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ABSTRACT 

 

Thermal Decomposition Study of Hydroxylamine Nitrate  

During Storage and Handling. (May 2006) 

Chuanji Zhang, B.S., Anhui Normal University, China 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

Hydroxylamine nitrate (HAN), an important agent for the nuclear industry 

and the U.S. Army, has been involved in several costly incidents. To prevent similar 

incidents, the study of HAN safe storage and handling boundary has become 

extremely important for industries. However, HAN decomposition involves 

complicated reaction pathways due to its autocatalytic behavior and therefore 

presents a challenge for definition of safe boundaries of HAN storage and handling. 

This research focused on HAN decomposition behavior under various conditions and 

proposed isothermal aging testing and kinetic-based simulation to determine safety 

boundaries for HAN storage and handling. 

Specifically, HAN decomposition in the presence of glass, titanium, stainless 

steel with titanium, or stainless steel was examined in an Automatic Pressure 

Tracking Adiabatic Calorimeter (APTAC). n-th order kinetics was used for initial 

reaction rate estimation. Because stainless steel is a commonly used material for 

HAN containers, isothermal aging tests were conducted in a stainless steel cell to 
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determine the maximum safe storage time of HAN. Moreover, by changing thermal 

inertia, data for HAN decomposition in the stainless steel cell were examined and the 

experimental results were simulated by the Thermal Safety Software package.  

This work offers useful guidance for industries that manufacture, handle, and 

store HAN. The experimental data acquired not only can help with aspects of process 

safety design, including emergency relief systems, process control, and process 

equipment selection, but also is a useful reference for the associated theoretical study 

of autocatalytic decomposition behavior. 
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CHAPTER I  

INTRODUCTION 

 

1All chemicals can be viewed as a double-edged sword. If you use them 

properly, they will drive the improvement of technology and the development of the 

economy. However, if some unwanted side or decomposition reactions happen, 

chemicals may pose hazards that threaten human life and cause tremendous damage 

to property. The U.S. Chemical Safety and Hazard Investigation Board issued a 

report, Incident Data — Reactive Hazard Investigation that analyzed 167 chemical 

incidents from 1980 to 2001 in the USA (U.S. Chemical Safety and Hazard 

Investigation Board, 2003). These incidents were distributed among chemical 

manufacturing (raw material storage, chemical processing, and product storage) and 

other industrial activities (such as bulk chemicals storage). According to the report, 

thirty-seven incidents occurred in storage areas or involved storage tanks of reactive 

chemicals. Because chemicals are usually stored in large quantities, they may cause 

catastrophic consequences during an incident. In order to control reactive hazards 

and prevent similar incidents, the study of safe storage and handling conditions for 

reactive chemicals is necessary. However, reactive chemicals usually have 

complicated runaway pathways as part of their decomposition reaction systems. It is 

therefore a challenge to define safe storage and handling conditions for industries 
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that manufacture, handle, and store reactive chemicals. 

Hydroxylamine nitrate (HAN) is an important agent for the nuclear industry 

and the U.S. Army. High concentrations of HAN are used as an oxidizer in gun 

propellant mixtures, and at low concentrations HAN is used as a decontamination 

agent for equipment treatment in nuclear material processing. According to a 

technical report from the U.S. Department of Energy, HAN has been involved in 

several incidents from 1972 to 1997. One major HAN incident was an explosion on 

May 14, 1997, in the Chemical Preparation Room of the Plutonium Reclamation 

Facility at the Hanford Plutonium Finishing Plant (U.S. Department of Energy, 1998). 

The investigation of this incident showed that understanding the thermal 

decomposition behavior of HAN during storage and handling is significant to avoid 

similar incidents. With this safety objective, this research focused on effects of 

various container materials on the decomposition of HAN and on determining a 

method to predict safe storage boundaries. 

 Calorimetry is a very useful method for studying thermal behavior and 

evaluating potential thermal hazards of runaway reactions (Sempere et al., 1997; 

Tseng et al., 2005). Calorimetry used for thermal stability and runaway study can be 

categorized into two types: screening level calorimetry and advanced calorimetry. 

Screening level calorimetry is used for rapid tests of thermal hazards of reactive 

chemicals. For chemicals that show potential hazards in screening tests, advanced 

calorimetry is employed to evaluate thermal behavior. 
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 Advanced calorimetry mainly refers to adiabatic calorimetry, which can 

simulate the worst-case scenario of thermal hazards in exothermic reactions. 

Adiabatic calorimetric tests can measure the maximum temperature, pressure, and 

self-heating rates during an exothermic reaction. These data can be used in the design 

of safety relief systems, process control, and for assessing hazards due to chemical 

reactivity. In addition, the behavior of temperature or pressure versus time of a 

reaction in adiabatic calorimetric tests can be used to analyze the kinetics of 

reactions. 

 The simplest kinetics applied to thermal decomposition of hazardous 

materials is the n-th order model, which has been illustrated clearly in operating 

principles of adiabatic calorimeters. It can generally well represent adiabatic data. 

However, for some complicated reactions such as autocatalytical decompositions, it 

cannot be guaranteed that n-th order kinetics will work satisfactorily, especially for 

the explosion periods of autocatalytic decompositions. Much work has been done on 

seeking more formal kinetic models for simulating calorimetric data. As a result, 

some commercialized kinetic modeling software has been generated. 

The Thermal Safety Software (TSS) series developed by ChemInform St. 

Petersburg Ltd. (CISP) is a type of kinetic modeling software. For all kinds of 

calorimetric data, the TSS provides not only the n-th order model, but also other 

kinetic models such as the generalized auto-catalysis model, auto-catalytic stage 

(“proto”) model, Avrami-Eforfeev’s model (topo chemical reaction), generalized topo 
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chemical model, and the Jander model.  

In this work, the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) 

was employed to conduct experiments for studying HAN thermal decomposition. 

The n-th order kinetic model was used for simulating HAN decomposition behavior 

during the induction period. The overall kinetic simulation for HAN decomposition 

was performed using the TSS software. Based on the current results, a method to 

predict safety conditions during storage and handing of HAN has been proposed. 

 Chapter II presents a review of calorimetry used in thermal hazards study. 

Besides screening level calorimetry and advanced calorimetry, miniature calorimetry 

as a new member of the calorimetry family is reviewed. The APTAC is emphasized 

because it is the instrument used in this research. Chapter III presents a background 

of thermal and catalytic HAN decomposition and provides experimental details of 

samples, equipment, calibration, and experimental methods. Chapter IV presents and 

discusses experimental data from the APTAC testing including kinetic analysis with 

the n-th order and the TSS software. Chapter V summarizes the conclusions and 

addresses future work on this topic.  

 This research is useful for HAN manufactures and customers, because it 

provides them with a study of the effects of different materials used for HAN 

containers on the decomposition of HAN and proposes an approach to determine safe 

boundaries for HAN storage and handling. The experimental data obtained in this 

work not only can help with aspects of process safety design including emergency 
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relief systems, process control, and process equipment selection, but also is a useful 

reference for the associated theoretical study of autocatalytic decomposition 

behavior. 
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CHAPTER II 

CALORIMETRY APPROACH FOR THE STUDY 

OF THERMAL HAZARDS 

 

2.1. Introduction 

Thermal hazards have been reported as one of the major hazards in chemical 

process facilities, and they are usually caused by chemical exotherm behavior due to 

instability, incompatibility, oxidization, flammability, or explosibility. The 

calorimetry approach is mainly applied for the study of thermal stability and runaway 

reactions. Thermal stability is defined as “the resistance to permanent change in 

properties caused solely by heat” (http://composite.about.com/library/glossary/ 

t/bldef-t5525.htm). Runaway means “a thermally unstable reaction system which 

shows an accelerating increase of temperature and reaction rate which may result in 

an explosion” (CCPS, 1995). A runaway reaction may occur if the heat removal rate 

is less than the heat generation rate for an exothermic reaction. Many factors can lead 

to runaway, including rapid decomposition or oxidation reactions, reactants 

overloading or mischarging, incorrect handling of catalyst, cooling system failure, or 

loss of agitation. 

Calorimetry is “the science of measuring the heat of chemical reaction and 

physical changes” (http://en.wikipedia.org/wiki/Calorimetry). In the area of process 

safety, it is a powerful approach for studying thermal behavior and evaluating the 
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thermal hazards of a runaway reaction (Gustin, 1993; Maschio, et al, 1999; Duh, et al, 

1996; Donoghue, 1997). This technique, which can be used to conduct 

thermodynamic and kinetic analyses, measures the behaviors of temperature, 

pressure, power output, temperature increase rate, and pressure increase rate with 

respect to time. The resulting information can help to prevent runaway reactions, 

design emergency relief systems, and study thermal stability and storage 

compatibility (Gustin et al., 1993; Barreda et al., 2005; Lu et al., 2004; Botros et al., 

2006, Rota et al., 2002; Fauske, 2000).  

Calorimetry for thermal safety investigation in industries and academia can 

be classified into two types based on operation cost and testing time: screening level 

calorimetry and advanced calorimetry. These types will be introduced in the 

following sections, followed by a comparison among commonly used calorimeters. 

Moreover, a new member of the calorimetry family – miniature calorimetry, will be 

discussed in this chapter. As the instrument used in this research, the Automatic 

Pressure Tracking Adiabatic Calorimeter (APTAC) will be emphasized in a separate 

section. 

 

2.2. Screening Level Calorimetry 

 Calorimetry screening provides inexpensive and rapid testing, requires 

minimal expertise, and yields information that guides more detailed analysis. In 

industries, screening level calorimetry is employed as a minimum best practice (MBP) 
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for safety management, which results in an acceptable level of risk with 

consideration of cost effectiveness. The screening calorimetry in common use 

includes Differential Thermal Analysis (DTA), Differential Scanning Calorimetry 

(DSC), Reactive System Screening Tool (RSST), Thermogravimetric Analysis 

(TGA), and Isoperibolic Calorimetry. 

