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ABSTRACT

Essays on Pricing Under Uncertainty. (May 2008)

Diego Alfonso Escobari Urday, B.A., Universidad Católica Boliviana;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Li Gan

This dissertation analyzes pricing under uncertainty focusing on the U.S. airline

industry. It sets to test theories of price dispersion driven by uncertainty in the de-

mand by taking advantage of very detailed information about the dynamics of airline

prices and inventory levels as the flight date approaches. Such detailed information

about inventories at a ticket level to analyze airline pricing has been used previ-

ously by the author to show the importance of capacity constraints in airline pricing.

This dissertation proposes and implements many new ideas to analyze airline pric-

ing. Among the most important are: (1) It uses information about inventories at a

ticket level. (2) It is the first to note that fare changes can be explained by adding

dummy variables representing ticket characteristics. Therefore, the load factor at a

ticket level will lose its explanatory power on fares if all ticket characteristics are

included in a pricing equation. (3) It is the first to propose and implement a measure

of Expected Load Factor as a tool to identify which flights are peak and which ones

are not. (4) It introduces a novel idea of comparing actual sales with average sales

at various points prior departure. Using these deviations of actual sales from sales

under average conditions, it presents is the first study to show empirical evidence of

peak load pricing in airlines. (5) It controls for potential endogeneity of sales using

dynamic panels.

The first essay tests the empirical importance of theories that explain price dis-

persion under costly capacity and demand uncertainty. The essay calculates a mea-
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sure of an Expected Load Factor, that is used to calibrate the distribution of demand

uncertainty and to identify which flights are peak and which ones are off-peak. It

shows that different prices can be explained by the different selling probabilities. The

second essay is the first study to provide formal evidence of stochastic peak-load pric-

ing in airlines. It shows that airlines learn about the demand and respond to early

sales setting higher prices when expected demand is high and more likely to exceed

capacity.
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CHAPTER I

INTRODUCTION

Dynamic pricing or most commonly known yield management, is used to describe

pricing and inventory control decisions. It is important in industries that deal with

perishable products such as airlines, where unsold seats perish when the flight leaves

the gate. Dana [21] explains that yield management in airlines is used to (1) deal with

costly capacity and demand uncertainty, (2) implement price discrimination, and (3)

implement peak-load pricing. Because of the lack of appropriate data, there exists few

empirical understanding on how airlines are actually setting fares and its dynamics

as the flight date approaches. This dissertation sets to provide empirical evidence

supporting these three roles of dynamic pricing. This analysis takes advantage of a

unique U.S. airline’s panel disaggregated at the ticket level that contains the evolution

of offered fares and seat inventories over a period of 103 days for 228 domestic flights

that departed on June 22nd, 2006.

Chapter III tests the empirical importance of the price dispersion predictions

of the Prescott [48], Eden [25], and Dana [21] models. Building on Dana [21], it

constructs a theoretical model with two empirical predictions with equilibrium price

dispersion derived in a setting with costly capacity and demand uncertainty. The

theoretical section shows that different fares observed for the same flight can be ex-

plained by the different selling probabilities attached to each of these fares. Using

information from the T-100 of the Bureau of Transportation and Statistics, this chap-

ter calculates a measure of an Expected Load Factor. This measure is then used to

This dissertation follows the style of Journal of Economic Theory.
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calibrate the distribution of demand uncertainty under the assumption of normally

distributed demand states. The theoretical model, as well as Dana [21], has two em-

pirical predictions: (1) higher prices can be explained by lower selling probabilities,

(2) this effect is larger in more competitive routes. Despite the wide applications of

this type of models of costly capacity and demand uncertainty to several important

market phenomena, there exists little empirical evidence supporting these models. Us-

ing the panel of U.S. airline fares and seat inventories, we find evidence that strongly

supports both predictions of the models. Higher fares observed close to departure can

be explained by aircrafts having less available seats. Moreover, the cost of capacity

for those seats is larger than for the seats sold early. Using the Herfindahl-Hirshman

Index to capture the maret structure, it is also shown that the effect of costly capacity

on fares is greater in more competitive markets. After controlling for the effect of

aggregate demand uncertainty on fares and under the assumption that carriers do

not learn about the state of the demand as sales progress, we also obtain evidence of

second degree price discrimination in the form of advance-purchase discounts.

Chapter III shows that airlines learn about the demand as sales progress and the

departure date nears. Demand learning for airlines is important because in flights

when the final demand results to be low, unsold tickets are of little value after de-

parture. Moreover, in flights where the final demand is large, carriers may have

to give up important profits when they run out of tickets and some relatively high

willingness-to-pay consumers that arrive late are not able to find a seat. Under a

price sensitive demand, stochastic peak-load pricing suggests that at any point prior

departure airlines should set higher fares in expected peak flights, where demand is

more likely to exceed capacity. Furthermore, in order to promote sales and to avoid

having empty seats after departure, lower fares should be set in expected off-peak

flights. The chapter starts by calibrating the distribution of demand uncertainty un-
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der a price commitments assumption. In this scenario, the distribution of demand

uncertainty is sufficient to explain why fares increase as departure date nears. Then

to see the impact of demand learning on fares, we need a measure of the status of

actual sales as compared to sales under average conditions. To do this we use non-

parametric techniques to construct a threshold variable to identify different expected

demand states at different points prior departure. This threshold variable is utilized

to dictate the regime shift in a panel endogenous threshold model. Consistent with

the stochastic peak-load pricing predictions, the results show that higher fares are set

in the peak regime when expected demand is large. Lower fares are set in the off-peak

regime when demand is expected to fall short. To control for potential endogeneity

problems regarding part sales levels, the chapter also runs some GMM dynamic panel

specifications following Arellano and Bond [1], Arellano and Bover [2], and Blundell

and Bond [8].

Finally, chapter IV summarizes the results.
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CHAPTER II

PRICE DISPERSION UNDER COSTLY CAPACITY AND DEMAND

UNCERTAINTY

A. Introduction

It is widely observed that prices of homogeneous goods within the same market ex-

hibit price dispersion. Some of the most recent evidence includes retail prices for

prescription drugs in Sorensen [51], and internet electronic equipment markets in

Baye and Morgan [5]. Various models, including search frictions, information asym-

metries, and bounded rationality, have been proposed to explain this phenomenon.

Here we seek to establish the empirical importance of the price dispersion predictions

in the Prescott [48], Eden [25] and Dana [21]’s models.

Prescott [48] considers an example of hotel rooms where sellers set prices before

they know the number of buyers, then the equilibrium prices will be dispersed; lower-

priced units will sell with higher probability, while higher-priced units will sell with

lower probability. Hence, sellers face a tradeoff between price and the probability of

making a sell. This same tradeoff is observed in Eden [25], who formalizes Prescott’s

model in a setting where consumers arrive sequentially, observe all offers and after

buying the cheapest available offer they leave the market. He derives an equilibrium

that exhibits price dispersion even when sellers are allowed to change their prices

during trade and have no monopoly power. This flexible price version of the Prescott

model, developed in Eden [25] and Lucas and Woodford [45], is known as the Un-

certain and Sequential Trade (UST ) model. Dana [21] extends the Prescott model

with price commitments for perfect competition, monopoly, and oligopoly and shows

that firms offer output at multiple prices. In the oligopoly equilibrium, the market
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distribution of prices converges to the Prescott’s distribution as the number of firms

approaches to infinity. Moreover, as competition is greater, average price level falls

and price dispersion increases. As explained in Eden [28], from the positive economics

point of view it does not matter whether prices in the Prescott’s model flexible of

rigid. From the point of view of the seller and this paper, both will have the same

resulting allocation. In this paper, both the flexible and the rigid version of the model

are commonly referred as Prescott-Eden-Dana (PED hereafter) models.

Versions of the PED model have been applied to solve a variety of economic

phenomena, such as wage dispersion and market segmentation (Weitzman [57]), pro-

cyclical productivity (Rotemberg and Summers [50]), the role of inventories (Bental

and Eden [6]), real effect of monetary shocks (Lucas and Woodford [45]; Eden [26]),

destructive competition in retail markets (Deneckere, Marvel, and Peck [23]), advance

purchase discounts (Dana [19]), stochastic peak-load pricing (Dana [20]), gains from

trade (Eden [28]) and seigniorage payments (Eden [29]). Despite its wide applications,

few papers test the empirical predictions of the PED models.

This chapter provides a formal test of the PED models while helping to ex-

plaining price dispersion in the airline industry, which is considered to have one of

the most complex pricing systems in the world. We take advantage of a unique U.S.

airlines’ panel disaggregated at passenger level that contains the evolution of fares

and inventories of seats over a period of 103 days for 228 domestic flights departing

on June 22, 2006. The data collection resembles experimental data which controls

for most of the product heterogeneities observed in the industry. This represents the

perfect control for fences that segment the market allowing our analysis to explain

the use of seat-inventory control just under demand uncertainty, costly capacity and

price commitments.

Moreover, airlines represent the perfect environment to test the price dispersion
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under demand uncertainty and costly capacity. First, air tickets expire at a point in

time; once the plane departs carriers can no longer sell tickets. Second, capacity is

fixed and can only be augmented at a relatively high marginal cost. Once carriers

start selling tickets they are unlikely to change the size of the aircraft.1 This implies

that we can focus on the demand side uncertainty without having to worry about

any the uncertainty in the supply given our time frame of study. Moreover, as in

the PED models, after we control for ticket restrictions that screen costumers, all

airplane seats are the same and buyers have unit demands. In order to explain

price dispersion we enlarge the definition of airplane seats by an additional ’selling

probability’ dimension. Once this is achieved, although prices themselves may be

dispersed, this dispersion can be explained by appropriately rescaling the price of

each unit by its selling probability.

At the risk of over-making this point, let us consider the following example of

a perfectly competitive market with zero profits. Each time a carrier sells a seat,

the expected marginal revenue is set to be equal to the marginal cost. Because of

demand uncertainty, airlines hold inventories of seats that are sold only some of the

times. For those seats that are sold only when demand is high, fares must be set

higher to compensate for the lower probability of sale. In this chapter we develop

a measure of the different selling probabilities. Even though uncertainty is coming

from the demand side, we follow the PED models and represent this by adjusting the

marginal cost of capacity, or ex-ante shadow cost, by these selling probabilities.

By dividing the constant unit cost of capacity by the probability of sale, we

obtain the Effective Cost of Capacity (ECC), and then we measure the impact of

ECC on fares. As predicted by Prescott [48] and Eden [25], ECC should have a

1None of the 228 flights in the sample changed the aircraft size.
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positive effect on fares. Moreover, as predicted in Dana [21], this effect should be

greater in more competitive markets. In this chapter we provide evidence supporting

both predictions. On average, a 1 percent decrease in the probability of sale would

lead to a 0.219 percent increase in prices. Moreover, this effect was found to be

larger in more competitive markets. The reason is straight forward, in a perfectly

competitive marker where firms have no markups; every dollar increase in the ECC

will be transferred to prices. On the other hand, in less competitive markets, part of

the increase in the ECC will be absorbed by the markup.

The findings in this chapter can be additionally motivated as an example of a

spot market subject to demand uncertainty and opened to advance purchases. The

standard formulation of a spot markets subject to uncertain excess demand, assumes

either implicitly or explicitly, a tatonnement process that restricts trade until the

market-clearing price is found. As pointed out in Dana [21], a spot market subject

to price commitments should be opened to advance purchases. As we approach the

departure date, the dynamics of fares and inventories in a flight is an example of how

the market clearing price is achieved without having to restrict trade in the resolution

of uncertainty in the demand. Along the chapter we discuss how the analysis carried

out resembles a spot market with price commitments.

By helping to explain one of the sources of price dispersion, this chapter has

an important implication for the airline industry as well. Borenstein and Rose [10]

calculated that the expected absolute difference in fares between two passengers on a

route is 36 percent of the airline’s average ticket price. One important source of this

price dispersion is the existence of intrafirm price dispersion due to advance-purchase

discounts (APD). Substantial discounts are generally available to travelers who are

willing to purchase tickets in advance. This kind of pricing practices can promote

efficiency by expansions in output when demand is elastic or may be the only way



8

for a firm to cover large fixed costs. Gale and Holmes [35] justify the existence

of APD in a monopoly model with capacity constraints and perfectly predictable

demand. They show that firms using APD can divert demand from peak period

to off-peak period and achieve a profit-maximizing method of selling tickets. In a

similar setting, but with demand uncertainty, Gale and Holmes [34] show that APD

can promote efficiency by spreading consumers evenly across flights before timing of

the peak period is known. In competitive markets, Dana [19] finds that firms may

offer APD when individual and aggregate consumer demand is uncertain and firms set

prices before demand in known. The PED models that we test, explain why carriers

offer lower priced seats to ‘earlier’ purchasers.2 Our results show that one source

of the price variation found by Borenstein and Rose [10] comes from the fact that

carriers face capacity constraints and have to deal with uncertainty in the demand.

Moreover, we find that this source of price dispersion is greater in more competitive

markets, result consistent with Borenstein and Rose [10], who also found greater

price dispersion in more competitive markets. Our findings represent a refinement of

Borenstein and Rose [10]. They attribute this result to price discrimination using a

model of monopolistic-competition with certain demand. We argue that if demand

uncertainty is considered, part of this price dispersion can be explained by carriers

dealing with capacity costs and uncertain demand. The present chapter is the first

empirical approach, to my knowledge, that includes uncertainty in the determination

of prices in the airline industry.

Despite a number of applications of the PED models, few papers test the em-

pirical predictions of the model. Eden [27] provides a test and finds a negative re-

2Note that the term ‘earlier’ used refers to the case when passengers who buy
before other passengers, rather than a temporal dimension. Travelers purchasing
seats even long before departure may not benefit from APD if most of the seats in
the airplane have already been sold.
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lationship between inventories and output. However, as pointed in the same article,

this negative relationship is not necessarily an outcome of the PED models. In fact,

other models, such as the model of inventory control, would generate the same pre-

diction. Wan [56] tests part the models using data from online book industry. She

tests the effect of stock-out probability and search cost on price dispersion and finds

evidence that higher stock-out probabilities are associated with higher prices. The

PED models requires capacity (how many books to store or how many seats on an

airplane) to be fixed in the short run. This is less likely to be true for the online book

industry than for the airline industry. In addition, Wan [56] does not test the effect

of competition on the prices.3

The organization of this chapter is as follows. Section B describes the data and

its characteristics. The theoretical motivation and the empirical specification are

presented in Section C; first explaining the theoretical motivation, then showing how

we model demand uncertainty with an application. Section D explains the empirical

results. Finally, Section E concludes the chapter.

B. The data and its main characteristics

The main data source in this chapter comes from data collected on the online travel

agency Expedia.com for flights that departed on June 22, 2006. It is a panel with 228

cross section observations during 35 periods making a total of 7980 observations. Each

cross section observation corresponds to a specific carrier’s non-stop flight between a

pair of departing and destination cities. The data across time has one observation

every three days. The first was gathered 103 days prior to departure, the second 100

days and so on until 7, 4, and 1 day(s) prior to departure, making the 35 observations

3Bilotkach [7] mentions the potential role of the PED models in explaining price
airline dispersions, but his dataset does not allow him to formally test the model.
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in time per flight. As in Stavins [52], the date of the flight is a Thursday to avoid the

effect that weekend travel could have. The carriers considered are American, Alaska,

Continental, Delta, United and US Airways. The number of flights per carrier was

chosen to make sure the share of each of these carriers on the dataset is close to its

share on the US airlines’ market. For each flight at each time period, this dataset

gives us the cheapest available economy class fare and the number of seats that have

been sold up to that period.

To calculate the sold out probabilities, the analysis uses a second dataset collected

also from Expedia.com. Most airlines and online travel agencies do not display sold-

out flights on their websites. The reason, according to Roman Blahoski, spokesman

of Northwestern, is that they do not want to disappoint travelers. Keeping the online

display simple may also be a motive, and according to Dan Toporek, spokesman of

Travelocity.com,“showing sold-out flights alongside available flights could be con-

fusing.”4 Regardless of the reason, this fact allows us to get the information about

the sold out probability in each of the routes. We initially make a census of all the

available nonstop flights in each of the 81 routes used in the first dataset for seven

days from February 2 to February 8 in 2007. The total number of flights is 5,881.

The collection is done couple of weeks before the beginning of February when we

expect that no flights have yet been sold out, hence Expedia.com should show them

all. Then, for each of these seven days of the week we check Expedia.com once again

late at night the day before departure to see whether each of the flights has still

tickets available. If the flight is no longer there, we assume that it has already sold

all its tickets. This procedure permits us to calculate the sold out probabilities for

each of the routes. We interpret this sold out probability as a lower bound because

4Both quotes are from David Grossman, “Gone today, here tomorrow,” USA To-
day, August 2006.
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i) February is not necessarily a high demand period, and ii) because there may still

be some tickets sold the day of the flight that did not enter the computation.

A second important source of data is the T − 100 data from the Bureau of

Transportation Statistics. From the T − 100 we obtain a panel containing the yearly

average load factors at departure for the same routes as in the main dataset over the

period 1990 to 2005. This helped us to calculate the expected number of tickets sold

in each route. Moreover, this T − 100 gave us the number of enplanements at each

endpoint airport to construct some of the instruments.

1. Fares, inventories and ticket characteristics

A typical flight in the sample looks like the American Airlines Flight 323 from Atlanta,

GA (ATL) to Dallas-Forth Worth, TX (DFW) depicted in figure 1.5 The best way to

look at the evolution of seat inventories, in a way that is comparable between flights,

is to look at the load factor, defined as the ratio of seats sold at each point in time

prior to departure to total seats in the aircraft.6 Load factor will go from zero when

the plane is empty to one when it is full. In figure 1, the load factor for this flight

increases from 0.2, 103 days prior to departure to 0.88 with one day left to depart.

The increase is not necessarily monotonic as can be observed when moving from 34

to 31 days prior to departure. This is because some tickets may have been reserved

and never bought or maybe bought and cancelled later. In this flight fares initially

look fairly stable between $114 and $144, but they have a sharp increase during the

5By request of Dr. Steven Puller, appendix A shows some additional flights.
6Airline’s literature defines load factor only once the plane has departed and as

the percentage of seats filled with paying passengers. It is calculated by dividing
revenue-passenger miles by available seat miles. Here the load factor is defined at
each point in time as the flight date approaches. Escobari [30] also uses the ratio
of seats sold to total seats at the ticket level to obtain some evidence of peak-load
pricing.
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last two weeks before departure and peak its maximum at $279 the last day.
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Fig. 1. Fares and load factors at different days from departure

Figure 2 depicts the average fares for the 228 flights in the sample for each of

the days prior to departure. The most important characteristic is how fares trend

upwards from an average of $258, 103 days prior to departure to an average of $473,

the last day prior to departure. This means that average fares almost doubled during

the period of study.

