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ABSTRACT

Real-time Dynamics for Interactive Environments. (December 2007)

Alexander Nikolai Timchenko, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Donald House

This thesis examines the design and implementation of an extensible object-

oriented physics engine framework. The design and implementation consolidates con-

cepts from the wide literature in the field and clearly documents the procedures and

methods. Two primary dynamic behaviors are explored: rigid body dynamics and

articulated dynamics. A generalized collision response model is built for rigid bodies

and articulated structures which can be adapted to other types of behaviors.

The framework is designed around the use of interfaces for modularity and easy

extensibility. It supports both a standalone physics engine and a supplement to a

distributed immersive rendering environment. We present our results as a number of

scenarios that demonstrate the viability of the framework. These scenarios include

rigid bodies and articulated structures in free-fall, collision with dynamic and static

bodies, resting contact, and friction. We show that we can effectively combine dif-

ferent dynamics into one cohesive structure. We also explain how we can efficiently

extend current behaviors to develop new ones, such as altering rigid bodies to produce

different collision responses or flocking behavior. Additionally, we demonstrate these

scenarios in both the standalone and the immersive environment.
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CHAPTER I

INTRODUCTION

Simulating physical behavior is an important subfield of Computer Graphics and

finds important uses in such areas as education, design, film and animation, and

video games. In education and design, simulations can be used to study how virtual

prototypes would behave in the real world. In film, effects like falling debris and

explosions provide exciting visuals or bring amazing virtual creatures to life through

articulated animation. In video games, physical behavior adds a whole new dimension

of interaction as the player can utilize the environment to his advantage through

realistic and plausible means.

There is a great body of literature on simulation topics ranging from particles

and flocking to fluid dynamics. While the literature explores the concepts well, it

often does not expose implementation details that are difficult and complex.

This thesis focuses on the design and implementation of a general purpose real-

time dynamics framework. We address the implementation of two major aspects of

dynamic interactions: rigid bodies and articulated dynamics. Many solid objects can

be represented as rigid bodies. These rigid bodies can fall, bounce, roll, and tumble

realistically. Articulated dynamics include simulating a wide array of behavior such

as chains, machinery, and skeletal animation. The various dynamic behaviors can

interact with each other and be affected by the user.

The framework is designed to function in isolation or as a component in an im-

mersive rendering engine. A virtual immersive environment frequently consists of

several screens and projectors that surround the user with an image of the virtual

The journal model is IEEE Transactions on Automatic Control.
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world. The Immersive Visualization Project at Texas A&M is one such installation.

However, the user interaction present in the proprietary display engine for this sys-

tem is currently limited. The user can walk or fly through the world and affect it

through scripted events. Addition of physically-based dynamic behaviors would serve

to greatly increase the interactivity and believability of virtual environments.

During the design of our physics framework, we have run across a number of issues

that are not clearly exposed in the literature. This thesis documents such issues and

implementation details while presenting the basics necessary for understanding the

fundamentals. We discuss rigid body and articulated dynamics concepts, including

simulation and response to impulses and forces. Additionally, we illustrate how we

designed the framework and dealt with topics such as simulating different types of

dynamics in one system and collision response. We also address incorporating our

system into an immersive rendering engine.

In summary, this thesis has the following goals:

1. Clearly document, from the point of view of the implementor, the procedures,

algorithms, and concepts involved in rigid body and articulated dynamics.

2. Design and validate an extensible object-oriented physics engine framework that

supports rigid body and articulated dynamics.

3. Wrap the framework in a standalone application as proof-of-concept that the

framework is capable of supporting physics.

4. Supplement a distributed immersive rendering engine with the physics engine.
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CHAPTER II

PREVIOUS WORK

Over the past decades, research in virtual reality and immersive visualization yielded

new ways to view a virtual world. Two primary approaches have been developed:

head-mounted devices (HMD’s) and spatially immersive displays.

Early functional prototypes of VR helmets were available in the mid 1980s [1].

Such HMD’s typically consisted of a stereoscopic display system that provided an

image for the right and left eye using LCDs. The user’s head position and orientation

are used to determine the viewing position and angle of the virtual camera. Since the

LCDs are essentially worn over the eyes, the user would see the world no matter how he

turned his head. Interaction was further enhanced through control methods varying

from traditional mouse and keyboard to haptics and speech and gesture recognition.

Spatially immersive displays offered a viable alternative to virtual reality HMD’s.

These systems typically consisted of several displays that surround a user or group of

users. A spatially coherent world was rendered to these displays, minimizing seams

as much as possible. One of the first prototypes of such an immersive system was

designed at the Electronic Visualization Laboratory at the University of Illinois [2].

The system was named the CAVE and was made up of four rectangular facets in the

shape of a cube making up three walls and a floor. Back-projection was used for the

walls and top-down projection for the floor. Similar installations of four to six facets

are popular today.

Over the last decade, SID’s have undergone a great deal more research and ad-

vancement. Projects like the Immersive Visualization Project at Texas A&M [3] aim

to significantly reduce the costs of producing an immersive system. The system con-

sists of modular screens, commodity projectors, and readily available hardware. The
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screens can be assembled to approximate spheres, cylinders, and other surrounding

shapes. The proprietary engine driving the system allows the user to navigate worlds

that can be modeled and textured using standard modeling packages such as Alias

Maya or Blender.

This Immersive Visualization Project goes a long way to proving the viability of

more affordable commodity SID’s. However, users currently have limited interaction

with the virtual world. They can fly or walk through the world and affect it through

scripted means. Dynamic aspects can add a very powerful immersive element to such

a system.

One common way of representing objects in a virtual world is through solid

masses. Having such objects bounce, roll, and tumble realistically is an important

factor in producing a believable environment. Physically-based rigid body simulation

attempts to do just that.

Using well established concepts of classical mechanics, the motion of rigid objects

can be simulated by tracking mass, inertial tensors, positions, rotations, and linear

and angular momenta [4]. This allows solid objects to fall through the air realistically

and react to the forces of wind and gravity. By determining the point(s) of contact

and applying appropriate forces or impulses, rigid bodies can be made to collide,

tumble, roll, and come to rest realistically.

Some dynamic structures are difficult to simulate using only rigid bodies. If mod-

eled using impulse methods, hinged and prismatic joints generate constant collisions.

Attempting to resolve all collisions can bring a simulation to a halt. Instead, such

joints can be modeled using constraints to keep bodies properly attached.

Several approaches have been developed to deal with joint constraints. These ap-

proaches fall into two general categories: maximal coordinate and reduced coordinate

methods [5]. Maximal coordinate methods keep track of each rigid body link in an
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articulated structure separately. Lagrangian systems of constraints are then enforced

to reduce the degrees of freedom. Linear run-time versions of these methods, such

as the Recursive Newton-Euler Algorithm [6, 7], were developed for use in real-time

applications.

Reduced coordinate methods, on the other hand, deal with the joint angles of

an articulated structure directly. Everything is expressed in local coordinates; con-

straints are guaranteed because the unwanted degrees of freedom are removed from

the simulation. The equations of motion can be derived manually by hand for simple

problems or at run-time by more advanced methods such as Featherstone’s Articu-

lated Body Method [8, 9]. Additionally, such a system does not suffer from numeric

drift as Lagrange methods tend to. No stabilization terms are therefore necessary.

Rigid bodies and articulated bodies often interact with each other as well as world

and user geometry. Therefore, the two problems that need to be solved are when and

where collisions occur (collision detection) and what to do with this information to

prevent bodies from interpenetrating (collision response).

Collision detection between rigid objects is computationally complex, O(n2) in

the number of collidable surfaces. Therefore, methods of speeding up this process

have been developed [4]. Convex polyhedra can be fairly quickly tested for collisions

using separating planes. If bodies are not undergoing fast rotation, a face of one

object or a pair of edges will often separate the two objects. The existence of a

separating plane means the bodies cannot be intersecting. If one cannot be found,

the bodies must intersect, but not all implementations can find all separating planes.

Another common approach to determine if two bodies are colliding is use of

hierarchies of bounding volumes. Common choices for bounding primitives include

axis-aligned bounding boxes, object-oriented bounding boxes, and spheres. Figure 1

illustrates two alternatives for how these hierarchies can be constructed from bounding
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boxes and spheres to form oriented bounding box trees and sphere-trees. Hierarchies

have the benefit that if a parent volume does not intersect, none of its children will

intersect. Therefore, parts of objects that are not intersecting can be quickly culled

and ignored in further calculations. Publicly available libraries V-COLLIDE and

RAPID are based on object-oriented bounding box hierarchies and offer significantly

faster results [10, 11]. However, these software packages do not provide the actual

collision point and normal data.

Object Oriented Bounding Box Tree Sphere-Tree

Fig. 1. Bounding volumes.
The object and its corresponding object-oriented bounding box tree and its sphere tree.
The red volume is the first level, the blue is the second, and the green the third. Note that
the children are not necessarily confined to the space of the parent.

Other methods of collision detection and determination using level sets have also

been developed. A rigid body can be represented using a three-dimensional grid of

distance values where positive values specify that a point is outside the body and

negative values specify that a point is inside. This representation is essentially a

signed distance function φ(x, y, z). The value itself gives an approximate distance to

the surface and the gradient of the function, ∇φ, gives an approximate surface normal

[12]. Fast marching methods such as those described by Sethian [13] can be used to
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construct such a representation.
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CHAPTER III

BACKGROUND

This chapter focuses on the concepts of rigid body simulation and articulated dynam-

ics and briefly talks about the immersive engine. There is a strong body of literature

established for rigid bodies and articulated dynamics and the thesis draws heavily on

these concepts. We present a concise description of the problems and concepts, but

for proofs and complex derivations, the reader is directed to original sources.

A. Rigid Body Dynamics

The concept of a rigid body representation is a very powerful one in dynamics. In

reality, all objects deform when under the influence of contact impulses or forces.

However, computing the tiny deformations is unnecessary for believable animation of

rigid bodies.

To simulate motion of an unconstrained rigid body, we look to Newtonian dy-

namics. The study of rigid body motion is a well documented topic and this thesis

utilizes Baraff and Witkin’s SIGGRAPH 99 course notes on rigid body simulation for

its implementation [4].

1. Rigid Body Properties

A rigid body in free-fall can be represented with several properties. At any one time,

in order to display the rigid body, we need to know its position and orientation. We

will store position as a three-dimensional translation vector x and the rotation as

a unit quaternion q. When a rotation is needed in matrix form, a 3 × 3 matrix R

is generated from q. Since a rigid body by definition cannot deform, we can apply

these transformations to a fixed local coordinate system of the object called body
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space, in which the rigid body is initially defined. Therefore, position and rotation

become transformations from local coordinate space to world space. Additionally, we

require that the center of mass of the rigid body is located at the origin of the body

space. Since an unconstrained rigid object can only rotate about its center of mass,

this requirement simplifies rotations. Using these properties, we can determine how

a point in world space relates to a particular location on a rigid body and vice-versa.

After defining the position and orientation of the body, we need to know how

these properties change over time. The first derivative of position is velocity v a

three-dimensional vector describing the rate of change of the body’s center of mass

over time. This is a translational property, and therefore only affects the position,

not the orientation. The rate of change of the orientation is given by the angular

velocity. Angular velocity is expressed as ω and is also stored as a three-dimensional

vector. The direction of ω is the axis of rotation following the right-hand rule. The

magnitude of ω is the speed, in radians per second, at which the body is rotating.

The rate of change of linear velocity and angular velocity are linear acceleration a

and angular acceleration α.

Next, we define mass properties. We will assume that the body is of constant

density and has a scalar mass m. Additionally, we can temporarily assume that a

rigid body is made up of a number of particles, each having mass mi, such that

m =
N

∑

i=1

mi.

If each particle i is located at position ri from the origin of the body space, the center

of mass of the object is

xcom =

∑N
i=1 miri

m
.

The origin of body space should be translated to xcom so that in body space, xcom = 0.
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We will need one more mass property for rigid bodies: the inertial tensor. The inertial

tensor is a 3 × 3 matrix

I =
N

∑

i=1

















mi(r
2
iy + r2

iz) −mi(riyrix) −mi(rizrix)

−mi(riyrix) mi(r
2
ix + r2

iz) −mi(rizriy)

−mi(rizrix) −mi(rizriy) mi(r
2
ix + r2

iy)

















that determines how a body’s angular momentum relates to its angular velocity.

For a true representation of the inertial tensor, we would need to convert the

summation to an integral and evaluate it over the volume of the body. This, however,

is very difficult to do for all but the simplest of shapes.

Additionally, the integral would have to be reevaluated every time the object

rotated. Fortunately, we can compute the inertial tensor once initially in body space

to get Ibody, which is constant. The inertial tensor, based on the object’s current

rotation, is given by

I = RIbodyR
T .

