was determined by multiplying the total gel-free volume 

of semen by the concentration. A raw semen sample was preserved in BFS (buffered 

formol-saline) for morphological analysis. The remaining fresh semen was diluted at 

least 3:1 (extender to semen) with a commercial semen extender (INRA-96®, Breeder’s 

Choice, Aubrey, TX) in order to achieve a final concentration of 25 to 50 x 106 

spermatozoa/mL. Extender was warmed to 37˚ C prior to collection and was maintained 

at this temperature until use. All the materials used in handling ejaculates were 

maintained at 37˚ C in an incubator until time of use. 

 Three aliquots, each containing 1.5 mL of extended semen, were separated and 

stored in microcentrifuge tubes. One of the aliquots was kept at 37˚ C and analyzed for 

motion characteristics and membrane integrity within 30 min of collection. The other 2 

aliquots underwent standard processing for cooled transported semen. These aliquots 

were stored in separate cooling devices (Equitainer-II®, Hamilton-Thorn Biosciences, 

Beverly, MA) and analyzed after 24 and 48 h of storage. The remaining semen was 

transferred to 50 mL conical centrifuge tubes at a final volume of 35 mL per tube and 

centrifuged at 500 x G for 12 min at room temperature. After centrifugation, the 

supernatant was removed and the spermatozoa pellet was resuspended with freezing 
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extender (EZ-Freezin LE®, Animal Reproduction Systems, Chino, CA). Prior to 

suspension of spermatozoa with freezing extender, the extender was centrifuged at 2400 

x G at room temperature for 10 min and passed through both a 5.0 and a 1.2 µm filter. 

This was done to homogenize the extender and to filter any large particles that might 

interfere with the motility analysis. The resuspended semen was then packaged in five 

0.5 mL straws at a concentration of 200 x 106 spermatozoa/mL and frozen in liquid 

nitrogen vapor by placing the straws on a rack 3 to 4 cm above the liquid-gas interface 

for 5 min. After 5 min, the straws were plunged into liquid nitrogen and stored in a 

standard storage dewar (Model XC Millenium 20, Animal Reproduction Systems, 

Chino, CA) at -196˚ C for future spermatozoa analysis.  

  

Spermatozoa Analysis 

 The percentage of total motile spermatozoa, progressively motile spermatozoa as 

well as other motion characteristics including path velocity (VAP), progressive velocity 

(VSL), track speed (VCL), lateral amplitude of head (ALH), beat frequency (BCF), 

straightness (STR), and linearity (LIN) were determined via computer-assisted sperm 

analysis (CASA, Ceros Motility Analyzer, Hamilton-Thorne, Beverly, MA). During the 

analysis of motion characteristics, a minimum of 500 cells were counted. The settings 

used by CASA are shown in Table A-3. Fresh samples were analyzed 15 min after 

dilution. After removal from the storage containers, cooled semen samples were placed 

in an incubator for 15 min at 37˚ C prior to motility and membrane integrity analysis to 

ensure maximum reactivation of spermatozoal motility [94]. After at least 48 h of 
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storage in liquid nitrogen, frozen samples were removed from the dewar and 

immediately placed in a 37˚ C water bath for 30 seconds [2] and diluted to 25 x 106 

spermatozoa/mL with INRA-96® extender.  

 Membrane integrity was evaluated with a fluorescent microscope (Nikon Eclipse 

E1000, 40X objective) using a live/dead sperm viability kit (Invitrogen Molecular 

Probes, Eugene, OR) of SYBR-14 and propidium iodide. SYBR-14 was diluted with 

DMSO at a ratio of 1:5 (SYBR-14:DMSO); 2.0 µl of this dilution were then added to 

15.0 µl of the semen sample to be analyzed, along with 3.6 µl of PI, and 40 µl of 

Garner’s solution. A minimum of 200 cells were counted and a percentage of intact and 

damaged cells was obtained. Morphology of the fresh samples preserved in BFS was 

analyzed using DIC microscopy (Olympus BX60, 100X objective). One-hundred cells 

per sample were evaluated. Cell abnormalities were recorded and quantified by counting 

the presence of each abnormality. 

 

Statistical Analysis 

 Data were analyzed by repeated measures in time using PROC MIXED (SAS v 

9.1; SAS Inst. Inc., Cary, NC). Treatment, time, and treatment x time interactions were 

included in the model. Differences were considered significant at a probability level of  

P < 0.05.  
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CHAPTER IV 

RESULTS 

 

 Motion characteristics, morphology and membrane integrity of fresh, 

cooled/stored (24 and 48 h) and frozen/thawed semen samples were assessed. No 

treatment effects were found in any of the endpoints measured, meaning there were no 

significant differences between treatment 1 (Goldfat®) and treatment 2 (Magnitude®). 

