
NONLINEAR DYNAMICS OF

HYSTERETIC OSCILLATORS

A Thesis

by

ASHIVNI SHEKHAWAT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2008

Major Subject: Aerospace Engineering



NONLINEAR DYNAMICS OF

HYSTERETIC OSCILLATORS

A Thesis

by

ASHIVNI SHEKHAWAT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Tamás Kalmár-Nagy
Committee Members, Dimitris C. Lagoudas

John E. Hurtado
Thomas Strganac
Darbha Swaroop

Head of Department, Helen Reed

August 2008

Major Subject: Aerospace Engineering



iii

ABSTRACT

Nonlinear Dynamics of Hysteretic Oscillators.

(August 2008)

Ashivni Shekhawat, B.Tech., Indian Institute of Technology Kanpur

Chair of Advisory Committee: Dr. Tamás Kalmár-Nagy

The dynamic response and bifurcations of a harmonic oscillator with a hys-

teretic restoring force and sinusoidal excitation are investigated. A multilinear model

of hysteresis is presented. A hybrid system approach is used to formulate and study

the problem. A novel method for obtaining exact transient and steady state response

of the system is discussed. Simple periodic orbits of the system are analyzed us-

ing the KBM method and an analytic criterion for existence of bound and unbound

resonance is derived. Results of KBM analysis are compared with those from numer-

ical simulations. Stability and bifurcations of higher period orbits are studied using

Poincaré maps. The Poincaré map for the system is constructed by composing the

corresponding maps for the individual subsystems of the hybrid system. The novelty

of this work lies in a.) the study of a multilinear model of hysteresis, and, b.) devel-

oping a methodology for obtaining the exact transient and steady state response of

the system.
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CHAPTER I

INTRODUCTION

In this chapter we present a survey of major past and ongoing research related to

mathematical modeling of hysteresis. We describe the mathematically simpler models

of hysteresis in some detail while giving references to the more complicated models.

Even so, not all simple or important models of hysteresis are covered here. The

interested reader is referred to Ref. [1] for a more complete treatment of the subject.

A. Hysteresis

Hysteresis plays an important part in many natural phenomena such as shape-memory

effect [2], pseudo-plasticity, magnetism [3], sleep-wake cycles [4], friction [5], eco-

nomics [6, 7], and many more. In a broad sense hysteresis refers to a class of strongly

nonlinear phenomena. We emphasize the word ‘strongly’ because it means that local

linearization is not possible for hysteretic systems. In more formal language hysteresis

refers to operators with rate-independent memory. Even though hysteresis is often

associated with hysteresis loops, they are not essential features of hysteresis. It is

possible to construct hysteretic systems without loops (Ref. [1], pp. 6). Hysteresis

is also associated with dissipation. For periodic phenomena the energy dissipated is

proportional to the area of the hysteresis loop.

Mechanical systems with hysteresis often posses attractive damping properties [8].

Several attempts have been made in the literature to utilize these properties for vi-

bration isolation and damping. Lagoudas and Machado [9] investigated the use of

SMA components for passive vibration damping, while others have considered hys-

The journal model is IEEE Transactions on Automatic Control.
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teretic elements for seismic vibration isolation [10, 11]. SMAs or other smart material

have also been used for active control [2, 12, 13]. Many scholarly texts are devoted

solely to the study of hysteretic phenomena [14, 15, 16, 3, 17]. However, despite the

enormous literature, the phenomenon of hysteresis is not fully understood. Some of

the reasons to this effect are the hitherto (more or less) limited computational re-

sources, success of linear theory in modeling most phenomena to certain satisfaction,

and limited theoretical understanding of nonlinear systems in general.

1. Prominent Models of Hysteresis

Mathematical modeling hysteresis is a significant challenge. Many researchers have

made considerable effort to come up with theoretical models for hysteresis. The

most prominent amongst these are the Preisach model [18], the Prandtl-Ishlinskii

model [19, 15], the model of Masing [20], the model of Duhem [21], and the Bouc-

Wen model [22, 23]. The bilinear model of hysteresis studied by Caughey [24, 25]

can be considered to be a generalization of the Prandtl-Ishlinskii model. The con-

stitutive models for shape memory alloys inherently contain models for hysteresis.

Prominent amongst these are the models proposed by Liang and Rogers [26], Boyd

and Lagoudas [27], and, Raniecki, Lexcellent and Tanaka [28]

2. Response of Mechanical Systems with Hysteresis

Response of mechanical systems with hysteresis is the subject of this thesis, thus

we feel its important to dwell on the developments made on the topic so far. For

most mechanical systems hysteresis manifests itself in the form of a hysteretic restor-

ing force or generalized restoring potential. Many of these systems can be modeled

by a forced harmonic oscillator with a hysteretic restoring force. Caughey used the

Krylov-Bogoliubov-Mitropolsky (KBM) method to study the steady state response
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of a bilinear hysteretic oscillator subject to sinusoidal excitation [24]. He derived

analytical expressions for frequency response of the system and compared them with

simulations using an analog circuit. He found that the system exhibited a soft res-

onance with no jumps. In Ref. [25] he extended his analysis to random excitations.

Masri [29] found the “exact” solutions for a damped harmonic oscillator with a bi-

linear hysteretic restoring force. In effect he reduced the system to one nonlinear

algebraic equation which was to be solved using numerical methods.

Recently there has been a thrust to study the more complex behavior of mechan-

ical systems with hysteretic systems using the modern tools of nonlinear dynamics.

Several researchers have used the Harmonic Balance Method (HBM) and Floquet

theory to study the steady state response and stability of oscillators with hysteretic

elements [30, 31, 32]. In his 1990 work Capecchi [30] used the HBM to study the

response of a hysteretic oscillator with periodic excitation. Based on his findings

Capecchi concluded that the higher harmonics play a significant role in the overall

dynamics of the oscillator. In Ref. [33] Capecchi and co-workers studied the complex

behavior of multiple degree of freedom systems with hysteresis. They used the Mas-

ing model of hysteresis and analyzed the system using reduced dimensional Poincaré

maps. Pratap and Holmes [34] found that hysteretic systems can exhibit chaos in the

form of a Smale horseshoe. In fact, most of the above cited references report some

kind of complex behavior. Lacarbonara and Vestroni [8] used Poincaré maps and con-

tinuation algorithms to map out the bifurcation sequences of some hysteretic systems

using the Masing and Bouc-Wen models. Thus, a significant amount of research has

been done to understand the response of systems with hysteresis, however, this field

is still in its infancy and much needs to be done.
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u(t) v(t)W

Fig. 1. A hysteretic input-output device.

3. A Historical Note

The word hysteresis is of Greek origin (first used around 1795-1805) and literally

translates to ‘state of being behind or late’. This word was introduced into scientific

vocabulary by a physicist named Alfred Ewing in 1895 [35]. Since then the word

hysteresis has been used in great many contexts, scientific and otherwise. Examples

include its usage in mechanics (plasticity, friction), electrodynamics (ferromagnetism),

material science (shape memory effect), electronics (relays) and many more.

In spite of its early discovery, the history mathematical analysis of hysteresis is

relatively short (fitting to the name and effect, perhaps). The earliest attempts to

model hysteresis were made by Preisach [36] in the 1920’s and 30’s. However, the

first investigation of hysteresis from the point of view of functional analysis was done

by R. Bouc in 1966. His work was published in English in 1967 [22]. Bouc modeled

hysteresis as a functional operator and studied its properties using analytic methods.

Since then several contributions have been made to the literature regarding hysteresis,

some details of which can be found in Refs. [15, 1, 14, 37] and the references therein.

B. Mathematical Models of Hysteresis

Consider a system or a device with two state variables u(t) and v(t), where t denotes

the time. The variables u(t) and v(t) are the input and output of the system, respec-
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Fig. 2. Hysteresis loops.

tively. It is assumed that both variables are smooth functions of time. If we take a

phenomenological point of view and regard the system or the device as a black box

then the situation can be represented by figure 1. Mathematically we write

v(t) = W (u, v0)(t), (1.1)

where v0 is the initial value of v(t). Note that the operator W (., v0) is not a function

because it depends not only on the present value of u(t), but also on the history of

u(t) and the initial value of v(t). The task of mathematical modeling of hysteresis

then boils down to finding the operator W .

Figure 2 shows the evolution of the pair (u, v) for one plausible hysteretic operator

W over a certain period of time. As shown in the figure, if u is increased monotonically

from u1 to u2 then the pair (u, v) traces the curve A-D-C. However, if u is decreased

monotonically from u2 to u1 then the pair (u, v) traces a different curve C-B-A. Also

notice that the relation between u and v is single valued (a function) for u ≤ u1 or

u ≥ u2. In such a case the loop A-D-C-B-A is called the major loop of hysteresis.
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The region bounded by the major loop is called the region of hysteresis and will be

denoted by L. Now suppose that while increasing from u1, u reverts at some point

before reaching u2. In such a case the pair (u, v) traces a loop similar to the small

loop shown in the figure. These loops are called minor loops.

1. Properties of Hysteretic Operators

All hysteretic operators satisfy the following two properties: causality and rate-

independence. A third property called reachability is satisfied by most, but not all,

hysteretic operators. These properties are discussed next.

a. Causality

It is assumed that the operator W (., v0) is causal, i.e., the output at a given time is

only dependent on the history of the input u and not its future values. Mathematically

this can be expressed as follows

ua(t) = ub(t) ∀ t ∈ [0, t1] ⇒ W (ua, v0)(t1) = W (ub, v0)(t1), (1.2)

even if ua(t) 6= ub(t) for some t ∋ [0, t1].

b. Rate-Independence

The property of rate-independence is one of the most important properties of hys-

teretic operators. Roughly speaking it means that the output at a given instance of

time is dependent only on the order of past inputs and not on the rate at which they

were attained. It is due to this property that we can draw figures like figure 2 without

giving any specific reference to the input rate law. Mathematically one can say that
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u(t)

v(t)

t

t

u (t) u (at + b)

v (at + b)v (t)

a b

a b

Fig. 3. Rate-independence.

for any increasing diffeomorphism φ,

ua(t) = ub(φ(t)) ∀ t ∈ [0, t1] ⇒ W (ua, v0)(t) = W (ub, v0)(φ(t)), ∀ t ∈ [0, t1]. (1.3)

Figure 3 shows an example with φ(t) = at + b.

c. Reachability

Reachability means that starting from any admissible pair (ua, va) it is possible to

reach any other pair (ub, vb) in the hysteresis region L. In other words, all pairs

(u, v) ∈ L are admissible and connected by at least one path consisting of admissible

loops. Thus, given any admissible pair (ua, va), ∃ u(t), t ∈ [0, t1] s.t. W (u, va)(t1) =

vb, u(t1) = ub, ∀ (ub, vb) ∈ L. Further, due to rate-independence the actual value of

t1 is immaterial.

Next we present some models of hysteresis that satisfy these properties and are
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u

v

α

1

−1

β

Fig. 4. A nonideal relay.

widely used in the literature.

2. Nonideal Relay

A nonideal relay is one of the simplest models of hysteresis. The nonideal relay

operator is parameterized by two parameters α, β with α < β, and is represented by

Rα,β. The operator Rα,β is bivalued and can take values equal to ±1 (can be any

other arbitrary scalar output values as well). We can write the familiar input-output

relation as

v(t) = Rα,β(u, v0)(t). (1.4)
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α

β

−1

1

t

u(t), v(t)

u(t)

v(t)

Fig. 5. Input-output for a typical relay.

Figure 4 shows the dynamics of a typical relay. The output of the relay changes only

when u(t) = α or u(t) = β. The output is given by the following explicit formula

v(t) = Rα,β(u, v0)(t) =























v0 if α < x(τ) < β ∀ τ ∈ [0, t];

1 if ∃ t1 ∈ [0, t] s.t. u(t1) ≥ β, x(τ) > α ∀ τ ∈ [t1, t];

−1 if ∃ t1 ∈ [0, t] s.t. u(t1) ≤ α, x(τ) < β ∀ τ ∈ [t1, t].

The relay operator Rα,β is obviously causal and rate-independent, thus it is a hys-

teretic operator. However, notice that the relay does not have a hysteresis loop in

the strict sense and does not satisfy the property of reachability. Figure 5 shows the

input-output graph for a typical relay.
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3. T (x) Model

The T (x) model of hysteresis [38] is a member of the family of models consisting

of the Langevin function (L(x)) [39], the Brillouin function (B(x)) [40], and the

M(x) functions [41]. These models are predominantly used in magnetism. The most

elementary T (x) function is defined as follows

T (x) =











tanh (x − a0) + A0x + b for ẋ > 0,

tanh (x + a0) + A0x − b for ẋ < 0.

It is assumed that the hysteresis loop has a magnitude xm and is symmetric (there

are other variants of the model that deal with asymmetric loops, see Ref. [38] for

details). The value of b can be found by equating the values of the two branches at

x = xm as

b = (tanh (xm + a0) − tanh (xm − a0)) /2. (1.5)

Figure 6 shows the hysteresis loops for the T (x) model with a0 = 1.5, A0 = 0.05 and

xm = 4, 3, 2, 1.

4. Stop

The model named ‘stop’ is based on the Prandtl model of elasto-plasticity. This

model is also known as the E–P model because it can be considered to be a result of

a linear elastic element and a perfectly plastic element connected in series as shown

in figure 7. The dynamics of this model are as shown in figure 8. To carry out the

analogy with elasto-plasticity u corresponds to strain while v corresponds to stress.

When the elastic and plastic elements are connected in series as shown in figure 7

the maximum stress, v, is limited by the available traction, while the strain, u, can

increase without bound.
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Fig. 6. Hysteresis loops for the T (x) model with a0 = 1.5, A0 = 0.05.

E P

Fig. 7. An elastic element and a plastic element connected in series.
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u

v

p

−p

slope = k

Fig. 8. Dynamics of the stop model.

The model can be represented by the following variational inequalities

|v| ≤ p, (k du − dv)(v − x) ≥ 0 ∀ x, |x| ≤ p. (1.6)

5. Play

The model ‘play’ is the dual of the model stop. The play model can be realized by

connecting an elastic and a plastic element in parallel as shown in figure 9. The input

u can be thought of as the stress while the output v can be thought of as the strain.

Obviously, the system shown in figure 9 is capable of sustaining some stress without

yielding (equal to the available traction), beyond which the strain grows linearly with

the stress. The dynamics of the play model are shown in figure 10.
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E

P

Fig. 9. An elastic element and a plastic element connected in parallel.

The model can be represented by the following variational inequalities

|ku − v| ≤ p, dv(ku − v − x) ≥ 0 ∀ x, |x| ≤ p. (1.7)

6. Bilinear Model

The bilinear model of hysteresis can be considered to be a generalization of the Prandtl

models. The dynamics of a harmonic oscillator with bilinear restoring force were

studied by Caughey in great detail [25, 24]. The bilinear model can be represented

as follows

|k1u − v| ≤ p, (k2du − dv)(k1u − v − x) ≥ 0 ∀ x, |x| ≤ p. (1.8)

The dynamics of the bilinear model are depicted in figure 11. Later in the thesis the

response of a harmonic oscillator with bilinear restoring force and sinusoidal excitation

will be studied in detail. At that point we shall also present an equivalent definition



14

u

v

p

−p
slope = k

Fig. 10. Dynamics of the play model.

of the model in terms of a hybrid automaton.

7. Multilinear Model

The multilinear model of hysteresis proposed in this thesis is a generalization of the

bilinear model. To the best of our knowledge this model has not be studied previously.

The motivation for generalizing the bilinear model comes from the fact that for many

hysteretic systems the hysteresis loops are not symmetric. However, symmetry of

loops is an inherent assumption in the bilinear model. In the multilinear model this

shortcoming is remedied by allowing the loading and unloading to take place at curves

with two different slopes, viz. k2, k3. The dynamics of the multilinear model are shown

in figure 12.

The variational formulation of the multilinear model is slightly complicated. It

is easy to see that the multilinear model can be thought of as a superposition of two
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slope = k1
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p

−p

Fig. 11. Dynamics of the bilinear model.

bilinear models. In the multilinear model the evolution of the pair (u, v) along the

boundaries of the admissible region is exactly the same as that for the bilinear model.

However, the difference is that when the hysteretic region is entered from the top

branch (v = k1u + p), then the evolution takes place along the curves dv − k3du = 0.

Similarly if the hysteretic region is entered from the bottom branch (v = k1u − p),

then the evolution takes place along the curves dv − k2du = 0.

The variational form of the model can thus be written as follows. At time t1, if

∃ t ∈ [0, t1] s.t. v(t) = k1u(t) + p, v(t2) 6= k1u(t2) − p ∀ t2 ∈ [t, t1] then

|k1u − v| ≤ p, (k3du − dv)(k1u − v − x) ≥ 0 ∀ x, |x| ≤ p. (1.9)

Similarly, if ∃ t ∈ [0, t1] s.t. v(t) = k1u(t) − p, v(t2) 6= k1u(t2) + p ∀ t2 ∈ [t, t1] then

|k1u − v| ≤ p, (k2du − dv)(k1u − v − x) ≥ 0 ∀ x, |x| ≤ p. (1.10)
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Fig. 12. Dynamics of the multilinear model.

Finally, if (v − k1u + p)(v − k1u − p) 6= 0 ∀ t ∈ [0, t1] then the evolution law is the

same as it was at t = 0.

8. Preisach Model

The Preisach model of hysteresis is the most long-standing of models of hysteresis.

Although this model was proposed in the 1920’s it is still a topic of active research.

The Preisach model does not correspond to description of any one phenomenon (unlike

the T (x) model which is used almost exclusively in magnetism), rather it has the

flexibility to be used in several different branches of engineering. The Preisach model

is a so-called parameter identification type model, and so are the relay, Prandtl,

bilinear, and the multilinear models. Parameter identification type models do not

correspond to any one physical phenomenon and thus to make them suitable for use

in any phenomenon some parameter identification needs to be done.

The Preisach operator, P (u, v0), is a superposition of a number of relay operators
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R (α,β)

R (α,β)

R (α,β)

µ(α,β)

µ(α,β)

µ(α,β)

Σu(t) v(t)

Fig. 13. The discrete Preisach operator.

discussed earlier. The input to the Preisach operator is fed to the individual relay

operators and the output is calculated by taking a weighted sum of the individual

outputs. The weights for the individual operators can be selected to tune the behavior

of the operator. We denote the weight corresponding to the relay Rα,β by µ(α, β).

When the Preisach operator is composed of finitely many relays it is called the discrete

Preisach operator. Figure 13 shows a schematic of the discrete Preisach operator. In

the limit of infinite number of relays the sum is replaced by an integral and the

individual weights are replaced by a distribution. Thus, the input-output relation for

the discrete Preisach operator can be written as

v(t) = P (u, v0)(t) =
∑

β>α

µ(α, β)Rα,β(u, v0)(t), (1.11)

while the equation for the continuous case is

v(t) = P (u, v0)(t) =

∫ ∫

β>α

µ(α, β)Rα,β(u, v0)(t)dαdβ. (1.12)
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Fig. 14. Discretization of the α − β domain with 150 grid points along each axis.

The Preisach model of hysteresis is by far the most versatile model of hysteresis

discussed so far. To demonstrate its modeling capability we show some hysteresis

loops generate by a discrete Preisach operator. The individual relay operators are

obtained by discretising the region −1 ≤ α < β ≤ 1 with 150 grid points along α and

β axis. The weights are uniform and normalized to set the maximum output of the

operator to 1. The typical loops are presented in figure 15. All the graphs in figure 15

have at least one major loop because the input attains values of ±1 at least once.
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Fig. 15. Typical hysteresis loops traced by the Preisach operator.
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CHAPTER II

SHAPE MEMORY ALLOYS AND HYSTERESIS

In this chapter we present a simple description of constitutive relations for Shape

Memory Alloys (SMAs) and bring out their relation to hysteresis and hybrid systems.

There are many constitutive models for SMAs in the literature. We will mention the

prominent models without going into details of any of them. The discussion will

be limited to 1-D stress and isothermal loading. We will steer clear of the general

thermodynamic theory of SMAs in view of simplicity and present the relevant results

without derivations. One of the aims of this chapter is to show the relation between

SMAs and the bilinear and multilinear models of hysteresis discussed in chapter I.

We will end the chapter with a discussion of hybrid systems and SMAs.

A. Introduction

There is a vast body of literature devoted to the study of shape memory alloys

[42, 43, 44]. These materials possess peculiar characteristics like the Shape Mem-

ory Effect (SME) and pseudoelasticity. It is envisioned that the special properties

of these materials can be exploited to design smart structures and multi-functional

materials. For example, Machado and Lagoudas [9] investigated the use of SMA

components for passive vibration damping, while Rogers [45] proposed to use SMAs

for actively controlling the dynamic response of composites laminates. However, the

present understanding of constitutive models as well as dynamic response of SMAs

is limited and needs to be improved significantly for this vision to be realized. Natu-

rally, the development of theoretical constitutive models should precede the study of

dynamic characteristics of SMAs. In the past few decades there have been consider-

able advances in modeling of constitutive relations for SMAs. Liang and Rogers [26]
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developed a one-dimensional constitutive model (the so-called cosine model) of shape

memory alloys. Boyd and Lagoudas [27, 46] developed a phenomenological consti-

tutive model for a general state of stress. Other models like the generalized cosine

model [47], the exponential or the R-L model [28], the unified model [48] etc. can also

be found in the literature. Thus, there exist some theoretical constitutive models of

SMAs on which a study of their dynamic characteristics can be based.