 

2.2.1. Differential Thermal Analysis (DTA) 

 Differential Thermal Analysis is a “fingerprinting” technique. It can provide 

information on chemical reactions, phase transformations, and structure changes for a 

sample under study. Usually, it connects a voltmeter with two thermocouples, which 

are placed in a reference material (inert substance) such as Al2O3 and a sample 

material, respectively. When the sample and reference material are subjected to an 

identical temperature scanning program, temperature differences between them are 

monitored as functions of temperature or time (CCPS, 1995). The principle of DTA is 

that the input energy will steadily raise the temperature of the reference material, 

which will be converted to latent heat during a phase transition of the sample. Figure 

2.1 below shows a DTA instrument from Orton Instruments. 
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Fig.2.1. DTA from Orton Instruments 
(http://www.ortonceramic.com/instruments/pdf/DTA.pdf) 

 
  

2.2.2. Differential Scanning Calorimetry (DSC) 

 Differential Scanning Calorimetry is a technique by which the input energy 

difference for establishing a nearly zero temperature difference between a sample 

substance of up to a few mg and inert reference material is measured as a function of 

temperature while the sample and reference material are subjected to an identical 

temperature scanning program. DSC can be categorized into two types, power 

compensation DSC and heat-flux DSC, which are discussed in detail by Bhadeshia 

(2002). Figure 2.2 is a picture of a DSC calorimeter from Netzsch Instruments Inc. 
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Fig.2.2. DSC-404C Pegasus® 
(http://www.e-thermal.com/dsc404c.htm) 

 

2.2.3. Reactive System Screening Tool (RSST) 

 The Reactive System Screening Tool developed by Fauske & Associates is a 

near-adiabatic calorimeter that characterizes reaction thermal nature rapidly with a 

single heating scan. The sample substance is placed in a small open glass cell (about 

10mL) that is contained in a stainless steel vessel pressurized with nitrogen. The 

resulting RSST data yield rates of temperature and pressure rise due to runaway 

reaction, which provides information about exothermic reactions and design 

emergency relief devices (Fauske, 1993). The RSST is not very sensitive and can 

only detect self-heat rates higher than 1oC/min. However, it is frequently used for 

screening reactive chemicals due to its relative affordable price and ease of use. The 

RSST and its control unit are shown in Figure 2.3. 
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Fig.2.3. RSST including a pressure vessel and control unit 

(http://www.chem.mtu.edu/~crowl/rsst.htm) 

 

The Advanced Reactive System Screening Tool (ARRST), based on the RSST, 

is also manufactured by Fauske & Associates. Retaining the easy-to-use and 

inexpensive characteristics of the RSST, the ARSST adopts new Windows software, 

which adds many features such as wider scan rates (0~30oC/min), a heat-wait-search 

(HWS) heating mode, and isothermal operation at elevated temperatures. As a result, 

the sensitivity of onset detection is increased down to 0.1oC/min. A detailed 

introduction of the ARSST was presented by Burelbach (2000). 

 

2.2.4. Thermogravimetric Analysis (TGA) 

Thermogravimetric Analysis is a technique for studying thermal stability of 

chemicals in which the weight loss percentage of a sample is measured as a function 

of temperature or time while the sample is being heated at a fixed rate. Information 

about the composition of the sample is indicated by the mass loss during a specific 
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temperature range. It is commonly used for determining material characteristics, 

degradation temperature, and decomposition point of explosives. Many companies 

produce TGA apparatus, such as Linseis, Mettler, Perkin Elmer, and TA Instruments. 

A typical TGA apparatus is shown in Figure 2.4 below.  

 

 
Fig.2.4. TGA 

(http://www.ptli.com/testlopedia/tests/ TGA-E1131.asp) 

 

2.2.5. Isoperibolic Calorimetry 

Isoperibolic Calorimetry is used to investigate the thermal behavior of 

exothermic reactions. In this type of calorimeter, a surrounding jacket is maintained 

at constant temperature while the temperature of the sample cell and its bucket are 

raised due to heat released by sample decomposition or combustion. Commercial 

isoperibolic calorimeters include SEnsitive Detector of EXothermic processes 

(SEDEX), SIKAREX, and RADEX, whose photo is shown in Figure 2.5.  
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Fig.2.5. RADEX cell (left), SEDEX cell (middle), and SIKAREX cell (right) 

(http://www.systag.ch/e530tsc5.htm# Measuring_cells) 

 

2.3. Advanced Calorimetry 

Advanced calorimetry used for thermal safety study includes adiabatic 

calorimetry and reaction calorimetry. Adiabatic calorimetry is designed to investigate 

worst-case scenarios for exothermic reactions, which has been proven to be a good 

way to evaluate thermal hazards of reactive chemicals under runaway conditions 

since the dynamic data of runaway reactions is measured directly. Reaction 

calorimetry investigates heat flow due to exothermic reaction by simulating real 

process conditions. Reaction calorimetry belongs to the general class of isothermal 

calorimetry that cannot measure the runaway data directly. Therefore, adiabatic 

calorimetry is preferred for runway reaction studies. 

Compared with screening level calorimetry, adiabatic calorimetry is not only 
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time-consuming and expensive but also requires more experiment and interpretation 

skills. However, adiabatic calorimetry is usually employed as an available best 

practice (ABP) to study the greatest reduction in risk for safety management. It 

minimizes heat losses during operation by adjusting the surrounding temperature to 

match the sample temperature, which simulates the worst-case scenario of a runaway 

reaction. The kinetic and thermodynamic data obtained by adiabatic calorimeter can 

be applied to build computer models of reaction kinetics and runaway simulations 

(Grolmes & King, 1995;  Townsend et al., 1995; Liaw et al., 2001). The resulting 

information can be used to conduct consequence analysis in risk assessment. 

Commonly used adiabatic calorimeters include the Accelerating Rate Calorimeter 

(ARC), Automatic Pressure Tracking Adiabatic Calorimeter (APTAC), Vent Sizing 

Package (VSP), Phi-tec, and Dewar flask. Hereinto, ARC and APTAC are discussed 

in this section. For other adiabatic calorimeters, information can be found in the open 

literature (Yue, 1994; Gigante et al., 2003; Nomen et al., 1995). 

 

2.3.1. Accelerating Rate Calorimeter (ARC) 

In 1978, Dow Chemical Company developed the Accelerating Rate 

Calorimeter, which became the most widely used adiabatic calorimeter for 

substances ranging from explosives to detergents and batteries to resins. Later on, 

Thermal Hazard Technology reengineered the original ARC and extended its 

application to make it more users friendly. In the ARC, a sample cell made of 
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stainless steel, titanium, tantalum, or Hastelloy is placed in an insulted container as 

shown in Figure 2.6. Two heating modes (heat-wait-search and heating) are available 

for the ARC. In the heat-wait-search mode, the ARC heats the sample material with a 

fixed temperature increment, then switches to wait mode for stabilizing the 

temperatures of the sample and containment vessel, and finally changes to a search 

mode. If an exotherm is detected during the search mode, the ARC goes into the 

adiabatic mode and follows the exotherm. Otherwise, it heats the sample material to 

the next search stage at a higher temperature. For the heat mode, the sample material 

is heated continuously until an exotherm is detected, and then the ARC switches to 

the adiabatic mode to follow the exotherm. 

The ARC can detect exotherms as low as 0.01oC/min. The operating 

temperature can be up to 400oC and the pressure up to 200 bars. The data obtained 

from ARC testing are temperature and pressure as functions of time, which are used 

to calculate the maximum self heat rates, maximum pressure rates, onset 

temperatures, and reaction kinetics parameters. The major problem with the ARC is 

the high thermal inertia of the reaction vessel as a result of using a thick wall sample 

cell and a relative small quantity of sample. Moreover, due to the limited cell heating 

up to 20oC/min, the ARC is not appropriate to study under adiabatic conditions fast 

exotherms such as some autocatalytic reactions.  
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Fig.2.6. Close-up view of ARC 
(http://www.chem.mtu.edu/~crowl/arc.htm) 

 

2.3.2. Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) 

The Automatic Pressure Tracking Adiabatic Calorimeter was developed from 

the ARC and has many unique features. Its dynamic calorimetric range is about 20 

times wider than other adiabatic calorimeters (up to 400oC/min). Reagent can be 

added into the sample cell and the sample can be vented during an experiment, which 

extends the applications of adiabatic calorimetry. Because the APTAC performs 

closed-cell testing, the resulting data are more accurate than open-cell calorimeters 

such as the RSST or ARSST. In addition, a pressure compensation mechanism in 

which the sample pressure is matched outside the cell enables the APTAC to use 

thin-wall sample cells (made of glass, stainless steel, titanium, etc.). This 

improvement combined with the larger sample size dramatically reduces the thermal 

inertia of the sample cell. 
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The APTAC is capable of studying exothermic reactions at temperatures 

ranging from ambient to 500oC and pressures ranging from vacuum to 2000 psia. It 

has various modes such as heat-wait-search, heat-soak-search, heat ramps, and 

isothermal. Figure 2.7 is an overall view of APTACTM system, and Figure 2.8 is a 

schematic of APTACTM pressure vessel. 

 

 

 
Fig.2.7. Overall view of the APTACTM system 

(http://www. calorimeters.net/Overview%20Products-Services/aptac.htm) 
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Fig.2.8. Schematic of the APTAC pressure vessel 
(Adapted from Wei, 2005) 
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2.4. Comparison of Calorimeters 

No calorimeter can be used for all purposes because each one has its own 

strengths and weaknesses based on the principle of measurement and range of 

operation.  Kersten et al. (2005) have conducted a Round-Robin test with 

di-tertiary-butyl peroxide in the ARC, Phi-Tec, Pressure Dewar calorimeter (Dewar), 

temperature controlled reactor (CRVM), and the APTAC for comparing the accuracy 

and reliability of these adiabatic calorimeters. After these experiments, they 

concluded that no specific type of equipment was superior to the others from an 

overall point of view. However, if some requirements or limitations are specified, an 

appropriate calorimeter may be selected for a specific application. A summary and 

comparison of common calorimeters are listed in Table 1.1, which may help to 

choose appropriate tools for specific studies of thermal hazards. 
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Table 1.1.  
Comparison of commonly used calorimeters (Modified from http://www.harsnet.de/links/Calorimeters.htm) 
 
Calorimeter TSU Calwin  DSC HP27 Radex 
Pressure range  -1 to 60 bar    
Temperature range 0 to 400oC -20 to 200 oC Up to 750oC   
Typical sample size 5g 500g 1mg 2 to 10 mg 1 to 5 g (1 to 5 mL) 
Objective and method Thermal stability 

screening 
Isoperibolic  Isothermal test, 

thermal stability 
screening 

Thermal stability, 
high pressure DSC 

Thermal stability 
screening method 

Thermal sensitivity 1W/g <0.1mW/g ~3 µW/mg 1mW/g 5 J (0.1C x 50 J/C 
Heat Cap Radex) 

Advantages* 1, 2, 3, 4, 7, 8 1,3,7 1, 2, 3 1, 2, 3, 8 1 (multiple tests at 
once), 3, pressure 
data 

Disadvantages** 8  4, 8 4, 6, 8 1 (cleaning), 4, 5 
Data obtained Onset temperature, 

pressure 
∆H, Cp, pressure ∆H, Cp, limited 

kinetic data 
∆H, kinetic data ∆H, relative onset 

temperature 
Price Single test Low Low Low Low Medium 
 Interpretation Low to medium Medium  Medium  
 Instrument Low to medium Low Medium Medium High 
Skills Experimentation Low Medium Medium Medium Medium 
 Interpretation Medium to high Low High High High 
Manufacturer Hazard Evaluation 

Laboratory 
Limited (HEL) 

uniHH Netzsch 
Instruments Inc. 