Figure 3 shows the nonparametric regression of daily sales (as percentage of

total capacity) on days prior to departure using 7752 observation over the 228 flights.

The bandwidth of 1.14 days is obtained by least squares cross-validation. The figure

suggests that as the flight date approaches, more seats get sold. The majority of

the seats are being sold during the last month and there seems to be a drop in sales

during the last few days close to departure.

It is important to know that inventories evolve not just as a result of sales at the

one-way, non-stop flight we are considering. Seats for each city pairs in the sample

can be sold as part of a larger trip or as part of a round trip with an extremely large
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amount of possible options. Along this chapter we will be looking at the carriers’

optimal pricing decision for the one-way, non-stop flight of June 22 and this will have

its own dynamics. This detail is implicit in these types of datasets that look at non

transaction data like Stavins [52], McAfee and Velde [46], Chen [17].

The fares used in this chapter are the cheapest fare available at each point in time

for a seat in economy class. The cheapest economy class fare at each point in time

prior to departure is just the search results found by Expedia.com for any other online

travel agency or carrier’s website when searching for the fare of a given flight.7 It is

worth pointing out that every time a carrier changes its prices, it also changes some

characteristics associated with this fare. To show how fares can be explained with ir-

relevant ticket characteristics, let’s look again at the fares of American Airlines Flight

323 depicted in figure 1. In this example, when the price decreased from $134 to $114

between 103 (March 11th) and 100 (March 14th) days prior to departure, the ticket

characteristics changed from a 10- to a 14-days-in-advance-purchase-requirement, it

changed the first-day-of-travel-requirement from February 11th to March 14th, and

some blackout dates where included along with changes in day-and-time-of-the-flight

restrictions. None of these restrictions have a real impact on the purchase decision or

the effective quality of the ticket unless the traveler knows these characteristics and

carries out a detailed analysis evaluating the possibility of canceling the flight later

on. If the ticket is bought either 103 or 100 days prior the flight day, having a 10- or

a 14-days-in-advance-purchase-requirement is irrelevant. If the passenger has already

7Different types of fares sometimes available are the ones travel agencies directly
negotiate with airline partners. One example is ClearanceFares and FlexSaver
offered by Hotwire.com. These fares come with substantial discounts but impose
additional restrictions and involve higher uncertainty. They do not allow changes or
refunds and do not allow the traveler to pick the flight times or airline at the moment
of booking. Additionally, the traveler cannot earn frequent flyer miles and the fare
paid does not guarantee a specific arrival time. Delays can be greater than a day.
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decided to fly on June 22 and is buying the ticket either on March 11 or March 14,

the first-day of-travel-requirement of February 11 or March 14 are irrelevant as well.

Blackouts and day-and-time-of-the-flight restrictions are only important if the trav-

eler decides to change the day of the flight and the new date happens to be exactly in

one of the blackout dates. Changing dates will be anyway subject to further restric-

tions on the tickets available in the new date, and a penalty of 50 plus the differences

in fares. The fact is that really few passengers actually know these restrictions even

exist since you cannot modify them online and are not printed out in the ticket or

the e-ticket. This example also shows that even if the ticket is bought with more that

21 days in advance, it does not necessarily mean it gets the discount of a 21-days-in-

advance-purchase-requirement. The same goes along with other restrictions; even if

the traveler is willing to accept any blackout or purchase a non-refundable ticket, if

only refundable tickets are available, she may well end up buying it, sometimes with-

out knowing the extra benefits. Stavins [52], McAfee and te Velde [46], and Chen [17]

also look at these type of fare changes, but do not mention this point. The key point

here is that these ticket characteristics that change along with fares are irrelevant for

the travelers, and if buying online, it is sometimes impossible for the buyer to change

these characteristics. Carriers change these irrelevant tickets characteristics to justify

the changes in fares. They do not want to charge two different fares for exactly the

same product just because the transactions occurred at different points in time, even

if these differences in the product do not have any impact on the purchase decision.

In the empirical test we control for the ticket restrictions that do have an impact on

the quality of the ticket. Again, a similar assumption has been implicitly made in

McAfee and te Velde [46] and Chen [17] and just look at the variations in fares with-

out keeping track of the corresponding variation in irrelevant ticket characteristics.

Stavins [52] omits most of these irrelevant ticket characteristics but includes dummy
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variables for some advance purchase restrictions. These dummy variables may ex-

plain changes in fare, but they do not reflect the underlying force behind why carriers

offer advance purchase discounts in the first place. As we argue in this chapter, once

the relevant ticket characteristics are controlled for, the key underlying force is seats

inventories.

2. Representative fare

A typical concern among people who search to buy tickets online is to know whether

or not the fare paid in one place is effectively “the cheapest.” The concern for us is

to know if the fares found in Expedia.com represent the actual fares offered by the

carrier. We want to make sure that the fact that we collected the fare online does

not restrict the analysis to just online fares.

The fares reported on different sites are sometimes different. One source of

discrepancy comes from the fact that different online travel agencies have different

algorithms to report the fares found in the Computer Reservation Systems (CRS).

This plays a role when searching complex itineraries that may involve international

flights. In our dataset this discrepancy does not arise since we are already restricting

the search for a specific flight number on a specific departure date. A second im-

portant source of differences comes from variation across purchasing time and seat

availability at purchase, the subject matter of this chapter. The third important

source of variation arises because different fees and commissions differ across travel

agencies. Expedia.com charges a lump sum booking fee of $5 for every one-way ticket,

Travelocity.com charges $5 as well, while Hotwire.com charges $6. Other websites like

Priceline.com, CheapTickets.com or Orbitz.com allow fees to be a function of the base

airfare, the carrier or the destination. For example, fees at Orbitz.com range from

$4.99 to $11.99.“Brick-and-mortar” travel agencies charge even higher fees that can go
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up to $50. Buying on the phone also imposes additional different fees i.e. CheapTick-

ets.com charges $25 while Travelocity.com charges $15.95 for over the phone bookings.

Requesting a printed ticket will also impose additional variation. Even the carriers

themselves charge different prices for exactly the same ticket. For example US Air-

ways charges no fees if purchased through its website, but charges a $5 fee for tickets

purchased through the airline’s reservation centers and $10 for tickets issued at the

airport or at the city ticket offices. Moreover, the baseline fare may still be different

depending on which Computer Reservation System (CRS) the travel agency uses to

book its tickets.8

Currently, there are four Computer Reservation Systems which store and retrieve

travel information used by all travel agents. These are Amadeus, Galileo, Sabre and

Worldspan. Airlines pay an average booking fee per segment of $4.25 when using a

CRS, while travel agencies usually obtain CRS at no cost or receive certain payments

in exchange for agreeing to use the system. According to the 2005 Report from

American Society of Travel Agents (ASTA) [3], the “brick-and-mortar” travel agencies

have responded by booking part of their sales using the carriers’ websites and not the

CRS. The main source of information of Expedia.com is the Worldspan, but as well as

Orbitz.com, they have established direct connection with airlines’ internal reservation

systems to bypass Worldspan and avoid the CRS fees.

While it is difficult to evaluate price differences for exactly the same ticket offered

offline, for online markets the information is readily comparable. Chen [17] using a

dataset gathered online in 2002 obtained that for quotes found in multiple online

sites the differences in prices are on the order of 0.3 to 2.2 percent. Even though not

mentioned in her paper, these price differences can be tracked down just by comparing

8Additional fees common to all include taxes, special surcharges, segment fees and
September 11 security fees.



18

the different fees charged at each site. Currently, carriers like American, Alaska and

United offer a promise that travelers will always find the cheapest fare in its own

websites. If the traveler finds a cheaper fare (with more that a $5 difference), they

offer paying back the difference plus additional bonus frequent flyer miles. This shows

the carriers’ interest on selling through its own websites. In response, Orbitz.com and

Expedia.com adopted similar policies.

Based on all the multiple ways in which fares can potentially differ for exactly

the same ticket, we have to come up with a clean measure of a “ticket’s fare”. The

best candidate is each carrier website fare which is directly under the carrier’s control

and is free of any additional fees imposed by CRS, travel agencies or the same carrier

if sold offline. For all the carriers in our sample, the fare found in Expedia.com is

$5 more than each carrier’s website fare, thus obtaining the carriers’ website fare is

straight forward. Moreover, it is interesting to know ASTA reported that in 2002 the

biggest on-line travel agency was Expedia.com, with a market share of 28.7 percent,

followed by Travelocity.com (28.5 percent) and Orbitz.com (21.3 percent).

Regarding online sales, we know that they have been growing significantly during

the last couple of years. The ASTA’s report in 2005 citing PhoCusWright Inc. as the

source, state that for leisure and unmanaged air sales, the overall online sales as a

percentage of total sales went up from 30.8 percent in 2001 to 56.2 percent in 2004.

Of these sales, 38.3 percent correspond to online travel agencies and 61.7 percent to

sales through the airlines web sites.
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C. The empirical model

1. Oligopoly model of costly capacity and demand uncertainty

In this section we derive a simple oligopoly model under capacity constraints and

demand uncertainty. The predictions of this basic model were already obtained in a

more formal environment in Dana [21]. The current derivation extends naturally to

our formulation of demand uncertainty and testing procedure in the empirical section.

Let the total number of demand states be H +1. The uncertainty in the demand

comes from the fact that each carrier does not know ex-ante which demand state may

occur. Let Nh be the number of consumers who will arrive at the demand state h,

where h = 0, . . . , H and Nh ≤ Nh+1. This ordering implies that all the travelers who

arrive at demand state h will also arrive at a higher-numbered demand state h + 1.

Now, define a batch as the additional number of travelers that arrive at each demand

state when compared to the immediate lower demand state, so batch h will be given

by Nh −Nh−1 and the first batch is just N0.

Consider the case where consumers’ reservation values for homogeneous airplane

seats are uniformly distributed [0, θ], then the demand at state h is given by:

Dh(p) =
(
1− p

θ

)
Nh (2.1)

Each demand state h occurs with probability ρh. Given that all demand states

have at least N0 potential travelers, the probability of having N0 potential travelers

arriving is Pr0 =
∑H

κ=0 ρκ = 1. In general, the probability that at least Nh potential

travelers arrive is the summation of the probabilities of demand states that have

at least Nh customers, Prh =
∑H

κ=h ρκ. This implies that the probability that Nh

potential consumers arrive is always as high as the one that Nh−1 potential consumers

arrive, Prh ≥ Prh+1. Following Prescott [48], the only cost for the carriers is a strictly
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positive cost λ incurred on all units, regardless whether these units are sold or not.

This cost can be interpreted as the unit cost of capacity (or shadow cost), or the cost

of adding an additional seat in the aircraft. Unlike Dana [21], we assume that the

unit marginal cost of production incurred only on the units that are sold is zero.9

Define the effective cost of capacity (ECC) as ECCh = λ/Prh. This ECC adjusts

the unit cost of capacity by the probability that this unit is sold. Since some of the

seats will be sold only at higher-numbered demand states, if these units are sold, the

effective cost of capacity reflects the costs that should be covered whether or not they

are sold. If the unit cost of capacity is $100, but this unit is sold only half of the

times, if it gets sold, the cost that should be covered is $200.

The number of identical carriers in the market is M . When the demand state

is h = 0 with the corresponding firm’s effective cost of capacity ECC0, the standard

symmetric Nash equilibrium solution of a Cournot oligopoly competition is:

p0 =
θ + M · ECC0

M + 1

δ0 = D0(p0) =
N0(θ − ECC0)M

θ(M + 1)
(2.2)

where p0 is the equilibrium price, and δ0 is the total amount of seats sold. Note

each firm would allocate δ0/M number of seats at price p0. From the second part

of Equation 2.2 we obtain that the potential number of passengers that arrive at

9In our setting this basically means that the only relevant cost for the carriers is
the one incurred when deciding whether or not to hold inventories for an additional
seat. The cost that is assumed to be zero is peanuts (or pretzels and soft drinks plus
any other marginal cost, i.e. baggage transportation). In the hotel example these
marginal costs may include cleaning the room, changing towels, sheets and in many
cases the breakfast.
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demand state h = 0 is:

N0 =
θ · (1 + M)

M
· δ0 ·

[
θ − ECC0

]−1
(2.3)

When the demand state is h = 1, according to equation 2.1, the total demand

at price p0 is given by:

D1(P0) =
(
1− p0

θ

)
·N1 (2.4)

Note that D1(p0) = D0(p0) since N1 = N0, i.e., the total amount of seats de-

manded at price p0 when h = 1 is at least as large as the pre-allocated number of seats

d0. Dana [21] uses proportioning rationing to assign seats at p0. This means that

everybody has a equal chance d0/D1(p0) = N0/N1 to get a seat at p0. The residual

demand, therefore, is:

R1(p|p0) = D1(p)
(
1− δ0

D1(p0)

)
=
(
1− p

θ

)
(N1 −N0) (2.5)

Again, the symmetric Nash equilibrium solutions if the demand function is

R1(p|p0) in 2.5 will be:

p1 =
θ + M · ECC1

M + 1

δ1 = M · (N1 −N0) ·
(θ − ECC1)

θ · (M + 1)
(2.6)

Compare 2.2 and 2.6, we can see that p1 ≥ p0 given that Pr1 ≤ Pr0. In this
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case, from the second part of 2.6 we obtain that the potential number of passengers

that arrive at demand state h = 1 is given by:

N1 =
θ · (1 + M)

M
· δ1 ·

[
θ − ECC1

]−1
+ N0 (2.7)

If the demand state is h = 2, we are interested in the residual demand after those

travelers who have bought tickets at price p0 and p1, denoted as R2(p|p0, p1). To find

out R2(p|p0, p1), we start with the residual demand after those who bought tickets at

p0, denoted as R2(p|p0), which can be obtained from2.6:

R2(p|p0) =
(
1− p

θ

)
(N2 −N0) (2.8)

Travelers who are still in the market after the tickets at p0 have been sold out will

now have the chance to purchase tickets at p1. The number of potential consumers

who will demand tickets at p1 is R2(p1|p0), given by 2.8, and the number of tickets

available at price p1 is R1(p1|p0), given by 2.5, R2(p1|p0) ≥ R1(p1|p0). We apply the

proportional rationing again to get the residual demand R2(p|p0, p1):

R2(p|p0, p1) = R2(p|p0)
(
1− R1(p1|p0)

R2(p1|p0)

)
=
(
1− p

θ

)
(N2 −N0)

(
1−

(
1− p1

θ

)
(N1 −N0)(

1− p1

θ

)
(N2 −N0)

)

=
(
1− p

θ

)
(N2 −N1) (2.9)

The symmetric Nash equilibrium solution for the residual demand function R2(p|p0, p1)

in 2.9 is given by:

p2 =
θ + M · ECC2

M + 1
, δ2 = M · (N2 −N1) ·

(θ − ECC2)

θ(M + 1)
(2.10)
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It is important to mention that here carriers are assumed to not observe the

seat availability of their competitors. Once carriers sell their portion d0/M for the

first batch N0 of potential travelers they take the next step which is pricing the

second batch N1 − N0 of consumers. This assumption guarantees that any given

carrier does not try to allocate its entire capacity to the first batch at the expense of

their competitors. At the end of the derivation once we generalize the findings for a

continuum of demand states, this assumption will be no longer needed.

This Cournot pricing strategy at each of the batches may allow the possibility

that competitors behave strategically as in a repeated Cournot game where in each

subsequent stage of the game firms face each time higher costs given by ECC. Since

this is a finitely repeated game, we just obtain the subgame perfect Nash equilibrium

by backward induction. Firms will not be able to collude since each subgame is played

as a static Cournot game.10

Proposition 1 generalizes previous discussions to any number of demand states.

Proposition 1 Let aggregate demand function be given in 2.1. Rk(p|pk−1, · · · , p1, p0)

is the residual demand when demand state is k and travelers who have bought tickets

at lower prices p0, · · · , pk−1 have left the market (as in Eden [25]). We have:

Rk(p|pk−1, · · · , p1, p0) =
(
1− p

θ

)
(Nk −Nk−1) (2.11)

Proof When the demand state k = 1, according to 2.5, the proposition holds.11 We

will prove: if the proposition holds at demand state k, then it must hold at demand

10The continuum of demand states is like an infinitely repeated game. If collusion
is achieved in this scenario, we just require collusion payoffs in each stage game to
be a function only of the same stage payoffs for the results in this section to hold.
Again, for a stricter derivation of the same results see Dana [21].

11According to 2.9, the proposition also holds for k = 2.
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state k +1. Suppose the proposition at demand state k holds. When demand state is

k + 1, according to 2.9, the residual demand after travelers who have bought tickets

at lower prices of p0, · · · , pk−1 have left the market is given by:

Rk+1(p|pk−1, · · · , p1, p0) =
(
1− p

θ
· (Nk+1 −Nk−1)

)
(2.12)

Therefore, the residual demand after travelers who have bought tickets at lower

prices of p0, · · · , pk−1, pk have left the market is given by:

Rk+1(p|pk, pk−1, · · · , p0) = Rk+1(p|pk−1, · · · , p1, p0)
(
1− Rk(pk|pk−1, · · · , p0)

Rk+1(pk|pk−1, · · · , p0)

)
=
(
1− p

θ

)
(Nk+1 −Nk−1)

(
1−

(
1− pk

θ

)
(Nk −Nk−1)(

1− pk

θ

)
(Nk+1 −Nk1)

)

=
(
1− p

θ

)
(Nk+1 −Nk) (2.13)

Note Rk(pk|pk−1, · · · , p0) in 2.13 is from 2.11 and Rk+1(pk|pk−1, · · · , p0) is from 2.13.