Instead of storing velocities as part of the state, we use linear and angular mo-

menta. Since a rotating body’s angular velocity may change without external forces,

using conservative momentum properties is more appropriate. The linear momentum

of a rigid body is a three-dimensional vector

P = mv,

giving the momentum of the body’s center of mass. Newton’s Second law then gives

the rate of change of linear momentum,

F = ma ,

F = Ṗ ,
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which is simply the total force acting on the body. The angular momentum for a

rigid body is the three-dimensional vector

L = Iω.

Analogous to the relationship between linear momentum and force, we have a rela-

tionship between angular momentum and torque τ ,

L̇ = τ .

In summary, a force will change the linear momentum of a body, affecting its linear

velocity, and a torque will change the angular momentum of a body, affecting its

angular velocity.

It is instructive to show how a rigid body reacts to an arbitrary force acting on

an arbitrary point on the body. Say that a force f acts on a point p as shown in

Figure 2. If the force is not applied in the direction of the center of mass or along the

vector r, the force will produce a torque,

τ = r × f ,

where r is the vector from the center of mass to the point. Thus, the effects of the

force on the linear and angular momenta are

Ṗ = f

and

L̇ = r × f .
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x

p

r

Applied

force f

f
com

τ

Fig. 2. A force acting on a rigid body.
Force f acting on p affects the center of mass via a force f and a torque τ .

2. Rigid Body State

The state of a rigid body is denoted as a vector of properties X and consists of

position, rotation, linear momentum, and angular momentum. The state for a single

rigid body is then defined as

X =

























x

q

P

L

























.

In order to simulate an object, we need to determine how state X is changing by

calculating the derivative, Ẋ. The rate of change of a rotation quaternion is given by

q̇ =
1

2
ωq.

Thus, the rate of change of the system state in terms of the current state and applied
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forces is

Ẋ =

























v

1

2
ωq

F

τ

























.

In order to find the derivative of the current state of a rigid body, we need to know

the linear and angular velocity given by

v = 1

m
P ,

ω = I−1L .

If we have an ordinary differential equation (ODE) solver, we can use the current

state and the derivative of the state to simulate our rigid body.

3. Collision Response

Rigid body collision response is fairly straightforward. Given that two rigid bodies

A and B are in contact, the collision detection routines should be able to provide a

contact point p and a contact normal n. Depending on how the simulation system

is designed, the simulation might allow for interpenetrations between rigid bodies or

the state of all bodies might have to be rolled back until a precise contact occurs.

Figure 3 depicts two bodies in exact contact, showing contact point p and the

collision surface normal n. The velocity at any point p on a rigid body is

vp = v + ω × rp,

where rp is the vector from the origin of the body’s coordinate system to p in body

space. Therefore, relative speed along the normal of the bodies at the contact point
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is

vrel = vA
p · n − vB

p · n.

If vrel is negative, then the bodies are moving towards each other at that point and

will intersect on the next timestep if their velocities are not corrected. If vrel is zero

(to within some tolerance), then the bodies are in resting contact which has to be

dealt with separately. If vrel is greater than zero, then the bodies are separating.

Body B

Body A

n

vp

p

B

vp
A

Fig. 3. Rigid body contact.
Body A is in contact with Body B at p. We know the normal n and the velocity of each of
the bodies at the contact point.

To correct a negative relative velocity, we will apply an impulse to instantaneously

change the relative velocity of the bodies involved. A coefficient of restitution ε is

used to determine the resulting velocity of the collision:

v+

rel = −εv−

rel.

Therefore, the change in velocity at the instant of collision is

∆vrel = −(1 + ε)v−

rel.
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We need to find an impulse of magnitude j that when applied to both bodies in

opposite directions along the contact normal produces this change in velocity. For

rigid bodies, the matrix

K =
1

m
· 1 − rI−1r,

where 1 is the 3 × 3 identity matrix, determines how a body responds to an impulse

acting at a point a distance r from the center of mass. Thus, the magnitude of the

impulse required to induce the desired velocity change is

j =
1

nTKn
∆vrel.

During resting contact, the bodies are touching, but will not penetrate on the

next time step. However, it is possible for the bodies to be accelerating towards each

other and to gain an intersecting velocity on the next time step. Resting contact

resolution attempts to solve this problem.

In the case of resting contact, we need to look at the relative acceleration a−

rel

of the point to determine if the contact is truly a resting contact. If a−

rel is less than

zero, then the bodies are accelerating towards each other at the point and contact

forces must be applied to prevent this acceleration. Once the forces are applied, the

resulting acceleration a+

rel should be equal to or greater than zero. The applied forces

have to follow several rules. They must be repellent and can only push objects away

from each other and should not push them together. In other words, the magnitude

of the contact force f has to be zero or positive. Additionally, once the relative

acceleration becomes nonnegative, the contact forces must become zero, since forces

are no longer acting once contact is broken. These constraints can be expressed as

the set of inequalities:

a+

rel ≥ 0, f ≥ 0, a+

relf = 0.
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This is known as a complementarity condition where a+

rel is complementary to f .

Dealing with a single resting contact point is a simple problem. However, as Figure 4

shows, multiple bodies with simultaneous contact points are more difficult to resolve.

The force magnitudes for each contact point have to be solved at once with each

force and acceleration subject to complementarity constraints. The effect on each

acceleration will be a linear combination of all the forces,

k11f1 + k12f2 + · · · + k1nfn + a−

rel1
= a+

rel1
,

k21f1 + k22f2 + · · · + k2nfn + a−

rel2
= a+

rel2
,

...

kn1f1 + kn2f2 + · · · + knnfn + a−

reln
= a+

reln
.

In matrix form, this can be rewritten as

Kf + a−

rel = a+

rel,

with f complementary to a+

rel. Such a system is referred to as a Linear Complemen-

tarity Problem (LCP).

A number of LCP solvers are available with particular strengths and weaknesses

[14]. Whatever the solver used, the system will have the form

Mz + q = w,

where z, q, and w are vectors of n length and M is a matrix of size n × n. z and

w are the complementary variables, with the components of vectors being pairwise

complementary. In terms of resting contact, z will be the vector of force magnitudes

f , q will be the initial accelerations a−

rel, and w will be the vector of resulting accel-

erations a+

rel. The inputs provided to the solver are the matrix M and the vector q.

The solver gives z and w.
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Body A

Body B

Body C

Body D

1 2

3

4

5 6

Fig. 4. An example of multiple resting contacts.
The contact points are numbered one through six with body D being static. Note that a
force on any one contact affects at least one other contact. The system has to be solved
simultaneously.

The vector q can be thought of as the initial state of the system and is populated

by the relative accelerations of each contact point. However, computing the matrix

M is not a trivial task. Essentially, mij is the effect that contact i has on contact j.

If the two contacts are on two completely separate bodies, the coefficient will be zero.

If the contacts have a common body, then their effect will be non-zero. Eberly [15]

sets up this matrix by using mass properties m and I along with the collision normal

n and the vector to the point of contact r.

B. Articulated Dynamics

While rigid body dynamics go a long way to solving particular problems in physics,

they do not provide a complete description of constrained systems. For example,
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modeling a door hinge or a drive train as a purely rigid body problem is quite com-

plex. Having various objects in constant sliding, twisting, or other contact is very

costly to simulate. Therefore, methods for handling the dynamics of constraints have

to be considered for efficient simulation of such physical systems. The idea behind

constrained dynamics is that instead of simulating contact constraints with collisions

and resting contact, the constraints are part of the simulation state. The primary

method described here for simulating constrained articulated structures is Feather-

stone’s Articulated Body Method [8, 9, 5].

1. Articulated Structures

An articulated structure is a collection of joints and links in a tree-like arrangement.

The joints act as connectors between rigid links of the structure. The simplest type

of articulated structure is a chain with a fixed base as shown in Figure 5. Each joint

in a chain can have only one parent and one child, and consequently only one joint

on each end. We will build up the foundation for a chain first and then extend it to

more complicated structures.

Base link 0

Link i

Link n

Joint 1

Link 1
Joint i

Joint n

Fig. 5. An articulated chain with a fixed base.
This figure shows the conventions for joint and link ordering.
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An articulated chain consists of n links and n joints (Figure 5). The links and

joints are numbered from the base (inbound side) to the free end (outbound side)

such that the parent of link i is link i − 1. Each link i has corresponding inbound

joint i. Each joint is either revolute or prismatic. Revolute joints rotate about a

three-dimensional axis and prismatic joints slide along a three-dimensional joint axis

(Figure 6). An additional requirement of the Featherstone algorithm is that each

joint is limited to a single degree of freedom (DOF). This may sound very limiting,

but more complicated multi-DOF joints can be created by placing two or more joints

on top of each other with zero-mass links. An articulated structure will therefore

have as many degrees of freedom as it has joints.

Revolute (Rotating) Joint Prismatic (Sliding) Joint

Fig. 6. Revolute and prismatic joints.

The Featherstone algorithm utilizes this representation to store the state of an

articulated structure very compactly. For each joint, the only variables that are

simulated are the joint angle and rate of change of the angle. The term “joint angle”

is generalized. The angle is a measure of rotation in radians for revolute joints and

a measure of displacement in world units for prismatic joints. The angle of joint i

is denoted as qi, its rate of change as velocity q̇i, and its second rate of change as

acceleration q̈i. Additionally, we will consider the joint torque Qi as an actuator torque

acting internally. The state for a single articulated structure can be determined by
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the collection of these angles, their velocities, accelerations, and torques. These are

designated as vectors q, q̇, q̈, and Q. The ith component of each vector corresponds

to the ith joint. We start with the angles q and the velocities q̇ as the initial state. We

must then determine the accelerations q̈ acting on the system due to external forces

and actuator torques Q. The Articulated Body Method gives us these accelerations.

2. Joint and Link Properties

Before providing the algorithm for deriving the accelerations, we must establish a

number of properties for the links and joints. We can treat the links as rigid bodies

and therefore establish a coordinate system associated with each link. As we define

properties, a subscript of i will denote that the property is in the coordinate system

of that link unless otherwise noted.

Link i

Link i
Center of Mass

Link i - 1
Center of Mass

Joint i

Link i - 1

ui

ri

di

Fig. 7. Common vectors defined between links and joints.

Figure 7 shows several vectors we will need between links and joints. We define

the joint axis as a three-dimensional vector ui. For revolute joints, this vector points
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along the axis of rotation, with positive rotation defined by the right-hand rule. For

prismatic joints, the vector is the direction of sliding. Since joint i moves and rotates

with link i, the joint vector is constant in the coordinate frame of the link. The

distance from the inbound joint to the center of mass of the link is denoted by di.

For revolute joints, this vector needs to be computed only once. For prismatic joints,

this vector may change during simulation. Another vector ri points from the center

of the coordinate system of i to the center of the parent’s coordinate system, i − 1.

Each link will have an associated linear velocity vi and angular velocity ωi, as

well as linear acceleration ai and angular acceleration αi. These properties describe

the motion of link i in world space converted to the coordinate frame of i. It is

convenient to define an additional pair of velocity variables: vrel and ωrel, which will

be used in the derivations of velocity propagation along the chain, but will not be

used in the actual algorithm. They denote the motion of the link itself due to its own

joint velocity. Each link has mass mi, an inertial tensor Ii defined in link coordinates,

as well as matricized mass

Mi =

















mi 0 0

0 mi 0

0 0 mi

















.

Note that although the links have position and rotation associated with them, these

variables directly depend on the joint angles of the articulated structure.

We present here an abbreviated description of the velocity and acceleration

derivations. For complete derivations, we direct the reader to the works of Mir-

tich and Featherstone [9, 8]. Basically, the only state information that we have are

the joint angles and their velocities. We need to calculate the linear and angular

velocities of the links from the state. In order to do that, we can divide the motion
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of a link into two parts: one due to the motion of the link’s parent, and one due to

the motion of the link itself (i.e. the relative velocity). The velocity of link i is then

ωi = ωi−1 + ωrel ,

vi = vi−1 + ωi−1 × ri + vrel .

The acceleration of link i is

αi = αi−1 + ω̇rel ,

ai = ai−1 + ai−1 × ri + ωi−1 × (ωi−1 × ri) + ωi−1 × vrel + v̇rel .

The extra terms in the linear acceleration result from ṙi. Using these equations, we

can determine the velocities and accelerations of the entire chain if we know vrel and

ωrel.

We will define two vectors

νi = q̇iui ,

ξi = q̈iui ,

to assist in the derivations of the relative properties. These vectors point along the

joint axis and represent rotational velocity and acceleration if the joint is revolute

or linear velocity and acceleration if the joint is prismatic. For prismatic joints, the

relative properties are

ωrel = 0 ,

ω̇rel = 0 ,

vrel = νi ,

v̇rel = ξi + ωi−1 × νi ,
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and for revolute joints

ωrel = νi ,

ω̇rel = ξi + ωi−1 × νi ,

vrel = νi × di ,

v̇rel = ωi−1 × (νi × di) + ξi × di + νi × (νi × di) .

Since the algorithm deals with these rather large equations, a compact form for rep-

resenting them is necessary.