There were also no day effects within the groups. However, treatment x day effects did 

exist in some of the endpoints evaluated. When evaluating data from individual stallions, 

only one out of the three whom at the beginning of the trial produced � 39% 

progressively motile spermatozoa exhibited significant improvements in total and 

progressive motility of fresh and cooled spermatozoa throughout the trial. 

 

Ejaculate Parameters: Volume and Concentration 

 Although there were no significant differences (P = 0.16) between the two 

treatments, a trend toward a decrease in the gel-free seminal volume of the ejaculates 

was observed within treatments. Stallions from both treatment groups produced a 

numerically higher ejaculate volume at the beginning of the trial which slowly decreased 

throughout the trial. A treatment x day effect was observed at d 42 (10.08 ± 9.18 mL and 

4.50 ± 2.65 mL, treatment 1 and 2, respectively) and d 56 (8.78 ± 4.47 mL and 3.55 ± 

2.72 mL, treatment 1 and 2, respectively) of the trial (Fig. 1). 
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Fig. 1. Mean (± S.D.) gel-free semen volume observed for treatments 1 and 2 throughout 
 the trial (d 0 = start of supplementation).  
 
 
 Mean spermatozoa concentration in the ejaculates did not differ (P = 0.91) 

between treatments; nevertheless, stallions from both treatments produced a numerical 

increase in the concentration of spermatozoa in the ejaculate throughout the trial (d -28 

to d 84). No treatment, day or treatment x day effects were observed (Fig. 2). 

 
Fig. 2. Mean (± S.D.) spermatozoa concentration observed for treatments 1 and 2 
 throughout the trial (d 0 = start of supplementation). 
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 Although not statistically different, the mean seminal volume was lower in 

treatments 1 and 2 during the supplementation period (d 14 to 84) compared to the pre-

supplementation period (d -28 to 0) (P = 0.28). Mean spermatozoa concentration in the 

stallions’ ejaculates was greater for both treatment groups during the supplementation 

period versus the pre-supplementation period (P = 0.83, comparison between 

treatments). However, the mean total spermatozoa produced for both treatment groups 

did not differ at any collection day (P = 0.20). Total spermatozoa (mean ± S.D.) 

produced by stallions in treatment 1 before supplementation was 2.19 ± 0.21 billion 

versus 2.53 ± 0.37 billion after supplementation. Total spermatozoa (mean ± S.D.) 

produced by stallions in treatment 2 before supplementation was 1.69 ± 0.26 billion 

versus 1.54 ± 0.66 billion after supplementation (Table 1).  

 

Table 1  

Mean (± S.D.) gel-free semen volume and spermatozoa concentration throughout the trial.   
Treatment 1  

(n = 5) 
Treatment 2  

(n = 4) Trt 

Day       -28 to 0                 14 to 84                       -28 to 0                 14 to 84          
P- 
value 

Volume (mL) 12.97 ± 1.73 8.30 ± 1.81 9.38 ± 1.80 4.96 ± 2.22 0.20 
      

Concentration  
(106 cells/mL) 

168.47  
±  

22.42 

305.37  
±  

51.51 

190.50  
±  

5.20 

310.96 
 ± 

 23.35 
0.91 

      
Total  
spermatozoa  
in ejaculate  
(109 cells/mL) 

2.19 ± 0.21 2.53 ± 0.37 1.69 ± 0.26 1.54 ± 0.66 0.20 
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Motility 

 Total motility (TMOT) and PMOT in fresh samples was not improved by 

treatment. When spermatozoa were cooled and stored for 24 and 48 h, TMOT and 

PMOT were also not improved by treatment. Motion characteristics of frozen 

spermatozoa were less than optimal in both treatments and were not improved by 

omega-3 supplementation. The mean total motility of frozen samples in the pre-

treatment period was 7.07% for treatment 1 and 6.33% for treatment 2; these values 

decreased in the post-treatment period to 4.63% in treatment 1 and 2.96% in treatment 2. 

The mean progressive motility of frozen samples also declined in both treatments 

throughout the trial from 5.40 to 4.07% in treatment 1 and 4.83 to 3.08% in treatment 2. 

In addition, none of the motion characteristics analyzed differed between treatments, nor 

were they improved by treatment (Table A-4).  

 During the trial, TMOT and PMOT for both treatments followed similar trends 

but there were no treatment or day effects; however a treatment x day effect did exist. 