Equation 2.13 proves Proposition 1. �

From the residual demand equation of 2.12, it is easy to get that:

pk =
θ + M · ECCk

M + 1
, δk = M · (Nk −Nk−1) ·

(θ − ECCk)

θ(M + 1)
(2.14)

For the general case, using the second part of 2.14 we obtain that the potential

number of passengers that arrive at demand state h = k is given by:

Nk =
θ(1 + M)

M
· δk ·

[
θ − ECCk

]−1
+ Nk−1 (2.15)

By recursive substitution, considering the construction of the ECC for each batch

of travelers, and for a continuum and infinite number demand states we can obtain

that the number of potential travelers that arrive at demand state h is given by:
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Nh =
θ(1 + M)

M

∫ h

0

δω

[
θ − λ ·

( ∫ ∞

ω

ρκdκ
)−1
]−1

dω (2.16)

From these Nh consumers that arrive at demand state h, only
∫ h

0
δκdκ are able

to buy a seat. Moreover, notice that the price paid by each group ω is different and

given by:

Pω =
1

1 + M

[
θ + M · λ

(∫ ∞

ω

ρκdκ
)−1
]

∀ω ∈ [0, h] (2.17)

This is just the continuum version of the first part of equation 2.14.12 We now

just use this last equation to derive two testable implications:

∂pω

∂ECCω

=
M

1 + M
> 0, and

∂
(

∂pω

∂ECCω

)
∂M

=
1

(1 + M)2
> 0 (2.18)

The first part of equation 2.18 tells us that when the ECC increases, price also

increases. The second part implies that as the market becomes more competitive

(larger M), the marginal effect of ECC on fares is greater. Therefore, for a given

distribution of demand uncertainty more competitive markets will show greater price

dispersion. The expressions in equations 2.18 reduce to a monopoly when M = 1 and

to a perfectly competitive market when M →∞. Note that in a perfectly competitive

market, 2.18 predicts that every dollar increase in the ECC is transferred to prices

as no markups exist to absorb part of this increase.

12Equation 2.17 is analogous to the first equation in p. 1233 in Prescott [48],
equation (10) in Eden [25], equation (11) in Dana [19] and more closely related to
equation (15) in Dana [21] for an oligopoly case. The benefit from our equation (17)
over Dana [21]’s is that by assuming a specific functional form in the demand, price
can be isolated on the left hand side of the equation. Dana [21] provides a more
general derivation of this result.
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2. Modeling demand uncertainty

Let’s initially assume that carriers commit to an optimal distribution of prices for

each flight before demand is known.13 By price commitment we mean that when

demand is low, a traveler who arrives early or arrives late will face the same price

as long as the carrier has not sold tickets in the meantime. Prices increase only if

carriers have been selling tickets. Therefore, the information in the price schedule can

be implicitly included in the functional form specified for the selling probability. This

basically means that the probabilities are predetermined for each price schedule and

the specification of demand uncertainty. The price schedule will be optimal and firms

will not want to depart from it as long as they do not start learning about the state

of the demand. As mentioned by Dana, useful information about the demand may

only be available close to departure or once it is too late for carriers to change fares.

Furthermore, as long as carriers do not learn any useful information about the state

of the demand during the trading process, we can relax the price rigidity assumption

(Eden [25]).

Starting with the simplest scenario where each demand state is equally likely with

probability given by ρh = α/m. This just means that demand states are uniformly

distributed [0, m/α] with m being the total number of seats in the aircraft and α ≥ 1.

The last inequality assures that there is a positive probability that the last seat gets

sold. Following the intuition from section 1, having m/α demand states is the same

as having m/α = H + 1 batches (Nk − Nk−1) of travelers with the first batch N0

showing up with the highest probability and the subsequent ones showing up each

time with a lower probability than the previous one. Assume that the lowest demand

13Later in the empirical section we will allow for some deviations from price com-
mitment. In particular, we allow the possibility of current shocks affecting future
prices by estimating a dynamic model of Arellano and Bond [1].
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state has one consumer buying a ticket (δ0 = 1) and for subsequent demand states

we have one additional buyer each time we move to the next higher demand state

(δk = 1∀k). Because in every demand state there is at least one consumer buying a

ticket, the probability of selling the first seat is equal to one. In all but the lowest

demand state there are at least two travelers, so the probability of selling the second

ticket is given by one minus the probability of the having the lowest demand state,

that is 1− α/m. In general, the probability that seat h gets sold is given by:

Prh = 1− h
α

m
, h ∈ {1, 2, · · · , m} (2.19)

which is just one minus the probability of having any demand state with lower

demand than state h given the carrier’s price distribution q(p). In this equally likely

demand states case, α is a constant that determines the rate at which the probability

that the next seat gets sold diminishes.

Assuming that each demand state is equally likely seems too restrictive. Given

our construction of demand uncertainty, this would imply that having only one pas-

senger flying is as likely as having the plane at half capacity and that the probability

of selling one additional seat decreases linearly. To allow for more flexibility in the

characterization of demand uncertainty we consider the case where ρh = φh, with φ

being the pdf of a normal density that has mean µ and standard deviation σ. From

the discussion so far we know that the probability of selling seat h is the summation of

the probabilities of all demand states that have at least h travelers. For a continuum

of demand states, this is given by
∫∞

h
ρκdκ. Therefore, the probability of selling seat

h for the normal density will be:

Prh =

∫ ∞

h

φκdκ = 1− Φh, (2.20)
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with Φ being the cdf of a normal distribution.

3. Calibrating the probability density of demand uncertainty

To obtain Prh used in calculating the ECC, it is necessary to get the values for the

parameters α in the uniform distribution and the mean, µ, and standard deviation,

σ, in the normal distribution. In this subsection we calibrate the values of these

parameters to mimic the demand uncertainty conditions in each of the routes.

A key source of information for the calibration comes from the T −100 data from

the Bureau of Transport Statistics. We use this dataset to obtain yearly occupancy

rates, or load factors at time of departure. This is done in three steps. First, for

each of the routes in the sample, we calculate its load factor for the 81 routes in the

sample for the period 1990 to 2005, based on the T − 100 data. Second, each of these

81 series is used to estimate an ARMA model. Finally, the estimated ARMA model

is applied to obtain the 2006 value using a one-step ahead forecast.14 For routes

where the ARMA model predicts a high load factor, meaning that most of the seats

are expected to be sold, the calibration procedure will assign higher probabilities to

higher demand states. In this case the ECC is going to be relatively low for a large

majority of the tickets. When the forecasted load factor is low, the probability of

selling the last couple of seats is going to fall fast, meaning that the cost of stocking

inventories is higher.

The problem with the information obtained from the T − 100, however, is that

we have a measure of the forecasted value of the average number of tickets sold rather

than of the forecasted value of the average number of tickets demanded. This arises

because the demand state is censored when transformed to the number of tickets sold.

14The details of the estimation are available upon request.
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Once the aircraft is sold out the T − 100 no longer records higher demand states. To

overcome this limitation let the underlying demand state h∗, be distributed N(µ, σ2)

with the observed number of seats sold h = h∗ if h < m or else h = m. Recall here

that m is the maximum number of seats available in the airplane. Then the expected

number of tickets sold is given by the first moment of the censored normal:

E(h) = Prob(h = m) · E(h|h = m) + Prob(h < m) · E(h|h < m)(
1− Φ

(m− µ

σ

))
·m + Φ

(m− µ

σ

)
·
[
µ− σ

φ
(
(m− µ)/σ

)
Φ
(
(m− µ)/σ

)] (2.21)

The expression for E(h|h < m) is obtained from the mean of a truncated normal

density. The pdf and the cdf of the normal density are evaluated at the moment

the flight sells out. Hence, the value Φ((m − µ)/σ) is interpreted as the sold out

probability. Using information on the probability that a flight sells out, based on the

second dataset obtained from Expedia.com, and the expected number of tickets sold,

obtained from the ARMA models, we can use 2.21 to obtain values for µ and σ.

Calibrating the value of α in the uniform distribution is simpler. We obtain the

analog of equation 2.21, E(h) = 1−α/2, by using the truncated uniform distribution.

This equation can be used directly to get α. In this case since we only have to calculate

one parameter, the sold-out probabilities are no longer needed. The cost of requiring

less information is to have less flexible characterization in which one single parameter

a affects both the mean and the variance of the distribution of demand states.

4. Estimated equation and interpretation

Following a similar approach as Stavins [52], we estimate a reduced-form model of

ln airfare on ECC, market concentration, carrier’s market share and route-specific

factors. The key new variable in our analysis is the ECC that measures the effect of

costly capacity and demand uncertainty by adjusting the unit cost of capacity by the
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probability that the ticket gets sold. The construction of the dataset also allows us to

control for all other relevant ticket-specific characteristics as explained in section B.

The equation to be estimated is given by:

ln FAREijt = β0 + (γ0 + γ1HHIj)× ECCijt + β1DAY ADVijt

+β2DISTj + β3DISTSQj + β4ROUSHAREij

+β5HHIj + ϑ1HUBij + ϑ2SLOTj + β6DIFTEMPj

+β7DIFRAINj + β8DIFSUNj + β9AV EHHINCj

+β10AMEANPOPj + µi + νijt (2.22)

where the subscript i refers to the flight, j to the route, and t is time. Dummy

variables have estimated coefficients denoted by ϑ, otherwise β. µi denotes the un-

observable flight specific effect and νijt denotes the remainder disturbance. Different

error structures will be assumed along the empirical section. Each observation in

the sample represents a unique ticket for a carrier on a route. By route we mean a

combination of departure and arrival airports on a one-directional trip. FAREijt is

price paid in US dollars. From table 1, the sample mean fare is $291, with a mini-

mum of $54 for an American Airlines flight from Dallas Fort Worth, TX to Houston

International, TX when at least 80 percent of the plane was empty. The maximum

is $1,224 in a United Airlines flight from Philadelphia International, PA to San Fran-

cisco International, CA when there are less than 9 percent of the seats available. The

variable of interest in the analysis is ECC which is obtained from ECC = λ/Prh. In

particular, when the distribution is uniform as defined in 2.19, we should have:

ECCijt =
λ

Prhijt

=
λ

1− hijt
αj

mij

(2.23)
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where mij is the total number of seats in the aircraft and hijt−1 is the number of seats

that have already been sold at time t. αj is the mean of the uniform distribution.

ECC is measured in the same units as FARE, nevertheless to be able to interpret

the magnitude of the coefficient; we initially normalize λ to be equal to one. For the

normal density case as presented in 2.20, ECC is given by:

ECCijt =
λ

Prhijt

= λ×
[ ∫ ∞

hijt/mij

√
2πσ2

j · exp
(
− (κ− µj)

2/2σ2
)
dκ

]−1

(2.24)

The values for µj and σj are allowed to change across routes, so they are indexed

by route j. hijt and mij are directly observable from our dataset.

Now we take a look at three different cases where the ECC should play no role

in the pricing decisions and analyze how our construction of this measure respond in

each of these cases. In other words, these are the cases where the model of section 1

should predict no price dispersion due to costly capacity and demand uncertainty.

(i) For routes where we expect higher load factors, costly capacity will play a

less important role. On the limit, when we expect to sell all the seats in the aircraft

in every occasion E(h) = 1. In the case for uniform density αj = 0, and from 2.19 we

get that the probability of selling the next seat does not decrease with the cumulative

number of seats sold, Prh = 1. For the normal density case µj → ∞. In both

situations, there will be no rising ECC as more seats are sold. Holding inventories

of additional seats will have no cost since we know for sure that they will be sold. In

summary, limE(h)→1 ECC = λ.

(ii) A similar phenomenon would happen if aircrafts had infinite capacity, i.e.

no capacity constraints. This can be interpreted as carriers being able to adjust the

size of the aircraft anytime before departure at no additional cost. An alternative

interpretation could be that the good is not perishable; if the good is not sold today,
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it can be sold anytime in the future. Characteristic that does not hold for airline

travel since once the plane departs; carriers can no longer sell tickets. Again, we have

limm→∞ ECC = λ for both the uniform and the normal.

(iii) Finally, in the case of no demand uncertainty, carriers would just set their

capacity levels to match to the certain number of travelers, hence the ECC would

play no role, i.e., limσ→0 ECC = λ for the normal, but no demand uncertainty holds

also for the uniform.

In all three scenarios the price that an airline charges would be same for every

seat, and there will be no price dispersion. That is why models omitting demand un-

certainty in their interpretations like Borenstein and Rose [10] or Stavins [52] would

lead to interpret this variation in prices as price discrimination rather than the ef-

fect of the combination between costly capacity and demand uncertainty. Failing to

adjust the unit cost of capacity by the probability that the seat gets sold would lead

to predict that the shadow cost remains constant, when it doesn’t. In addition to

ECC, the specification in 2.22 includes the Herfindahl-Hirshman Index (HHI) that

measures the concentration on the route. HHI is calculated using ROUSHARE,

which is the carrier’s share of total number of seats in all the direct flights on that

route, not just the ones from the carriers from which we have fares. Even though

similar estimation specifications like in Stavins [52] assumes that HHI is exogenous

to airfare estimation, here we provide instruments for both ROUSHARE and HHI.

We use GEOSHARE for ROUSHARE and XFLTHERF for HHI, as constructed

in Borenstein [9] and Borenstein and Rose [10]. A short explanation of these instru-

ments is given in appendix B and the summary statistics of these two instrument

variables are shown in table 1.

The rest of the regressors in the equation are control variables when the estima-

tion is carried out using carrier fixed effects. DAY ADV is the number of days prior to
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Table 1. Summary statistics
Mean Std. Dev. Min. Max. Obs.

FARE(US$) 291.087 171.879 54.000 1224.000 7933
DAY ADV 52.289 30.154 1.000 103.000 7933
DIST 1104.380 620.720 91.000 2604.000 7933
ROUSHASEA .665 .314 .119 1.000 7933
HHI .684 .287 .259 1.000 7933
HUB .737 .440 .000 1.000 7933
SLOT .298 .458 .000 1.000 7933
DIFTEMP 6.210 4.137 .000 19.000 7933
DIFRAIN 2.010 1.484 .000 4.900 7933
DIFSUN 7.911 8.461 .000 45.000 7933
AV EHHIC(US$) 35580 4620 25198 53430 7933
AV EPOP 1044072 631862 187704 2897818 7933
GEOSHARE .674 .324 .025 1.000 7933
XFLTHERF .708 .285 .252 1.000 7933
ECC-Censored Normal 1.557 .940 1.000 11.668 7933
ECC-Censored Uniform 1.453 1.086 1.005 55.887 7931
LOAD(t = 1) .881 .153 .227 1.000 228
Sold Out Prob. .227 .104 .037 .571 81
Forecasted LF .738 .083 .469 .890 81

departure, while DIST and DISTSQ are the distance and distance square between

the two endpoint airports on a route. DIFTEMP , DIFRAIN , and DIFSUN , are

the differences in the average end of October temperature, rain, and sunshine between

the two endpoints. They are measured in Fahrenheit degrees, precipitation in inches,

and in percentages respectively. Their role is to control for some of the travelers’

heterogeneity (i.e. mix of business and tourists). AV EHHINC and AV EPOP are

average median household income in US dollars and average population of the two

cities respectively.15 HUB is equal to one if the carrier has a hub in the origin or

destination airport, zero otherwise. SLOT is a dummy variable equal to one when the

number of landings and takeoffs is regulated in either origin or destination airport.16

15For cities with more than one airport, the population is apportioned to each
airport according to each airport’s share of total enplanements. Source: Table 3, Bu-
reau of Transportation Statistics, Airport Activity Statistics of Certified Air Carriers:
Summary Tables 2000.

16In some airports like Kennedy (JFK), La Guardia (LGA), and Reagan National
(DCA), the U.S. government has imposed limits on the number of takeoffs and land-
ings that may take place each hour. To take into account the scarcity value of ac-
quiring a slot, the variable SLOT equals to one if either endpoint of route j is one of
these airports and zero otherwise.
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The summary statistics of all these variables are presented in table 1.

To get an estimate of the unit cost of capacity λ̂, let γ̂ι for ι = 0, 1, denote the

estimates of γι when the estimation of 2.22 is carried out assuming λ being one. As

we have previously seen, one important implication from the perfectly competitive

market is that every dollar increase in ECC is passed to prices (see equation 2.18, but

assuming M → ∞). This means that ∂FARE/∂ECC = (γ̂0 + γ̂1HHI)FARE = 1

when HHI = 0. This condition leads to the estimate λ̂ = γ̂ · ¯FARE, evaluated at

the sample mean of FARE and with γ̂0 being interpreted as the share of fares that

corresponds to ECC. Since there is no reason to believe that λ changes across market

structures, we fix it at this value, λ = λ̂. Then, the marginal effect of ECC on fares

for any market structure will be obtained from ∂FARE/∂ECC = 1 + (γ̂1/γ̂0)HHI.

Because of potential changes in costs, Stokey [54] mentioned that the mere pres-

ence of price variation over time is not an adequate measure of intertemporal price

discrimination. Here we are appropriately controlling for raising marginal costs due

to aircraft’s capacity constraints under demand uncertainty. Given the construction

of the model and under price rigidities, DAY ADV is expected to capture the effect

of a type of second degree price discrimination named advance purchase discounts.

D. Results of the empirical analysis

The estimates for equation 2.22 using the censored normal construction of the ECC

and carrier fixed effects are presented in table 2.17 The numbers in parentheses are t-

statistics calculated using robust standard errors. The first column shows the results

when assuming that the effect of ECC on fares does not vary with market concentra-

17The estimation was carried out with an unbalanced panel of 7933 observations
because some fares were no longer available for flights that sold out a couple of days
before departure. The missing observations account for less than 0.6 percent of the
sample and we do not expect this to bias the estimates.
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tion. Consistent with the theoretical predictions, its effect is positive and significant,

implying that higher unit costs of capacity increase fares. When this effect is allowed

to vary with market concentration in column (2), we find that greater market con-

centration, as measured by higher values of the HHI, decreases the positive marginal

effect. The intuition, again, is that in competitive markets every dollar increase in

unit cost of capacity is fully transferred to prices since there are zero markups. In

non competitive markets when markups are positive, part of the increase in unit costs

of capacity are absorbed by markups and the final effect on prices is lower. All the

regression results reported are obtained using the instrument variable GEOSHARE

for ROUSHARE and XFLTHERF for HHI, as suggested in Borenstein [9] and

Borenstein and Rose [10].

Table 2. Estimation results for the censored normal
(1) (2)

Variable Coefficient t-Statistic Coefficient t-Statistic
ECC 0.092 (13.470) 0.163 (8.868)
ECC ×HHI −0.091 (−4.388)
DAY ADV −0.003 (−12.935) −0.003 (−12.198)
DIST 0.002 (37.285) 0.002 (37.180)
DISTSQ −3.4e−7 (−25.577) −3.4e−7 (−25.435)
ROUSHARE 0.252 (5.818) 0.254 (5.868)
HHI −0.079 (−1.660) 0.066 (1.119)
HUB −0.024 (−1.759) −0.026 (−1.868)
SLOT −0.246 (−14.445) −0.253 (−14.755)
DIFTEMP 0.003 (2.322) 0.003 (2.341)
DIFRAIN −0.171 (−33.264) −0.174 (−33.305)
DIFSUN 0.004 (5.149) 0.004 (4.987)
AV EHHINC 1.7e−5 (12.562) 1.7e−5 (12.515)
AV EPOP −1.2e−7 (−11.844) −1.2e−7 (−11.554)
Carrier FE Yes Yes
Flight FE No No
Period FE No No
R− squared 0.482 0.484

Notes: The results reported here are obtained using GEOSHARE as the excluded
instrument variable for ROUSHARE and XFLTHERF as the excluded instrument
variable for HHI. The independent variable is ln(FARE). t−statistics (in parenthe-
ses) are based on White robust standard errors. Carrier fixed effects not reported.