Mettler SYSTAG, System 
Technik AG 

* Advantages: 1. Quick; 2. Only small sample needed; 3. Wide temperature range; 4. Sensitivity to T; 5. Low Phi-factor; 6. Accurate 
global kinetics; 7. Low price; 8. Small effort; 9. Other 

**Disadvantages: 1. Time consuming; 2. Large sample required; 3. Restricted temperature range; 4. Insensitivity to T; 5. Medium/high 
Phi-factor; 6. More test runs needed; 7. Very expensive; 8. Cannot imitate process conditions; 9. Other  
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Table 1.1. (Continued) 
 
Calorimeter TGA DTA Simular ARSST ARC 
Pressure range 1 bar  Up to 60 bar   
Temperature range 200oC Up to 1500oC -40 to 300oC   
Typical sample size 10 to 20 mg 1mg 750g 1 to 10 mL 5g (5mL) 
Objective and method Differential 

thermal analysis, 
detection of 
volatiles, 
composition, 
thermal stability 

Thermal 
stability, screen 
reactive system 

Isothermal calorimeter Thermal stability 
screening, runaway 
characterization, vent 
sizing 

Adiabatic test, 
thermal stability 

Thermal sensitivity 0.0001 W < 0.0005µV <0.1mW/g 1mW/g 0.01oC/min 
Advantages* 1, 2, 3, 6, 7 1, 2, 3 1, 9 (can simulate 

actual process) 
1, 2, 3, 4, 5, 6 2, 3, 5, 9 

(Pressure data) 
Disadvantages** 8 4, 8 2 6, 8 1, 5, 7, 9 

(measured heat 
rates 
Phi-dependant, 
needs modeling) 

Data obtained Humidity, change 
of mass versus 
temperature 

∆H, limited 
kinetic data 

∆H, Cp, kinetic data, 
power output, pressure, 
gas evolution rate 

Kinetic data, onset 
temperature, adiabatic 
temperature rise 

∆H, kinetic data, 
onset 
temperature 

Price Single test Medium Low Medium Medium High 
 Interpretation High  Medium Medium  
 Instrument High Medium High Low High 
Skills Experimentation High Medium High Medium High 
 Interpretation High High High High to very high High 
Manufacturer Mettler Orton 

Instruments 
HEL Fauske  Thermal Hazard 

Technology 
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Table 1.1. (Continued) 
 
Calorimeter Open Cup ARC VSP PHI-TECI APTAC Dewar Flask 
Pressure range  Up to 1000 psia 0 to 138 bar Up to 2000 psia  
Temperature range  -50 to 1000oC 0 to 500oC Up to 500oC -20 to 200oC 
Typical sample size 10g (20mL 

Powder) 
120mL (sample 
cell) 

8g 130mL (sample cell) 200 to500 mL 

Objective and method Adiabatic test, 
solids oxidative 
stability, storage 
stability 

Adiabatic test, 
thermal stability 

Adiabatic testing, 
thermal stability, 
runaway 
characterization 

Adiabatic testing, 
thermal stability, 
runaway 
characterization 

Adiabatic 
testing, thermal 
stability 

Thermal sensitivity 0.01oC/min 0.05oC/min 0.02°C/min 0.04oC/min 0.5W/kg 
Advantages* 5, air flow at 

elevated 
temperature, 

3, 5, 9 (Pressure 
compensation) 

1, 2, 3, 4, 6, 9 
(Pressure 
compensation) 

3, 5, 6, 9 (Pressure 
compensation) 

3, 4, 5, 7, 9 
(accurate data) 

Disadvantages** 1, 2 1, 2  8 1, 7, 9 (measured 
heat rates Phi 
–dependant, needs 
modeling) 

1, 2 

Data obtained Kinetic data (zero 
order) 

∆H, kinetic data, 
onset temperature, 
pressure 

∆H, kinetic data, 
onset temperature, 
pressure 

∆H, kinetic data, 
onset temperature, 
pressure, pressure 

∆H, Cp, the 
induction time 

Price Single test High High Medium High High 
 Interpretation   Medium   
 Instrument High  Medium High to very high Low 
Skills Experimentation High Medium Medium Medium Medium 
 Interpretation High High High High Medium 
Manufacturer  Fauske  HEL TIAX  
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2.5. Miniature Calorimetry 

With the development of nanotechnology and microfabrication, miniature 

calorimetry as the new member in the calorimetry family has been gradually applied 

in the area of process safety. Currently, miniature calorimetry used in safety studies 

includes isothermal nanocalorimetry and isothermal microcalorimetry.  

Isothermal nanocalorimetry is a technique based on similar principles such as 

the DSC, but the calorimeter cell size is reduced to the micrometer or nanometer 

scale. A commercialized isothermal nanocalorimeter (INC) developed by 

Calorimeter Sciences Corp. (CSC) has been applied in measurement of 

pharmaceutical shelf life, hazards evaluation of explosive storage, and the study of 

chemical stability. This INC can detect a heat flow change as low as 1 

nanocalorie/second. Such high sensitivity is a prerequisite for calorimetric study of 

samples in limited quantity or with a hazardous nature. More information about the 

INC is available on the website of Calorimeter Sciences Corp. (http://www. 

calorimetrysciences.com/Calorimeters.html).  

Isothermal microcalorimetry can monitor the heat flow generated by a 

chemical, physical, or biological process as the sample is maintained at constant 

temperature. The heat flow can be used to calculate the heat generated or consumed 

by the sample placed in the calorimeter. Commercialized isothermal 

microcalorimeters include the Tian-Calvet microcalorimeter and the Thermal 
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Activity Monitor (TAM). 

The Tian-Calvet microcalorimeter is an isothermal microcalorimeter used for 

the study of thermal decomposition including the determination of kinetics and the 

evaluation and prediction of reaction progress. It can be used if the ARC indicates an 

onset temperature of reaction within 50oC of the temperature required for the process. 

Its sample size is 1~10mL compared with 100mL in the DSC. Moreover, the 

Tian-Calvet microcalorimeter can obtain more accurate data than the usual DSC. A 

detailed introduction to the Tian-Calvet microcalorimeter can be found on the 

website of Setaram Instrumentation (http://www.setaram.com/).  

The Thermal Activity Monitor was developed at the University of Lund 

(Suurkuusk & Wadsö, 1982) and was commercialized by LKB Instruments in 

Sweden. It is designed for detecting chemical activity that may develop into a 

thermal runaway during storage or handling of bulk quantities. The third generation, 

TAM III, allows multi-sample measurements to be performed simultaneously for up 

to 48 hours. Its scanning mode can be set to less than 2oC/hr for an isothermal step. 

The application of the TAM in the pharmaceuticals and biomaterials can be found in 

the literature (Lechuga-Ballesteros et al., 2003; Zimehl et al., 2002).  

 

2.6. APTAC Details  

Because the APTAC is the instrument used in this research, detailed 

information on its operation modes, data acquired, and general principles of 
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operation will be discussed under the following subtitles. 

 

2.6.1. Operation Modes 

The APTAC has several heating strategies for the sample including 

heat-wait-search, heat-soak-search (also called iso-aging), heat-ramp by fixed 

temperature difference, heat-ramp by rate, heat-ramp by rate with exothermal 

detection, and isothermal. Heat-wait-search and heat soak-search are used in this 

work. Information about the other strategies can be found in the control and 

operation manual of the APTAC.  

In the heat-wait-search, the APTAC heats the sample with a specified 

temperature rate (say 2oC/min) to a starting temperature, then changes to wait mode 

to allow for the temperatures of sample and containment vessel to stabilize, and 

finally switches to search mode to detect exothermal behavior. During the process, 

the self-heating rate of the sample is polled and compared with a predefined 

sensitivity threshold. When the self-heating rate of the sample exceeds this threshold, 

an exotherm is detected by the system. If an exotherm is detected during the search 

mode, the APTAC will go into the adiabatic mode and follow the exotherm. 

Otherwise, the sample material will be heated to the next higher predefined 

temperature for the next exotherm search. The standard stabilization and searching 

times are 25 minutes.  

The iso-aging can be used to study the effects of inhibitors added to the 
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reactants. In this strategy, the sample material is heated first to a preset soak 

temperature. The APTAC requires time for temperature stabilization of the pressure 

vessel and sample (default value is 25 minutes) and then proceeds to the search 

mode during which the APTAC maintains a constant sample temperature. During the 

process, the self-heating rate of the sample is polled and compared with a predefined 

sensitivity threshold. When the self-heating rate of the sample exceeds this threshold, 

an exotherm is detected by the system. If an exotherm is detected in the search mode, 

the APTAC will automatically switch to the adiabatic mode and follow the exotherm. 

Otherwise, the APTAC will stay in the search mode until the predefined soak time is 

ended and then proceed to a standard heat-wait-search. 

 

2.6.2. Data Acquired 

The data measured directly by the APTAC includes elapsed time, sample 

temperature, reaction vessel temperature, containment vessel temperature, sample 

pressure containment pressure, sample self-heating rate, and pressure rate of sample. 

Important data curves that can be obtained from the APTAC software are 

temperature versus time, pressure versus time, temperature versus pressure, heat rate 

versus temperature, and pressure rate versus temperature profiles. These data and the 

shapes of the curves can provide information about potential hazards posed by the 

reaction that occurred in the system. Moreover, there are some important parameters 

that may be used for further kinetic analysis of runaway reactions or for simulation 
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during the design of safety-relief devices. Useful reaction characterization 

parameters include: 

 Onset temperature (Ton): “the temperature at which a detectable temperature 

increase is first observed due to a chemical reaction” (defined by CCPS, 

1995). Its value depends on the sensitivity of the temperature measuring 

equipment. Usually, the more the thermally sensitivity, the lower the 

measured onset temperature. The onset temperature is important information 

for safe storage and handing of hazardous materials. A safety margin used in 

industry is 50oC or more above the onset temperature to prevent undesired 

reactions. 

 Maximum adiabatic temperature (Tmax): the maximum value during an 

exothermic process. Tmax is an important parameter for kinetic analysis of a 

runaway reaction. 

 Maximum pressure (Pmax): the maximum value of pressure during an 

exothermic process. The major risk posed by a runaway reaction is the 

mechanical failure of reactor or container due to overpressure. The Pmax is 

important also for the design of safety relief valves. 

 Maximum self-heating rate (dT/dtmax). This value is used in the design of 

safety relief devices. 

 Maximum pressure rate (dP/dtmax). This value is used in the design of safety 

relief devices. 
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 Time to maximum rate (TMR): the time from the self-heating rate at the 

onset temperature to the maximum self-heating rate. This time is used to 

estimate the response time of an emergency system to avoid a runaway 

reaction. 