The dynamic response of SMAs is very complicated due to phenomena like

martensitic phase transformation and thermomechanical coupling. Much work has

been done on simulating the general 3-D response of SMA based structures. The

interested reader is referred to Refs. [49, 50] and the references therein for a detailed

commentary on the subject. Besides presenting an excellent review of the available

literature on the subject Ref. [49] also contains a good discussion of the return map-

ping algorithm for simulating the dynamic response of SMAs. It has been shown that

return mapping based techniques have good stability and convergence properties in

general [51].

B. Constitutive Models

In this section we present some constitutive models for SMAs in a cursory manner.

The interested reader is referred to Ref. [27] and the references therein for more details

of the models.

The unusual properties of SMAs are due to mechanical and thermal stress-

induced phase transformations. In general, the SMA can be composed of two phases:

martensite and austenite. Martensite and austenite are different crystalline forms of

the same material. The relative proportion of martensite and austenite is a function

of the thermal and mechanical loading. We assume isothermal conditions, thus elim-
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inating the temperature dependence. The relative proportion of the two phases is

measured in terms of martensite volume fraction, ξ.

When the material exists as pure martensite or austenite, or a non-transforming

mixture, the constitutive relations are the same as that of a general elastic material

(law of volumes holds for mixture). However, when a phase transformation takes

place, some energy gets used for bringing about the phase transformation and some

gets dissipated as heat during the process. Thus, the simple linear stress-strain rela-

tions are not valid during phase transformations.

As discussed above, a SMA material can in general be in one of the following

phases or modes:

1. Pure austenite,

2. Pure martensite,

3. Non-transforming mixture,

4. Forward transformation (austenite to martensite), and,

5. Reverse transformation (martensite to austenite).

Next we will present the constitutive relations for each of these phases in increasing

order of complexity. The symbols used in the ensuing development are defined in

table I.
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Table I.: Symbols used in constitutive models of SMAs.

Symbol Definition

α Second order effective thermal expansion tensor (scalar for

1-D assumption)

σ Second order stress tensor (scalar for 1-D assumption)

ǫ Second order strain tensor (scalar of 1-D assumption)

ξ Martensitic volume fraction

b Parameter in Boyd-Lagoudas model

ρ Density

s0 Effective specific entropy at reference state

aA, aM Material constants associated with temperature induced

phase transformation (cosine model)

bA, bM Material constants associated with stress induced phase

transformation (cosine model)

S Fourth order compliance tensor (scalar for 1-D stress)

Ms, Mf Martensite start and finish temperature at zero stress

As, Af Austenite start and finish temperature at zero stress

Aa, Am Material constants related to As, Af , Ms, Mf

Ba, Bm Material constants related to As, Af , Ms, Mf

Hcur Maximum transformation strain at current state (scalar for

1-D assumption)

()A Refers to pure austenitic phase

()M Refers to pure martensitic phase

∆S SM − SA
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1. Pure Austenite or Martensite

We begin by presenting the stress-strain relations for pure martensite and austenite.

These are the well known relations from the theory of elasticity. The only difference

is the presence of transformation strain in pure martensite phase. Eq. 2.1 is the

constitutive law for pure austenite phase. The symbols have their usual meanings (S

is the compliance tensor, α is the thermal expansion coefficient), and the superscript

A refers to austenite.

ǫ = SAσ + αA(T − T0). (2.1)

Eq. 2.2 is the constitutive law for pure martensite. As indicated earlier the law

is different from usual elastic materials because of influence of the transformation

strain. The effect of the transformation strain is measured by Hcur, which is a 1-D

representation of the more general transformational strain tensor.

ǫ = SMσ + αM(T − T0) + Hcursgn(σ). (2.2)

2. Non-Transforming Mixture

A SMA material can be in a phase where it is a mixture of austenite and martensite

and both phases are stable, i.e., the volume fraction ξ is constant with time. The

constitutive laws for the mixture can be found using the constitutive laws for the

individual materials and the law of mixtures. The law of mixtures yields the following

expressions for the equivalent material properties

S = SA + ξ
(

SM − SA
)

,

α = αA + ξ
(

αM − αA
)

.

(2.3)
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Knowing the equivalent material properties we can write the constitutive law for the

mixture as follows

ǫ = Sσ + α(T − T0) + Hcursgn(σ)ξ. (2.4)

3. Forward Transformation

The constitutive laws that are valid during the phase transformations are discussed

next. How and when the phase transformations start and end is left for later dis-

cussion. A forward transformation means a transformation that begins with pure

austenite (ξ = 0) and ends with pure martensite (ξ = 1). Similarly a reverse trans-

formation begins with pure martensite (ξ = 1) and ends with pure austenite (ξ = 0).

Obviously, during a phase transformation the volume fraction ξ is not constant. The

law for change of the volume fraction is generally found by invoking the principles

of thermodynamics along with certain hypothesis on the material behavior. If we

assume that the volume fraction is known then we can write the following familiar

equations for the constitutive relations

S = SA + ξ
(

SM − SA
)

,

α = αA + ξ
(

αM − αA
)

,

ǫ = Sσ + α(T − T0) + Hcursgn(σ)ξ.

(2.5)

The first two equations in the set 2.5 are simple laws of volume-fractions for calculating

the equivalent properties of a mixture. Knowing the equivalent material properties,

the last equation of the set is the usual elastic constitutive relation with the correction

for transformation strain. Thus, the difference between usual elastic constitutive

relations and those for a transforming SMA is really embodied by the law for evolution

of the volume fraction ξ.

There are many theories as to how the volume fraction evolves with the other
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states, namely stress and temperature. Under the hypothesis of isothermal loading

Boyd and Lagoudas [27] obtained the following law

ξ =
1

ρbM

(

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms)

)

. (2.6)

The other prominent models are the ones studied by Tanaka and co-workers [28],

and Liang and Rogers [26]. Tanaka proposed the following exponential law for the

evolution of the volume fraction for the forward martensitic transformation

ξ = 1 − exp (Am(T − Ms) + Bmσ), (2.7)

while Liang proposed the so-called cosine model

ξ =
1

2
(cos (aM(T − Mf ) + bMσ) + 1) , (2.8)

where Am, Bm, aM , bM etc. are related to the material properties. Note that for all the

models given the stress, σ and the temperature, T , it is possible to uniquely determine

the martensitic volume fraction, ξ, and thus find the strain, ǫ. Also note that the

variable ξ can take values between 0 and 1. If for some value of σ the calculated value

of ξ turns to be outside this range then it means that for that value of stress the SMA

cannot be in a state of transformation (the transformation is already complete or not

yet started).
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4. Reverse Transformation

The governing equations for the reverse transformation are similar to those for the

forward transformation and are summarized below

S = SA + ξ
(

SM − SA
)

,

α = αA + ξ
(

αM − αA
)

,

ǫ = Sσ + α(T − T0) + Hcursgn(σ)ξ.

(2.9)

The law for evolution of the volume fraction according to the Boyd-Lagoudas model

is

ξ =
1

ρbA

(

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af )

)

. (2.10)

The corresponding expressions for the exponential and the cosine models are

ξ = exp (Aa(T − As) + Baσ), (2.11)

and

ξ =
1

2
(cos (aA(T − As) + bAσ) + 1) . (2.12)

5. Onset and End of Phase Transformations

The question of when a phase transformation begins and ends will be addressed next.

For this discussion we will consider the Boyd-Lagoudas model only. By definition,

ξ is 0 at the beginning of the forward transformation and 1 at the end. Thus, the

start and end of the forward transformation can be found by substituting ξ = 0, 1 in

Eq. 2.6. The beginning of forward transformation is given by

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms) = 0, (2.13)
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and the end of forward phase transformation is given by

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms) − ρbM = 0. (2.14)

Similarly, the onset of the reverse transformation is given by

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af ) − ρbA = 0, (2.15)

and the end of the reverse phase transformation is given by

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af ) = 0. (2.16)

Equations 2.13-2.16 can be used to generate what is called the phase diagram for

the material. A phase diagram is basically the locus of points for the onset and end

the forward and reverse transformations in the T − σ space. Figure 16 shows the

phase diagram corresponding to the material properties given in table II. Isothermal

loading paths can be constructed by drawing constant temperature contours (vertical

lines) on the phase diagram. Figure 17 shows an isothermal path with T = 308K.

For a given temperature the intersection of the isothermal contour with the curves

on the phase diagram gives the values of stress at which the various transformations

end and begin. In figure 17, σMs and σMf are the stress values at the onset and end

of the forward martensitic transformation, while σAs and σAf are the stress values at

the onset and end of the forward austenitic transformation.

6. Hysteresis in Stress-Strain Curves

Using Eqs. 2.1-2.16 and values of parameters given in table II the stress-strain curve

shown in figure 18 can be obtained. Note that for σ > 0 (the case σ < 0 can be handled

similarly) the forward transformation begins at ǫ = ǫMs. This point corresponds to

σ = σMs on the phase diagram shown in figure 17. It should be pointed out that
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Table II. Typical values of material constants.

Quantity Value

EA 55 GPa

αA 22 10−6/K

EM 46 GPa

αM 22 10−6/K

Mf 230 K

Ms 245 K

Af 280 K

As 270 K

Hcur 0.056

CA 7.4 MPa/K

CM 7.4 MPa/K
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Fig. 16. Phase diagram for a typical SMA.

Eqs. 2.13-2.16 were solved to obtain stress levels at which transformations start or

end, however, one can equivalently talk about strain at which the transformations

begin or end. Continuing the discussion, the forward transformation ends at ǫ = ǫMf

(σ = σMf). Similarly, the reverse transformation begins at ǫ = ǫAs etc. Finally, if

the system is undergoing a forward transformation, say at ξ = 0.5 and the strain is

decreased, then the transformation stops and the constitutive relations are given by

law of mixtures. This is depicted by the dashed line in figure 18. The transformation

starts again when the strain reaches a critical level again, i.e., when the dashed line

hits the forward or reverse transformation curve.

The pair (ǫ, σ) can be considered to be a hysteretic input-output pair in the

sense in which hysteresis was defined in chapter I. The two lobes in the (ǫ, σ) curve in

figure 18 form the major loop of hysteresis. The paths traced by reverting the strain
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Fig. 18. Stress-strain curve for a typical SMA element.
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before completion of the ongoing transformation comprise the minor loops. Note that

there are certain similarities in the hysteresis shown in figure 18 and the multilinear

model of hysteresis introduced in chapter I. As with the multilinear model, the loading

and unloading on the major loop take place along curves of different slopes. The

bounding curves of the hysteretic lobes can be approximated by straight lines to a

good degree of accuracy. On the other hand, the hysteresis shown by the pair (ǫ, σ)

is different from the multilinear model because the region of hysteresis is bounded,

and within the region of hysteresis the pair (ǫ, σ) evolves on many different curves as

contrast to two for the multilinear model.

C. Hybrid System

In section B it was discussed how a SMA element can be in one of five possible modes

and how the transitions between these modes take place. Based on the discussion

presented there, a SMA can be represented by a hybrid system as shown in figure 19.

As depicted in the figure, the SMA can be in either one of the five states discussed

earlier: a). forward transformation, b). reverse transformation, c). pure austenite,

d). pure martensite, and e). non-transforming mixture. The dynamic behavior of the

SMA is specified by specifying the dynamics for each of these modes and defining

consistent rules for transitions amongst modes. Such a description is consistent with

that of a hybrid system with various modes and well defined mode transitions.

The transition between the first four modes occurs when stress (or equivalently,

strain) hits one of the boundaries defined by Eqs. 2.13-2.16. A transition to a non-

transforming mixture takes place when the system is unloaded before completing the

transformation. The transition from a non-transforming mixture to a transforming

one occurs when the stress becomes equal to that for the forward or reverse trans-
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Fig. 19. A hybrid automaton representation of an element SMA.
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formation at the given volume fraction. In figure 19 this critical value is denoted by

ǫcr for the reverse transformation and ǫcf for the forward transformation. Note again

that the volume fraction remains constant for a non-transforming mode.

Let us denote the five states of a SMA in 1-D stress as states I, II, III, IV, and

V . Namely, state I corresponds to the forward transformation, state II corresponds

to the reverse transformation, state III corresponds to pure austenite, state IV cor-

responds to pure martensite, and state V corresponds to non-transforming mixture.

For convenience we define the following functions

f1(σ) = Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms), (2.17)

f2(σ) = Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms) − ρbM , (2.18)

f3(σ) = Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af) − ρbA, (2.19)

f4(σ) = Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af ), (2.20)

f5(σ) = ξV − 1

ρbM

(

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms)

)

, (2.21)

f6(σ) = ξV − 1

ρbA

(

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af )

)

, (2.22)

where ξV is the value of the volume fraction at the beginning of state V . The rules

for state transitions for the SMA are summarized in table III. Figure 19 provides

equivalent rules for the state transitions in terms of ǫ alone. The rules summarized in

the figure can be easily deduced from those presented in table III. Having summarized

the rules for the transitions, we summarize the constitutive relations for each state.

State I (forward transformation)

ǫ = Sσ + α(T − T0) + Hcursgn(σ)ξ, (2.23)

ξ =
1

ρbM

(

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Ms)

)

. (2.24)
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Table III. Rules for state transitions for SMA materials in 1-D stress.

Transition Rule

I → IV f2(σ) = 0, ǫ̇ > 0

I → V ǫ̇ = 0, ǫ̈ < 0

II → III f4(σ) = 0, ǫ̇ < 0

II → V ǫ̇ = 0, ǫ̈ > 0

III → I f1(σ) = 0, ǫ̇ > 0

IV → II f3(σ) = 0, ǫ̇ < 0

V → I f5(σ) = 0, ǫ̇ > 0

V → II f6(σ) = 0, ǫ̇ < 0

State II (reverse transformation)

ǫ = Sσ + α(T − T0) + Hcursgn(σ)ξ, (2.25)

ξ =
1

ρbA

(

Hcur|σ| + 1

2
∆Sσ2 + ρ∆s0(T − Af )

)

. (2.26)

State III (pure austenite)

ǫ = SAσ + αA(T − T0). (2.27)

State IV (pure martensite)

ǫ = SMσ + αM(T − T0) + Hcursgn(σ). (2.28)

State V (non-transforming mixture, ξ is constant)

ǫ = Sσ + α(T − T0) + Hcursgn(σ)ξ. (2.29)
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CHAPTER III

PROBLEM FORMULATION

The aim of this chapter is to present the problem that will be studied in rest of this

thesis. In a nutshell we aim to study the transient and long-term behavior of an

oscillator with hysteretic restoring force and sinusoidal excitation. Figure 20 shows

a cartoon of one possible mechanical realization of such a system. In the mechanical

system shown in figure 20 x(t) represents the displacement of the cart of unit mass,

where t is the time. In general x and t are the dependent and the independent

variables, respectively. For the system shown in figure 20 we can write the following

equation of motion

ẍ = A cos(ωt) − F (x, F0, ρ)(t), (3.1)

where F (x, F0, ρ)(t) is the hysteretic restoring force, F0 is the initial value of the

restoring force, and ρ is a vector of system parameters. As described in chapter I

F (x, F0, ρ)(t) is not a function, rather it is a hysteretic operator that acts on the

initial value F0 and the history of x(t) to output the present value of the restoring

force F . We will use the bilinear and multilinear models of hysteresis for modeling the

hysteretic restoring force. Instead of using the variational-inequality formulation for

ω

x(t)

Hysteretic
element

Unit mass
A cos(   t)

Fig. 20. An oscillator with hysteretic restoring force and sinusoidal excitation.
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the bilinear and multilinear models of hysteresis we will present equivalent definitions

for these models using a hybrid systems framework. When defined in this manner,

these models can also be considered as finite state machines or finite state automata.

A. Bilinear Hysteresis

Recall that we defined the most general bilinear hysteretic operator using variational

inequalities in chapter I. In this section we will consider the bilinear hysteretic opera-

tor as a finite state automaton (FSA). A FSA has a finite number of states and rules

for transitions between states. Each state is characterized by its unique properties. In

our case each state will have a unique input-output relation between the pair (x, F ).

Also, each state can maintain certain memory variables.

1. States or Modes of Bilinear Hysteretic Automaton

We define the bilinear hysteretic operator as having four states (or modes), namely,

states I, II, III, and IV . For each of the states the relation between the pair (x, F )

is linear. We will first define the input-output relations for each of these states and

then discuss the rules for transitions between them. Figure 21 shows the input-output

dynamics for the four modes. The relation between pair (x, F ) is simple for states

II, IV and is given as follows

FII = (1 − ǫ)x − ǫ,

FIV = (1 − ǫ)x + ǫ,

(3.2)

where ǫ is a parameter. We will have more to say about the relevance of the parameter

ǫ in section 3. The range of the bilinear hysteretic operator is (−∞,∞), and the region

of hysteresis is the strip defined by |F − (1 − ǫ)x| ≤ ǫ. The states I, III maintain

a memory variable which stores the value of the variable x at the time the state is
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Fig. 21. Four states or modes of the bilinear hysteretic operator.

entered. We represent these variables by xI and xIII , respectively. Thus, if state I is

entered at x = 0.25 (say) then xI is set to 0.25 and remains at that value till state I

is entered again, at which time it gets set to the corresponding value of x. Knowing

xI and xIII the relationship between the pair (x, F ) for modes I, III are

FI = x − ǫ(xI − 1),

FIII = x − ǫ(xIII + 1).

(3.3)

2. Mode Transitions

We next define the rules for transitions between the various modes. In the present

model there are six permitted transitions: I → II, I → IV, II → III, III →

IV, III → II, and IV → I. The rules for these transitions are presented in table IV.

These rules are to be interpreted in the following manner. Suppose that the automa-
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Table IV. Rules for state transitions in bilinear model.

Transition Rule

I → II x = xI − 2, ẋ < 0

I → IV x = xI , ẋ > 0

II → III ẋ = 0, ẍ > 0

III → IV x = xIII + 2, ẋ > 0

III → II x = xIII , ẋ < 0

IV → I ẋ = 0, ẍ < 0

ton is in state I and suppose that xI = 1. Then, if x decreases and reaches a value of

−1 with a negative velocity then all conditions for the rule for transition from state I

to II are satisfied and the specified transition will occur. Note that the relationship

between the pair (x, F ) is defined such that F is continuous with respect to x across

transitions.

Finally, we should mention that there certain consistency conditions that need to

be satisfied by the automaton. These conditions are listed in table V. The consistency

conditions for states I, III are to ensure that the pair (x, F ) is within the permitted

region of hysteresis at all times. The condition for state II indicates that loading is

not possible in state II, i.e., x cannot increase in state II. Similarly, the condition

for state IV indicates that unloading is not possible in state IV . It should also be

noted that the main role of these conditions is to ensure that the initial conditions are

consistent with the description of the automaton. Once proper initialization is done,

the consistency conditions are automatically satisfied at all times just by following

the proper transition rules and input-output relations. The valid transitions for the

bilinear hysteretic automaton and the corresponding rules are shown in a compact
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Table V. Consistency conditions for various states in the bilinear model.

State Consistency Condition

I |F − (1 − ǫ)x| ≤ ǫ

II ẋ < 0

III |F − (1 − ǫ)x| ≤ ǫ

IV ẋ > 0

x > 0

x < 0

x = x  −2
I

x = 0

x > 0

IIIx = x

x < 0

x > 0

x = 0

x < 0

III
x = x     + 2

I

II

III

IV

x = x
I

Fig. 22. State transitions for bilinear hysteresis.
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manner in figure 22.

3. Role of ǫ

In the previous sections we introduced ǫ as a parameter in the bilinear model of

hysteresis. In the later chapters of this thesis we will treat ǫ as a small parameter

and carry out perturbation expansions in terms of ǫ. It should be noted that there is

a special significance to the case of ǫ = 0. If we set ǫ = 0 in Eqs. 3.2 and 3.3, we get

FI = x,

FII = x,

FIII = x,

FIV = x.

(3.4)

Thus, for the case of ǫ = 0 the bilinear hysteretic operator reduced to a simple identity

function (returns the same value as the input). In context of the system defined by

Eq. 3.1 this case corresponds to a simple harmonic oscillator with sinusoidal excitation

and natural frequency equal to one. This can be seen by substituting the simplified

expressions for F in Eq. 3.1 as follows

ẍ + x = A cos(ωt). (3.5)

Thus, in some sense the norm of ǫ is a measure of strength of hysteresis, and of the

nonlinearity in the system.

B. Multilinear Hysteresis

In chapter I we introduced the multilinear hysteretic operator as a generalization of

the bilinear hysteretic operator. Thus, it is expected that the automaton description

of the multilinear hysteretic operator will not be much different from that of the
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Fig. 23. Four states or modes of the multilinear hysteretic operator.

bilinear one. Without explaining everything afresh, we will take analogies from the

bilinear hysteretic automaton to introduce and define its multilinear counterpart.