3. Spatial Algebra

Spatial algebra is a notation tool developed for efficiently describing three-dimensional

quantities. A spatial vector is a six-dimensional vector that encompasses two three-

dimensional vectors. For example, it is possible to describe velocity by a single vector

that contains both the linear and angular velocity. A spatial matrix becomes a 6× 6

matrix containing four 3×3 sub-matrices. A spatial vector is denoted by a hat symbol

over the variable. Spatial velocity and accelerations are therefore described as:

v̂ =









ω

v









, â =









α

a









.

Note that the rotational component is at the top of the spatial vector and the linear

component is at the bottom.

Traversing an articulated structure requires transforming spatial vectors from

one link’s coordinate frame to another. To convert a spatial vector v̂F in coordinate

frame F to v̂G coordinate frame G, we will construct a spatial transformation matrix

GX̂F so that v̂G = GX̂F v̂F .

If r is the offset from F to G expressed in G’s coordinate frame, we define the
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following operator on r:

r× =

















0 −rz ry

rz 0 −rx

−ry rx 0

















,

which represents a cross product with its forming vector. Premultiplying a vector by

this matrix is the equivalent of taking the cross product of r and that vector. Thus,

if the coordinate transformation were purely translational, the transform from F to

G would be

GT̂F =









1 0

r× 1









,

where the 1 is the 3 × 3 identity matrix and 0 is the 3 × 3 zero matrix. This

transformation can be derived

v̂G =









ω

vG









=









ω

vF + r × ω









=









1 0

r× 1

















ω

vF









,

which does not change angular velocity but does change the linear velocity.

We can construct a 3 × 3 transformation matrix GRF for pure rotation from

frame F to frame G. A rotation will affect both angular and linear components, so

we can construct a spatial rotation transformation matrix as follows:

GR̂F =









GRF 0

0 GRF









.

Thus, the full spatial transformation matrix containing both translation and

rotation is

GX̂F =









GRF 0

0 GRF

















1 0

r× 1









=









GRF 0

r × GRF GRF









.

We can also define a spatial cross product operator ×̂ on spatial vectors. Assum-



25

ing that

x̂ =









a

b









,

we define x̂×̂ as

x̂×̂ =









a× 0

b× a×









.

To take the spatial inner product of two vectors, we need the spatial transpose

operator ′, defined by

x̂′ =









a

b









′

=
[

bT aT

]

.

Using this operator, we can obtain useful properties such as power from spatial

vectors. Assume that a spatial force vector is defined

f̂ =









f

τ









.

The spatial inner product between spatial force and spatial velocity is

f̂ ′v̂ =









f

τ









′








ω

v









=
[

fT τ T

]









ω

v









= τ · ω + f · v,

which is the definition of power.

Note that the spatial force vector is defined with the angular component on

the bottom and the linear on the top. The translational spatial transformation will

act correctly and modify the torque, but not the force. For an applied force that

produces a linear force and torque, this makes sense since offsetting the acting point

will produce a different torque but the same linear force.
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In spatial algebra, the spatial joint axis can be represented as

ŝ =









0

ui









for prismatic joints and

ŝ =









ui

ui × di









for revolute joints. This vector remains constant in body coordinates so it only needs

to be computed once. One great advantage of spatial notation already manifests

itself: both revolute and prismatic joints can be represented with the same equations

(the components of course are defined differently).

When deriving acceleration, several extra terms show up that depend on the

velocity of the moving coordinate frame and are known as Coriolis forces. The spatial

Coriolis force of link i is

ĉi =









0

ωi−1 × (ωi−1 × ri) + 2ωi−1 × νi









if link i is connected to a prismatic joint and

ĉi =









ωi−1 × νi

ωi−1 × (ωi−1 × ri) + 2ωi−1 × (νi × di) + νi × (νi × di)









if connected to a revolute joint.

Revisiting the acceleration equations, the acceleration of a link depends on the

parent’s acceleration and the change in relative velocity of that link. The change in

relative velocity depends on two components: q̈i and the Coriolis components. We

now have the means of expressing acceleration propagation from parent to child as

âi = iX̂i−1âi−1 + q̈iŝi + ĉi.
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This applies to both revolute and prismatic joints. Additionally, we can express the

velocity as

v̂i = iX̂i−1v̂i−1 + q̇iŝi.

4. The Featherstone Articulated Body Method

With the velocity and acceleration propagation defined, the algorithm for determining

the accelerations of the entire articulated structure can be described. The algorithm

works by successively solving sub-chains of the original structure starting with the

trivial case of the last link. This process is very well documented by Mirtich. We will

present an abbreviated version of this proof.

The motion of a link in an articulated chain is determined by the forces and

torques acting upon it. The center of mass is affected by gravity, external forces, the

angular velocity of the body, and the forces and torques exerted by inbound (f I
i , τ I

i )

and outbound (fO
i , τO

i ) joints. Considering the last joint n in the link, we have

f I
n + mng = mnan ,

τ I
n = Inαn + ωn × Inωn .

We can express this pair of equations as one spatial equation using matricized mass:









f I
n

τ I
n









=









0 Mn

In 0

















αn

an









+









−mng

ωn × Inωn









,

f̂ I
n = În ân + Ẑn .

The general form of the previous equation gives us several new properties. The

spatial acceleration has already been defined; however, the other three deserve some

attention. The left-hand side is the inbound spatial force. It contains the force and

torque exerted by the inbound joint. Îi is the isolated spatial inertial tensor that

contains the mass properties for this link. It is referred to as an isolated property
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because in an articulated chain, the spatial inertial tensor will be accumulated to

reflect the effect of the rest of the chain. The accumulated spatial inertial tensor is

denoted as ÎA
i . The accumulated spatial inertial tensor for the nth link is the same as

the isolated property. Lastly, Ẑi is referred to as the isolated spatial zero-acceleration

force, named so because without this vector, the link would not accelerate. Any

additional external spatial forces acting on the object would also be part of this vector.

Like the spatial inertial tensor, the zero-acceleration vector will be accumulated to

reflect forces acting throughout the chain.

Once we know the relationship between the force and accelerations of the nth

link, we can inductively derive a relationship for the rest of the chain. The i− 1 link

has the same formula as the last link with the addition of the force exerted by the

outbound joint,

f̂ I
i−1 = Îi−1âi−1 + Ẑi−1 − f̂O

i−1.

The force of the inbound joint is equal and opposite to the force of the outbound joint

force,

f̂O
i−1 = −i−1X̂if̂

I
i .

Thus,

f̂ I
i−1 = Îi−1âi−1 + Ẑi−1 − i−1X̂i(Î

A
i âi + ẐA

i ).

Note that the spatial inertial tensor and the zero-acceleration vector for the ith

link is the accumulated form. In order to solve this equation, the acceleration of link i

must be expressed in terms of link i−1. A detailed derivation is presented by Mirtich

[9]. He shows that

ÎA
i−1 = ÎA

i−1 + i−1X̂i

(

ÎA
i −

Î
A
i
ŝiŝ

′

i
Î
A
i

ŝ′
i
ÎA
i
ŝi

)

iX̂i−1 ,

ẐA
i−1 = ẐA

i−1 + i−1X̂i

(

ẐA
i + ÎA

i ĉi +
Î
A
i
ŝi[Qi−ŝ

′

i(ẐA
i

+Î
A
i
ĉi)]

ŝ′
i
ÎA
i
ŝi

)

.
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Link 1

Base Link 0

Link 2

Link 3
Link 4

Link 5

Link 7
Link 6

Fig. 8. A tree-like articulated structure.
Note the way the joints are numbered: a traversal in either direction ensures that all the
information is available.

The extension to tree-like linkages is rather simple. For chains, the parent of link

i is link i − 1. For tree-like articulated structures, the parent i − 1 becomes another

link denoted by the subscript h such that h < i. This ensures that the children of a

link will have all the properties they need from the parent and that the parent will

have all of the children’s accumulated properties (Figure 8).

We now know how to compute all of the properties that we need to determine

the joint and spatial accelerations of an articulated body. The algorithm itself works

in three loops as shown in Figure 9. The first loop is outbound from the root to

the children and computes the velocity, Coriolis forces, isolated inertial tensors, and

zero-acceleration vectors. The second loop is inbound and computes all of the ac-

cumulated properties. The third loop is again outbound and yields the spatial and

joint accelerations of each link. In order to avoid performing the same calculations
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� �

i i i iCompute   v ,  c ,  I ,  Z�� � � II

Compute  I  , Zi i
AA

Compute  q , a!" i i

First Loop

Second Loop

Third Loop

Fig. 9. Articulated body method.

multiple times, a number of common properties are defined. These are

ĥi = ÎA
i ŝi ,

di = ŝ′iĥi ,

ui = Qi − ĥiĉi − ŝ′iẐ
A
i .

Using these definitions, Kokkevis [5] presents a compact version of the algorithm.

The pseudocode for the Articulated Body Method is presented in Algorithm 1. All

variables are in the coordinate space of their subscript.

The algorithm is fairly straight-forward, but some things deserve a bit more

explanation. When initializing the zero-acceleration vector in the first loop, we use

a spatial force vector f̂E
i that we get from FE, that is the sum of all external forces
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Algorithm 1 Pseudocode for the Articulated Body Method.

procedure ABMAccelerations(q, q̇, FE, Q)

v̂0 = 0̂

// First outbound loop

for i = 1 to n do

h = index of parent of link i

v̂i = iX̂hv̂h + q̇iŝi

ÎA
i = Îi

ẐA
i = v̂i×̂ÎA

i − f̂E
i

ĉi = v̂i×̂ŝiq̇i

// Inbound loop

for h = n to 1 do

if link h has a child then

i = index of child of link h

ÎA
h = ÎA

h + hX̂i

(

ÎA
i −

ĥiĥ
′

i

di

)

iX̂h

ẐA
h = ẐA

h + hX̂i

(

ẐA
i + ÎA

i ĉi + ui

di
ĥi

)

ĥh = ÎA
h ŝh

dh = ŝ′hĥh

uh = Qh − ĥ′

hĉh − ŝ′hẐ
A
h

// Second outbound loop

â0 = 0̂

for i = 1 to n do

h = parent of link i

q̈i =
ui−ĥ

′

iiX̂hâh

di

âi = iX̂hâh + ĉi + ŝiq̈i
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acting on each link. This can include things such as gravity, contact forces, and user

applied forces. If the forces are applied in the world coordinate space they must be

converted into the appropriate link coordinate space.

5. Articulated Dynamics State

The state of an articulated chain is given by the state vector

X =









q

q̇









,

which records both the joint angles and their velocities. The length of q and q̇ is

determined by the number of joints or degrees of freedom in the chain. The derivative

of the state,

Ẋ =









q̇

q̈









,

requires the accelerations, which are given to us by the Articulated Body Method,

and include the effects of joint torques Q and external forces f̂E
i .

While that is all of the state information that we need for integration, the data

structures for articulated links will carry a number of extra variables with them.

Spatial velocities, accelerations, and mass properties are needed for the Articulated

Body Method as well as transformation information for the algorithm as well as

display purposes.

6. Collision Response

The collision response for articulated bodies follows similar guidelines as those for

rigid bodies. Resolving colliding contacts requires impulses that will change v−

rel to the

desired v+

rel. Similarly, for resting contacts, a Linear Complementarity Problem is set
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up with a complementarity condition between the forces and accelerations. However,

determining impulse magnitudes and the matrix for the Linear Complementarity

Problem is more involved. Additionally, impulses and forces have to be propagated

throughout the entire chain.

The problem with the impulse approach described in the section III.A.3 is that

links in articulated structures do not have easily defined inertial tensors and scalar

masses. Thankfully, it is not necessary to derive 3 × 3 inertial tensors and scalar

masses from their articulated spatial counterparts. The expression for the magnitude

of the impulse for rigid bodies shows how the two bodies will react to a test impulse.

In order to solve the same problem with articulated links, the simplest approach is

to use test impulses and simulate their effects instead of calculating the magnitude

directly.

The Featherstone algorithm gives a way of applying an arbitrary force to any

of the links by setting the appropriate link’s applied force FE. This can be used for

testing the response to impulses. The effect of an impulse j will change pre-impulse

joint velocities q̇− to post-impulse joint velocities q̇+. We will do this by propagating

a force of the same magnitude as the impulse throughout the articulated body and

recording the change in accelerations q̈I . The resulting joint velocities,

q̇+ = q̇− + q̈Iδt ,

are obtained by adding the change in accelerations to the pre-impulse joint velocities.

We can set δt = 1 because applying an impulse j = fδt to an object’s momentum

produces the same effect as applying a force f and integrating it over a timestep δt.

Since we are not performing an integration step, the choice of δt becomes irrelevant.

The benefit that we get from using a test impulse is that we can determine how the

articulated body reacts to it without having to explicitly calculate inertial and mass
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properties.