Fresh TMOT (mean ± S.D.) was not significantly different between the two treatments 

with the exception of d 0 (74.8 ± 19.04% and 54.0 ± 24.21%, treatment 1 and 2, 

respectively) (Fig. 3). 
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Fig. 3. Mean (± S.D.) total motility of fresh spermatozoa observed for treatments 1 and 2 
 (d 0 = start of  supplementation). 
 

 Differences in fresh PMOT (mean ± S.D.) were observed at d 0 (66.80 ± 16.95% 

and 41.75 ± 21.17%, treatment 1 and 2, respectively) and d 28 (36.40 ± 31.09% and 

59.50 ± 7.14%, treatment 1 and 2) (Fig. 4). 

 
Fig. 4. Mean (± S.D.) progressive motility of fresh spermatozoa observed for treatments 
 1 and 2 (d 0 =  start of supplementation).  
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 After 24 h of cooling and storage, differences in TMOT (mean ± S.D.) were 

observed at d 0 (63.40 ± 26.78% and 40.50 ± 26.41%, treatment 1 and 2, respectively) 

(Fig. 5). Progressive motility was different at d 0 (53.00 ± 24.53% and 31.75 ± 24.23%, 

treatment 1 and 2, respectively) and d 28 (34.60 ± 35.44% and 58.00 ± 6.98%) (Fig. 6). 

 

 
Fig. 5. Mean (± S.D.) total motility after 24 h of cooling and storage in treatments 1 and 
 2 (d 0 = start of supplementation).  
 

 
Fig. 6. Mean (± S.D.) progressive motility after 24 h of cooling and storage in 
 treatments 1 and 2 (d 0 = start of supplementation).  
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 The trends observed for the motion characteristics of spermatozoa cooled for 48 

h are shown in Fig. 7 and 8. There were no significant differences at any days for TMOT 

or PMOT between or within treatments.  

 
Fig. 7. Mean (± S.D.) total motility after 48 h of cooling and storage in treatments 1 and 
 2 (d 0 = start of supplementation). 
 

 
Fig. 8. Mean (± S.D.) progressive motility after 48 h of cooling and storage in 
 treatments 1 and 2 (d 0 = start of supplementation).  
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           When evaluating the motion characteristics of individual stallions, of the three 

that produced � 39% progressively motile spermatozoa after 24 h of cooling and storage 

at the beginning of the trial, significant increases in only one of the stallions (stallion 3) 

were observed when comparing pre- (d -28 to d 0) to post-treatment (d 14 to d 84) data; 

this stallion was in treatment group 2. Mean TMOT of fresh spermatozoa increased from 

53.00 to 65.30% (P = 0.03) (Fig. 9). Whereas mean progressive motility of fresh 

spermatozoa increased from 46.30 to 59.50% (P = 0.01) (Fig. 10).  

 
Fig. 9. Mean (± S.D.) total motility of fresh spermatozoa from stallions having � 39%   
           progressively motility after 24 h of cooling and storage (d 0 = start of  
           supplementation). 
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Fig. 10. Mean (± S.D.) progressive motility of fresh spermatozoa from stallions having   
             � 39% progressive motility after 24 h of cooling and storage (d 0 = start of  
             supplementation). 
  

 The mean TMOT of stallion 3 after 24 h of cooling and storage increased from 

43.70% in the pre-treatment period (d -28 to d 0) to 64.30% in the post-treatment period 

(d 14 to d 84) (P = 0.02) (Fig. 11).  

 
Fig. 11. Mean (± S.D.) total motility after 24 h of cooling and storage in stallions having               
              � 39% progressive motility after 24 h of cooling and storage (d 0 = start of  
             supplementation). 
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 The mean PMOT of stallion 3 after 24 h of cooling and storage increased from 

35.00 to 55.00% (P = 0.04) (Fig. 12).  

 
Fig. 12. Mean (± S.D.) progressive motility after 24 h of cooling and storage in stallions  
             having  � 39% progressive motility after 24 h of cooling and storage (d 0 = start   
             of supplementation). 
 

 Although the mean TMOT of stallion 3 after 48 h of cooling and storage 

increased from 35.3 to 56.0% (pre- vs. post-treatment), this increase was not statistically 

significant (P = 0.13) (Fig. 13). 
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Fig. 13. Mean (± S.D.) total motility after 48 h of cooling and storage in stallions  
             having  � 39% progressive motility after 24 h of cooling and storage (d 0 = start   
             of supplementation). 
 

 The mean PMOT of stallion 3, however, did increase significantly from 24.70 to 

47.50% (P = 0.06, pre- vs. post-treatment) (Fig. 14). 