1. States or Modes of Multilinear Hysteretic Automaton

As with the bilinear case, the multilinear automaton has four states, namely, I, II, III,

and IV . The dynamics of these states are shown in figure 23 The relation between

pair (x, F ) for the four states are given by

FI = (1 − αǫ)x − xIǫ(1 − α) + ǫ,

FII = (1 − ǫ)x − ǫ,

FIII = (1 + αǫ)x − xIIIǫ(1 + α) − ǫ,

FIV = (1 − ǫ)x + ǫ.

(3.6)
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Table VI. Rules for state transitions in multilinear model.

Transition Rule

I → II x = xI − 2/(1 − α), ẋ < 0

I → IV x = xI , ẋ > 0

II → III ẋ = 0, ẍ > 0

III → IV x = xIII + 2/(1 + α), ẋ > 0

III → II x = xIII , ẋ < 0

IV → I ẋ = 0, ẍ < 0

Notice that the multilinear model has two parameters, ǫ and α, in contrast to only one

parameter for the bilinear case. A discussion about the relevance of these parameters

is presented in section 3.

2. Mode Transitions

The automaton representation of multilinear hysteretic operator also has six legal

transitions, viz., I → II, I → IV, II → III, III → IV, III → II, and IV → I.

Table VI contains the rules for these transitions. The interpretation of the rules is

same as that for the bilinear case. Figure 24 shows the valid transitions and the

associated rules in a graphical format. The consistency conditions for the multilinear

automaton are exactly the same as those for the bilinear one. Nonetheless, they are

listed in table VII for the sake of completeness.

3. Role of Parameters ǫ and α

The interpretation that we presented for ǫ as a measure of the nonlinearity in the

system for the bilinear case holds for the multilinear case as well. In fact it is easy to
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Table VII. Consistency conditions for various states in the multilinear model.

State Consistency Condition

I |F − (1 − ǫ)x| ≤ ǫ

II ẋ < 0

III |F − (1 − ǫ)x| ≤ ǫ

IV ẋ > 0

α

x < 0

x = 0

x > 0

IIIx = x

x < 0

x = 0

x < 0

x > 0

I

II

III

IV

x = x
I

x > 0

x = x  −2/(1 −   )
I

x = x     + 2/(1 +   )α
III

Fig. 24. State transitions for multilinear hysteresis.
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see that the set 3.6 reduces to the identity map on substituting ǫ = 0. The interesting

fact is that substituting α = 0 in the set 3.6 results in the following equations

FI = x − ǫ(xI − 1),

FII = (1 − ǫ)x − ǫ,

FIII = x − ǫ(xIII + 1),

FIV = (1 − ǫ)x + ǫ,

(3.7)

which are exactly the same as the sets 3.2 and 3.3. Thus, in the limit of α → 0 the

multilinear hysteretic operator reduces to the bilinear hysteretic operator. In this

sense α is a measure of the distance between the multilinear hysteretic operator and

its bilinear counterpart.

C. Oscillator with Hysteresis

In this section we present the problem that will be the object of investigation in this

thesis. Consider the following system

ẍ + F (x, F0, ǫ, α)(t) = A cos(ωt), (3.8)

with the following initial conditions

x(t0) = x0, ẋ(t0) = v0, F (t0) = F0, S(t0) = S0, (3.9)

where F is the bilinear or the multilinear hysteretic operator, S0 ∈ {I, II, III, IV }

is the initial state of the automaton, and ǫ and α are constants (α = 0 for the case of

bilinear hysteresis).

We state the following problem: Given the system 3.8 and the initial conditions

3.9 study the transient and the long-term behavior of system.
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We will attack this problem using at least three different approaches. On one

front we will use perturbation techniques to find asymptotic expansions for the re-

sponse of the system in terms of the small parameter ǫ. On another front we will

define techniques for high-fidelity numerical simulations of the system. This tech-

nique will be used to study the transient response of the system. Yet another attack

on the problem will be devised by constructing Poincaré maps for study of steady

state response of the system. We will use bifurcation and continuation techniques for

study of these maps.

It is easy to see that for any given state (I, II, III or IV ) of the automaton

Eq. 3.8 reduces to the equation of motion of a simple harmonic oscillator with si-

nusoidal forcing, and thus it can be solved in closed-form. We will conclude this

chapter by presenting these closed-form solutions, and demonstrating how these can

be patched to form the time response of the system.

1. Closed-form Solutions and State Transitions

The idea behind trying to write the closed-form solutions for individual states is the

following. Starting from an initial condition and an initial state, as time progress

and the system evolves, the criteria from certain state transitions might get satisfied

and the system may switch from one state to other. Given the initial conditions we

can write the closed-form solutions for all states, thus we can construct the complete

solution for the system if can calculate the time of state transitions. We will soon

write down the equations that need to be solved to find these transition times. It

turns out that solving these equations is not a trivial task and we will present a

methodology for solving them in Appendix B.

We can simplify Eq. 3.8 a bit by noting that the independent variable t occurs

explicitly only in the sinusoidal term, thus we can set t0 = 0 without the loss of
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Table VIII. Parameters in expression for F for different states.

State Parameters

I ω2
o = 1 − αǫ, k = xIǫ(1 − α) − ǫ

II ω2
o = 1 − ǫ, k = ǫ

III ω2
o = 1 + αǫ, k = xIIIǫ(1 + α) + ǫ

IV ω2
o = 1 − ǫ, k = −ǫ

generality if we introduce a phase variable φ defined by

φ = ωt0 mod 2π. (3.10)

Equation 3.8 can then be re-written as

ẍ + F (x, F0, ǫ, α)(t) = A cos(ωt + φ), t ≥ 0, (3.11)

with the initial conditions specified at t = 0. For any given state the most general

form of F can be written as

F = ω2
ox − k, (3.12)

where the parameters ωo and k take different values for different states. These values

are listed in table VIII. Thus, Eq. 3.11 can be further simplified to become

ẍ + ω2
ox = A cos(ωt + φ) + k, t ≥ 0, (3.13)

where ωo, k depend on the current state as indicated in table VIII. The general

solution to Eq. 3.13 can we written as follows (assuming non-resonant forcing)

x(t) =

(

x0 −
k

ω2
o

− A cos φ

ω2
o − ω2

)

cos (ωot) +
1

ωo

(

v0 +
Aω sin φ

ω2
o − ω2

)

sin (ωot)

+
A

ω2
o − ω2

cos (ωt + φ) +
k

ω2
o

.

(3.14)
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The initial conditions x0, v0 for different states are found by continuity of solution at

state transitions. Thus, if a I → II transition occurs at x = 1.2, ẋ = −0.5, t = 2.3

(say) then the corresponding initial conditions for the solution in state II will be

x0 = 1.2, v0 = 0.5, φ = 2.3ω mod 2π etc. Note that v0 is always equal to zero for

states I, III, v0 < 0 for state II and v0 > 0 for state IV .

2. Some Trajectories

In this section we present some typical trajectories obtained for various values of

the system parameters. We show two kinds of trajectories, those corresponding to

transient behavior of the system, and those corresponding to to its long-term behavior.

The long-term behavior of the system often involves a steady state response. Figure 25

shows the typical transient response of the bilinear oscillator. Note how the continuity

of the variables is maintained across state transitions. Figures 26 and 27 show the

typical steady state response for bilinear and multilinear oscillator, respectively.
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Fig. 25. Typical transient behavior for the bilinear oscillator. ǫ = 0.4, A = 2.0, ω = 0.4

x(0) = 7, ẋ(0) = 0, φ = 0.3, starting state = I. The begin-

ning and the mode transitions are marked by ‘*’. Transition sequence

I → II → III → IV → I → II → III → IV → I.
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Fig. 25. Continued ...
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(b) ẋ(t) versus t

Fig. 26. Typical steady state response for the bilinear oscillator.

ǫ = 0.2, A = 1.0, ω = 0.6. The beginning and the mode transitions

are marked by ‘*’. Transition sequence I → II → III → IV → I.
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Fig. 27. Typical steady state response for the multilinear oscillator.

ǫ = 0.3, α = 0.2, A = 1.2, ω = 0.6. The beginning and the mode

transitions are marked by ‘*’. Transition sequence I → II → III → IV → I.
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CHAPTER IV

OSCILLATORS WITH BILINEAR HYSTERESIS AND SINUSOIDAL

EXCITATION

In this chapter we will analyze systems of the form

ẍ + F (x, F0, ǫ)(t) = A cos (ωt), (4.1)

where F is the bilinear hysteretic operator discussed in chapter III. Caughey [24] stud-

ied similar systems in detail using the KBM method, and the development presented

in section A is essentially a reproduction of his work. We include this development

for the sake of completeness, and for comparison with the more advanced results to

be presented later.

The main focus of this chapter will be on the long-term behavior of the bilinear

hysteretic oscillator. The reason for this choice is that due to the dissipation present in

the system the transient behavior is relatively short and the effect of initial conditions

gets subsided after a few oscillations. We will use two tools for the analysis of the

long-term behavior of the system. On one hand we will derive first-order asymptotic

expansions for simple steady state response of the system using the KBM method.

On the other hand we will define return-maps (or Poincaré maps) for the system,

thus reducing the problem of studying the steady state response of the full system to

studying the fixed points of this map. The numerical implementation of these maps

will use the root-finding methodology discussed in Appendix B. The analysis of these

maps will be done using continuation and bifurcation techniques.
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A. KBM Analysis of Simple Orbits

Consider again the system

ẍ + F (x, F0, ǫ)(t) = A cos (ωt). (4.2)

We will analyze the simple steady state response of Eq. 4.2. By ‘simple steady state

response’ we mean a steady state response with principal period of 2π/ω and the

following mode transition sequence → I → II → III → IV → I . . .. Following the

KBM method we assume a steady state response with slowly varying amplitude and

frequency

x(t) = R(t) cos (ωt + φ(t)), (4.3)

where

Ṙ(t) ∼ O(ǫ),

φ̇(t) ∼ O(ǫ).

(4.4)

Equation 4.4 means that R(t) and φ(t) are assumed to be slowly varying with time.

In the following development the parenthetical t will be dropped for convenience. For

the sake of book-keeping we introduce a new variable θ defined as

θ = ωt + φ. (4.5)

It is clear that θ = 0 at the beginning of state I of the automaton (see chapter

III for details about the automaton description). Starting from state I it is easy to

see that the automaton will circle over states II, III, and IV as θ goes from 0 to 2π,

and the pair (x, F ) will trace a loop like the one shown in figure 28. The value of θ

at which the various mode transitions occur can be calculated in closed-form. These

values are indicated in table IX. Knowing the assumed response we can use Eqs. 3.2,
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Fig. 28. Bilinear hysteretic restoring force.

Table IX. Value of θ at various mode transitions for simple cycles of the bilinear os-

cillator.

Transition θ value

I → II θI→II = arccos(1 − 2/R)

II → III θII→III = π

III → IV θIII→IV = π + arccos(1 − 2/R)

IV → I θIV →I = 2π
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3.3 to write the following expressions for the relation between the pair (x, F ) for the

four states of the automaton

FI = x + (1 − R)ǫ,

FII = (1 − ǫ)x − ǫ,

FIII = x + (R − 1)ǫ,

FIV = (1 − ǫ)x + ǫ.

(4.6)

Differentiating Eq. 4.3 with respect to time,

ẋ = −ωR sin θ + Ṙ cos θ − φ̇R sin θ. (4.7)

Following the KBM method Eq. 4.7 is taken to be correct to order ǫ. Using Eq. 4.4

the O(1) part of Eq. 4.7 is

ẋ = −ωR sin θ, (4.8)

and the O(ǫ) part is

Ṙ cos θ − φ̇R sin θ = 0. (4.9)

Differentiating Eq. 4.8 w.r.t time

ẍ = −ω2R cos θ − ωṘ sin θ − ωRφ̇ cos θ. (4.10)

Substituting Eq. 4.10 in Eq. 4.2

−ω2R cos θ − ωṘ sin θ − ωRφ̇ cos θ + F (R cos θ, F0, ǫ) = A cos(θ − φ), (4.11)

where F0 = (1 − ǫ)R + ǫ. Using Eqs. 4.9 and 4.11 the following relations can be

obtained

−ωṘ − ω2R cos θ sin θ + F (R cos θ, F0, ǫ) sin θ = A cos(θ − φ) sin θ, (4.12)
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−ωRφ̇ − ω2R cos2 θ + F (R cos θ, F0, ǫ) cos θ = A cos(θ − φ) cos θ. (4.13)

Since R, φ are assumed to be slowly varying as compared θ so the above equations

can be averaged over one cycle of θ assuming R, φ to be constant over that interval.

Ṙ =
1

2πω

∫ 2π

0

F (R cos θ, F0, ǫ) sin θ dθ − A

2ω
sin φ, (4.14)

φ̇ =
1

2πRω

∫ 2π

0

F (R cos θ, F0, ǫ) cos θ dθ − A

2Rω
cos φ − ω

2
. (4.15)

Eqs. 4.14, 4.15 are sometimes referred to as the slow-flow equations. Let

C(R) =
1

π

∫ 2π

0

F (R cos θ, F0, ǫ) cos θ dθ, (4.16)

S(R) =
1

π

∫ 2π

0

F (R cos θ, F0, ǫ) sin θ dθ. (4.17)

The slow-flow equations then become

Ṙ =
S(R)

2ω
− A

2ω
sin φ, (4.18)

φ̇ =
C(R)

2Rω
− A

2Rω
cos φ − ω

2
. (4.19)

To evaluate the integral terms in the slow-flow equations notice that

∫ 2π

0

F (R cos θ, F0, ǫ) cos θ dθ = 2

∫ π

0

F (R cos θ, F0, ǫ) cos θ dθ, (4.20)

and
∫ 2π

0

F (R cos θ, F0, ǫ) sin θ dθ = 2

∫ π

0

F (R cos θ, F0, ǫ) sin θ dθ. (4.21)

From table IX the value of θ at which the transition from FI to FII occurs is given

by

θI→II = arccos (1 − 2/R). (4.22)
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Thus,

S(R) =
2

π

(
∫ θI→II

0

F (R cos θ, F0, ǫ) sin θ dθ +

∫ π

θI→II

F (R cos θ, F0, ǫ) sin θ dθ

)

(4.23)

= −ǫR

π
sin2 θI→II , (4.24)

and

C(R) =
2

π

(
∫ θI→II

0

F (R cos θ, F0, ǫ) cos θ dθ +

∫ π

θI→II

F (R cos θ, F0, ǫ) cos θ dθ

)

(4.25)

=
R

π

(

ǫθI→II + (1 − ǫ)π − ǫ

2
sin 2θI→II

)

. (4.26)

To summarize, we took the assumed response to be of the form

x(t) = R cos(ωt + φ), (4.27)

where

Ṙ(t) ∼ O(ǫ),

φ̇(t) ∼ O(ǫ).

(4.28)

Following the KBM method we found the following expressions for the evolution of

the variables R, φ

Ṙ =
S(R)

2ω
− A

2ω
sin φ,

φ̇ =
C(R)

2Rω
− A

2Rω
cos φ − ω

2
,

(4.29)
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where

S(R) = −ǫR

π
sin2 θI→II , (4.30)

C(R) =
R

π

(

ǫθI→II + (1 − ǫ)π − ǫ

2
sin 2θI→II

)

. (4.31)

It should be noted that the above results will not be accurate if used for prediction

of transient response of the oscillator. Rather, they should be used for prediction of

long-term behavior of the system. Contrast this with the results that are obtained

using the KBM method in Appendix A. Those results are valid for the transient as well

as the long-term response of the considered systems. The reason for this difference

is that the assumed response that we took in the preceding development is periodic

with a period equal to the period of the forcing, which is the nature of the long-term

behavior of damped systems with external excitation. The method can be modified

to capture the short-term behavior of the system as well; however, such an extension

is slightly cumbersome and is not carried out in this thesis.

1. Steady State Response

The fixed points of the slow-flow equations correspond to the steady state response of

the hysteretic system. Using Eqs. 4.18, 4.19 we get the fixed points of the slow-flow

equations as

S(R∗) = A sin φ∗, (4.32)

C(R∗) = Rω2 + A cos φ∗, (4.33)

where the superscript ∗ denotes the steady state quantities. Eliminating φ∗ from the

above equations we get

ω2 =
C(R∗)

R∗
±
[

(

A

R∗

)2

−
(

S(R∗)

R∗

)2
]1/2

. (4.34)



65

Similarly we can find φ∗ as

tanφ∗ =
S(R∗)

C(R∗) − ω2R∗
. (4.35)

Note that Eq. 4.34 is a implicit equation in R∗ and will need to be iterated to converge.

In principle, given the system parameters ǫ, A and ω we can use Eqs. 4.34 and 4.35 to

find the phase and the amplitude of the steady state response of the system. However,

in practice it is easier to assume a value of R∗ and find the corresponding ω and φ∗.

2. Resonance

Resonant frequency of a system is defined as the frequency at which the amplitude of

the response is maximum. Therefore, resonance occurs when Eq. 4.34 has a double

root, i.e.,
(

A

R∗

)2

=

(

S(R∗)

R∗

)2

. (4.36)

Substituting for S(R∗) and θI→II we get

R∗ =
4ǫ

4ǫ − πA
. (4.37)

Since R∗ is positive by definition, therefore a steady state exists at resonance only if

A <
4ǫ

π
. (4.38)

Otherwise, the resonance is unbound.

3. Some Response Curves

In this section we show some typical response curves for the bilinear oscillator as

predicted by the KBM method. Essentially, these curves are a plot of R∗ versus ω for

various values of the system parameters A and ǫ. Figures 29 to 32 show the typical
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Fig. 29. Frequency response for varying amplitude of excitation. ǫ = 0.4 (fixed), A

varied between 0.2 to 0.8.

response with bound and unbound resonance with various values of the parameters ǫ

and A.

4. Stability of Response

Having found the steady state response of the system it is instructive to evaluate the

stability of the steady state. The single-valued nature of response seen in the previous

section indicates that the steady state is always stable. We will verify this intuition

with the help of rigorous tools from dynamical systems theory. The stability of the

steady state response can be evaluated by studying the stability of the fixed points of

the slow-flow equations. The stability of the fixed points of the slow-flow equations

will be ascertained by carrying out an eigenvalue analysis. The Jacobian matrix for
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the system 4.18, 4.19 at a general point R, φ is given by

J(R, φ) =







1
2ω

∂S
∂R

−A cos φ
2ω

1
2ω

∂
∂R

(

C−A cos φ
R

)

A sinφ
2Rω






. (4.39)

At steady state the Jacobian becomes

J(R∗, φ∗) =







1
2ω

∂S
∂R

1
2ω

(R∗ω2 − C∗)

1
2R∗ω

(

∂C
∂R

− ω2
)

S∗

2R∗ω






, (4.40)

where the partials are evaluated at the fixed point. Since this is a two-dimensional

system we do not need to find the eigenvalues of the Jacobian matrix in order to

evaluate the stability. Instead, we will use the famous trace-determinant criterion for

ascertaining the stability of the response. After some algebra it is possible to obtain

the following results

trace(J(R∗, φ∗)) =
1

2ω

(

∂S

∂R
+

S∗

R∗

)

(4.41)

= − ǫ

πω
(1 − cos θ1) (4.42)

< 0, (4.43)

and

det(J(R∗, φ∗)) =
1

4ω2

[

S

R

∂S

∂R
+

(

C

R
− ω2

)(

∂C

∂R
− ω2

)]

(4.44)

=
1

4ω2

[

ω2 − 1

π
(ǫθ1 + (1 − ǫ)π − ǫ sin θ1)

]2

(4.45)

> 0. (4.46)

Since trace(J) < 0 and det(J) > 0 we conclude that the steady state response is

always stable.
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B. Equivalent Damping Properties

Energy dissipating qualities of hysteretic media are often amongst the most impor-

tant ones from a vibration damping and vibration isolation point of view. Several

researchers have proposed the use of components with hysteretic response, like shape

memory alloys, for passive vibration damping. In this section we will investigate the

equivalent damping properties of oscillators with bilinear hysteresis. Given the oscil-

lator 4.2 we wish to find the properties ξ, γ such that the following oscillator has the

same steady state response as 4.2

ẍ + 2ξγẋ + γ2x = A cos(ωt). (4.47)

We will call the parameter ξ the equivalent damping of the hysteretic oscillator. Let

the steady state response of the system 4.47 be

x(t) = Req cos(ωt + φeq). (4.48)

Then, at steady state the work done by dissipative forces in system 4.47 is given by

Wdis, equiv =

∫ t+2π/ω

t

2R2
eqω

2γξ sin2(ωτ + φeq)dτ

=2πR2
eqωγξ.

(4.49)

For the hysteretic oscillator with bilinear hysteresis the work done by dissipative

forces in one oscillation is equal to the area occupied by the hysteresis loop shown in

figure 28. This area can be found to be 4(R−1)ǫ. On equating the energy dissipated in

one cycle at steady state (assuming same amplitude of response) we get the following

expression for the equivalent damping

ξ =
2ǫ

πωγ

(

1 − 1

R

)

1

R
. (4.50)
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Alternatively, we can derive the above expression as follows. We need the steady

state response of the equivalent system 4.47 to match that of the hysteretic system

4.2. We also found the steady state response of the hysteretic system to be of the

from x(t) = R cos(ωt+φ), where R, φ are the fixed points of the slow-flow equations.