For a single contact, we can apply a unit test impulse acting in the direction

of the contact normal to the link of the articulated structure. There is a linear

relationship between the force applied and the change in accelerations and therefore

the change in velocities [5]. This linear relationship between the force and velocity

can be represented as a scalar

k = vt
rel − v−

rel

where vt
rel is the resulting relative velocity after the test impulse. Thus, the magnitude

of the actual impulse needed to achieve the desired relative velocity is

f =
v+

rel − v−

rel

k
.

An actual impulse of magnitude f is applied to the articulated chain to update all

velocities.

The resting contact problem is solved in a similar manner as the rigid body

problem. The same equations are set up with the matrix built using test impulses.

Once the forces are computed by the LCP solver, all the forces have to be applied at

once to the entire articulated structure.

C. Immersive Engine

The Visualization Laboratory at Texas A&M University holds a relatively new im-

mersive system [3]. The system is comprised of a number of computers, projectors,

and modular screens. Each computer is powered by an Intel processor and uses the

same type of video card. The video output is fed to a set of projectors that place an

image on a set of screens. The screens surround the user in some configuration, such

as an approximation to a sphere or a cylinder (Figure 10).
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10-Sided Cylinder Icositetrahedron

Fig. 10. Example cave geometries.
Current installations use 4 or 5 faces of the full geometry.

A single machine is designated as the server and the rest as the clients. The soft-

ware that runs this system is known as guppy3d [16]. It is responsible for loading

scene data including models, textures, and lights. Additionally, the software ensures

that the server and clients communicate appropriately and do not get out of sync.

A cave configuration file is loaded at startup, providing information about the phys-

ical location of the screens. guppy3d allows each computer to be configured to a

particular screen, letting the user adjust screen rotation, orientation, and correct for

perspective and other distortions. When properly adjusted, guppy3d displays a sin-

gle image over multiple facets providing the user with an immersive visual experience.

The system relays user and camera position and orientation between the server and

clients via a network, allowing the user to move through the virtual world with all

the screens maintaining one coherent scene.
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The user interacts with the server machine using a keyboard and mouse. The

keyboard is used for moving the user through the world by changing his position

and elevation. The mouse controls the user’s orientation, allowing exploration of the

virtual world.

While the system presents the user with immersive visuals, the interaction is

limited to just viewing the world. There is some ability to script the motion of

objects or trigger object motion. However, there is currently no dynamic behavior

present in the system.
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CHAPTER IV

METHODOLOGY AND IMPLEMENTATION

This chapter focuses on the design methodology behind the physics engine and the

implementation. The physics engine is designed as a very modular and easily ex-

pandable system; the chapter will detail the ideas behind the strong object-oriented

design and liberal use of interfaces to achieve modularity. For clarity, we will need

to differentiate between several “engines” present in the system. The first is the im-

mersive rendering engine, known as guppy3d. We will refer to it as the immersive

engine. The next is the engine specifically developed for the dynamics. We will refer

to that as the physics engine. Lastly, the main class in the physics engine is also

called Engine and will be referred to as the Engine class.

GUPPY3D

Scene Description:
  Lights
  Models
  User
  Camera

RenderScene()
UpdateClients()

Physics Engine

Scene Description:
  Rigid Bodies
  Articulated Bodies
  Static Geometry

Integrate()
CheckContacts()
ResolveImpacts()
ResolveContacts()

Fig. 11. guppy3d and the physics engine.
The rendering engine guppy3d is responsible for rendering the scene information. The
physics engine simulates the models from the immersive scene and updates their properties.

The primary goal behind the physics engine is to provide simulation support for

the immersive rendering environment. As seen in Figure 11, the physics engine works

with the immersive engine by controlling various objects present in the system. Those
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objects are simulated in the physics engine and their positions and orientations are

updated. The immersive engine continues its display loop and renders the objects.

Figure 12 shows object hierarchy and object relationships to the interfaces. It

shows that most classes that influence the behavior of the dynamics inherit from a

base Object class as well as a number of interfaces. The interfaces enforce critical

functionality and allow these objects to be used in the simulation system, in rendering,

and in collision detection.

A. Interfaces

The best way to understand what functionality objects have is by the interfaces

that they can implement. The interfaces that are critical to the physics engine

are SimulationState, Integratable, Collidable, Constraint, NetSync, and Sid-

Renderable. Other interfaces Renderable, Camera, and Light can be used if the

framework is used in a standalone environment. We will outline the functionality of

the interfaces and explain how they are used by the physics engine.

1. SimulationState

A class implementing the SimulationState interface will usually be very specialized

and will primarily deal with storing the state of a dynamic object. In the case of rigid

bodies, this class will have three-dimensional vectors for position, linear momentum,

angular momentum, and a quaternion for rotation. It will also have pointers to aux-

iliary properties that are not part of the state but are required for certain operations.

These properties include inertial tensors, velocities, forces, torques, and rotation ma-

trices. For articulated dynamics, a simulation state class will hold an array of joint

angles and joint velocities. It will also have pointers to joint accelerations, joint
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AddObject()
RemoveObject()
RenderFrame()
Update()
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CollisionDetector
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Legend

B implements A

A B

A is a member of B

Fig. 12. Object hierarchy and interface diagram.
An example of how the kinematic skeleton KSkeleton fits into the class structure. The
KSkeleton class is an integratable, renderable, synchronizable, constraint object that uses a
JointState class to store its state information and JointLink objects for collision detection
and rendering. The Engine class adds the skeleton and its objects to other objects based
on the interfaces they implement.
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torques, and pointers to the array of links.

A simulation state class must be able to do several things: the class has to define

a set of self-modifying operators and the ability to compute the rate of change of the

state from the current state and time. The derivative of the state must take into

account the entire system. A simple Euler integration at time t with timestep h is

X(t + h) = X(t) + Ẋ(t)h ,

which computes X(t + h), the state after the timestep, from the current state X(t)

and its derivative Ẋ(t). Essentially, we are defining the operators needed to perform

this function. The derivative operator is rather simple and has been described for

both rigid bodies and articulated dynamics. A state also has to be able to be multi-

plied by the timestep h and added to another state. This implies definitions for the

multiplication * operator and the addition + operator and finally the assignment =

operator. Once these are defined, a state class has all the functionality it needs to be

integrated. The class definition for the SimulationState is shown below.

class SimulationState {
public:
virtual void Derivative() = 0;
virtual void UpdateAuxiliaryProperties() = 0;
virtual SimulationState& operator = (const SimulationState& s) = 0;
virtual SimulationState& operator += (const SimulationState &s) = 0;
virtual SimulationState& operator *= (const double &h) = 0;
virtual SimulationState& operator /= (const double &h) = 0;

};

Previously, we mentioned that the mathematical operators are self-modifying.

Since the SimulationState interface is an abstract class, it cannot be instantiated.

Reference parameters to SimulationState interfaces are therefore not possible and

C++ requires that at least one of the operands in a binary operator is not a pointer.

Additionally, a reference to a SimulationState interface must be returned, which

again is not possible due to the abstract nature of the interface. Although some-
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what cumbersome, by using a temporary state, we can get some speed out of this

restriction. Note that in the Euler integration, there are three operators in effect:

derivative, multiplication, and addition. Traditionally, each of these operators would

create a temporary new state (applying the assignment operator as well). For articu-

lated dynamics, this would mean allocating arrays of memory for all the joint angles

and velocities. This would happen three times and the intermediate data would be

discarded at the end. Using self-modifying operators, we can achieve the same result

using an extra temporary state and one extra equate statement:

*tempState = *nextState = *currentState;
*tempState.Derivative();
*tempState *= h;
*nextState += *tempState;

This is not as clean as performing the whole operation in one line, but we avoid

memory allocation and deallocation.

2. Integratable

The Integratable interface is used by the SimulationSystem class in the physics

engine to advance objects by a timestep. Objects that implement the Integratable

interface can be added to the simulation system. The simulation system will then ask

each object to accumulate the forces affecting it, take the derivative of its state, and

advance its state using Euler integration.

The SimulationState is the bread and butter class of the Integratable inter-

face. An object that defines an Integratable interface automatically gains a set of

pointers to the SimulationState interface and some basic integration functionality.

The Integratable interface defines SimulationState interfaces for current state,

next state, previous state, initial state, and temporary state. Any class inheriting

from Integratable is guaranteed to have those states defined. The other critical
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functionality is the ability to accumulate forces and update the state of the object.

This functionality is shown in the Integratable interface:

class Integratable {
protected:
SimulationState* currentState, previousState, nextState;

tempState, initialState;
bool isStatic, isAlive, isIntegratable;

public:
virtual void AccumulateForces() = 0;
virtual void UpdateState(const SimulationStateState &state) = 0;
virtual void Stabilization(const double &delta) = 0;

};

Force accumulation is necessary for taking the appropriate derivatives. At any

one time, an object may have several forces acting on it. Whether those forces are

gravity, wind, contact forces, or other constraint forces that may relate to other ob-

jects, all of them have to be accounted for in order to get the proper accelerations.

The physics engine assumes that the accumulated force information is used to cor-

rectly determine the derivative. Each object itself does not necessarily need to know

all the forces that are acting on it. Constraint objects, for example, can affect others

by applying additional forces. For instance, a number of particles can be governed

by a “springy mesh” object. The particles accumulate gravity forces by themselves

and the springy mesh object provides additional spring forces. Each particle does

not have to know that it is connected to other particles. The springy mesh object

acts as a force generator and takes care of those forces in its own accumulate forces

function. The AccumulateForces() call will be performed for each object before any

derivatives are taken.

UpdateState() is the other critical function that an Integratable class must

define. This method is called to insure that an object has all of its relevant information

updated given a particular state. For rigid bodies, for example, this method would

ensure that the linear and angular velocity are up to date, since it is linear and

angular momentum that are stored in the state. During collision detection, object
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velocities are used to determine the relative velocity of contact points. For articulated

structures, the state consists of joint information only, so all of the velocities and

accelerations must be updated. Note that the Articulated Body Method call would

actually go here.

Lastly, the function Stabilization() is used to take care of any issues that may

have to be resolved after integration. This function is frequently not necessary, but

at times critical. For example, it could be used to threshold velocities for objects or

find conservative values for grid-based velocity systems.

3. Collidable

The Collidable interface is designed to be used with the CollisionDetector class of

the physics engine. During the simulation loop, the collision detector is responsible

for several tasks. The detector needs to determine whether there are any object

intersections. If there are object contacts, it needs to provide the specific contact

information such as point, normal, and relative velocity. For resting contacts, it needs

to know the relative acceleration of the contact point. The Collidable interface is

used for performing such tasks. Because the code for the Collidable interface is

rather long, we present it in several sections. The first section defines some members

and virtual methods:

class Collidable {
protected:
Vector3d contactForces, contactTorques;
bool isCollidable;
CollisionObjectType coType;

public:
virtual int Intersect(Collidable *co) = 0;
virtual bool CollidesWith(const CollisionObjectType &type) = 0;

Each Collidable class defines a type stored as an enum. This type is used to

distinguish the various kinds of objects that may be in a dynamic scene. Some objects

will naturally interact with others. Some pairings do not need any collision detection
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or response to be performed between them. For example, planes and static meshes do

not move and therefore do not need to be tested for collision. Each Collidable class,

therefore, defines a CollidesWith() method that returns true if that class collides

with a particular type. In addition, a method that returns the type of the object is

also defined.

If an object does collide with another object, the Intersect() method is called.

This method passes in the target Collidable interface object as a parameter. Based

on the type of the passed Collidable interface, different methods of intersection

testing are used. For example, collision tests between two rigid bodies and a rigid

body and a plane will use different methods. The Intersect() method returns an

integer that specifies how two objects intersect. A value of -1 means that the objects

are completely disjoint. A value of 0 means that an exact contact or contacts exist

between the two objects. When a contact occurs, a Contact object is added to the

collision detector. Finally, the value +1 means that at least one intersection between

the two objects has occurred. Note that even if contacts exist, an intersection over-

rides the contacts. The simulation loop, which will be discussed in greater detail later,

discards contact information if an intersection is found and rolls back the simulation

to the time of exact contact.

When the collision detector finds a valid set of contacts, it must resolve them.