 
Fig. 14. Mean (± S.D.) progressive motility after 48 h of cooling and storage in stallions  
             having  � 39% progressive motility after 24 h of cooling and storage (d 0 = start   
             of supplementation). 
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Membrane Integrity  

 The percentage of live, acrosome-intact spermatozoa in fresh, cooled and 

frozen/thawed semen is shown in Table 2. The percentage of spermatozoa with intact 

membranes was unaffected by treatment, although a day effect in the fresh spermatozoa 

of stallions in treatment 1 was observed at d 42 of the trial.  

 

Table 2  
Percentage (mean ± S.D.) of membrane intact spermatozoa in fresh, cooled/stored, and 
frozen/thawed semen samples 

          Trt 

 
Treatment 1  

(n=5) 
Treatment 2  

(n=4) 
P- 

value 
Day -28 to 0 14 to 84 -28 to 0 14 to 84  
Semen sample         
 
Fresh 34.16 ± 22.89 16.21 ± 6.55 29.93 ± 24.98 24.61 ± 10.93 0.29 
 
24 h cooled 21.99 ± 13.96 15.56 ± 8.81 24.90 ± 21.87 18.71 ± 7.66 0.48 
 
48 h cooled 18.67 ± 1.96 16.13 ± 6.55 16.83 ± 1.25 15.53 ± 5.26 0.78 
 
Frozen/thawed 2.86 ± 0.08 2.29 ± 0.97 2.54 ± 0.80 1.80 ± 1.00 0.55 
 

    
 

Morphology 

 Spermatozoal morphology was also unaffected by treatment. No treatment, day, 

or treatment x day effects were observed (Table 3).  
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Table 3 
Percentage (mean ± S.D.) of normal spermatozoa in fresh semen samples preserved in 
BFS. 
    Trt 

 
Treatment 1  

(n = 5) 
Treatment 2  

(n = 4) P-value 
Day         
-28 to 0 71.73 ± 5.61 73.17 ± 0.88 

  

14 to 84 72.23 ± 3.57 77.88 ± 2.10   
0.65 
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CHAPTER V 

DISCUSSION 

 

Normal Seminal Parameters 

 In order to establish normal semen parameters of miniature stallions, a previous 

study evaluated semen from 216 miniature stallions during the months of March and 

April, from 1992 through 1996 [117]. The ejaculates were filtered to remove the gel 

fraction and the volume of the ejaculate, along with progressive motility, concentration, 

and morphology were determined. The percentage of total motile spermatozoa was 

reported to be 63.8 ± 0.7%, the percentage of normal spermatozoa was 54.28 ± 1.05%, 

the gel-free volume was 24.18 ± 0.76 mL, and the concentration of spermatozoa in the 

ejaculate was 233.60 ± 0.76 x 106 cells/mL. These values are similar to those reported 

from a group of more than 400 normal, full-size stallions where the percentage of motile 

spermatozoa was 55%, the percentage of morphologically normal spermatozoa was 

54%, and the average concentration was 200 x 106 spermatozoa/mL [120]. The data 

reported in the present study are similar to the normal parameters established for 

miniature and full-size stallions. At the beginning of the present study, the stallions used 

had a total percent motility of 63.50 ± 3.64%, concentration of 179.49 ± 15.58 x 106 

cells/mL (Table 1), percentage of normal spermatozoa of 72.15 ± 1.02% (Table 3), and 

volume of 11.18 ± 2.54 mL (Table 1). The differences in the concentration of 

spermatozoa and volume of the ejaculates reported throughout the study could be due to 

the different months during which the collections were performed (March to April 
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versus June to October). Because stallions are seasonal breeders, the total semen volume 

and spermatozoal output are greatly influenced by season, among other factors [121]. 

The total semen volume will begin to increase between the months of March and April 

until reaches a peak in May, and will start decreasing in late June or early July until late 

December or early January when the lowest ejaculate volumes are observed. Other 

reports state that the volume of stallion ejaculates increases by approximately 40% from 

the low months to the peak of the breeding season and spermatozoa output during the 

lowest months is approximately 50% of the higher month’s output. Previous reports have 

also indicated that the motion characteristics of spermatozoa are not affected by seasonal 

effects [122]. 