On substituting this expression into Eq. 4.47 we get

−Rω2 cos(ωt + φ) − 2ξRωγ sin(ωt + φ)+γ2R cos(ωt + φ) = A cos(ωt)

=A cos(φ) cos(ωt + φ) + A sin(φ) sin(ωt + φ).

(4.51)

Comparing the coefficients of like harmonics in Eq. 4.51 we obtain

R(γ2 − ω2) = A cos φ,

−2Rξωγ = A sin φ.

(4.52)

Using Eqs. 4.32 and 4.52

ξ =
ǫ sin2 θI→II

2πωγ
,

=
ǫ

2πωγ

(

1 − cos2 θI→II

)

,

=
ǫ

2πωγ

(

1 −
(

1 − 2

R

)2
)

,

=
2ǫ

πωγ

(

1 − 1

R

)

1

R
,

(4.53)

which is the same as Eq. 4.50. Finally, we can use Eqs. 4.52, 4.32 and 4.33 to get the

following expressions for the equivalent natural frequency and damping in terms of

C and S

γ2 =
C(R)

R
, (4.54)

ξ =
−S(R)

2Rωγ
. (4.55)

Figures 33 and 34 show the variation of the equivalent damping with the fre-



73

quency of excitation for some typical cases.

C. Poincaré Maps

The use of Poincaré maps for study of periodic and steady state responses is one of

the most potent tools of nonlinear dynamics. In case of non-autonomous we can talk

of Poincaré maps only in a loose sense because time adds an extra dimension to the

problem and the limitcycle in phase-space is not a true limitcycle in the augmented

space with time dimension. In such cases it is customary to talk of return-maps

instead of Poincaré maps. The essential idea behind construction of return-maps is

that if the excitation is periodic with a period T then a steady state response also

has to be periodic with a period of nT for some n ≥ 1. Thus, the time dimension

can be removed from the picture by sampling the system at appropriate intervals

(necessarily integral multiples of T ).

Our problem is more complicated than both of the cases mentioned above. Not

only do we have a non-autonomous system, we also have a hybrid one. The general

task of defining proper Poincaré sections for such systems is far from trivial. However,

in the particular case at hand there is a certain structure to the problem that renders

it amenable for analysis. We will first describe this structure and then exploit it to

construct Poincaré maps for the analysis of the problem.

Notice that the way in which we have defined the possible transitions of the

automaton imposes a certain structure on the possible steady state responses. Due

to the oscillatory nature of the solution over each individual state of the automaton

the state IV is necessarily followed by I. Thus, if the state IV appears in a steady

state response then we can be sure that the next state will be I. Similarly, the state

II is necessarily preceded by the state I or III and necessarily followed by state III.



74

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.7  0.8  0.9  1  1.1  1.2  1.3

R

ω

ε

(a) Response versus frequency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.7  0.8  0.9  1  1.1  1.2  1.3

ξ

ω

ε

(b) Equivalent damping versus frequency

Fig. 33. Variation of equivalent damping with frequency. A = 0.5, ǫ varied between

0.5 and 0.9.
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On the other hand, the state IV is definitely preceded by the state III or I. Putting

these building blocks together, we can conclude that any steady state of the system

will be of the following general form

(→ (I → IV )ni times → I → II →

→ (III → II)mi times → III → IV →)i such blocks with different ni,mi
.

The simplest cycle that we analyzed using the KBM method can be obtained by

setting i = 1, n1 = m1 = 0. Choosing these values we get the cycle I → II → III →

IV → . . .. Also recall that at the beginning of state I, x = xI = xI(0) (notation), ẋ =

0 and the time is reset by introducing the phase variable φ. Thus, the starting of

state I is characterized by two variables xI and φ. We can construct a Poincaré map

as mapping of these variables onto themselves after one complete cycle (whatever

the structure of the cycle may be). Each steady state response will correspond to a

fixed point of this two-dimensional map. The cycle will stable if the corresponding

fixed points of this map are stable. Note that this map can undergo all the classical

bifurcations of two-dimensional maps, viz. the Neimark-Sacker, the Hopf and the fold

bifurcations etc. However it can have some bifurcations that are not generic to two-

dimensional maps. These bifurcations appear due to the fact that this map is not a

true Poincaré map and represents the dynamics of a hybrid system. Among others,

the map can undergo a bifurcation at which the number ni, mi or i changes. These

will be global bifurcations and will be difficult to detect and follow in general.

In the analysis presented here we will fix the structure of the cycle by fixing

ni, mi and i and then study the classical bifurcations of the resulting map. Using

the development presented in chapter III we will write down the analytical conditions

for all transitions. However, as we will see, the conditions are too complicated to be

of any practical use. In order to calculate the state transitions we will use the root
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isolation methodology discussed in Appendix B to numerically calculate the Poincaré

map. The numerical analysis of the maps will be carried out using the CL CONT

package of the MATCONT suite.

We introduce the following function

xn(t) =

(

x0 −
k

ω2
o

− A cos φ

ω2
o − ω2

)

cos (ωot) +
1

ωo

(

v0 +
Aω sin φ

ω2
o − ω2

)

sin (ωot)

+
A

ω2
o − ω2

cos (ωt + φ) +
k

ω2
o

,

(4.56)

where n ∈ (I, II, III, IV ). With appropriate values of parameters k, ωo and

initial conditions x0, φ, v0 the function xn(t) represents the x(t) for the different

states of the automaton. The appropriate values of k, ωo for each state can be found

in table VIII. The appropriate boundary terms for each state are given in table X.

Note that the boundary terms depend not only on the present state but also on the

last state.

Given the appropriate boundary terms and parameters we can use table IV to

write the explicit equations to be solved for each state transition. These equations

are listed in table XI.

We use t∗n→m to denote the time at which the transition from n to m takes place.

Note that time is set to zero at the beginning of each state, thus t∗n→m is measured

from the starting of the state n. Figures 35 and 36 show the variation of t∗I→II with

xI and φI for some values of ǫ, A and ω. It can be seen in the figures that t∗I→II is in

general a discontinuous function of both xI and φI . The reason for this discontinuity

is simple to understand. In general we have

∂t∗I→II

∂xI(0)
= −∂xI(t)/∂xI(0)

∂xI(t)/∂t

∣

∣

∣

t=t∗
I→II

,

∂t∗I→II

∂φI
= −∂xI(t)/∂φI

∂xI(t)/∂t

∣

∣

∣

t=t∗
I→II

.

(4.57)
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Table X. Boundary terms in expression for xn(t) for different states for the bilinear

hysteretic oscillator.

State Previous State Boundary terms

I IV x0 = xI = xIV (t∗IV →I), v0 = ẋI = 0,

φ0 = φI = ωt∗IV →I mod 2π

II I x0 = xII = xI(t
∗

I→II), v0 = ẋII = ẋI(t
∗

I→II),

φ0 = φII = ωt∗I→II mod 2π

II III x0 = xII = xIII(t
∗

III→II), v0 = ẋII = ẋIII(t
∗

III→II),

φ0 = φIII = ωt∗III→II mod 2π

III II x0 = xIII = xII(t
∗

II→III), v0 = ẋIII = 0,

φ0 = φIII = ωt∗II→III mod 2π

IV III x0 = xIV = xIII(t
∗

III→IV ), v0 = ẋIV = ẋIII(t
∗

III→IV ),

φ0 = φIV = ωt∗III→IV mod 2π

IV I x0 = xIV = xI(t
∗

I→IV ), v0 = ẋIV = ẋI(t
∗

I→IV ),

φ0 = φIV = ωt∗I→IV mod 2π

It is obvious that the RHS of the set 4.57 blows up if

∂xI(t)

∂t

∣

∣

∣

t=t∗
I→II

= 0. (4.58)

Equation 4.58 can be interpreted as a double root of xI(t) = x0 −2. At a double root

two simple roots of the function xI(t)− (x0 − 2) collide and annihilate each other. In

this condition a small change in system parameters can make the difference between

existence and non-existence of the roots. Thus, there is a discontinuity in the root as

a function of the parameters near the double root. This phenomenon is sometimes

also known as the grazing bifurcation.
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Fig. 36. Variation of t∗I→II with xI and φI . ǫ = 0.4, A = 0.7, ω = 0.4.
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Table XI. Conditions for mode transitions for the bilinear automaton.

Transition Condition

I → II xI(t) = x0 − 2 = xI − 2, ẋI(t) < 0

I → IV xI(t) = x0 = xI , ẋI(t) > 0

II → III ẋII(t) = 0, ẍII(t) > 0

III → IV xIII(t) = x0 + 2 = xIII + 2, ẋIII(t) > 0

III → II xIII(t) = x0 = xIII , ẋIII(t) < 0

IV → I ẋIV (t) = 0, ẍIV (t) < 0

1. Typical Results

Figure 37 shows the response curves obtained by carrying out a bifurcation analysis of

the Poincaré maps using MATCONT. It was observed that for all the cases run (not

all of which are presented here) the Poincaré map does not undergo any of the classical

bifurcations. For most of the cases the response curves found from the bifurcation

analysis match fairly well with those obtained from the KBM analysis, even for values

of ǫ comparable to unity. Figure 38 shows the response amplitude calculated using the

KBM method. The amplitude response shown in figure 37 matches up well with its

counterpart obtained from the KBM analysis. Figure 39 shows a plot of the response

obtained from the KBM analysis and the Poincaré maps on the same graph.

On the other hand consider the response curves shown in figure 40. For most

values of ω the response curves match the prediction of the KBM method (shown

in figure 41). For a better comparison the response curves obtained from the KBM

method and the Poincaré maps is plotted on the same graph in figure 42. Notice,

the two small bumps between ω = 0.5, 0. Figure 43 shows a magnified view of

these bumps. These bumbs correspond to the sub-harmoic resonances in the system.
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Fig. 37. Response curves obtained from Poincaré maps. ǫ = 0.6, A = 0.6.
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Fig. 38. Response curves obtained from KBM analysis. ǫ = 0.6, A = 0.6.

Note that the response curve is not discontinious at these bumps even though the

figures show it to be so. This apparent discontinuity appears because the continuation

algorithm (MATCONT) was not able to trace the response curves near the bumps.

In the region near the bumps the KBM analysis predicts a smooth decline in the

amplitude of the response, and does not match well with the results of the bifurcation

analysis in this region. The first (larger) bump appears around ω = 0.3. Figure 44

shows a typical steady state response with ω = 0.3 in time domain and phase-space.

It is easy to see that the response of the system is no longer ‘almost sinusoidal’, thus

the basic assumption of the KBM method does not hold. Hence the true amplitude

of the cycle does not match up with the predictions from the KBM method.

The smaller bump appears for similar reasons. Figure 45 shows a typical cycle

from the vicinity of this bump in time-domain and phase-space. Notice again that the

nature of the solution does not match the description of being sinusoidal with slowly
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Fig. 39. Comparison of response curves obtained using the KBM method (shown by

circles) and the Poincaré maps (shown by solid line). ǫ = 0.6, A = 0.6.
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varying phase and amplitude. We should also spend some time analyzing the phase

response shown in the second graph of figure 40. The graph shows four disconnected

branches in the phase response. The two major branches are discontinuous due to

the presence unbounded resonance which induces a discontinuous phase change of

π. The bigger of the two smaller branches appears discontinuous, but it is indeed

connected with the lower major branch due to the fact that φI is a cyclic variable

and the boundaries φI = 0 and φI = 2π are indeed connected.

In the numerous cases studied it was noted that the simple steady state response

with four state transitions is the only long-term response of the system (other than

harmonic oscillation on mode I or III). It was further noticed that these orbits do

not undergo any of the classical bifurcations and in general the response amplitude is

in good agreement with that obtained using the KBM method even for larger values

of ǫ.

D. Transient Response

We conclude this chapter by presenting some result showing the typical transient

response of the system. It should be noted that even though the steady state response

of the system consists of simple periodic orbits in the phase plane, the transient

response is typically much more complex. Figures 46 and 47 show some transient

trajectories of the system. Note that in the transient response the transition sequence

does not necessarily follow the pattern → I → II → III → IV →.
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Fig. 40. Response curves obtained from Poincaré maps. ǫ = 0.3, A = 1.6.
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Fig. 45. Steady state response in time domain. ǫ = 0.3, A = 1.6, ω = 0.187. Notice
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(c) ẋ versus x

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

F
(x

)

(d) F (x) versus x

Fig. 45. Continued ...



98

10 20 30 40 50

−10

−5

0

5

10

t

x

(a) x(t) versus t

10 20 30 40 50

−10

−5

0

5

10

t

dx
/d

t
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Fig. 46. Transient response with ǫ = 0.3, A = 3.65, ω = 1.2. Initial conditions:

x(t0) = 1, ẋ(t0) = 0, t0 = π/2ω, starting state = I. The first 40 state

transitions are shown.
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Fig. 47. Transient response with ǫ = 0.7, A = 150, ω = 10. Initial conditions:

x(t0) = 1, ẋ(t0) = 0, t0 = π/2ω, starting state = I. The first 100 state

transitions are shown.
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CHAPTER V

OSCILLATORS WITH MULTILINEAR HYSTERESIS AND SINUSOIDAL

EXCITATION

In this chapter we will analyze the behavior of oscillators with hysteretic restoring

force and sinusoidal excitation where the hysteresis is modeled using the multilinear

model of hysteresis. These systems are governed by the following equation

ẍ + F (F0, ǫ, α)(x(t)) = A cos (ωt), (5.1)

where F is the multilinear hysteretic operator introduced in chapter I. Note that in

the above equation we have loosely used the notation F (x, F0, ǫ, α) for the hysteretic

restoring force instead of the more formal notation F (F0, ǫ, α)(x). This slight abuse

of notation saves signification confusion in the later development. As in chapter IV,

we will focus on the long-term behavior of the system. The justification focusing

on the long-term behavior is that the transient response decays quickly due to the

presence of dissipation in the system. This chapter extends chapter IV and the work

of Caughey [24] to the analysis of systems with multilinear hysteresis.

The development presented in this chapter follows the layout of chapter IV. We

investigate the long-term behavior of Eq. 5.1 using two tools: asymptotic expansions

and Poincaré maps. The asymptotic expansions obtained by treating ǫ as a small

parameter are seen to provide excellent approximation to the amplitude and frequency

of steady state response of the system. To analyze the system more rigorously we

construct Poincaré maps (return-maps) and analyze their stability and bifurcations

by using tools from nonlinear dynamics. We also calculate the equivalent damping of

the hysteretic oscillator for simple steady state response.
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Fig. 48. Multilinear hysteretic restoring force.

A. KBM Analysis of Simple Orbits

In this section we will analyze simple steady state response of Eq. 5.1 for small ǫ using

the KBM method. A ‘simple steady state response’ means a response with principal

period of 2π/ω the following state transition sequence → I → II → III → IV → . . .

(see Fig. 48). It should be noted that the KBM method is not limited to analysis

of 1-period responses and it can be extended to take into account the higher period

response. However, we will focus on the period-1 or the simple steady state response

of Eq. 5.1 because it is found to be the dominant response of the system (orbits with

other periods are significantly fewer).

As in the bilinear case we assume that the long-term response of Eq. 5.1 is
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of sinusoidal character with slowly varying amplitude and frequency. Under this

hypothesis we can write

x(t) = R(t) cos (ωt + φ(t)), (5.2)

where R(t) and φ(t) are assumed to be slowly varying with time, i.e.,

Ṙ(t) ∼ O(ǫ),

φ̇(t) ∼ O(ǫ).

(5.3)

In the following development the parenthetical t will be dropped for convenience. We

introduce a new variable θ defined as follows

θ = ωt + φ. (5.4)

Obviously x is maximum (= R) at θ = 0, 2π and minimum (= −R) at θ = π. Thus,

if we assume that a simple periodic orbit of the system starts in state I at θ = 0

then it is easy to see that the automaton undergoes transitions I → II, II → III,

III → IV and IV → I at the following values of x and θ

xI→II = R − 2

1 − α
,

θI→II = arccos

(

1 − 2

R(1 − α)

)

,
(5.5)

xII→III = −R,

θII→III = π,

(5.6)

xIII→IV = −R +
2

1 + α
,

θIII→IV = arccos

(

−1 +
2

R(1 + α)

)

,
(5.7)

and
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xIV →I = R,

θIV →I = 2π.

(5.8)

For a period-1 orbit of magnitude R to exist Eqs. 5.5 - 5.8 should have consistent

solutions. These requirements impose the following conditions

R > xI→II > −R, (5.9)

−R < xIII→IV < R. (5.10)

The above inequalities have a solution iff

|α| < 1. (5.11)

Using Eqs. 5.5-5.11 the following relation can be obtained

R >
1

1 − |α| . (5.12)

Therefore, a simple period-1 orbit with amplitude R exists only if the condition 5.12

is satisfied. Figure 49 shows the variation of the minimum amplitude of response,

Rmin, required for existence of simple period-1 orbits for various values of α. Note

that as α → 1, Rmin → ∞. For α = 0, Rmin = 1, which is expected since for α = 0

the multilinear hysteretic operator degenerates to a bilinear hysteretic operator and

the minimum amplitude of response required for existence of hysteresis in the bilinear

case is 1.

Assuming that necessary conditions for the existence of a period-1 orbit are met

we can write the equations for the restoring force for the four branches or modes of
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hysteresis as follows

FI = (1 − αǫ)x + Rǫ(α − 1) + ǫ,

FII = (1 − ǫ)x − ǫ,

FIII = (1 + αǫ)x + Rǫ(α + 1) − ǫ,

FIV = (1 − ǫ)x + ǫ.

(5.13)

As pointed out earlier, in the limit ǫ → 0, Eq. 5.1 reduces to that of a forced simple

harmonic oscillator, and in the limit α → 0, ǫ 6= 0, it reduces to that of a forced

harmonic oscillator with bilinear restoring force.

We now proceed to find the steady state response of the system using the KBM

method. Differentiating Eq. 5.2 with respect to time and using Eq. 5.4 we get,

ẋ = −ωR sin θ + Ṙ cos θ − φ̇R sin θ. (5.14)

Since Ṙ, φ̇ are assumed to be much smaller than ω, the O(1) part of Eq. 5.14 is given

by

ẋ = −ωR sin θ, (5.15)

and the O(ǫ) part is

Ṙ cos θ − φ̇R sin θ = 0. (5.16)

Differentiating Eq. 5.15 with respect to time we get the following relation

ẍ = −ω2R cos θ − ωṘ sin θ − ωRφ̇ cos θ. (5.17)

On substituting Eq. 5.17 in Eq. 5.1 the following can be deduced

−ω2R cos θ − ωṘ sin θ − ωRφ̇ cos θ + F (R cos θ, F0, ǫ, α) = A cos(θ − φ). (5.18)
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Using Eqs. 5.16 and 5.18 the following relations can be obtained

−ωṘ − ω2R cos θ sin θ + F (R cos θ, F0, ǫ, α) sin θ = A cos(θ − φ) sin θ, (5.19)

−ωRφ̇ − ω2R cos2 θ + F (R cos θ, F0, ǫ, α) cos θ = A cos(θ − φ) cos θ. (5.20)

Using the fact that Ṙ, φ̇ are O(ǫ) quantities while θ̇ is O(1) Eqs. 5.19, 5.20 can be

averaged over one period of θ while treating R, φ as constants. Thus, we obtain

Ṙ =
1

2πω

∫ 2π

0

F (R cos θ, F0, ǫ, α) sin θ dθ − A

2ω
sin φ, (5.21)

φ̇ =
1

2πRω

∫ 2π

0

F (R cos θ, F0, ǫ, α) cos θ dθ − A

2Rω
cos φ − ω

2
. (5.22)

Eqs. 5.21, 5.22 are called the slow-flow equations. We define

C(R) =
1

π

∫ 2π

0

F (R cos θ, ǫ, α, t) cos θ dθ, (5.23)

S(R) =
1

π

∫ 2π

0

F (R cos θ, ǫ, α, t) sin θ dθ. (5.24)

Eqs. 5.22, 5.21 can be re-written as

Ṙ =
S(R)

2ω
− A

2ω
sin φ, (5.25)

φ̇ =
C(R)

2Rω
− A

2Rω
cos φ − ω

2
. (5.26)

Next we evaluate the integrals S(R), C(R). Using Eqs. 5.5-5.8 the integrals S(R), C(R)
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can be evaluated as follows

S(R) =
1

π

(
∫ θ1

0

F (R cos θ, F0, ǫ, α) sin θ dθ +

∫ π

θ1

F (R cos θ, F0, ǫ, α) sin θ dθ

)

(5.27)

+
1

π

(
∫ θ2

π

F (R cos θ, F0, ǫ, α) sin θ dθ +

∫ 2π

θ2

F (R cos θ, F0, ǫ, α) sin θ dθ

)

(5.28)

= − ǫR

2π

[

(1 − α) sin2 θ1 + (1 + α) sin2 θ2

]

, (5.29)

and

C(R) =
1

π

(
∫ θ1

0

F (R cos θ, F0, ǫ, α) cos θ dθ +

∫ π

θ1

F (R cos θ, F0, ǫ, α) cos θ dθ

)

(5.30)

+
1

π

(
∫ θ2

π

F (R cos θ, F0, ǫ, α) cos θ dθ +

∫ 2π

θ2

F (R cos θ, F0, ǫ, α) cos θ dθ

)

(5.31)

=
R

4π
[ǫ(1 − α)(2θ1 − sin 2θ1) + ǫ(1 + α)(2θ2 − sin 2θ2) + 4(1 − 2ǫ)π] , (5.32)

where

θ1 = θI→II ,

θ2 = θIII→IV .