Most of the estimates are directly comparable to the ones obtained in Stavins [52]

who uses a similar dataset collected in 1995.18 Even though it is useful to know our

18The main difference is that Stavins did not have information about seat avail-
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estimates are comparable to effects already documented in the literature, in this

chapter we are not directly interested in the coefficients of time invariant parameters.

Taking advantage of the panel structure of the data, a more suitable specification that

will be able to control for unobserved time invariant parameters, but will wipe out

these estimates is a model with flight fixed effects. These estimates are presented in

table 3. Moving from carrier to flight fixed effects greatly improves the goodness-of-fit

as measured by R2. In all specifications that include flight fixed effect, R2 are greater

than 0.86.

Table 3. Summary of robustness checks
(1) (2) (3)

Censored Normal Censored Uniform Censored Normal
Dynamic Panel A&B

Variable Coefficient t-Statistic Coefficient t-Statistic Coefficient z-Statistic
LNFARE(−1) 0.589 (43.103)
ECC 0.175 (11.883) 0.520 (11.512) 0.185 (12.131)
ECC ×HHI −0.134 (−8.058) −0.519 (−11.503) −0.122 (−6.403)
DAY ADV −0.003 (−24.023) −0.003 (−25.687) −4.3e−4 (−4.055)
Carrier FE No No No
Flight FE Yes Yes Yes
Period FE No No No
R− squared 0.865 0.876 n.a.

Notes: The independent variable is log FARE, N=7933 for columns (1) and (2), and 7472 for
column (3) with 228 cross sectional observations in all cases. t−statistics based on White robust
standard errors. The construction of the ECC based on the censored normal on columns (1)
and (3) and on the censored uniform on column (2).

Table 3 also runs some robustness checks on the construction of the ECC. Col-

umn (1) still uses the censored normal, while column (2) constructs the ECC under

the censored uniform assumption on the distribution of demand states. Both spec-

ifications predict that greater market concentration decreases the positive effect of

ability, thus was unable to control for probability of selling each ticket. Moreover,
her dataset had less ticket observations over only twelve routes, while here we have
eighty-one routes. Consequently we expect our HHI to be a very good approxima-
tion of the market structure. The signs for the estimated coefficients were found to
be the same for number of days in advance purchase (DAY ADV ), distance and dis-
tance square, market share (ROUSHARE), hub, slot, difference in temperature and
average household income. The only comparable coefficient sign that does not match
is average population. We believe our estimate is a better approximation since she
did not adjust average population by the number of airport enplanements as we did.
More populated cities get lower airfares.
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ECC on fares. However, the magnitude of the effect is very sensitive to the choice of

the demand state distribution. The reason why the censored uniform predicts greater

marginal effects is simple: it puts excessive weight on lower demand states. The

censored uniform predicts that low demand states are as likely as any other demand

state. This causes that the ECC rises too fast when the first couple of seats are

sold, over dimensioning the costs of capacity constraints and demand uncertainty.

However, what it’s important is to realize that the basic conclusion holds with dif-

ferent specifications of the uncertain demand. Our measure of the selling probability

which is used to construct the ECC is a function of the number of seats that have

already been sold. However, the number of seats that were sold depends on past

level of fares. This questions the strict exogeneity assumption about the ECC. To

account for this potential endogeneity problem, in column (3) we consider a dynamic

panel data model where we only have to assume that the explanatory variables are

weakly exogenous, plus still instrumenting for the HHI. The idea is to difference

the regression equation 2.22 to remove any omitted variable created by unobserved

flight-specific effects, and then instrument the right and side variables using lag values

of the original regression to eliminate potential parameter inconsistency arising from

simultaneity bias. The estimates represent GMM in first differences as developed in

Arellano and Bond [1]. Here the error term in the model (νijt in equation 2.22) may

affect future dependent and independent variables. For example, suppose the airline

experiences a positive shock at time t that drives up the number of tickets sold. The

Arellano and Bond [1] estimate allows fares and number of tickets sold at t + 1 to

change in response to such a shock, hence the specification is robust to the fact that

the amount of seats sold up to this period is a function of prices in the previous peri-

ods. The result measure how the exogenous component of ECC impacts fares. This

specification is robust against deviations from the price commitment as suggested in
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Eden [25]. Estimates in column (3) are close to the ones in column (1), supporting

the two basic predictions of the theory.

Regarding the exogeneity of ECC, it is important to realize that the argument

in this chapter is to analyze whether one way fares respond to a transformation of

seat availability on that particular flight. However, one way fares are usually a small

portion of the tickets sold. Most of the travelers flying on each of the flights in our

dataset bought this leg as part of a round trip ticket, a connecting flight or both.

The potential combinations are extremely large and the load factor at each point in

time for any of our flights is the result of tickets sold along different combination

of legs, maybe even passengers getting a seat with frequent flyer miles. This is an

important argument in favor of the exogeneity of ECC and would likely explain why

the Arellano and Bond estimates that control for potential endogeneity of ECC do

not differ much from the other set of estimates.

Another important result is the coefficient estimate for DAY ADV , the number

of days prior to departure. As discussed in section A, advanced-purchase discounts

(APD) have been argued in the literature as a way to divert demand from peak

periods to off peak periods (Gale and Holmes [34], [35]; Dana [20]). In column (2),

we include DAY ADV as a control variable. The coefficient estimate is negative

and significant, providing evidence that supports APD. Buying the ticket one day

earlier reduces the fare by 87 cents. Having been controlled for the ECC and under

the assumptions that carriers cannot learn about the state of the demand, this 87

cents is an appropriate measure of second degree price discrimination in the form of

advance purchase discounts. The conditions for this to be considered intertemporal

price discrimination are the same as the ones in Dana [19].

To ease the concern that DAY ADV may enter into the model nonlinearly, in ta-

ble 4 we show the results for three additional specifications. The first one, presented
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Table 4. Nonlinearities in time
(1) (2) (3)

Censored Normal Censored Normal Censored Normal
Variable Coefficient t-Statistic Coefficient t-Statistic Coefficient z-Statistic
ECC 0.121 (8.155) 0.097 (6.634) 0.096 (6.561)
ECC ×HHI −0.113 (−6.690) −0.105 (−6.592) −0.122 (−6.699)
DAY ADV −0.010 (−18.502) −0.024 (−18.802)
DAY ADV SQ 6.4e−5 (14.920) 3.8e−4 (15.800)
DAY ADV CU −1.9e−6 (−14.318)
Carrier FE No No No
Flight FE Yes Yes Yes
Period FE No No Yes
R− squared 0.870 0.875 0.880

Notes: The independent variable is ln FARE, N=7933 with 228 cross sectional observations.
t−statistics based on White robust standard errors.

in column (1), includes a square term for days in advance (DAY ADV SQ), while

the second one, in column (2), includes a cubic term (DAY ADV CU). A completely

flexible model where each time period is allowed to be different with no further re-

strictions is flight fixed-effects, reported in column (3). Comparing the coefficients

reported in table 4 with the ones previously obtained, we conclude that that the posi-

tive coefficient for ECC (γ0 in equation 2.22) the negative coefficient for ECC ·HHI

(γ1 in equation 2.22) hold. However, magnitude of the estimates of the estimates is

somewhat smaller.
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To see how the different specifications assign different weights to different demand

states, figure 4 shows the probability of selling seat h for the uniform and the normal

specifications. The schedules shown are calibrated to match the values for the route

Orlando International in Orlando, FL (MCO) to La Guardia in New York, NY (LGA).

The 2006 forecasted load factor for this route is 0.82, also higher than the average

across routes of 0.74, while the sold out probability was 0.254, higher than the sample

average of 0.225. The forecasted value for this route is shown in the figure as the

expected number of seats sold E(h) = 0.822. Because of the nature of the censored

normal, this value is lower than the average of demand states µj = 0.855. σj and αj

are 0.048 and 0.356 respectively. Note that figure 4 has two different probabilities.

The probability that seat h gets sold, ρh, measured on the vertical axis and the

probability of demand state h, Prh, measured as the absolute value of the slope.

In an m = 100 seat airplane, the censored normal predicts that the 40th passenger

will come with a probability ρ0.4 = 0.98 which obviously does not prevent the next

passengers from arriving, whereas the probability that the plane actually departs with

exactly 40 passengers is Pr0.4 = 0.21 percent. Moreover, the area below each of the

curves is equal to the expected load factor E(h).

From the estimates under various specifications in tables 2, 3 and 4 it is clear that

the main conclusion is robust to various specifications: the effect of ECC is greater in

more competitive markets. Now we can extend the analysis to study the magnitude

of the effect. Under the assumption of zero markups in perfectly competitive markets,

i.e., HHI = 0, we have a direct interpretation of the coefficient on ECC. In column

(1) of table 3, the coefficient for ECC is 0.175, which means that the unit cost of

capacity represents 17.5 percent of the average fare. Given the average fare of $291,

we can calculate the shadow cost of a unit capacity, λ̂ = $50.85. The marginal effect

of ECC on fares is given by ∂FARE/∂ECC = 1 + (−0.134/0.175)HHI. When it is
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evaluated at the sample mean of HHI (0.684), the marginal effect of ECC on fares is

0.476. This implies that for the average market structure one dollar increase in ECC

leads to an increase in 48 cents in fares. When evaluating the effect of ECC on fares

at values of HHI of 0.25, 0.50, and 0.75, we get this one is 0.809, 0.618 and 0.427

respectively. For a monopoly carrier from each dollar increase in ECC, 24 cents go

to increase prices while 76 cents are absorbed by the markup.
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Table 5. Sensitivity of sold-out probabilities
(1) (2) (3)

Censored Normal Censored Normal Censored Normal
Sold-out Prob.+10% Sold-out Prob.+20% Sold-out Prob.+30%

Variable Coefficient t-Statistic Coefficient t-Statistic Coefficient z-Statistic
ECC 0.290 (11.784) 0.430 (11.387) 0.611 (10.553)
ECC ×HHI −0.203 (−7.245) −0.301 (−7.037) −0.451 (−6.923)
DAY ADV −0.003 (−20.133) −0.003 (−18.398) −0.003 (−17.989)
Carrier FE No No No
Flight FE Yes Yes Yes
Period FE No No No
R− squared 0.864 0.863 0.862

Notes: The independent variable is log FARE, N=7933 with 228 cross sectional observations.
t−statistics based on White robust standard errors. ECC calculated using different sold-out
probabilities. Columns (1), (2), and (3) increase the sold-out probability in each route by a lump
sum 10, 20, and 30 percent respectively.

As noted in the construction of the sold out probability, this may be interpreted
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as a lower bound rather than an unbiased calculation of it. To see the response

of the estimated coefficients to higher sold out probabilities, table 5 provides the

estimates when the sold out probability for each of the flights is increased by a lump

sum 10, 20 and 30 percent in columns (1), (2) and (3) respectively. Again, the

main conclusion of the analysis still holds: greater effect of ECC on fares in more

competitive markets. However, the magnitude of λ̂ = γ̂0 · ¯FARE changes; as the

sold out probability increases, the share of the unit cost of capacity on fares increases

as well. This proportion, calculated in table 3 as 17.5 percent, it is now 29.0, 43.0

and 61.1 percent for average sold out probabilities of 32.5 (22.5+10), 42.5 and 52.5

percent respectively. It would be reasonable to believe that this proportion is greater

than our original estimate of 17.5 percent in column (1) of table 3. To get an idea of

the magnitude, figure 5 presents the same AA flight 323 from ATL to DFW shown in

figure 1. The ECC was calibrated with the censored normal with λ̂ = .611 ·148.14. It

would be difficult to argue about the exact size of the markup, but the ranges we are

talking about here look quite reasonable. Moreover, the schedule of ECC on figure 5

seems to explain quite well the path followed by fares with the sharp increase for the

last couple of seats.

The estimates in table 5 prove robustness in one additional dimension. As the

marginal effect of ECC on fares is measured by ∂FARE/∂ECC = 1 + (γ̂1/γ̂0)HHI,

we are interested in whether the ratio γ̂1/γ̂0 changes with the sold out probability. In

our estimates of column (1) in table 3, this one is -0.76 (-18.80) with the t-statistic

in parentheses. For columns (1), (2), and (3) in table 4 this one is -0.70 (-14.63),

-0.70 (-13.81), and -0.74 (-13.71) respectively. This provides some evidence that our

estimate of the marginal effect of ECC on fares is stable, and its magnitude can be

obtained with just a lower bound estimate of the sold out probability.

When dropping the assumption of no markups under perfect competition and
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without any normalization or knowing the value of λ, we can come with an interpre-

tation of the magnitude of the effect of costly capacity on fares. However, this one

is not robust to the magnitude of the sold out probabilities.19 For our estimates in

column (1) in table 3, a one standard deviation increase in the ECC, evaluated at

sample means of HHI and fares, increases prices by $23.77, which corresponds to an

increase of 0.14 standard deviations.

Table 6. Elasticities
(1) (2) (3)

Censored Normal Censored Normal Censored Normal
Dynamic Panel A&B

Variable Coefficient t-Statistic Coefficient t-Statistic Coefficient z-Statistic
LNFARE(−1) 0.592 (43.385)
ECC 0.219 (15.644) 0.398 (12.177) 0.397 (10.331)
ECC ×HHI −0.252 (−6.722) −0.201 (−3.947)
DAY ADV −0.002 (−17.985) −0.002 (−17.691) −1.1e−4 (−0.863)
Carrier FE No No No
Flight FE Yes Yes Yes
Period FE No No No
R− squared 0.850 0.855 n.a.

Notes: The independent variable is log FARE, N=7933 with 228 cross sectional observations.
t−statistics based on White robust standard errors.

Finally, table 6 presents the last set of estimates. These estimates take advantage

of the fact that if we take logarithm of ECC, we break its components in two parts.

The log of λ will become part of the constant in the regression, while the negative

value of the logarithm of the probability that batch h arrives (Prh) will keep the

same elasticity coefficient as the ECC. In these results the negative value of the

logarithm of the probability takes the place of ECC to make the signs comparable

to the previous results. Column (1) tells us that a one percent increase in the ECC

(or same as one percent decrease in the selling probability), increases fares by 0.219

19The results follow from the fact that the marginal effect of ECC on FARE is
homogeneous of degree zero in λ. The marginal effect holds for any positive value of
a:

∂FARE

∂ECC
=
( δ0

αλ̂
+

δ1

αλ̂
HHI

)
FARE × StdDev(αλ̂)
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percent. Once more, as illustrated in columns (2) and (3), the response to ECC is

greater in more competitive markets.

E. Conclusions

This chapter sets to test the empirical importance of the price dispersion predictions

presented in Prescott [48], formalized in Eden [25] and extended in Dana [21]. The

basic idea in these theoretical models is that the equilibrium price dispersion can be

explained by the different selling probabilities associated with each of the units sold.

These selling probabilities play an important role in industries that face capacity

constraints and uncertainty about the number of arriving consumers. Although the

ideas in Prescott [48] have been extended to multiple areas in the economic literature,

few papers attempt to directly test the basic predictions due to the difficultness of

coming up with an appropriate measure of the selling probabilities.

In particular, the chapter seeks to find evidence for the two main predictions.

i) Lower selling probabilities characterized by higher effective costs of capacity will

lead to higher prices. ii) This effect will be larger in more competitive markets. We

start building a simple theoretical framework based on Prescott [48], Eden [25] and

Dana [21] that contains these two main predictions. The richness of this simple model

comes from the fact that it naturally extends to accommodate the calibration of the

demand uncertainty and the empirical procedure developed later. The airline industry

landscapes the ideal scenario to test this theory. First, because capacity is set and

can only be changed at a relatively large marginal cost. Second, the product expires

at a point in time, and third, there is uncertainty about the demand. The empirical

section takes advantage of a unique dataset that observes the evolution of prices and

inventories of seats of 228 flights for over a period of 103 days prior to departure. We
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control for ticket restrictions that screen travelers and isolate the effect of the selling

probability on prices.

Using the information on seat inventories, plus calculations of the sold out prob-

abilities (based on a second dataset), and the forecasted values of utilization rates

(based on a third dataset), we are able to construct the distribution of demand un-

certainty for each of the 81 routes in the sample. With this distribution we generate

a measure of the selling probability and the effective cost of capacity (ECC) for each

of the seats in an aircraft. This allows us to test the model by finding out if ECC has

any effect on the prices, and if so, how this effect varies with market concentration.

Under various specifications, our empirical tests strongly support both predic-

tions of the theory. We show that for the average market structure, when ECC

increases by one dollar, fares increase by 48 cents, whereas the remaining 52 cents

is absorbed by the markup. The elasticity specification tells us that one percent

increase in the ECC (or same as one percent decrease in the selling probability),

increases fares by 0.219 percent. Moreover, price dispersion due to costly capacity

under demand uncertainty was found to be greater in more competitive markets.

The idea is that more competitive markets have smaller markups, so an increase in

marginal costs goes directly to prices. In more concentrated markets where markups

are greater, higher costs are partially absorbed by the markup and the effect on fares

is smaller. In addition, under the assumption that carriers do not learn about the

state of the demand, our results support a second degree price discrimination effect

that indicates that buying the ticket one day earlier reduces fares by 87 cents. Dur-

ing the estimation the chapter takes care of various sources of potential endogeneity,

building a set of instruments for the market structure and benefiting from the panel

structure of the data by running a dynamic model.