 Miniature stallions have smaller testicles than is commonly accepted as normal in 

full-size stallions [117]. Testicular volume, estimated by testicular measurements, has 

been correlated with spermatozoa production [116,118, 123]. Small testicles therefore 

yield lower spermatozoa output. However, similarities in the percentage of motile 

spermatozoa, percentage of morphologically normal spermatozoa, and concentration are 

expected regardless of the size of the stallion since these values are independent of 

testicular mass, provided the testicular parenchyma is normal [117]. Therefore, it is safe 

to assume that miniature stallions can be used as a research model in comparison to full-

size stallions. 
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Sources of Omega-3 Fatty Acids 

 Omega-3 and omega-6 fatty acids cannot be interconverted [47], but it is well 

established that these 2 families of fatty acids are metabolized to longer chain fatty acids 

that are then made available for membrane lipid biosynthesis [55]. It has been 

recognized that competition between omega-3 and omega-6 fatty acids for a common 

desaturase plays a major role in determining the amounts of each type of fatty acid that 

are produced for lipid biosynthesis [55]. Nonetheless, omega-3 fatty acids with very 

long-chain fatty acids are the precursors of signal molecules that are important for 

several cellular functions including cell motility. Flaxseed contains approximately 57% 

of alpha-linolenic acid (ALA) but does not contain any very long-chain (more than 18 

carbon atoms) fatty acids such as DHA and EPA. On the other hand, omega-3 fatty acids 

with more than 18 carbon atoms are highest in marine animals. It is believed that the 

original source of these fatty acids is algae, which then transfers these fatty acids via the 

nutrition chain to higher animals including fish [47]. To our knowledge, this is the first 

reproductive study performed using an algae/flaxseed blend and a fish source to 

determine if there is a difference in the origin of the omega-3 fatty acids on the seminal 

parameters of stallions. Although the body can convert ALA to DHA and EPA, this 

requires more metabolic work and could be a reason why absorption of fatty acids may 

be greater from animal rather than plant sources as previously reported [47]. Because 

there is no DHA or EPA in flaxseed, the combination of algae with flaxseed is expected 

to provide both the ALA found naturally in flaxseed, and DHA and EPA from algae. 
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Motility 

 Although it would be hypothesized that the addition of omega-3 fatty acids to the 

diets of stallions may enhance, among other parameters, the motion characteristics of 

spermatozoa, data from the current research suggest that motion characteristics were 

unaffected by treatment. These findings are in agreement with previous reports with 

stallions supplemented with long-chain omega-3 fatty acids [59], and with a DHA-

enriched nutriceutical [57] where motion characteristics of fresh and cooled/stored 

spermatozoa were also not improved by treatment. Similar reports are also found with 

boars supplemented with cod liver oil. No significant differences were found in the 

motion characteristics determined in four different steps of the freezing process [124]. 

However, the present research does not agree with the DHA-enriched nutriceutical 

report where significant improvements in the TMOT and PMOT of frozen/thawed 

spermatozoa were observed [57].  In the present study, the motion characteristics of 

frozen/thawed spermatozoa were less than optimal in all the stallions including those 

with high fresh motility and remained low throughout the trial. The motility of processed 

spermatozoa (cooled/stored or frozen/thawed) differs greatly among stallions and 

ejaculates from the same stallions [2]. Although the cause of differences in motility after 

processing has not been established, the change in motility after cooling/storing and 

freezing/thawing is not proportionate to the value before processing [43]. Also in 

disagreement with the current findings is another study in boars supplemented with tuna 

oil where increases in viability, and the proportions of spermatozoa with progressive 

motility were reported [15]. However, these increases occurred in both the control and 
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the tuna oil fed diets, which indicates that the changes observed may be related to factors 

other than dietary supplementation of omega-3 fatty acids. The present data of individual 

stallions indicate that only one of the three stallions classified as “poor coolers” at the 

beginning of the study showed significant increases in total and progressive motility of 

fresh and cooled/stored spermatozoa. This is similar to what was observed in stallions, 

also considered “poor coolers,” that were supplemented with a DHA-enriched 

nutriceutical [57] and with long-chain omega-3 fatty acids [59] where increases in total 

[57] and progressive [57,59] motility were reported after 48 h of cooling. The stallion in 

which significant increases were observed was in treatment group 2 (fish-based diet) 

whereas the other 2 were in group 1 (algae/flaxseed-based diet). 

 A prior study comparing the effect of different oil sources, including sunflower, 

soybean, canola, flaxseed, and fish/soybean, and of the omega-3:omega-6 ratio in the 

reproductive performance of cockerels has indicated that the fatty acid content of 

spermatozoa, physical seminal characteristics, and fertility rate are influenced by the oil 

source in the diet [60]. Conversely, the current data do not indicate that there was a 

significant difference between the two sources of omega-3 fatty acids utilized in the 

improvement of spermatozoa motility when comparing treatment groups 1 and 2. 

However, fish rather than algae/flaxseed sources of omega-3 fatty acids may be more 

effective at improving the motion parameters of stallions with lower quality ejaculates. 