 Noncondensed pressure: the pressure in the gas phase of a sample when the 

system is cooled down after a runaway reaction has finished. This value is 

useful for the thermodynamic simulation of runaway reactions.  

 

2.6.3. General Principles of Operation 

Townsend and Tou (1980) illustrated data interpretation with the n-th order 

kinetics for the ARC. Because the APTAC has similar principles to the ARC, the 

data interpretation for the ARC is also suitable for the APTAC. Those general 

principles of operation are reviewed here. 

For an exothermic reaction, a runaway situation may occur if the heat 

generated from the reaction is greater than the heat removed by the cooling system. 

This phenomenon can be explained by the fact that the rate constant of a reaction 

increases exponentially with temperature. The Arrhenius equation gives a 

quantitative expression for this event: 

)/exp(0 RTEkk a−=              (1) 

where k is the rate constant, k0 is the frequency factor, Ea is the activation energy for 

the chemical reaction, and R is gas constant. Actually, a more general form of the 
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constant rate has been proposed as (Townsend & Tou, 1980): 

)/exp(0 RTETkk a
j −=             (2) 

where j is 0 in the Arrhenius equation, 0.5 in collision theory, and 1 in absolute rate 

theory. However, the term of Tj is overshadowed by the exponential factor, because 

the latter has wider variation. To simplify the model, j is taken as 0 whenever 

considering the rate constant. 

If the reaction is assumed to occur with homogeneous and n-th order kinetics 

for a single reactant A, the reaction rate law of gives the reaction rate in terms of the 

rate constant, concentration of species, and the reaction order: 

n
A

A
A kC

dt
dCr −==              (3) 

where rA is the reaction rate of component A, k is the rate constant, n is the reaction 

order, and C is the concentration of component A. 

 For an exothermic reaction under adiabatic conditions (e.g., in an adiabatic 

calorimeter), the heat produced from the initial reaction will cause a rise in 

temperature that will in turn expedite the rate of reaction as shown in equations (1) 

and (3). This acceleration effect will lead the system to a maximum temperature and 

consume the concentration of reactant. Therefore, the reaction rate is expected to 

achieve a maximum value at a temperature peak and then decrease to zero at the end 

of the reaction. During the process of exotherm, the concentration of the reactant at 

any temperature or time is given by: 
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where Co is the initial concentration; C is the concentration at any temperature T, and 

To and TF are the initial and final temperatures, respectively. 

The overall reaction heat generated is expressed as: 

TmCH V ∆=∆                (5) 

where ∆H is the overall reaction heat in terms of enthalpy, m is the mass of the 

sample, CV is the average heat capacity at constant volume of the reaction system 

over the temperature range, and ∆T is the adiabatic temperature rise.  

By differentiating equation (4), the self-heat rate dT/dt is obtained and then 

substituted into equation (3): 
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∆
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nF TC

T
TT

k
dt
dT

          (6) 

If a pseudo kinetic constant k* is defined as the following:  

T
T

TT
dtdTkCk

nF
n
o

∆
∆

−
== −

)(

/* 1

          (7) 

a relationship between ln (k*) and 1/T can be derived by combining equations (1) 

and (7): 

)1()ln(*)ln( 0
1

TR
E

kCk an
o −= −

          (8) 

Given a correct reaction order, the ln (k*) versus 1/T plot should be a straight line 

with slope of Ea/R and intercept of 0
1kCn

o
−

. The activation energy Ea and the 
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frequency factor k0 for the Arrhenius equation can be calculated based on the slope 

and intercept of the plot. 

For a reaction with high activation energy (say, greater than 20 kcal/mol), the 

time after tm (defined as the time at the maximum self-heat rate) is negligible 

because the reaction decays quickly after tm. Therefore, the time of reaction can be 

estimated by the time to maximum self-heat rate (TMR). By rewriting equation (6) 

into the expression of dt and integrating dt from t0 (the time at the onset temperature) 

to tm, TMR can be calculated by: 

∫∫ −∆
∆

−
==

mm T

T
n
o

nF

t

t TC
T

TT
k

dTdtTMR

00

1)(        (9) 

where T0 is the onset temperature, and Tm is the temperature at the maximum 

self-heat rate. These parameters are determined through APTAC tests as discussed 

above.  

 In the above equations, the reaction heat energy is assumed to heat the 

reaction system itself. But in reality, a portion of the reaction heat is used to heat the 

reaction vessel that is the sample cell in the APTAC. This part of heat loss must be 

corrected using the following energy balance: 

sVbbsVsVss TCmCmTCm ∆+=∆ )(         (10) 

where ms is the mass of the sample, CVs is the average heat capacity of the sample, 

mb is the mass of the sample cell, and CVb is the average heat capacity of the sample 
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cell, ∆T is the corrected adiabatic temperature rise, and ∆Ts is the adiabatic 

temperature rise measured experimentally. If a new parameter called the thermal 

inertia factor (φ) is defined as: 

Vss

VbbVss
Cm

CmCm +
=φ            (11) 

equation (10) can be written: 

sTT ∆=∆ φ                 (12) 

Commonly, 1/φ indicates the degree of adiabaticity of the calorimeter. For an 

industrial runaway reaction under adiabatic surroundings, the φ factor approaches 

and is generally equal to 1. 

 Considering the correction of φ, the adiabatic final temperature (TF) is: 

sF TTT ∆+= φ0               (13) 

Equations (4), (5), and (6) also become: 

o
s

sFs C
T

TTC *
∆

−
=               (14) 

sV TmCH ∆=∆ φ               (15) 
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dt
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         (16) 

where the subscript “s” indicates the measured value in an experiment. 
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CHAPTER III 

EXPERIMENTAL DETAILS 

 

3.1. Introduction 

Hydroxylamine Nitrate (HAN), an important agent for the nuclear industry 

and the U.S. Army, has been involved in several incidents. One major incident was 

the 1997 Hanford explosion (U.S. Department of Energy, 1998). According to the 

incident report from the U.S. Department of Energy (1998), the concentration of 

HAN in aqueous solution had increased due to evaporation over the preceding four 

years. and iron from the inner surface of the HAN container could have acted as a 

decomposition catalyst. The higher HAN concentration, effect of iron contaminant, 

and increased ambient temperature due to inadequate ventilation expedited the 

violent decomposition of HAN. 

Generally, HAN aqueous solution at relatively low HAN concentration up tp 

24mass% is used in industries. It is a clear and odorless liquid. The molecular 

formula of HAN is NH2OH·HNO3, and the gas phase structure of HAN is shown in 

Figure 3.1. HAN is thermally unstable and can decompose autocatalytically at 

elevated temperatures or in the presence of metal contaminants. 

The kinetic mechanism of HAN decomposition has been investigated by 

several groups (Dijk & Priest, 1984; Rafeev & Rubtsov, 1993; Schoppelrei & Brill, 

1997; Oxley & Brower, 1988). However, no formalized kinetic modeling has been 
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developed to simulate HAN runaway behavior and predict its safe boundaries for 

storage and handling. The major impediment is that HAN decomposition is an 

autocatalytic reaction with a complicated reaction pathway. This research has 

focused on the catalytic effects of stainless steel, titanium, and stainless steel with 

titanium on the HAN decomposition, and developing a kinetic model for HAN 

decomposition in storage tanks or other containers. Experiments were conducted 

with the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). 

 

 
Fig.3.1. Gas phase structure of HAN 

(http://psc.tamu.edu/research/reactive chem_lab/HAN.htm) 

 

This chapter presents experimental details on equipment, samples, methods, 

and thermocouple calibration. In addition, background on the mechanism of HAN 

reaction with nitrous acid, HAN thermal decomposition, HAN decomposition under 

iron catalysis, and autocatalytic decomposition hazards are also provided. 
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3.2. Background 

3.2.1. Mechanism of HAN Reacting with Nitrous Acid 

The mechanism of HAN reacting with nitrous acid has been proposed by 

Gowland and Stedman (1981), as represented below: 

H+ + HNO2 + NO3
- ↔ N2O4 + H2O          (17) 

N2O4 + NH2OH → HNO + N2O3 + H2O         (18) 

N2O4 + HNO → HNO2 + N2O3           (19) 

N2O3 + H2O→ 2HNO2             (20) 

The overall reaction can be summarized by two competing reactions: 

2HNO2 + NH2OH → 3HNO2 + H2O          (21) 

HNO2 + HN2OH+ → N2O + 2H2O +H+          (22) 

In reaction (21), more nitrous acid is generated than is consumed, which accounts for 

the autocatalytic phenomena. But at low temperatures and low HNO3 and iron 

concentrations, reaction (22) will dominate.  

 

3.2.2. Mechanism of HAN Thermal Decomposition 

Oxley and Brower (1988) proved that HAN decomposition products are 

comprised of nitric acid, water, nitrous oxide, and nitrogen. In the gas products, the 

ratio of nitrous oxide (N2O) to nitrogen varied from 2:1 to 4:1. They also proposed 

two possible overall reactions, which are shown below: 

4 HAN → 3 N2O↑ +7 H2O +2 HNO2          (23) 
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3 HAN → N2O + N2↑+ 2 HNO3 +5 H2O         (24) 

Wei et al. (2004) studied the detailed mechanism of HAN thermal decomposition by 

Gaussian 03 quantum calculations. In their publication, a mechanism network shown 

in Figure 3.2 was presented. Nitrous acid as an intermediate of HAN decomposition 

can react with HA (hydroxylamine) to accelerate the overall decomposition. 

 

 

Fig.3.2. Mechanism of HAN decomposition proposed by Wei et al. (2004) 

 

3.2.3. Mechanism of Iron Catalyzed HAN Decomposition 

Iron can act as a catalyst to trigger HAN decomposition. This mechanism is 

given by (25) and (26) (U.S. Department of Energy, 1998): 

2NH3OH+ + 4 Fe+3 → 4 Fe+2 + N2O↑ +H2O + 6 H+       (25) 

2Fe+2 + HNO3 +2H+ →2 Fe+3 + HNO2 + H2O        (26) 

The overall reaction under iron catalysis is shown as: 

2 NH2OH· HNO3 → N2O↑ +3 H2O +2 HNO2        (27) 
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According to Klein’s study (U.S. Department of Energy, 1998), in the presence of 

iron the ratio of N2O to N2 in gas products for HAN decomposition was determined 

to be 36:1. Therefore, compared to nitrous oxide, the amount of nitrogen produced is 

negligible so it does not appear in the overall reaction (27). 