(5.33)

Having evaluated the terms S(R), C(R) it is possible to solve the slow-flow equations.

As pointed out in chapter IV the slow-flow equations are not adequate for analyzing

the transient behavior of the system (contrary to the results obtained in Appendix A

using the KBM method). The reason for this limitation is that the assumed response

(Eq. 5.2) has a frequency equal to the frequency of excitation. It is well known that

the long-term response of weakly nonlinear systems with damping contains only the

frequency of excitation. Thus, the nature of the assumed response is similar to that

of the long-term response of a damped system. Hence, the above development does
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not adequately capture the transient response of the system.

1. Steady State Response

The steady state response of Eq. 5.1 can be found by evaluating the fixed points of

the slow-flow equations. Denoting R∗, φ∗ as the fixed points, we can use Eqs. 5.21,

5.22 to get

S(R∗) = A sin φ∗, (5.34)

C(R∗) = Rω2 + πA cos φ∗. (5.35)

The above equations can be solved for R∗, φ∗ as follows

ω2 =
C(R∗)

R∗
±
[

(

A

R∗

)2

−
(

S(R∗)

R∗

)2
]1/2

, (5.36)

tanφ∗ =
S(R∗)

C(R∗) − ω2R∗
. (5.37)

Note that even though Eq. 5.36 can be solved for R∗ using iterative methods, it is

more convenient to specify R∗ and solve for the corresponding values of ω. Once

the pair R∗, ω is known Eq. 5.37 can be solved to find φ∗. From the expressions

for C(R) and S(R) and Eq. 5.36 it is obvious that for any given ω the response is

single-valued. Thus, according to the KBM analysis the multilinear oscillator does

not show the jump phenomena which is characteristic of many nonlinear systems.

2. Resonance

By definition, resonance occurs when Eq. 5.36 has a double root, i.e.,

(

A

R∗

)2

=

(

S(R∗)

R∗

)2

. (5.38)
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Substituting for S(R∗), θ1, and θ2, we obtain (at resonance)

R∗ =
4ǫ

(1 − α2)(4ǫ − πA)
. (5.39)

Since R∗ is positive by definition and from Eq. 5.11 we have 1 − α2 > 0, therefore a

steady state exists at resonance only if

A <
4ǫ

π
. (5.40)

Otherwise, the resonance is unbound. Note that the nature of resonance does not

depend on the value of α.

3. Some Response Curves

The response curves for the system can be obtained by using Eqs. 5.36, 5.37. These

curves are essentially plots of R∗, φ∗ versus ω for various values of the system param-

eters A, α, ǫ. Figures 50 to 53 show the typical response with bound and unbound

resonance for various values of the parameters A, α and ǫ. It should be noted that the

steady state values found using the KBM method match with those obtained from

numerical simulations and Poincaré map based analysis presented later to a good

degree even for large ǫ.

4. Stability of Response

The stability of the steady state response can be evaluated by studying the stability

of the fixed points of the slow-flow equations. The Jacobian matrix for the system

5.25, 5.26 at a point R, φ is given by

J(R, φ) =







1
2ω

∂S
∂R

−A cos φ
2ω

1
2ω

∂
∂R

(

C−A cos φ
R

)

A sinφ
2Rω






. (5.41)
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At steady state the Jacobian can be written as

J(R∗, φ∗) =







1
2ω

∂S
∂R

1
2ω

(R∗ω2 − C∗)

1
2R∗ω

(

∂C
∂R

− ω2
)

S∗

2R∗ω






, (5.42)

with the partial derivatives evaluated at the fixed point. Since we are studying a two-

dimensional system we can use the trace-determinant criteria for finding the system

stability. The trace of the Jacobian matrix can be evaluated as follows

trace(J(R∗, φ∗)) =
1

2ω

(

∂S

∂R
+

S∗

R∗

)

= − ǫ

4πω

[

(1 − α)(1 − cos θ1)
2 + (1 + α)(1 + cos θ2)

2
]

− ǫ

4πω

[

(1 − α) sin θ2
1 + (1 + α) sin θ2

2

]

= − ǫ

2πω
[(1 − α)(1 − cos θ1) + (1 + α)(1 + cos θ2)]

= − ǫ

πRω

< 0.

(5.43)

and the determinant can be found to be the following

det(J(R∗, φ∗)) =
1

4ω2

[

S

R

∂S

∂R
+

(

C

R
− ω2

)(

∂C

∂R
− ω2

)]

=
1

4ω2

[

(

ω2 − 1

2

(

C

R
+

∂C

∂R

))2

+
S

R

∂S

∂R
− 1

4

(

C

R
− ∂C

∂R

)2
]

.

(5.44)
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It is possible to show that

S

R

∂S

∂R
− 1

4

(

C

R
− ∂C

∂R

)2

=
ǫ2

4π2

[

(1 − α) sin2 θ1 + (1 + α) sin2 θ2

]

[

(1 − α)(1 − cos θ1)
2 + (1 + α)(1 + cos θ2)

2
]

− ǫ2

4π2
[(1 − α) sin θ1(1 − cos θ1)

+ (1 + α) sin θ2(1 + cos θ2)]
2

=
ǫ2

4π2
(1 − α2) [(1 − α) sin θ1 + (1 + α) sin θ2]

2 .

(5.45)

Therefore,

det(J(R∗, φ∗)) =
1

4ω2

[

(

ω2 − 1

2

(

C

R
+

∂C

∂R

))2

+
S

R

∂S

∂R
− 1

4

(

C

R
− ∂C

∂R

)2
]

=
1

4ω2

[

(

ω2 − 1

2

(

C

R
+

∂C

∂R

))2

+
ǫ2

4π2
(1 − α2) [(1 − α) sin θ1 + (1 + α) sin θ2]

2

]

≥ 0.

(5.46)

Thus, by the trace-determinant criteria the steady state response of the system is

always stable.

B. Equivalent Damping Properties

In this section we will derive expressions for the damping and natural frequency of

a linear harmonic oscillator that has the same amplitude and phase response as the

hysteretic oscillator when both systems have the same harmonic excitation. We will

follow the development presented in chapter IV section B. We aim to find parameters

ξ, γ such that the steady state response of the following oscillator matches that of



118

the hysteretic oscillator discussed in previous sections

ẍ + 2ξγẋ + γ2x = A cos(ωt). (5.47)

The parameters ξ and γ can be considered to be the equivalent damping and natural

frequency of the hysteretic oscillator. Proceeding as in chapter IV section B we can

get the following expressions for γ ξ

γ2 =
C(R)

R
, (5.48)

and

ξ =
−S

2Rωξ
. (5.49)

Figures 54 and 55 show the variation of the equivalent damping with the frequency

of excitation for some typical cases.

C. Poincaré Maps

In this section we analyze the steady state response of Eq. 5.1 using Poincaré maps.

The development presented here is very similar to that presented in chapter IV sec-

tion C. Thus, some details are omitted here and can be found in chapter IV section C.

Following the arguments presented in chapter IV we can deduce the following

general structure of the periodic orbits of the system

(→ (I → IV )ni times → I → II →

→ (III → II)mi times → III → IV →)i such blocks with different ni,mi
.

Thus, every periodic orbit of the system has at least one IV → I transition. By

definition ẋI is zero, i.e., the velocity is zero at the beginning of state I. The beginning

of state I is then characterized by the value of x and the time t at which the IV → I
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transition occurs. We use the symbols xI and t∗I to represent these values. The

explicit dependence of the system on t is via the forcing term A cos(ωt), so we can

set t = 0 at the beginning of each state provided we introduce an appropriate phase

variable φn, n ∈ {I, II, III, IV } defined by

φn = ωt∗n mod 2π, (5.50)

and modify the forcing term to become A cos(ωt+φn). In particular, for the IV → I

transition we introduce the phase variable φI defined by

φI = ωt∗I mod 2π, (5.51)

and change the forcing term to A cos(ωt + φI). After introducing the variable φ we

can characterize the beginning of state I by the pair (xI , φI). A periodic orbit may

have many IV → I transitions. We can mark any one of these transitions and define

a map

(xI , φI)i 7→ (xI , φI)i+1, (5.52)

where the subscript i denotes the ith return to the marked state I. At this point

there can be some confusion as to what is meant by a ‘marked’ state I. To clear this

confusion consider a periodic orbit that has the following sequence of state transitions

(

→ I → II → III → IV → Î → IV →
)

, (5.53)

where Î denotes the marked state I. Note that the above cycle may be also written

as follows
(

→ III → IV → Î → IV → I → II →
)

. (5.54)

Even though the start and end of a periodic orbit are arbitrary, the sequence of state

transitions is preserved and thus the marked state can be identified irrespective of
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which transition we choose to call the beginning of the orbit. Further, each complete

orbit should have only one marked state. Considering these arguments the map 5.52

is indeed well defined and can be used to study the periodic orbits of the system in

almost the same manner as a usual Poincaré map.

The map 5.52 would be a Poincaré map if the system being considered were

an autonomous system, and it would be a return-map if the system were a non-

autonomous system with periodic dependence on t. However, since the system that

we are studying is a non-smooth hybrid system the map 5.52 is neither a Poincaré map

nor a return-map in the exact sense. Nonetheless, we will loosely call it a Poincaré

map. The fixed points of the Poincaré map represent closed orbits of the system,

and the stability of these fixed points can be used to characterize the stability of the

corresponding orbits. The bifurcations of this map have direct correspondence with

the bifurcations of the periodic response of Eq. 5.1.

In order construct the map 5.52, given the pair (xI , φI)i we need to be able to

calculate the pair (xI , φI)i+1. To calculate this pair we proceed as follows. Since the

pair (xI , φI) fully characterizes the system in state I, we can in principle calculate

the time of the next transition given (xI , φI). Once the time of the next transition

is known, the value of x, ẋ and φ at the beginning of the new state can be found.

Continuing this process through the transitions that make the orbit we can find

the pair (xI , φI)i+1. The transition criteria for the various transitions were defined in

chapter III. Using those criteria we will next write the equations needed to solve for the

various transition times. To this end we define a function xn(t), n ∈ {I, II, III, IV }

which plays a central role in determining the state transitions.

xn(t) =

(

x0 −
k

ω2
o

− A cos φ0

ω2
o − ω2

)

cos (ωot) +
1

ωo

(

v0 +
Aω sin φ0

ω2
o − ω2

)

sin (ωot)

+
A

ω2
o − ω2

cos (ωt + φ0) +
k

ω2
o

.

(5.55)
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It is easy to check that for appropriate values of the constants x0, v0, φ0, k, and

ωo the function xn(t) evaluates to the solution x(t) of Eq. 5.1 for the different states

of the automaton. The general structure of x(t) is similar for all the states because

the structure of the governing equation (Eq. 5.1) is similar for all the states. The

difference in the expression for x(t) for different states comes for two sources: system

parameters and initial conditions. The system parameters k and ωo for the various

states are given in table XII, while the initial conditions x0, v0, φ0 for the different

states are given in table XIII. Recall that we use the notation xI = xI(0), xII = xII(0)

etc.

Table XII. Parameters in expression for xn(t) for different states.

State Parameters

I ω2
o = 1 − αǫ, k = xIǫ(1 − α) − ǫ

II ω2
o = 1 − ǫ, k = ǫ

III ω2
o = 1 + αǫ, k = xIIIǫ(1 + α) + ǫ

IV ω2
o = 1 − ǫ, k = −ǫ

We have summarized the conditions for various mode transitions in table XIV.

Using these conditions and the appropriate expressions for xn(t) we can in principle

solve for the transition time for any transition. In practice it is not simple to solve

the resulting equations for finding the transition time. A method for solving these

equations is presented in Appendix B.

Figures 56 and 57 show the variation of t∗I→II with xI and φI for some values of

ǫ, A and ω. As a convention, if for certain parameter values the transition time is

greater than certain threshold value then it is set to -1 for plotting purposes. The

figures show that t∗I→II is discontinuous in both xI and φI . At the points where the
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Table XIII. Initial conditions in expression for xn(t) for different states for the multi-

linear hysteretic oscillator.

State Previous State Initial Conditions

I IV x0 = xI = xIV (t∗IV →I), v0 = ẋI = 0,

φ0 = φI = ωt∗IV →I mod 2π

II I x0 = xII = xI(t
∗

I→II), v0 = ẋII = ẋI(t
∗

I→II),

φ0 = φII = ωt∗I→II mod 2π

II III x0 = xII = xIII(t
∗

III→II), v0 = ẋII = ẋIII(t
∗

III→II),

φ0 = φIII = ωt∗III→II mod 2π

III II x0 = xIII = xII(t
∗

II→III), v0 = ẋIII = 0,

φ0 = φIII = ωt∗II→III mod 2π

IV III x0 = xIV = xIII(t
∗

III→IV ), v0 = ẋIV = ẋIII(t
∗

III→IV ),

φ0 = φIV = ωt∗III→IV mod 2π

IV I x0 = xIV = xI(t
∗

I→IV ), v0 = ẋIV = ẋI(t
∗

I→IV ),

φ0 = φIV = ωt∗I→IV mod 2π

discontinuity occurs the partial derivatives of t∗I→II with respect to xI and φI are not

defined. These partial derivatives can be written as

∂t∗I→II

∂xI(0)
= −∂xI(t)/∂xI(0)

∂xI(t)/∂t

∣

∣

∣

t=t∗
I→II

,

∂t∗I→II

∂φI
= −∂xI(t)/∂φI

∂xI(t)/∂t

∣

∣

∣

t=t∗
I→II

.

(5.56)

The above partial derivatives are not defined when

∂xI(t)

∂t

∣

∣

∣

t=t∗
I→II

= 0. (5.57)

The condition expressed by Eq. 5.57 implies that t∗I→II is a root xI(t) = xI(0) −
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Table XIV. Conditions for mode transitions for the multilinear automaton.

Transition Condition

I → II xI(t) = x0 − 2/(1 − α) = xI − 2/(1 − α), ẋI(t) < 0

I → IV xI(t) = x0 = xI , ẋI(t) > 0

II → III ẋII(t) = 0, ẍII(t) > 0

III → IV xIII(t) = x0 + 2/(1 + α) = xIII + 2/(1 + α), ẋIII(t) > 0

III → II xIII(t) = x0 = xIII , ẋIII(t) < 0

IV → I ẋIV (t) = 0, ẍIV (t) < 0

2/(1−α) of multiplicity greater than 1. It is shown in chapter III that in general the

equations determining the mode transitions cannot have roots of multiplicity higher

than 2. Thus, Eq. 5.57 implies the existence of an algebraic saddle-node bifurcation

for the equation xI(t) = xI(0) − 2/(1 − α) (see table XIV). This bifurcation is also

know as the grazing bifurcation. Although we have discussed the case of I → II

transition the other transitions can have grazings as well.

1. Typical Results

In this section we present one set of results obtained from the bifurcation analysis

of the Poincaré map defined by Eq. 5.52. Note that since the bilinear hysteretic

oscillator is a special case of the multilinear oscillator, the multilinear oscillator shows

all phenomena exhibited by the bilinear oscillator. These include “bumps” in the

response curve (see chapter IV section C) and non-sinusoidal orbits. With this in

mind, in this section we present two phenomena that are exhibited by the multilinear

hysteretic oscillator but not by its bilinear counterpart. These phenomena are grazing

bifurcation of periodic orbits, and multi-valued frequency response.
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Figure 58 shows one response curve for the multilinear hysteretic oscillator. The

ordinate axis of the graph shows the amplitude of the periodic orbit while the abscissa

corresponds to the frequency of excitation. The amplitude of the periodic orbit is de-

fined as the average of the difference of the maximum and the minimum displacement

over the orbit. Mathematically this can be expressed as

Amplitude = lim
t0→∞

supt∈(t0,t0+2π/ω] (x(t)) − inft∈(t0,t0+2π/ω] (x(t))

2
. (5.58)

The above limit exists if and only if the solution x(t) is a periodic orbit or converges

to a periodic orbit. Figure 58 shows that for some values of ω there exist two response

amplitudes. Further, the figure also shows that there exist orbits with 4, 6, and 8

mode transitions. Note that even though the long-term response of the system can

have orbits with more than 4 mode transitions, the orbit with 4 transitions forms

the dominant part of the response. Figure 59 shows the response of the amplitude

obtained from the KBM method. It can be seen that the amplitude of the dominant

orbit matches the prediction of the KBM method to good accuracy even though the

value of ǫ is not small as compared to unity.

The multi-valued response shown in figure 58 is due to the appearance of the

cycles (orbits) other than the dominant one. We will discuss one mechanism by

which these orbits can be born from the dominant 4-cycle (orbit with 4 transitions).

Figure 61 shows a sequence of orbits consisting of 4 state transitions that lead to

the birth of an orbit with 6 state transitions. Reducing the frequency of excitation

leads to a reduction in the amplitude of the response if the frequency is less than the

resonance frequency. However, as the amplitude of the response reduces the transition

from state I to II comes close to the transition from state II to III. At a certain

point these transitions collide and annihilate the 4-cycle. Notice that at this point

the velocity at the I → II transition must be zero, thus this is a grazing bifurcation.
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and Poincaré maps (shown by solid line). ǫ = 0.57, α = 0.5, A = 0.65.

The destruction of the 4-cycle can either result in the creation of a non-dissipative

orbit corresponding to oscillations on mode state I or III, or it can result in the

creation of a more complex cycle. The non-dissipative orbit will appear only if the

steady state amplitude is less than 1/(1+ |α|). However, this is not true immediately

after the destruction of the 4-cycle, since the 4-cycle is destroyed when the steady

state amplitude is approximately equal to 1/(1 − |α|) (see section A and Eq. 5.11).

Thus, the destruction of the 4-cycle results in the formation of a cycle with more

than 4 state transitions. In the particular case shown in figure 58 the new cycle has

6 transitions. Note that the above mechanism of appearance of orbits with greater

number of transitions is not the only possible mechanism. As shown in figure 58

a 8-cycle also exists for some frequency. This 8-cycle is not created by the same

mechanism as the 6-cycle. Due to the complicated nature of the system not all the

mechanisms of creation and destruction of the cycles are understood at this point.
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Figures 62-64 show representative 4, 6 and 8-cycles.

In the various numerical experiments (not reported here) it was observed that

simple 4-cycles constituted the dominant response of the system. More complicated

behavior like higher period orbits or orbits with greater number of transitions were

significantly fewer. In all cases the results from KBM analysis matched the true

dominant response with good accuracy. Finally, no aperiodic or chaotic response was

observed in the system.

D. Transient Response

To conclude this chapter we present the transient response of the system for some

typical parameter values. Figures 65 and 66 show the evolution of relevant quantities

in time-domain and the phase space. It should be noticed that the typical transient

response of the system is much more complex than its long-term behavior which con-

sists almost exculsively of simple periodic orbits. The sequence of state transitions is

richer for the transient response and typically consists of all possible state transitions.
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Fig. 61. Sequence of orbits leading to bifurcation of a 4-cycle into a 6 cycle.

ǫ = 0.57, α = 0.5, A = 0.65.
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Fig. 62. A 4-cycle, transition sequence: → I → II → III → IV →.

ǫ = 0.57, α = 0.5, A = 0.65, ω = 0.75.
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Fig. 63. A 6-cycle, transition sequence: → I → II → III → IV → I → IV →.
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Fig. 64. A 8-cycle, transition sequence: → I → II → III → IV → I → IV → I → IV →.

ǫ = 0.57, α = 0.5, A = 0.65, ω = 0.56.
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(c) ẋ versus x

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

x

F
(x

)

(d) F (x) versus x

Fig. 64. Continued ...



144

20 40 60 80 100 120 140 160

−10

−5

0

5

10

t

x

(a) x(t) versus t

20 40 60 80 100 120 140 160

−10

−5

0

5

10

t

dx
/d

t
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Fig. 65. Transient response with ǫ = 0.3, A = 3.65, α = 0.8, ω = 1.2. Initial

conditions: x(t0) = 1, ẋ(t0) = 0, t0 = π/2ω, starting state = I. The first 100

state transitions are shown.
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Fig. 66. Transient response with ǫ = 0.7, A = 150, α = 0.4, ω = 10. Initial condi-

tions: x(t0) = 1, ẋ(t0) = 0, t0 = π/2ω, starting state = I. The first 100 state

transitions are shown.