These different findings might be due to variations in the omega-3:omega-6 ratios fed. In 

the present research, both diets fed contained an omega-3:omega-6 ratio of 

approximately 2:1 (Table A-2). In comparison of different rations, the study using 
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cockerels reported that a dietary ratio from 6:1 to 9:1 resulted in desirable proportions 

amongst the omega series and maximized the fertility rate. It is important to note, 

however, that when comparing the effects of different oil sources in the reproductive 

performance of cockerels, the addition of flaxseed oil to the diet resulted in the lowest 

content of PUFAs in the spermatozoa cells and was associated with the lowest fertility 

rates. Nonetheless, the effect on the fertility rate was reverted by vitamin E 

supplementation [60]. Thus, further research with stallions supplemented with the 

algae/flaxseed supplement used in the present study along with vitamin E 

supplementation would be of interest. The omega-3:omega-6 ratio in flaxseed oil is high, 

due to its high content of ALA. Therefore, the high degree of polyunsaturation of this oil 

source results in a high susceptibility of spermatozoa to lipid peroxidation, with the 

consequent risk of damage to the cellular structures [47,60]. Consequently, highly 

unsaturated acids in the diet increase vitamin E requirements, in order to prevent 

oxidation of unsaturated lipid materials within the cells [125,126]. The use of 

fish/soybean oil in the diet of cockerels resulted in the lowest total antioxidant status of 

the semen. However, when vitamin E was added to the fish/soybean-oil-based diet, 

linear increases in semen volume, motility and spermatozoa vigour were observed. This 

linear effect was also due to the increase in vitamin E requirement [60]. Although the 

mechanisms involved in the delivery of fatty acyl components from the circulation to the 

developing spermatozoa and in the selective incorporation of specific fatty acids into the 

spermatozoa phospholipids are not completely understood, transfer of PUFAs from the 

diet has been shown to occur in several species including humans [10,17], fowl [60,61], 
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boars [15,124] and stallions [57,59]. However, it is clear that there is a need for a 

balanced omega-3:omega-6 ratio in the diet, and further research with stallions would be 

valuable in determining the optimal ratio to increase spermatozoa quality and viability. If 

a high omega-3:omega-6 ratio is essential for optimal fertility in equine spermatozoa, as 

it is in cockerel spermatozoa, then it is possible that increasing the dietary omega-

3:omega-6 ratio in addition to an anti-oxidant additive (such as vitamin E) could 

potentially increase the quality of equine spermatozoa. Because not all stallions produce 

spermatozoa that withstand the stresses involved with cooling and freezing/thawing, 

appropriate dietary manipulations that could possibly increase the viability and 

resistance of spermatozoa to different processing techniques would allow breeders to 

benefit from the many advantages that the use of processed semen offers. 

 

Membrane Integrity 

 In the present study there did not appear to be a proportionate change between 

the percentage of membrane-intact spermatozoa and the percentage of motile 

spermatozoa. Similar findings have been reported in boars supplemented with cod liver 

oil [124] where a significant correlation between the number of motile normal 

spermatozoa and the number of membrane-intact spermatozoa could not be confirmed. 

Because the organelles concerned with motility and penetration of an ovum are located 

in different parts of a spermatozoon [127], and because composition of membranes 

overlying the rostral spermatozoal head differs from that of the plasma membrane over 

the middle piece [128,129], it has been previously hypothesized that damage may occur 
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to the acrosome or overlaying plasma membrane of spermatozoa that is not detectable by 

evaluation of spermatozoal motility [43]. It is now generally admitted that phospholipids 

are asymmetrically distributed in membranes [12], meaning that the composition and 

localized distribution of phospholipids and the nature of their fatty acyl side chains differ 

from membrane to membrane and even within domains (regions) of a given membrane 

[2]. Therefore, it is not surprising that several studies have demonstrated that acrosomal 

and plasma membrane changes are not always related to changes in motility of 

spermatozoa [130,131,132,133] because during the cooling and freezing/thawing 

procedures the motility apparatus or the metabolic processes in spermatozoa can be 

injured independent of one another [43]. In non-motile spermatozoa, for example, 

damage of the metabolic processes such as mitochondrial injury can lead to insufficient 

energy for all cellular functions, or a shift in the available energy from spermatozoal 

motion to maintenance functions without disrupting the motility apparatus itself. And 

because of the different composition of the spermatozoal membranes many non-motile 

spermatozoa with an intact plasma membrane may be detected. The low correlations 

between the percentage of sperm with intact plasma membrane and the percentage of 

motile or percentage of progressively motile spermatozoa is indirect evidence that many 

non-motile spermatozoa possess an intact plasma membrane [43] and that it is possible 

for many motile spermatozoa to have a damaged plasma membrane. This could be a 

reason why low fertility and conception rates often result even when processed semen 

(cooled/stored or frozen/thawed) used for artificial insemination contains an adequate 

number of progressively motile spermatozoa [2]. 
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Morphology 

 Contrary to data previously reported in a study with boars supplemented with 

tuna oil [15], the percentage of morphologically normal spermatozoa in this study was 

not affected by omega-3 supplementation. However, the percentage of normal 

spermatozoa in both treatments 1 and 2 was already high prior to supplementation (Table 

3) which is why it is not surprising that it remained unchanged throughout the trial. 