Although the dataset collected enjoys some very nice features, it has some draw-
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backs that limit extending the results to the airline industry as a whole. The one-way

non-stop ticket is only a portion of the tickets sold in each flight, and often it is a

small portion. The price schedule posted by carriers as the flight date approaches and

tickets are sold is a great example of the PED models, but in order for the results in

this chapter to hold for the entire industry, we require that the prices of other tickets

vary accordingly with the one-way ticket fares. One of the authors believed that this

is true, but the other was skeptical. Showing this formally is beyond the scope of this

chapter and would require working with a dataset that encompasses more complex

itineraries.
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CHAPTER III

STOCHASTIC PEAK-LOAD PRICING WITH REAL-TIME DEMAND

LEARNING IN THE U.S. AIRLINE INDUSTRY

A. Introduction

The term dynamic pricing, most commonly known as ‘yield management,’ is used to

describe pricing and inventory control decisions. It is important in industries that

deal with perishable products such as airlines, where unsold seats perish when the

flight leaves the gate. Similar examples involve hotel rooms, fashion apparel, cabins

on cruise liners, car rentals, entertainment and sporting events, and restaurants. In all

these cases the seller can improve its revenues by dynamically adjusting the price of

the product rather than committing to a price schedule or a unique price throughout

the selling period. Demand uncertainty plays an important role in airline’s dynamic

pricing because tickets are sold in advance with prices being set when carriers have

limited information about the total number of potential consumers. Moreover, ca-

pacity is set in advance and can only be modified at a relatively high marginal cost.

When demand is relatively low, unsold tickets are of little value for the carrier. Like-

wise, when demand is relatively high the airline may give up important profits if some

consumers with a relatively high willingness-to-pay have to be rationed. This may

be the case of a business traveler who has a relatively large willingness-to-pay for a

ticket but arrives when there are no tickets left.

Learning about a price sensitive demand as sales progress and the flight date nears

is crucial for airlines to price accordingly. The shadow cost of capacity for the seats

on a flight will be different at different points in time prior to departure depending

on the expected demand. When the probability that demand will exceed capacity is
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large, the shadow cost of capacity is large. Peak-load or congestion pricing, defined as

the practice of charging higher prices during peak periods when capacity constraints

cause marginal costs to be high, is the pricing strategy that takes into account this

shadow cost. Borenstein and Rose [10] provide a clear distinction between two types

of peak-load pricing in airlines. Systematic peak-load pricing reflects variations in

the expected shadow cost of capacity at the time the flight is scheduled and before

any ticket is sold, while stochastic peak-load pricing that reflects uncertainty about

individual flights that is resolved as the flight date nears and tickets are sold. In this

paper we control for systematic peak-load pricing and analyze the impact of demand

learning and stochastic peak-load pricing on fares. If at the moment the ticket is sold

carriers expect to have a peak flight, they will charge higher fares. Moreover, expected

off-peak flights will be associated with lower fares.

Despite the large theoretical literature on airlines’ pricing in economics, mar-

keting and operational research, there exists little empirical understanding on how

carriers are actually setting their fares and the dynamics that govern their evolution

as the flight date nears. This is the first empirical paper that evaluates the very

intuitive predictions of stochastic peak-load pricing in airlines and to test whether

airlines can reduce the cost of demand uncertainty by responding to early sales. One

of the reasons why this hasn’t been done before is the lack of adequate data.1 While

most of the empirical research in airlines uses the Bureau of Transportation Statistics’

DB1B, which is a 10% random sample of tickets, recent research has begun analyzing

more detailed data that allows tracking day by day decisions by airlines. Stavins [52],

and more recently Chen [17], and Bachis and Piga [4] among others look at offered

fares by airlines. However, none of these papers has information on inventories of

1Another could be the challenge of coming up with an adequate empirical test.
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seats at each offered fare. This paper takes advantage of a unique U.S. airline’s panel

disaggregated at the ticket level that contains the evolution of offered fares and seat

inventories over a period of 103 days for 228 domestic flights that departed on June

22, 2006. The data collection resembles experimental data which controls for product

heterogeneities and ‘fences’ that segment consumers. This is key, since many price

discrimination tools that define ticket characteristics (e.g. saturday-night-stayover)

are also used for stochastic peak-load pricing to reduce demand uncertainty.2

To test whether airlines learn about the demand and implement a stochastic

peak-load pricing strategy, the empirical section initially obtains the optimal price

schedule under no demand learning by calibrating the ex-ante distribution of demand

states. This is done using information on sold-out probabilities and forecasted values

of occupancy rates. The sold-out probabilities are calculated using a second dataset

from Expedia.com, and the forecasted occupancy rates are obtained using time-series

data on occupancy rates from the T-100 of the Bureau of Transportation Statistics.

Under the Prescott [48]’s type of models, this distribution should give us the optimal

price schedule, which holds through the entire selling horizon as long as airlines do

not learn about the demand or if price commitments hold. The basic idea in the

testing is to analyze whether airlines deviate from this ex-ante optimal price schedule

as information about the demand is revealed. To capture the information about the

demand that is revealed as sales progress, the paper uses the techniques described in

Racine and Li [49] and estimates a nonparametric model using both categorical and

continuous data based on flight- and route-level information to explain the evolution

of sales. The nonparametric results are used to construct a threshold variable that

2A round-trip ticket that involves peak flights may not benefit from a saturday-
night-stayover discount even if the stay has a Saturday night. Moreover, if it involves
off-peak flights, then the discount will have an stochastic peak-load pricing component
and a price discrimination component.
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can distinguish between different expected demand states at different points prior to

departure for every flight in the sample. This threshold variable is later utilized to

control the regime shift in the estimation of a panel endogenous threshold model as

described in Hansen [38] and Hansen [39].

The results are consistent with the stochastic peak-load pricing predictions. The

panel endogenous threshold estimates found the existence of two pricing regimes. In

expected peak flights, where demand is more likely to exceed capacity and the shadow

cost of a seat is high, airlines set higher fares. For expected off-peak flights where

demand is expected to be low, the shadow cost of capacity will also be low. Hence,

airlines will set lower fares to promote sales. To control for the potential interaction

between previous price levels and cumulative sales, the paper also estimates a dynamic

panel, where the assumption of strict exogeneity of the regressors is relaxed. The

GMM dynamic panel results from the difference estimator, as explained in Holtz-

Eakin et. at. [41] and Arellano and Bond [1], and the system estimator, as described

Arellano and Bover [2] and Blundell and Bond [8], where found to be consistent

with the two pricing regimes and the stochastic peak-load pricing predictions found

before. Based on the system GMM estimates, evaluated at the sample average fare

of 291.09 dollars and for a 100 seats airplane, selling one more seat increases fares by

1.21 dollars in an expected off-peak flight while increases fares by 1.72 dollars in a

expected peak flight.

By testing for stochastic peak-load pricing and demand learning, this paper ex-

plains an important source of price dispersion as well. Borentein and Rose [10] calcu-

late that the expected absolute difference in fares between two passengers on a route

is 36% of the airline’s average ticket price. One cost-based source of this price dis-

persion is stochastic peak-load pricing. Even though the figures found in this paper

are not directly comparable to this 36%, we find that an increase of one standard
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deviation in capacity utilization increases peak fares by 15.8% within flight standard

deviations more than off-peak fares. This estimate is after controlling for system-

atic peak load pricing, unobserved flight and route characteristics, and ‘fences’ that

restrict consumers that are commonly used as price discrimination tools.

By focusing on the role of the evolution of inventories on dynamic pricing, this

paper is able to identify three components in the evolution of fares as the flight

date nears. First, the stochastic peak load pricing component as the difference in

fares between peak and off-peak flights. Second, the effect of demand uncertainty

and costly capacity on fares as explained in the theoretical works by Prescott [48],

Eden [25], Dana [21], and more recently by Deneckere and Peck [24]. The importance

of this effect to explain price dispersion has been previously documented empirically

in Escobari and Gan [32]. Finally, the third component, advance purchase discounts.

This last component is consistent with the price discrimination argument in Dana [19],

where the existence of second degree price discrimination takes the form of advance

purchase discounts. Moreover, it is also consistent with the existence of advance

purchase discounts under an uncertain peak demand period in Gale and Holmes [34]

and advance purchase discounts with perfectly predictable peak demand times in

Gale and Holmes [35]. It is important to mention that both of the works by Gale and

Holmes do not consider the shadow cost of capacity and there is no cost-based price

variation. The predicted price dispersion suggests price discrimination.

The organization of the paper is as follows. Section B presents a model of pricing

under demand uncertainty that extends to the empirical testing. The data is explained

in section C. The empirical model is presented in section D. Finally, section E

concludes de paper.



52

B. Airline pricing under demand uncertainty

Airline pricing has three basic characteristics that make its study fascinating. First,

capacity is fixed and can only be augmented at a relatively high marginal cost. It is

unlikely for carriers to change the size of the aircraft once they have already started

selling tickets. Doing so would involve a large rescheduling of the fleet and airport

slots. Second, air tickets expire at a point in time; once the plane departs carriers can

no longer sell tickets. Tickets that haven’t been sold by then have little value to the

carrier. On the other hand, the carrier may still want to reserve a certain number of

seats if it expects to have last-minute travelers who are willing to pay substantially

higher fares (see Lin [44]). Finally, the third characteristic, there is uncertainty in the

demand. This becomes crucial because airlines sell in advance and fares have to be set

when carriers have limited information about the total number of potential passenger

that will show up to get a ticket. Under this basic scenario, it is key for carriers to

learn about the final state of demand as tickets are sold and the departure date nears.

If information about a price sensitive demand becomes available, airlines will want to

adjust their prices accordingly to maximize profits. These characteristics, common

to various industries originated a large amount of theoretical literature on optimal

pricing of a perishable non-renewable asset with stochastic demand. However, there

is still few empirical understanding about how actual prices are set. This is the first

paper that provides evidence of stochastic peak-load pricing in airlines. Moreover, it

is also the first to presents empirical evidence that shows that airlines learn about

the demand as the departure date nears.

Airline pricing, nevertheless, is much more sophisticated than dealing with an

inventory of seats that expire at a point in time. Usually air tickets involve complex

itineraries and carriers exploit ‘fences’ such as saturday-night-stayover requirement,
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minimum- and maximum-stay, nonrefundable purchases, frequent flyer miles, black-

outs, days in advance requirements, or volume discounts to segment consumers. The

nature of the dataset used in this paper resembles experimental data, and jointly

with the econometric techniques employed, it controls for all these fencing devices

and complex itineraries to allow us focusing on the pricing of an inventory of seats

that expire at departure. Therefore, this overview of airline pricing under demand

uncertainty discusses just this case. We begin with the case where there is no demand

learning and capacity is costly. We then explain the implications for pricing decisions

when airlines learn about the demand through the information contained in early

sales. At the end of the section we discuss about the implications of two cost-based

sources of price dispersion for airlines: systematic and stochastic peak-load pricing.

1. Pricing without demand learning

The simplest model that explains dispersed prices for a homogeneous good under

costly capacity and demand uncertainty is Prescott [48]. He considers a model of hotel

rooms where prices are set ex-ante −before the total number of buyers is known−.

Motivated with the airlines’ problem, the Prescott model assumes that there is a

stochastic demand n for homogeneous airline seats with a probability distribution

function F (n). Consumers are identical and purchase only one seat if the price is

lower than a reservation value p. The equilibrium prices will be dispersed with H(p)

being the equilibrium number of seats priced at p or below. Travelers observe all

prices and buy the less expensive unit available. In equilibrium, a seat priced p will

be vacant with probability F [H(p)]. Let λ be the unit cost of capacity incurred on

all units, whether these units are sold or not. In a perfectly competitive market, the

zero expected profit condition implies that expected revenue should be equal to the

unit cost of capacity, [1− F [H(p)]] · p = λ. This last equation can also be written as
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p =
λ

1− F [H(p)]
≡ ECC (3.1)

for all p ∈ [λ, p]. Any price offered in equilibrium must be equal to the unit cost

of capacity divided by the probability that a unit offered at that price will be sold.

Dana [21] interprets this last term as the effective cost of capacity (ECC), which is

the revenue the carrier must earn if the seat is sold in order to cover the unit capacity

cost it incurs whether or not the seat is sold. The intuition from this result is simple.

Consider the case where there are two equally likely demand states and the cost of

holding a seat in the aircraft is $100. If a given seat in the aircraft is only sold during

the high demand state, the carrier has to charge a fare equal to $100/0.5 = $200, to

compensate the times the seat is not sold during the low demand state.

The key implication from the Prescott model is that lower-priced units will be

sold with higher probability and higher-priced unit with lower probability. Therefore,

sellers face the trade-off between price and the probability of making a sell. Even

though Equation 3.1 is constructed for a perfectly competitive market, Dana [21]

derives an analog of Equation 3.1 for perfect competition, monopoly, and oligopoly.

In all cases the key implication is the same. However, in noncompetitive markets, the

effect of ECC on fares has to be adjusted by the size of the markup.

Prescott’s model was later formalized by Eden [25] in a setting where consumers

arrive sequentially, observe all offers and after buying the cheapest available offer they

leave the market. Eden derives an equilibrium that exhibits price dispersion even

when sellers are allowed to change their prices during trade and have no monopoly

power. It is important to realize that the absence of price commitments alone is

not enough to generate stochastic peak-load pricing. Information about the final

state of the demand has to be revealed to price accordingly. Prescott’s “hotels”
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model, as pointed out by Eden [25] and Lucas and Woodford [45], has an interesting

time-consistency property. Deneckere and Peck [24] explain that even is firms could

sequentially compete by choosing a price after each market transaction, fares will

still follow Equation 3.1. The requirement for fares to depart from the original price

schedule predicted by Equation 3.1 is that some additional information about the

final state of the demand is revealed as the flight date approaches.

2. Pricing with demand learning

If fares can adjust as information about the demand is revealed over time, the predic-

tions from the dynamic pricing literature are very intuitive. As explained in Lin [44],

when an airline sells seats for the same class, the fares offered will be different de-

pending on the time to departure and the current seat inventory. The airline has

incentives to promote sale when departure time is approaching and inventories are

high. On the other hand, the airline may still want to reserve some seats if it expects

to have some last-minute travelers willing to pay substantially higher prices. Lin [44]

presents a theoretical dynamic pricing model were customers arrive in accordance with

a conditional Poisson process. Sellers learn about the final state of the demand as

sales move forward and the optimal price adjusts dynamically to maximize expected

total revenue. The results indicate that higher prices should be set when demand is

expected to be larger. A similar result is found in Gallego and van Ryzin [36] and

Kincaid and Darling [42], were at a given point in time prior to departure optimal

prices will be higher if the inventory is lower, signaling a higher demand state.

There is a key difference between the models presented in Kincaid and Dar-

ling [42], Gallego and van Ryzin [36], and Lin [44], and the Prescott-type of models.

In the first ones all costs related to the production of the seat are sunk, so the value

for the seller for an unsold item is zero. If demand is expected to be low, fares are
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allowed to drop, result that explains the ‘last minute deals’ or cheap fares that airlines

offer in some flights in order to promote sales. On the other hand, Prescott-type of

models assume that capacity is costly; airlines have to be able to cover the unit cost

of capacity adjusted by the probability of sale for each of the seats. Moreover, since

there is no demand learning, fares will always increase as sales progress, prediction

that can be easily seen from Equation 3.1. The simplification of no costly capacity in

the first type of models is not realistic, at least for airlines pricing, while the existence

of no demand learning in the second type seems also restrictive. However, as infor-

mation about the demand becomes available, pricing accordingly gains significance

while dealing with costly capacity looses attractiveness. This difference in predicted

outcomes as information about the demand becomes available will let us identify the

existence of demand learning.

The basic information carriers use to learn about the final state of the demand is

realized demand up to a given point prior to departure. This is how many seats have

been sold up to a given point in time, which contains some information about the

speed of selling tickets and can be used to predict whether final demand may exceed

capacity. Models that take into account realized demand in its pricing policies include

Gallego and van Ryzin [36], Chatwin [16], and Lin [44]. The exact nature of how

information about current sales is taken into account to forecast the final state of the

demand is not necessarily important in this paper. Airlines may have very different

ways to use information about early sales to adjust price later on, however, all these

models have the same testable prediction. At a given point in time, lower inventory

levels, signaling an expected higher demand, results in higher prices. Likewise, if time

passes by and no seats have been sold, this is evidence of moving into a low demand

state and lower fares should be set. As will be pointed out below, this prediction

from operational research literature is equivalent to the stochastic peak-load pricing
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prediction found in economics journals.

3. Peak-load pricing in airlines

Classic peak-load pricing models under certainty (systematic peak-load pricing, e.g.

Boiteaux [11], Steiner [53], Hirshleifer [40], Williamson [58]) and peak-load pricing

models under uncertainty (stochastic peak-load pricing, e.g Brown and Johnson [12],

Visscher [55], Carlton [14]) they all suggest charging higher prices during peak times

and lower prices during off-peak times. However, as explained in McAfee and te

Velde [46] these models poorly suit airline pricing. One important reason is that they

assume the existence of a spot market, where all consumers in the peak demand pay

a higher price and all consumers in the off-peak demand pay a lower price. However,

advance purchases and different expectations about the demand prior to departure

are an important ingredient in the pricing problem.

For the airlines, fluctuations in the demand can be broken down into two parts.

The deterministic component that refers to fluctuations in the demand which are

known to carriers before selling starts, and the stochastic component of the demand

for a flight, that is orthogonal to all information carriers have at the time of scheduling.

As explain in Borenstein and Rose [10], these two components of demand give rise to

two different types of peak-load pricing in airlines.

a. Systematic peak-load pricing

As explained in Boreintein and Rose [10], fluctuations in capacity utilization across

flights imply different opportunity costs of providing airline service. As a result,

prices will depend on when a particular customer travels. For flights that depart

during peak times of the day, peak days of the week, or special holidays, most of

the aircrafts will be in use, so the expected shadow cost of aircraft capacity will be
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high. On the other hand, during off-peak times the shadow cost may be close to zero.

At the airport level, peak times congestion can also be associated to higher costs.3

Systematic peak-load pricing will reflect variations in these costs, with prices being

higher in peak periods and lower in off-peak periods.