147

−20 −10 0 10 20
−30

−20

−10

0

10

20

x

dx
/d

t
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CHAPTER VI

ONE DEGREE OF FREEDOM SMA OSCILLATOR WITH SINUSOIDAL

EXCITATION

In this chapter we study the steady state response of an oscillator with a SMA spring

and sinusoidal excitation. The Boyd-Lagoudas model is used for SMA modeling (see

Chapter II). In order to simplify the analysis the thermo-mechanical coupling is not

taken into account. The KBM method is used for steady state analysis of the system.

The response curves obtained from the steady state analysis are compared with the

experimental data provided in Ref. [52]. The results of the KBM analysis are also

compared with those obtained by using a return mapping algorithm based numerical

method discussed in Ref. [52]. Since the KBM method and its applications have been

discussed in detail in chapters IV and V, and appendix A, so most derivations and

details are omitted. Instead, we focus on trying to develop an intuitive understanding

of the results.

A. Experimental Setup and Governing Equations

Figure 67 shows the experimental setup used in Ref [52]. The block of mass m

can slide in the vertical direction with minimal friction, however, the frame does

not permit any motion in the horizontal plane. The block is supported by two pre-

strained SMA wires. The wires are pre-strained to avoid slacking. The amount of

pre-strain is calculated such that in the static equilibrium both wires have strain equal

to 0.041. The entire setup is mounted on a platform capable of producing sinusoidal

1Note that static equilibrium is not possible if both wires have exactly equal
strains. However, for the given system the two values differ by less than 5%, and
are taken to be approximately equal. Also note that the value 0.04 is not arbitrary.
It is selected so as to ensure that the static equilibrium corresponds to a certain
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Fig. 67. Schematic of experimental setup used in Ref [52].

excitation. This platform is called the shaker. The setup is equipped with sensors

that can measure the acceleration of the shaker and of the block. In the typical

experiments the frequency of excitation of the shaker is varied slowly and uniformly

over a range while the amplitude of the acceleration of the shaker held constant. The

acceleration of the block is measured as an output. This variation of frequency over

a range will be referred to as a ‘sine sweep’. For convenience the amplitude of the

acceleration of the shaker is varied in multiples of g, the acceleration due to gravity. In

order to avoid structural vibrations the setup was designed such that the frequencies

of the structural modes were sufficiently far from the desired range of excitation. The

relevant specifications of the experimental setup are presented in table XV.

1. Equations of Motion

In the following development the gravitational force is neglected in comparison with

the elastic force. In fact, we tacitly made this assumption earlier when we assumed

location on the stress-strain curve. See Ref. [52] for details.
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Table XV. Specifications of the experimental setup.

Parameter Value

L, length of unstrained wires 72.6 mm

d, diameter of the wires 0.51 mm

m, mass of the block 0.6 kg

ǫo, pre-strain introduced in the wires 0.04

that at static equilibrium the wires have equal strains. Let x(t) be the displacement

of the block from its static equilibrium position, and y(t) be the displacement of the

platform in the inertial frame (see figure 67). Then the equation of motion of the

block can be written as follows

m(ẍ + ÿ) = Fu − Fl − Fd, (6.1)

where, Fu, Fl are the tensile forces exerted by the upper and the lower wire, respec-

tively, and Fd is the damping force. Note that in Ref. [52] the damping force Fd was

not taken into account. We include Fd to account for any small dissipation that might

be present due to the friction, viscosity etc. in the setup. Let ng be the peak acceler-

ation of the shaker, where n ∈ 1, 2, . . . , and g is the acceleration due to gravity, and

let ω be the frequency of the oscillations of the shaker. Then Eq. 6.1 can be written

as

m(ẍ − ng cos(ωt)) = Fu − Fl − Fd, (6.2)

or

ẍ +
Fl − Fu

m
+

Fd

m
= ng cos(ωt). (6.3)
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2. Material Response

In order to solve Eq. 6.3 we need to find Fl, Fu, and Fd given x, ẋ and perhaps the time

history x(t). Let σu and σl be the stress in the upper and the lower wire, respectively.

Then,

Fu =
πd2σu

4
, (6.4)

and

Fl =
πd2σl

4
, (6.5)

where d is the diameter of the wires. The stress in the wires can be found if we know

the corresponding strain. Let ǫu and ǫl be the strain in the upper and the lower wire,

respectively. Then the following relations hold

ǫu = ǫo − ǫ, (6.6)

ǫl = ǫo + ǫ, (6.7)

where ǫ is defined as

ǫ ≡ x/L, (6.8)

and ǫo is the pre-strain. The constitutive model discussed in chapter II can used to

deduce the stress-strain relations relating the pairs (σu, ǫu), and (σl, ǫl). The values

of the relevant material constants can be found in table XVI. Figure 68 shows the

stress-strain curve obtained using the Boyd-Lagoudas model. The reader is referred

to Ref. [52] for a comparison of the modeled stress-strain curve and the experimental

stress-strain curve. The net restoring force, Fu − Fl, can now be obtained using

the force-displacement relations for the individual wires. Figure 69 shows the plot

of F = Fu − Fl versus x. For the curve shown in figure 69 the loading takes place

along the upper branch while the unloading takes place along the lower branch. The
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Table XVI. Material constants for experimental setup.

Quantity Value Quantity Value

EA 33 GPa EM 14.75 GPa

αA 22 10−6/K αM 10 10−6/K

Mf 227 K Ms 243 K

Af 270 K As 261 K

CA 4.3 MPa/K CM 4.3 MPa/K

Hcur 0.023
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Fig. 68. Stress-strain curve of the material used in experiment. The curve is obtained

using the Boyd-Lagoudas model.
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Fig. 69. Net restoring force, F = Fu − Fl versus the displacement x.

viscous force Fd is characterized by a viscosity constant ξ

Fd = 2ξωnẋ, (6.9)

where ωn is the frequency of harmonic oscillations along the first linear portion of the

loading branch. The expression for ωn can be found to be

ωn =

[

πEMd2

2Lm

]
1

2

. (6.10)

We choose ξ = 0.01. This value is found by trial and error to get the best match

between the experimental and analytical results. We will have more to say about this

later.
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B. KBM Analysis

The KBM method can be used to study the steady state response of Eq. 6.3 if we

can express the restoring force F as F (x, δ), where the following holds

lim
δ→0

F (x, δ) = L(x) uniformly in δ, (6.11)

where L(.) is an arbitrary linear function. Under this hypothesis the KBM analysis

will yield O(δ) accurate results. Note that we have loosely taken F (x, δ) to be a

function, while it is indeed a hysteretic operator. Nonetheless, the above arguments

can be suitably generalized for the case of hysteretic operators.

Consider the hysteretic (x, F (x)) curve shown in figure 70. Only positive values
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of x are shown in the figure because the F is assumed to be a odd function. Let the

following hold for some sufficiently small δ

k2

k3
= δ, (6.12)

k1 = (1 + γδ)k3, (6.13)

and

x1 − x2 = βδ, (6.14)

where γ, β ∼ O(1). Then, it is easy to see that

lim
δ→0

F (x, δ) = k3δ uniformly in δ. (6.15)

One can show that all these requirements are satisfied by the force-displacement

curves for the experimental setup, and thus the KBM method can be used to obtain

the steady state response curves.

1. The Piecewise Linear Spring

Before analyzing the hysteretic system given by Eq. 6.3 we will present the analysis

for a simpler, but closely related system. Consider the piecewise linear restoring force

shown in figure 71. This system can be obtained from the hysteretic system shown in

figure 70 by setting x3 = x2, x4 = x1. The frequency response of this system can be

understood easily without getting into undue complications introduced by hysteresis.

We wish to study the following system

ẍ + cẋ + Fpw(x) = A cos(ωt). (6.16)

The subscript pw is used to indicated that Fpw(x) is the piecewise linear restoring

force and not the hysteretic one. For this analysis the coefficient of viscosity, c, is
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taken to be 0.1. Following the KBM we assume a response of the form

x(t) = R cos(ωt + φ), (6.17)

where

Ṙ ∼ O(δ),

φ̇ ∼ O(δ).

(6.18)

The development presented in chapters IV, V and appendix A can be used to obtain

the following relations for the steady state values of response amplitude and phase

S(R∗) = A sin φ∗, (6.19)

C(R∗) = Rω2 + πA cos φ∗, (6.20)

where

C(R) =
1

π

∫ 2π

0

Fpw(R cos θ) cos θ dθ, (6.21)

S(R) =
1

π

∫ 2π

0

(Fpw(R cos θ) − cωR sin θ) sin θ dθ. (6.22)

Eqs. 6.19, 6.20 can be solved to get the familiar relations for the amplitude and

phase response of the system

ω2 =
C(R∗)

R∗
±
[

(

A

R∗

)2

−
(

S(R∗)

R∗

)2
]1/2

, (6.23)

tanφ∗ =
S(R∗)

C(R∗) − ω2R∗
. (6.24)

Before presenting the response curves obtained from Eqs. 6.23 and 6.24 we will try to

understand the behavior of the system in more intuitive terms. The restoring force

Fpw corresponds to a linear spring followed by a softening followed by a hardening



158

of the spring. The softening begins at R = x2 and the hardening begins at R = x1.

Thus, one should expect that for 0 < R < x2 the response curve will be exactly

that of a damped harmonic oscillator. In the range x2 < R < x1 the response would

show a softening, thus the amplitude response curves would ‘lean left’ in the ω − R

plane. Finally, for R > x1 the curves would lean towards the right. The net effect will

be that the response curve will look like a skewed ‘S’. It is expected that the jump

phenomena will be encountered.

The above line of reasoning is confirmed by the analytical results. Figures 72-75

show some response curves along with the corresponding force-displacement charac-

teristics. It can be seen that the general shape of the response curves is similar to a

skewed ‘S’. As anticipated, the steady state response has two jumps. The amount of

tilt in the response curves is proportional to the softening or hardening.

We expect similar response curves for the hysteretic system. However, the max-

imum response amplitude of the experimental setup is limited by the amount of

pre-strain. The maximum response amplitude can be calculated to be 3.04 mm. It

can also be seen that the major loop of hysteresis is completed only for response

amplitudes greater than 2.78 mm (see figure 69). Thus, instead of expecting skewed

‘S’ like response curves, we expect to see curves with left leaning spines. Instead of

two unstable branches, we expect a single unstable branch.

C. Results

The KBM analysis can be applied to Eq. 6.3 in a manner analogous to the piecewise

linear spring. For the experimental setup we get x1 = 2.58 mm, x2 = 0 mm, x3 = 0.57

mm, x4 = 2.78 mm and k1= 123.4 N/mm, k2 = 41.91 N/mm, k3 = 43.4 N/mm, k4 =

40.93 N/mm. These constants can be used to find the major loops of the hysteresis
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Fig. 72. Frequency response of the piecewise linear spring. Solid line indicates stable

response, dashed line indicates unstable response. The bifurcation points are

marked by ‘*’. x1 = 3, x2 = 1, k1 = 1.6, k2 = 0.1, k3 = 1, c = 0.1.
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Fig. 73. Frequency response of the piecewise linear spring. Solid line indicates stable

response, dashed line indicates unstable response. The bifurcation points are

marked by ‘*’. x1 = 3, x2 = 1, k1 = 3.2, k2 = 0.2, k3 = 2, c = 0.1.
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Fig. 74. Frequency response of the piecewise linear spring. Solid line indicates stable

response, dashed line indicates unstable response. The bifurcation points are

marked by ‘*’. x1 = 3, x2 = 1, k1 = 0.4, k2 = 0.2, k3 = 2, c = 0.1.
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Fig. 75. Frequency response of the piecewise linear spring. Solid line indicates stable

response, dashed line indicates unstable response. The bifurcation points are

marked by ‘*’. x1 = 3, x2 = 1, k1 = 30, k2 = 1, k3 = 10, c = 0.1.
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Fig. 76. A minor loop of hysteresis for the pair (x, F (x)).

for the system. However, since for most cases the response amplitude is smaller than

x4, therefore, we need to model the minor loops as well. Figure 76 shows a minor

loop of amplitude 20 mm for positive x. The slope of the branch of the minor loop

that is different from the major loop is assumed to be a linear function of R, i.e. the

slope, say, k is given by

k = k3 +
R − x3

xx − x3
(k1 − k3). (6.25)

With this the modeling of the system is complete and we move on to present the results

of the analysis. As in Ref. [52] we present the results in terms of a transmissibility

ratio, TR, defined as the ratio of the maximum inertial acceleration of the block of

mass m to the maximum acceleration of the platform. Mathematically, we can define



164

this ratio as follows

TR = lim
t0→∞

supt∈(t0,t0+2π/ω)

(

ẍ + ÿ

ÿ

)

. (6.26)

The above limit exists iff there exists a steady state response with period 2π/ω.

Under the KBM hypothesis it is possible to show that the above limit converges to

the following

TR = supt

(

Rω2 cos(ωt + φ) + ng cos(ωt)

ng

)

=
[(Rω2 cos φ + ng)2 + (Rω2 sin φ)2]

1

2

ng

(6.27)

The transmissibility ratio is a measure of the vibration isolation achieved by the

SMA wires. If this ratio is zero then perfect isolation is achieved. In Ref. [52] TR

was measured experimentally and was also calculated using a return mapping based

algorithm. The transmissibility ratio was measured for the case of n = 1, 2 using

up and down sine sweeps. An up sine sweep means that the frequency of excitation

is gradually increased, while a down sine sweeps that the frequency of excitation is

gradually decreased. The tests covered frequencies from 32 to 128 Hz.

Figure 77 shows the transmissibility ratio for the 1g sweep (a sine sweep with

maximum input acceleration of 1g) obtained using the KBM method. As discussed

earlier the response has the general softening character. In the figure the stable

response is shown with solid lines while the unstable response is shown with dashed

lines. For the 1g sweep the unstable branch exists between f = 51.57 Hz and f =

52.76 Hz, where f = 2πω. The transmissibility ratio for the up and down sweeps is

shown in figures 78 and 79 respectively. The jump phenomenon is evident in all the

curves. The corresponding results for the 2g sweep are shown in figures 80-82. For

the 2g sweeps the unstable branch exists between f = 45.53 Hz and f = 48.47 Hz.
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Fig. 77. Transmissibility ratio for 1g sweep calculated using the KBM method. Solid

line indicates stable response, dashed line indicates unstable response. The

bifurcation points are marked by ‘*’.

It can be seen in all the graphs that the nature of the response resembles that of a

softening spring, thus we infer that the variable ǫ is less than 0.04 for the considered

cases. Figures 83 and 84 show the steady state amplitude of ǫ versus f . As expected,

the peak value of ǫ is less than 0.04 in both cases.

Next we show the comparison of the results obtained from the KBM analysis with

the experimental data and the return mapping algorithm based analysis presented in

Ref. [52]. The experimental data and the results of return mapping based algorithm

are read from graphs presented in the said reference. The numerical values read

from the graphs for the 1g sine sweep are presented in table XVII. The symbols

TRup, TRdn, and TRrm are used for data pertaining to the up sweep, the down
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Fig. 78. Transmissibility ratio for 1g up sweep calculated using the KBM method.
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Fig. 79. Transmissibility ratio for 1g down sweep calculated using the KBM method.
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Fig. 80. Transmissibility ratio for 2g sweep calculated using the KBM method. Solid

line indicates stable response, dashed line indicates unstable response. The

bifurcation points are marked by ‘*’.
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Fig. 81. Transmissibility ratio for 2g up sweep calculated using the KBM method.
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Fig. 82. Transmissibility ratio for 2g down sweep calculated using the KBM method.
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Fig. 83. Steady state amplitude of ǫ for 1g sweep calculated using the KBM method.

Solid line indicates stable response, dashed line indicates unstable response.

The bifurcation points are marked by ‘*’.
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Fig. 84. Steady state amplitude of ǫ for 2g sweep calculated using the KBM method.

Solid line indicates stable response, dashed line indicates unstable response.

The bifurcation points are marked by ‘*’.
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sweep and the return mapping algorithm, respectively. Figures 85 and 86 show the

comparison of experimental results with those obtained from the KBM analysis. It

can be seen that the two results match to a good degree of accuracy. Figures 87 and

88 show the comparison of the results from the KBM analysis, experiments, and the

return mapping algorithm based analysis. Table XVIII and figures 89-92 show the

corresponding graphs for the 2g sweeps.

1. Discussion of Results

It is seen that the asymptotic methods gives results that are comparable in quality

to the much more sophisticated return mapping algorithm based analysis. However,

none of the methods give results are entirely agreeable with the experimental data.

In the opinion of the author this difference is attributed mostly to the fact that

the stress-strain curve predicted by the Boyd-Lagoudas model does not match the

experimental data exactly (or with marginal error). Of course, this is a quantitative

assessment and one needs to devise qualitative measures of accuracy of the response

curves as well as the stress-strain curves. Another major source of discrepancy seems

to be the dissipation present in the experimental setup (apart from the dissipation

due to the SMA elements). It can be safely said that the amplitude of the response

cannot be accurately predicted unless the dissipation effect of the setup is measured

and taken into account. It was seen that changing the damping coefficient from 0.01

to say 0.005 had significant effect on the peak amplitude of response. This effect is

significantly more pronounced near the resonance because the damping due to SMA

wires is least near the resonance. The thermomechanical coupling is ignored in the

KBM analysis. The effect of the thermomechanical coupling might be significant since

the temperature of the SMA wires varies by 20-30 K in some of the experiments.

A more sophisticated analysis where the thermomechanical coupling is taken into
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Fig. 85. Comparison of results obtained from the KBM analysis with the experimental

data for 1g up sweep.

account may lead to significantly better results.
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Table XVII. Experimental and numerical data for 1g sine sweeps taken from Ref. [52].

f , Hz TRup TRdn TRrm f , Hz TRup TRdn TRrm

32.00 1.40 1.40 1.60 68.00 2.80 2.60 2.70

34.00 1.50 1.50 1.80 70.00 2.40 2.30 2.30

36.00 1.60 1.60 2.00 72.00 2.20 2.20 1.90

38.00 1.75 1.75 2.20 76.00 1.80 1.80 1.50

40.00 1.85 1.85 2.40 80.00 1.60 1.60 1.20

42.00 2.00 2.00 2.70 84.00 1.40 1.40 1.00

44.00 2.35 2.35 3.10 88.00 1.30 1.30 0.80

46.00 2.75 2.60 3.50 92.00 1.20 1.20 0.75

48.00 3.80 3.20 3.80 96.00 1.10 1.10 0.65

50.00 6.50 4.00 5.00 100.00 0.90 0.90 0.60

52.00 7.75 8.75 7.25 104.00 0.80 0.80 0.50

54.00 8.40 8.25 6.30 108.00 0.70 0.70 0.50

56.00 8.00 6.60 5.70 112.00 0.60 0.60 0.45

58.00 7.00 5.25 5.25 116.00 0.50 0.50 0.40

60.00 6.00 4.50 5.00 120.00 0.50 0.50 0.40

62.00 4.75 3.75 4.50 124.00 0.40 0.40 0.35

64.00 4.00 3.25 3.90 128.00 0.30 0.30 0.30

66.00 3.20 2.90 3.30
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Fig. 86. Comparison of results obtained from the KBM analysis with the experimental

data for 1g down sweep.
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Fig. 87. Comparison of results obtained from the KBM analysis and the return map-

ping algorithm with the experimental data for 1g up sweep.
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Fig. 88. Comparison of results obtained from the KBM analysis and the return map-

ping algorithm with the experimental data for 1g down sweep.
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Table XVIII. Experimental and numerical data for 2g sine sweep taken from Ref. [52].

f , Hz TRup TRdn TRrm f , Hz TRup TRdn TRrm

32.00 1.50 1.30 1.60 68.00 3.00 2.20 1.9

34.00 1.62 1.40 1.70 70.00 2.50 1.90 1.85

36.00 1.75 1.45 1.80 72.00 2.15 1.65 1.75

38.00 1.90 1.50 1.90 76.00 1.70 1.40 1.5

40.00 2.20 1.55 2.10 80.00 1.35 1.25 1.2

42.00 2.50 8.00 2.30 84.00 1.20 1.10 1

44.00 3.00 7.80 6.90 88.00 1.00 1.00 0.8

46.00 3.75 7.50 5.75 92.00 0.80 0.80 0.7

48.00 5.75 7.20 4.20 96.00 0.75 0.75 0.6

50.00 6.20 6.75 3.25 100.00 0.70 0.70 0.55

52.00 6.50 6.50 2.60 104.00 0.65 0.65 0.5

54.00 6.40 6.00 2.25 108.00 0.60 0.60 0.45

56.00 6.25 5.40 2.10 112.00 0.55 0.55 0.4

58.00 6.00 4.75 2.05 116.00 0.50 0.50 0.37

60.00 5.60 4.00 2.05 120.00 0.40 0.40 0.35

62.00 5.00 3.25 2.00 124.00 0.30 0.30 0.3

64.00 4.25 2.75 2.00 128.00 0.25 0.25 0.3

66.00 3.50 2.40 1.95
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Fig. 89. Comparison of results obtained from the KBM analysis with the experimental

data for 2g up sweep.
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Fig. 90. Comparison of results obtained from the KBM analysis with the experimental

data for 2g down sweep.
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Fig. 91. Comparison of results obtained from the KBM analysis and the return map-

ping algorithm with the experimental data for 2g up sweep.
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Fig. 92. Comparison of results obtained from the KBM analysis and the return map-

ping algorithm with the experimental data for 2g down sweep.
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CHAPTER VII

CONCLUSIONS

The response of an oscillator with hysteretic restoring force and sinusoidal forcing

was studied. Hysteresis was modeled using the bilinear and the multilinear model of

hysteresis. The steady state response of the system was studied using approximate

asymptotic expansions and exact Poincaré maps. The asymptotic expansions were

derived using the KBM method. An efficient numerical method was proposed to

solve for the response of the system to arbitrary precision. This method was used

to calculate and study the Poincaré maps of the system. The damping induced

due to hysteresis was evaluated using the KBM solution. A 1-D oscillator with SMA

components was analyzed using the KBM method and the results were compared with

experimental data. The major findings and contributions of this work are summarized

in the following sections.