Furthermore, the increases in the percentage of normal spermatozoa reported in boars 

[15] occurred both in the control and tuna oil-containing diets and, thus may be related 

to either seasonal effects or to the inclusion of antioxidants in both the control and the 

tuna oil-containing diets.  
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CHAPTER VI 

SUMMARY 

  

 In this study, the analyses of spermatozoa quality between stallions supplemented 

with omega-3 fatty acids from two different sources (fish or algae/flaxseed) show that 

the motion characteristics, the percentage of membrane intact spermatozoa, and the 

percentage of morphologically normal spermatozoa of fresh, cooled/stored, and 

frozen/thawed spermatozoa are not significantly altered by such supplementation. 

Overall, the results indicate that adding omega-3 fatty acids to stallion diets may not 

enhance the quality of spermatozoa significantly nor have a beneficial effect on cold 

shock or freezability of equine spermatozoa. However, the data of individual stallions 

suggest that fish sources might be more effective at improving the motion parameters of 

spermatozoa from lower quality ejaculates.  

 The lack of improvement in spermatozoal morphology was not unexpected. All 

of the stallions on the project had a high percentage of normal spermatozoa at the onset. 

Thus, any improvement of this spermatozoal characteristic would have been difficult to 

achieve in these stallions. The disproportionate changes observed between the motion 

characteristics and the membrane integrity of spermatozoa may have resulted because 

the current semen processing procedures are not equally successful in preserving 

motility and integrity of the membranes.  

 Further research with a larger number of stallions is needed to make more 

definitive explanations of the mechanisms involved in potentially altering spermatozoa 
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motility and viability. In addition, further research with different basal diets and 

supplements, and different omega-3:omega-6 ratios is needed in order to determine the 

optimal ratio and source of omega-3 fatty acids that could potentially enhance 

spermatozoa quality and viability. The diet used in the present research was a typical 

equine formulation containing corn oil which contains omega-6 fatty acids. Using a 

basal diet with a higher omega-3 fatty acid content would increase the omega-3:omega 6 

ratio and could result in a greater enhancement of spermatozoa quality. Since the vitamin 

E requirements are dependent of the dietary fatty acid composition, determining the 

requirements of this antioxidant for different sources of omega-3 fatty acids may also 

prove to be beneficial.   
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APPENDIX 

 
 

Table A-1  
Composition of basal concentrate used in feeding all stallions. 
      
Ingredient name:      
      
Milo       
Wheat midds      
Soybean meal-48      
Soybean hulls      
Liquid binder      
Horse premix #6886     
Ground lime      
Salt mixing           
      
Nutrient   Units  Amount  
Weight  lbs  1.00  
      
Protein   %  13.00  
Fat   %  2.90  
Fiber  %  10.00  
Ca   %  0.70  
P  %  0.50  
ADF  %  13.77  
NDF  %  30.69  
Lys  %  0.62  
Met  %  0.18  
K  %  0.87  
DM  %  88.61  
S  %  0.17  
Mg  %  0.25  
Mn  PPM  99.44  
Fe  PPM  156.30  
Cu  PPM  32.47  
Co  PPM  0.79  
Zn  PPM  115.13  
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I  PPM  0.59  
Se  PPM  0.44  
Vit A  IU/lb  3,019.00  
Vit D  IU/lb  210.00  
Vit E  IU/lb  38.10  
Chol  MG/lb  412.51  
Ribo  MG/lb  1.57  
Niac  MG/lb  27.94  
Pant  MG/lb  6.80  
B 12  MCG/lb  3.20  
Biot  MCG/lb  149.44  
Pyrd  MG/lb  2.50  
Thia  MG/lb  5.77  
Fo A  MG/lb  0.26  
Zn:Cu  PPM  3.55  
Dig Lys  PPM  0.34  
DE H  Kcal/lb  1,289.62  
Ca:P  Ca:P  1.40  
Vit A added  IU/lb  2,080.45  
Vit D added  IU/lb  27.43  
Valine   %   0.42   
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Table A-2  
Fatty acid profile of concentrate and treatments expressed as g consumed per day. 