 

3.2.4. Autocatalytic Decomposition Hazards 

Autocatalytic reaction refers to a type of reaction that generates the catalyst 

(or reactant) as a product. Autocatalytic reactions consist of three periods: induction, 

explosion, and decay. During the induction period, the product that acts as a catalyst 

is generated and accumulated. Once this catalytic product reaches a critical amount, 

the explosion period starts and the temperature versus time curve exhibits a sharp 

jump to approximately the maximum temperature. However, the explosion period 

only lasts for a short time (may be less than a couple of seconds). After that, the 

system enters the decay period due to the depletion of reactants. The rapid increase 

in temperature and pressure during the explosion period poses a challenge to the 

design of protection and mitigation measures relating to runaway reactions. The 

existence of the induction period also poses a hazard for the extended storage for the 

chemicals that undergo autocatalytic decomposition. 

Dien et al. (1994) proposed a method to estimate the “time to maximum rate 

under adiabatic conditions” (TMRad) for autocatalytic decomposition based on a 

first-order reaction in competition with a Prout-Tompkins step, i.e. A→B, A+B→2B. 
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The kinetic parameters obtained from temperature-time curves in DSC testing can be 

validated by ARC experiments. The TMRad calculated from the kinetic model is used 

to determine the runaway time which can be used to plan corresponding 

countermeasures.  

Autocatalytic decomposition hazards can be measured and assessed using 

general isothermal and adiabatic calorimeters. Bou-Diab and Fierz (2002) developed 

a screening method based on dynamic DSC measurements to identify autocatalytic 

decompositions. They found that autocatalytic decomposition occurred when the 

apparent activation energy was higher than 220kJ/mol. A border value of the 

apparent activation energy, 180-220kJ/mol, was suggested for use in screening 

autocatalytic decomposition hazards. Wei et al. (2004) studied the autocatalytic 

decomposition behavior of energetic materials using the APTAC. It has been proved 

that APTAC can be a reliable and efficient screening tool to identify autocatalytic 

decomposition hazards.  

 

3.3. Experimental Details 

3.3.1. Samples 

Hydroxylamine nitrate (HAN) (24mass%) in aqueous solution purchased 

from Aldrich (catalog number 438235), and an industrial HAN sample (17mass%, 

aqueous solution) were used in this study without further purification and analysis. 

The ppm concentrations of trace elements in the industrial HAN sample were 
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assumed to have negligible effect on the behavior of HAN decomposition. 

Two kinds of materials, SS316 Ti and SS316, were used as catalysts to test 

their effects on HAN decomposition. Before they were added to the glass cell the 

catalysts were mechanically cut into bars. In order to obtain comparable results, the 

surface areas of catalyst bars were designed to be equal (about 2.5 cm2). 

 

3.3.2. Equipment 

The experimental tests were carried out in the Automatic Pressure Tracking 

Adiabatic Calorimeter (APTACTM) manufactured by TIAX, LLC. The APTAC is 

capable of studying exothermic reactions with temperatures up to 500oC and 

pressures up to 2000 psia in several testing modes (e.g., heat-wait-search, iso-aging, 

isothermal, and heat ramps). The principle of the APTAC operation is to minimize 

heat loss by adjusting the surrounding temperature to match the sample temperature. 

This property is very useful in simulating the worst-case scenario of an industrial 

runaway reaction. The APTAC can detect exotherms with a temperature rise rate of 

0.04-400 oC/min and a pressure rise rate of 0.01-10,000 psia/min.  

In the present work, a 100mL glass thick-wall cell, a 130mL titanium 

thin-wall cell, and a 130mL stainless steel thin-wall cell were used as sample cells. 

The surface area of the catalyst bar was measured by the 150mm dial caliper 

(manufactured by Chicago Brand) before it was placed into the HAN sample. In 

order to avoid contact of HAN with the metal sheath of thermocouple, a 
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Teflon-coated thermocouple (Omega part number OSK2K974/TJ8-NNIN-04OU- 

12-PFA-SB-T-OTP-M) was used throughout the experiments.  

 

3.3.3. Methods 

The heat-wait-search (HWS) and the iso-aging modes were used in this work. 

In the heat-wait-search, the sample was heated at 2oC/min until it reaches a 

predefined starting temperature. Then the system changed to wait mode to stabilize 

the temperature of sample and containment vessel and finally went to search mode to 

detect an exotherm. Before an exotherm was detected, a default time of 25 minutes 

was spent on each waiting or searching step. The threshold self-heating rate was 

chosen as 0.05oC/min throughout the experiment. If the self-heating rate of the 

sample exceeded this threshold during the search mode, the system automatically 

entered the adiabatic mode and proceeded with the exotherm until the sample was 

depleted or one of shutdown criteria was satisfied. Otherwise, the sample was heated 

to the next higher predefined temperature for the next search. 

In the iso-aging mode, the sample was heated to a preset soak temperature. 

The APTAC took 25 minutes to stabilize the temperatures of the containment vessel 

and the sample and then switched to search mode for soaking the sample at that 

temperature. In this mode, the APTAC tracked the temperature of the sample to keep 

the system isothermal. In this process, the self-heating rate of the sample was 

compared with the predefined threshold (0.05oC/min). Once the self-heating rate of 
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the sample exceeded the threshold, the APTAC would automatically switch to 

adiabatic mode and follow the exotherm. If no exotherm was detected during the 

soak period, the APTAC would continue to proceed with a standard heat-wait-search. 

The iso-aging mode is designed to study the effect of inhibitors or additives on 

exothermic behavior of a sample material. In this work, the iso-aging mode was used 

to test the effect of surrounding temperatures on the autocatalytic decomposition of 

HAN.  

 Because the decomposition products of HAN in the liquid phase are water 

and nitrous acid, sample cells were cleaned with deionized water first and then with 

acetone before use. The same treatment was also applied to the catalyst bars before 

they were placed into the HAN-water solutions. The Teflon-coated thermocouple 

was flashed with deionized water and then acetone to remove contaminants from the 

sheath surface before placing into the sample cell. The pressure unbalance criterion 

was set at 80 psia for the glass cell and 100 psia for the titanium and stainless steel 

cells. It was not necessary to use sample stirring in these tests because only a small 

amount of HAN (several grams) was used in each experiment.  

 

3.3.4. Thermocouple Calibration 

Thermocouple (TC) calibration of the APTAC is necessary to maintain 

accurate temperature measurements. There are two kinds of TC calibration: relative 

and absolute. The relative calibration is used to make sure that the sample, cell wall, 
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and nitrogen thermocouples provide the same outputs if they are surrounded by the 

same temperature, while the absolute calibration checks the accuracy of absolute 

temperature of thermocouple measurements. 

 

3.3.4.1. Relative Calibration 

The adiabatic surrounding of the APTAC is obtained by adjusting the 

nitrogen temperature to be approximately the same as the temperature of the sample. 

Any deviation (negative or positive) between these two temperatures will cause 

system error for the APTAC testing. The purpose of relative calibration is to 

minimize either negative or positive drift of the system. It has been shown that 1oC 

of deviation may cause a drift rate of 0.1oC/min at modest pressures. The higher the 

pressure, the greater the drift rate for the same temperature difference (heat transfer 

rate through the sample cell wall depends on the surrounding pressure). For an 

exotherm detection level of 0.01oC/min, the thermocouples must be calibrated to 

within 0.1oC or even less. Because the practical exotherm detection level changes 

with pressure, the APTAC specifies its exothermal detection level as 0.04oC/min. 

Whenever a sample cell or thermocouple is replaced, a relative calibration must be 

done. Moreover, a schedule of relative calibration must be maintained. Normally, a 

relative calibration is recommended every 10 runs.  

An empty sample cell is usually used in a relative calibration. By selecting 

“set up” on the menu bar and then choosing the “calibration” item, a dialog window 
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about calibration input data will be reached. A set of parameters (such as cooling 

down temperature, ending temperature, operating pressure, heating rate, etc.) must 

be input before starting a calibration. The starting temperature for calibration is 

defaulted to 50oC. The ending temperature must be chosen within the normal 

operating range of the thermocouple. For example, the Teflon-coated thermocouple 

cannot withstand high temperature. Its working range is up to ~ 210oC. To ensure 

that the 200oC point can be measured, 210oC may be chosen as the ending 

temperature.  

After the calibration is completed, a thermocouple offset versus temperature 

curve is generated and stored automatically. This calibration curve covers the range 

from –50oC to 500oC and records data every 50-degree interval. For the data that 

cannot be obtained during calibration (-50oC, 0oC, 250oC, 300oC, 350oC, 400oC, 

450oC, and 500oC for Teflon-coated thermocouple), the operator must manually 

input the points by extrapolating from the measured calibration data and then 

entering the data into the appropriate boxes in the Default Tabs 6 and 7. Figures 3.3 

to 3.5 are the temperature-time curve, pressure-time curve, and thermocouple offset 

profile, respectively, for the calibration of the Teflon-coated thermocouple (Omega 

part number is OSK2K974/TJ8-NNIN-04OU-12-PFA-SB-T-OTP-M) in a glass cell. 

Figure 3.6 shows the corresponding Default Tabs 6 and 7 for this calibration. 
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Fig.3.3. Temperature vs. time for the calibration test with initial  

pressure at 300 psia 
 

 

 
Fig.3.4. Pressure vs. time for the calibration test with initial pressure at 300 psia 
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Fig.3.5. Thermocouple offset vs. temperature profile 

 
 

 
Fig.3.6. Default Tabs 6 and 7 
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3.3.4.2. Absolute Calibration 

The thermocouple signal conditioning units in the APTAC system are set and 

linearized for type N thermocouples. When a new type N thermocouple is placed into 

an ice water mixture, if the reading is not 0oC, it is necessary to use the APTAC 

software to adjust the zero point. Specifically, the nitrogen thermocouple is placed in 

ice water and its offset from 0oC is recorded. This offset is entered into the 

thermocouple offset data point in the Default Tab 2. Then the APTAC automatically 

adds this value to all type N thermocouples, such as the sample, cell wall, and 

nitrogen thermocouples. 
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CHAPTER IV 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1. HAN Decomposition in Glass Cell with SS316Ti or SS316 

4.1.1. Objective 

As mentioned in Chapter III, iron has a catalytic effect on hydroxylamine 

nitrate (HAN) decomposition. In industry, stainless steel tanks (such as SS316Ti or 

SS316) are used to store HAN in warehouses. Because it is a sensitive parameter for 

the hydroxylamine family compounds, the effect of iron on HAN decomposition 

must be investigated. A set of tests was designed to study catalytic effects of SS316Ti 

and SS316 on HAN decomposition.  

The HAN sample (24mass%) was purchased from Aldrich. A 100mL glass 

cell was used as a sample cell in these tests because it can provide a relatively neutral 

environment for HAN decomposition (Wei et al, 2004). Two materials, SS316Ti and 

SS316, were used as catalysts. The SS316Ti material was provided by an industrial 

company, and the SS316 material used in the tests was prepared by the chemical 

engineering mechanical shop. Before being loaded into glass cell, the large pieces of 

catalysts were cut into bars with surface areas of ~ 2.5cm2. HAN decomposition tests 

in a glass cell without catalyst were also conducted. The APTAC heat-wait-search 

mode was employed to study the exothermic behavior of HAN decomposition. 