A. Exact Solution Methodology

An efficient method for obtaining the exact solution of the system was presented in

this thesis. To the best of our knowledge this is an original contribution. This method

can be readily extended to include any model of hysteresis, provided the hysteresis

loop can be approximated by piecewise linear components. This method proceeds by

finding the time at which the transition from the present state to the next state of

the automaton occurs. The full solution of the system can then be constructed using

the analytical solutions for the individual states. It was shown that the problem of

finding the transition time boils down to a root finding problem. The algorithm for

root finding has guaranteed convergence and O(l) execution time where l is a measure

of the length of the interval to be searched for the roots.
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B. Bilinear Hysteresis

The bilinear model of hysteresis was studied. Asymptotic expansions for the response

of the system were obtained using the KBM method. It was found that the hysteretic

element acts as a ‘soft spring’, i.e., the resonance frequency of the system decreases

due to the presence of hysteresis. It was shown that according to the KBM method the

steady state response of the system is unconditionally stable. The dissipation induced

by hysteresis can result in bound resonance. An analytical criterion for existence of

bound and unbound resonance was derived. Expressions were also derived for the

equivalent damping of the system.

Poincaré maps were constructed to analyze the steady state behavior of the

system. The study of the Poincaré maps revealed that the true response of the

system matches with the approximate expressions derived using the KBM method to

a good degree of accuracy. However, for certain cases the KBM method is unable to

capture the steady state response of the system adequately. The source of error in the

KBM method was discussed. Bifurcation and continuation analysis of the Poincaré

maps showed that the steady state is indeed unconditionally stable. The Poincaré

did not show any classical bifurcation. The system did not exhibit any complex or

chaotic response. However, the sub-harmonic resonances were detected.

C. Multilinear Hysteresis

The multilinear model of hysteresis was proposed and studied. Asymptotic analysis

of the system was carried out using the KBM method. As in the case of bilinear hys-

teresis it was found that the multilinear hysteretic element also acts like a soft spring,

thereby lowering the frequency of resonance. Bounded and unbounded resonances

were observed in the system and analytical criteria were derived for their existence.
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According to the asymptotic analysis the steady state of the system was found to be

stable for all parameter values. The equivalent damping properties of the hysteretic

system were also studied.

Exact Poincaré maps of the system were constructed to study the steady state

response more rigorously. It was found that the results obtained from the asymptotic

analysis are indeed a good match for the exact response. However, bifurcation analysis

of the Poincaré maps revealed the existence of grazing bifurcations, which in turn

resulted in existence of multivalued response in the system. The dominant response of

the system was still found to be close to simple periodic orbit predicted using the KBM

method. The Poincaré map of the system did not undergo any classical bifurcations

and the steady state response of the system was found to be unconditionally stable.

D. Experimental Validation

A 1-D oscillator with SMA elements and harmonic excitation was analyzed using the

KBM method. The thermomechanical coupling was not taken into account for the

purpose of this analysis. The results were compared with experimental data and one

other numerical method available in literature. The SMA components were seen to

act like soft springs. However, it was argued that for larger amplitude oscillations the

elements would introduce a softening followed by a hardening of the response. The

jump phenomena was captured by the KBM analysis.

It was seen that the results of the asymptotic analysis are in agreement with the

experimental data. However, there remains scope for improvement in the quality of

the results. It was suggested that the results can be bettered by a.) accounting for

the thermomechanical coupling, b.) carefully calibrating the experimental setup to

measure any damping that might arise due to friction etc. , and c.) improving the
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model for SMA material response.

E. Future Work

The research presented in this thesis can be extended in many directions. One avenue

for future work would be to obtain better experimental validation for the theoretical

results obtained here. One could use the Poincaré maps based analysis to get more

accurate results, as compared to the KBM analysis presented in the thesis. The

method can also be extended to slightly more complicated systems like two masses

connected by SMA components etc.

One feature of the bilinear and the multilinear models of hysteresis studied in this

thesis was that the area of hysteresis was unbounded for both cases. In practice, many

hysteretic systems exhibit bounded regions of hysteresis. It would be an interesting

exercise to approximate the response curves by piecewise linear elements and study

some systems with bounded hysteretic regions.
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APPENDIX A

THE METHOD OF KRYLOV, BOGOLIUBOV AND MITROPOLSKY

In this appendix we present a technique for obtaining asymptotic expansions for an-

alyzing the behavior of nonlinear systems close to linear ones. A nonlinear system

is considered to be close to linear one when the system depends on a small parame-

ter ǫ such that for ǫ = 0 the system degenerates into a linear time-invariant system

(typically without undergoing a loss in system order). Theories for dealing with such

systems were initially developed in celestial mechanics, however, they have been ap-

plied to various problems in quantum mechanics, engineering, and pure mathematics.

The aim of asymptotic methods is to develop expressions for response of the system

in a power-series of the small parameter ǫ. The convergence of such expansions is

not evaluated with respect to taking more terms in the series, rather with a small

number of terms (typically two) with respect to the limit ǫ → 0. In other words, the

asymptotic expansion should tend to the exact solution uniformly for small ǫ. The

reader is refer to Ref. [53] for an excellent introduction to the subject of asymptotic

methods. It should be mentioned that an asymptotic expansion is not simply a power

series expansion. To bring out this difference consider the following expansion of the

exponential

exp(ǫt) = 1 + ǫt +
ǫ2t2

2!
+ . . . (A.1)

Even though the above expansion is a valid power series, it is not an asymptotic

expansion because for every ǫ any finite truncation of the above series will differ

substantially from the true value of the exponential for large a enough value of t.

We shall present the technique developed by the Russian mathematicians Nikolai

Nikolaevich Bogoliubov, Nikolay Mitrofanovich Krylov, and Yurii Mitropolsky in the
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1930’s and 40’s1. This technique is called the KBM technique or the KBM method in

the honor of its inventors. The KBM method is sometimes also known as the method

of averaging. Note that in the following development we will omit the most rigorous

mathematical details of the method. The interested reader is encouraged to read

Ref. [54] for getting acquainted with the mathematical foundations of the method.

We consider systems of the form

ẍ + ω2
0x = ǫf(x, ẋ), (A.2)

where f(x, ẋ) is a sufficiently smooth nonlinearity. It is clear that Eq. A.2 reduces to

a linear equation for ǫ = 0. Thus, for small values of ǫ it is appropriate to consider

it to be close to a linear equation in some sense. Note that if the RHS of Eq. A.2 is

not a function of ẋ then one can find a constant of motion, and thus the long-term

behavior of the system is ascertained without much effort. In such cases the constant

of motion can be found as follows

ẍ + ω2
0x − ǫf(x) = 0

⇒ ẋdẋ + ω2
0xdx − ǫf(x)dx = 0

⇒ ẋ2

2
+ ω2

0

x2

2
− ǫ

∫

f(x)dx = 0.

However, even in such simple cases the frequency of the nonlinear oscillations cannot

be found by using the constant of motion. In the case when the RHS of Eq. A.2

depends on ẋ there is little hope of solving the system analytically or even finding a

constant of motion (in most cases none exists). In such cases one is left with little

choice but to use asymptotic methods. Thankfully, the solutions obtained from these

1Bogoliubov was Krylov’s student, and Mitropolsky was Bogoliubov’s student.
The students and the teachers are amongst the most influential figures in Russian
mathematical history.
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methods are often very insightful and accurate.

When ǫ = 0 the solution of Eq. A.2 is

x(t) = a cos φ,

ȧ = 0,

φ̇ = ω0.

(A.3)

When ǫ is small it is reasonable to assume that the response of the system will deviate

from the ǫ equal to zero case only slightly. Accordingly, we write

x(t) = a cos φ + ǫu1(a, φ) + ǫ2u2(a, φ) + . . . ,

ȧ = ǫA1(a) + ǫ2A2(a) + . . . ,

φ̇ = ω0 + ǫB1(a) + ǫ2B2(a) + . . .

(A.4)

Note that we have assumed that the time rate of φ and a are functions of a alone.

The justification for this assumption can be found in Ref. [54]. We are interested in

finding the behavior of a, φ with time and not in finding higher order correction terms

ui. Even though this might seem incorrect, it is indeed appropriate if the expansion

is asymptotic in nature and ǫ is small. Differentiating the first equation of the set

A.4 we get

ẋ =ȧ

(

cos φ + ǫ
∂u1

∂a
+ ǫ2 ∂u2

∂a
+ . . .

)

+ φ̇

(

−a sin φ + ǫ
∂u1

∂φ
+ ǫ2∂u2

∂φ
+ . . .

)

,

ẍ =ä

(

cos φ + ǫ
∂u1

∂a
+ ǫ2 ∂u2

∂a
+ . . .

)

+ φ̈

(

−a sin φ + ǫ
∂u1

∂φ
+ ǫ2∂u2

∂φ
+ . . .

)

+

+ ȧ2

(

ǫ
∂2u1

∂a2
+ ǫ2 ∂2u2

∂a2
+ . . .

)

+ φ̇2

(

−a cos φ + ǫ
∂2u1

∂φ2
+ ǫ2 ∂2u2

∂φ2
+ . . .

)

+

+ ȧφ̇

(

sin φ + ǫ
∂2u1

∂a∂φ
+ ǫ2 ∂2u2

∂a∂φ
+ . . .

)

.

(A.5)

Using the second and third equations of the set A.4 the following expressions can be
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obtained

ä =

(

ǫ
dA1

da
+ ǫ2dA2

da
+ . . .

)

(

ǫA1 + ǫ2A2 + . . .
)

= ǫ2A1
dA1

da
+ . . . ,

φ̈ =

(

ǫ
dB1

da
+ ǫ2dB2

da
+ . . .

)

(

ǫA1 + ǫ2A2 + . . .
)

= ǫ2A1
dB1

da
+ . . . ,

ȧ2 =
(

ǫA1 + ǫ2A2 + . . .
)2

= ǫ2A2
1 + . . . ,

φ̇2 =
(

ω0ǫB1 + ǫ2B2 + . . .
)2

= ω2
0 + ǫ2ω0B1 + ǫ2(B2

1 + 2ω0B2) + . . . .

(A.6)

Substituting the set A.6 in the set A.5 and arranging in powers of ǫ we get

ẋ = − aω0 sin φ + ǫ

(

A1 cos φ − aB1 sin φ + ω0
∂u1

∂φ

)

+

+ ǫ2

(

A2 cos φ − aB2 sin φ + A1
∂u1

∂a
+ B1

∂u1

∂φ
+ ω0

∂u2

∂φ

)

+ . . . ,

ẍ = − aω2
0 cos φ + ǫ

(

−2ω0A1 sin φ − 2ω0aB1 cos φ + ω2
0

∂2u1

∂φ2

)

+

+ ǫ2

{(

A1
dA1

da
− aB2

1 − 2ω0aB2

)

cos φ −
(

2ω0A2 + 2A1B1 + A1a
dB1

da

)

sin φ+

+2ω0A1
∂2u1

∂a∂φ
+ 2ω0B1

∂2u1

∂φ2
+ ω2

0

∂2u2

∂φ2

}

+ . . . .

(A.7)

Thus, the LHS of Eq. A.2 can be written as

ẍ + ω0x =ǫ

(

−2ω0A1 sin φ − 2ω0aB1 cos φ + ω2
0

∂2u1

∂φ2
+ ω2

0u1

)

+

+ ǫ2

{(

A1
dA1

da
− aB2

1 − 2ω0aB2

)

cos φ −
(

2ω0A2 + 2A1B1 + A1a
dB1

da

)

sin φ+

+2ω0A1
∂2u1

∂a∂φ
+ 2ω0B1

∂2u1

∂φ2
+ ω2

0

∂2u2

∂φ2
+ ω2

0u2

}

+ . . . .

(A.8)

The RHS of Eq. A.2 can be expanded in a Taylor series as follows

ǫf(x, ẋ) = ǫf0(a, φ)+ǫ2

{

u1f
1
x(a, φ) +

(

A1 cos φ − aB1 sin φ + ω0
∂u1

∂φ

)

f 1
ẋ(a, φ)

}

+. . . ,

(A.9)



200

where

f0(a, φ) = f(a cos φ,−aω0 sin φ),

f 1
x(a, φ) =

∂f

∂x

∣

∣

∣

∣

x=a cos φ,ẋ=−aω0 sinφ

,

f 1
ẋ(a, φ) =

∂f

∂ẋ

∣

∣

∣

∣

x=a cos φ,ẋ=−aω0 sinφ

.

(A.10)

On substituting Eqs. A.8,A.9 into Eq. A.2 and comparing the coefficients of like

powers of ǫ we get

ω2
0

(

∂2u1

∂φ2
+ u1

)

= f0(a, φ) + 2ω0A1 sin φ + 2ω0aB1 cos φ,

ω2
0

(

∂2u2

∂φ2
+ u2

)

= f1(a, φ) + 2ω0A2 sin φ + 2ω0aB2 cos φ,

. . . = . . .

ω2
0

(

∂2ui

∂φ2
+ ui

)

= fi−1(a, φ) + 2ω0Ai sin φ + 2ω0aBi cos φ,

(A.11)

where

f0(a, φ) =f(a cos φ,−aω0 sin φ),

f1(a, φ) =u1f
1
x +

(

A1 cos φ − aB1 sin φ + ω0
∂u1

∂φ

)

f 1
ẋ+

+

(

aB2
1 − A1

dA1

da

)

cos φ +

(

2A1B1 + A1a
dB1

da

)

sin φ−

− 2ω0A1
∂2u1

∂a∂φ
− 2ω2B1

∂2u1

∂φ2
,

. . . = . . .

(A.12)

In order to avoid the problem of secular terms in equations of the set A.11 we examine

the Fourier series of fi(a, φ) and choose Ai+1, Bi+1 such that the secular producing

terms cancel out. Since fi(a, φ) are periodic in φ with period 2π we can obtain the
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following Fourier series

f0(a, φ) = g0(a) +

∞
∑

n=1

(gn(a) cos nφ + hn(a) sin nφ) . (A.13)

Substituting Eq. A.13 into the RHS of first equation of the set A.11 and setting the

secular producing terms to zero we get

A1 = − 1

2ω0
h1(a) = − 1

2πω0

∫ 2π

0

f(a cos φ,−aω0 sin φ) sin φdφ, (A.14)

and

B1 = − 1

2aω0
h1(a) = − 1

2πaω0

∫ 2π

0

f(a cos φ,−aω0 sin φ) cos φdφ. (A.15)

Thus, we can write the 1-term asymptotic expansion for the solution to Eq. A.2 as

x = a cos φ,

ȧ = ǫA1(a),

φ̇ = ω0 + ǫB1(a).

(A.16)

Note that we have not obtained and expression for u1. However, as shown in Ref. [54]

the first order correct expansions for ȧ, φ̇ can only give a zeroth order correct expansion

for x, thus to evaluate the first order correction, u1, to x one has to find the second

order corrections to ȧ, φ̇. The derivation for second order corrections can be found in

Ref. [54].

The only unanswered question now is about the nomenclature of the method:

Why is the KBM method sometimes referred to as the method of averaging? There

are two answers to this question. Firstly, the Fourier coefficients are indeed averaged

quantities. Secondly, there exist some alternate derivations of the method using

explicit averaging. However, in our opinion the development presented here is the

most suitable one. In either case the alternate name of the method follows.
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Examples

We illustrate the KBM method with two classical examples: the Van-der-Pol equation

and the Duffing equation.

Equation of Van-der-Pol

The classical Van-der-Pol equation is as follows

ẍ + x = ǫ(1 − x2)ẋ. (A.17)

Using the KBM method we can get the following first approximation for the solution

to Eq. A.17

x = a cos φ,

ȧ =
ǫa

2

(

1 − a2

4

)

,

φ̇ = 1.

(A.18)

The above relations suggest that to the first order the frequency of the system is not

affected by the nonlinearity. Further, the second equation of the set A.18 has fixed

points at a = 0, 2. It is clear by inspection that the fixed point at a = 0 is unstable

(can be confirmed by an eigenvalue analysis) while that at a = 2 is stable. Thus,

according to the KBM method, the Van-der-Pol equation must have a limit cycle of

amplitude 2.

The set A.18 can be solved to get the following expressions for a and x

a =
a0e

ǫt/2

√

1 + 1
4
a2

0(e
ǫt − 1)

, (A.19)
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and

x =
a0e

ǫt/2

√

1 + 1
4
a2

0(e
ǫt − 1)

cos(t + φ0), (A.20)

where a0, φ0 are to be found from initial conditions. Again, it is clear from the

expression for a that a ≈ 2 for eǫt ≫ 1.

Figure 93 shows the comparison of the two-term KBM solution of the Van-der-

Pol equation with the results obtained from numerical integration of the equation for

two values of ǫ. The results show excellent match for ǫ = 0.1. The numerical solution

and the KBM solution can be seen to match fairly well even for ǫ = 0.3, which is not

really a ‘small value’.

Duffing Equation

The following Duffing equation describes a harmonic oscillator with a cubic nonlin-

earity

ẍ + x = −ǫx3. (A.21)

On applying the KBM method for this equation we get the following solution for

small ǫ

x = a cos φ,

ȧ = 0,

φ̇ = 1 +
3ǫa2

8
.

(A.22)

We can solve the above equations to get the following expressions for a, φ and x

a = a0,

φ = φ0 +

(

1 +
3ǫa2

8

)

t,

x = a0 cos

(

φ0 +

(

1 +
3ǫa2

8

)

t

)

,

(A.23)
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(a) x versus t for ǫ = 0.1

(b) ẋ versus t for ǫ = 0.1

Fig. 93. Comparison of KBM method with numerical integration for the Van-der-Pol

equation with ǫ = 0.1, 0.3. The initial conditions are x(0) = 1, ẋ(0) = 0 for

all cases.
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(c) x versus t for ǫ = 0.3

(d) ẋ versus t for ǫ = 0.3

Fig. 93. Continued ...
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(e) Phase space for ǫ = 0.1

(f) Phase space for ǫ = 0.3

Fig. 93. Continued ...
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where a0, φ0 are to be found from the initial conditions. As expected, the KBM

solution indicates the presence of a constant of motion in the form of the constant

amplitude, and also indicates an increase in the frequency of oscillations.

Figure 94 shows the comparison of results obtained using the KBM method with

those obtained using numerical integration for ǫ = 0.1, 0.3. As before, the results

match well even when ǫ is not very small.
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(a) x versus t for ǫ = 0.1

(b) ẋ versus t for ǫ = 0.1

Fig. 94. Comparison of KBM method with numerical integration for the Duffing equa-

tion with ǫ = 0.1, 0.3. The initial conditions are x(0) = 1, ẋ(0) = 0 for all

cases.



209

(c) x versus t for ǫ = 0.3

(d) ẋ versus t for ǫ = 0.3

Fig. 94. Continued ...
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(e) Phase space for ǫ = 0.1

(f) Phase space for ǫ = 0.3

Fig. 94. Continued ...
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APPENDIX B

ROOT ISOLATION

In this appendix we consider the problem of isolating the roots of the following equa-

tion

f(t) = A1 sin(ω1t + ∆1) + A2 sin(ω2t + ∆2) = 0. (B.1)

By root isolation we mean finding open intervals (t1, t2) such that f(t) has at most one

zero in interval. Thus, within these intervals the roots do not have any neighboring

roots and are ‘isolated’. The process of root isolation is an essential step towards

finding the roots, which is our ultimate goal. Once the roots are isolated it is a

routine matter to find them to any desired accuracy by using the bisection algorithm.

With a change of variables Eq. B.1 can always be to the following equation

A1 sin(z + ∆) + A2 sin(ωz) = 0, (B.2)

where the new variable z is defined as

z = ω1t +
ω1

ω2
∆2, (B.3)

and

ω = ω2/ω1, ∆ = (ω2∆1 − ω1∆2)/ω2. (B.4)

Thus, the problem of finding zeros of Eq. B.1 is equivalent to solving

sin(z + ∆) + A sin(ωz) = 0, (B.5)
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where A = A2/A1. Consider two curves S1 and S2 defined as follows

S1 : sin(z + ∆), (B.6)

S2 : −A sin(ωz). (B.7)

Eq. B.5 can then be written as

S1 = S2. (B.8)

Note that the structure of Eq. B.5 is invariant under the operation of shifting S1

and/or S2 along the z-axis and/or multiplying them by scalars. To show this consider

the following transformation

S1 → B1 sin(z + ∆ + ∆3)

S2 → −B2 sin(ωz + ∆4).