In order for carriers to follow a systematic peak-load pricing strategy, they require

prior knowledge of peak flights (or peak periods) since systematic refers to variations

in the demand known to carries when they create their flight schedule. In their em-

pirical study, Borenstein and Rose [10] control for systematic peak-load pricing under

the assumption that this one is correlated with the variability in airlines’ fleet utiliza-

tion rates and airports’ operation rates. In the present paper we control for variation

in prices due to systematic peak-load prices as well, but neither this paper nor Bore-

instein and Rose [10] are able to measure the effect of this type of peak-load pricing

on fares. Escobari [31] provides empirical evidence supporting systematic peak-load

pricing by looking at variations in ex-ante known demand intensities. Moreover, he

estimates a congestion premia and provides support for the main empirical prediction

in Gale and Holmes [35], less discount seats on peak periods.

b. Stochastic peak-load pricing

The existence of stochastic peak-load pricing depends on two conditions, the degree of

price flexibility that carriers have over the selling horizon, and the information about

the demand that is revealed as sales progress. Price flexibility alone is not enough

because even if carriers can adjust prices, if no new information about the demand

3Using simulations for the Minneapolis-St. Paul airport, Daniel [22] finds that
airport congestion pricing would reduce net social costs by about 24% by smoothing
out demand of landings and takeoffs. In a more recent paper, Brueckner [13] finds
that airport congestion is fully internalized under a monopoly carrier, but not in
under a oligopoly.
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is learned, they will set the same prices they set before sales begun. If these two

conditions are satisfied, Crew and Kleindorfer [18] explain that the optimal stochastic

peak-load pricing will depend on the probability at the time the ticket is sold that

demand will exceed capacity and the expected shadow cost if this happens. That is,

the shadow cost of capacity will depend on the expectations about the demand. Under

a price sensitive demand, in an expected peak flight, when demand is expected to be

high and more likely to exceed capacity, the shadow cost will be large and carriers

will set higher fares. Likewise, in an expected off-peak −low expected demand− flight

where the capacity constraint is unlikely to be binding, carriers will set lower fares

in order to promote sales. An interpretation of the shadow cost of capacity is related

to the opportunity cost of selling the next seat of the aircraft. In an expected peak

flight this one is high because if the seat is not sold now, it can potentially be sold

later on at a relatively high price.

The price sensitive demand faced at a flight level captures an oligopolistic mar-

ket with some consumers deciding not to travel at higher prices and others and other

consumers deciding to shift to different flights. This demand shifting is central in

peak-load pricing models, because given capacity constraints it is a way to increase

output. In a model were the peak time is unknown, Dana [20] shows that the equilib-

rium price dispersion that arises from demand uncertainty, costly capacity and price

rigidities can achieve the same efficient demand shifting than peak-load pricing. In

this case, under stochastic peak-load pricing, under no price rigidities and once car-

riers learn whether the flight is peak, the shifting should be at least as large as in

Dana [20].

As explained in Dana [21] ‘yield management,’ is utilized (1) to implement peak-

load pricing, (2) to implement third degree price discrimination using ‘fences’ to

separate consumers, and (3) to deal with the pricing under uncertain demand for
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a perishable asset. Some theoretical yield management model such as Kincaid and

Darling [42], Gallego and van Ryzin [36], Chatwin [16], or Lin [44] that explain the

dynamic pricing of inventories that expire at a point in time are consistent with the

stochastic peak-load pricing for airlines presented in Borenstein and Rose [10]. That is,

a lower inventory level at a point in time −signaling an expected peak demand− rises

the optimal price. Moreover, time spent without selling tickets −signaling a shift to a

lower expected demand state− lowers the price. Even though these yield management

models do not talk about peak-load pricing, because as explained in McAfee and te

Velde [47], they focus at the operational and revenue management decision level,

they do not represent a competing interpretation of the observationally equivalent

empirical implication. They can be interpreted as stochastic peak-load pricing models

once motivated with the existence of a shadow cost of capacity. Furthermore, the price

sensitive demand they model can capture the demand shifting argument in peak-load

pricing.

C. Data

The paper has two main sources of data, the Online Travel Agency (OTA) Expe-

dia.com, used to build two datasets, and the T-100 from the Bureau of Transporta-

tion Statistics used to construct a third dataset. The first dataset from Expedia.com

is a panel with 228 cross-sectional observations and 35 observations in time, making

a total of 7980 observations. Each cross sectional observation is a specific carrier’s

non-stop one-way flight in one of the 81 routes considered, where a route is a pair

of departing and destination cities. The observations in time start 103 days prior to

departure and were gathered every three days up until one day prior to departure,

making the 35 observations in time. All flights depart the same date, Thursday June
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22, 2006. The carriers considered are American, Alaska, Continental, Delta, United,

and US Airways. The number of flights per carrier was chosen to make sure that the

share of each of these carriers is close to its share in the US airlines’ market. This

dataset has similar characteristics the one used in Stavins [52], but with two impor-

tant differences. First, the data here is a panel and second, it has information about

seat availability at each fare, where fare is the cheapest available economy class fare.

The only two previous papers that work with such a detail information on prices an

inventories are Escobari [31] and Escobari [32]. The panel structure allows to control

for unobservable cost differences. The second dataset from Expedia.com was collected

to obtain an estimate of the sold out probabilities for each of the 81 routes.

The third dataset comes from the T-100 obtained from the Bureau of Transporta-

tion Statistics. This is a panel containing average load factors at departure for the

same 81 routes over the period 1990 to 2005. This dataset will be useful to estimate

the expected number of tickets sold in each route, used to derive the ex-ante demand

uncertainty.

Figure 6 illustrates the evolution of average fares and the standard deviation of

fares for the 228 flights at different number of days prior to departure. There is an

important increase in posted fares during the last ten days. Furthermore, there is

also an increase in the standard deviation of fares, indicating that fares will be more

dispersed close to departure. This is some indication that fares will be increasing more

for some flights than for others, including the posibility that fares in some flights do

not increase at all during the last days. This would be the case of the flight depicted

in figure 7.

This flight presented in figure 7 also illustrates the intuition behind the stochastic

peak-load pricing we are testing in this paper. This is flight Delta 1588, covering the

2111 miles between Atlanta, GA (ATL) and San Jose, CA (SJC) with a Boeing 737-
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800 that has a total capacity of 199 economy class seats, departs at 7:54 p.m. and

arrives at 10:00 p.m. Figure 7 shows the evolution of fares, inventories of seats and

the expected evolution of seat inventories for a period of 103 days prior to departure.

As required by Prescott [48], Eden [25], and Dana [21], fares represent the cheapest

available fare for a given flight at each point in time prior to departure. A detailed

explanation of why the fares from expedia.com used in this paper are representative

for the industry is presented in Escobari and Gan [32] section 2.2. The evolution of

inventories is best viewed as the ratio of available seats to total seats in the aircraft.

We refer to this ratio as the load factor, which is a ticket level load factor. The

airline literature defines load factor only once the plane departed as the percentage

of seats filled with paying passengers. Our load factor varies for each posted fare

and will go from zero when the plane is empty to one when it is full. In this Delta

flight 1588, the load factor went from 0.235, 103 days prior to departure to 0.995

one day prior to departure. An interesting feature on this particular flight is that

load factor is increasing monotonically. The decrease between 67 and 61 days prior

to departure may be because some tickets have been reserved and never bought or

maybe bought but cancelled later. The exact calculation of the expected load factor

will be explained below. For now, it is just important to know that it is a measure

of how the carrier, Delta, expects sales to evolve over time for this particular flight

under normal conditions and price commitments. If at a given point in time the

actual load factor is significantly above expected load factor, it is reasonable for the

carrier to believe that demand will exceed capacity and a stochastic peak-load pricing

strategy would suggest charging higher fares. This is exactly what happened during

the period between 94 and 67 days prior to departure. Load factor was relatively high

as compared to the expected evolution of load factor under “average” conditions. At

this consumers’ arrival rate, demand would exceed capacity. Even if the arrival rate of
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future consumers is independent of this high arrival rate and just follows an “average”

arrival rate, most likely demand would still exceed capacity if Delta keeps the same

price schedule. The optimal stochastic peak-load pricing would be to set higher fares,

which is exactly what they do. When load factor decreases between 67 and 61 days

prior to departure, fares also decrease. Furthermore, notice that during the last month

of sales load factor increased even to higher levels, but this increase can be explained

by the expected load factor, so there is no reason to charge higher fares at this point.

The evolution of sales in each flight in the sample is the result of tickets being

bought across a huge number of potential itineraries, where the observed leg may be

just part of a larger trip. What is important to realize is that the fare charged by the

carrier is the carrier’s response to the level of inventories, and this one has its own

dynamics. Here we are just making explicit what previous studies the work with non-

transactions data implicitly assumed, e.g. Stavins [52], Chen [17], and McAfee, R.P.,

te Velde [46]. It is reasonable to believe that fares for more complicated itineraries vary

accordingly with the one way fare. Bachis and Piga [4] explain how some European

carriers price all its legs independently, so there is no extra charge for one-way tickets.

Actually, observing higher fares on one-way tickets is perfectly consistent with the

predictions in Prescott [48], Eden [25], and Dana [21], where earlier purchasers benefit

from lower fares. The idea is simple, a round-trip fare is the combination of two parts.

Because the return date is further away from the purchase date, the second part is

being bought with more days in advance than the first, with the presumably lower

load factor. Hence, a round-trip ticket, measured as the summation of these two parts

will be less expensive that just multiplying the first part of the ticket by two.
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D. Empirical model

The empirical model developed in this section is based on two testing procedures for

stochastic peak-load pricing. The first one is just based on analyzing how the pricing

of the next available ticket differs depending on the expectations of demand. The

testing will study whether an expected peak or an expected off-peak flight follow

different pricing strategies. The second testing procedure is built on the models

developed by Prescott [48], Eden [25], and Dana [21], where price dispersion exists

in a setting with capacity constraints and demand uncertainty. The key feature in

these models is that there is no demand learning as sales progress. Therefore, we

start building the price schedule based on these models and then we test how pricing

differs as carries learn about the demand. For the second testing procedure we derive

the ex-ante distribution of demand uncertainty, which is before any information about

actual sales is revealed. This will let us calculate the effective cost of capacity, which

should have a positive impact on fares.

Common to both testing procedures, using nonparametric techniques we then

develop a measure of the evolution of the expected number of seats sold. This mea-

sure is exogenous to the actual evolution of sales, so by comparing actual sales with

expected sales at any point prior to departure we can obtain information on the

likelihood that demand will exceed capacity. An endogenous panel threshold model

is then estimated to separate between expected peak and expected off-peak flight,

allowing for different pricing strategies in different regimes. To control for potential

enogeneity, the empirical section closes with the estimation of dynamic panels with a

exogenous selection of the threshold.
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1. Ex-ante distribution of demand uncertainty

The ex-ante distribution of demand uncertainty refers to the distribution of arriving

consumers known to the carrier before any ticket is sold. Based on this distribution,

Prescott [48] showed that equilibrium prices will be dispersed. In this subsection we

calibrate the ex-ante distribution of demand uncertainty. Under price commitments

or if no information about the final state of the demand is revealed as tickets get sold,

this ex-ante distribution of demand uncertainty should explain the observed price

dispersion.

There exists uncertainty in the demand because carriers do not know ex-ante

the total number of passengers that will buy tickets. Consider the case of having an

infinite number of demand states. Let Nh be the number of consumers who arrive

at demand state h, where h = 0, . . . ,∞ and Nh ≤ Nh+1. This last inequality imply

that consumers who arrive at demand state h will also arrive at a higher-numbered

demand state h+1. Define a batch as the additional number of travelers who arrive at

demand state h when compared to the immediate lower demand state h−1, therefore

batch h is given by Nh −Nh−1 with the first batch given by N0.

Each demand state h occurs with probability ρh. Because all demand states have

at least N0 travelers, the probability that N0 travelers arrive is Pr0 =
∫∞

0
ρκdκ = 1.

In general, the probability that Nh travelers arrive is given by Prh =
∫∞

h
ρκdκ, the

summation of all demand states that have at least Nh consumers. Assume that

each batch has one consumer buying a ticket, hence the probability of selling seat

h is the summation all demand states that have at least h travelers buying a seat.

Additionally, when demand states are normally distributed ρh = φh, with φ being the

pdf of a normal distribution, the probability of selling seat h is given by equation 2.20,

with Φ the cdf of a normal distribution. This is given the equilibrium distribution
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of prices, so this schedule of selling probabilities will hold as long as carriers do not

depart from price commitments.

This Prh corresponds to the F [h(p)] in Equation 3.1. To derive a measure of the

effective cost of capacity and its impact on fares, we will calibrate the distribution

of demand uncertainty at a route level. To do this we follow Escobari and Gan [32]

and assume normally distributed demand states. The key feature that allows the

calibration process is that demand states are censored when transformed to tickets

sold. Once the aircraft is sold out, higher demand states are no longer observed. To

get the values of the mean µ and the standard deviation σ, at the route level, for

the normally distributed demand states we first need two pieces of information, the

sold-out probabilities and the expected number of tickets sold for each of the routes.

a. Sold-out probabilities

The sold out probabilities for each of the 81 routes are obtained using the second

dataset from Expedia.com. The fact that allows calculating these sold-out probabili-

ties is that airlines and online travel agencies do not display their sold-out flights on

their websites.4 First, a couple of weeks in advance when no flight was expected to

be sold-out yet, we made a census of all the available non-stop flights in each of the

81 routes during seven days between February 22 and February 8, 2007. The total

number of flights was 5,881. Then, late the night before each of those seven days, we

counted the number of flights still available at each route. If a flight was no longer

there, it was assumed to be sold-out. The calculated sold out probability is just the

4The reason, according to Roman Blahoski, spokesman of Northwest Airlines, is
that they do not want to disappoint the travelers. Keeping the online display simple
may also be a motive, and according to Dan Toporek, spokesman of Travelocity.com,
“showing sold-out flights alongside available flights could be confusing.” Both of these
quotes are from David Grossman, “Gone today, here tomorrow,” USA Today, August
2006.
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ratio of sold out flights to total number of flights for each route.

b. Expected number of seats sold

The expected number of seat sold are calculated using the T-100 from the Bureau

of Transportation Statistics. From the T-100, we obtain the average load factors at

departure time for the 81 routes over the period 1990 to 2005. Each of these 81 series

is used to estimate an ARMA model. Then, using a one-step forecast we obtain

the expected number of seats sold for 2006. For routes where the expected number

of seats sold is high, meaning that most of the seats are expected to be sold, the

calibration procedure will assign higher probabilities to higher demand states. The

details of the estimation are available upon request.

c. Calibration

Let the underlying demand state h∗ be distributed N(µ, σ2) and let m be the total

number of seats in the aircraft. The number of seats sold h is equal to demand

state h∗ before the plane sells out, h = h∗ if h < m, and equal to total number of

seats in the aircraft, h = m, otherwise. The expected number of tickets sold is given

by the first moment of the censored normal given in equation 2.21. E(h|h < m)

comes from the mean of a truncated density and the pdf and cdf are evaluated at the

moment the flight sells out. Therefore, Φ
(
(m − µ)/σ

)
is interpreted as the sold out

probability. With information on the sold-out probabilities obtained in subsection a

and the information on the expected number of tickets sold obtained in subsection c,

we use Equation 2.21 to obtain the values of µ̂j and σ̂j at the route level.
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2. Learning the stochastic demand

As carriers learn about the state of the demand they may want to depart from any

price commitments to increase their profits. The way carriers use actual bookings to

infer about the state of the demand can be complex and may differ across carriers,

but once some information is revealed, the outcome predicted by the stochastic peak-

load pricing is simple. Stochastic peak-load pricing suggests charging higher fares

in expected peak flights, while charging lower fares in expected off-peak flights. To

test if this is true, the first step is to separate between expected peak and expected

off-peak flights.

Under ‘normal’ conditions, let’s say, when a flight is not expected to be peak nor

off-peak, sales should have a natural evolution over time as the flight date approaches.

The rate at which tickets are sold need not be constant in time and may differ from

route to route or across carries. If tickets are sold faster than the ‘normal’ rate and at

a given point prior to departure there are less seats left unsold than under ‘normal’

conditions, it would be reasonable for the carrier to believe that this is a peak flight.

Clearly, this expected peak flight was not known to the carrier ex-ante, before the

flight was opened for booking.

To test for the existence of demand learning with the corresponding stochastic

peak-load pricing as the response to information about the final state of the demand

we take the following steps. First, using nonparametric techniques we come up with

a measure of the evolution of sales under ‘normal’ or average conditions. Then we

estimate a panel endogenous threshold model to see whether there are different pricing

regimes when the expectation of demand differs. The threshold variable that dictates

the regime switch is the ratio of actual sales to expected sales at a point in time

prior to departure. Higher sales relative to normal sales would be evidence of a
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peak-demand flight. Finally, to control for potential endogeneity in the regressors,

we estimate a dynamic panel with an exogenous distinction of expected peak and

expected off-peak flights.

a. Nonparametric estimation of expected sales

In this section we come up with a measure of the evolution of sales under average or

normal conditions. That is, we estimate an exogenous measure of expected sales as

the departure date nears for each of the flights in the sample. This measure of the

evolution of sales for each flight is expected to be captured by the flight, carrier and

the route’s characteristics. Consider the following nonparametric model of cumulative

sales on flight, carrier, and route characteristics.

LOADijt = g(DAY ADVijt,X) + ηijt (3.2)

The subscript i refers to flight, j to route, and t is time. Equation 3.2 is a

panel estimated using kernel methods for mixed datatypes as explained in Racine

and Li [49], and Li and Racine [43]. The dependent variable is LOAD, defined as

the total number of seats sold divided by the total number of seats in the aircraft.

The explanatory variables include the number of days in advance DAY ADV and

X. This X has two flight level characterictics: departure time DEPTIME, and

route concentration as measured by the Herfindahl-Hirshman Index (HHI). Table 7

provides the summary statistics of these variables and detailed description is included

in Appendix C.

E(LOADijt|DAY ADV,X), which is the evolution of the expected cumulative

sales for flight i, is obtained first by estimating Equation 3.2 using the observations

from all other routes except the route from flight i as train data. Then flight i’s
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characteristics are used as evaluation data. This means that Equation 3.2 is estimated

81 times, once for each route, and evaluated 228 times at the corresponding flight’s

characteristics. To illustrate part of the results, the estimated nonparametric expected

sales at different points prior to departure and for different trip distances is shown

in figure 8. This was done using all datapoints as train data and with the remaining

variables held constant at their median values for the evaluation points. On average

longer legs have larger load factors and travelers also decide to book earlier.