 



 

 

48

4.1.2 Results 

The 24mass% HAN with no catalyst, with the SS316Ti catalyst bar, and with 

the SS316 catalyst bar in the glass cell were examined by the HWS mode of the 

APTAC and the experimental results are shown in Figures 4.1 to 4.4. Table 4.1 

summarizes important parameters such as the onset temperature, maximum 

temperature, maximum pressure, self-heating rate at onset temperature, maximum 

self-heating rate, maximum pressure rise rate, non-condensable pressure at 50oC, and 

reaction heat for each case. The presented uncertainties are within one standard 

deviation based on three replicas. Phi factors and reaction heats (energies of reaction) 

cannot be measured directly by the APTAC and were calculated using equations (11) 

and (15) in Chapter II. The average heat capacity of HAN used in the thermal inertia 

calculation was estimated to equal liquid water’s heat capacity (4.18 J/g/oC) because 

it is not available in literature and water is a major product of decomposition. The 

average heat capacity of titanium and stainless steel were estimated to be 0.544 

J/g/oC and 0.5 J/g/oC, respectively (The references are given on the websites of 

http://www.stanford.edu/~eboyden3/constants.html and http://www.lenntech.com/ 

Stainless-steel -316L.htm). 
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Fig.4.1. Temperature-time profiles of HAN (24mass%) decomposition in            

a glass cell with/without catalyst 
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Fig.4.2. Pressure-time profiles of HAN (24mass%) decomposition in                

a glass cell with/without catalyst 
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Fig.4.3. Self-heating rate-temperature profiles of HAN (24mass%)       

decomposition in a glass cell with/without catalyst 
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Fig.4.4. Pressure rate-temperature profiles of HAN (24mass%)             

decomposition in a glass cell with/without catalyst 
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Table 4.1.  
HWS of HAN decomposition (24mass%) in a glass cell with/without catalyst bar 

* The surface area of the SS316Ti bar is 2.23cm2, and the glass cell is 52 g. 
** The surface area of the SS 316 bar is 2.54cm2, and the glass cell is 49 g. 

 

4.1.3. Discussion 

Because the catalyst test pieces were mechanically cut, the surface areas of 

the catalysts could not be controlled exactly. There was about a 0.3cm2 difference 

between the surface areas of the two catalyst bars. We assumed that this difference 

did not affect the experimental results. Actually, the test data are consistent with this 

assumption. 

The data in Table 4.1 show that the onset temperature decreased by 5oC in the 

presence of the SS316 bar. But for the cases of the glass cell only and the glass cell 

with the SS 316Ti bar, the onset temperatures are almost same. These results indicate 

that under almost equal catalytic surface area, SS316 significantly expedites HAN 

decomposition, while SS316Ti does not exhibit catalytic behavior. But if the 

exotherm durations in Figure 4.1 are amplified (shown in Figure 4.5), one can 

observe that the induction period is a few seconds for the glass cell, about 20 minutes 

for the glass cell with SS 316Ti, and almost 50 minutes for the glass cell with SS316. 

T0 Tmax Pmax dT/dt0 dT/dtmax dP/dtmax Non-condensable 
Phi 
factor  ∆Hrxn 

HAN 
(24mass%) 
3.7g °C °C psia °C/min °C/min psi/min psia (@50°C) φ kJ/mol
Glass cell 169±3 188±1 249±6 0.10±0.07 310±50 27±7 62±4 3.2 -65±11
Glass cell with 
SS316 Ti* 170±3 188±3 246±14 0.10+0.00 512±75 46±30 58±4 3.2 -62±12
Glass cell with 
SS316** 164±6 184±3 229±8 0.07±0.02 367±1 28±2 51±7 3.0 -68±10
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This implies that SS316Ti does catalyze HAN decomposition because the induction 

period exists but is weaker than SS316 with this amount of surface area. For the case 

of the glass cell only, it is reasonable to assume that the glass material provides a 

neutral test environment. In order to confirm the catalytic effect of SS316Ti, the 

surface area of SS316Ti should be increased in future studies.  
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Fig.4.5. Temperature-time behaviors of the exotherm durations in Fig. 4.1 

 

The overall reaction heats (shown in Table 4.1) are close for the three cases. 

This result suggests that an overall reaction thermal energy does not change in the 

presence of a catalyst, which is not surprising because a catalyst only changes the 
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reaction pathway, not the overall reaction. 

The thermal decomposition of HAN is an autocatalytic reaction that includes 

an induction period, explosion period, and decay period. The maximum rates of 

self-heating and pressure rise for HAN decompositions vary. This variation is partly 

because the exotherm in the explosion period is so fast that the APTAC at its 

measurement rate misses some of the critical data points. As shown in Chapter III, 

the mechanism of this reaction is complicated because many intermediates are 

generated and can react with each other. Without further analyzing the composition 

and concentration of all important intermediates, it is very difficult to model the 

whole decomposition process. However, for the safe storage and handling study, our 

interest focuses only on the induction period, because the goal of this study is to 

prevent rapid HAN decomposition from the beginning by addressing HAN storage in 

tanks or containers before it exceeds its safety threshold. 

According to the general principles of the APTAC described in Chapter II, a 

relationship between ln (k*) and 1/T is given by: 

)1()ln(*)ln( 0
1

TR
E

kCk an
o −= −

            

Given a correct reaction order, the ln (k*) versus -1/T plot should be a straight line 

with a slope of Ea/R and an intercept of 0
1kCn

o
−

. The overall activation energy Ea 

and the frequency factor k0 in the Arrhenius equation can be calculated based on the 

slope and intercept of the plot. 
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To simplify the problem, the first order kinetic model was used to represent 

the experimental data for the induction period in these three cases. Figures 4.6, 4.7, 

and 4.8 show kinetic analysis of HAN decompositions in the glass cell with/without 

catalyst. It can be observed that the first order kinetic model (linear fitting of ln(k*) 

vs. -1000/T) matches the experimental data very well. In these figures, the slope of 

the fit line corresponds to Ea/R and the intercept of the fit line corresponds to ln(k0). 

Ea and k0 are estimated and listed in Table 4.2. 

y = 60.04x + 129.62
R2 = 0.9986
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Fig.4.6. Kinetic analysis of HAN (24mass%) decomposition in                     

a glass cell without catalyst 
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Fig.4.7. Kinetic analysis of HAN (24mass%) decomposition in                     

a glass cell with SS316Ti bar 
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Fig.4.8. Kinetic analysis of HAN (24mass%) decomposition in                     

a glass cell with SS316 bar 
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Table 4.2.  
Summary of kinetic parameters of HAN (24mass%) in a glass cell with/without 
catalysts 
 
1st order kinetics Ea (kJ/mol) k0 (min-1) 
Glass cell 499 1.9*1056 
Glass cell with SS316Ti bar 516 1.6*1058 
Glass cell with SS316 bar 412 2.6*1046 

 

As mentioned above, SS316 shows a significant catalytic impact on the HAN 

decomposition compared with SS316Ti. This can be explained from the apparent 

overall activation energies listed in Table 4.2. The glass cell with the SS316 bar has 

the lowest value for apparent activation energy. Therefore, it is possible that a 

SS316Ti tank is superior to a SS316 tank for 24mass% HAN storage. 

 

4.2. HAN Decomposition in Glass, Titanium, and Stainless Steel Cells 

4.2.1. Objective 

In the previous section, we suggested increasing the surface area of the 

SS316Ti catalyst for further studies. However, the size of catalyst used in this 

experiment was limited by the amount of HAN. Only a small amount of HAN can be 

used in a test since HAN decomposition is rapid. If a larger amount of HAN is used, 

the APTAC may not be able to follow the reaction adiabatically. Therefore, HAN 

decomposition in sample cells of SS316Ti and SS316 can be used for increasing the 

catalyst surface area for a small amount of HAN. A titanium sample cell instead of a 

SS316Ti cell was employed because the latter was not available from TIAX, LLC or 
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other sources. A series of tests was conducted in glass, titanium, and stainless steel 

cells to study the catalytic effect of iron and titanium on HAN decomposition. 

The HAN sample (17mass%) was provided by an industrial company. The 

titanium and stainless steel cells had a volume of ~130mL (standard) and the glass 

cell had a volume of ~100mL. The APTAC heat-wait-search mode was used for onset 

temperature search in these tests. 

 

4.2.2. Results 

The experimental results of this set of parallel tests are presented in Table 4.3 

and Figures 4.9 to 4.12. In Table 4.3, the uncertainties presented are within one 

standard deviation based on three replicas. 

 

Table 4.3.  
HWS of the industrial HAN (17mass%) decomposition in different cells 
 

 

 

T0 Tmax Pmax dT/dt0 dT/dtmax dP/dtmax Non-condensable Phi 
factor 

∆Hrxn HAN 
(17mass%) 
4.8g °C °C psia °C/min °C/min psi/min psia (@50°C) φ kJ/mol
Glass cell 169±2 191±4 255±24 0.06±0.04 8±4 94±89 62±3 3.1 -88±13
Ti cell 158±3 176±1 182±5 0.06±0.01 246±40 12±3 42±1 1.9 -51±6 
SS cell 148±3 167±4 158±11 0.06±0.04 4±0 20±5 45±1 2.4 -67±9 
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Fig.4.9. Temperature-time profiles of the industrial HAN sample               
(17mass%) decomposition in different cells 
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Fig.4.10. Pressure-time profiles of the industrial HAN sample (17mass%)  
decomposition in different cells 
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Fig.4.11. Self-heating rate-temperature profiles of the industrial HAN        

sample (17mass%) decomposition in different cells 
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Fig.4.12. Pressure rate- temperature profiles of the industrial HAN           
sample (17mass%) decomposition in different cells 
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4.2.3. Discussion 

In the temperature-time plot shown in Figure 4.9, the onset of self-heating of 

HAN in the glass cell starts at about 170oC and continues to a maximum temperature 

of 191oC. However, for the titanium or stainless steel cell, an obvious reduction in 

onset temperature and maximum temperature for adiabatic rise is observed. Similar 

trends are also displayed in the pressure-time behavior (shown in Figure 4.10).  