Contacts occur between objects implementing the Collidable interface, so all those

objects must implement the necessary functionality for contact resolution. The fol-

lowing functions are necessary: getting the velocity of a point, the acceleration of

a point, the object’s position, the object’s restitution coefficient, and the object’s

friction coefficient. These methods allow the collision detector to determine whether

a contact is a colliding contact based on the relative velocity of the two points. If

the relative velocity of a point is zero, the acceleration of a point is used to deter-
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mine whether the contact is a resting contact. The position of the object relative to

the point of contact determines the torque resulting from impulses and forces and

the restitution and friction coefficients determine the magnitude of the impulses and

forces. These methods form the next section of the Collidable interface:

virtual Vector3d GetPointVelocity(const Vector3d &p) const = 0;
virtual Vector3d GetPointAcceleration(const Vector3d &p) const = 0;
virtual Matrix3x3 GetR() const = 0;
virtual Vector3d GetPosition() const = 0;
virtual double GetRestitution() const = 0;
virtual double GetFriction() const = 0;

The Collidable interface needs a way to handle the forces and impulses gen-

erated during contact and collision resolution. The methods ApplyImpulse() and

AddForce() are defined for this reason. Additionally, each interface has to define an

ApplyTestImpulse() method that applies an impulse to a temporary version of the

object’s state. After a test impulse is applied, the state will need to be reset to test

other impulses in isolation. Therefore, a Collidable interface also needs to imple-

ment a ResetTestState() function that reverts to the pre-test state. These methods

are necessary for building the mass matrix needed for the Linear Complementarity

Problem Solver and are the next set of functions for the interface listed below.

virtual void ApplyTestImpulse(const Vector3d &point,
const Vector3d &force) = 0;

virtual Vector3d GetTestPointVelocity(const Vector3d &p) = 0;
virtual void ResetTestState() = 0;
virtual void ApplyImpulse(const Vector3d &point,

const Vector3d &force) = 0;
virtual void AddForce(const Vector3d &point,

const Vector3d &f) = 0;
virtual void AddContactForce(const Vector3d &point,

const Vector3d &force) = 0;

Finally, the Collidable interface ensures that the object defines functions that

deal with constraints. For example, if two distinct Collidable objects are connected

through a constraint system, a force or impulse on one will affect the other. With-

out this functionality, only direct contact events would be seen. This is crucial for
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articulated structures, where each link can be treated as a separate collidable object

and the articulated structure as a whole is treated as a constraint. Such functionality

can also be used to enforce arbitrary constraints such as springs, pin constraints, or

distance constraints. The function IsRelated() returns true if the object passed to

it is connected to the current Collidable object via a constraint. Another method,

GetConstraint() returns the constraint containing both the current object and the

object passed through the parameter. These methods round out the Collidable

interface.

virtual bool IsRelated(Collidable *co) = 0;
virtual Constraint* GetConstraint(Collidable *co) = 0;

}; //end Collidable

4. Constraint

An object that implements the Constraint interface affects the collision behavior

of other Collidable objects. This interface allows for proper collision response

between the links of an articulated structure and objects connected via arbitrary

springs, hinges, and pins. The collision detector treats Constraint objects sepa-

rately from Collidable objects (this does not mean that a class cannot implement

both a Collidable and a Constraint interface). During specific parts of the sim-

ulation, the state of the Constraint objects is verified to ensure that no velocity

or acceleration constraints are broken. EvaluateVelocityConstraints() checks for

velocity violations and EvaluateAccelerationConstraints() checks for accelera-

tion violations. For articulated bodies, internal constraints such as joint limits are

handled in these two function calls. Joints bouncing against their limits would be a

velocity violation while joints at rest accelerating through their limits would be an

acceleration violation. These constraints potentially affect other contacts (i.e., ob-

jects resting on links that are themselves at rest on their joint limits), so care must
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be taken to ensure that all the constraints are solved for at once. The class definition

for the Constraint interface follows.

class Constraint {
public:
virtual int EvaluateVelocityConstraints() = 0;
virtual int EvaluateAccelerationConstraints() = 0;
virtual void ApplyVelocityResolution() = 0;
virtual void ApplyAccelerationResolution() = 0;

virtual void AddConstraint(Constraint *co) = 0;
virtual void ResetTestState() = 0;
virtual void ApplyTestImpulse(const Vector3d &point,

const Vector3d &force, const int &link) = 0;
virtual void ApplyTestImpulse(Collidable *a, ICollidable *b,

const Vector3d &point, const Vector3d &force) = 0;
};

When objects connected by constraints are affected by impulses and forces re-

sulting from collision or contact resolution, those impulse and forces potentially have

to be distributed across all objects involved in the constraint. For example, an im-

pulse on one link in a chain can affect the velocities of all links in the chain. For

that reason, each constraint class must implement an ApplyVelocityResolution()

function and an ApplyAccelerationResolution() function. These functions apply

impulses and forces to the constrained objects respectively.

Finally, just as the Collidable interface defines functions for applying test im-

pulses and resetting the test state, a Constraint object must be able to do the

same. Since an impulse on an object may affect other objects under the constraint,

these functions ensure that the impulse is applied correctly and all the effects are

visible. The functions have the same names as those for the collidable interface:

ApplyTestImpulse() and ResetTestState().

5. Renderable and SidRenderable

There are two primary interfaces for displaying an object. If the framework is used by

itself as a standalone application, the Renderable interface ensures that that object
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can be rendered to the framebuffer. Additionally, the framework can be used with

an immersive rendering engine. The rendering of objects on an immersive display is

handled differently using the SidRenderable interface.

The Renderable interface is used for the standalone physics engine and defines

a Render() function and a rendering quality variable. How the object is rendered,

however, depends entirely on the class’s implementation of the function. This creates

an easy way for the physics engine to separate all the objects that need to be drawn.

When a frame render is requested, the physics engine simply iterates through the

list and calls the Render() method of all the renderable objects. The Renderable

interface is very simple and is shown below.

class Renderable {
public:
virtual void Render() = 0;

protected:
RenderQuality renderQuality;

};

The SidRenderable interface is designed to work with the immersive engine and

is one of the few classes that deal directly with the immersive side (the ‘Sid’ prefix

stands for Spatially Immersive Display). Instead of defining a rendering function

like the Renderable interface, SidRenderable essentially gives functionality for the

immersive engine to load a model separately. This model is then treated like any

other model in the immersive engine, except that its transformation information is

controlled by the physics engine. The SidRenderable interface is shown below.

class SidRenderable {
public:
virtual const char *GetObjFile() const = 0;
virtual const char *GetShaderName() const = 0;

virtual void LinkToTransform(\g3d::Empty *empty) = 0;
virtual void GetShaderProperties(\g3d::Shader *shader) = 0;

};

The SidRenderable interface defines a set of functions that get the path to

an OBJ file used for displaying the model, the shader name, shader attributes,
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and lastly, a function that passes in a pointer to a transform node. The function

LinkToTransform() is used to connect the transformation of the model in the im-

mersive engine to the object in the physics engine. The immersive engine knows

nothing about the fact that a model is being manipulated by another system; it

merely displays the model using the given position and orientation.

6. NetSync

The NetSync interface is not necessary in the standalone version; however, it becomes

critical in the immersive environment. Essentially, this interface allows an object to be

synchronized over a network. The interface itself is very simple: any class that imple-

ments it must define a function called GetData() and ReadData(). The first method

asks the object to provide synchronization information for transfer over a network.

The second method is used to apply information received from a network socket. The

header and the methods and are presented in the following class definitions:

class NetSyncHeader {
public:
char name[64];
size_t blockSize;

};

class NetSync {
public:
virtual bool GetData(NetSyncHeader &header, char* &data) = 0;
virtual bool ReadData(const NetSyncHeader &header, char *data) = 0;

};

The synchronization follows a very simple scheme as shown in Figure 13. A

NetSyncHeader class is declared that has a fixed size character name field and a

length field. Since the size is of the header is known ahead of time, we can always tell

if we receive a partial message. The header will have the name of the object to which

the data is addressed and the length of the entire message. If the received packet is

smaller than the header size, the full header has not been received; if the packet is
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smaller than the length specified in the header, then the entire message has not been

received.

Constant size header Body

Name Size Message (arbitrary char data)

Engine Header Header Message Header Message Header Message

Object 1 Object 2 Object n. . .

NetSync Structure for One Object

NetSync Structure for Entire System

Fig. 13. An example of NetSync structure.
The header is of constant size for all messages. The message body for the engine consists
of header/message combinations that are processed in sequence.

The message data can be structured in any manner necessary. The only require-

ment is that when the message is passed to the object specified in the name field, that

object knows how to deal with it. The Engine class itself implements this interface

and constructs the message such that the first header has “Engine” in the name and

the length of the entire message in the length field. When the packet is sent across

the network, the Engine header will be the first one received. The Engine object

then iterates over all objects that implement the NetSync interface and calls their

GetData() function. Each of those objects returns a header with their name, the

length of the individual message, and the message itself. The Engine object then

collects all of the messages keeping track of the total length, puts them into a single

message with the Engine header at the front, and returns that.

When the Engine object on the client side receives the message, it decodes the

message by looking at the individual headers and passing each of the messages to their
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respective objects. Using this method, a single physics engine on the server runs the

simulation while updating the other client engines that are part of the distributed

environment.

B. The Physics Engine

The physics engine is built upon heavy use of the interfaces depicted in Figure 12

and described in detail above. Figure 12 also shows the three primary classes that

make up the essential functionality of the dynamic system. These classes are Engine,

SimulationSystem, and CollisionDetector. The main Engine class is responsible

for managing all objects and interfaces and delegates the appropriate objects to the

simulation system and the collision detector. Each object inherits from a base Object

class that ensures that the physics engine can determine what interfaces that object

implements.

1. The Object Class

The Object class serves as a base for most classes that are handled by the physics

engine. This class provides some simple common functionality such as getting and

setting the object’s name, the class name, and object ID. Additionally, the Object

class declares a critical function ImplementsInterface() [17]. Using this method,

an object can specify which interfaces it inherits from and returns a pointer to that

interface. This mechanism allows all objects that are added to the physics engine to

be dealt with automatically based on the interfaces they implement.

Upon addition of an object, the physics engine goes through the available list of

interfaces and checks to see if the object implements a particular interface. If it does,

the engine takes the pointer to that interface and delegates it into the appropriate
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list. For example, if an object implements Renderable, the engine places it in a

list for rendered objects. This list is traversed upon drawing a frame. If the object

implements the Collidable interface or Integratable interface, that object is added

to the collision detector or the simulation system classes respectively. The rest of the

interfaces are treated similarly. Note that since a class can easily inherit from multiple

interfaces, an object of that class can wind up in many places. For example, a rigid

body object can be integrated, rendered, checked for collisions, and synchronized

over a network. The engine only has pointers to the interfaces that the rigid body

implements and that is all the information it needs.

2. The Simulation System

The SimulationSystem class is responsible for advancing objects’ states based on

the current state of the system. The simulation system does that by working with

objects implementing the Integratable interface.

When a new object is added to the physics engine, the engine checks to see if

it implements the Integratable interface. If so, that object is passed on to the

SimulationSystem. The object is guaranteed to have the necessary simulation states

defined. When the physics engine needs to update the state of the simulation by

a timestep, the simulation system integrates the state of all Integratable objects.

The basic class definition for the SimulationSystem class is

class SimulationSystem : public Object {
public:
SimulationSystem();
~SimulationSystem();
void AddNewObject(Integratable *io);
void RemoveObject(Integratable *io);
void SystemDynamics();
void Integrate(const double &delta);
void Commit();

protected:
list <Integratable*> integObjects;
list <Integratable*> liveObjects;
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int integratorOrder;
};

SimulationSystem inherits from Object and is a member of the Engine class.

The three important functions in this class are SystemDynamics(), Integrate(),

and Commit(). SystemDynamics() loops through all live objects in the simulation

and calls their AccumulateForces() function. This updates the state of the simu-

lation to ensure that all objects have the most current forces acting on them before

any derivatives are taken. Integrate() uses a method of integration specified by

integratorOrder to compute the next state for each object based on the timestep.

And finally, Commit() advances the current state to the next state.

The simulation system keeps track of two lists of Integratable objects. The first

list, integObjects, holds objects that require integration. This list is parsed during

the Integrate() call. The second list, liveObjects, is a superset of integObjects

and contains all objects that influence the integration of the system, but do not

necessarily have to be integrated. For example, a “springy mesh” object would be

a live object, as its AccumulateForces() function would provide particles with the

spring forces. The object itself, however, does not have any state information and

does not need to be integrated.

The integratorOrder property controls what method Integrate() uses. A

value of 1 performs an Euler integration and is the default setting. The code for an

Euler integration is as follows:

list <Integratable*>::iterator i;
SystemDynamics();
for(i = integObjects.begin(); i != integObjects.end(); i++){
*(*i)->tempState = *(*i)->nextState;
*(*i)->tempState.Derivative();
*(*i)->tempState *= h;
*(*i)->nextState = *(*i)->currentState;
*(*i)->nextState += *(*i)->tempState;
(*i)->UpdateState(STATE_NEXT);

}
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for(i = integObjects.begin(); i != integObjects.end(); i++){
(*i)->Stabilization(h);

}

As noted before, the SystemDynamics() function is called before any derivatives

are taken. Then, the system iterates through the integObjects and performs an

Euler step on each element. The use of standard template lists gives us easy manage-

ment, but requires an extra level of indirection. After the next state is computed, the

UpdateState() function is called to acquire all the auxiliary properties such as veloc-

ities from momenta for rigid bodies and spatial velocities and accelerations for rigid

bodies. This is necessary for collision detection and resolution since objects are tested

for intersection using the next state positions, velocities, and accelerations. Once all

the objects are integrated, the Stabilization() function is called to perform any

post-integration methods.