Fig. 8. Estimated nonparametric expected sales

b. Endogenous threshold estimation

Under the existence of menu costs, the benefits from switching pricing strategies may

still be lower than the costs. Therefore even if carriers get to learn about the state of

the demand, some degree of price flexibility is necessary in order to have stochastic

peak-load pricing. Moreover, demand is never fully learned; as sales take place and

some information is revealed about the demand, there will always be some uncertainty
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Table 7. Summary statistics
Variables Mean Std. Dev. Min. Max. Obs.
For the nonparametric estimation

LOAD .509 .252 .012 1.000 7933
DAY ADV 52.289 30.154 1.000 103.000 7933
DIST 1104.380 620.720 91.000 2604.000 7933
HHI .684 .287 .259 1.000 7933

For the calibration of demand uncertainty
Forecasted LF 0.739 0.083 0.469 0.890 81
Sold-out probability 0.227 0.104 0.037 0.571 81

For the endogenous panel threshold estimation
FAREa 291.087 171.879 54.000 1224.000 7933
LOAD 0.509 0.252 0.012 1.000 7933
ECC 1.557 0.940 1.000 11.668 7933
E(LOAD|DAY ADV,X) 0.506 0.219 0.089 0.991 7933
E(LOAD) 0.509 0.181 0.299 0.882 7933

Ŝnonparam. (% dev.) −0.014 0.184 −0.931 1.040 7933

Ŝaverage (% dev.) 0.001 0.389 −0.961 1.943 7933

Notes: a The standard deviation for FARE between flights is 152.933, and within
is 78.751.

remaining about its final state. Under this scenario, carriers will want to wait until

they have enough evidence toward having an expected peak or an expected off-peak

flight before deciding to switch its pricing strategies. This suggest the existence of

different pricing regimes for different expected demand states rather than a continuum

of fully adjustable fares sensitive to every new peace of information about the expected

final state of the demand. In this subsection we estimate and endogenous panel

threshold model to test for the existence of different pricing regimes. The different

regimes are given by the different expectations of the final state of the demand.

The E(LOADijt|DAY ADVijt,Xijt) estimated in the previous section is a mea-

sure of the expected evolution of sales for flight i under average conditions and it is

independent to the actual evolution of sales given by LOADijt. This is because the

observations of the load factor of flight i are not included in the nonparametric es-

timation of E(LOADijt|DAY ADVijt,Xijt) for the same flight i. By independent we

mean that if flight i is expected to be a peak-flight, is independent from the average
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of the other −i flights from being peak-flights. Therefore, the ratio

Sijt =
LOADijt

E(LOADijt|DAY ADVijt,Xijt)
(3.3)

contains the necessary information to know whether at time t prior to departure actual

sales are high, low or about the same as compared to sales under average conditions.

The basic information contained in equation 3.3 is how far actual sales are from

sales under average conditions. Therefore, deviations from these mean or average

conditions are important. One other potential specification would be to calculate

Sijt =
LOADijt − E(LOADijt)

E(LOADijt)
, (3.4)

but this last specification of S would give exactly the same results as when using 3.3.

In a simplified version of this test, E(LOADijt|DAY ADVijt,Xijt) can be replaced

by the average load factor across flights at each point in time prior to departure.5 If at

a given point prior to departure the ratio in equation 3.3 is relatively large, it would be

reasonable for carriers to think they are in a peak period and that expected demand

will be greater than the allocated capacity. On the other hand, low values indicate

that sales are low relative to average or normal sales and it would be reasonable for

airlines to think they are in an off-peak period and some seats may be left unsold.

The threshold variable Sijt has two interesting properties. Recall that the dataset

was constructed in a way that all flights share the same departure date, hence they

also share the same dates prior to departure. If, for example, sales are higher/lower

during weekends, this should affect all flights and will change both, LOADijt and

E(LOADijt|DAY ADVijt,Xijt), but the threshold variable Sijt should remain un-

changed. Here carriers are assumed to know whether specific dates affect sales (e.g.

5Both of these robustness checks were pointed out by Professor Hwang during the
preliminary examination.
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weekends) and take this into account in their calculations of expected demand. Higher

or lower sales on a given point in time common to all flight and known to the carriers

will have no impact on the definition of expected peak and expected off-peak flight.

What is even more important, the construction of this ratio allows us to control for

systematic peak-load pricing. During ex-ante known congested periods, stochastic

peak-load pricing suggests that carriers will charge higher fares. As explained in

Borenstein and Rose [10], this type of peak-load pricing arises at an airport or fleet

level. Here, the most likely capacity constraint is given by the total number of air-

crafts. As a result systematic peak-load pricing should affect all flights while the ratio

Sijt remains unchanged. The drawback in this approach is that we will not be able

to measure the effect of systematic peak-load pricing on fares. For an estimation of

the congestion premia on fares due to systematic peak-load pricing, see [31].

This section estimates a threshold model to test whether carriers have different

pricing strategies for different expected states of the demand. The threshold variable

that will control the shift between expected peak and expected off-peak flights is Sijt.

To avoid an arbitrary selection of the number of pricing regimes and selection of the

threshold(s), we estimate the model using the panel threshold regression methods

with individual-specific fixed effects of Hansen [38]. The equation to be estimated

has the form

ln(FARE)ijt = δ0DAY ADVijt + δ1 ln(ECC)ijt · I(Ŝij,t−1 6 γ)

+δ2 ln(ECC)ijt · I(γ < Ŝij,t−1) + νij + εijt (3.5)

where I(·) is the indicator function, Sijt is the threshold variable and γ is the thresh-

old. Moreover, νij is the unobserved carrier- and flight-specific effect, εijt is error

term, and as before the subscripts i denotes flight, j is route and t is time. Another
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way of writing Equation 3.5 is

ln(FARE)ijt = δ0DAY ADVijt

+


δ1 ln(ECC)ijt + νij + εijt if Ŝij,t−1 6 γ (off-peak)

δ2 ln(ECC)ijt + νij + εijt if γ < Ŝij,t−1 (peak).

For the case of Equation 3.5, the observations are divided into two pricing regimes

depending on whether the threshold variable Sij,t−1 is smaller or larger than the

threshold. The regime-independent variables DAY ADV , is included to control for a

time trend. Even though Equation 3.5 is illustrated for only one threshold, the actual

estimation process test for the existence of up to three thresholds, allowing for up to

four different pricing regimes. In the absence of regime changes, Equation 3.5 follows

the form suggested by the theory under no demand learning in Equation 3.1.

Given the construction of the dataset we perfectly control for important sources of

price dispersion observed in the industry (e.g. saturday-night stayover, minimum and

maximum stay, different connections/legs, fare class, refundability). Furthermore,

estimating the model using flight fixed effects allows controlling for unobservable

time invariant characteristic, which includes all the time invariant control variables

included in Stavins [52] (e.g. flight, carrier, and route characteristics). Flight fixed

effects should also control for most of the systematic peak-load pricing as well, since by

definition, this type of peak-load pricing arises at the aircraft level and should affect

equally every seat on that flight. If systematic peak-load pricing affects prices across

the same aircraft differently (e.g. less discount seats) then the departure time variable,

DEPATIMEijt, used in the estimation of Equation 3.2 should take care of it. The

main coefficient of interest is the Effective Cost of Capacity ECC. Prescott [48]’s

type of models predict a positive effect of ECC on fares. However, this is true
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under no demand learning or under price commitments. With the specification of

Equation 3.5, the coefficient on ECC is allowed to be different across flights and at

different points prior to departure, depending on the expectations of the demand.

As predicted by stochastic peak-load pricing, higher expected demand states will be

associated with a greater impact of ECC on fares, while lower expected demand

states will be associated with lower or even a negative coefficient on ECC.

The empirical specification is estimated as a constant elasticity model in ln− ln

form. This is because both variables FARE and ECC are measured in dollars. More-

over, recall that ECC = λ/Pr, then estimating the equation using the logarithm of

ECC allows separating it’s components in two. ln(λ) goes as part of the regression

intercept while the coefficient on ln(Pr)−1 remains the same as the coefficient on

ln(ECC). We can then interpret this coefficient as the impact of a percentage in-

crease in ECC or a percentage decrease in the selling probability, Pr, on fares. The

interpretation of this elasticity measure does not require knowing the value of λ. An

alternative specification replaces ln ECC with LOAD in Equation 3.5. The stochas-

tic peak-load pricing analysis follows the same logic as with ln ECC, however, the

interpretation is somehow different. Here a change in LOAD represents an increase

capacity utilization.

In order to estimate the nonlinear specification in Equation 3.5 we follow the

procedure proposed in [38]. First, to eliminate the unobserved carrier- and flight-

specific effects, for a given γ and for each flight we obtain the deviations from the

time averages. Stacking the data over all flights we obtain Y = V(γ)δ+ε, where Y and

V(γ) are just the stacked fixed-effects transformation just explained on ln(FARE)

and the set of explanatory variables respectively. Notice the values of the explanatory

variables are a function of the value of the threshold. For any given γ, the vector

of slope coefficients δ can be estimated by ordinary least squares to obtain δ̂(γ).
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Chan [15] and Hansen [39] recommend the estimation of γ by least squares, hence its

estimator is

γ̂ = arg min
γ

Y ′(I −V(γ)′(V(γ)′V(γ))−1V(γ)′)Y. (3.6)

After γ̂ is found, the estimate for the slope coefficients is δ̂(γ̂). Then the next

step is to find out if the threshold is statistically significant. The null hypothesis of

no threshold in Equation 3.5 can be characterized by H0: δ1 = δ2. As explained in

Hansen [38], classical tests have non-standard distributions because under the null

γ is not identified. Therefore, we follow Hansen [37] and simulate the asymptotic

distribution of the likelihood test by bootstrapping. The likelihood ratio to test H0

is based on F1 = (SSE0 − SSE1(γ̂))/σ̂2, where SSE0 is the sum of squared errors

under the null after the the fixed-effects transformation is made. Similarly, SSE1 is

the sum of squared errors of the fixed-effects transformation made on Equation 3.5.

For a larger number of thresholds the idea is similar, with the important characteristic

that sequential estimation is consistent. Therefore, in order to test for the number

of thresholds, we allow for sequentially zero, one, two, and three thresholds. As in

Hansen [38], the observations are first sorted on the threshold variable and the search

of the threshold is restricted to specific quantiles. The more quantiles the finer the grid

to which the search is limited. Bootstrapping simulates the asymptotic distribution

of the likelihood ratio test. This likelihood ratio is used to test whether the threshold

is statistically significant under the null of no threshold. When rejecting the null, one

more threshold is included.6

Table 8 provides the results that test for the number of thresholds: the test

statistics F1 and F2, along with the bootstrap p-values and critical values. From the

6The estimation used 400 quantiles and 300 bootstrap replications for each of the
bootstrap tests.
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bootstrap p-values, the null of no threshold for the one threshold model is rejected at

a 1% level in all specifications. However, no evidence of further thresholds is found.

The results for the three thresholds model are not reported since non of the second

thresholds was found to be significant.

Table 8. Tests for threshold effects: Ratio
Average Nonparametric

LOAD ln(ECC) LOAD ln(ECC)
(1) (2) (3) (4) (5) (6) (7) (8)

Test for a single threshold
F1 41.184 30.376 20.683 35.499 37.892 41.525 47.190 47.906
p-value 0.940 0.585 1.000 0.685 0.050 0.055 0.055 0.055
Bootstrap critical values

10% 133.531 70.878 163.987 83.595 32.998 34.825 40.935 39.822
5% 149.573 81.996 180.336 95.220 37.612 41.539 49.515 49.762
1% 174.258 110.502 212.933 110.032 49.592 56.726 59.246 63.687

Test for a double threshold
F2 44.862 20.949 11.086 2.014 36.038 30.297 22.609 21.401
p-value 0.833 0.787 0.906 1.000 0.087 0.733 0.320 0.320
Bootstrap critical values

10% 109.002 53.401 56.947 41.378 32.741 27.063 33.939 36.473
5% 113.930 61.787 64.138 44.135 39.018 34.328 43.196 46.279
1% 150.697 71.721 107.076 72.550 59.374 65.577 55.646 55.956

Notes: Because non of the second thresholds was found significant, the tests for triple thresholds are
not reported. Odd numbered columns have 6732 observations across 198 flights and even numbered
columns have 7128 across 216 flights.

Because the original dataset is unbalanced and the testing procedure imple-

mented in this section only allows for balanced panels, we work with two subsets

of the data. The first one has 198 flights over 35 time periods (covering a period of

100 days prior to departure) is reported in the even numbered columns of table 8.

The second has 216 flights over 34 time periods (103 days prior to departure) and is

reported in the even numbered colmns of table 8. Moreover, the first four columns

were calculated using the simple average for E(LOAD), while the last four columns

use the nonparametric specification for the calculation of the expected load factor.

The point estimates for the thresholds in the specifications where the threshold

is significant are presented in table 9, along with the asymptotic 95% confidence

intervals. When using the simple average for the calculation of E(LOAD), table 8

indicates that none of the specifications returned a significant threshold estimate.
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The specifications from columns (5) to (8) in table 8 which use the nonparametric

specification for E(LOAD) were found to have a significant threshold estimate for

the one-threshold model. As expected, all point estimates lie around one and the

confidence intervals are very tight, indicating little uncertainty about the nature of

this division. The results indicate the existence of two pricing regimes. The first

pricing regime occurs when γ < Ŝij,t−1. Notice that in this regime actual sales are

relatively larger than sales under average conditions, hence we call this the peak

period pricing regime. The second regime is characterized by γ > Ŝij,t−1. This will

be referred as the off-peak period pricing regime since actual sales are relatively lower

that sales under average conditions.

The confidence interval construction shown in figure 9, tabulated for specification

in column (3) of table 9, provides further insights for the threshold results. The point

estimate is the value of γ at which the likelihood ratio is equal to zero. The confidence

interval [γ, γ], are the values for γ for which the likelihood ratio lies beneath the

straight line. Moreover, there are no other major dips in the likelihood ratio, which

would be evidence of a third pricing regime.

Table 9. Threshold estimates: Nonparametric
LOAD ln(ECC)

(1) (2) (3) (4)
γ 0.999 1.011 0.978 0.977

Asymptotic 95% confidence interval
γ 0.978 0.984 0.976 0.976
γ 1.187 1.012 0.991 0.995

Notes: % percentage deviations. The test for a triple threshold
not reported, since non of the second thresholds was found sig-
nificant. Columns (1) and (3) have 6732 observations across 198
flights and columns (2) and (4) have 7128 across 216 flights.

The regression estimates for the single threshold model are presented in table 10.

The first noticeable result is that columns (1) and (2) are very similar, while (3) and

(4) also look alike. Thus, the two balanced subsamples yield very similar results. The

figures in parentheses are White-robust t-statistics. The regime-independent coeffi-
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Fig. 9. Confidence interval construction in single threshold model

cient DAY ADV , included as a control for a time trend is highly significant in all four

specifications. The coefficient on DAY ADV in column (4) means that after control-

ling for capacity constraints and demand uncertainty, route, carrier and flight charac-

teristics, ticket characteristics that segment consumers and systematic and stochastic

peak-load pricing, buying a ticket one day in advance reduces the ticket price by

57.7 cents.7 This is a measure of second degree price discrimination in the form of

advance-purchase requirements. As pointed out in Dana [19], for advance-purchase

discounts to be classified as discriminatory, it is necessary to define an appropriate

measure of costs. Prices are considered discriminatory when the price markups over

costs are different for different consumers. In this analysis, the costs for different seats

in the same aircraft may be different due to the existence of uncertain demand and

7This one is calculated using the average fare for the subsample used in the esti-
mation of column (4). This is 285.85×−2.018/103 = −0.577 dollars.
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costly capacity. These different costs are captured by ECC. Finally, recall that we

are fully controlling for other sources of second degree price discrimination such as

Saturday-night-stayover.

Table 10. Regression estimates for the single threshold model: Nonparametric
Regressor LOAD ln(ECC)

(1) (2) (3) (4)
Regime-independent coefficients

DAY ADV/103 −1.562 −1.357 −2.308 −2.018
(−8.660) (−8.040) (−18.240) (−16.183)

Regime-dependent coefficients
LOADijt · I(γ > Sij,t−1) 0.249 0.222

(6.400) (6.282)
LOADijt · I(γ < Sij,t−1) 0.343 0.307

(10.424) (9.911)
ln(ECC)ijt · I(γ > Sij,t−1) −0.051 −0.062

(−1.663) (−2.122)
ln(ECC)ijt · I(γ < Sij,t−1) 0.152 0.136

(11.085) (9.182)
SEE 289.167 285.581 291.428 287.979

Notes: The independent variable is ln(FARE). t-statistics in parentheses based on White-robust standard
errors. All regressions are estimated with flight fixed effects, not reported. Even numbered columns have
6732 observations across 198 flights and odd numbered columns have 7128 across 216 flights. I(γ < Sijt) is
referred as the peak period, while I(γ > Sijt) is the off-peak period.

The variables we are mostly interested in are the regime-dependent. From ta-

ble 10 we observe that LOAD in columns (1) and (2) and ln(ECC) in columns (3)

and (4) are all highly significant and have a positive effect on fares in the peak regime.

For the off-peak regime only the specification for the load factor has significant coef-

ficients. In all four specifications the off-peak period regime, γ ≥ Ŝij,t−1, has a lower

coefficient than the peak period regime, γ < Ŝij,t−1. We know from the results in

table 8 that the coefficients in both regimes are significantly different. The results

from column (2), evaluated at the subsample average fare of 285.85 dollars indicate

that in a 100 seat aircraft, having one seat less available increases fares by 63.5 cents

in an expected off-peak flight while increases fares by 87.7 cents in an expected peak

flight. Columns (3) and (4) require some additional care. The effect of ECC on fares

as predicted by Prescott [48]’s type of models is positive. However, as sales progress

and carriers learn about the state of the demand, the coefficient on ECC will be
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the outcome of two different type of models. The Prescott [48]’s type and stochastic

peak-load pricing. The later only predicts that fares will be larger during expected

peak flights. Thus the only requirement on our regime-dependent coefficients is that

the expected peak regime should have a larger coefficient that the expected off-peak

regime. When capacity is not costly and expected demand is smaller than allocated

capacity, carriers will be willing to sell the last seats in the aircraft for any price above

the operating marginal cost (e.g. baggage transportation, soft drink and pretzels).