The exotherm durations in Figure 4.9 are extracted and amplified in Figure 

4.13. The induction periods are approximately 40 minutes for the titanium cell and 50 

minutes for the stainless steel cell, and almost zero for glass cell. Therefore, the glass 

cell offers a more neutral surrounding, while titanium and stainless steel catalyze 

HAN decomposition. Moreover, these results suggested that stainless steel has a 

stronger catalytic effect than titanium. From safety point of view, titanium or 

stainless steel containing titanium should provide a more stable environment than 

stainless steel for a HAN container material. 
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Fig.4.13. Temperature-time behaviors of the exotherm durations in Fig. 4.9 

 

Again, the first-order kinetic model was applied to fit the experimental data 

for the induction period in all three cases. Figures 4.14 to 4.16 show kinetic analysis 

of HAN decomposition in glass, titanium, and stainless steel cells. In the cases of 

glass and titanium cells, the linear fit (first order kinetic model) matches 

experimental data well. But for the case of stainless steel cell, the experimental data 

display nonlinear behavior (Figure 4.16), which may be caused by a heterogeneous 

catalytic reaction of HAN decomposition. See section 4.3.2. for more details. 
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Fig.4.14. Kinetic analysis of the industrial HAN sample (17mass%)         
decomposition in a glass cell 
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Fig.4.15. Kinetic analysis of the industrial HAN sample (17mass%)         

decomposition in a titanium cell 
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Fig.4.16. Kinetic analysis of the industrial HAN sample (17mass%)         

decomposition in a stainless steel cell 

 

The apparent activation energies (Ea) and frequency factors (k0) for these 

three cases can be estimated using the slopes and intercepts of the fit equations. Table 

4.4 lists the values of Ea and k0. The stainless steel cell has greater value of Ea than 

the titanium cell. This result seems not consistent with the previous conclusion that 

stainless steel has a stronger catalytic effect than titanium. The stainless steel cell, 

however, exhibits a typical heterogeneous catalysis on the HAN decomposition (see 

section 4.3.2 for more details). However, n-th order kinetics was applied to analyze 

the experimental data using perhaps an inaccurate assumption of homogeneous 

reaction. 
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Table 4.4.  
Summary of kinetic parameters of the industrial HAN sample (17mass%) in different 
cells 
 
1st order kinetics Ea (kJ/mol) k0 (min-1) 
Glass cell 769 8.8*1088 
Titanium cell 336 2.8*1038 
Stainless steel cell 366 1.2*1043 

 

In Figure 4.17, the relationship between the reaction heat (∆Hrxn) and the 

thermal inertial (φ) is linear. This means the total heat generated in the reaction for 

the same amount of HAN is the same in the glass, titanium, and stainless steel cells. 

As stated above, the catalytic effect of a container material only changes the reaction 

pathway, not the overall reaction. 

 

y = -30.78x + 7.2569
R2 = 0.9997

-100

-80

-60

-40
1.5 2.5 3.5 4.5

φ

∆ H
rx

n

 
Fig.4.17. Linear relationship between φ and ∆Hrxn 
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4.3. Searching for Safe Boundary Conditions During HAN Storage and 

Handling 

In this study, the final objective is to predict safe boundary conditions for 

HAN storage and handling. Usually, environmental temperature, HAN temperature, 

tank pressure, and storage time can be observed or recorded easily for warehouse 

storage and process handling. Therefore, predicting a safe boundary aims at defining 

the safe threshold pressure and maximum safe storage time for an average storage 

temperature. 

There are two possible ways to predict the safe boundary of HAN storage. 

One is an experimental approach. This requires the soak temperature to be as close as 

possible to the ambient temperature of warehouse (since this temperature varies with 

weather, season, and location, a conservative value such as 50oC can be adopted). 

Given a certain soak time, the onset of exotherm behavior can be detected using an 

appropriate instrument. However, the lower the soak temperature, the more soak time 

that is needed to detect the exotherm. The other approach is simulation, i.e., a 

combination of experimental work and kinetic simulation. If it is possible to develop 

a validated kinetic-based model, a simulation under real storage conditions can be 

generated and the associated safety boundary can be predicted.  
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4.3.1. Isothermal Aging Testing of the Industrial HAN Sample in a Stainless 

Steel Cell 

 

4.3.1.1. Objective 

Although titanium or stainless steel containing titanium may be better than 

stainless steel for a HAN container material, the research to find a safe boundary for 

HAN storage in a stainless steel container is still attractive for HAN manufacturers 

and customers, because titanium costs more than stainless steel. 

Isothermal aging testing can be used to study the effect of inhibitors or 

additives on exothermal behavior of a sample material. In this research, isothermal 

aging testing was applied to test the effect of the aging factor on the autocatalytic 

decomposition of HAN. Specifically, the trend of HAN autocatalytic decomposition 

at different soak temperatures with varying soak times was determined during a 

series of isothermal aging tests. This is a straightforward experimental approach, 

because the safe storage time or pressure for a specific soak temperature (or 

warehouse temperature) can be estimated by extrapolating from experimental data.  

 

4.3.1.2. Results 

The isothermal aging tests were performed using the industrial HAN sample 

(17mass%) in a stainless steel cell (thin wall) with the APTAC iso-aging mode. 

Because it is not practical to run experiments at lower temperature (such as 50oC) 
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due to extremely long testing times, parallel isothermal aging tests at higher 

temperatures (120oC, 110oC, and 90oC) were performed with the soak times varied 

from several hundred to a few thousand minutes. The important experimental 

parameters are summarized in Table 4.5. As mentioned in Chapter II, if no exotherm 

was detected in the soak stage, the system would convert to a standard 

heat-wait-search, and an exotherm could be detected in this mode. Table 4.5 shows 

that the exotherm was detected in the heat-wait-search mode for most cases. Only for 

the run marked with a star was the exotherm detected during the soak stage. The 

onset temperatures and pressures at various combinations of soak times and soak 

temperatures are also shown in Figures 4.18 and 4.19. The behaviors of 

temperature-time, pressure-time, self-heating rate-temperature, and pressure 

rate-temperature for each test are included in the Appendix A. 
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Table 4.5.  
Iso-aging results of the industrial HAN decomposition in a stainless steel cell 
 

* The exotherm was detected during the soak stage. Each listed value is the average 
value within three experimental replicas. 
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Fig.4.18. Onset temperature vs. soak time at various soak temperatures 

 

Soak time T0 P0 Tmax Pmax dT/dt0 dT/dtmax dP/dtmax Non-condensableHAN 
(17mass%) 
4.8g 

min °C psia °C psia °C/min °C/min psi/min psia (@50°C) 

Without soak 0 146 85 168 159 0.05 3.6 17 45 
900 145 92 154 125 0.05 4.3 127 43 
1,150 132 73 141 100 0.19 22 39 40 

Tsoak=120oC 

1,218* 124 63 143 108 0.05 42 35 45 
1,000 131 74 166 168 0.05 26 184 54 Tsoak=110oC 
1,200 121 63 143 108 0.05 26 34 45 
900 141 86 170 179 0.05 19 1,018 53 
1,500 137 78 159 142 0.05 15 201 47 
2,000 141 86 158 135 0.08 5 235 43 

Tsoak=90oC 

2,500 136 79 153 123 0.05 6 153 44 
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Fig.4.19. Onset pressure vs. soak time at various soak temperatures 

 

4.3.1.3. Discussion 

As expected, the overall trend is that the measured onset temperature 

decreases with increasing soak time for any fixed soak temperature. But for the case 

of soak at 90oC, it is difficult to observe a big difference in onset temperature for 

soaking times within a few thousand minutes. When the industrial HAN sample was 

soaked at 120oC, the lowest onset temperatures (124oC) was close to the environment 

temperature (i.e. soak temperature) after a certain soak time. Since catalytic effect of 

iron always exists for HAN stored in stainless steel tanks, this conclusion should also 

be applied for lower temperatures such as ambient temperatures for warehouse 

storage. Hence, there is a maximum safe storage time after which the onset of 

decomposition will occur at environmental temperatures. 



 

 

70

In the case of soak at 120oC, the maximum storage time was measured 

directly. For soaking at 90oC and 110oC, the maximum storage times can be predicted 

by extrapolating the experimental data, which is shown in Figures 4.20 and 4.21. The 

predicted maximum storage times are about 16,000 minutes (~267hrs, ~11days) for 

90oC and 1,350 minutes (~23hrs, ~1day) for 110oC.  
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Fig.4.20. Maximum storage time prediction for soak temperature of 90oC 
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Fig.4.21. Maximum storage time prediction for soak temperature of 110oC 
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Fig.4.22. The maximum storage time trend based on isothermal aging testing 

 

With the above prediction, the trend of maximum storage time versus soak 

temperature is displayed in Figure 4.22. Because there are only three points in this 
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figure, many curves could be employed in a fit. However, provided sufficient 

experimental data are collected over a sufficient range of decreasing temperature, the 

maximum storage time at ambient temperature in a warehouse can, in principle, be 

predicted. 

Similar approaches can be employed to predict the onset pressure at 

maximum storage time for each case. However, because the variation of pressure in 

measurement is much larger than that of temperature for this reactive system, it is 

more reliable to search for the threshold pressure for HAN safe storage by kinetic 

simulation. 

 

4.3.2. HAN Decomposition in a Stainless Steel Cell with Various Thermal 

Inertias 

4.3.2.1. Objective 

In order to predict the safe threshold pressure during warehouse storage and 

process handling of HAN, it is necessary to develop a kinetic-based model for its 

autocatalytic decomposition. For this purpose, a set of tests for the thermal 

decomposition of different masses of HAN was measured in a stainless steel cell. 

 

4.3.2.2. Results 

Different amounts of the industrial HAN sample (17mass%) in the same 

stainless steel cell were examined using the heat-wait-search mode of the APTAC. 
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The experimental data are reported in Table 4.6. The behaviors of temperature vs. 

time and pressure-time, self-heating rate-temperature, and pressure rate-temperature 

are displayed in Figures 4.23 to 4.26. The exotherm parts in Figure 4.23 are extracted 

and magnified in Figure 4.27.  

 
Table 4.6.  
HWS results of thermal decomposition for different masses of the industrial HAN 
sample in a stainless steel cell 
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Fig.4.23. Temperature-time profiles of the industrial HAN sample (17mass%) 
decomposition in a stainless steel cell 

 

T0 P0 Tmax Pmax dT/dt0 dT/dtmax dP/dtmax Non-condensable Phi 
factor  

∆Hrxn HAN 
(17mass%) 
in SS cell °C psi

a 
°C psia °C/min °C/min psi/min psia (@50°C) φ kJ/mol 

4.8g  (test 1) 146 85 168 159 0.05 3.6 17 45 2.4 76 
4.3g  (test 2) 146 83 167 155 0.05 5.2 76 43 2.6 77 
3.9g  (test 3) 146 86 163 140 0.05 3.7 15 38 2.8 73 
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Fig.4.24. Pressure-time profiles of the industrial HAN sample (17mass%)  

decomposition in a stainless steel cell 
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Fig.4.25. Self-heating rate-temperature profiles of the industrial HAN sample 

(17mass%) decomposition in a stainless steel cell 
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Fig.4.26. Pressure rate-temperature profiles of the industrial HAN sample (17mass%) 
decomposition in a stainless steel cell 
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Fig.4.27. Temperature-time behaviors of the exotherm durations in Fig. 4.23 
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4.3.2.3. Discussion 

An important observation from Figure 4.27 is that the induction period is 

extended with an increase in sample mass. The shortest induction period corresponds 

to the smallest sample amount. This is opposite of the normal homogenously 

catalytic reaction in which the largest amount of sample has the shortest induction 

period. Therefore, the HAN decomposition catalyzed by the inner surface of the cell 

material is a typical heterogeneous reaction. Moreover, the higher ratio of contact 

surface to sample mass contributes to a stronger catalytic effect due to a 

heterogeneous interaction.  