During the simulation step, the physics engine will first call Integrate() and

then Commit() to advance the simulation. The simulation step will be discussed in

more detail in Section 4 of this chapter.

3. The Collision Detector

To add believability to a physics simulation, the simulation must detect and respond

appropriately to collisions. Our physics engine incorporates this functionality into

a CollisionDetector class. This class deals with the Collidable interface and

provides a number of intersection methods. The class definition is presented below:

class CollisionDetector : public Object, public Renderable {
public:
CollisionDetector();
~CollisionDetector();
void AddObject(Collidable *obj);
void AddObject(Constraint *obj);
void RemoveObject(Collidable *obj);
void RemoveObject(Constraint *obj);
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void UpdateConstraintSet(bool &needBacktrack, bool &needImpact);
void ResolveImpacts(const double &h);
void ResolveContacts(const double &h);

protected:
list<Collidable*> activeList;
list<Collidable*> passiveList;
list<Constraint*> constraintObjectList;
vector<Contact> contacts;
vector<Contact> restingContacts;

Wm4::LCPSolver *lcpSolver;
double collisionThreshold;

};

The CollisionDetector class inherits from the Object class and implements

the Renderable interface. We found it very useful to visualize contact information

as bodies collide. The class simply defines a Render() function that renders contact

points, normals, velocities, and forces when the simulation is running in debugging

mode.

Objects implementing the Collidable interface are stored in activeList or

passiveList, depending on whether collision is enabled for that object. The variable

constraintObjectList holds objects implementing the Constraint interface. The

total set of constraints is represented as a vector of contacts in the collision detector.

Initially, all contacts are treated as colliding contacts. After collision resolution,

contacts are tested for acceleration violations, and are moved to the restingContacts

array as appropriate. The LCPSolver class is used to compute the solution to the

Linear Complementarity Problem as described by Eberly [18]. Finally, a variable that

determines the collision tolerance is defined. This value is used when determining if

two objects collide or intersect, as well as in other calculations.

The first four methods in the CollisionDetector class, aside from the con-

structor and destructor, add and remove objects that implement Collidable and

Constraint interfaces to the collision detector. The next three methods are used in

the simulation step.



56

a. Collision Detection

UpdateConstraintSet() performs several tasks. The current implementation per-

forms an exhaustive set of intersection tests. The tests check to see which of the

collidable objects intersect by running the Intersect() method for each pair. Class

property collisionThreshold is used to determine whether two objects intersect.

The two parameters to the function, needBacktrack and needImpact, are set based

on the return values of the intersect tests. If any of the tests return a value of +1

for intersection, the needBacktrack boolean is set to true. If contacts are present,

i.e. the return value for at least one test is 0, then the needImpact is set to true.

The booleans tell the physics engine if the integration has proceeded too far and

intersections are occurring, or if contacts are present that have to be resolved.

n
p

Fig. 14. Two sphere-trees in contact.
We get the contact point p and contact normal n from the sphere-tree intersection.

Since we are mainly dealing with polyhedral objects, we need a method of de-

termining if two bodies collide. For this thesis, we have decided to use sphere-tree
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bounding volumes for our collision detection method. As can be seen in Figure 14,

we get the collision information directly from the spheres instead of actually testing

intersecting geometry. There are several reasons for using sphere trees. First, the

sphere is a very simple primitive. Second, sphere-sphere intersection tests are very

fast and always yield some sort of collision information. Even if two spheres are deeply

intersecting, we can still get some approximate contact point and normal information

(Figure 15). Third, intersecting sphere tree hierarchies allow for quickly culling away

large portions of the model that cannot be intersecting. And finally, this method

allows us to represent any closed model without being limited to any particular shape

or convex geometry.
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Disjoint Spheres Contacting Spheres Intersecting Spheres

Fig. 15. Sphere contact and intersection.
If the distance between the radii of two spheres is smaller than some small value ε, the
spheres are in contact. Note that even if spheres are intersecting, we can still get a good
guess at the contact point and normal.

We use Bradshaw’s adaptive medial axis method for sphere-tree construction

[19, 20]. This method initially constructs a medial axis for a closed polyhedral body

based on surface point samples. Initial guess spheres are fitted to the vertices of

the medial axis and are refined using various methods. Figure 16 demonstrates that

this method provides fairly tight-fitting trees around the geometry. Depending on

the depth of the tree, the contact information is a good approximation to the real

surface.
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Fig. 16. Third sphere-tree level of a dragon model.

There are, of course, some drawbacks to using spheres for collision detection.

Accurately representing objects with large planes is difficult. Collisions on sides

of large boxes give slightly random bounce directions due to the underlying sphere

representation. However, if the objects do not have large planar sides, the sphere-

tree representation is quite effective. The other major drawback of this method that

unlike a polygonal mesh, the sphere is a continuous surface. Figure 17 illustrates one

problem that this creates. During resting contact resolution, contact forces may not

be enough to keep a sphere from interpenetrating. If a sphere is spinning in place with

no friction, the contact point will have centripetal acceleration ac upwards, offsetting

acceleration due to gravity ag. The contact force is then just large enough to keep that

point from interpenetrating. However, the contact point is rotating about the body’s

center of mass while the center falls through the plane. Resolving continuous surface

contacts is a complex topic which increases in complexity when multiple continuous

objects are involved [21, 22].
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Fig. 17. Spinning sphere problem.
The contact point, p, is partially accelerating upward due to centripetal forces. The contact
force F is enough to keep p from interpenetrating on the next step, but not the rest of the
sphere.

b. Colliding Contact Resolution

The next function, ResolveImpacts(), is called if needBacktrack is false and

needImpact is true. During intersect testing, contacts are collected into the contacts

array. The set of contacts is then processed for collision resolution and the solution is

found at once using the Linear Complimentary Problem solver. However, we general-

ize the solution to the Collidable interface so that any entity that properly defines

that interface can be used.

The system of equations for the Linear Complementarity Problem has the fol-

lowing form:

Kf + v−

rel = v+

rel,

where K is a matrix of n × n size, f is a vector of impulses, v−

rel is a vector of pre-

impulse velocities, and v+

rel is a vector of post-impulse velocities. The solver will find

solutions for f and v+

rel that satisfy the LCP constraints. For rigid bodies, computing
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the matrix K involves calculating mass and inertial properties. For other dynamic

objects, such as articulated bodies, this becomes more difficult, and another method

has to be developed. In order to build the matrix, we use the ApplyTestImpulse()

methods of the Collidable interface. Each matrix component kij gives the effect of

a unit impulse in the normal direction of contact i on the relative velocity of contact

j. The pseudocode for building the matrix is presented in Algorithm 2.

Algorithm 2 Pseudocode for BuildMatrix.

procedure BuildMatrix

n = number of contacts

for i = 1 to n do

Ai.ApplyTestImpulse(pi, ni)

Bi.ApplyTestImpulse(pi, −ni)

for j = i to n do

vA
p = Aj.GetTestPointVelocity(pj)

vB
p = Bj.GetTestPointVelocity(pj)

vrel = (vB
p − vA

p ) · nj

kij = kji = vt
rel − vrelj

Ai.ResetTestState()

Bi.ResetTestState()

The first loop iterates through the contacts and applies an equal but opposite

test impulse to each of the bodies in the contact. The subscript refers to a contact,

so Ai, pi , and ni would be body A, point, and normal of contact i. Once the test

impulse along the contact normal is applied, the velocity of the two bodies changes.

The inner loop iterates through the contacts to check how the relative velocity was

affected in all the other contacts. Here, vp is the point velocity of body A or B as

denoted by the superscript, vrelj is the relative velocity of the original contact, and

vrel is the relative velocity resulting from the test impulse. Note that if neither of the

bodies in contact i are related to bodies in contact j, the test impulse has no effect

and kij is zero. Moreover, the matrix is diagonally symmetrical, so we only need to
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compute half of its components.

Aside from the matrix, we need the v−

rel vector, the relative pre-impulse velocities

of each of the contacts. v−

reli
= 0 if vreli > 0 and v−

reli
= εvreli if vreli < 0. The Linear

Complementarity Problem solver gives us f , which contains f1 through fn. Then, the

impulse for each body in a contact is

fA
i = fini ,

fB
i = −fini .

The ApplyImpulse() function of the Collidable interface is used to apply the impulse

at the contact point for each body.

c. Resting Contact Resolution

The last critical function of the CollisionDetector class is ResolveContacts()

and differs from ResolveImpacts() in that it deals with resting contacts instead of

colliding contacts. Once again, we have a Linear Complementarity Problem, this time

described by

Kf + a−

rel = a+

rel,

which determines the forces needed for resting contact resolution. As mentioned in

section III.A.3 and section III.B.6, the relative velocity of each contact point must

be zero within some tolerance. If the contact list is unchanged from the impact

resolution step, the same matrix K can be used. Otherwise, K will be a subset of the

other matrix since some contacts may be separating. We still need to determine a−

rel.

a−

reli
= 0 if areli > 0 and a−

reli
= areli otherwise.

Once we have the matrix and the vector of initial accelerations, we can use the

Linear Complementarity Problem solver to get the contact forces and the resulting

accelerations. The function AddForce() is used to apply those forces to each body
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at the points.

d. Friction
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Fig. 18. Contact with friction.

Friction is an important physical behavior necessary for visually realistic sim-

ulation. Figure 18 shows some common vectors used during friction contact. To

accommodate friction, we extend the matrix K built up in the collision response

stage. We do this to introduce extra frictional constraints. Kokkevis formulates the

appropriate constraints in the following way [5]:

an − ad
n ≥ 0 complementary to fn ≥ 0

(at − ad
t ) + λ ≥ 0 complementary to ft ≥ 0

µfn − ft ≥ 0 complementary to λ ≥ 0

The variables an, at, and ad
n, ad

t are the actual and desired accelerations along

the normal and tangent directions. fn and ft are the force magnitudes along those

directions. µ is the coefficient of friction and λ is a Lagrange multiplier that is

used to limit the magnitude of tangential friction. We know actual accelerations
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and we can calculate the desired accelerations. ad
n = 0 since we want to prevent

objects from accelerating toward each other. Dynamic friction will try to cancel out

all of the tangential velocity in one timestep h, therefore, ad
t = −v−

t /h. For static

friction, ad
t = 0 as friction will try to prevent the point from accelerating. The third

constraint will limit tangential forces to the magnitude of the normal force scaled by

the coefficient of friction.

Having three constraints for each contact implies that there will be three equa-

tions for each contact in the Linear Complementarity Problem. A single contact in

matrix form is formulated as
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We now have some new variables: knn, ktn, knt, ktt. The first, knn, refers to the

response of relative normal velocity to a unit test impulse along the normal direction.

Likewise, ktt is the response of relative tangential velocity to a test impulse along

the tangential direction. knt and ktn are the responses of relative normal velocity

to tangential test impulses and vice-versa. It is these new variables that we must

compute to build our new friction matrix KF .

We have structured KF mirroring the 3×3 matrix. The entire matrix has dimen-

sions 3m × 3m where m is the number of contacts. It consists of nine submatricies:
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Each submatrix has dimensions m × m, including the zero matrix 0 and the

identity matrix 1. Each k has a subscript that denotes what contact velocity and

what test impulse is being compared. For example, kn1t3 would show the response of

contact 3 tangential relative velocity to an impulse along contact 1 normal. The lower

left matrix is an identity matrix with the coefficients of friction along the diagonal.

Again, this matrix can be used for both colliding contacts and resting contacts.

For colliding contacts,

v−

rel =
[

v−

n1
, · · · , v−

nm
, v−

t1 , · · · , v−

tm , λ1, · · · , λm

]T

,

where vn1
through vnm

are defined as described earlier. vt1 through vtm are the pre-

impulse tangential velocities. For resting contact,

a−

rel =
[

a−

n1
, · · · , a−

nm
, at1 − ad

t1
, · · · , a−

tm − ad
tm

, λ1, · · · , λm

]T

,

where ad
t1

through ad
tm

are defined as described at the beginning of this chapter. The

pseudocode for building the friction matrix is presented in Algorithm 3.
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Algorithm 3 Pseudocode for BuildMatrixFriction.

procedure BuildMatrixFriction

n = number of contacts

for i = 1 to n do

Ai.ApplyTestImpulse(pi, ni)

Bi.ApplyTestImpulse(pi, −ni)

for j = i to n do

vA
p = Aj.GetTestPointVelocity(pj)

vB
p = Bj.GetTestPointVelocity(pj)

vn
rel = (vB

p − vA
p ) · nj

vt
rel = (vB

p − vA
p ) · tj

kninj
= knjni

= vn
rel − vn

relj

knitj = ktjni
= vt

rel − vt
relj

Ai.ResetTestState()

Bi.ResetTestState()

Ai.ApplyTestImpulse(pi, ti)

Bi.ApplyTestImpulse(pi, −ti)

for j = i to n do

vA
p = Aj.GetTestPointVelocity(pj)

vB
p = Bj.GetTestPointVelocity(pj)

vn
rel = (vB

p − vA
p ) · nj

vt
rel = (vB

p − vA
p ) · tj

ktinj
= knjti = vn

rel − vn
relj

ktitj = ktjti = vt
rel − vt

relj

Ai.ResetTestState()

Bi.ResetTestState()

fill in µi and identity matricies
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Even though the code is longer, the major difference from the frictionless scenario

is that another test impulse is needed along the tangential direction. Additionally,

an impulse along one direction now produces two coefficients for each contact. Here,

vn
relj

and vt
relj

are the original relative velocities of contact j along the normal and

tangential directions. vn
rel and vt

rel are the relative velocities resulting from the test

impulse. The rest of the matrix is easy to fill. Once the matrix and the vectors are

built, the solver can give us the impulses and forces needed to resolve collisions and

contacts with friction.