Consequently the last seats could be priced very low and the coefficient on ECC could

be negative indicating lower fares for later seats. However, the results are consistent

with having costly capacity and provide important evidence supporting Prescott [48]’s

type of models, already documented in Escobari and Gan [32]. Columns (3) and (4)

show that fares respond positively to ECC in both peak and off-peak regimes. Fur-

thermore, there is also an important evidence supporting the existence of stochastic

peak-load pricing with the peak regime coefficient being greater than in the off-peak

regime.8

Fares will be increasing at a higher rate during expected peak regimes. Carriers

forecasting that demand will be greater than allocated capacity will set higher fares to

increase their profits and sell the remaining available capacity to travelers with higher

valuations. If price commitments were to prevail or if carriers do not learn about the

state of the demand, the flight will still sell-out in a high demand period. However

in the absence of stochastic peak-load pricing existing capacity will be allocated to

travelers that arrive first and not necessarily to travelers with higher valuations sorted

by higher prices. On the other hand, when a low demand flight is expected, fares will

8In this case a direct interpretation of the coefficient on ECC, as we did with
LOAD, would not be entirely correct since ECC is constructed based on an ex-ante
distribution of demand uncertainty.
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increase at a lower rate. This is consistent with cheap fares offered close to departure

and ‘last minute deals’. Airlines offer this kind of tickets when demand falls short

and allocated capacity is likely to remain underutilized.

c. Dynamic panel with exogenous threshold

In the previous endogenous threshold estimation we used the methods described in

Hansen [38] and Hansen [39] to identify two pricing regimes. This procedure devel-

oped for non-dynamic balanced panels required us to assume strict exogeneity of the

regressors and to work with two balanced panels, subsets of the original unbalanced

dataset. In this subsection we take care of these two issues. We will reestimate the

model as suggested in Equation 3.1 to test for the existence of demand learning, but

this time using the dynamic panel techniques as developed in Holtz-Eakin et. at. [41],

Arellano and Bond [1], Arellano and Bover [2], Blundell and Bond and [8]. This will

let us work with the entire unbalanced panel and relax the assumption of strict ex-

ogenous regressors. We will assume that the switch between the two pricing regimes

is the same as the one estimated in the previous part. Specifically, the equation to

be estimated is

ln(FARE)ijt = α ln(FARE)ij,t−1 + β1DAY ADVijt + β2PEAKij,t−1

+(δ0 + δ1PEAKij,t−1) · ln(ECC)ijt + νij + εijt (3.7)

The idea is the same as in the estimation of Equation 3.5. This means analyzing

the effect of the effective cost of capacity on fares under no demand learning as

suggested by Equation 3.1, while allowing for the existence of different pricing regimes

when the expectation of future demand differs. As found in section b, here we allow

for the coefficient of ECC on fares to have two possible values that represent the

expected peak and expected off-peak regimes. The division between these two regimes
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is assumed to be the same as before. Then the variable that dictates the shift is

PEAKijt = I(Sijt > 1) in the ratio specification of S (same as PEAKijt = I(Sijt > 0)

in the percentage deviation construction of S), with the 1 selected intuitively when

actual sales are larger than sales under average conditions. Hence, PEAK takes

the value of one when the flight is expected to be a peak flight and is zero if it is

expected to be an off-peak. These two pricing regimes will be significantly different

if the interaction coefficient δ1 is statistically significant. Then, during an expected

off-peak flight the effect of ECC on fares will be δ0, while in an expected peak

flight it will be δ0 + δ1. As before DAY ADV controls for any time trend. The

coefficient on the lagged dependent variable, ln(FAREij,t−1), is not of direct interest,

but allowing for dynamics in the underlying process may be crucial for recovering

consistent estimates of the other parameters. As in the previous section, for a second

specification ln(ECC) will be replaced with LOAD.

The reason why a dynamic estimation is important is because both the effective

cost of capacity, ECC, and the load factor, LOAD, are functions of cumulative sales.

But the number of tickets that have already been sold −cumulative sales− depend

on previous price levels. So there is reason to believe that the assumption of strict

exogeneity of the regressors may be violated. The way the panel estimator presented

in this section controls for endogeneity is by using ‘internal instruments’. We assume

that the explanatory variables are only ‘weakly exogenous’, which means that the

cumulative sales can be affected by current and past realization of fares, but must

be uncorrelated with future realizations of the error term. Weak exogeneity does not

mean that consumers do not take into account expected future changes in fares in

their decisions to buy or not a ticket; it just means that future (unanticipated) shocks

in fares do not influence current cumulative sales or the decision to buy a ticket. We

will assess the validity of this weak exogeneity assumption below.
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To estimate Equation 3.7, we first take first-differences to eliminate carrier- and

flight-specific effects. Then the resulting equation requires instruments to deal with

the potential endogeneity of the explanatory variables and with the problem that

the construction of the new error term, εijt − εij,t−1, is correlated with the lagged

dependent variable, ln(FAREij,t−1) − ln(FAREij,t−2). The GMM difference panel

estimator that we will report constructs its moment conditions under the assumptions

that the error term, ε, is not serially correlated, and that the explanatory variables

are weakly exogenous. Then the moment conditions used for the difference estimator

are:

E[yij,t−s(εijt − εij,t−1)] = 0 for s ≥ 2; t = 3, . . . , T , (3.8)

E[Wij,t−s(εijt − εij,t−1)] = 0 for s ≥ 2; t = 3, . . . , T . (3.9)

where yijt is the natural logarithm of fare and Wijt is the set of explanatory variables

other that the lagged logarithm of fare.

Blundell and Bond [8] point out an statistical shortcoming with this difference

estimator. When the explanatory variables are persistent over time, lagged levels of

these variables are weak instruments for the regression equation in differences. To

reduce the potential biases and imprecision associated with the usual difference es-

timator we employ the system estimator suggested in Blundell and Bond [8]. This

system estimator combines the regression in differences with the regression in lev-

els. The instruments for the regression in differences are the same as above. The

instruments for the regression in levels are the lagged differences of the corresponding

variables. The validity of these instruments relies on the following additional assump-

tion: There is no correlation between the differences of the right-hand side variables

in Equation 3.7 and the flight-specific effects, but there may be correlation between

the levels of the right-hand side variables and the flight-specific effects. Then, for the
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regression in levels included as a second part of the system the additional moment

conditions are:

E[(yij,t−s − yij,)(νij + εijt)] = 0 for s = 1, (3.10)

E[(Wij,t−s −Wij,t−s−1)(νij + εijt)] = 0 for s = 1. (3.11)

To address the validity of the instruments we consider two specification tests sug-

gested in Arellando and Bond [1], Arellano and Bover [2], and Blundell and Bond [8].

To test the overall validity of the instruments we provide a Sargan test of over-

identifying restrictions, which analyzes the sample analogs of the moment conditions

used in the GMM estimation. To test the hypothesis that the error term, εijt, is not

serially correlated, we test whether the differenced error term is second-order serially

correlated.

The dynamic panel results in table 11 show two sets of estimates. The first three

columns were calculated when the expected load factor is simply the average, while

columns (4) to (6) use the nonparametric estimate of the expected load factor. The

first set of estimates shows that there is not significant difference between peak and

off-peak periods. Presumably because the simple average is not a good approximation

of average conditions. The set of estimates does show that there is a positive and sig-

nificant difference between the two periods. This can be appreciated by the significant

coefficient in the interation, LOASijt · PEAKij,t−1, variable. Moreover, besides the

differences and the system estimators described abovethe, for comparative purposes,

table 11 also reports the panel estimates when the estimation is done in levels using

flight fixed effects. Additionally, table 11 gives the p-valuesthe differenced equation

exhibit no second-order serial correlation (valid specification).

Based on the system GMM estimates of column (6), evaluated at the sample

average fare of 291.09 dollars and for a 100 seats airplane, imply that having one
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Table 11. Regression estimates: GMM dynamic panel
Average Nonparametric

Levels First diff. System Levels First diff. System
(1) (2) (3) (4) (5) (6)

Load Factor
ln(FARE)ij,t−1 0.948 0.613 0.597 0.948 0.603 0.586

(255.948) (44.734) (17.591) (254.811) (43.820) (17.197)
DAY ADVijt/103 −0.137 1.407 1.093 −0.344 1.198 0.844

(−1.188) (6.897) (3.457) (−3.603) (5.778) 2.571
PEAKij,t−1 −0.044 −0.048 −0.065 −0.035 −0.068 −0.083

(−3.364) (−1.537) (−1.451) (−3.035) (−3.156) (−3.307)
LOADijt 0.137 0.587 0.548 0.079 0.479 0.418

(4.924) (13.421) (7.551) (3.942) (11.014) (6.067)
LOADijt · PEAKij,t−1 0.039 0.047 0.052 0.060 0.150 0.173

(1.426) (0.947) (0.627) (2.612) (4.114) (3.549)
Serial correlation testa(p-value) 0.743 0.731 0.752 0.739

Notes: The dependent variable is ln(FARE). t-statistics in parentheses based on White robust standard
errors. PEAK = I(S > 1). a The null hypothesis in that the errors in the first-difference regression exhibit
no second-order serial correlation (valid specification).

less seat available increases fares by 1.22 dollars in an expected off-peak flight while

increases fares by 1.72 dollars in a expected peak flight. Moreover, as information

about the final state of the demand becomes available, the results are consistent with

stochastic peak-load pricing with higher fares being set in expected peak demand

periods and lower fares set in expected off-peak periods.

The regressions satisfy the specification tests. There is no evidence of second

order serial correlation. Regarding the sign on DAY ADV , this one is no longer

comparable with the one reported in table 10 because of the existence of the lagged

dependent variable in the dynamic panel regressions. This also explain why the sign

on DAY ADV is so volatile.

E. Conclusions

One important source of uncertainty for airlines is that they have limited information

about the demand at the moment of scheduling a flight. Because tickets are sold in

advance, prices should be set in an environment of uncertainty about the total number

of arriving consumers. Having a good approximation of the expected demand as sales
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progress is key because (1) seats left unsold have little value after departure, and (2)

carriers may forgone important profits if the flight sells out and some consumers that

would have paid even higher prices have to be rationed.

To respond to demand uncertainty carries charge different prices as the flight

date approaches. This dynamic pricing strategy utilized by airlines can be separated

into three different components. Peak-load pricing, price discrimination and dealing

with costly capacity and demand uncertainty. Correctly identifying the existence of

peak-load pricing is central. While price discrimination is just a transfer from buyers

to sellers with no gain to society, peak-load pricing is beneficial because it assures

that only high valuation consumers get the good and can expand output through

demand shifting. This paper sets to find evidence of stochastic peak-load pricing in

airlines, where variation in prices can be explained by variations in the shadow cost

attached to each seat.

Following Escobari and Gan [32], we initially calibrate the ex-ante −before any

ticket is sold− distribution of demand uncertainty using information on sold-out

probabilities and forecasted values of occupancy rates. After controlling for restric-

tions that segment consumers (e.g. saturday-night-stayover, minimum and maximum

stay, different connections/legs, fare class, refundability), the calibrated ex-ante de-

mand distribution in enough to construct the optimal distribution of prices under the

Prescott-type of models where there is price rigidities or no demand learning. Using

nonparametric techniques we then construct a threshold variable that is used as a

proxy to identify different expected final demand states at different points prior to

departure. Using this threshold variable we estimate a panel endogenous threshold

model to test whether carriers depart from price commitments as information about

the demand arrives and sales progress. The result identified two different pricing

regimes. Consistent with the predictions of stochastic peak-load pricing, in the ex-
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pected peak flight regime when sales are larger than usual, fares will be higher. In

the expected off-peak flights where sales are lower than usual, fares will be lower. To

control for potential endogeneity of the regressors and the interaction between cu-

mulative sales and previous level of prices, we also estimate a dynamic panel model.

The results also supported the existence of demand learning and stochastic peak-load

pricing in airlines.



90

CHAPTER IV

SUMMARY

In Chapter II, we test the empirical importance of the price dispersion predictions

presented in Prescott [48], formalized in Eden [25] and extended in Dana [21]. The

basic idea in these theoretical models is that the equilibrium price dispersion can be

explained by the different selling probabilities associated with each of the units sold.

These selling probabilities play an important role in industries that face capacity

constraints and uncertainty about the number of arriving consumers. Although the

ideas in Prescott [48] have been extended to multiple areas in the economic literature,

few papers attempt to directly test the basic predictions due to the difficultness of

coming up with an appropriate measure of the selling probabilities.

In particular, the chapter seeks to find evidence for the two main predictions. i)

Lower selling probabilities characterized by higher effective costs of capacity will lead

to higher prices. ii) This effect will be larger in more competitive markets. Using the

information on seat inventories, plus calculations of the sold out probabilities, and

the forecasted values of utilization rates, we are able to construct the distribution of

demand uncertainty for each of the 81 routes in the sample. With this distribution we

generate a measure of the selling probability and the effective cost of capacity (ECC)

for each of the seats in an aircraft. This allows us to test the model by finding out

if ECC has any effect on the prices, and if so, how this effect varies with market

concentration.

Under various specifications, our empirical tests strongly support both predic-

tions of the theory. We show that for the average market structure, when ECC

increases by one dollar, fares increase by 48 cents, whereas the remaining 52 cents

is absorbed by the markup. The elasticity specification tells us that one percent
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increase in the ECC (or same as one percent decrease in the selling probability),

increases fares by 0.219 percent. Moreover, price dispersion due to costly capacity

under demand uncertainty was found to be greater in more competitive markets.

Chapter III tests whether carriers learn about the demand and price accordingly

as the departure date nears and sales progress. Demand learning is important because

tickets are sold in advance and prices should be set in an environment of uncertainty

about the total number of arriving consumers. To reduce the cost of demand uncer-

tainty carriers charge different prices as the flight date approaches and dynamically

adjust prices depending on the expectation of demand.

Following the procedure developed in Chapter II, Chapter III initially calibrates

the ex-ante −before any ticket is sold− distribution of demand uncertainty using

information on sold-out probabilities and forecasted values of occupancy rates. Af-

ter controlling for restrictions that segment consumers (e.g. saturday-night-stayover,

minimum and maximum stay, different connections/legs, fare class, refundability),

the calibrated ex-ante demand distribution in enough to construct the optimal distri-

bution of prices under the Prescott-type of models where there is price rigidities or

no demand learning. Using nonparametric techniques we then construct a threshold

variable that is used as a proxy to identify different expected final demand states at

different points prior departure. The result identified two different pricing regimes

consistent with the predictions of stochastic peak-load pricing. In the expected peak

flight regime when sales are larger than usual, fares will be higher. In the expected

off-peak flights where sales are lower than usual, fares will be lower.

The results in this dissertation, even though motivated initially in the airline

industry, can be easily extended to industries that deal with demand uncertainty and

costly capacity. Some examples involve hotel rooms, fashion apparel, cabins on cruise

liners, car rentals, entertainment and sporting events, and restaurants. Because of
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the richness of the data, there are multiple ways that it can be used to continue

studding airline pricing. Two other papers that take advantage of this kind of data

are Escobari [31] who finds evidence of systematic peak-load pricing, and Escobari

and Jindapon [33] who look at the dynamics of price discrimination when carriers

offer refundable and non-refundable fares.
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APPENDIX A

SOME FLIGHTS
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Fig. 10. Fares and load factors (United 167 BOS-LAX)
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Fig. 11. Fares and load factors (Continental 2408 CLE-ORD)
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Fig. 12. Fares and load factors (United 7156 IAD-CLE)
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Fig. 13. Fares and load factors (Continental 194 LAX-IAH)
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Fig. 14. Fares and load factors (American 596 MIA-BOS)
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Fig. 15. Fares and load factors (American 1341 MIA-MSY)
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Fig. 16. Fares and load factors (US 185 PHL-ORD)
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Fig. 17. Fares and load factors (United 579 PIT-ORD)
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APPENDIX B

INSTRUMENTS

The construction of the instruments follow Borenstein [9] and Borenstein and

Rose [10]. In particular, the instrument for ROUSHARE is called GEOSHARE,

defined as:

GEOSHARE =

√
ENPx1 · ENPx2∑

y

√
ENPy1 · ENPy2

,

with y indexes all airlines and x indexes the observed airline. ENPy1 and ENPy2 are

airline y’s average daily enplanements at the two endpoint airports during the second

quarter of 2006. The instrument for HHI is called XFLTHERF :

XFLTHERF = ˆROUSHARE
2
+

HHI −ROUSHARE2

(1−ROUSHARE)2
· (1− ˆROUSHARE)2.

This instrument assumes that the concentration of the flights on a route that is

not performed by the observed airline is exogenous with respect to the price of the

observed carrier. More on these instruments can be found in Borenstein [9] and

Borenstein and Rose [10].
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APPENDIX C

VARIABLE DESCRIPTION

FAREijt: Price in US$ paid for the one-way airfare.

LOADijt: Load factor, defined as total number of seats sold at time t divided by

total number of seats in the aircraft.

ECCijt: Effective cost of capacity, calculated by dividing costly capacity, λ (initially

normalized to one), by the probability that this seat will be sold. For the

censored normal case this one is given by

ECCijt =
λ

Prhijt

= λ ·
[ ∫ ∞

hijt/mij

√
2πσ2

j · exp
(
− (κ− µj)

2/2σ2
)
dκ
]−1

mij is the total number of seats in the aircraft and hijt is the number of seats

that have already been sold. The values for µj and σj are obtained from the

calibration procedure in section c.

DAY ADVijt: Number of days in advance the ticket was purchased.

Sijt: Threshold variable, defined as the ratio of actual seats sold to expected number

of seats sold. Sijt = LOADijt/E(LOADijt|DAY ADVijt,Xijt).

PEAKijt: Variable equal to one if flight i is expected to be a peak flight, PEAKijt =

I(γ < Sijt).

DEPTIMEj: Time of the day the flight departed.

DISTj: Nonstop mileage between the two endpoint airports on a route.
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ROUSHAREij: Carrier’s share on the route based on total number of seats in direct

flights for the day of the flight.

HHIj: Herfindahl-Hirshman Index of concentration on the observed route, with ROU-

SHARE used as the measure of market share of each carrier.

HHIj =
N∑

i=1

ROUSHARE2
ij

HUBij: Variable equal to one if the carrier has a hub in the origin or destination

airports.

SLOTj: In some airports like Chicago O’Hare (ORD), Kennedy (JFK), La Guardia

(LGA), and Reagan National (DCA), the U.S. government has imposed limits

on the number of takeoffs and landings that may take place each hour. To take

into account the scarcity value of acquiring a slot, the variable SLOT equals to

one if either endpoint of route j is one of these airports and zero otherwise.

DIFTEMPj: Absolute difference in average end of October temperatures, measured

in Fahrenheit degrees, between the departure and destination cities.

DIFRAINj: Absolute difference in average end of October precipitation, measured

in inches, between the departure and destination cities.

DIFSUNj: Absolute difference in average end of October sunshine, measured in

percentage, between the departure and destination cities.

AV EHHINCj: Average of the median household income in the two cities.

AV EPOPj: Average population in the two cities. For cities with more than one

airport, the population is apportioned to each airport according to each air-

port’s share of total enplanements. Source: Table 3, Bureau of Transportation



106

Statistics, Airport Activity Statistics of Certified Air Carriers: Summary Tables

2000.

AAj, ALj, COj, DEj, UNj, USj: Variables equal to one if the carrier on route j is

American, Alaska, Continental, Delta, United, or US Airways respectively.
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