(B.9)

With the above transformation Eq. B.5 becomes

B1 sin(z + ∆ + ∆3) + B2 sin(ωz + ∆4) = 0, (B.10)

which can easily be put in the following form using a change of variable

sin(u + ∆′) + A′ sin(ωu) = 0. (B.11)

As claimed the above equation has the same structure as Eq. B.5, and the frequencies

of the individual components are unchanged as well.

Equation. B.5 can have a root z1 of multiplicity 2 if

sin(z1 + ∆) + A sin(ωz1) = 0, (B.12)

cos(z1 + ∆) + Aω cos(ωz1) = 0. (B.13)

However, the case with multiplicity of the root equal to greater than 3 is not inter-
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C1

C2

C1

Scale Shift

O O O

Fig. 95. Construction 1: Scale and shift.

esting since it would demand that the following should hold

sin(z1 + ∆) + A sin(ωz1) = 0,

cos(z1 + ∆) + Aω cos(ωz1) = 0,

sin(z1 + ∆) + Aω2 sin(ωz1) = 0.

(B.14)

The set B.14 admits trivial solutions of the form z1 = nπ/ω, z1+∆ = mπ if |Aω| = 1.

The necessary conditions for existence of non-trivial solutions can be found to be

ω = 1, |A| = 1 (assuming ω > 0). In either case, Eq. B.5 can be solved in closed form,

thus the problem of root isolation is resolved. We next look at the more interesting

cases were the set B.14 has no solutions.

Claim 1. If ω > 1 then Eq. B.5 has at most two roots between adjacent peaks and

zeros of sin(ωz), if ω < 1 then Eq. B.5 has at most two roots between the adjacent

peaks and zeros of sin(z + ∆).

Proof. As shown in figure 95, given a sinusoidal curve C1 and a point o on the curve it

is always possible to construct another sinusoidal curve C2 with the same frequency

such that the two curves intersect at o and within the quarter period of C2 that

contains o the curve C2 lies above C1 on one side of o and below it on the other
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Fig. 96. Construction 2: Moving three roots closer by using the scale and shift con-

struction.

side. The construction shown in figure 95 is be referred to as the scale and shift

construction. We will use this construction to prove the claim using a contradiction.

Suppose ω > 1 (the case with ω < 1 can he handled similarly). Since ω > 1 we

shall refer to S2 as the ‘faster’ curve. Let if possible S1 and S2 intersect three times

between an adjacent peak and zero of S2 (see figure 96). Then one can use the scale

and shift construction to construct another curve S3 such that S1 and S3 intersect

three times between an adjacent peak and zero of S3 and the intersections are closer

to each other as compared to the intersections of S1 and S2. By continuing this

construction the intersections can be made to come arbitrarily close to each other,

thus creating a root of Eq. B.5 with multiplicity 3, which is a contradiction since the

construction of scaling and shifting does not alter the structure of Eq. B.5. These

arguments can be put in rigorous terms as follows.

Let zl, zm, zr be the three intersections of S1 and S2. Since S2 is monotonic in the
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considered interval, without the loss of generality we can assumed it to be decreasing.

It follows that if zl < zm < zr then S2(zl) < S2(zm) < S2(zr). By construction S3

satisfies the following

S3(zl) > S2(zl),

S3(zm) = S2(zm),

S3(zr) < S2(zr).

(B.15)

Since the deformation of S2 into S3 can be continuous, it follows that S3 can be chosen

to be such that S3 and S2 are on the same side of S1 in a sufficiently small interval

around zm. Then, by continuity S3 and S1 should have at least one intersection

between zm and zl, and at least one intersection between zm and zr. Finally, since

it is possible to construct S3 such that there are no intersections other than zm (by

choosing a large enough scaling factor), therefore, by continuity, there should exist a

scaling at which the intersections are arbitrarily close (after which two of them collide

and annihilate each other). This, however, leads us to a contradiction, and hence the

claim must be true.

Note: Similar arguments can be made for other types of intersections of curves.

See figure 97 for example. In this case S1 is scaled and shifted.

Using the claim 1 it is possible to isolate roots of Eq. B.5 in pairs of two. Even

though it is an enormous simplification, methods like bisection can be used only if

the individual roots can be isolated. A methodology for isolating the individual roots

is presented next.

Note that if there are two intersections of the curves S1 and S2 in a quarter

period of the faster curve then these intersections can be made to come arbitrarily

close to each other by shifting one of the curves. This construction, called the shift

construction, is depicted in figure 98. Thus, if there are two intersections of the
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Fig. 97. Scale and shift construction for other type of intersections.

Fig. 98. Construction 3: Moving two roots closer by shifts.
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curves between an adjacent zero and peak of the faster curve then there exists some

shift ∆ for which Eq. B.5 has a root of multiplicity 2. Therefore, there can be two

roots of Eq. B.5 in the quarter period of the faster curve only if Eq. B.5 has a root

of multiplicity 2 for some ∆. It is easy to show that the following are necessary

conditions for existence of a root of multiplicity 2 of Eq. B.5

A2 > 1, 1 > A2ω2; for ω < 1,

A2 < 1, 1 < A2ω2; for ω > 1.

(B.16)

If the conditions B.16 are not satisfied then the roots of Eq. B.5 can be isolated using

claim 1. In that case the following intervals contain unique roots of Eq. B.5

In = (zn, zi−n), zn = −∆ +
n

2
π; for ω < 1,

In = (zn, zi−n), zn =
nπ

2ω
; for ω > 1.

(B.17)

The intervals B.17 shall be referred to as the relevant intervals. If the conditions B.16

are indeed satisfied then claim 1 needs to be strengthened. Note that the derivative

of Eq. B.5 vanishes when

cos(z + ∆) + Aω cos(ωz) = 0. (B.18)

Equation B.18 has the same structure as Eq. B.5 and thus it zeros can be isolated

(at least in pairs) using the same arguments. Note that the relevant intervals are

the same for Eqs. B.5 and B.18. Further, it is easy to show that the following are

necessary conditions for existence of a root of multiplicity 2 of Eq. B.18

A2ω2 > 1, 1 > A2ω4; for ω < 1,

A2ω2 < 1, 1 < A2ω4; for ω > 1.

(B.19)

It is obvious to see that conditions B.16 and B.19 cannot hold simultaneously. Thus,

if there exist two roots of Eq. B.5 in the relevant intervals, the Eq. B.18 has a unique
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root in those intervals. Finally, since the roots of Eq. B.5 are necessarily separated by

roots of Eq. B.18, therefore the individual roots of Eq. B.5 can be isolated by using

claim 1 and the above stated arguments.

We conclude this appendix with some examples showing the application of the

developed results. Figure 99 shows the graph of the function f(z) = sin(z + ∆) +

A sin(ωz) for some values of A, ω and ∆. The first root of the function f(z) is cal-

culated by using the bisection algorithm on the intervals found using the proposed

method and is shown in the graphs. For some of the graphs the values of the param-

eters A, ω and ∆ are deliberately chosen such that the conditions for existence of

roots of multiplicity two are satisfied and that the first root is a root of multiplicity

two. These cases are of relevance because for these cases the roots are discontinuous

functions of the parameters.
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(a) f(z) versus z with A = 1.8, ω = 0.5143, ∆ = 0.2. The first
root, z = 6.99, is shown by the circle.
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(b) f(z) versus z with A = 1.8, ω = 0.5145, ∆ = 0.2. The first
root, z = 5.54, is shown by the circle.

Fig. 99. First root of the function f(z) = sin(z + ∆) + A sin(ωz) for different cases.

Note the roots multiplicity two.
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(c) f(z) versus z with A = 0.666, ω = 5.1, ∆ = 0.4. The first
root, z = 2.82, is shown by the circle.
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(d) f(z) versus z with A = 0.667, ω = 5.1, ∆ = 0.4. The first
root, z = 2.02, is shown by the circle.

Fig. 99. Continued ...
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(e) f(z) versus z with A = 2.0, ω = 1.5, ∆ = 0.3. The first root,
z = 2.27, is shown by the circle.
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(f) f(z) versus z with A = 0.2, ω = 0.15, ∆ = 1.4. The first
root, z = 1.79, is shown by the circle.

Fig. 99. Continued ...
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APPENDIX C

CONTINUATION AND BIFURCATION ALGORITHMS

In this appendix we present a discussion of tools and techniques used for carrying out

bifurcation and continuation analysis of discrete maps. Continuation analysis was

originally developed for solving tough nonlinear problems via methods of homotopy.

However, over the years this method has been applied to a very diverse set of problems,

both in engineering and in pure sciences. Good introductions to this subject can be

found in the works of Keller [55], Doedel [56], Allgower [57, 58] and Gracia [59] among

others.

We consider general one parameter discrete dynamical systems of the form

x 7→ f(x, λ), (C.1)

where x ∈ R
n, λ ∈ R

1 and f(x, λ) : R
n+1 7→ R

n is sufficiently smooth. Generally x

represents the discrete dynamic variables of interest and is also known as the state

vector. On the other hand λ represents a parameter in the system, like the damping

or stiffness, and is called the parameter (or the parameter vector, if there are more

than one parameters). The fixed points or the equilibria of the system (C.1) are given

by

x − f(x, λ) = 0. (C.2)

Equation C.2 defines an implicit curve in R
n. Under certain technical hypothesis, the

existence of the implicit curve is ascertained by the Implicit Function Theorem. The

goal of continuation algorithms is to trace out such a curve starting from one known

point on the curve. The task of continuing a curve of equilibria emanating from one

equilibrium is usually accomplished by the use of predictor-corrector algorithms. The
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essence of such algorithms is to first guess or predict the next point on the curve and

then refine or correct the predicted point to desired accuracy. Tangent prediction and

Newton correction are amongst the most popular prediction-correction algorithms.

Before moving on to the more technical aspects of continuation and bifurcation

algorithms we illustrate the important aspects of typical continuation problems by the

means of an example. Consider the classic 1-D normal form of the discrete pitch-fork

bifurcation

x 7→ (1 + λ)x − x3. (C.3)

This example illustrates many important aspects of continuation algorithms. The

fixed points of Eq. C.3 are given by

λx − x3 = 0. (C.4)

The solutions to Eq. C.4 are (0, λ), and (±
√

λ, λ). The corresponding multipliers are

1 + λ and 1 − 2λ, respectively. In a small neighborhood of λ = 0, there are 1 or 3

fixed points depending on the sign of λ. For λ < 0 the only fixed point is x = 0 and

it is stable. For λ > 0 the fixed point x = 0 looses its stability and two other stable

fixed points given by x = ±
√

λ are born. The bifurcation diagram in a sufficiently

small neighborhood of λ = 0 is shown in figure 100. In this simple example we were

able to take the analysis to a good length without restoring to numerics, however,

this might not be the case in more complicated and/or higher dimensional systems.

We next discuss how this analysis could have been carried out numerically.

Suppose we somehow know that (x, λ) = (0,−0.5) is a fixed point of the map C.3.

The aim of a continuation algorithm is then to start at this point and trace the entire

family of solutions of Eq. C.4 emanating from it, thereby generating the bifurcation

diagram (perhaps without the stability information). Note that in figure 100 two
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Fig. 100. Bifurcation diagram showing a supercritical pitchfork bifurcation.
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fixed point curves intersect at the point (0, 0). Such points are called branch points.

Another task of a continuation algorithm is to identify such points and to be able to

continue all branches emanating from a branch point, if needed. Further, notice that

the curved branch folds (has an extremum with respect to the parameter λ) at the

point (0, 0). Such points are called fold points. The straight branch changes stability

as it passes through the point (0, 0). Such points are called bifurcation points. Fold

points are necessarily bifurcation points as well. It is the job a continuation algorithm

to keep track of such points. Once the family of equilibria is known, a bifurcation

analysis can be used to calculate the stability of the equilibria. Detecting phenomena

like birth of limit cycles, change of stability etc. are in the realm of bifurcation analysis.

Usually the bifurcation analysis is local in nature and cannot provide information

about the non-local bifurcations of the system. Thus, a continuation and a bifurcation

algorithm working together can provide valuable information about the asymptotic

behavior of a system.

There are several codes that can be used for continuation and bifurcation anal-

ysis. Prominent amongst these are AUTO [60], MATCONT [61], DSTOOL [62],

LOCBIF [63], CONTENT [64], XPPAUT [65], and PyCont. In this thesis we used

CL MATCONT for maps (a command line tool in the MATCONT family) for car-

rying out the bifurcation analysis of the bilinear and the multilinear hysteretic os-

cillators. MATCONT was chosen because of its enhanced capabilities and because

it runs on MATLAB, thereby enabling the user to use all the features of MATLAB.

Table XIX2 presents a comparative summary of the codes mentioned above.

The stability of points on an equilibria curve can be found by carrying out a local

eigenvalue analysis. The well known Gorbman Hartman theorem states that if all

2taken almost verbatim from Dr. Kuznetsov’s webpage
http://www.math.uu.nl/people/kuznet/res.html
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Fig. 101. Tangent prediction.

eigenvalues of the Jacobian matrix at a fixed point are in the open left half complex

plain then the equilibrium is locally asymptotically stable. This result is used to

characterize the stability of the fixed point curve. Bifurcations (or changes in stability)

along the curve can be detected by observing the eigenvalues. A computationally

efficient way of finding bifurcation points is by the use of so-called test functions. Test

functions for a bifurcation are functions that have a regular zero at the bifurcation

point. For example, the determinant of the Jacobian matrix has a regular zero at a

generic fold point, and can thus serve as a test function for a fold bifurcation.

Prediction and Correction

Suppose that we are interested in continuing the implicit curve

g(x, λ) ≡ x − f(x, λ) = 0, (C.5)



227

Table XIX. Capabilities of standard bifurcation analysis tools. A=Auto,

C=CONTENT, M=MATCONT, P=PyCont.

Capability A C M P

time-integration + + +

Poincaré maps +

continuation of equilibria + + + +

detection of branch points and codim 1 bifurcations of equi-

libria

+ + + +

computation of normal forms for codim 1 bifurcations of

equilibria

+ + +

continuation of codim 1 bifurcations of equilibria + + + +

detection of codim 2 equilibrium bifurcations (cusp,

Bogdanov-Takens, fold-Hopf, generalized and double Hopf)

+ + +

continuation of limit cycles + + + +

detection of branch points and codim 1 bifurcations (limit

points, flip and N-S) of cycles

+ + + +

continuation of codim 1 bifurcations of cycles + + +

branch switching at equilibrium and cycle bifurcations + + + +

continuation of branching points of equilibria and cycles + + +

computation of normal forms for codim 1 bifurcations of

cycles

+ +

detection of codim 2 bifurcations of cycles +

continuation of orbits homoclinic to equilibria +
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from a regular point yi, where yi is the augmented vector [xi, λi]. Let v be the tangent

vector to the fixed point curve at a point y = (x, λ). Then

J(y)v = 0, (C.6)

where

J ≡







∂g
∂x

∂g
∂λ






, (C.7)

and

v ≡







ẋ

λ̇






; ||v|| = 1. (C.8)

It is clear from Eq. C.6 that

v ∈ N(J), (C.9)

where N(J) is the null-space of J . The vector v is unique up to a sign if the space

N(J) is one dimensional. According to the tangent prediction method, the predicted

point ȳi+1 is

ȳi+1 = hvi + yi, (C.10)

where h is the step-size and vi is the unit tangent vector to the implicit curve g(y) = 0

at the point yi (see figure 101). At a generic point Eqs. C.6, C.8 define the vector v

up to a ± sign. The sign is fixed using the continuity of vector v along the curve

vi · vi−1 > 0, (C.11)

where (·) is the standard vector inner product.

After finding a predicted point ȳi+1 it is necessary to correct the point to the

required precision. This correction is achieved using Newton-Ralphson iteration like

methods. Notice that g(y) = 0 gives only n equations where n is the dimensionality
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of the state vector. The vector y is n + 1 dimensional, thus one needs to specify one

more condition before applying Newton-Ralphson like methods to the system. There

are many ways to impose this additional condition. The pseudo-arclenght condition

given by

k(yi+1) ≡ (yi+1 − yi) · vi − hi = 0 (C.12)

is one of the widely used additional conditions. Thus, the augmented system iterated

by the Newton-Ralphson like method is

g(yi+1) = 0,

k(yi+1) = 0.

(C.13)

This prediction-correction scheme is often called the pseudo-arclength continuation

and is shown graphically in figure 102. Using the prediction-correction method one

can keep advancing along an equilibrium curve till one hits a branch point, where the

tangent vector v is no longer unique. In the next section we show how to take care

of such points.

Branch Point Detection

A regular point of the equilibrium curve is defined as a point for with the null-space

of J is one-dimensional. It is obvious that the null space of J is of dimension at least

2 at a branch point. Thus, the following can be used to characterize and identify

branch points

Rank(N(J)) > 1. (C.14)

Further, the null vectors at a branch point can be used to locally characterize and

follow the various branches of equilibria emanating from the point. The appearance

of a branch point along the continued curve is indicated by an increase in dimension



230

yi

vih

−yi+1

αf(x,   ) = 0

yi+1

Fig. 102. Pseudo-arclength correction.

of the null-space of the Jacobian matrix J(y). Once the dimension of the null-space is

ascertained, the vectors spanning the null space can be found. The different branches

of equilibria emanating from the branch point can then be traced by using each of

these vectors as tangent vectors in the tangent prediction method described in the

previous section.

Bifurcation Detection

At each point on the fixed point curve one can evaluate certain test functions and

associated degeneracy conditions and conclude about the presence of bifurcations at

the point. Test functions have a regular zero at the bifurcation points. The test

functions and degeneracy conditions for the classical codim-1 bifurcations of discrete

systems are discussed next. A more complete discussion of these topics can be found

in Ref. [66].
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Fold Points

Since the matrix

J ′ =
∂f

∂x

∣

∣

∣

∣

∣

y=yi

(C.15)

has a single eigenvalue equal to 1 at a generic fold point, so the following function

can be used as a test function for fold point detection

ξt(yi) = det (J ′ − In) , (C.16)

where In is the n × n identity matrix. For a generic fold bifurcation the existence of

a simple zero of the said test function is a necessary but not a sufficient condition.

The following conditions, sometimes also known as the non-degeneracy conditions,

together with the test function are the necessary and sufficient conditions for the

bifurcation to occur

fxx(yi) 6= 0,

fλ(yi) 6= 0.

(C.17)

Flip Bifurcation

The flip bifurcation is characterized by the presence of a single multiplier equal to -1.

Thus, the following can be used as a test function for locating a flip bifurcation

ξf(yi) = det (J ′ + In) . (C.18)

The associated non-degeneracy conditions are

1

2
(fxx(yi))

2 +
1

3
fxxx(yi) 6= 0,

fxλ(yi) 6= 0.

(C.19)
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Neimark-Sacker Bifurcation

At a Neimark-Sacker point the Jacobian matrix has a single complex eigenvalue pair

on the unit circle. A suitable test function for this bifurcation can be found by

invoking Stéphanos theorem. It is mentioned here that the following function can

serve as a test function for the Neimark-Sacker bifurcation

ξNS(yi) = det (J ′ • J ′ − Im) , (C.20)

where (•) is the bialternate product and m = n(n − 1)/2. The non-degeneracy

conditions associated with the Neimark-Sacker bifurcation are quite technical and

are not discussed here. The interested reader is referred to Ref. [66] for a better

treatment of the subject.

Stability Analysis

An eigenvalue analysis can be used to characterize the stability at desired points on

the fixed point curve. A point yi is a stable equilibrium if the matrix

J ′ =
∂f

∂x

∣

∣

∣

∣

∣

y=yi

(C.21)

has eigenvalues inside the unit circle in the complex plane, and unstable if it has

any eigenvalue outside the unit circle. The points were the eigenvalues are on the

unit circle correspond to bifurcation points and are dealt accordingly. Algorithms for

finding eigenvalues of general matrices can be found in Ref. [67].

We end this appendix with bifurcation diagrams for the generic codim-1 bifur-

cations of smooth maps. Note that the Neimark-Sacker bifurcation is possible only

in 2 or more dimensions.
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Fig. 103. Typical fold bifurcation. Normal form: x 7→ x + λ − x2.
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Fig. 104. Typical flip bifurcation. Normal form: x 7→ −(1 + λ)x + x3. Filled squares

denote stable (two period) orbit.
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Fig. 105. Typical Neimark-Sacker bifurcation. See Ref. [66] for normal form. Filled

circles denote stable limit cycle.



236

VITA

Ashivni Shekhawat received his B. Tech. in aerospace engineering from the Indian

Institute of Technology Kanpur in 2004. He joined Texas A&M University to pursue

graduate studies in aerospace engineering in the Dwight Look College of Engineering

in the year 2006 and received his M.S. degree in 2008. He has a broad interest in the

field of applied mathematics with focus on nonlinear dynamics, bifurcation theory and

dynamical systems. He may be contacted by e-mail at shekhawat.ashivni@gmail.com.

His postal address is

Texas A&M University

Department of Aerospace Engineering

H.R. Bright Building

3141 TAMU College Station, TX 77843-3141.

The typist for this thesis was Ashivni Shekhawat.