4. The Simulation Step

All of the elements described in this section are finally brought together in the physics

engine under the update loop. The update loop takes a simulation step and performs

several tasks. First, it integrates the system based on the requested timestep. Then, it

checks for contacts or intersections. If intersections occur, the system backtracks until

only contacts remain. Once only contacts are present, the collision detector resolves

the impacts and resting contacts, and the simulation continues. The pseudocode in

Algorithm 4 is based on Kokkevis’s model for articulated dynamics [5] and has been

adapted for a general system.

Whenever the simulation loop starts, we always know the current state of the

entire system. The call to Integrate() invokes the system dynamics function to get

all the appropriate accelerations and computes the next state for each object. At

that point, we know all the positions, orientations, velocities, and accelerations. If

any contacts are found, the collision detector deals with them using those attributes.

A successful Commit() call advances the current state of each object to the next state.
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Algorithm 4 Pseudocode for the Simulation Step.

procedure SimulationStep(h)

while h > 0 do

hTry = h ; repeat = true

while repeat do

simSystem.Integrate(hTry)

needBacktrack = false ; needImpact = false

collisionDetector.UpdateConstraintSet(needBacktrack, needImpact)

if needBacktrack then

hTry = hTry/2

continue

if needImpact then

collisionDetector.ResolveImpacts()

collisionDetector.ResolveContacts()

h = h − hTry

simSystem.Commit()

repeat = false

C. guppy3d and Dynamics

It was possible to incorporate the standalone physics code into the immersive envi-

ronment with little trouble. Since the dynamics run independently, it was simply

a matter of providing the correct interface between the immersive engine and the

physics engine. The primary interaction consists of SidRenderable methods that

provide guppy3d the location of the physics models and their shader properties.

Essentially, the dynamics work in the following manner. The immersive engine

is initialized with the standard scene file. This file includes lights, camera, and user

information. Additionally, it has any non-dynamic geometries. Then, the immersive

engine initializes an instance of the physics engine, and loads in a dynamic scene file.

This file defines rigid bodies and articulated bodies, as well as any static geometry in

the world. Then, using the SidRenderable interface, guppy3d gets locations of the

dynamic models and their shader properties.
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With this method, the physics engine is not overly intrusive in guppy3d, as the

engines only interact in a few places. guppy3d has to initialize the physics engine,

tell it which scene file to load data from, and call its Update() method. guppy3d

has been modified to run a dynamic scene using the following steps.

1. Any previously running guppy3d processes are terminated across the server

and all clients.

2. Each machine performs the following steps:

(a) guppy3d application is launched with the guppy3d scene and the dy-

namics scene files as parameters.

(b) The guppy3d scene file is parsed for geometry, lights, camera, and user

information. This geometry will make up the non-dynamic elements of the

scene.

(c) An instance of the physics Engine class is created.

(d) The physics scene file is parsed. Any light or camera information is ignored.

Dynamic objects in the physics file are added to the engine.

(e) All objects implementing SidRenderable interface in the physics engine

are added to the guppy3d scene.

3. The server physics engine is designated as the main engine; the rest are marked

as clients.

4. Server begins its display loop.

During each iteration of the display loop, the server calls the Update() function

of its physics engine with the appropriate timestep. The physics engine performs a

simulation step, updating the positions and orientations of its dynamic objects. Those
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dynamic objects implementing the SidRenderable interface update the guppy3d

transformation properties. The server then proceeds to display the scene.

Additionally, the server acquires a NetSync data structure from the physics en-

gine and all of its synchronizable objects. Using the network, the server updates the

clients with this information. The clients return their current frame number back to

ensure that no frames were dropped. The cycle then repeats.

The networking in guppy3d had to be modified to a more generalized scheme.

Previously, the immersive engine was only capable of sending camera and user infor-

mation across the network. It had hard-coded methods for generating and receiving

this message. However, the physics engine necessitates a more versatile method of

transferring not only camera and user information, but all the dynamic transforma-

tions as well. The NetSync interface allows us to do just that. In order to incorporate

guppy3d native camera information into this scheme, we had to create a new ob-

ject for the physics engine. This object, SidData, implements the NetSync interface

and contains pointers to guppy3d camera transformation. After instantiating the

Engine class, a SidData object is initialized and added to the physics engine. The

physics engine’s NetSync message now contains camera and dynamic information.

After the clients receive the physics engine message, they read the SidData object to

get updated camera data.
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CHAPTER V

RESULTS AND DISCUSSION

We have set out to accomplish several goals in this thesis. First, we wanted to

supplement existing literature with implementation details. Second, we wanted to

design and validate a physics framework built using a well-structured object-oriented

approach. The framework should be extensible, allowing users to quickly add new

dynamic behaviors. Third, we wanted this framework to function as a standalone

application. And finally, we wanted to incorporate the framework into an immersive

rendering engine to extend its functionality.

A. Documentation of Concepts and Algorithms

While developing the framework for the physics engine, we have studied the literature

on rigid body dynamics and articulated dynamics, as well as hybrid simulation and

collision detection and response. We presented a thorough explanation of the basics

for rigid body dynamics and articulated dynamics in chapter III.

We define rigid body and articulated dynamics properties necessary for simula-

tion. We explain the basics along with necessary notation such as spatial algebra,

give derivations for these properties, and provide pseudocode algorithms for more

complex concepts. Additionally, we discuss how both types of dynamics respond to

collisions and define the properties needed for applying impulses and forces.

Articulated body collision response in particular is a difficult topic. We explain

how to propagate impulses and apply forces to an articulated structure using simple

forces. These methods are used to bring rigid body and articulated dynamics collision

response into a single system and to detail the actual structure of our framework. We

present an extensible way to incorporate other types of dynamic behavior into one
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framework through the use of interfaces. Other aspects of the physics engine, such as

integration, rendering, and networking are also discussed along with the main Engine,

CollisionDetector, and SimulationSystem classes.

We explain how to set up matrices and vectors needed for general contact resolu-

tion, in both colliding and resting cases. Friction is incorporated into this model with

an extended algorithm for building the friction matrix. We also discuss our collision

detection scheme and how we arrive at the contact information. We bring everything

together by presenting our pseudocode for a general timestep.

Finally, we discuss how the physics engine ties in with guppy3d. The neces-

sary steps for launching an immersive scene with dynamics are listed along with the

changes we needed to make to guppy3d in order to incorporate our physics engine.

B. The Framework

Our implementation of a generalized physics framework utilizes dynamics concepts

discussed in chapter III. The physics engine is built using the interfaces and classes

detailed chapter IV. Rigid bodies and articulated dynamics are both supported.

In the following subsections, we present the results from the standalone appli-

cation utilizing the physics engine. While we were concerned with running speeds of

the simulation, our first priority was functionality. Therefore, the simulation could

benefit from a number of speedups that will be mentioned as various parts of the

framework are discussed.

1. Rigid Bodies

We have been able to simulate the behavior of various rigid bodies. Figure 19 shows

one such example. Using sphere-trees for collision detection, we can make any closed
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surface into a rigid body. Structuring our code according to the interfaces presented

in chapter IV, the state of our rigid bodies is correctly integrated each timestep.

Fig. 19. Rigid bodies in the standalone application.

The collision detector determines the contacts between each pair of bodies and

applies the appropriate impulses and forces. The Linear Complementarity Prob-

lem solver deals with multiple simultaneous contacts and computes the necessary

responses. Our physics engine handles resting contact and multiple stacking bodies.

Figure 20 shows one example of stacking blocks. We were also able to simulate a

number of other scenarios such as billiards and bowling shown in Figures 21 and 22.

2. Articulated Dynamics

Using the Articulated Body Method, we were able to simulate a number of dynamic

scenarios (Figure 23). The structure as shown in Figure 12 on page 39 allows the

articulated structures represented by the KSkeleton class to move realistically due

to gravity and allows the links to collide with ground planes, static geometry, rigid

bodies, and other articulated bodies. We have constructed articulated structures such

as pendulums, pistons, and simple skeletons.
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Fig. 20. Rigid bodies in resting contact.

Simulating an articulated structure is a much slower operation than simulating

a rigid body. Although the complexity of the Articulated Body Method is O(n), the

constant terms slow down the simulation significantly. Spatial matrices and vectors

have six dimensions and multiplying 6 × 6 matrices is costly. There are possible

speedups that could be implemented for transformation matrix multiplication [5].

For collision detection, we treat each link as a separate piece of geometry, essen-

tially a rigid body represented by a sphere-tree. The joints collide with static and

rigid body geometry and come to rest appropriately. Collision response for articulated

dynamics, however, becomes a very expensive operation, since the entire Articulated

Body Method has to be called for each test impulse. A faster version of the ABM

is used for the test impulses with significantly smaller constant terms. Since many

properties have already been calculated in the full version of the ABM, these can be

reused for testing impulses. Additionally, because only the effect of test forces on

accelerations is desired, the effects of other forces may be ignored. Even with a faster

method, multiple simultaneous contacts require numerous test impulses and pose a

significant impact to the framerates.
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Fig. 21. Rigid bodies in a billiards simulation.

Fig. 22. Bowling.
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Fig. 23. Various articulated scenarios.

3. Collision Detection and Response

The collision detection method is fairly robust. The sphere-sphere intersection test

is fast and provides useful contact information. We had to make one minor change

to the sphere-tree construction which can cause a potential slowdown. Figure 24

shows a problem with sphere-trees that do not require a parent sphere to completely

encompass all of its children. It is possible for two sphere-tree leaves to be in contact;

however, that contact may not be recorded if the parent spheres are not touching or

intersecting. Once the parent spheres do touch or intersect, the children have already

penetrated beyond the collision threshold. Requiring that parents cover the space of

the children is not necessary if the underlying geometry or polygons are tested for

intersection; however, our sphere-sphere test requires it.

Although using sphere-trees for collision detection has many advantages, it also

presents some adverse behaviors. As we mentioned in the section IV.B.3.b, the sphere

itself is a continuous surface. Using large spheres, therefore, is problematic since most

of the rigid body ideas are built around polyhedral representations. We also observed

a type of “rocking” behavior with objects coming to rest. This would happen if two

of the resting contacts happen to be large spheres. The object would roll on those

contacts and rock back and fourth. This behavior, however, was only seen with coarse
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Body A

Body B

Body A

Body B

No Contact Intersection

Fig. 24. Parent spheres do not cover all children spheres.
The smaller spheres are children of the larger ones. On the left, the trees are actually in
contact, but because the parent spheres do not touch, this contact is not recorded. On the
right, the parent spheres are in contact, but the children have already intersected.

sphere-tree representations.

As section IV.B.3.a mentions, we are currently using a brute-force intersection

check between all models. This is a very slow procedure and could easily benefit

from a coherence-based sweeping method [4]. Such a method would achieve O(n)

body-body tests instead of the brute-force O(n2).

Our collision response involves using a Linear Complementarity Problem solver

to determine the impulses and forces necessary for contact resolution. We found this

method had advantages and disadvantages. First, it guarantees that impulses and

forces will prevent penetrating velocities and accelerations. Setting up the system of

equations was fairly easy and using test impulses generalizes the collision response

system nicely. Additionally, the code for a Linear Complementarity Problem solver

is available on the web.

However, as the number of contacts increases, the speed of finding a solution

becomes an issue. Using temporal subdivision further exacerbates the problem as
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the solver may need to be called multiple times to resolve multiple substeps. We had

tested a method that collects all contact information and attempts to solve everything

at the end of the timestep, but that resulted in a slower framerate. The reason was

that the solver has one larger system as opposed to several smaller ones.

Friction, therefore, becomes very costly in this scenario. Since each contact is

represented by three equations, the size of the system triples. We noticed that it was

possible to have hundreds of contacts when several rigid bodies were closely packed

together. With friction, the running time of the simulation dropped below interactive

speeds. However, for small numbers of bodies, this is not a problem. As Figure 25

shows, friction functions as expected in the simulation. In this case, the block has

an initial velocity down the ramp and a non-zero restitution. It slides to a stop as

expected.