The kinetic simulation for heterogeneous reaction should be built on the 

reaction mechanism. However, the mechanism of HAN heterogeneous catalytic 

decomposition is not available in the literature. To simulate the kinetics of HAN 

decomposition in a stainless steel cell, a pseudo-homogeneous reaction was assumed 

in this work. Adiabatic Data Processing software (ADPro) and Formal Kinetics 

Evaluation software (ForK) in the Thermal Safety Software package (developed by 

ChemInform St. Petersburg Ltd.) were used for kinetic simulation of these three tests. 

The full autocatalysis model was successfully applied to simulate the kinetics of 

HAN decomposition in the stainless steel cell. The kinetic scheme is described 

below: 

A→B N-order (initiation stage)   Equation: dα/dt = k0e -Ea/RT (1 - α) n 
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A→C Proto (autocatalytic stage)  Equation: dα/dt = k0e -Ea/RT α n1 (1 - α) n2 

where α is the degree of conversion of HAN (α is defined as (CA0-CA)/CA0; 0≤α≤1), 

k0 is the frequency factor in the Arrhenius equation, n, n1, and n2 are reaction orders, 

and Ea is the activation energy. The kinetic parameters for the initiation stage and 

autocatalytic stage are reported in Table 4.7 and Table 4.8. The simulation results are 

presented in Figure 4.28 to 4.30. 

 

Table 4.7.  
Parameters of initiation stage (A→B) during HAN decomposition 
 
Parameters Units Value 
ln(k0) ln(1/sec) 33.48 
Ea kJ/mol 151.42 
n - 2.0 
Q* kJ/kg 181.27 

*Heat effects were calculated per unit of mass of the solution 

 

Table 4.8.  
Parameters of autocatalytic stage (A→C) during HAN decomposition 
 
Parameter Units Test 1 Test 2 Test 3 
ln(k0) ln(1/sec) 31.59 32.61 33.87 
Ea kJ/mol 120.6 120.6 120.6 
n1 - 4.0 4.0 4.0 
n2 - 1.0 1.0 1.0 
Q* kJ/kg 181.27 181.27 181.27 
k0 1/sec 5.22*1013 1.46*1014 5.126*1014 

*Heat effects were calculated per unit of mass of the solution 
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Fig.4.28. Simulation of test 1 
 

 

 

 

 
Fig.4.29. Simulation of test 2 
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Fig.4.30. Simulation of test 3 
 

 

As a result, the initiation stage of HAN decomposition was simulated by 

second order kinetics, and the autocatalytic stage was simulated by the proto model 

(the kinetic function is α n1 (1 - α) n2). The simulation curves shown in Figures 4.28 

to 4.30 match the experimental data. Currently, this kinetic model cannot be used 

directly for safe threshold pressure predictions. The model must be validated or 

modified using additional experimental data. After a validated kinetic-based model is 

developed, the simulation under real storage condition will be generated by the TSS, 

and the safe threshold pressures before runaway can be estimated. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

5.1. Conclusions 

In this work, hydroxylamine nitrate (HAN) aqueous solution decomposition 

in the presence of titanium, stainless steel with titanium, or stainless steel was 

investigated with the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC). 

Titanium, stainless steel with titanium, and stainless steel exhibit catalytic effects on 

the decomposition of HAN but their existence does not change the overall reaction 

enthalpy of decomposition. Compared with stainless steel, titanium and stainless 

steel with titanium are better choices for container materials during storage of HAN 

aqueous solution.  

An isothermal aging approach was proposed to predict the maximum storage 

time of HAN. Sufficient experimental data could be used to predict the maximum 

safe storage time of HAN at ambient temperature in these container materials. 

A kinetics-based simulation was suggested to predict safe threshold pressures 

for warehouse storage and process handling. First order kinetics was used to 

represent the induction period data of HAN decomposition for initial estimation. In 

the case of HAN decomposition in a stainless steel cell, a full autocatalysis model 

was proposed to simulate the kinetics. Adiabatic Data Processing software (ADPro) 

and Formal Kinetics Evaluation software (ForK) in the Thermal Safety Software 
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package were employed to perform this simulation. 

 

5.2. Future Work 

This work aims to find safe boundary condition for warehouse storage and 

process handling of HAN aqueous solution. Additional work is needed to achieve the 

final objective of this research, i.e., predictions of the maximum safe storage time 

and the safe threshold pressure at ambient temperature.  

First of all, a great deal of calorimetric data from the APTAC is required from 

isothermal aging testing for reliable predictions of maximum HAN storage time. If 

possible, calorimeters with higher thermal sensitivity should be used to conduct 

experiments to increase the accuracy of testing. Secondly, the full autocatalysis mode 

proposed to simulate HAN decomposition in a stainless steel cell must be validated 

or modified by further experiments. In addition, the ratio of cell contact surface to 

HAN mass is an important factor for this heterogeneous catalytic reaction. For 

industrial storage, this ratio is much smaller than the ratio in experimental tests. For 

example, if 2,000 pounds of HAN (24mass%) with a density of 1.118g/cm3 is stored 

in a stainless steel tank with a 2.6ft inside diameter and a 5.3 ft height, the ratio of 

contact surface to mass is about 0.05 cm2/g. But in the laboratory experiments, if 

4.8g HAN used in a 130mL stainless steel cell, this ratio is about 2.4cm2/g. This is 

almost 50 times greater than the ratio from the tank example. This difference must be 

considered in scaling up predictions. 
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APPENDIX A 

FIGURES OF ISOTHERMAL AGING TESTS OF  

INDUSTRIAL HAN SAMPLE IN A STAINLESS 

STEEL CELL WITH THE APTAC 

 

 

 

Fig.A.1. Temperature as a function of time for soak temperature of 90oC and soak 
time of 900 minutes  
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Fig.A.2. Pressure as a function of time for soak temperature of 90oC and soak time of 

900 minutes  
 

 
Fig.A.3. Heat rate as a function of temperature for soak temperature of 90oC and soak 

time of 900 minutes 
 



 

 

88

 
Fig.A.4. Pressure rate as a function of temperature for soak temperature of 90oC and 

soak time of 900 minutes 
 
 

 

Fig.A.5. Temperature as a function of time for soak temperature of 90oC and soak 
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time of 1,500 minutes  
 

 

Fig.A.6. Pressure as a function of time for soak temperature of 90oC and soak time of 
1,500 minutes  
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Fig.A.7. Heat rate as a function of temperature for soak temperature of 90oC and soak 
time of 1,500 minutes 

 

Fig.A.8. Pressure rate as a function of temperature for soak temperature of 90oC and 
soak time of 1,500 minutes 
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Fig.A.9. Temperature as a function of time for soak temperature of 90oC and soak 

time of 2,000 minutes 
 

 

Fig.A.10. Pressure as a function of time for soak temperature of 90oC and soak time 
of 2,000 minutes  
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Fig.A.11. Heat rate as a function of temperature for soak temperature of 90oC and 

soak time of 2,000 minutes 
 

 
Fig.A.12. Pressure rate as a function of temperature for soak temperature of 90oC and 

soak time of 2,000 minutes 
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Fig.A.13. Temperature as a function of time for soak temperature of 90oC and soak 

time of 2,500 minutes  
 

 
Fig.A.14. Pressure as a function of time for soak temperature of 90oC and soak time 

of 2,500 minutes  
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Fig.A.15. Heat rate as a function of temperature for soak temperature of 90oC and 

soak time of 2,500 minutes 
 

 
Fig.A.16. Pressure rate as a function of temperature for soak temperature of 90oC and 

soak time of 2,500 minutes 
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Fig.A.17. Temperature as a function of time for soak temperature of 110oC and soak 
time of 1,000 minutes  

 

 

Fig.A.18. Pressure as a function of time for soak temperature of 110oC and soak time 
of 1,000 minutes  
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Fig.A.19. Heat rate as a function of temperature for soak temperature of 110oC and 
soak time of 1,000 minutes 

 

 

Fig.A.20. Pressure rate as a function of temperature for soak temperature of 110oC 
and soak time of 1,000 minutes 
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Fig.A.21. Temperature as a function of time for soak temperature of 110oC and soak 

time of 1,200 minutes  

 
Fig.A.22. Pressure as a function of time for soak temperature of 110oC and soak time 

of 1,200 minutes  
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Fig.A.23. Heat rate as a function of temperature for soak temperature of 110oC and 
soak time of 1,200 minutes 

 

Fig.A.24. Pressure rate as a function of temperature for soak temperature of 110oC 
and soak time of 1,200 minutes 
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Fig.A.25. Temperature as a function of time for soak temperature of 120oC and soak 

time of 900 minutes  
 

 
Fig.A.26. Pressure as a function of time for soak temperature of 120oC and soak time 

of 900 minutes  
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Fig.A.27. Heat rate as a function of temperature for soak temperature of 120oC and 

soak time of 900 minutes 
 

 
Fig.A.28. Pressure rate as a function of temperature for soak temperature of 120oC 

and soak time of 900 minutes 
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Fig.A.29. Temperature as a function of time for soak temperature of 120oC and soak 
time of 1,150 minutes  
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Fig.A.30. Pressure as a function of time for soak temperature of 120oC and soak time 
of 1,150 minutes  

 

 

 

Fig.A.31. Heat rate as a function of temperature for soak temperature of 120oC and 
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soak time of 1,150 minutes 
 

 
Fig.A.32. Pressure rate as a function of temperature for soak temperature of 120oC 

and soak time of 1,150 minutes 
 
 

 
Fig.A.33. Temperature as a function of time for soak temperature of 120oC, showing 
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the exotherm detected in the soak stage 

 
Fig.A.34. Pressure as a function of time for soak temperature of 120oC, showing the 

exotherm detected in the soak stage 
 
 

 
Fig.A.35. Heat rate as a function of temperature for soak temperature of 120oC, 

showing the exotherm detected in the soak stage 
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Fig.A.36. Pressure rate as a function of temperature for soak temperature of 120oC, 

showing the exotherm detected in the soak stage 
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