Fatty acid  
(FA) Concentratea Treatment 1 Total FA Treatment 2 Total FA 

C18:2 n-6  
(LA) 

 

4.86 ± 0.80 ND 4.86 ± 0.80 1.57 6.43 ± 0.80 

C20:4 n-6  
(AA) 

 

ND 0.10 0.10 0.31 0.31 

C18:3 n-3 
(ALA) 

 

0.41 ± 0.06 ND 0.41 ± 0.06 0.50 0.91 ± 0.06 

C20:5 n-3 
(EPA) 

 

ND 0.24 0.24 2.21 2.21 

C22:5 n-3 
(DPA) 

 

ND ND ND 0.48 0.48 

C22:6 n-3 
(DHA) 

 

ND 8.06 8.06 7.48 7.48 

Total n-6 
 

4.86 ± 0.80 0.10 4.96 ± 0.80 1.88 6.74 ± 0.80 

Total n-3 
 

0.41 ± 0.06 8.30 8.71 ± 0.06 10.70 11.08 ± 0.06 

n-3:n-6 ratio 0.41:4.86 8.30:0.10 1.76:1 10.70:1.88 1.64:1 
aVariation due to differences in concentrate consumption.  
ND: none detected   
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Table A-3 
Analysis setup of CASA. 
Apply sort: 0 
Frames acquired: 45 
Frame rate: 60 Hz 
Minimum contrast: 70 
Minimum cell size: 4 pixels 
Minimum static contrast: 30 
Straightness threshold: 50.00% 
Vap cutoff: 15.0 µm/s 
Prog. min VAP: 30.0 µm/s 
VSL cutoff: 0.0 µm/s 
Cell size: 6 pixels 
Cell intensity: 106 
Static head size: 0.60 to 2.00 
Static head intensity: 0.20 to 2.01 
Static elongation: 31 to 85 
Slow cells motile: No 
Magnification: 1.89 
Video frequency: 60 
Bright field: No 
LED ilumination intensity: 2200 
IDENT ilumination 
intensity: 3000 
Temperature, set: 37.0 ˚C 
Chamber depth: 20 
Chamber position: 6.8 mm 
Chamber position B: 26.2 mm 
Chamber position C: 0.0 mm 
Chamber position D: 0.0 mm 
Chamber type: Leja 
Field selection mode: Select 
IDENT fluorescent option: Off 
Integrating time: 1 frames 
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Table A-4 
Mean motion characteristics analyzed by CASA. 

Treatment 1 Treatment 2 
Sample 

Motion 
characteristic (n = 5) (n = 4) P-value 

Fresh TMOT (%) 66.04 65.45 0.95 
 PMOT (%) 52.55 56.13 0.72 
 VSL (µm/s) 56.87 59.74 0.69 
 VAP (µm/s) 69.29 74.67 0.63 
 VCL (µm/s) 121.97 133.4 0.52 
 ALH (µm) 5.21 5.26 0.93 
 BCF (Hz) 36.91 38.2 0.56 
 STR (%) 81.63 80.98 0.85 
 LIN (%) 48.05 47.88 0.97 
     
24 h TMOT (%) 60.39 62.95 0.84 
Cooled PMOT (%) 48.99 54.57 0.67 
 VSL (µm/s) 58.3 63.89 0.53 
 VAP (µm/s) 69.74 77.91 0.5 
 VCL (µm/s) 117.88 134.26 0.39 
 ALH (µm) 4.6 4.98 0.59 
 BCF (Hz) 38.78 39.99 0.23 
 STR (%) 82.58 82.2 0.88 
 LIN (%) 51.36 50.83 0.9 
     
48 h TMOT (%) 51.17 54.61 0.83 
Cooled PMOT (%) 41.51 47.24 0.70 
 VSL (µm/s) 59.53 63.69 0.65 
 VAP (µm/s) 72.81 76.93 0.72 
 VCL (µm/s) 125.78 136.25 0.51 
 ALH (µm) 5.13 5.27 0.81 
 BCF (Hz) 38.23 38.78 0.14 
 STR (%) 80.57 82.45 0.52 
 LIN (%) 47.98 49.19 0.69 
     
Frozen TMOT (%) 4.98 3.44 0.34 
 PMOT (%) 4.26 3.33 0.56 
 VSL (µm/s) 45.49 48.89 0.59 
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 VAP (µm/s) 53.1 57.25 0.61 
 VCL (µm/s) 89.5 91.69 0.88 
 ALH (µm) 4.23 3.4 0.74 
 BCF (Hz) 30.92 32.62 0.46 
 STR (%) 76 77.58 0.68 
  LIN (%) 46.89 50.52 0.17 
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