Fig. 25. Block on an inclined plane.

4. Integration

We currently use a basic Euler integration scheme in the physics engine. This has

some advantages and some disadvantages.

Euler integration was very easy to implement. Contact point velocities cannot

change sign during an integration step. In other words, if two objects have separating



78

velocities, acceleration will only affect them by the next time step. This helps for

resting contact since separating velocity is guaranteed to keep a point separating.

Euler integration also guarantees a linear relationship between applied forces and

velocities.

However, Euler integration is also inherently unstable for undamped oscillatory

systems. This is particularly troublesome for resting contact and swinging motions

of articulated dynamics. Objects coming to rest tend to vibrate before settling.

Since articulated chains frequently involve cyclical motions of swinging joints, Euler

integration without damping induces system instability and gain of energy. In order

to simulate pendulums of more than four or five links, we need to introduce a lot of

damping into the articulated system, resulting in less plausible motion.

One solution that would benefit the simulation is an adaptive timestep [23]. This

method would allow the integrator to vary the stepsize to meet the current accuracy

and stability requirements of the simulation.

5. Framework Extensibility

To see how easily the framework can be extended, we implemented some additional

behavior beyond rigid body and articulated dynamics. While those two behaviors

are also implementing the interfaces of the framework, the framework itself does

not know about the the state setup, derivatives, and simulation information. After

implementing that information, however, we can quickly define new behaviors.

We have extended the rigid body class in several ways to get new behaviors. One

simple idea was to make a rigid body that does not spin. We accomplished that by

overriding AddForce(), ApplyImpulse(), and ApplyTestImpulse() methods. We

changed the functions so that the forces and impulses act only on the center of mass.

A more complicated example was flocking behavior. We extended the RigidBody
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class into a Boid class that behaves according to basic flocking rules as described by

Reynolds [24]. A simple super-class Flock was also created to add some higher-level

functions for managing the flock. The header for the Flock class is presented below.

class Flock : public Object {
public:
Flock();
void AddBoid(Boid *b);
void RemoveBoid(Boid *b);

void SetKaKvKc(const double &Ka, const double &Kv, const double &Kc);
void SetDistAngles(const double &innerDist, const double &outerDist,

const double &innerAngle, const double &outerAngle);
void SetShader(const string &shader);

//Object
bool ImplementsInterface(const InterfaceType &type, void **iObj);

protected:
vector<Boid*> boids;

};

The class defines methods for adding and removing boids to the flock. Addition-

ally, it has methods for setting shading properties and animation parameters for the

boids. Finally, it defines methods that a child of an Object class must implement.

The Boid header is given below. As can be seen, the header is very short as a lot of

the information is reused from the rigid body definition:

class Boid : public RigidBody {
friend class Flock;

public:
Boid(Engine *e, string set, string model);

//redefining some functions
void AccumulateForces();
void UpdateState(const SimulationStateState &state);

protected:
double Ka, Kv, Kc;
double desiredVelocity, maxForce;
double visibilityDistance, innerVisibilityDistance;
double visibilityAngle, innerVisibilityAngle;
vector <Boid*> *others;

};

The boid only needs to redefine some of the integration functions. The primary

behavior comes from the AccumulateForces() and UpdateState() functions. Addi-

tionally, the boid needs to define a number of useful parameters. Ka, Kv, and Kc are
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animation parameters for coefficients of avoidance, velocity matching, and clustering

respectively. desiredVelocity is the optimum velocity for the boid and maxForce

is a limit on how much force the boid can experience due to flocking. The visi-

bility parameters control the distance and angles at which the boid responds to its

neighbors.

The AccumulateForces() function is responsible for the flocking behavior. First,

it determines which neighbors are visible to each boid based on the distance and angle

parameters. Then, it collects some distance and vector information from each visible

neighbor. The forces due to each of the three behaviors (avoidance, velocity matching,

and clustering) are then computed. Finally, the final force is computed based on the

maxForce parameter. To get basic flocking, the entire function is less than 50 lines.

The body of AccumulateForces() as well as the rest of the Boid class is presented

in Appendix A.

UpdateState() performs an auxiliary role and determines the orientation of the

boid depending on its velocity. With just these functions, we quickly get a new

dynamic behavior from the system. We show an example of the flock in action in

Figure 26.

We can efficiently develop new functionality for the boid: for example, we can

have the boid implement a Camera interface to allow tracking or “bird’s view”. While

the basic method simply rotates the boid to face the direction it is moving in, a more

elaborate scheme would use torques to rotate the boid. With torques and forces af-

fecting the position and orientation of the boid, the boid would also be able to respond

correctly to rigid body collisions. Overriding the Intersect() method defined by the

Collidable interface would allow us to perform other tasks upon collision. We could

have the boid bounce, explode, or perform another action. Finally, we could have ex-

tended the KSkeleton class and had the boid perform a flying animation by applying
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Fig. 26. Flocking behavior from the Boid class.

actuator forces or simply playing a pre-recorded animation of angles for joints.

We believe that the ease with which we were able to add this additional behavior

is indicative of the framework’s extensibility. The framework takes care of the more

mundane aspects such as adding the object to appropriate interface lists, allowing the

developer to focus on more important functionality. For the Boid class, we needed to

redefine only a few functions and add a new class that essentially holds a list of all

the boids in the flock. Building the Boid class from scratch would have been more

involved, but the developer would have more control of what functionality to include.

C. Dynamics in the Cave

We have integrated the framework into the immersive rendering engine, guppy3d. As

discussed in section IV.C, the integration was fairly straightforward. After making

the necessary adjustments to the immersive engine, we could load dynamic scenes
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and display the simulation on multiple facets. Figure 27 shows the flock simulation

running in guppy3d. Other scenarios, such as billiards and bowling in Figures 28

and 29 were also functional with the dynamics mostly intact.

Fig. 27. Flocks in guppy3d.

User, camera, and dynamic information is transferred to the clients over the

network using the physics engine’s NetSync interface. The synchronization ensures

that all the information is consistent across the machines. Dynamic objects move

coherently from one facet to the next. Figure 30 shows an example of some rigid

bodies spanning multiple facets. The rigid bodies overlapping more than one facet

have the correct orientation and position. Motion of more complex dynamics, such

as the chain in Figure 31, also transfers correctly.

In the simple scenarios that we tested, the speed of the dynamics has not been an

issue. The immersive engine easily maintained real-time framerates of about 60 frames

per second. Of course, complex dynamic structures and multiple rigid bodies slow
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Fig. 28. Billiards in guppy3d.

Fig. 29. Bowling in guppy3d.
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Fig. 30. Rigid bodies in guppy3d.

Fig. 31. Articulated dynamics in guppy3d.
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down the system. The speed issues result mainly from the problems discussed in the

previous section of this chapter. The same situations that would cause the standalone

system to slow down (such as multiple contacting pins with friction) would slow down

the immersive environment equally. Although the framerates dropped as low as 10

frames per second occasionally, the system was still usable. As we mentioned before,

there are a number of speedups that could easily bring those numbers to real-time

range.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

We have designed an extensible framework for simulating physical behaviors. Our

implementation supports rigid bodies and articulated dynamics with collision detec-

tion, response, resting, and friction. Rigid bodies bounce, roll, and come to rest

appropriately. Links of articulated bodies collide with rigid bodies, other links, and

come to rest correctly on planes. During the development of the framework, we

carefully studied the literature dealing with these concepts. This thesis presents a

thorough discussion on the basics of these ideas, as well as illuminating less exposed

implementation details.

Our framework can handle any closed object as a rigid body or a link in an

articulated structure. Using sphere-trees, we can perform quick intersection tests on

polyhedral surfaces and get approximate contact information. Generalized collision

response methods can determine the impulses and forces needed to prevent objects

from interpenetrating. Together with a generic integration scheme, these methods

coherently bring rigid body and articulated dynamic behaviors together. We explain

how the collision response is implemented and what functions the interfaces require.

Using these interfaces, many other dynamic behaviors can be added to the framework.

We can easily extend existing behaviors to get new ones. We demonstrated that

by designing a flocking Boid class extended from a rigid body. This extension was

quick and efficient. Although we went for simplicity, with a little more work, the

framework would allow us to add more complex functionality such as boid animation

via articulated dynamics or physically based flight.

Overall, the dynamics added new depth to even the simplest scenes in the immer-

sive environment. While the scenarios we have shown are not complex, they display
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the basic capabilities of the framework. More immersive scenes and environments can

be designed that take advantage of the physics.

During development, we focused on the functionality of the framework. There-

fore, there are a number of issues that need to be resolved. In order to support more

dynamic objects, various speedups need to be implemented as mentioned in chapter

IV. These include adaptive timestepping, higher order integration, sweeping meth-

ods for collision detection, and general speedups throughout the framework. Such

improvements would also allow for more complex scenarios and better articulated

motion.

Further dynamic features can be implemented to extend the capabilities of the

framework. Particle dynamics can provide a number of useful effects such as sparks,

smoke, fire, water, explosions, and the like. Computations that take advantage of

specialized graphics or physics processors can drastically speed up computations and

provide the user with the ability to simulate thousands of dynamic objects in real-

time. Additional constraints are also necessary for more elaborate structures. For

example, point constraints could be used to introduce loops into articulated struc-

tures. Such structures could then be used to physically represent motors, steam

engines, and other automated machines.

The framework presented in this thesis is a strong foundation for a generalized

physics engine. The system is modular, extensible, and its implementation and con-

cepts are well documented. We have shown how we designed the framework from

the ground up as well how we implemented the various behaviors. This system can

be used in a standalone form or as an augmentation to an immersive environment

and supports a number of different dynamic scenarios. It has the potential to support

numerous behaviors, scenes, and environments limited only by the user’s imagination.
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APPENDIX A

CODE FOR BOID CLASS

This appendix defines the AccumulateForces() and UpdateState() function of the

Boid class.

void Boid::UpdateState(const SimulationStateState &state){
RigidBody::UpdateState(state);
//update rotation based on velocity
if(velocity.norm() > SMALLNUMBER){
//find rotation quaternion
Vector3d cross(Vector3d(1, 0, 0) % velocity.normalize());
nState->rotation = Quaternion(RAD2DEG *

acos(Vector3d(1, 0, 0) *
velocity.normalize()), cross.x, cross.y, cross.z);

Vector3d z(nState->rotation * Vector3d(0, 0, 1));
double turnMagnitude = z * nState->force / velocity.norm();
if(turnMagnitude > 1) turnMagnitude = 1;
if(turnMagnitude < -1) turnMagnitude = -1;
nState->rotation = nState->rotation *

Quaternion(turnMagnitude * 90, 0, 0, 1);
}

}

void Boid::AccumulateForces(){
RigidBody::AccumulateForces();
vector<Boid*> nearBoids;
vector<double> nearWeights;
vector<double> dists;
vector<Vector3d> Us;
//check based on distance first
for(unsigned i = 0; i < others->size(); i++){
if((*others)[i] == this)

continue;
Vector3d otherPos((*others)[i]->GetPosition());
//check distance
double dist = (otherPos - GetPosition()).norm();
if(dist < visibilityDistance){

double weight = dist < innerVisibilityDistance ? 1.0 :
(visibilityDistance - dist) /
(visibilityDistance - innerVisibilityDistance);

//check angle
Vector3d U = (otherPos - GetPosition()).normalize();
Vector3d v(nState->rotation * Vector3d(1, 0, 0));
double theta = acos(U.normalize() * v.normalize()) * RAD2DEG;
if(theta < visibilityAngle){

weight *= theta < innerVisibilityAngle ? 1.0 :
(visibilityAngle - theta) /
(visibilityAngle - innerVisibilityAngle);

nearBoids.push_back((*others)[i]);
nearWeights.push_back(weight);
dists.push_back(dist);
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Us.push_back(U);
}

}
}

//forces for avoidance, velocity matching, and clustering
Vector3d Fa, Fv, Fc;
for(unsigned i = 0; i < nearBoids.size(); i++){
Fa += mass * (-nearWeights[i] * Ka * (1.0 / dists[i]) * Us[i]);
Fv += mass * ( nearWeights[i] * Kv *

(nearBoids[i]->GetVelocity() - GetVelocity()));
Fc += mass * ( nearWeights[i] * Kc * dists[i] * Us[i]);

}

//prioritize forces
Vector3d newForce;
double magFa = Fa.norm();
if(magFa > maxForce){
newForce = Fa.normalize() * maxForce;

}
else {
newForce = Fa;
if((Fa + Fv).norm() < maxForce){

newForce += Fv;
if((Fa + Fv + Fc).norm() < maxForce){

newForce += Fc;
}
else

newForce = maxForce * (Fa + Fv + Fc).normalize();
}
else

newForce = maxForce * (Fa + Fv).normalize();
}
double dist = GetPosition().norm();
if(dist > 300)
newForce += (dist - 300) * -GetPosition().normalize();

AddForce(ZeroVector, newForce);
}
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